te Coll-Serranc

icen

\'

iones con

Aplicac

Introduccion al Analisis Exploratorio de Datos.

Aplicaciones con R y datos reales.

Vicente Coll Serrano

Profesor Titular de Universidad
M¢étodos Cuantitativos para la Economia y la Empresa

Facultad de Economia. Universidad de Valencia (Espana)

25-julio-2024

Informacion de la obra

Coémo citar de esta publicacion:
Coll-Serrano, V. (2023). Introduccion al Andlisis Exploratorio de Datos. Aplicaciones con R y datos reales.

Valencia: Leanpub.

Primera edicién, 2023 (version electrénica corregida)
Esta version ha sido publicada el 25 de julio de 2024 y corrige las erratas detectadas en la version publicada el 1 de

diciembre de 2023 (consultar: www.uv.es/vcoll/erratas.pdf)

Copyright ©2023 Vicente Coll Serrano
PUBLICADO POR EL AUTOR
Puede descargarse desde:

https://leanpub.com/analisis_exploratorio_datos_con_R

El medio de publicacion de este libro estd basado en mi confianza en que el
lector reconocera el trabajo y esfuerzo dedicado y que, por tanto, si lee el

manual y lo considera util, lo comprara.

El 40% de los beneficios del libro iran destinados a la Asociacion Espaiiola Contra el
Cancer (AECC) y a la investigacion contra el cancer de pancreas y de pulmon.

Diseno de la portada: Michael Brown (https://michaeldbrowndesign.com/)

ISBN: 978-84-09-56823-9
No estd permitida la reproduccién total o parcial de este libro, ni su tratamiento informético, ni su transmisiéon de

ninguna forma o por cualquier medio, sin el permiso previo y por escrito del titular del Copyright.

Lo tnico que hacen los ruiseniores es musica para que
la disfrutemos. No se comen nada de los jardines, no
hacen nidos en los graneros de maiz, lo inico que hacen
es cantar con todo su corazén para nosotros.

(Matar a un ruisefior, Harper Lee)

A mis estudiantes, los futuros ruisenores
de la ciencia de datos.

Puedes comprar el libro en:
www.leanpub.com/analisis_exploratorio_datos_con_R

Indice general

Puedes comprar el libro en:

www.leanpub.com/analisis_exploratorio_datos_con_R

Acerca de... 11

I Parte I: Introduccién a R y RStudio 13
1 Primeros pasos con R y RStudio. 15
1.1 Inmtroduccidn. L e 15
1.2 Imstalacion de R. e 15
1.3 Comnsolade R. e 16
1.4 Instalacion de RStudio. L 17
1.5 Como iniciar una sesiéon con RStudio.o 18
1.6 Creando un proyecto de R con RStudio. 19
1.7 Crear un script. L 20
1.8 R como calculadora. 22
1.9 Simbolos de asignacion. L e e 22
1.10 Instalar y cargar paquetes. Lo e e e e e e e 24
1.11 Ayuda de R. o 26
1.12 Guardar cambios y salir. Lo e 27
2 Conceptos basicos de R. 29
2.1 IntroducciOn. e e e e e 29
2.2 Antes de COMENZAT... v i e e 29
2.3 Tiposdedatos. e e e 29
2.4 Tiposde objetos. e e e e 35
2.5 Secuencias y repeticiones. L e e 54

8 INDICE GENERAL

2.6 Combinar objetos. L e e e 55
2.7 Funciones apply. e 57
3 Leer y guardar datos con R. 63
3.1 Imtroduccidn. oL e 63
3.2 Antes de COMENZAT.. L e 64
3.3 Funcionalidad de RStudio: Import Dataset. 65
3.4 Leer y guardar datos utilizando funciones. 67
3.5 Datos en formatode R. 82
4 Procesando los datos con tidyverse. 85
4.1 ImtroducciOn. e 85
4.2 Antes de COMENZAT.. L e e 87
4.3 Eloperador %>% o o 88
4.4 Proceso de ordenaciéon de datos: tidyr. oL L 90
4.5 Transformacion de datos: Aplyr. Lo 96
5 Representaciones graficas con ggplot2. 109
5.1 Imtroduccidn. e e e e 109
5.2 Antes de comenzar.. 112
5.3 Histrograma. e 113
5.4 Poligonos de frecuencias. L. 120
5.5 Hora de hablar de..colores e 123
5.6 Diagrama de barras. e e e e 126
5.7 Diagrama en escalera. e e 136
5.8 Diagrama de sectores. e e e e 137
5.9 Diagrama de caja y bigotes. L e e 141
5.10 Gréafico de lineas. L e 145
5.11 Diagrama de dispersion. L e e e e e 149
II Parte II: Acceso a datos reales 157
6 Acceso a bancos de datos. 159
6.1 Introduccidn. 159
6.2 Antes de comenzar.. e 159

6.3 Encuesta de Estructura Salarial (EES). L 160

INDICE GENERAL 9

6.4 Encuesta de Presupuestos Familiares (EPF).. o oo o 164
6.5 Barometro del CIS. e 168
6.6 Eurostat L e 172
6.7 Bancomundial 179
6.8 OCDE e 183
6.9 data.world L e 189
6.10 Kaggle L e 191
IIT Parte III: Estadistica basica para el Analisis Exploratorio de Datos 197
7 Analisis de datos de una variable. 199
7.1 IntroducciOn. e e 199
7.2 Antes de COMENZAT... o i e e 201
7.3 Variables estadisticas y datos. L 201
7.4 Distribucién de frecuencias y tabla de frecuencias. L. 204
7.5 Medidas de posiciOn. L e e e e 212
7.6 Medidas de dispersion. e e 233
7.7 Medidas de forma. L e 253
7.8 Resumen de medidas descriptivas. 261
7.9 Transformaciones lineales. L 263
7.10 Deteccidn de atipicos. oL e e 271
8 Analisis de datos de dos variables 279
8.1 Imtroduccidn. L e 279
8.2 Antes de comenzar.. e 280
8.3 Distribuciones de frecuencias bidimensionales. Lo L 280
8.4 Diagrama de dispersion. Lo e e e 305
8.5 Independencia estadistica. L 309
8.6 Covarianza. L 313
8.7 Teoria de la correlacidon. oL L 322
8.8 Asociacion y concordancia. L. L. e 332
8.9 Transformaciones lineales de variables. L 344

10 INDICE GENERAL
9 Regresion lineal simple. 353
9.1 Imtroduccion. 353
9.2 Antes de comenzar.. e e 354
9.3 Método de minimos cuadrados. 355
9.4 Propiedades de la regresion. Lo 373
9.5 Relacién entre varianzas de la regresién. oL oL oL 377
9.6 Anélisis de la bondad del ajuste. 330
9.7 Prediccidn. 387
9.8 Consideraciones finales. L 390

Acerca de...

_I_r(\ﬁg;oduccién al Analisis
Exploratorio de Datos | |
=l = It

Aplicaciones con R y datos reales

Portada disenada por: Michael Brown

El Anédlisis Exploratorio de Datos (Exploratory Data Analysis, EDA), desarrollado por John W. Tukey, es
la primera etapa del proceso de andlisis de datos y consiste en un conjunto de métodos estadisticos y graficos que
permiten:

e organizar y estructurar los datos.

e explorar la distribucién de las variables consideradas con la finalidad, por ejemplo, de detectar la presencia
de valores missing, valores anémalos, comprender la dispersién y forma de los datos, etc.

o entender las relaciones entre las variables.

e comprobar el cumplimiento de los supuestos en los que se basan gran parte de métodos multivariantes.

e reorganizar y reestructurar los datos para posteriores procedimientos de analisis.

Este manual cubre los conceptos basicos de un curso introductorio al Andlisis Exploratorio de Datos. En la primera
parte del libro (capitulos 1 a 5) se introducen las bases para analizar y representar datos con R; en la segunda
parte (capitulo 6) se explica como acceder a bases de datos de distintas fuentes (Instituto Nacional de Estadistica,
Centro de Investigaciones Sociolégicas, Eurostat, etc.); y la tercera parte (capitulos 7 a 9) estd dedicada a explicar,
haciendo uso de R y datos reales, las principales medidas estadisticas utilizadas para describir una variable y para
analizar la relacién/asociacién entre dos variables.

A medida que se adquieran conocimientos de probabilidad y de inferencia estadistica, el Anélisis Exploratorio de
Datos puede extenderse para contrastar las hipétesis de partida requeridas en determinadas técnicas multivariantes,
aplicar métodos de imputacién de datos faltantes (missing data imputation), etc.

11

Puedes comprar el libro en:
www.leanpub.com/analisis_exploratorio_datos_con_R

Capitulo 4

Procesando los datos con tidyverse.

4.1 Introduccion.

En el capitulo anterior practicamos cémo leer y guardar datos (o resultados) en nuestra sesién de trabajo de
R/RStudio. En este capitulo vamos a abordar c6mo transformar estos datos para que se adectien a nuestros anélisis.
El flujo de trabajo que normalmente seguimos se resumen en la Figura 4.1.

/ Visualise
Import — Tidy — Transform) —— Communicate
Wrangl
rangle L Model
Understand

" A

Program

Figura 4.1: Flujo de trabajo en el anélisis de datos. Fuente: http://rdds.had.co.nz/wrangle-intro.html

Comenzamos importando los datos y ordenandolos, es lo que en la terminologia se conoce como data tidying
(Wickham (2014)). Disponer los datos correctamente, con una buena estructura, facilita el proceso de transforma-
ci6n/manipulacioén, esto es, la seleccién de casos y de variables de interés, el cdlculo de descriptivos bésicos, etc. Para
responder a las preguntas que nos planteamos efectuamos tanto analisis graficos (visualizacién) como estadisticos
(modelizacién). Finalmente, tenemos que saber comunicar nuestros resultados de una forma efectiva.

Hoy en dia, cuando analizamos datos con R solemos referirnos con relativa frecuencia al término tidyverse. Lo
hacemos en un doble sentido. Por un lado, para hacer referencia a una nueva forma de afrontar el analisis de datos
en R, més fluido que como lo harfamos con R-base. Por otro lado, para referirnos a todo un conjunto de paquetes (o
librerias) interrelacionados que permiten afrontar todo el flujo de trabajo del analista de datos (Figura 4.1): desde
la importacién de datos hasta la comunicacién de los resultados.

85

86 CAPITULO 4. PROCESANDO LOS DATOS CON TIDYVERSE.

Figura 4.2: Paquetes que integran Tidyverse. Fuente: http://www.tidyverse.org

Como observamos en la Figura 4.2, los principales paquetes que integran tidyverse son:

e readr: para importar datos.

e tidyr: para convertir los datos a “tidy data”, datos ordenados.
o dplyr: para transformar/manipular datos.

e ggplot2: para hacer gréficos.

e tibble: dataframes “actualizados”

e forcast: para manipular factores.

e stringr: para manipular strings (cadenas de texto).

e purrr: para programacién funcional (functional programming).

= Cuando cargamos el paquete tidyverse realmente lo que estamos haciendo es cargar los 8 paquetes anteriores
m (ggplot2, readr, etc.). También podemos cargar cada paquete por separado.

o Si quieres saber mas sobre tidyverse, puedes consultar www.tidyverse.org

En este capitulo vamos a introducir los conceptos bésicos que nos permitan adquirir las competencias esenciales
para manejar o procesar nuestros datos con los paquete tidyr y dplyr. El siguiente capitulo lo dedicaremos a
realizar una introduccién a la visualizacién de datos con ggplot2.

4.2. ANTES DE COMENZAR.. 87
4.2 Antes de comenzar...

Abrimos nuestro proyecto de trabajo en RStudio. Para ello, entramos en la carpeta del proyecto estadistica__basica
y hacemos doble clic sobre el fichero estadistica__basica.Rproj.

Creamos un nuevo script de R y lo guardamos con el nombre: tema_ 4. En este script escribiremos todas las
instrucciones que trabajaremos en el resto de este cuarto capitulo.

Para ejemplificar el uso de las principales funciones de tidyr y dplyr utilizaremos un conjunto de datos (dataset)
que se encuentra disponible en el paquete AER (Kleiber and Zeileis, 2008). Concretamente, haremos uso del dataset
CPS1985 (Determinants of Wages Data, CPS 1985). M4s informacién del dataset en la ayuda del paquete y en el
siguiente enlace: http://lib.stat.cmu.edu/datasets/CPS__85_ Wages

Cargamos en memoria la libreria AER. Si no tenemos instalado el paquete, lo instalamos y después lo comentamos.
Cargamos el conjunto de datos que vamos a trabajar. Los datos quedan automéaticamente asignados al objeto
CPS1985; compruébalo en el Environment.

> # install.packages ("AER")
> library (AER)
> data("CPS1985")

; Cuantas observaciones hay en el dataset? ;Qué variables contiene?

Para responder a la primera pregunta utilizaremos la funcién dim(); para la segunda podemos usar la funcién
names().

> dim(CPS1985)

[1] 534 11

> names (CPS1985)

[1] "wage" "education" "experience" "age" "ethnicity"
[6] "region" "gender" "occupation" "sector" "ynion"

[11] "married"

Asi pues, tenemos un total de 534 observaciones y las siguientes 11 variables:

o Wage: Wage (dollars per hour).

¢ Education: Number of years of education.

o Experience: Number of years of work experience.

o Age: Age (years).

o Ethnicity: Race (1=0Other, 2=Hispanic, 3=White).

o Region: Indicator variable for Southern Region (1=Person lives in South, 0=Person lives elsewhere).

¢ Gender: Indicator variable for sex (1=Female, 0=Male).

o Occupation: Occupational category (1=Management, 2=Sales, 3=technical,4 =Service, 5=Professional,
6=0Other).

o Sector: Sector (0=Other, 1=Manufacturing, 2=Construction).

o Union: Indicator variable for union membership (1=Union member, 0=Not union member).

o Married: Marital Status (0O=Unmarried, 1=Married)

http://lib.stat.cmu.edu/datasets/CPS_85_Wages

88 CAPITULO 4. PROCESANDO LOS DATOS CON TIDYVERSE.

Por defecto, cuando R lee un conjunto de datos, ordena los niveles un factor por orden alfabético. Sin embargo,
por su diseno, esto no ocurre con el dataframe CPS1985.

Por tanto, siempre tenemos que ser conscientes de coémo estan ordenados los niveles de un factor.

Vamos a obtener un resumen de las variables. Hacemos uso de la funcién summary ().

> summary (CPS1985)

wage education experience age
Min. : 1.000 Min. : 2.00 Min. : 0.00 Min. :18.00
1st Qu.: 5.250 1st Qu.:12.00 1st Qu.: 8.00 1st Qu.:28.00
Median : 7.780 Median :12.00 Median :15.00 Median :35.00
Mean 9.024 Mean :13.02 Mean :17.82 Mean :36.83
3rd Qu.:11.250 3rd Qu.:15.00 3rd Qu.:26.00 3rd Qu.:44.00
Max. :44.500 Max. :18.00 Max. :55.00 Max. :64.00
ethnicity region gender occupation sector
cauc 1440 south:156 male :289 worker :156 manufacturing: 99
hispanic: 27 other:378 female:245 technical :105 construction : 24
other : 67 services : 83 other 1411
office : 97
sales : 38

management: 55
union married
no :438 no :184
yes: 96 yes:350

En el caso de variables cuantitativas, la funcién summary() proporciona como resumen de la variable los “cinco
ndmeros” (minimo, cuartil 1, cuartil 2, cuartil 3, maximo) y la media. Si la variable es categdrica y se ha identificado
como factor, proporciona el recuento de observaciones en cada categoria. En el caso de variables identifacadas como
cardcter (character) no puede proporcionar ningin resultado, sélo indica la longitud del vector relativo a la variable.

Bien. Ya tenemos una idea de los datos. Ahora...jjja trabajar con ellos!!!

4.3 El operador %>%

El operador %>% se denomina pipe (Bache and Wickham, 2022). Es un operador que nos facilita la secuencializacién
de pasos de un determinado proceso para alcanzar un resultado, haciendo mucho mas fluido el flujo de trabajo.

Lo que hace el operador %>% es pasar el elemento que estd a su izquierda como un argumento de la funcién que
tiene a la derecha.

El operador %>% podemos leerlo como: y luego o entonces (o algo similar). A partir de la version 4.1 de
R puede usarse como operador nativo |> en lugar de %>%

4.3. EL OPERADOR %>} 89

Con el pipe la escritura y la lectura de cédigo es mucho mas limpia, clara y fluida. En consecuencia, y aunque
resulte un tanto redundante decirlo, el cdédigo que escribimos es mucho maés facil de leer.

Pongo el ejemplo que utilizamos mi compafniero Pedro y yo en uno de nuestros cursos de formacion. Se trata de
comparar céomo escribirifamos en R-base y en el estilo de tidyverse -las funciones y argumentos utilizados son
ficticios- la secuencialiacién del siguiente proceso:

Me despierto a las 8:00 de la manana y salgo de la cama por el lado correcto; me visto con unos pantalones
y camiseta y salgo de casa en coche, no tomo la bicicleta.

En R-base escribiriamos algo parecido a:

leave__house(get__dressed(get__out__of bed(wake__up(me, time = “8:00”), side = “correct”),pants
= TRUE, shirt = TRUE), car = TRUE, bike = FALSE)

Observemos que en R-base la secuencia de funciones se leerfa de dentro (me despierto, wake up) hacia afuera y
de derecha a izquierda. Esto hace que los argumentos de una funcién se encuentren cada vez mas alejados de su
funcién origen. Fijaros los argumentos car y bike de la funciéon leave__house donde se encuentran.

Moraleja: cuando anidamos varias funciones en R-base el c6digo resulta complicado de entender/leer.
En cambio, esta misma secuencializacién en el entorno de tidyverse seria algo similar a lo siguiente:

me %>%

wake__up(time = “8:00”) %>%

get_ out__of bed(side = “correct”) %>%
get__dressed(pants = TRUE, shirt = TRUE) %>%
leave__house(car = TRUE, bike = FALSE)

No cabe duda que este dltimo co6digo resulta mucho més fluido y comprensible.

o El atajo de teclado para el operador %>% o |> es:

en Windows: ctlr + shift + M
en Mac: Cmd + shift + M

Veamos como utilizar el pipe (%>%) con la funcién filter() del paquete dplyr, que se utiliza para seleccionar
observaciones (filas):

filter(dataframe,criterio)

Nuestro objetivo es seleccionar todas las observaciones del objeto CPS1985 que cumplan con el criterio: tener una
experiencia (experience) mayor o igual a 10 afos.

Utilizamos la funcién filter junto con sus argumentos para resolver el supuesto. El resultado lo asignamos al objeto
ejl

> ejl <- filter(CPS1985, experience >= 10)

Ahora, introducimos el uso de %>% en el siguiente c6digo.

90 CAPITULO 4. PROCESANDO LOS DATOS CON TIDYVERSE.
> ej2 <- CPS1985 J>), filter(. , experience >= 10)

El c6digo anterior lo leemos asi:

Tomas el dataframe CPS1985 y luego (es el pipe) lo pasas al primer argumento de la funcién filter (es
lo que representa el .) y seleccionas las observaciones en las que la variable experience sea mayor o igual
a 10 (es el criterio). El resultado lo asignas al objeto €j2.

Sin embargo, atin podemos simplificar el lenguaje utilizado. De hecho, la forma mas habitual de aplicar el pipe
(%>%) es la que se muestra en el cédigo de abajo:

> ej3 <- CPS1985 %>
+ filter(experience >= 10)

Este cédigo lo leemos literalmente como sigue:

Tomas el dataframe CPS1985 y luego (es el pipe) filtras las observaciones en las que la variable
experience sea mayor o igual a 10. El resultado lo asignas al objeto ej3.

o Recordad, es critico, el pipe (%>%) puede leerse como luego o entonces, y hace que el flujo de trabajo sea
H mas lineal y fluido.

4.4 Proceso de ordenaciéon de datos: tidyr.

Una vez hemos cargado los datos con los que vamos a trabajar comienza su proceso de limpieza y ordenacién.
El proceso de limpieza (data cleaning process) de un conjunto de datos consiste en hacer que los datos con el
que vamos a trabajar sean consistenten para que resulte mas facil trabajar con ellos a la hora de realizar nuestras
visualizaciones y andlisis estadisticos. En este proceso las acciones que se llevan a cabo son, entre otras: la deteccién,
correccién y/o eliminacién de errores en los datos; la eliminacién de datos redundantes; la deteccién y tratamiento
de valores perdidos; la deteccién y tratamiento de valores anémalos; la unién de bases de datos para consolidar los
datos requeridos en el andlisis en una tnica fuente y ordenar los datos finales con los que se va a trabajar.

En este apartado suponemos que tenemos un conjunto de datos limpio y nos centramos en el data tidying, en hacer
que los datos con los que vamos a trabajar sean lo mds tidy (odenados) posible. Para ello, utilizaremos funciones
del paquete tidyr de tidyverse.

Lo primero que tenemos que tener absolutamente claro es: jqué son datos tidy (ordenados)?

La mayoria de datos en Ciencias Sociales se ajustan a la categoria de datos tabulares; es decir, estan organizados
en filas y columnas. En R, como ya sabemos, este tipo de datos se almacenan en dataframes (o tibbles). En
esencia, un dataframe/tibble serd tidy cuando:

(1) cada columna sea una variable,

4.4. PROCESO DE ORDENACION DE DATOS: TIDYR. 91

(2) cada fila sea una observacién y
(3) cada valor tenga su propia celda.

El comentario anterior se refleja en la Figura 4.3.

< >» 0-0 O O

3 2 8§88 3

M

< » O 0O O
variables observations values

Figura 4.3: Datos tidy, datos ordenados. Fuente: https://rdds.had.co.nz/tidy-data.html

Veamos un ejemplo. Supongamos que la variable (o atributo) a medir es el salario y la unidad de andlisis las personas
(son las observaciones o individuos). Hemos recogido datos del salario de 3 personas en el periodo 2021 a 2023.

> df1 <- data.frame(Periodo = c("2021", "2022", "2023"),
+ Nicolas = c(100, 500, 200),
+ Carla = c(400, 600, 250),
+ Angela = c(200, 700, 900))
>
> # nota: omito los acentos en el dataframe
>
> df1
Periodo Nicolas Carla Angela
1 2021 100 400 200
2 2022 500 600 700
3 2023 200 250 900

Entendemos perfectamente los datos, visualmente son resultan cémodos de leer; pero, json datos tidy?

No, no es una estructura de datos tidy. En este ejemplo, las observaciones (Nicolds, Carla, Angela) se encuentran
en columnas.

Y la siguiente estructura de datos, jes tidy?

> df2 <- data.frame(Nombre = c("Nicolas", "Carla", "Angela"),
+ Salario_2021 = c(100, 400, 200),
e Salario_2022 = c(500, 600, 700),
+ Salario_2023 = c(200, 250, 900))
>
> df2
Nombre Salario_2021 Salario_2022 Salario_2023
1 Nicolas 100 500 200
2 Carla 400 600 250
3 Angela 200 700 900

92 CAPITULO 4. PROCESANDO LOS DATOS CON TIDYVERSE.

Para nosotros también es un formato ficil de entender, pero no son tidy, aunque quiza sea el formato al que estamos
mas acostumbrados (individuos o registros en filas y “variables” en columnas). En la terminologia de tidyverse este
formato de datos es lo que llamamos un formato “wide” (o ancho). Podemos trabajar tranquilamente con esta
estructura de datos. jRealmente Salario_ 2021, Salario_ 2022 y Salario_ 2023 son tres variables distintas?

Si queremos sacar el maximo rendimiento a tidyverse es mejor tener los datos en long format (formato largo).
Fijaros en la siguiente estructura de datos:

> df3 <- data.frame(Nombre = c("Nicolas", "Carla", "Angela", "Nicolas",
it "Carla", "Angela","Nicolas", "Carla", "Angela"),
+ Periodo = c("2021", "2021", "2021", "2022",
+ D020, 20220, 20287, 20287, T20280)
+ Salario = ¢(100, 400, 200, 500,
+ 600, 700, 200, 250,900))
> df3
Nombre Periodo Salario
1 Nicolas 2021 100
2 Carla 2021 400
3 Angela 2021 200
4 Nicolas 2022 500
B Carla 2022 600
6 Angela 2022 700
7 Nicolas 2023 200
8 Carla 2023 250
9 Angela 2023 900

Los datos almacenados en df3 son tidy. Este formato es mas dificil de leer para nosotros, pero es més eficiente para
los ordenadores; jjy los datos los procesan los ordenadores!! De hecho, en muchas ocasiones, cuando nos descargamos
datos de bases de datos, la estrucutura con la que nos los descargamos son en formato long.

4.4.1 Datos en formato largo y ancho: pivot_longer() y pivot_wider().

Si tenemos un dataframe en formato wide tenemos que pasarlo a formato long para trabajar més eficientemente.
Para ello utilizamos la funcién pivot.longer().

Generalmente, para mostrar nuestros resultados pasamos de formato long a formato wide, porque los entendemos
mejor. Para ello utilizamos la funcién pivot.wider()

@ Por si leemos c6digo de otros usuarios, en versiones anteriores del paquete tidyr las funciones eran:

— para pasar de formato ancho a largo: gather()
— para pasar de formato largo a ancho: spread()

La funcién pivot__longer() convierte dataframes/tibbles de formato wide a formato long. Su estructura se ilustra
en la Figura 4.4.

4.4. PROCESO DE ORDENACION DE DATOS: TIDYR.

93
country 1999 2000 2001 2002 country
Angola 800 750 925 1020 Angola Y1998 300
India 20100 25650 26800 27255 Angola | 2000 750
Mongolia 450 512 510 586 Angola 2001 925

Angola | 2002 1020
Pivot data longer incia RS 20100
India 2000 25650
data %>% India 2001 26800
pivot_Tonger(India 2002 27255
cols =1999:2002, Mongolia | 1999 450
names_to "year", Mongolia | 2000 512
values_to = !"cases" Mongolia | 2001 510
Mongolia | 2002 586

Figura 4.4: pivot_longer: de formato ancho a formato largo. Fuente: https://epirhandbook.com/en/index.html

Si pedimos la ayuda de la funcién pivot__longer() veremos que tiene muchos argumentos (ver Figura 4.5)

pivot_longer(

data,

cols,

names_to = "name",
names_prefix = NULL,
names_sep = NULL,
names_pattern = NULL,
names_ptypes = NULL,
names_transform = NULL,
names_repair = "check_unique",
values_to = "value",
values_drop_na = FALSE,
values_ptypes = NULL,
values_transform = NULL,

Figura 4.5: Uso de la funcién: pivot_longer (ayuda de la funcion)

pero en la mayor parte de los casos es suficiente con trabajar con los basicos:

o data: dataframe/tibble.

e cols: columnas que queremos “recoger”.

e names_to: nombre de la columna (variables) que recoge cols.

o walues_to: nombre de la columnas (variable) que recoge los datos de las celdas.

e walues drop_na: si queremos eliminar los valores NA. Si es asi, debemos pasar el argumento a TRUE.

Bien, el objeto df2 estd en formato ancho, lo pasamos a formato largo. El resultado lo guardamos en el objeto

data_ long.

> data_long <- df2 %>7

+ pivot_longer(cols=2:4,names_to="Periodo",values_to="Salario")

> data_long
A tibble:
Nombre

9z 3
Periodo

Salario

94 CAPITULO 4. PROCESANDO LOS DATOS CON TIDYVERSE.

<chr> <chr> <dbl>
1 Nicolas Salario_2021 100
2 Nicolas Salario_2022 500
3 Nicolas Salario_2023 200
4 Carla Salario_2021 400
5 Carla Salario_2022 600
6 Carla Salario_2023 250
7 Angela Salario_2021 200
8 Angela Salario_2022 700
9 Angela Salario_2023 900

Luego volveremos sobre este objeto para arreglar la variable Periodo.

Pasar pasar de formato long a wide, tidyr dispone de la funcién pivot__wider(), como se muestra en la Figura
4.6.

0 Angola (800) (750) 925 020
India (20100) (25650 (26800) 27255
Mongolia 450) 512 (510) 86

| Pivot data wider

data %>%

country lyear

Angola

a

=)o)~ e
a o llef|fr
a2 (]l ol e
allo|le

=1t

Angola

HelE

Angola

Angola

India

India

India

India

M=) ===
oflallaflellallele e lielie e |le
sllallalleliallelalle el e (le
Slleflsllels]=iS |l ==l [l e

Mongolia 450 p1 VOt—W-i de r (

Mongolia G2) names_from = "year",
Mongolia 510 values_from = ["cases"
Mongolia)

Figura 4.6: pivot_wider: de formato largo a formato ancho. Fuente: https://epirhandbook.com/en/index.html

El uso de la funcién pivot__wider() puede verse en la ayuda y se reproduce en la Figura 4.7.

pivot_wider
data
id_cols = NULL
id_expand = FALSE
names_from = name
names_prefix = ""
names_sep = "_"
names_glue = NULL
names_sort = FALSE
names_vary = "fastest"
names_expand = FALSE
names_repair = "check_unique"
values_from = value
values_fill = NULL
values_fn = NULL
unused_fn = NULL

Figura 4.7: Uso de la funcién: pivot_wider (ayuda de la funcién)

En la mayor parte de las ocasiones solo vamos a utilizar, al menos por ahora, tres argumentos:

« data: dataframe/tibble.

4.4. PROCESO DE ORDENACION DE DATOS: TIDYR. 95

e names_ from: nombre/posicién de la columna (variable) que queremos extender.
o walues_from: nombre/posicién de la columna (variable) de donde se recogeran los datos de las celdas.

Por ejemplo, convertimos en formato ancho el objeto data_ long que se encuentra en formato largo. Guardamos
el resultado en el objeto data_ wide.

> data_wide <- data_long %>%
+ pivot_wider(names_from = "Periodo", values_from = "Salario")
>
> data_wide
A tibdble: 3 x 4
Nombre Salario_2021 Salario_2022 Salario_2023
<chr> <dbl> <dbl> <dbl>
1 Nicolas 100 500 200
2 Carla 400 600 250
3 Angela 200 700 900

4.4.2 Las funciones: separate() y unite().

Como puede deducirse por los nombres, estas funciones se utilizan para separar y unir columnas.

Si recordamos el objeto data_ long, la variable Periodo tomaba los valores: Salario 2020, Salario_ 2021 y Sa-
lario__2022. La funcién separate() nos permitirfa separar esta variable en dos (o més si queremos) columnas.
Observemos el siguiente codigo:

> data_long <- data_long %>%
+ separate(Periodo, c("Afio", "Valor"), sep = "_")
>
> data_long
A tibdble: 9 x 4
Nombre Ailo Valor Salario
<chr> <chr> <chr> <dbl>
1 Nicolas Salario 2021 100
2 Nicolas Salario 2022 500
3 Nicolas Salario 2023 200
4 Carla Salario 2021 400
5 Carla Salario 2022 600
6 Carla Salario 2023 250
7 Angela Salario 2021 200
8 Angela Salario 2022 700
9 Angela Salario 2023 900

Hemos separado la variable Periodo en dos columnas, a las que hemos llamado Afio y Valor. En el argumento
sep indicamos el separador de columnas.

Para unir columnas utilizamos para la funcién unite(). En el siguiente ejemplo unimos en la columna Peri-
do__y_ Salario desde la columna Ano hasta la columna Valor, y el contenido se separard con un espacio en
blanco.

96 CAPITULO 4. PROCESANDO LOS DATOS CON TIDYVERSE.

> data_long <- data_long %>%
+ unite(Periodo_y_Salario, Afio:Valor, sep = " ")
>
> data_long
A tibble: 9 ¢z 3
Nombre Periodo_y_Salario Salario
<chr> <chr> <dbl>
1 Nicolas Salario 2021 100
2 Nicolas Salario 2022 500
3 Nicolas Salario 2023 200
4 Carla Salario 2021 400
5 Carla Salario 2022 600
6 Carla Salario 2023 250
7 Angela Salario 2021 200
8 Angela Salario 2022 700
9 Angela Salario 2023 900

4.5 Transformacién de datos: dplyr.

El paquete dplyr lo utilizamos para transformar/manipular los datos. Es decir, para seleccionar observaciones
(filas) o columnas (variables), crear nuevas variables, obtener resimenes (contar observaciones, calcular medidas
estadisticas,...), etc.

Las principales funciones (verbos) de dplyr para la transformacién de datos son:

o filter(): filtrar datos (idea similar al filtrado de Excel). Permite seleccionar filas que cumplan con una o
varias condiciones.

e group_by(): agrupar filas segin las categérias de una o variables variables.

o summarize(): resumir (colapsar) datos a un solo valor (segiin una funcién: media, desviacion tipica, etc.).
o mutate(): crear nuevas variables.

o select(): seleccionar variables (columnas).

e arrange(): ordenar filas.

e join(): unir dataframes.

Con estas funciones se pueden resolver la gran mayoria de problemas asociados a la manipulacién de datos. Cada una
de estas funciones hace “solo una cosa”, asi que para realizar transformaciones complejas hay que ir concatenando
instrucciones sencillas. Todas las funciones tienen una estructura o comportamiento similar:

« el primer argumento siempre es un dataframe/tibble.

e los siguientes argumentos describen qué hacer con los datos.

4.5. TRANSFORMACION DE DATOS: DPLYR. 97

El resultado es siempre un nuevo dataframe/tibble.

Antes de continuar, la cheat sheet de dplyr puede descargarse del siguiente enlace: https://www.uv.es/vcoll/
LIBRO_ESTADISTICA_ CON_ R/dplyr.pdf

En los siguientes subapartados se explica cémo hacer uso de las funciones basicas de dplyr con la excepcién de la
funcién join().

Para ejemplificar el uso de las funciones de dplyr usaremos el dataset CPS1985 que hemos cargado al inicio del
capitulo.

4.5.1 Seleccion de observaciones: filter ().

Esta funcién se utiliza para seleccionar filas de un dataframe que cumplan determinado criterio.

Por ejemplo, vamos a seleccionar los trabajadores en el dataframe CPS1985 que estan casados. Lo primero es saber
qué distintas categorias tiene la variable married (casado) y después aplicar el criterio de seleccién para realizar el
filtrado (married == “yes”).

> # Valores dnticos que toma la variable married (casados)
> unique (CPS1985%married)

[1] yes no
Levels: no yes
>

> # Guardamos la seleccién en el objeto aa
> aa <- CPS1985 7>’

+ filter(married == "yes")

>

> nrow(aa) #alternativamente dim(aa) [1]
[1] 350

Por tanto, en el conjunto de datos un total de 350 trabajadores estan casados.

Ahora nos preguntamos, ;jqué trabajadores tienen menos de 10 anos de educacién? En este caso el criterio de
seleccién es education < 10. Guardamos el resultado en el objeto aa.

En primer lugar, podemos preguntarnos por los valores que toma la variable objeto de estudio. Como vemos en el
c6digo més abajo, la variable education (educacién) toma 17 valores distintos; en el cddigo se ha utlizado la funcién
sort() para ordenar los valores de menor a mayor. Asi, facilmente observamos que el menor valor de educacion es
2 afos y el mayor es 18 anos. Utlizamos la funcién dim() para obtener la dimensién del dataframe aa; como el
resultado de dim es un vector que indica filas y columnas, seleccionamos el primer elemento, las filas.

> # walores unicos de education:
> unique (CPS1985%education) # con R-base
[1] 8 912 1310 16 7 11 6 14 17 3 15 518 4 2
>
> # ordenacion de los wvalores unicos de education:
> sort(unique (CPS1985%education)) # con R-base
(1] 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18
>
> # Seleccion de trabajadores de acuerdo con el criterio

https://www.uv.es/vcoll/LIBRO_ESTADISTICA_CON_R/dplyr.pdf
https://www.uv.es/vcoll/LIBRO_ESTADISTICA_CON_R/dplyr.pdf

98 CAPITULO 4. PROCESANDO LOS DATOS CON TIDYVERSE.

> aa <- CPS1985 >%

+ filter(education < 10)
>

>

dim(aa) [1]
[1] 39

Un total de 39 trabajadores tienen menos de 10 anos de educacién.
(Cuéntos trabajadores tienen entre 10 y 15 anos de educacién (ambos inclusive)?

Podemos responder a esta preguntas de varias formas. En la tercera opcién utilizamos conjuntamente la funcién
between() y filter() de dplyr.

aa <- CPS1985 %>
filter (education >= 10 , education <= 15)

aa2 <- CPS1985 %>%
filter(education >= 10 & education <= 15)

Con la funcidn between.

consultar el uso de la funcidn: ?between

aa3 <- CPS1985 7>
filter(between(education, 10, 15))

+ VV VV 4+ V V 4+ V

- Para establecer el criterio A Y B (es una interseccién, deben cumplirse al mismo tiempo el criterio A y el
ﬂ criterio B), podemos utilizar indistintamente los simbolos: , o &

Planteamos otro ejemplo. ; Cuantos trabajadores casados y con afios de educaciéon mayor o igual a la media hay en
nuestro conjunto de datos?

> aa <- CPS1985 %>%
+ filter(married=="yes", education >= mean(education))

El niimero medio de anos de educacién de los trabajadores en nuestro dataset es de 13.02 anos. Un total de 125
trabajadores estdn casados y tienen una educacién igual o superior a 13.02 anos (como educacién toma valores
enteros, se han seleccionado todos los trabajadores con 14 o més afios de educacién).

Por 1ltimo, también podemos establecer como criterio de seleccién que se cumpla la condiciéon A o B. Este criterio
corresponderfa al concepto de unién en teorfa de conjuntos: que se cumpla sélo A, o solo B, o ambos (A y B). Para
realizar esta seleccién se utiliza el simbolo |

Por ejemplo, jqué trabajadores estan empleados en el sector construction o estan afiliados a un sindicato? En caso
de estar interesados en trabajar sobre el resultado del filtrado, asignariamos el subconjunto de datos obtenidos a
un objeto.

4.5. TRANSFORMACION DE DATOS: DPLYR. 99

> unique (CPS1985$sector) # para conocer los niveles de la wvariable
[1] manufacturing other construction

Levels: manufacturing construction other

>

> aa <- CPS1985 %>

+ filter(sector == "construction" | union == "yes")

R ordena alfabéticamente -por defecto- los niveles de los factores. Sin embargo, observad que esto no ocurre
con el conjunto de datos con el que estamos trabajando.

A veces interesa seleccionar determinadas observaciones atendiendo a la posiciéon que ocupan. En estos casos en
lugar de filter() puede utilizarse la funcién slice(). Por ejemplo, supongamos que estamos interesados en seleccionar
las observaciones que se encuentran en las posiciones (filas): 2, 5, 15 y 27.

> aa <- CPS1985 %>%
+ slice(c(2,5,15,27))

Como podemos ver en la seccion extraer casos de la cheat sheet de dplyr, la funcién slide tiene distintas variantes:
slide__sample, para seleccionar aleatoriamente filas; slide_ min y slide__max, que seleccionan filas con los me-
nores y los mayores valores; y slide__head y slide__tail, que seleccionan primeras o tltimas filas (son equivalentes
a head y tail que vimos en el apartado 2.4.2.1).

Veamos una aplicacién. Para seleccionar el 25% de las observaciones que tienen un menor salario escribirfamos el
siguiente cédigo. El 25% de las observaciones seleccionadas seran ordenadas en orden ascedente segun el salario.

> aa <- CPS1985 7>7
+ slice_min(wage,prop=0.25)

Para terminar con la seleccién de observaciones (casos), si queremos eliminar filas con casos duplicados, utilizamos
la funcién distinct(). Para més detalles consultar la ayuda de la funcién.

4.5.2 Agrupar por categoria de una variable: group_by().

Con esta funcién ya empezaremos a ver la potencia de dplyr. En el andlisis de datos es frecuente que determinadas
medidas (media, mediana, moda, cuantiles, etc.) queramos calcularlas para distintos grupos (hombre, mujer, etc.).
Por ejemplo, podemos estar interesados en conocer el salario medio de todos los trabajadores (hombres y mujeres),
pero también es bien interesante conocer el salario medio de los hombres y el de las mujeres. La funcién group__by()
es la que nos va a permitir hacer este tipo de operacién. Como podemos ver en la Figura 4.8, lo que hace group__by ()
es agrupar las observaciones segun los valores/categorias de una o méas variables.

100 CAPITULO 4. PROCESANDO LOS DATOS CON TIDYVERSE.

Figura 4.8: Légica de la funcién group by. Fuente: R for Reproducible Scientific Analysis
(https://swcarpentry.github.io/r-novice-gapminder/13-dplyr/index.html)

Es decir, group_ by() considera un dataframe y lo convierte en un “dataframe agrupado”. En ese nuevo
“dataframe agrupado” las operaciones que hagamos con summarize() (resumir) se hardn por separado para cada
uno de los grupos que hayamos definido. Ahora lo vemos.

Si, por ejemplo, agrupamos nuestro dataframe de CPS1985 por la varaiable gender, la funcién summarize() nos
dard el resumen para cada categoria de gender.

De la lectura de esta funcién se desprende una idea importante: group__by() y summarize() se utilizan (normal-
mente) juntas.

En CPS1095, ;cudntas observaciones (rows) tenemos de cada categoria de gender? Para responder a esta pregunta
primero vamos a agrupar el conjunto de datos por gender y luego realizaremos el conteo de observaciones en cada
grupo. Como queremos resumir la informacién utilizamos la funcién summarize y dentro de ella el resumen que
queremos hacer: el conteo de observaciones, Para esto tltimo puede utilizarse la funcién n().

CPS1985 7.>%
group_by(gender) 7%>%
summarize(total = n()) # la funcion n() devuelve el tamafio (numero de casos) de cada grupo
A tibble: 2z 2
gender total
<fct> <int>
male 289
female 245

4+ + V

CPS1985 7,>%

summarize (total = n_distinct(gender))
total
1 2

+ VvV VN~

Para contar los valores tinicos de una o mds variables también podemos utilizar la funcién count(). El mismo
resultado que en el c6digo anterior podiamos haberlo obtenido de esta otra forma:

4.5. TRANSFORMACION DE DATOS: DPLYR. 101

> CPS1985 %>

+ count(gender)
gender n

1 male 289

2 female 245

o Consultad la ayuda de la funcién count().

dplyr tiene otra funcién que permite contar el ntimero de valores tnicos (o distintas combinaciones) en
uno o mas vectores, esta funcién es n_ distinct(), seria equivalente a escribir esta instruccién en R-base:
nrow(unique(NUESTRO_DATA_FRAME)))

LY c6mo es la distribucién de la raza (ethnicity) por sexo (gender)? Dependiendo de lo que queramos mostrar,
primero podemos agrupar por etnicity y luego cada categia de esta variable la agrupamos por gender, o al contrario.
Observad los resultados del siguiente cddigo

> # primero agrupamos por gémero y luego por raza
> CPS1985 7>
+ group_by(gender, ethnicity) %>%
+ summarize(total = n())
A tibble: 6 ¢ 3
Groups: gender [2]
gender ethnicity total

<fct> <fct> <int>
1 male cauc 236
2 male hispanic 14
3 male other 39
4 female cauc 204
5 female hispanic 13
6 female other 28
>
> # primero agrupamos por raza Yy luego por género
> CPS1985 %>
+ group_by(ethnicity, gender) %>%
+ summarize(total = n())
A tibble: 6 ¢ 3
Groups: ethnicity [3]
ethnicity gender total
<fct> <fct> <int>
1 cauc male 236
2 cauc female 204
3 hispanic male 14
4 hispanic female 13
5 other male 39
6 other female 28
>
> # en group_by estamos utilizando la , para separar las variables de agrupacion
> # el orden en que se escriben es el orden de la agrupacion

102 CAPITULO 4. PROCESANDO LOS DATOS CON TIDYVERSE.

Alternativamente,

> CPS1985 7>%

+ count(ethnicity,gender)
ethnicity gender n

1 cauc male 236

2 cauc female 204

3 hispanic male 14

4 hispanic female 13

5 other male 39

6 other female 28

; Cudl es el salario medio de los trabajadores segun el sexo y la raza?

En esta ocasiéon agrupamos los datos por género y raza y luego para cada subconjunto de datos resultado de la
agrupacion calculamos la media.

> CPS1985 >%
+ group_by(gender,ethnicity) %>/
+ summarize(Salario_medio = mean(wage,na.rm=TRUE))
A tibble: 6 = 3
Groups: gender [2]
gender ethnicity Salario_medio

<fct> <fct> <dbl>
1 male cauc 10.3
2 male hispanic 8.66
3 male other 8.46
4 female cauc 8.06
5 female hispanic 5.80
6 female other 7.49
>
> # es conveniente introducir en la funcidén de la media el argumento na.rm=TRUE
> # El argumento lo que hace es que st hay NAs los quita para caluclar la media.

4.5.3 Resumen con summarize().

Como hemos podido comprobar en los ejemplos anteriores, la funcién summarize() se utiliza para resumir (o
“colapsar filas”). Toma un grupo de valores como input y devuelve un solo valor; por ejemplo, calcula la media
aritmética (o el minimo, o el maximo ...) de un grupo de valores.

Vamos a calcular algunos estadisticos de una variable. Realmente, para hacer esto no nos hace falta dplyr, pero
conviene que nos vayamos habituando a su sintaxis. Tratamos de leer el c6digo que se muestra mas abajo y pensamos
en el resultado que esperamos nos devuelva.

> #- devuelve un dnico valor: la media de la variable "wage".
> CPS1985 %>%
+ summarize(media = mean(wage))

4.5. TRANSFORMACION DE DATOS: DPLYR. 103

#- devuelve un unico wvalor: el numero de filas
CPS1985 7.>%
summarize(total_observaciones = n())

#- devuelve un Unico walor: la cuasi desviacion tipica de "wage"
CP31985 7>
summarize (desviacion_tipica = sd(wage))

#- devuelve un unico wvalor: el mazimo de la wvariable "wage"
CPS1985 7.>%
summarize (max(wage))
#- devuelve 2 valores: la media y la cuast desviacion tipica de "wage""
CPS1985 %>%
summarize (media_mpg = mean(wage),
sd_mpg = sd(wage))

#- devuelve 2 valores: las medias de "wage" y "education"
CPS1985 7>%
summarize (media_wage = mean(wage),
media_education = mean(education))

#- devuelve 4 wvalores: la medida y cuast desviacién tipica de "wage" y "education”
CPS1985 7.>%
summarize_at(vars(wage,education), funs(mean, sd)) # funs() esta obsoleta, se recomienda list()

CPS1985 9>
summarize_at(vars(wage,education), list(mean, sd))

CPS1985 %>%
summarize_at(vars(wage,education), list(media=mean, desviacion=sd))

vV +VV+VV+VVYV 4+ +VVYVY + 4V VYV YV VYV ¢V VYV + YV VYV

En el capitulo 7, dedicado al estudio de las medidas estadisticas descriptivas basicas, estudiaremos en los apar-
tados 7.6.3 y 7.6.4 la diferencia entre desviacién tipica (muestral) y cuasi desviacion tipica (muestral).

La funcién summarize_at (), que ya hemos utilizado en un ejemplo anterior, permite seleccionar las columnas sobre
las que se pasara las funciones de resumen.

> CPS1985 7>
+ filter(occupation %in}% c("worker", "technical","sales")) %>%
+ group_by(ethnicity) %>%
+ summarize_at(vars(wage, education), list(media = mean, mediana = median))
A tibble: 3 = 5
ethnicity wage_media education_media wage_mediana education_mediana
<fct> <dbl> <dbl> <dbl> <dbl>

104 CAPITULO 4. PROCESANDO LOS DATOS CON TIDYVERSE.

1 cauc 9.86 13.4 8.9 12
2 hispanic 7.12 11.2 6 12
3 other 7.97 12.2 7 12

También podemos calcular estadisticos de todas las variables del dataframe con la funcién summarize_all(). Si
la variable no es numérica y pasamos solé una funcién, se devolvera NA; si pasamos méas de una funcién entonces
devolvera un error. Observad los siguientes dos ejemplos.

#- media de cada una de las 11 wvartables.
CPS1985 7>
summarize_all (mean)

#- media y cuasti desviacidén tipica de las 11 wariables.
CPS1985 9>
summarize_all (funs(mean, sd)) # funs() esta obsoleta, se recomienda cambiar a list()

vV 4+ V V V 4+ VYV

Por tltimo, la funcién summarize_if () aplicard una (o varias) funciones de resumen sobre las columnas que
devuelvan el valor l6gico TRUFE al cumplirse la condicién.

CPS1985 >%

filter(occupation %in% c("worker", "technical",'"sales")) %>%

group_by (ethnicity) %>%

summarize_if (is.numeric, funs(media=mean, mediana=median)) # s% la wariable
A tibble: 3 z 9
ethnicity wage_media education_media experience_media age_media wage_mediana
<fct> <dbl> <dbl> <dbl> <dbl> <dbl>
1 cauc 9.86 13.4 16.8 36.1 8.9
2 hispanic 7.12 11.2 17.5 34.7 6
3 other 7.97 12.2 20.5 38.8 7
7 3 more wvartiables: education_mediana <dbl>, experience_mediana <dbl>,
#
>

#* + + + V

age_mediana <dbl>
es numérica, calcula la media y la mediana.

valores del primer argumento se encuentran en el segundo. El resultado de aplicar este operador es un vector

En ejemplos anteriores hemos utilizado el operador %in%. Este operador se utiliza para comprobar si los
16gico. En los ejemplos se ha utilizado %in% como criterio para seleccionar filas con filter.

4.5.4 Crear variables: mutate().

Con esta funciéon creamos nuevas variables (columnas). Es muy til en andlisis de datos.

Por ejemplo, supongamos que queremos crear una columna que refleje el salario semanal. Tenemos la variable salario
por hora (wage). Suponiendo que se trabaja 8 hora al dia de lunes a viernes, tendriamos que el salario semanal se
obtendria a partir de la expresion:

4.5. TRANSFORMACION DE DATOS: DPLYR. 105

salario.semanal = 5 * 8 x wage

Creamos la variable: salario.semanal = 40 * wage

> (CPS1985 <- CPS1985 %>
+ mutate(salario.semanal = 40 * wage)

La estructura de CPS1985 ha cambiado, ahora tiene 12 variables en lugar de las 11 iniciales. Por defecto, la nueva
variable creada se sittia en la Ultima columna. El nimero de observaciones no ha cambiado. Si queremos crear la
nueva variable en una determinada posicion podemos hacer uso de los argumentos .after, para situarla depués de
una variable dada, o .before, para situarla antes.

CPS1985 <- CPS1985 7>%
mutate(salario.semanal = 40 * wage, .after=wage) # sitda salario.semanal después de wage

CPS1985 <- CPS1985 7>
mutate(salario.semanal = 40 * wage, .before=wage) # situa salario.semanal antes de wage

+ V V.V 4+ V

Si queremos manipular varias variables al mismo tiempo podemos recurrir a la funcién across(). La estructura de la
funcién across es: across(.cols, .funs, ..., .names = NULL). Lo que hace across es pasar una o varias funciones
(argumento .funs) a multiples columnas. La funcién across() se puede utilizar combinada con summarize(),
mutate() o select().

Calculamos la media de todas las variables de CPS1985.

> CPS1985 %>%
+ summarize(across(everything() ,mean))

wage education experience age ethnicity region gender occupation

1 9.024064 13.01873 17.8221 36.83333 NA NA NA NA
sector union married
1 NA NA NA

everything(), starts _with(), ends_with(), contains(), matches(),etc. se utilizan con las funciones select() y
across() para ayudar en la seleccién.

Al ejercutar la instruccién obtenemos las medias de las variables numéricas, pero también un warning porque
hemos especificado el cdlculo de la media para todas las variables y en CPS1985 tenemos variables cualitativas
como ethnicity o region. En esta situacion, podemos especificar las posiciones de las variables numéricas o,
alternativamente, hacer uso de la funcién where(), que permite seleccionar variables con una funcién. Consideremos
los siguientes ejemplos:

106 CAPITULO 4. PROCESANDO LOS DATOS CON TIDYVERSE.

> # aplica sobre las primeras cuatro columnas la media
> CPS1985 7>
+ summarize(across(1:4,mean))
wage education experience age
1 9.024064 13.01873 17.8221 36.83333
>
> # aplica sobre las primeras cuatro columnas la media y la mediana
> CPS1985 %>Y
+ summarize(across(1:4,list(media=mean,mediana=median)))
wage_media wage_mediana education_media education_mediana experience_media

1 9.024064 7.78 13.01873 12 17.8221
experience_mediana age_media age_mediana
1 15 36.83333 35

> # selecciona las columnas numéricas y aplica la media
> CPS1985 >%
+ summarize(across(where(is.numeric) ,mean))
wage education experience age
1 9.024064 13.01873 17.8221 36.83333

Antes de pasar al siguiente verbo/funcién de dplyr, un ejemplo de uso combinado de mutate() y across().
Observad que en el siguiente cddigo where(is.factor) selecciona las columnas que satisfacen la condicién, luego se
aplica para esas columnas las funcién as.character.

> # convertimos todas las wvariables factor a cardacter
> CPS1985 <- CPS1985 7>,
+ mutate(across(where(is.factor), as.character))

4.5.5 Seleccionar variables: select ().

Esta funcién sirve para seleccionar columnas (o variables si el fichero es tidy) por nombre o posicién.

Podemos seleccionar las variables por nombre. Por ejemplo, vamos a seleccionar de CPS1985 las varibles wage y
gender, el dataframe resultante lo guardamos en el objeto aa.

#- se leerda: toma el dataframe CPS1985 y entonces selecciona wage y gender
aa <- CPS1985 7>
select(wage, gender)

aa <- CPS1985 7>
select(c(wage, gender)) # equivalente al anterior

+ V V 4+ Vv V

Si queremos seleccionar de CPS1985 todas las variables excepto union escribirfamos:

> aa <- CPS1985 %>%
+ select(-union)

4.5. TRANSFORMACION DE DATOS: DPLYR. 107

En el caso de querer eliminar mas de una variable lo que hacemos es nombrar esas variables dentro de un vector:

> aa <- CPS1985 %>%
+ select(-c(union, married))

Estamos realizando la seleccién por el nombre de la variable, pero también podemos realizar la seleccién por la
posicién (ntimero de columna) que ocupa en el dataframe.

Seleccionamos las siguientes variables de nuestro dataframe: de la primera a la tercera y también la quinta.

aa <- CPS1985 %>%
select(1:3,5)

vV V 4+ V

particularmente, prefiero seleccionar por nombre

De forma anéloga, podemos estar interesados en seleccionar todas las variables del dataframe excepto las siguientes:
de la primera a la tercer y la quinta.

> aa <- CPS1985 %>%
+ select(- c(1:3, 5))

La funcién select() también puede utilizarse para renombrar variables (columnas) o para reordenarlas.

De CPS1985 queremos seleccionar, por este orden, age y wage.

> aa <- CPS1985 7>
+ select(age, wage)

Pero no solo eso, quiero seleccionar age y wage y cambiarles el nombre. Para ello, escribimos:

> aa <- CPS1985 7>/
+ select(Edad = age, Salario.hora = wage)

Supongamos que queremos que la variable experience de CPS1985 a pase a ocupar la primera columna en el
dataframe. Esto lo podemos hacer con la funcién select() y everything(), que es una funcién auziliar de select:

> #- "experience" que es la tercera columna pasa a ser la primera
> aa <- CPS1985 7>/
+ select(experience, everything())

dplyr cuenta con otras dos funciones relacionadas con la extracciéon de variables. Por un lado, tenemos la funcién
pull(), que extrae los valores de una columna como un vector. Por otro lado, estd la funcién relocate(), que nos
permite mover columnas. Vemos los siguientes ejemplos:

108 CAPITULO 4. PROCESANDO LOS DATOS CON TIDYVERSE.

extraemos el salario (utilizando el nombre de la wvariable)
CPS1985 %>%
pull(wage)

extraemos el salario (utilizando la posicion de la wvariable)
CPS1985 7>%
pull(l)

movemos las columnas wage y education delante de married
CPS1985 <- CPS1985 7>
relocate(c(wage,education), .before=married)

movemos las columnas wage y education detrds de married
CPS1985 <- CPS1985 7>%
relocate(c(wage,education), .after=married)

+ VVV +VVV + WV VYV + VYV

4.5.6 Ordenar los datos: arrange().

Esta funcion se utiliza para ordenar las filas de una o méas variables de un dataframe. Por defecto los valores se
ordenan en onrden ascendente, de menor a mayor. Si queremos ordenar de mayor a menor, orden descendente, hay
que cambiar usar la funcién auxiliar desc(). Aqui hay algunos ejemplos.

#- ordena las filas de MENOR a mayor segun los walores de "wage""
aa <- CPS1985 7>

arrange (wage)
#- ordena las filas de MAYOR a menor segin los wvalores de "wage""
aa2 <- CPS1985 7>

arrange (desc (wage))

" (primero) y st hay empates

#- ordenada las filas de MENOR a mayor segin los wvalores "wage
se resuelve con la variable "experience”
aa3 <- CPS1985 7>

arrange (wage, experience) # wver el dataframe

+ VVVV +V VYV + VYV

Puedes comprar el libro en:
www.leanpub.com/analisis_exploratorio_datos_con_R

	Portada
	Registro obra
	Dedicatoria
	Índice general
	Acerca de…
	Muestra del Capítulo 4.

