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Acerca de…

Portada diseñada por: Michael Brown

El Análisis Exploratorio de Datos (Exploratory Data Analysis, EDA), desarrollado por John W. Tukey, es
la primera etapa del proceso de análisis de datos y consiste en un conjunto de métodos estadísticos y gráficos que
permiten:

• organizar y estructurar los datos.
• explorar la distribución de las variables consideradas con la finalidad, por ejemplo, de detectar la presencia

de valores missing, valores anómalos, comprender la dispersión y forma de los datos, etc.
• entender las relaciones entre las variables.
• comprobar el cumplimiento de los supuestos en los que se basan gran parte de métodos multivariantes.
• reorganizar y reestructurar los datos para posteriores procedimientos de análisis.

Este manual cubre los conceptos básicos de un curso introductorio al Análisis Exploratorio de Datos. En la primera 
parte del libro (capítulos 1 a 5) se introducen las bases para analizar y representar datos con R; en la segunda 
parte (capítulo 6) se explica como acceder a bases de datos de distintas fuentes (Instituto Nacional de Estadística, 
Centro de Investigaciones Sociológicas, Eurostat, etc.); y la tercera parte (capítulos 7 a 9) está dedicada a explicar, 
haciendo uso de R y datos reales, las principales medidas estadísticas utilizadas para describir una variable y para 
analizar la relación/asociación entre dos variables.

A medida que se adquieran conocimientos de probabilidad y de inferencia estadística, el Análisis Exploratorio de 
Datos puede extenderse para contrastar las hipótesis de partida requeridas en determinadas técnicas multivariantes, 
aplicar métodos de imputación de datos faltantes (missing data imputation), etc.
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Capítulo 4

Procesando los datos con tidyverse.

4.1 Introducción.

En el capítulo anterior practicamos cómo leer y guardar datos (o resultados) en nuestra sesión de trabajo de
R/RStudio. En este capítulo vamos a abordar cómo transformar estos datos para que se adecúen a nuestros análisis.
El flujo de trabajo que normalmente seguimos se resumen en la Figura 4.1.

Figura 4.1: Flujo de trabajo en el análisis de datos. Fuente: http://r4ds.had.co.nz/wrangle-intro.html

Comenzamos importando los datos y ordenándolos, es lo que en la terminología se conoce como data tidying
(Wickham (2014)). Disponer los datos correctamente, con una buena estructura, facilita el proceso de transforma-
ción/manipulación, esto es, la selección de casos y de variables de interés, el cálculo de descriptivos básicos, etc. Para
responder a las preguntas que nos planteamos efectuamos tanto análisis gráficos (visualización) como estadísticos
(modelización). Finalmente, tenemos que saber comunicar nuestros resultados de una forma efectiva.

Hoy en día, cuando analizamos datos con R solemos referirnos con relativa frecuencia al término tidyverse. Lo
hacemos en un doble sentido. Por un lado, para hacer referencia a una nueva forma de afrontar el análisis de datos
en R, más fluído que como lo haríamos con R-base. Por otro lado, para referirnos a todo un conjunto de paquetes (o
librerias) interrelacionados que permiten afrontar todo el flujo de trabajo del analista de datos (Figura 4.1): desde
la importación de datos hasta la comunicación de los resultados.
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Figura 4.2: Paquetes que integran Tidyverse. Fuente: http://www.tidyverse.org

Como observamos en la Figura 4.2, los principales paquetes que integran tidyverse son:

• readr: para importar datos.

• tidyr: para convertir los datos a “tidy data”, datos ordenados.

• dplyr: para transformar/manipular datos.

• ggplot2: para hacer gráficos.

• tibble: dataframes “actualizados”.

• forcast: para manipular factores.

• stringr: para manipular strings (cadenas de texto).

• purrr: para programación funcional (functional programming).

 

 

Cuando cargamos el paquete tidyverse realmente lo que estamos haciendo es cargar los 8 paquetes anteriores
(ggplot2, readr, etc.). También podemos cargar cada paquete por separado.

 

 

Si quieres saber más sobre tidyverse, puedes consultar www.tidyverse.org

En este capítulo vamos a introducir los conceptos básicos que nos permitan adquirir las competencias esenciales
para manejar o procesar nuestros datos con los paquete tidyr y dplyr. El siguiente capítulo lo dedicaremos a
realizar una introducción a la visualización de datos con ggplot2.
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4.2 Antes de comenzar…

Abrimos nuestro proyecto de trabajo en RStudio. Para ello, entramos en la carpeta del proyecto estadistica_basica
y hacemos doble clic sobre el fichero estadistica_basica.Rproj.

Creamos un nuevo script de R y lo guardamos con el nombre: tema_4. En este script escribiremos todas las
instrucciones que trabajaremos en el resto de este cuarto capítulo.

Para ejemplificar el uso de las principales funciones de tidyr y dplyr utilizaremos un conjunto de datos (dataset)
que se encuentra disponible en el paquete AER (Kleiber and Zeileis, 2008). Concretamente, haremos uso del dataset
CPS1985 (Determinants of Wages Data, CPS 1985). Más información del dataset en la ayuda del paquete y en el
siguiente enlace: http://lib.stat.cmu.edu/datasets/CPS_85_Wages

Cargamos en memoria la libreria AER. Si no tenemos instalado el paquete, lo instalamos y después lo comentamos.
Cargamos el conjunto de datos que vamos a trabajar. Los datos quedan automáticamente asignados al objeto
CPS1985; compruébalo en el Environment.

> # install.packages("AER")
> library(AER)
> data("CPS1985")

¿Cuántas observaciones hay en el dataset? ¿Qué variables contiene?

Para responder a la primera pregunta utilizaremos la función dim(); para la segunda podemos usar la función
names().

> dim(CPS1985)
[1] 534 11
> names(CPS1985)
[1] "wage" "education" "experience" "age" "ethnicity"
[6] "region" "gender" "occupation" "sector" "union"
[11] "married"

Así pues, tenemos un total de 534 observaciones y las siguientes 11 variables:

• Wage: Wage (dollars per hour).
• Education: Number of years of education.
• Experience: Number of years of work experience.
• Age: Age (years).
• Ethnicity: Race (1=Other, 2=Hispanic, 3=White).
• Region: Indicator variable for Southern Region (1=Person lives in South, 0=Person lives elsewhere).
• Gender: Indicator variable for sex (1=Female, 0=Male).
• Occupation: Occupational category (1=Management, 2=Sales, 3=technical,4 =Service, 5=Professional,

6=Other).
• Sector: Sector (0=Other, 1=Manufacturing, 2=Construction).
• Union: Indicator variable for union membership (1=Union member, 0=Not union member).
• Married: Marital Status (0=Unmarried, 1=Married)

http://lib.stat.cmu.edu/datasets/CPS_85_Wages
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Por defecto, cuando R lee un conjunto de datos, ordena los niveles un factor por orden alfabético. Sin embargo,
por su diseño, esto no ocurre con el dataframe CPS1985.
Por tanto, siempre tenemos que ser conscientes de cómo están ordenados los niveles de un factor.

Vamos a obtener un resumen de las variables. Hacemos uso de la función summary().

> summary(CPS1985)
wage education experience age

Min. : 1.000 Min. : 2.00 Min. : 0.00 Min. :18.00
1st Qu.: 5.250 1st Qu.:12.00 1st Qu.: 8.00 1st Qu.:28.00
Median : 7.780 Median :12.00 Median :15.00 Median :35.00
Mean : 9.024 Mean :13.02 Mean :17.82 Mean :36.83
3rd Qu.:11.250 3rd Qu.:15.00 3rd Qu.:26.00 3rd Qu.:44.00
Max. :44.500 Max. :18.00 Max. :55.00 Max. :64.00

ethnicity region gender occupation sector
cauc :440 south:156 male :289 worker :156 manufacturing: 99
hispanic: 27 other:378 female:245 technical :105 construction : 24
other : 67 services : 83 other :411

office : 97
sales : 38
management: 55

union married
no :438 no :184
yes: 96 yes:350

En el caso de variables cuantitativas, la función summary() proporciona como resumen de la variable los “cinco
números” (mínimo, cuartil 1, cuartil 2, cuartil 3, máximo) y la media. Si la variable es categórica y se ha identificado
como factor, proporciona el recuento de observaciones en cada categoría. En el caso de variables identifacadas como
carácter (character) no puede proporcionar ningún resultado, sólo indica la longitud del vector relativo a la variable.

Bien. Ya tenemos una idea de los datos. Ahora…¡¡¡a trabajar con ellos!!!

4.3 El operador %>%

El operador %>% se denomina pipe (Bache and Wickham, 2022). Es un operador que nos facilita la secuencialización
de pasos de un determinado proceso para alcanzar un resultado, haciendo mucho más fluído el flujo de trabajo.

Lo que hace el operador %>% es pasar el elemento que está a su izquierda como un argumento de la función que
tiene a la derecha.

 

 

El operador %>% podemos leerlo como: y luego o entonces (o algo similar). A partir de la version 4.1 de
R puede usarse como operador nativo |> en lugar de %>%
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Con el pipe la escritura y la lectura de código es mucho más limpia, clara y fluída. En consecuencia, y aunque
resulte un tanto redundante decirlo, el código que escribimos es mucho más fácil de leer.

Pongo el ejemplo que utilizamos mi compañero Pedro y yo en uno de nuestros cursos de formación. Se trata de
comparar cómo escribiríamos en R-base y en el estilo de tidyverse -las funciones y argumentos utilizados son
ficticios- la secuencialiación del siguiente proceso:

Me despierto a las 8:00 de la manaña y salgo de la cama por el lado correcto; me visto con unos pantalones
y camiseta y salgo de casa en coche, no tomo la bicicleta.

En R-base escribiríamos algo parecido a:

leave_house(get_dressed(get_out_of_bed(wake_up(me, time = “8:00”), side = “correct”),pants
= TRUE, shirt = TRUE), car = TRUE, bike = FALSE)

Observemos que en R-base la secuencia de funciones se leería de dentro (me despierto, wake_up) hacia afuera y
de derecha a izquierda. Esto hace que los argumentos de una función se encuentren cada vez más alejados de su
función origen. Fijaros los argumentos car y bike de la función leave_house donde se encuentran.

Moraleja: cuando anidamos varias funciones en R-base el código resulta complicado de entender/leer.

En cambio, esta misma secuencialización en el entorno de tidyverse sería algo similar a lo siguiente:

me %>%
wake_up(time = “8:00”) %>%
get_out_of_bed(side = “correct”) %>%
get_dressed(pants = TRUE, shirt = TRUE) %>%
leave_house(car = TRUE, bike = FALSE)

No cabe duda que este último código resulta mucho más fluído y comprensible.

 

 

El atajo de teclado para el operador %>% o |> es:
en Windows: ctlr + shift + M
en Mac: Cmd + shift + M

Veamos como utilizar el pipe (%>%) con la función filter() del paquete dplyr, que se utiliza para seleccionar
observaciones (filas):

filter(dataframe,criterio)

Nuestro objetivo es seleccionar todas las observaciones del objeto CPS1985 que cumplan con el criterio: tener una
experiencia (experience) mayor o igual a 10 años.

Utilizamos la función filter junto con sus argumentos para resolver el supuesto. El resultado lo asignamos al objeto
ej1

> ej1 <- filter(CPS1985, experience >= 10)

Ahora, introducimos el uso de %>% en el siguiente código.
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> ej2 <- CPS1985 %>% filter(. , experience >= 10)

El código anterior lo leemos así:

Tomas el dataframe CPS1985 y luego (es el pipe) lo pasas al primer argumento de la función filter (es
lo que representa el .) y seleccionas las observaciones en las que la variable experience sea mayor o igual
a 10 (es el criterio). El resultado lo asignas al objeto ej2.

Sin embargo, aún podemos simplificar el lenguaje utilizado. De hecho, la forma más habitual de aplicar el pipe
(%>%) es la que se muestra en el código de abajo:

> ej3 <- CPS1985 %>%
+ filter(experience >= 10)

Este código lo leemos literalmente como sigue:

Tomas el dataframe CPS1985 y luego (es el pipe) filtras las observaciones en las que la variable
experience sea mayor o igual a 10. El resultado lo asignas al objeto ej3.

 

 

Recordad, es crítico, el pipe (%>%) puede leerse como luego o entonces, y hace que el flujo de trabajo sea
más lineal y fluído.

4.4 Proceso de ordenación de datos: tidyr.

Una vez hemos cargado los datos con los que vamos a trabajar comienza su proceso de limpieza y ordenación.
El proceso de limpieza (data cleaning process) de un conjunto de datos consiste en hacer que los datos con el
que vamos a trabajar sean consistenten para que resulte más fácil trabajar con ellos a la hora de realizar nuestras
visualizaciones y análisis estadísticos. En este proceso las acciones que se llevan a cabo son, entre otras: la detección,
corrección y/o eliminación de errores en los datos; la eliminación de datos redundantes; la detección y tratamiento
de valores perdidos; la detección y tratamiento de valores anómalos; la unión de bases de datos para consolidar los
datos requeridos en el análisis en una única fuente y ordenar los datos finales con los que se va a trabajar.

En este apartado suponemos que tenemos un conjunto de datos limpio y nos centramos en el data tidying, en hacer
que los datos con los que vamos a trabajar sean lo más tidy (odenados) posible. Para ello, utilizaremos funciones
del paquete tidyr de tidyverse.

Lo primero que tenemos que tener absolutamente claro es: ¿qué son datos tidy (ordenados)?

La mayoría de datos en Ciencias Sociales se ajustan a la categoría de datos tabulares; es decir, están organizados
en filas y columnas. En R, como ya sabemos, este tipo de datos se almacenan en dataframes (o tibbles). En
esencia, un dataframe/tibble será tidy cuando:

(1) cada columna sea una variable,



4.4. PROCESO DE ORDENACIÓN DE DATOS: TIDYR. 91

(2) cada fila sea una observación y

(3) cada valor tenga su propia celda.

El comentario anterior se refleja en la Figura 4.3.

 

 

Figura 4.3: Datos tidy, datos ordenados. Fuente: https://r4ds.had.co.nz/tidy-data.html

Veamos un ejemplo. Supongamos que la variable (o atributo) a medir es el salario y la unidad de análisis las personas
(son las observaciones o individuos). Hemos recogido datos del salario de 3 personas en el periodo 2021 a 2023.

> df1 <- data.frame(Periodo = c("2021", "2022", "2023"),
+ Nicolas = c(100, 500, 200),
+ Carla = c(400, 600, 250),
+ Angela = c(200, 700, 900) )
>
> # nota: omito los acentos en el dataframe
>
> df1
Periodo Nicolas Carla Angela

1 2021 100 400 200
2 2022 500 600 700
3 2023 200 250 900

Entendemos perfectamente los datos, visualmente son resultan cómodos de leer; pero, ¿son datos tidy?
No, no es una estructura de datos tidy. En este ejemplo, las observaciones (Nicolás, Carla, Ángela) se encuentran
en columnas.
Y la siguiente estructura de datos, ¿es tidy?

> df2 <- data.frame(Nombre = c("Nicolas", "Carla", "Angela"),
+ Salario_2021 = c(100, 400, 200),
+ Salario_2022 = c(500, 600, 700),
+ Salario_2023 = c(200, 250, 900))
>
> df2

Nombre Salario_2021 Salario_2022 Salario_2023
1 Nicolas 100 500 200
2 Carla 400 600 250
3 Angela 200 700 900
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Para nosotros también es un formato fácil de entender, pero no son tidy, aunque quizá sea el formato al que estamos
más acostumbrados (individuos o registros en filas y “variables” en columnas). En la terminología de tidyverse este
formato de datos es lo que llamamos un formato “wide” (o ancho). Podemos trabajar tranquilamente con esta
estructura de datos. ¿Realmente Salario_2021, Salario_2022 y Salario_2023 son tres variables distintas?

Si queremos sacar el máximo rendimiento a tidyverse es mejor tener los datos en long format (formato largo).
Fijaros en la siguiente estructura de datos:

> df3 <- data.frame(Nombre = c("Nicolas", "Carla", "Angela", "Nicolas",
+ "Carla", "Angela","Nicolas", "Carla", "Angela"),
+ Periodo = c("2021", "2021", "2021", "2022",
+ "2022", "2022", "2023", "2023", "2023"),
+ Salario = c(100, 400, 200, 500,
+ 600, 700, 200, 250,900) )
> df3

Nombre Periodo Salario
1 Nicolas 2021 100
2 Carla 2021 400
3 Angela 2021 200
4 Nicolas 2022 500
5 Carla 2022 600
6 Angela 2022 700
7 Nicolas 2023 200
8 Carla 2023 250
9 Angela 2023 900

Los datos almacenados en df3 son tidy. Este formato es más difícil de leer para nosotros, pero es más eficiente para
los ordenadores; ¡¡y los datos los procesan los ordenadores!! De hecho, en muchas ocasiones, cuando nos descargamos
datos de bases de datos, la estrucutura con la que nos los descargamos son en formato long.

4.4.1 Datos en formato largo y ancho: pivot_longer() y pivot_wider().

Si tenemos un dataframe en formato wide tenemos que pasarlo a formato long para trabajar más eficientemente.
Para ello utilizamos la función pivot.longer().

Generalmente, para mostrar nuestros resultados pasamos de formato long a formato wide, porque los entendemos
mejor. Para ello utilizamos la función pivot.wider()

 

 

Por si leemos código de otros usuarios, en versiones anteriores del paquete tidyr las funciones eran:

– para pasar de formato ancho a largo: gather()
– para pasar de formato largo a ancho: spread()

La función pivot_longer() convierte dataframes/tibbles de formato wide a formato long. Su estructura se ilustra
en la Figura 4.4.
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Figura 4.4: pivot_longer: de formato ancho a formato largo. Fuente: https://epirhandbook.com/en/index.html

Si pedimos la ayuda de la función pivot_longer() veremos que tiene muchos argumentos (ver Figura 4.5)

 

 

Figura 4.5: Uso de la función: pivot_longer (ayuda de la función)

pero en la mayor parte de los casos es suficiente con trabajar con los básicos:

• data: dataframe/tibble.

• cols: columnas que queremos “recoger”.

• names_to: nombre de la columna (variables) que recoge cols.

• values_to: nombre de la columnas (variable) que recoge los datos de las celdas.

• values_drop_na: si queremos eliminar los valores NA. Si es así, debemos pasar el argumento a TRUE.

Bien, el objeto df2 está en formato ancho, lo pasamos a formato largo. El resultado lo guardamos en el objeto
data_long.

> data_long <- df2 %>%
+ pivot_longer(cols=2:4,names_to="Periodo",values_to="Salario")
> data_long
# A tibble: 9 x 3
Nombre Periodo Salario
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<chr> <chr> <dbl>
1 Nicolas Salario_2021 100
2 Nicolas Salario_2022 500
3 Nicolas Salario_2023 200
4 Carla Salario_2021 400
5 Carla Salario_2022 600
6 Carla Salario_2023 250
7 Angela Salario_2021 200
8 Angela Salario_2022 700
9 Angela Salario_2023 900

Luego volveremos sobre este objeto para arreglar la variable Periodo.
Pasar pasar de formato long a wide, tidyr dispone de la función pivot_wider(), como se muestra en la Figura
4.6.

 

 

Figura 4.6: pivot_wider: de formato largo a formato ancho. Fuente: https://epirhandbook.com/en/index.html

El uso de la función pivot_wider() puede verse en la ayuda y se reproduce en la Figura 4.7.

 

 

Figura 4.7: Uso de la función: pivot_wider (ayuda de la función)

En la mayor parte de las ocasiones solo vamos a utilizar, al menos por ahora, tres argumentos:

• data: dataframe/tibble.
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• names_from: nombre/posición de la columna (variable) que queremos extender.

• values_from: nombre/posición de la columna (variable) de donde se recogerán los datos de las celdas.

Por ejemplo, convertimos en formato ancho el objeto data_long que se encuentra en formato largo. Guardamos
el resultado en el objeto data_wide.

> data_wide <- data_long %>%
+ pivot_wider(names_from = "Periodo", values_from = "Salario")
>
> data_wide
# A tibble: 3 x 4
Nombre Salario_2021 Salario_2022 Salario_2023
<chr> <dbl> <dbl> <dbl>

1 Nicolas 100 500 200
2 Carla 400 600 250
3 Angela 200 700 900

4.4.2 Las funciones: separate() y unite().

Como puede deducirse por los nombres, estas funciones se utilizan para separar y unir columnas.
Si recordamos el objeto data_long, la variable Periodo tomaba los valores: Salario_2020, Salario_2021 y Sa-
lario_2022. La función separate() nos permitiría separar esta variable en dos (o más si queremos) columnas.
Observemos el siguiente código:

> data_long <- data_long %>%
+ separate(Periodo, c("Año", "Valor"), sep = "_")
>
> data_long
# A tibble: 9 x 4
Nombre Año Valor Salario
<chr> <chr> <chr> <dbl>

1 Nicolas Salario 2021 100
2 Nicolas Salario 2022 500
3 Nicolas Salario 2023 200
4 Carla Salario 2021 400
5 Carla Salario 2022 600
6 Carla Salario 2023 250
7 Angela Salario 2021 200
8 Angela Salario 2022 700
9 Angela Salario 2023 900

Hemos separado la variable Periodo en dos columnas, a las que hemos llamado Año y Valor. En el argumento
sep indicamos el separador de columnas.
Para unir columnas utilizamos para la función unite(). En el siguiente ejemplo unimos en la columna Peri-
do_y_Salario desde la columna Año hasta la columna Valor, y el contenido se separará con un espacio en
blanco.
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> data_long <- data_long %>%
+ unite(Periodo_y_Salario, Año:Valor, sep = " ")
>
> data_long
# A tibble: 9 x 3
Nombre Periodo_y_Salario Salario
<chr> <chr> <dbl>

1 Nicolas Salario 2021 100
2 Nicolas Salario 2022 500
3 Nicolas Salario 2023 200
4 Carla Salario 2021 400
5 Carla Salario 2022 600
6 Carla Salario 2023 250
7 Angela Salario 2021 200
8 Angela Salario 2022 700
9 Angela Salario 2023 900

4.5 Transformación de datos: dplyr.

El paquete dplyr lo utilizamos para transformar/manipular los datos. Es decir, para seleccionar observaciones
(filas) o columnas (variables), crear nuevas variables, obtener resúmenes (contar observaciones, calcular medidas
estadísticas,…), etc.

Las principales funciones (verbos) de dplyr para la transformación de datos son:

• filter(): filtrar datos (idea similar al filtrado de Excel). Permite seleccionar filas que cumplan con una o
varias condiciones.

• group_by(): agrupar filas según las categórias de una o variables variables.

• summarize(): resumir (colapsar) datos a un solo valor (según una función: media, desviación típica, etc.).

• mutate(): crear nuevas variables.

• select(): seleccionar variables (columnas).

• arrange(): ordenar filas.

• join(): unir dataframes.

Con estas funciones se pueden resolver la gran mayoría de problemas asociados a la manipulación de datos. Cada una
de estas funciones hace “solo una cosa”, así que para realizar transformaciones complejas hay que ir concatenando
instrucciones sencillas. Todas las funciones tienen una estructura o comportamiento similar:

• el primer argumento siempre es un dataframe/tibble.

• los siguientes argumentos describen qué hacer con los datos.
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El resultado es siempre un nuevo dataframe/tibble.

Antes de continuar, la cheat sheet de dplyr puede descargarse del siguiente enlace: https://www.uv.es/vcoll/
LIBRO_ESTADISTICA_CON_R/dplyr.pdf

En los siguientes subapartados se explica cómo hacer uso de las funciones básicas de dplyr con la excepción de la
función join().

Para ejemplificar el uso de las funciones de dplyr usaremos el dataset CPS1985 que hemos cargado al inicio del
capítulo.

4.5.1 Selección de observaciones: filter().

Esta función se utiliza para seleccionar filas de un dataframe que cumplan determinado criterio.

Por ejemplo, vamos a seleccionar los trabajadores en el dataframe CPS1985 que están casados. Lo primero es saber
qué distintas categorías tiene la variable married (casado) y después aplicar el criterio de selección para realizar el
filtrado (married == “yes”).

> # Valores únicos que toma la variable married (casados)
> unique(CPS1985$married)
[1] yes no
Levels: no yes
>
> # Guardamos la selección en el objeto aa
> aa <- CPS1985 %>%
+ filter(married == "yes")
>
> nrow(aa) #alternativamente dim(aa)[1]
[1] 350

Por tanto, en el conjunto de datos un total de 350 trabajadores están casados.

Ahora nos preguntamos, ¿qué trabajadores tienen menos de 10 años de educación? En este caso el criterio de
selección es education < 10. Guardamos el resultado en el objeto aa.

En primer lugar, podemos preguntarnos por los valores que toma la variable objeto de estudio. Como vemos en el
código más abajo, la variable education (educación) toma 17 valores distintos; en el código se ha utlizado la función
sort() para ordenar los valores de menor a mayor. Así, fácilmente observamos que el menor valor de educación es
2 años y el mayor es 18 años. Utlizamos la función dim() para obtener la dimensión del dataframe aa; como el
resultado de dim es un vector que indica filas y columnas, seleccionamos el primer elemento, las filas.

> # valores únicos de education:
> unique(CPS1985$education) # con R-base
[1] 8 9 12 13 10 16 7 11 6 14 17 3 15 5 18 4 2
>
> # ordenación de los valores únicos de education:
> sort(unique(CPS1985$education)) # con R-base
[1] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
>
> # Selección de trabajadores de acuerdo con el criterio

https://www.uv.es/vcoll/LIBRO_ESTADISTICA_CON_R/dplyr.pdf
https://www.uv.es/vcoll/LIBRO_ESTADISTICA_CON_R/dplyr.pdf
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> aa <- CPS1985 %>%
+ filter(education < 10)
>
> dim(aa)[1]
[1] 39

Un total de 39 trabajadores tienen menos de 10 años de educación.

¿Cuántos trabajadores tienen entre 10 y 15 años de educación (ambos inclusive)?

Podemos responder a esta preguntas de varias formas. En la tercera opción utilizamos conjuntamente la función
between() y filter() de dplyr.

> aa <- CPS1985 %>%
+ filter(education >= 10 , education <= 15)
>
> aa2 <- CPS1985 %>%
+ filter(education >= 10 & education <= 15)
>
> # Con la función between.
> # consultar el uso de la función: ?between
> aa3 <- CPS1985 %>%
+ filter(between(education, 10, 15))

 

 

Para establecer el criterio A Y B (es una intersección, deben cumplirse al mismo tiempo el criterio A y el
criterio B), podemos utilizar indistintamente los símbolos: , o &

Planteamos otro ejemplo. ¿Cuántos trabajadores casados y con años de educación mayor o igual a la media hay en
nuestro conjunto de datos?

> aa <- CPS1985 %>%
+ filter(married=="yes", education >= mean(education))

El número medio de años de educación de los trabajadores en nuestro dataset es de 13.02 años. Un total de 125
trabajadores están casados y tienen una educación igual o superior a 13.02 años (como educación toma valores
enteros, se han seleccionado todos los trabajadores con 14 o más años de educación).

Por último, también podemos establecer como criterio de selección que se cumpla la condición A o B. Este criterio
correspondería al concepto de unión en teoría de conjuntos: que se cumpla sólo A, o solo B, o ambos (A y B). Para
realizar esta selección se utiliza el símbolo |

Por ejemplo, ¿qué trabajadores están empleados en el sector construction o están afiliados a un sindicato? En caso
de estar interesados en trabajar sobre el resultado del filtrado, asignaríamos el subconjunto de datos obtenidos a
un objeto.
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> unique(CPS1985$sector) # para conocer los niveles de la variable
[1] manufacturing other construction
Levels: manufacturing construction other
>
> aa <- CPS1985 %>%
+ filter(sector == "construction" | union == "yes")

 

 

R ordena alfabéticamente -por defecto- los niveles de los factores. Sin embargo, observad que esto no ocurre
con el conjunto de datos con el que estamos trabajando.

A veces interesa seleccionar determinadas observaciones atendiendo a la posición que ocupan. En estos casos en
lugar de filter() puede utilizarse la función slice(). Por ejemplo, supongamos que estamos interesados en seleccionar
las observaciones que se encuentran en las posiciones (filas): 2, 5, 15 y 27.

> aa <- CPS1985 %>%
+ slice(c(2,5,15,27))

Como podemos ver en la seccion extraer casos de la cheat sheet de dplyr, la función slide tiene distintas variantes:
slide_sample, para seleccionar aleatoriamente filas; slide_min y slide_max, que seleccionan filas con los me-
nores y los mayores valores; y slide_head y slide_tail, que seleccionan primeras o últimas filas (son equivalentes
a head y tail que vimos en el apartado 2.4.2.1).

Veamos una aplicación. Para seleccionar el 25% de las observaciones que tienen un menor salario escribiríamos el
siguiente código. El 25% de las observaciones seleccionadas serán ordenadas en orden ascedente según el salario.

> aa <- CPS1985 %>%
+ slice_min(wage,prop=0.25)

Para terminar con la selección de observaciones (casos), si queremos eliminar filas con casos duplicados, utilizamos
la función distinct(). Para más detalles consultar la ayuda de la función.

4.5.2 Agrupar por categoría de una variable: group_by().

Con esta función ya empezaremos a ver la potencia de dplyr. En el análisis de datos es frecuente que determinadas
medidas (media, mediana, moda, cuantiles, etc.) queramos calcularlas para distintos grupos (hombre, mujer, etc.).
Por ejemplo, podemos estar interesados en conocer el salario medio de todos los trabajadores (hombres y mujeres),
pero también es bien interesante conocer el salario medio de los hombres y el de las mujeres. La función group_by()
es la que nos va a permitir hacer este tipo de operación. Como podemos ver en la Figura 4.8, lo que hace group_by()
es agrupar las observaciones según los valores/categorías de una o más variables.
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Figura 4.8: Lógica de la función group by. Fuente: R for Reproducible Scientific Analysis
(https://swcarpentry.github.io/r-novice-gapminder/13-dplyr/index.html)

Es decir, group_by() considera un dataframe y lo convierte en un “dataframe agrupado”. En ese nuevo
“dataframe agrupado” las operaciones que hagamos con summarize() (resumir) se harán por separado para cada
uno de los grupos que hayamos definido. Ahora lo vemos.
Si, por ejemplo, agrupamos nuestro dataframe de CPS1985 por la varaiable gender, la función summarize() nos
dará el resumen para cada categoría de gender.
De la lectura de esta función se desprende una idea importante: group_by() y summarize() se utilizan (normal-
mente) juntas.
En CPS1095, ¿cuántas observaciones (rows) tenemos de cada categoría de gender? Para responder a esta pregunta
primero vamos a agrupar el conjunto de datos por gender y luego realizaremos el conteo de observaciones en cada
grupo. Como queremos resumir la información utilizamos la función summarize y dentro de ella el resumen que
queremos hacer: el conteo de observaciones, Para esto último puede utilizarse la función n().

> CPS1985 %>%
+ group_by(gender) %>%
+ summarize(total = n()) # la función n() devuelve el tamaño (número de casos) de cada grupo
# A tibble: 2 x 2
gender total
<fct> <int>

1 male 289
2 female 245
>
> CPS1985 %>%
+ summarize(total = n_distinct(gender))

total
1 2

Para contar los valores únicos de una o más variables también podemos utilizar la función count(). El mismo
resultado que en el código anterior podíamos haberlo obtenido de esta otra forma:
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> CPS1985 %>%
+ count(gender)
gender n

1 male 289
2 female 245

 

 

Consultad la ayuda de la función count().
dplyr tiene otra función que permite contar el número de valores únicos (o distintas combinaciones) en
uno o más vectores, esta función es n_distinct(), sería equivalente a escribir esta instrucción en R-base:
nrow(unique(NUESTRO_DATA_FRAME)))

¿Y cómo es la distribución de la raza (ethnicity) por sexo (gender)? Dependiendo de lo que queramos mostrar,
primero podemos agrupar por etnicity y luego cada categía de esta variable la agrupamos por gender, o al contrario.
Observad los resultados del siguiente código

> # primero agrupamos por género y luego por raza
> CPS1985 %>%
+ group_by(gender, ethnicity) %>%
+ summarize(total = n())
# A tibble: 6 x 3
# Groups: gender [2]
gender ethnicity total
<fct> <fct> <int>

1 male cauc 236
2 male hispanic 14
3 male other 39
4 female cauc 204
5 female hispanic 13
6 female other 28
>
> # primero agrupamos por raza y luego por género
> CPS1985 %>%
+ group_by(ethnicity, gender) %>%
+ summarize(total = n())
# A tibble: 6 x 3
# Groups: ethnicity [3]
ethnicity gender total
<fct> <fct> <int>

1 cauc male 236
2 cauc female 204
3 hispanic male 14
4 hispanic female 13
5 other male 39
6 other female 28
>
> # en group_by estamos utilizando la , para separar las variables de agrupación
> # el orden en que se escriben es el orden de la agrupación
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Alternativamente,

> CPS1985 %>%
+ count(ethnicity,gender)
ethnicity gender n

1 cauc male 236
2 cauc female 204
3 hispanic male 14
4 hispanic female 13
5 other male 39
6 other female 28

¿Cuál es el salario medio de los trabajadores según el sexo y la raza?

En esta ocasión agrupamos los datos por género y raza y luego para cada subconjunto de datos resultado de la
agrupación calculamos la media.

> CPS1985 %>%
+ group_by(gender,ethnicity) %>%
+ summarize(Salario_medio = mean(wage,na.rm=TRUE))
# A tibble: 6 x 3
# Groups: gender [2]
gender ethnicity Salario_medio
<fct> <fct> <dbl>

1 male cauc 10.3
2 male hispanic 8.66
3 male other 8.46
4 female cauc 8.06
5 female hispanic 5.80
6 female other 7.49
>
> # es conveniente introducir en la función de la media el argumento na.rm=TRUE
> # El argumento lo que hace es que si hay NAs los quita para caluclar la media.

4.5.3 Resumen con summarize().

Como hemos podido comprobar en los ejemplos anteriores, la función summarize() se utiliza para resumir (o
“colapsar filas”). Toma un grupo de valores como input y devuelve un solo valor; por ejemplo, calcula la media
aritmética (o el mínimo, o el máximo …) de un grupo de valores.

Vamos a calcular algunos estadísticos de una variable. Realmente, para hacer esto no nos hace falta dplyr, pero
conviene que nos vayamos habituando a su sintaxis. Tratamos de leer el código que se muestra más abajo y pensamos
en el resultado que esperamos nos devuelva.

> #- devuelve un único valor: la media de la variable "wage".
> CPS1985 %>%
+ summarize(media = mean(wage))
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>
> #- devuelve un único valor: el número de filas
> CPS1985 %>%
+ summarize(total_observaciones = n())
>
> #- devuelve un único valor: la cuasi desviación típica de "wage"
> CPS1985 %>%
+ summarize(desviacion_tipica = sd(wage))
>
> #- devuelve un único valor: el máximo de la variable "wage"
> CPS1985 %>%
+ summarize(max(wage))
>
> #- devuelve 2 valores: la media y la cuasi desviación típica de "wage""
> CPS1985 %>%
+ summarize(media_mpg = mean(wage),
+ sd_mpg = sd(wage))
>
> #- devuelve 2 valores: las medias de "wage" y "education"
> CPS1985 %>%
+ summarize(media_wage = mean(wage),
+ media_education = mean(education))
>
> #- devuelve 4 valores: la medida y cuasi desviación típica de "wage" y "education"
> CPS1985 %>%
+ summarize_at(vars(wage,education), funs(mean, sd)) # funs() está obsoleta, se recomienda list()
>
> CPS1985 %>%
+ summarize_at(vars(wage,education), list(mean, sd))
>
> CPS1985 %>%
+ summarize_at(vars(wage,education), list(media=mean, desviacion=sd))
>

 

 

En el capítulo 7, dedicado al estudio de las medidas estadísticas descriptivas básicas, estudiaremos en los apar-
tados 7.6.3 y 7.6.4 la diferencia entre desviación típica (muestral) y cuasi desviación típica (muestral).

La función summarize_at(), que ya hemos utilizado en un ejemplo anterior, permite seleccionar las columnas sobre
las que se pasará las funciones de resumen.

> CPS1985 %>%
+ filter(occupation %in% c("worker", "technical","sales")) %>%
+ group_by(ethnicity) %>%
+ summarize_at(vars(wage, education), list(media = mean, mediana = median))
# A tibble: 3 x 5
ethnicity wage_media education_media wage_mediana education_mediana
<fct> <dbl> <dbl> <dbl> <dbl>
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1 cauc 9.86 13.4 8.9 12
2 hispanic 7.12 11.2 6 12
3 other 7.97 12.2 7 12

También podemos calcular estadísticos de todas las variables del dataframe con la función summarize_all(). Si
la variable no es numérica y pasamos soló una función, se devolverá NA; si pasamos más de una función entonces
devolverá un error. Observad los siguientes dos ejemplos.

> #- media de cada una de las 11 variables.
> CPS1985 %>%
+ summarize_all(mean)
>
> #- media y cuasi desviación típica de las 11 variables.
> CPS1985 %>%
+ summarize_all(funs(mean, sd) ) # funs() está obsoleta, se recomienda cambiar a list()
>

Por último, la función summarize_if() aplicará una (o varias) funciones de resumen sobre las columnas que
devuelvan el valor lógico TRUE al cumplirse la condición.

> CPS1985 %>%
+ filter(occupation %in% c("worker", "technical","sales")) %>%
+ group_by(ethnicity) %>%
+ summarize_if(is.numeric, funs(media=mean, mediana=median)) # si la variable
# A tibble: 3 x 9
ethnicity wage_media education_media experience_media age_media wage_mediana
<fct> <dbl> <dbl> <dbl> <dbl> <dbl>

1 cauc 9.86 13.4 16.8 36.1 8.9
2 hispanic 7.12 11.2 17.5 34.7 6
3 other 7.97 12.2 20.5 38.8 7
# i 3 more variables: education_mediana <dbl>, experience_mediana <dbl>,
# age_mediana <dbl>
> # es numérica, calcula la media y la mediana.

 

 

En ejemplos anteriores hemos utilizado el operador %in%. Este operador se utiliza para comprobar si los
valores del primer argumento se encuentran en el segundo. El resultado de aplicar este operador es un vector
lógico. En los ejemplos se ha utilizado %in% como criterio para seleccionar filas con filter.

4.5.4 Crear variables: mutate().

Con esta función creamos nuevas variables (columnas). Es muy útil en análisis de datos.

Por ejemplo, supongamos que queremos crear una columna que refleje el salario semanal. Tenemos la variable salario
por hora (wage). Suponiendo que se trabaja 8 hora al día de lunes a viernes, tendríamos que el salario semanal se
obtendría a partir de la expresión:
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𝑠𝑎𝑙𝑎𝑟𝑖𝑜.𝑠𝑒𝑚𝑎𝑛𝑎𝑙 = 5 ∗ 8 ∗ 𝑤𝑎𝑔𝑒

Creamos la variable: salario.semanal = 40 * wage

> CPS1985 <- CPS1985 %>%
+ mutate(salario.semanal = 40 * wage)

La estructura de CPS1985 ha cambiado, ahora tiene 12 variables en lugar de las 11 iniciales. Por defecto, la nueva
variable creada se sitúa en la última columna. El número de observaciones no ha cambiado. Si queremos crear la
nueva variable en una determinada posición podemos hacer uso de los argumentos .after, para situarla depués de
una variable dada, o .before, para situarla antes.

> CPS1985 <- CPS1985 %>%
+ mutate(salario.semanal = 40 * wage, .after=wage) # sitúa salario.semanal después de wage
>
>
> CPS1985 <- CPS1985 %>%
+ mutate(salario.semanal = 40 * wage, .before=wage) # sitúa salario.semanal antes de wage

Si queremos manipular varias variables al mismo tiempo podemos recurrir a la función across(). La estructura de la
función across es: across(.cols, .funs, …, .names = NULL). Lo que hace across es pasar una o varias funciones
(argumento .funs) a múltiples columnas. La función across() se puede utilizar combinada con summarize(),
mutate() o select().

Calculamos la media de todas las variables de CPS1985.

> CPS1985 %>%
+ summarize(across(everything(),mean))

wage education experience age ethnicity region gender occupation
1 9.024064 13.01873 17.8221 36.83333 NA NA NA NA
sector union married

1 NA NA NA

 

 

everything(), starts_with(), ends_with(), contains(), matches(),etc. se utilizan con las funciones select() y
across() para ayudar en la selección.

Al ejercutar la instrucción obtenemos las medias de las variables numéricas, pero también un warning porque
hemos especificado el cálculo de la media para todas las variables y en CPS1985 tenemos variables cualitativas
como ethnicity o region. En esta situación, podemos especificar las posiciones de las variables numéricas o,
alternativamente, hacer uso de la función where(), que permite seleccionar variables con una función. Consideremos
los siguientes ejemplos:



106 CAPÍTULO 4. PROCESANDO LOS DATOS CON TIDYVERSE.

> # aplica sobre las primeras cuatro columnas la media
> CPS1985 %>%
+ summarize(across(1:4,mean))

wage education experience age
1 9.024064 13.01873 17.8221 36.83333
>
> # aplica sobre las primeras cuatro columnas la media y la mediana
> CPS1985 %>%
+ summarize(across(1:4,list(media=mean,mediana=median)))
wage_media wage_mediana education_media education_mediana experience_media

1 9.024064 7.78 13.01873 12 17.8221
experience_mediana age_media age_mediana

1 15 36.83333 35
> # selecciona las columnas numéricas y aplica la media
> CPS1985 %>%
+ summarize(across(where(is.numeric),mean))

wage education experience age
1 9.024064 13.01873 17.8221 36.83333

Antes de pasar al siguiente verbo/función de dplyr, un ejemplo de uso combinado de mutate() y across().
Observad que en el siguiente código where(is.factor) selecciona las columnas que satisfacen la condición, luego se
aplica para esas columnas las función as.character.

> # convertimos todas las variables factor a carácter
> CPS1985 <- CPS1985 %>%
+ mutate(across(where(is.factor), as.character))

4.5.5 Seleccionar variables: select().

Esta función sirve para seleccionar columnas (o variables si el fichero es tidy) por nombre o posición.

Podemos seleccionar las variables por nombre. Por ejemplo, vamos a seleccionar de CPS1985 las varibles wage y
gender, el dataframe resultante lo guardamos en el objeto aa.

> #- se leerá: toma el dataframe CPS1985 y entonces selecciona wage y gender
> aa <- CPS1985 %>%
+ select(wage, gender)
>
> aa <- CPS1985 %>%
+ select(c(wage, gender)) # equivalente al anterior

Si queremos seleccionar de CPS1985 todas las variables excepto union escribiríamos:

> aa <- CPS1985 %>%
+ select(-union)
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En el caso de querer eliminar más de una variable lo que hacemos es nombrar esas variables dentro de un vector:

> aa <- CPS1985 %>%
+ select(-c(union, married))

Estamos realizando la selección por el nombre de la variable, pero también podemos realizar la selección por la
posición (número de columna) que ocupa en el dataframe.
Seleccionamos las siguientes variables de nuestro dataframe: de la primera a la tercera y también la quinta.

> aa <- CPS1985 %>%
+ select(1:3,5)
>
> # particularmente, prefiero seleccionar por nombre

De forma análoga, podemos estar interesados en seleccionar todas las variables del dataframe excepto las siguientes:
de la primera a la tercer y la quinta.

> aa <- CPS1985 %>%
+ select(- c(1:3, 5))

La función select() también puede utilizarse para renombrar variables (columnas) o para reordenarlas.
De CPS1985 queremos seleccionar, por este orden, age y wage.

> aa <- CPS1985 %>%
+ select(age, wage)

Pero no solo eso, quiero seleccionar age y wage y cambiarles el nombre. Para ello, escribimos:

> aa <- CPS1985 %>%
+ select(Edad = age, Salario.hora = wage)

Supongamos que queremos que la variable experience de CPS1985 a pase a ocupar la primera columna en el
dataframe. Esto lo podemos hacer con la función select() y everything(), que es una función auxiliar de select:

> #- "experience" que es la tercera columna pasa a ser la primera
> aa <- CPS1985 %>%
+ select(experience, everything())

dplyr cuenta con otras dos funciones relacionadas con la extracción de variables. Por un lado, tenemos la función
pull(), que extrae los valores de una columna como un vector. Por otro lado, está la función relocate(), que nos
permite mover columnas. Vemos los siguientes ejemplos:
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> # extraemos el salario (utilizando el nombre de la variable)
> CPS1985 %>%
+ pull(wage)
>
> # extraemos el salario (utilizando la posición de la variable)
> CPS1985 %>%
+ pull(1)
>
> # movemos las columnas wage y education delante de married
> CPS1985 <- CPS1985 %>%
+ relocate(c(wage,education), .before=married)
>
> # movemos las columnas wage y education detrás de married
> CPS1985 <- CPS1985 %>%
+ relocate(c(wage,education), .after=married)

4.5.6 Ordenar los datos: arrange().

Esta función se utiliza para ordenar las filas de una o más variables de un dataframe. Por defecto los valores se
ordenan en onrden ascendente, de menor a mayor. Si queremos ordenar de mayor a menor, orden descendente, hay
que cambiar usar la función auxiliar desc(). Aquí hay algunos ejemplos.

> #- ordena las filas de MENOR a mayor según los valores de "wage""
> aa <- CPS1985 %>%
+ arrange(wage)
>
> #- ordena las filas de MAYOR a menor según los valores de "wage""
> aa2 <- CPS1985 %>%
+ arrange(desc(wage))
>
> #- ordenada las filas de MENOR a mayor según los valores "wage" (primero) y si hay empates
> # se resuelve con la variable "experience"
> aa3 <- CPS1985 %>%
+ arrange(wage, experience) # ver el dataframe

Puedes comprar el libro en:
www.leanpub.com/analisis_exploratorio_datos_con_R
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