Search for bote3 and hit Install Package.

Available Packages x

C- boto3

2 Description
boto3-batch-utils The AWS SDK for Python
boto3-extensions Version
boto3-fixtures 1.20.20
boto3-large-message-utils Author
boto3-meiqia Amazon Web Services
boto3-mocking

boto3-session-cache https://github.com/boto/boto3
boto3-stubs

boto3-type

boto3-type-annotations
boto3-type-annotations-with-docs
boto3-utils

boto3-wrappers

boto342

boto3_paste

boto3_policygen

boto3_retry

boto3auth

boto3facade

boto3helper
cloudwright-aws-boto3
django-ses-boto3

flake8-boto3

Flake8-boto3-plugin Specify version
iamzero-boto3

mumi-hnrn

Options

Install Package Manage Repaositories

Available Packages x

< boto3

= Description
botos
boto3-batch-utils The AWS SDK for Python
boto3-extensions Version
boto3-fixtures 1.20.20
boto3-large-message-utils Author
boto3-meiqia Amazon Web Services
boto3-mocking
boto3-session-cache https://github.com/boto/boto3
boto3-stubs
boto3-type
boto3-type-annotations
boto3-type-annotations-with-docs
boto3-utils
boto3-wrappers
boto342
boto3_paste
boto3_policygen
boto3_retry
boto3auth
boto3facade
boto3helper
cloudwright-aws-boto3
django-ses-boto3
flake8-boto3 Specify version
flakes-boto3-plugin

....... hotan

Options
Package 'boto3' installed successfully

nstall Package Manage Repositories

10/128

Configuring the Credentials

There are two ways to pass the credentials:
» Shared credentials file ~ /.aws/credentials
* Passing credentials to boto3

In this book, as it is Python 3 oriented, I will pass the credentials to boto3.
I will not be using the /home/user/.aws/credentials file.

Some of the examples on Amazon documentation show the Access Key and the Secret Key enclosed by
<>, for example:

<AKIATRML7HMNS6SQ5WOS>

This does not mean that you have to add <> surrounding your Access Key.
It's just an unfortunate way to indicate that you have to just put what's between the <>.

Our first Python 3 sample

import boto3
from botocore.config import Config

if _name__ =="_main_":

s region = "us-west-1"

s_region = "eu-west-1"

s_access_key = "AKIATRML7HMNS65Q5WOS"

s secret key = "e4dUZEEcSnOszTysImD5SZBpPbTFEAj4PN14HY6F"

try:
o_config = Config(
region_name=s_region,
sighature_version="v4",
retries={
‘'max_attempts': 10,
'mode': 'standard'
}
)

ec2_res = boto3.resource("ec2",
config=o0_config,
aws_access_key id=s_access_key,
aws_secret access _key=s secret key

)

s row_titles mask = "{:>25} {:>25} {:>20} {:>12} {:>17} {:>15}"
print(s_row_titles_mask.format("Instance Id", "Ami Id", "Instance type", "Platform", "Public
Ip", "State"))

15/128

for o_instance in ec2_res.instances.all():

s_instance_id = o_instance.id

s _ami_id = o_instance.image.id

s_instance_type = o_instance.instance_type

s_platform = o_instance.platform

s_public_ip = o_instance.public_ip_address

o_instance.state is a dict like this {'Code': 16, 'Name': 'running'}
s _state = o_instance.state['Name']

if s_instance_type is None:
s_instance_type = ""

if s_platform is None:
s_platform = ""

if s_public_ip is None:
s_public_ip =""

s_instance_line = s_row_titles_ mask.format(s_instance_id, s_ami_id, s_instance_type,
s_platform, s_public_ip, s_state)
print(s_instance_line)
except Exception as e:
print("An error has occurred", str(e))

This code will produce this result for my actual view of Instances:

4 assignment.py -
= CHANGELOG

group1_inventory [J if s_public_ip is None:
group2_inventory s_public_ip = ""
we launch_aws_instances-group1.yaml
we launch_aws_instances-group2.yaml s_instance_line = s_row_titles_mask.format(s_instance_id, s_ami_id, s_instance_type, s_platform, s_public_ip, s_state)
passwords.txt print(s_instance_line)
README.md except Exception as e:
ReadMe.odt

print("An error has occurred", str(e))
ReadMe.pdf

requirements.txt
& simple_sample.py
> Il External Libraries

Run: simple_sample
> /home/carles/Desktop/code/carles/cit_cloud_orchestration/venv/bin/python /home/carles/Desktop/code/carles/cit_cloud_orchestration/simple_sample.py
V2 Instance Id Ami Id Instance type Platform Public Ip State
= 1-000f084d0f7e52087 ami-08edbbBe85d6adad7 t2.micro running
o 1-8034c097c05039667 ami-095b735dce49535b5 t2.micro running
= _ 1-8c467d82ae0d466F4 ami-07bc1206b298d9f4f t2.micro windows running
E i-88fb3abB48eelded9 ami-08edbbBe85d6adad7 t2.micro pending
(]

Process finished with exit code @

Please not how these Instances do not have a Public Ip.
This is because in my config, they belong to an VPC which doesn't provide a Public Ip automatically.

16/ 128

Error handling

Amazon SDK for Python 3, boto3, raises any error as an Exception.
For example, if your credentials are disabled or not valid, boto3 will raise this Exception:

botocore.exceptions.ClientError: An error occurred (AuthFailure) when calling the
DescribeInstances operation: AWS was not able to validate the provided access
credentials

As our sample code is catching the exceptions, an error would be catch and gracefully displayed as:

Run: simple_sample
> /home/carles/Desktop/code/carles/cit_cloud_orchestration/venv/bin/python /home/carles/Desktop/code/carles/cit_cloud_orchestration/simple_sample.py
y Instance Id Ami Id Instance type Platform Public Ip State
= An error has occurred An error occurred (AuthFailure) when calling the DescribeInstances operation: AWS was not able to validate the provided access credentials

boto3 and None Objects
Amazon uses Java a lot. I guess that's why they like to return None objects when they don't have
information for an Object. Other companies would just return an empty String.

For example for the Public Ip when there is none, or for the VPC Id.
This is particularly important when an Instance is Terminated, as some of the information is no longer
available.

That's why in the sample code I check for Nones and I convert to an empty String.

if s_public_ip is None:
s _public_ip =""

If I won't do it, when trying to format the String for printing it nicely, it would return an error as None
object doesn't know about formatting.

Other structures can have data or not, like Tags.
Do not assume that every instance will have Tags.

17 /128

self.o_awsdynamodb = o_awsdynamodb

Default values
self.b_admin = False
self.s_access key =""
self.s_secret_key = ""

Menu as: title, is admin, Class, method
self.a_menu_main = [("Create a user", True, self.o_usermanagement, "create_user"),
("EC2 Instances", False, self.o_awsec2, "display_menu"),
("EBS Storage", False, self.o_awsebs, "display_menu"),
("S3 Storage", True, self.o_awss3, "display_menu"),
("Cloud Watch", False, self.o_awscw, "display_menu"),
("Amazon DynamoDB (information and samples)", False, self.o_awsdynamodb,

]

"display_menu")

def ask _for_username(self):
s_username = input("Username:")

return s_username

def ask _for_password(self):
s_password = input("Password:")

return s_password

def main(self):
try:
while True:
s role =
b_admin = False

s_username = self.ask for_username()

if s_username == "":
exit()

s_password = self.ask for_password()

s _role, s_access key, s secret _key =
self.o_fileutils.get _credentials(self.s_credentials _file, s username, s_password)
if s_role == "ADMIN":
b _admin = True
self.b_admin = b_admin

if s_access key !=""and s_secret key !=""
Successful login
Update credentials on the injected objects
self.o_credentials.b_admin = b_admin
self.o_credentials.s_access_key = s _access_key
self.o_credentials.s_secret key = s _secret key
self.o_awsec2.update_credentials()
self.o_awsebs.update_credentials()
self.o_awss3.update_credentials()

20/ 128

