
Search for boto3 and hit Install Package.

10 / 128

Configuring the Credentials

There are two ways to pass the credentials:
• Shared credentials file ~ /.aws/credentials
• Passing credentials to boto3

In this book, as it is Python 3 oriented, I will pass the credentials to boto3.
I will not be using the /home/user/.aws/credentials file.

Some of the examples on Amazon documentation show the Access Key and the Secret Key enclosed by
<>, for example:

<AKIATRML7HMNS6SQ5WOS>

This does not mean that you have to add <> surrounding your Access Key.
It's just an unfortunate way to indicate that you have to just put what's between the <>.

Our first Python 3 sample

import boto3
from botocore.config import Config

if __name__ == "__main__":

 # s_region = "us-west-1"
 s_region = "eu-west-1"
 s_access_key = "AKIATRML7HMNS6SQ5WOS"
 s_secret_key = "e4dUZEEcSnOszTyslmD5SZBpPbTFEAj4PN14HY6F"

 try:
 o_config = Config(
 region_name=s_region,
 signature_version="v4",
 retries={
 'max_attempts': 10,
 'mode': 'standard'
 }
)

 ec2_res = boto3.resource("ec2",
 config=o_config,
 aws_access_key_id=s_access_key,
 aws_secret_access_key=s_secret_key
)

 s_row_titles_mask = "{:>25} {:>25} {:>20} {:>12} {:>17} {:>15}"
 print(s_row_titles_mask.format("Instance Id", "Ami Id", "Instance type", "Platform", "Public
Ip", "State"))

15 / 128

 for o_instance in ec2_res.instances.all():

 s_instance_id = o_instance.id
 s_ami_id = o_instance.image.id
 s_instance_type = o_instance.instance_type
 s_platform = o_instance.platform
 s_public_ip = o_instance.public_ip_address
 # o_instance.state is a dict like this {'Code': 16, 'Name': 'running'}
 s_state = o_instance.state['Name']

 if s_instance_type is None:
 s_instance_type = ""

 if s_platform is None:
 s_platform = ""

 if s_public_ip is None:
 s_public_ip = ""

 s_instance_line = s_row_titles_mask.format(s_instance_id, s_ami_id, s_instance_type,
s_platform, s_public_ip, s_state)
 print(s_instance_line)
 except Exception as e:
 print("An error has occurred", str(e))

This code will produce this result for my actual view of Instances:

Please not how these Instances do not have a Public Ip.
This is because in my config, they belong to an VPC which doesn't provide a Public Ip automatically.

16 / 128

Error handling

Amazon SDK for Python 3, boto3, raises any error as an Exception.
For example, if your credentials are disabled or not valid, boto3 will raise this Exception:

botocore.exceptions.ClientError: An error occurred (AuthFailure) when calling the
DescribeInstances operation: AWS was not able to validate the provided access
credentials

As our sample code is catching the exceptions, an error would be catch and gracefully displayed as:

boto3 and None Objects

Amazon uses Java a lot. I guess that's why they like to return None objects when they don't have
information for an Object. Other companies would just return an empty String.

For example for the Public Ip when there is none, or for the VPC Id.
This is particularly important when an Instance is Terminated, as some of the information is no longer
available.

That's why in the sample code I check for Nones and I convert to an empty String.

if s_public_ip is None:
 s_public_ip = ""

If I won't do it, when trying to format the String for printing it nicely, it would return an error as None
object doesn't know about formatting.

Other structures can have data or not, like Tags.
Do not assume that every instance will have Tags.

17 / 128

 self.o_awsdynamodb = o_awsdynamodb

 # Default values
 self.b_admin = False
 self.s_access_key = ""
 self.s_secret_key = ""

 # Menu as: title, is admin, Class, method
 self.a_menu_main = [("Create a user", True, self.o_usermanagement, "create_user"),
 ("EC2 Instances", False, self.o_awsec2, "display_menu"),
 ("EBS Storage", False, self.o_awsebs, "display_menu"),
 ("S3 Storage", True, self.o_awss3, "display_menu"),
 ("Cloud Watch", False, self.o_awscw, "display_menu"),
 ("Amazon DynamoDB (information and samples)", False, self.o_awsdynamodb,
"display_menu")
]

 def ask_for_username(self):
 s_username = input("Username:")

 return s_username

 def ask_for_password(self):
 s_password = input("Password:")

 return s_password

 def main(self):
 try:
 while True:
 s_role = ""
 b_admin = False

 s_username = self.ask_for_username()

 if s_username == "":
 exit()

 s_password = self.ask_for_password()

 s_role, s_access_key, s_secret_key =
self.o_fileutils.get_credentials(self.s_credentials_file, s_username, s_password)
 if s_role == "ADMIN":
 b_admin = True
 self.b_admin = b_admin

 if s_access_key != "" and s_secret_key != "":
 # Successful login
 # Update credentials on the injected objects
 self.o_credentials.b_admin = b_admin
 self.o_credentials.s_access_key = s_access_key
 self.o_credentials.s_secret_key = s_secret_key
 self.o_awsec2.update_credentials()
 self.o_awsebs.update_credentials()
 self.o_awss3.update_credentials()

20 / 128

