Nederlandse vertaling

I
A Brief Introduction by

Janet Gregory & Lisa Crispin

Vertaald onder begeleiding van
Yves Hanoulle

Agile Testing Condensed Nederlands

YvesHanoulle, Janet Gregory en Lisa Crispin
Dit boek is te koop bij http://leanpub.com/agiletestingcondensed-nl

Deze versie is gepubliceerd op 2022-12-23

)

Leanpub

Dit is een Leanpub boek. Leanpub stelt auteurs en uitgevers in staat om volgens het Lean uitgeefproces te
werken. Lean Publishing is het uitgeven van een boek dat nog onderhanden is met lichtgewicht gereedschap
en vele iteraties om feedback te krijgen van de lezers. Op deze manier kun je aanpassingen maken tot je het
juiste boek hebt, en als je zover bent helpt het om te zorgen dat je een positie krijgt in de markt.

© 2012 - 2022 YvesHanoulle, Janet Gregory en Lisa Crispin

http://leanpub.com/agiletestingcondensed-nl
https://leanpub.com/
https://leanpub.com/manifesto

Tweet over dit boek!

Gelieve YvesHanoulle, Janet Gregory en Lisa Crispin te helpen door reclame te maken over het boek Twitter!
De voorgestelde hashtag voor dit boek is #AgileTestingCondensed.

Lees wat andere mensen over het boek zeggen door op deze link te klikken en op Twitter naar deze hashtag
te zoeken:

#AgileTestingCondensed

http://twitter.com
https://twitter.com/search?q=%23AgileTestingCondensed
https://twitter.com/search?q=%23AgileTestingCondensed

Inhoudsopgave

DEEL 1: Fundamenten 9
SECTION 1: Foundations 10
Hoofdstuk 1: Wat bedoelen we met agile testen? 11
Continue testmodellen 11
Tien principes voor agiletesten L 13
Testmanifest L 13
Definitie van Agile Testen L 14
Chapter 1: What Do We Mean by Agile Testing? 15
Continuous testing models L 15
Ten principles for agile testing 17
Testing manifesto L 17
Agile testing definition 19
Hoofdstuk 2: Teambrede aanpak en agile testmentaliteit 20
Focusop kwaliteit 21
Hoe teams omgaan met fouten 22
Meerdere perspectieven e e 23
Chapter 2: Whole-Team Approach and Agile Testing Mindset 24
Focusonquality 25
How teams deal with defects 26
Multiple perspectives. 27
Hoofdstuk 3: Testplanning in agile contexten 28
Team 28
Product e 28
Planning op verschillende detailniveaus oo oo L 29
Planning voor regressietesten L 32
Chapter 3: Test Planning in Agile Contexts 33
Theteam. 33
Theproduct 33
Planning across levels of detail 34

Planning for regression testing L 36

INHOUDSOPGAVE

DEEL 2: Testaanpakken 37
SECTION 2: Testing Approaches 38
Hoofdstuk 4: De ontwikkeling in goede banen leiden met voorbeelden 39
Voorbeeldgebaseerde methoden 39
Waarom voorbeelden helpen 40
Ditisjebasis 41
Chapter 4: Guiding Development with Examples 42
Example-based methods L 42
Why exampleshelp 43
This is your foundation L 44
Chapter 5: Samenwerking mogelijk maken 45
Samenwerken met klanten L 45
Impact mapping 46
Stel vragen 47
Voorbeeld mapping 47
Bouw vertrouwen op met zichtbaarheid L o oL 48
Chapter 5: Enabling Collaboration 50
Collaborate with customers L 50
Impact mapping 51
Askquestions 52
Example mapping 52
Build trust using visibility 53
Hoofdstuk 6: Onderzoekend Testen 55
Persona’s, banen, and rollen 55
Werkstromen entours 56
Risico’s en waarde voorde klant 57
Onderzoek in pairs or Groepen o ot i e 57
Charters e 58
Uitvoeren, leren, sturen o o e e e 59
Aanvullende technieken 59
Maak gebruik van tools voor effectief te onderzoeken Lo oL L 59
Chapter 6: Explore Continuously 60
Personas, jobs,and roles 60
Workflows and tours L 61
Risks and value to the customer 62
Explore in pairs or Groupso e 62
Charters 63
Executing, learning, steering 63
Additional techniques 64

Leverage tools for effective exploring 64

INHOUDSOPGAVE

Hoofdstuk 7: Testkwaliteitskenmerken 65
Kwaliteitskenmerken definiéren L 65
Risico’s beperken door vroeg samente werken L oL oL oL 65
Planning voor pre-release testen 66
Plannen om later te leren L 67
Naleving van de regelgeving 67

Chapter 7: Testing Quality Attributes 68
Defining quality attributes 68
Mitigating risks by collaboratingearly L 68
Planning for pre-release testing L 69
Planning for later learning 70
Regulatory compliance. e 70

Hoofdstuk 8: Testen binnen devopsteams 71
Het voortdurend opleveren en naar omgevingen brengen met een pijplijn 71
Testen in productie L 73
Monitoren en observerenl e 74
Nieuwe technologie brengt ons nieuwe mogelijkheden 74

Chapter 8: Testing in DevOps 76
Continuous delivery and deployment 76
Testing in production 78
Monitoring and observability 78
New technology brings us new capabilities L. 79

DEEL 3: Handige Modellen 80

SECTION 3:Helpful Models e 81

Hoofdstuk 9: De Agile Testkwadranten 82
Welke testen in welke volgorde? 83
De kwadranten gebruiken L 84
“Klaar” definiéren 85
De modellen vinden die passen in jouw contexto 86

Chapter 9: The Agile Testing Quadrants 87
What tests in what order? 88
Using the quadrants e 89
Defining “Done” 90
Find the models that fit your context 91

Hoofdstuk 10: Visualiseren van een testautomatiseringsstrategie 92
Gebruik maken van visuele modellen 92
De klassieke testautomatiseringspiramide L 92
Geautomatiseerde testen als levende documentatie 94

Het model uitbreiden e 95

INHOUDSOPGAVE

Gedeelde verantwoordelijkheid 95
Chapter 10: Visualizing a Test Automation Strategy 97
Using visual models 97
The classic test automation pyramid L 97
Automated tests as living documentation L L 99
Extending themodel 100
Shared responsibility L 100
DEEL 4: Agile testing vandaag 102
SECTION 4: Agile Testing Today e, 103
Hoofdstuk 11: De nieuwe rol vandetester 104
Testers zijn kwaliteitslijm vooreenteam 104
De professionele reis van een agile tester L L 105
Het fascinerende pad om te evolueren alstester 106
Wees alleswatjekanzijn 107
Beginmet een gesprek 108
De wereld heeft niet meer controleursnodig L L o 109
De gedachten van Lisaen Janet 111
Chapter 11: ATester’'s New Role 112
Testers are quality glueforateam 112
An agile tester’s professional journey L 113
The fascinating path of evolving astesters 114
Beallthatyoucanbe e 115
Start with a conversation 116
The world doesn’t need more checkers 117
Lisa’s and Janet’s thoughts 118
Hoofdstuk 12: Ingrediénten voorsucces 120
Succesfactoren 120
Praktijken voor het opbouwen van vertrouwen. L L oL 124
Paden naar succes 126
Chapter 12: Ingredients for Success L 128
Success factors 128
Confidence-building practices e 132
Pathsto success oo 134
Begrippenlijst L 136
Glossary 138
Bronnen voor verder leren 140
Algemeen 140

Gemeenschappelijk begrip - Samenwerking L L o o 140

INHOUDSOPGAVE

Onderzoekend testen L 140
DevOps, Monitoring, Waarneembaarheid L 141
Test Automatisering L L 141
Resources for Further Learning L 142
General 142
Getting Shared Understanding - Collaboration 142
Exploratory Testing o 142
DevOps, Monitoring, Observability 143
Test Automation L 143
Overdeauteurs it 144
About the Authors 145

Vertalers 146

INHOUDSOPGAVE 1

Dankbetuigingen

Onze boeken zijn altijd een inspanning van de gemeenschap. Veel dank aan onze collega’s die hun visie
hebben gegeven over hoe de rol van tester zich evolueert in hoofdstuk 11. We gaan hier voor een beknopt
boek, dus we kunnen niet alle mensen afzonderlijk bedanken van wie we steeds nieuwe ideeén en concepten
leren, deze leren toe te passen in ons eigen werk en leren om deze verder uit te dragen. Maar weet dat we je
dankbaar zijn.

Ook dank aan de mensen die ons manuscript hebben gelezen en nuttige feedback gaven, waaronder:
Mike Talks, Nikola Sporczyk, Lena Pejgan Wiberg, Pascal Stiefel, Barbara Zaleska, Bertold Kolics, Carol
Vaage en onze redacteur Erica Hunter. Daarnaast zijn we Constance Hermit heel dankbaar dat ze ons
haar wondermooie tekening voor hoofdstuk 12 liet gebruiken, en Jenn Sinclair waarvan we vaak haar
lijntekeningen mochten gebruiken.

Heel veel dank aan José Diaz en Johanna Rothman voor hun mooie voorwoorden.

Tenslotte waarderen we oprecht onze echtgenoten, Jack Gregory en Bob Downing, die er altijd zijn met een
goed glas wijn als we het nodig hebben.

INHOUDSOPGAVE 2

Acknowledgments

Our books always involve a community effort. Many thanks to our colleagues who contributed their visions
of how the tester role is evolving in Chapter 11. We are going for a short book here, so we cana€™t individually
thank all the people from whom we keep learning new ideas and concepts to apply in our own work and
transfer to more people, but please know that we are grateful.

More gratitude to the people who reviewed our draft manuscript and gave us such helpful feedback, including
Mike Talks, Nikola Sporczyk, Lena Pejgan Wiberg, Pascal Stiefel, Barbara Zaleska, Bertold Kolics, Carol Vaage,
and our copy editor Erica Hunter. Thanks so much to Constance Hermit for letting us use her wonderful
drawings in Chapter 12, and Jenn Sinclair for her line drawings that we use so much.

A special thanks to JosA© Diaz and Johanna Rothman for their lovely forewords.

And last but not least, we truly do appreciate our husbands, Jack Gregory and Bob Downing, who are always
there with a glass of wine when we need one.

INHOUDSOPGAVE 3

Voorwoord door José Diaz

CEQ, Trendig.com

Het leven leidt je naar je doel. Wie had gedact in 2009, toen ik de eerste Agile Testing Days (ATD) startte, dat
ik het voorwoord zou schrijven van een boek van de koninginnen van het agile testen, ook al behoren Janet
en Lisa al van toen tot het ATD gezelschap. Ik ben heel blij en vereerd dat ze het mij gevraagd hebben.

Agile Testing Condensed is in lijn met de twee vorige boeken van Janet en Lisa. Deze keer verlichten ze de
hoeken en verkennen ze de randen van testen en kwaliteit in agile projecten - kort, beknopt, raak en recht
uit het hart van twee vrouwen die hun carriére en leven hebben gewijd aan het delen van hun kennis en het
professionaliseren van agile testen. Het bevat inzichtelijke voorbeelden en anekdotes en is leuk om te lezen.
Beide auteurs delen hun praktijkervaringen en nodigen de lezers uit om hun reis langs talrijke projecten te
reconstrueren. Ze nemen je bij de hand voor een wandeling door deze uitdagende en prachtige wereld van
agile testen en leggen het je uit. Het is een schatkist, voor jou en je team.

Ik raad niet alleen dit inspirerende boek aan, maar ook hun levensechte training “Agile Testing for the Whole
Team”

Het boek is de kroon op het werk van de laatste 20 jaar, waarin ze zich intensief hebben bezig gehouden met
de agile wereld en haar gemeenschap. Hun ontelbare projecten, trainingen, workshops, keynotes, praatjes,
webinars, lean coffees, coaching, open spaces, mentor sessies en gesprekken komen samen in dit boek en
maken de inhoud zo prakisch en waardevol voor iedereen die een reis naar de wereld van agile overweegt
(inclusief managers).

Het is gemaakt voor jou en mij. Met veel liefde! Laten we er van genieten!

INHOUDSOPGAVE 4

Foreword by José Diaz

CEQ, Trendig.com

Life leads you to your goal. Who would have thought back in 2009 when I started the first Agile Testing Days
(ATD) that T would write the foreword to a book by the Agile Testing Queens, even though Janet and Lisa
have been part of the ATD ensemble ever since. I'm very happy and honored that they asked me to do so.

Agile Testing Condensed is in line with the two previous books of Janet and Lisa. This time they shed light into
the corners and explore the edges of testing and quality in agile projects - short, concise, spot-on and right
from the hearts of two women who dedicated their careers and life to share their knowledge and advance the
activity of testing into an agile profession. It contains insightful examples and anecdotes and is fun to read.
Both authors share their practical experiences and invite readers to retrace their journey through numerous
projects. They take you by the hand for a walk through this challenging and beautiful world of agile testing
and explain it to you. It is a treasure chest, for you and your team.

I recommend not only this inspiring book but also their true-to-work life training “Agile Testing for the Whole
Team”

The book crowns their work of the last 20 years, in which they have dealt intensively with the agile world
and its community. Their countless projects, trainings, workshops, keynotes, talks, webinars, lean coffees,
coaching, open spaces, mentoring sessions, and conversations are condensed into this book and make its
content so practical and worthwhile. This book is a must read for anyone considering a journey into the
world of agile (including managers).

It is made for you and me. With a lot of love! Let’s enjoy it!

INHOUDSOPGAVE 5

Voorwoord door Johanna Rothman

Auteur van Create Your Successful Agile Project.

Misschien heb je de andere boeken van Janet en Lisa over agile testen al gelezen. Die boeken gaan over veel
meer dan alleen agile testen. Ik raad je ten zeerste aan om ze te lezen.

Dit boek, Agile Testing Condensed, richt zich op het creéren van een omgeving waarin het team - en vooral
de testers - kunnen slagen. Het boek biedt een overvloed aan bronnen in boeken, artikelen en blogberichten
om dat idee te versterken en jou, de lezer, manieren bieden om over het onderwerp na te denken.

Elk hoofdstuk bevat juweeltjes - dat is het beknopte deel - die kunnen helpen richting te geven aan hoe je
denkt over testen en kwaliteit.

Bijvoorbeeld, te veel teams denken dat testen gaat over hoe een tester een specifieke functionaliteit test. In
plaats daarvan is er een sectie die iedereen helpt na te denken over het product en hoe de testinspanning over
verschillende niveaus van het product kan worden gepland.

Een ander voorbeeld gaat over hoe ze ons herinneren aan samenwerking. Van pairing om te verkennen, tot
het werken in triades om stories te definiéren: testers werken samen.

Ik hield van de paragraaf “Testers zijn kwaliteitslijm voor een team”. Zo waar, en te weinig testers en teams
maken gebruik van die lijm.

Als je je afvraagt hoe je een agile tester moet zijn, of als je niet zeker weet of je testers nodig hebt in je agile
team, lees dan dit boek - een kort en snel te lezen boek dat voor lange tijd zijn vruchten zal afwerpen.

INHOUDSOPGAVE 6

Foreword by Johanna Rothman

Author of Create Your Successful Agile Project

You may have read Janet and Lisa’s other books about agile testing. Those books are much more than just
agile testing. I strongly recommend you read them.

This book, Agile Testing Condensed, focuses on how to create an environment in which the team - and
especially the testers - can succeed. The book offers plenty of sources in books, articles, and blog posts that
help reinforce the idea and offer you, the reader, ways to think about the issue.

Each chapter contains gems - that’s the condensed part - that can help guide your thinking about testing
and quality.

For example, too many teams think testing is about how a tester tests a specific feature. Instead, there’s a
section that helps everyone think about the product and how to plan the testing effort across the various
levels of the product.

Another example is how they remind us about collaboration. From pairing to explore, to working in triads to
define stories, testers collaborate.

Iloved the section, “Testers are quality glue for a team.” So true, and too few testers and teams take advantage
of that glue.

If you’re wondering about how to be an agile tester, or if you’re not sure if you need testers on your agile
team, read this book - a short and quick read that will pay dividends for a long time.

INHOUDSOPGAVE 7

Waarom dit boek?

Ons doel was om een klein, beknopt en gemakkelijk te lezen boek te maken dat iedereen zou kunnen
vastpakken om de basis te begrijpen van hoe je slaagt met testen en hoe je een kwaliteitscultuur opbouwt in
een agile context. Onze eerste twee (veel grotere) boeken gaan daar dieper op in en bevatten waargebeurde
verhalen van beoefenaars. We noemen die boeken:

« Agile Testing, oftewel Agile Testing: A Practical Guide for Testers and Agile Teams, 2009
« More Agile Testing, oftewel More Agile Testing: Learning Journeys for the Whole Team, 2014

Dit boek is geen inleidend boek over testen. Er zijn veel geweldige bronnen beschikbaar om de basisprincipes
van testen, testautomatisering, DevOps en andere onderwerpen te leren. In onze literatuurlijst vindt je enkele
goede links. Ook is dit geen basisinleiding tot agile ontwikkeling. Het is bedoeld voor lezers die in teams
zitten die agile werken of die willen weten hoe testen en kwaliteit passen in agile ontwikkeling en op zoek
zijn naar begeleiding, zoals managers of leidinggevenden.

Hoe dit boek te lezen

Je kan in elke sectie beginnen of afzonderlijke hoofdstukken lezen op basis van wat je wilt leren. Elk hoofdstuk
is onafhankelijk, hoewel we naar andere hoofdstukken kunnen verwijzen.

Gebruik het als een zakboekje voor agile testen, om bij de hand te houden terwijl je werkt. Als je vastloopt
en inspiratie nodig hebt, of als je team twijfelt bij een testuitdaging, blader dan door dit boek voor ideeén.
Als je meer diepgang wilt, bekijk dan onze andere boeken.

Door het hele boek heen vind je hints die je op ideeén brengen over hoe je een specifiek probleem aanpakt.

INHOUDSOPGAVE 8

Why this book?

Our goal with this book was to create a small, concise, easy-to-read book that anyone could pick up to get a
basic understanding on how to succeed with testing and build a quality culture in an agile context. Our first
two (much larger) books go into more depth and feature real-life stories from practitioners. We refer to those
books as:

« Agile Testing, which is Agile Testing: A Practical Guide for Testers and Agile Teams, 2009
+ More Agile Testing, which is More Agile Testing: Learning Journeys for the Whole Team, 2014

This book is not an introductory testing book. There are many great resources available to learn the basics
of testing, test automation, DevOps, and other topics. You can find some good links in our bibliography.
Similarly, this is not a basic introduction to agile development. It is for readers who are on teams adopting
agile or those who want to know how testing and quality fits into agile development and are looking for
guidance, such as managers or executives.

How to read this book

You are welcome to start in any section, or read individual chapters based on what you want to learn. Each
chapter is self-sufficient, although we may refer to other chapters.

Use it as a pocket guide to agile testing to keep handy as you work. When you get stuck and need inspiration,
or when your team is wondering about a testing challenge, look through this book for ideas. When you want
to get more in-depth, check out our other books.

Throughout the book, youa€™ll find hints that will give you ideas about how to approach a specific problem.

DEEL 1: Funhdamenten

In dit eerste deel geven wij onze definitie van “agile testen”. Het hart van agile testen betrekt het hele team
bij het testen en inbouwen van kwaliteit in ons product. Hierbij is er een grote mentaliteitsverandering waar
het team leert om defecten te voorkomen in plaats van te vertrouwen op testers als een vangnet om ze op te
vangen.

Nieuwe agile teams leren om grote functionaliteiten in kleine, incrementele stukjes te hakken en regelmatig
kleine veranderingen op te leveren. Tegelijkertijd moeten ze het grote geheel voor ogen houden om
klanttevredenheid te behouden.

« Hoofdstuk 1: Wat bedoelen we met agile testen?
« Hoofdstuk 2: Teambrede aanpak en agile testmentaliteit
« Hoofdstuk 3: Testplanning in agile contexten

SECTION 1: Foundations

In this first section, we share our definition of “agile testing” The heart of agile testing involves the whole
team in testing and building quality into our product. There’s a big mindset shift as the team learns to prevent
defects rather than relying on testers as a safety net to catch them.

New agile teams learn to slice big features into small, incremental chunks and deliver small changes
frequently. At the same time, they must keep the big picture in mind to maintain customer happiness.

+ Chapter 1: What Do We Mean by Agile Testing?
« Chapter 2: Whole-Team Approach and Agile Testing Mindset
+ Chapter 3: Test Planning in Agile Contexts

Hoofdstuk 1: Wat bedoelen we met agile
testen?

In de loop der jaren is ons vaak gevraagd hoe we ‘agile testen’ moeten definiéren. We hebben onze ‘definitie’
van agile testen in het laatste deel van dit hoofdstuk opgenomen, maar er zijn veel factoren die bij deel
uitmaken van die definitie. Enkele praktijken die teams helpen bij hun reis naar succes zijn:

+ Het inbouwen van kwaliteit: teams richten zich op het voorkomen van misverstanden over het gedrag
van functionaliteiten en het voorkomen van defecten in de code

+ Ontwikkeling sturen met concrete voorbeelden: gebruik van praktijken als acceptance test-driven
development (ATDD), behavior-driven development (BDD) of specification by example (SBE)

« Testactiviteiten voorzien zoals het voeren van gesprekken om gedeeld begrip op te bouwen; vragen
stellen om ideeén en aannames te testen; testen automatiseren; het uitvoeren van onderzoekende testen;
testen op kwaliteitskenmerken zoals prestatie, betrouwbaarheid en beveiliging; en leren van gebruik in
productie

« Het gebruiken van retrospectieven met het hele team en kleine experimenten om het testen en de
kwaliteit voortdurend te verbeteren en te ontdekken wat in hun context werkt

We zullen de bovenstaande praktijken doorheen dit boek verder uitwerken. We beschouwen ze niet als ‘best
practices’ omdat we weten dat ze voortdurend evolueren.

Continue testmodellen

Testen is een integraal onderdeel van softwareontwikkeling, samen met codering, operations, inzicht krijgen
in de behoeften van de klant, en meer. We houden van de modellen die continue of holistische testmethodes
vertegenwoordigen. Een van onze favorieten is de methode die Ellen Gottesdiener en Mary Gorman gebruiken
in hun boek Discover to Deliver, 2012. In figuur 1.1 wordt weergegeven dat het ontwikkelingsproces een
oneindige lus is, voortdurend bevestigend — en dat is hoe we eigenlijk software ontwikkelen. We leren over
een functionaliteit die onze klanten willen, we bouwen het en leveren het op, om dan te leren hoe de klanten
het daadwerkelijk gebruiken. We gebruiken die feedback om te beslissen wat we vervolgens gaan bouwen (of
verwijderen).

Hoofdstuk 1: Wat bedoelen we met agile testen? 12

fe

discover delwer

Figuur 1.1: “Discover to deliver” lus © 2015 by EBG Consulting

5

Dan Ashby nam een vergelijkbare benadering met onderstaand diagram (Figuur 1.2) in zijn blogpost als hij
het heeft over testen in DevOps'. Dit model laat zien dat testen een integraal onderdeel is van DevOps. In
hoofdstuk 8 gaan we hier dieper op in.

&0
wtxé'f ‘”fewt“'f

Figuur 1.2: Continu Testen in DevOps lus

We houden van termen als continu testen of holistisch testen en erkennen dat elk team ze moet aanpassen
aan hun eigen unieke context.

'https://danashby.co.uk/2016/10/19/continuous-testing-in-devops/

https://danashby.co.uk/2016/10/19/continuous-testing-in-%20devops/
https://danashby.co.uk/2016/10/19/continuous-testing-in-%20devops/

Hoofdstuk 1: Wat bedoelen we met agile testen? 13

Tien principes voor agile testen

In Agile Testing introduceerden we het idee van 10 Principes voor Agile Testers. We realiseren ons nu dat
deze principes niet alleen voor testers zijn, maar voor iedereen in het team. We schreven deze principes in
een tijd dat de meeste testers nog deel uitmaakten van een testteam in een gefaseerd project met gates, en
het testen gebeurde aan het einde - nadat alle codering “af” was.

Deze principes zijn vandaag nog steeds van toepassing op iedereen in een agile team dat een product van de
hoogste mogelijke kwaliteit wil leveren.

« Zorg voor continue feedback.

+ Lever waarde aan de klant.

« Maak face-to-face communicatie mogelijk.
+ Wees moedig.

+ Hou het simpel.

« Verbeter jezelf voortdurend.

« Reageer op verandering.

+ Organiseer jezelf.

» Focus op mensen.

+ Geniet!

Testmanifest

We sluiten dit hoofdstuk af met dit “testmanifest”” gemaakt door Karen Greaves en Samantha Laing. Hun
manifest weerspiegelt de mentaliteitsverandering die nodig is voor een succesvolle agile testaanpak. We testen
gedurende het hele ontwikkelingsproces, we richten ons op het voorkomen van bugs, we testen veel meer dan
functionaliteit en het hele team neemt de verantwoordelijkheid voor de kwaliteit. Je vindt deze principes terug
in al onze boeken. Telkens wanneer je team vastzit met een kwaliteits- of testprobleem, moet je nadenken
over deze principes om een manier te vinden om vooruit te komen. (Figuur 1.3).

*http://www.growingagile.co.nz/2015/04/the-testing- manifest/

http://www.growingagile.co.nz/2015/04/the-testing-manifest/
http://www.growingagile.co.nz/2015/04/the-testing-manifest/

Hoofdstuk 1: Wat bedoelen we met agile testen?
i « TESThNG

v Manigesto

WE VOIUE

ELLI-'l:'Hn(‘l Che

ekl Prevenbng Testing bet system
t.wz;uahout \'-‘“f’f’ .‘,Mpﬁmndmﬂ)
OVER OVER OVER ONVER
testing at ;::ibm‘: f.‘lﬂedu'nﬁ ll‘rl"t'ﬂ'f_).r\-:j e
e end g~ functiarali £y System

14

Teamn
rf_’:jﬁ-.’:‘-ﬂ":nbilntjj
fo gquality

OVER

teste(
resporsibily Lfﬂ

www -6lowingAg'\e.co-zo eguanghge

Figuur 1.3: Het testmanifest

Definitie van Agile Testen

De eenvoudigste definitie die we hebben bedacht voor wat we bedoelen met agile testen is de volgende:

Collaboratieve testpraktijken die continu plaatsvinden, van bij de aanvang tot oplevering en
daarna, ter ondersteuning van frequente oplevering van waarde voor onze klanten. Testactiviteiten
zijn gericht op het inbouwen van kwaliteit in het product, waarbij snelle feedbacklussen worden
gebruikt om ons begrip te valideren. De praktijken versterken en ondersteunen het idee van

verantwoordelijkheid voor de kwaliteit van het hele team.

Het duurt even voordat het verwerkt is en je kunt onze blogpost® bekijken voor meer details.

*https://agiletester.ca/ever-evolving-never-set-stone-definition-agile-testing/

https://agiletester.ca/ever-evolving-never-set-stone-definition-agile-testing/
https://agiletester.ca/ever-evolving-never-set-stone-definition-agile-testing/

Chapter 1: What Do We Mean by Agile
Testing?

Over the years we’ve been asked many times how to define “agile testing” We have included our “definition”
of agile testing in the last part of this chapter, but there are many factors that go into that definition. Some
of the practices that help support teams in their journey toward success are:

+ Building quality in: teams focus on preventing misunderstandings about feature behavior as well as
preventing defects in the code

+ Guiding development with concrete examples: using practices like acceptance test-driven development
(ATDD), behavior-driven development (BDD), or specification by example (SBE)

« Including testing activities such as having conversations to build shared understanding; asking
questions to test ideas and assumptions; automating tests; performing exploratory testing; testing for
quality attributes like performance, reliability, and security; and learning from production usage

« Using whole-team retrospectives and small experiments to continually improve testing and quality and
find what works in their context

]

We’ll elaborate on the above practices throughout this book. We do not consider them to be “best practices’
because we know they are ever evolving.

Continuous testing models

Testing is an integral part of software development, along with coding, operations, understanding customer
needs, and more. We like the models that represent a continuous or holistic testing approach. One of our
favorites is the approach that Ellen Gottesdiener and Mary Gorman use in their book Discover to Deliver,
2012. Shown in Figure 1.1., the development process represents an infinite loop, confirming continuously —
which is how we really develop software. We learn about a feature that our customers want, we build and
deliver it, and then we learn how the customers actually use it. We use that feedback to decide what to build
(or remove) next.

Chapter 1: What Do We Mean by Agile Testing? 16

fe

discover delwer

Figure 1.1: Discover to Deliver loop © 2015 by EBG Consulting

5

Dan Ashby took a similar approach using the diagram below (Figure 1.2) in his blog post as he talks about
testing in DevOps*. This model shows that testing is an integral part of DevOps. We go into more detail on
this subject in Chapter 8.

Figure 1.2: Continuous testing in the DevOps loop

We like terms like continuous testing or holistic testing and recognize that each team needs to adapt them
for their own unique context.

*https://danashby.co.uk/2016/10/19/continuous- testing-in-devops/

https://danashby.co.uk/2016/10/19/continuous-testing-in-devops/
https://danashby.co.uk/2016/10/19/continuous-testing-in-devops/

Chapter 1: What Do We Mean by Agile Testing? 17

Ten principles for agile testing

In Agile Testing, we introduced the idea of 10 Principles for Agile Testers. We realize now that these principles
are not necessarily just for testers but for anyone in the team. We wrote these principles at a time when most
testers were still part of a testing team with a phased and gated project, and the testing was at the end — after
all the coding was “finished.”

These principles still apply today for anyone on an agile team wanting to deliver the highest-quality product
they can.

« Provide continuous feedback.

« Deliver value to the customer.

+ Enable face-to-face communication.
« Have courage.

« Keep it simple.

« Practice continuous improvement.

+ Respond to change.

« Self-organize.

« Focus on people.

+ Enjoy!

Testing manifesto

5%

We'll finish this chapter with this “testing manifesto®” created by Karen Greaves and Samantha Laing. Their
manifesto reflects the mindset shift needed for a successful agile testing approach. We test throughout the
development process, we focus on preventing bugs, we test much more than functionality, and the whole team
takes responsibility for quality. You will find these principles reflected throughout all our books. Anytime your
team is stuck on a quality or testing problem, reflect on these principles to find a way to move ahead. (Figure
1.3).

*http://www.growingagile.co.nz/2015/04/the-testing- manifesto/

http://www.growingagile.co.nz/2015/04/the-testing-manifesto/
http://www.growingagile.co.nz/2015/04/the-testing-manifesto/

Chapter 1: What Do We Mean by Agile Testing? 18
» ~TESTENG g

0 C/\/Lamjcsto% "

we valug:

= . i i
| Testing Preventong Testing i: Sl E:fn reza.;:'\ﬁ.\bilita
U‘\I'Duﬂl"\out i ‘nucf, Undeﬁatondmﬂ e g'jﬁ fof u,.ua\it\j
OVER OVER OVER OVER OVER

findun ;
testing at . N/ PaREcing brealong the testel
Dre end functierality System (esporeibiliby
wWww -BrowingAg\e - co-za eguanghgie .

Figure 1.3: The testing manifesto

Chapter 1: What Do We Mean by Agile Testing?

Agile testing definition
The simplest definition that we’ve come up with for what we mean by agile testing is the following:

Collaborative testing practices that occur continuously, from inception to delivery and beyond,
supporting frequent delivery of value for our customers. Testing activities focus on building quality
into the product, using fast feedback loops to validate our understanding. The practices strengthen
and support the idea of whole-team responsibility for quality.

It takes a while to digest, and you can look at our blog post® for more details.

“https://agiletester.ca/ever-evolving-never-set-stone- definition-agile-testing/

19

https://agiletester.ca/ever-evolving-never-set-stone-definition-agile-testing/
https://agiletester.ca/ever-evolving-never-set-stone-definition-agile-testing/

Hoofdstuk 2: Teambrede aanpak en agile
testmentaliteit

Veel softwareteams gebruiken nog steeds een lineaire benadering, een gefaseerd project met gates, voor
het leveren van software. Mensen in een bepaalde rol worden ingedeeld in specifieke geisoleerde teams en
het werk wordt overgedragen van het ene team naar het andere. Het test- of QA-team wordt gezien als
verantwoordelijk voor het waarborgen van de kwaliteit - meestal helemaal aan het einde van het proces en
vlak voor levering aan productie - wanneer het te laat is om nog veel te doen om de kwaliteit te verbeteren.

Bij agile softwareontwikkeling doorbreken we de silo’s en maken we van ontwikkeling een continu, iteratief
proces. Het hele team werkt samen om kwaliteit in te bouwen gedurende het hele proces. Met het ‘hele team’
bedoelen we meestal het opleverteam - de mensen die verantwoordelijk zijn voor het begrijpen van wat te
bouwen, het bouwen en het opleveren van het eindproduct aan de klant.

Figuur 2.1: Eén enkel team

In grotere organisaties, zelfs in organisaties die agile principes en praktijken hebben aangenomen, kan er
misschien meer dan één team aan een product werken, zoals een onafhankelijk databaseteam, gebruikers-
ervaringsteam of ander productteam. In deze gevallen wordt de definitie van het hele team uitgebreid tot
wie je nodig hebt om het product te leveren. De DevOps-beweging heeft het opnemen van operations in de
oplevering zichtbaarder gemaakt. Janet noemt de mensen buiten het opleverteam een uitgebreide familie.

Hoofdstuk 2: Teambrede aanpak en agile testmentaliteit 21

Figuur 2.2: Meerdere teams

Focus op kwaliteit

De teambrede aanpak houdt in dat alle teamleden verantwoordelijk zijn voor de kwaliteit van hun product.
Een deel van deze verantwoordelijkheid is ervoor zorgen dat testtaken worden voltooid samen met de rest van
de ontwikkeltaken. Wanneer het doel is om de hoogst mogelijke kwaliteit te leveren, in plaats van sneller te
leveren, bouwt het team een solide fundament van technieken. Om dat kwaliteitsniveau te bereiken, managen
teams hun werklast zodat ze tijd hebben om kerntechnieken te leren, zoals test-driven development (TDD) en
onderzoekende testen. Ze nemen ook de tijd om het bedrijfsdomein te leren kennen en relaties op te bouwen
met bedrijfsexperts om functionaliteiten met de meeste bedrijfswaarde te identificeren en deze vervolgens zo
eenvoudig mogelijk te implementeren. Na verloop van tijd, door te focussen op kwaliteit, zijn teams in staat
sneller te werken.

Hoofdstuk 2: Teambrede aanpak en agile testmentaliteit 22

Figuur 2.3: Jouw bedrijfswaarde opgeleverd zoals verwacht

Er zijn verschillende gebieden die een verandering vereisen in de manier waarop teamleden ontwikkeling
benaderen. Wanneer het hele team verantwoordelijk is voor zowel de productkwaliteit als de proceskwaliteit,
moet elk teamlid proactief zijn in het oplossen van problemen. Iedereen in het team kan bijvoorbeeld helpen
uitzoeken wat het meest waardevol is voor klanten. Ze werken in kleine stappen om net genoeg van die
waarde te leveren en te leren hoe de klant die functionaliteit gebruikt. Door deze snelle feedbacklus te creéren,
kan het team het testen concentreren op de functionaliteiten die het meest waardevol zijn voor de klant.

Elk team moet een volwaardige Definition of Done (DoD) bespreken en overeenkomen. Die zou ondermeer
moeten bevatten hoe het team van plan is om te gaan met fouten die in de code worden gevonden. DoD moet
ook testen bevatten en de vraag die moet worden gesteld is: “Welke soorten testen bedoel je?” In hoofdstuk
9 behandelen we de agile testkwadranten en beantwoorden we die vraag. De DoD moet door elk teamlid op
dezelfde manier worden begrepen.

Hoe teams omgaan met fouten

Een grote mentaliteitsverandering voor testers is het aannemen van een teamaanpak om fouten te corrigeren.
In More Agile Testing hebben we het over focussen op het voorkomen van defecten in plaats van ze te vinden
nadat het coderen is voltooid. Wanneer het hele team zich concentreert op het inbouwen van kwaliteit in
het product, door gebruik te maken van praktijken zoals acceptance test-driven development en na te denken
over beperkingen rond kwaliteitskenmerken, kan dit een grote bijdrage leveren aan het verminderen van het
aantal gevonden fouten in de code.

Veel teams passen een tolerantie van nul fouten toe (zero defects). Dit betekent dat nul bekende fouten
overblijven na een iteratie of na voltooiing van een story. Om dit te laten werken, moeten teams snel feedback
hebben van testactiviteiten, zodat gevonden fouten onmiddellijk kunnen worden verholpen. Eenmaal
gevonden, schrijven de programmeurs een of meer uitvoerbare test(s), corrigeren de code zodat de test(s)
slagen en voeren indien nodig exploratory testen uit. Het team hoeft er dan niet meer aan te denken, wetende
dat ze het probleem hebben verholpen.

Heel vaak helpt deze filosofische verandering in aanpak om een vijandige omgeving te veranderen in een
samenwerkende omgeving.

Hoofdstuk 2: Teambrede aanpak en agile testmentaliteit 23

Meerdere perspectieven

Teamleden hebben verschillende gezichtspunten, vaardigheden en perspectieven. We merken dat door alle
perspectieven te gebruiken, we een beter begrip hebben van de risico’s die verbonden zijn aan het opleveren
van een functionaliteit. Zo helpt ontwerpen voor testbaarheid om voorbeelden van gewenst en ongewenst
softwaregedrag om te zetten in uitvoerbare testen. Teamleden worden generalistische specialisten - dat wil
zeggen, ze kunnen experts zijn op een of twee gebieden, maar ze kunnen op verschillende manieren bijdragen
aan de gemeenschappelijke doelen van het team.

Een paar voorbeelden:

« Testers kunnen experts zijn in het testen van het product, maar kunnen bijdragen aan het begrijpen van
de functionaliteiten en stories door vragen te stellen om verborgen veronderstellingen te ontdekken.

« Ontwikkelaars kunnen onderzoekende testen uitvoeren op hun eigen code voordat ze hun code
inchecken.

« Product owners voeren acceptatietesten uit op elke story.

In hoofdstuk 11 zullen we wat meer spreken over de rol van een tester en hoe deze kan veranderen voor agile
teams.

Chapter 2: Whole-Team Approach and
Agile Testing Mindset

Many software teams still use a phased-and-gated, linear approach to delivering software. People in a given
role are siloed on specific teams, and they hand work off from one team to the next. The test or QA team is
seen as responsible for ensuring quality, usually at the very end of the process and right before delivery to
production, when it’s too late to do much to improve quality.

In agile development, we break down the siloes and turn development into a continual, iterative process. The
whole delivery team works together to build quality in throughout the process. By “whole team,” we usually
mean the delivery team — the people who are responsible for understanding what to build, building it, and
delivering the final product to the customer.

Figure 2.1: A single team

In larger organizations, even those that have adopted agile principles and practices, there may be more than
one team working on a product, such as an independent database team, user experience team, or other product
team. In these cases, the whole-team definition extends to mean whoever you need to deliver the product.
The DevOps movement has made the inclusion of operations in the delivery more visible. Janet refers to the
people outside the delivery team as an extended family.

Chapter 2: Whole-Team Approach and Agile Testing Mindset 25

Figure 2.2: Multiple teams

Focus on quality

The whole-team approach means that all team members are responsible for the quality of their product. Part
of this responsibility is ensuring that testing tasks are completed alongside the rest of the development tasks.
When the goal is to deliver the highest quality possible, rather than deliver faster, the team builds a solid
foundation of practices. To achieve that quality level, teams manage their workload so that they have time
to learn core practices such as test-driven development (TDD) and exploratory testing. They also take time
to learn the business domain and build relationships with business experts to identify features with the most
business value and then implement them as simply as possible. Over time, by focusing on quality, teams do
begin to be able to work faster.

Chapter 2: Whole-Team Approach and Agile Testing Mindset 26

Figure 2.3: Your business value delivered as expected

There are several areas that require a change in how team members approach development. When the whole
team is responsible for quality of the product as well as quality of the process, each team member needs to be
proactive in solving problems. For example, everyone on the team can help figure out what is most valuable
to customers. They work to deliver just enough of that value in small increments to learn how the customer
uses that capability. By creating these quick feedback loops, the team can focus their testing on the features
that are most valuable to the customer.

Each team needs to discuss and agree on a “valuable Definition of Done” (DoD). That should include how
the team plans to deal with defects found in the code. DoD must include testing, and the question that needs
to be asked is, “What types of testing do you mean?” In Chapter 9, we cover the agile testing quadrants and
answer that question. DoD needs to be understood in the same way by every team member.

How teams deal with defects

One big mindset shift for testers is adopting a team approach to fixing defects. In More Agile Testing, we talk
about focusing on preventing defects rather than finding them after coding is complete. When the whole team
concentrates on building quality into the product by using practices like acceptance test-driven development
and thinking about constraints around quality attributes, it can go a long way to reducing the number of
defects found in the code.

Many teams practice zero defect tolerance. This means zero known defects escape an iteration or story
completion. To make this work, teams must have fast feedback from testing activities so that any defects
found can be fixed immediately. Once found, the programmers write one or more executable test(s), correct
the code so the test(s) passes, and perform exploratory testing if needed. The team can then forget about it,
knowing that they have corrected the issue.

Quite often, this philosophical change in approach helps to change an adversarial environment to a
cooperative environment.

Chapter 2: Whole-Team Approach and Agile Testing Mindset 27

Multiple perspectives

Team members have different viewpoints, skill sets, and perspectives. We find that by using all perspectives,
we have a better understanding of risks involved when delivering a feature. For example, designing for
testability helps turn examples of desired and undesired software behavior into executable tests. Team
members become generalized specialists — that is, they may be experts in one or two areas but are able
to contribute to the team’s common goals in a variety of ways.

Some examples:

« Testers may be experts at testing the product but can contribute to understanding the features and
stories by asking questions to uncover hidden assumptions.

» Programmers can perform exploratory testing on their own code before checking in their code.
« Product owners execute acceptance tests on every story.

In Chapter 11, we’ll talk a bit more about a tester’s role and how it may change for agile teams.

Hoofdstuk 3: Testplanning in agile
contexten

Eén van onze top zeven succesfactoren van Agile Testing is “Vergeet Niet Het Grote Geheel”. Teams raken
verstrikt in het bouwen, testen, en opleveren van kleine delen - wat we aanmoedigen - en vergeten hoe dit
past in het systeem of hoe dit kan bijdragen aan het oplossen van het bedrijfsprobleem.

Om testactiviteiten effectiever in te plannen, moet het team rekening houden met de context. Denk aan
de volgende 3 aspecten om jouw context te begrijpen: het team, het product, en de detailniveaus van jouw
systeem.

Team

Niet alle teams zijn hetzelfde. Werk je in een klein team samen op kantoor, dan is de situatie ideaal voor een
vlotte communicatie. Je kan goed elkaars waarden leren kennen en ze met elkaar delen. Het is een leuke plek
om een fantastisch product op te leveren, en het maakt plannen een stuk eenvoudiger. Teams begrijpen goed
de volgende functionaliteit en kunnen ze gemakkelijk uitdiepen tot op story- en taakniveau planning.

Maar veel mensen werken in grote wereldwijde organisaties. Dit geeft andere uitdagingen. Grote organisaties
hebben vele projecten en teams. Wanneer zij starten met agile werken, vervangen ze vaak de silo’s gebaseerd
op rollen (zoals ontwikkelaars en testers) door scrum of feature team silo’s.

Wanneer vele grote teams op dezelfde codebasis werken, kan integratie een enorme uitdaging worden. Teams
hebben nood aan specialisten zoals prestatie-, beveiligings-, en betrouwbaarheidstesters. Maar vaak zijn er
onvoldoende van deze specialisten om alle crossfunctionele teams te ondersteunen. Het is zelfs moeilijk
om alle problemen en uitdagingen zichtbaar te maken. Plannen op release-niveau is erg uitdagend in zo'n
omgeving, maar is essentieel om nieuwe mogelijkheden naar klanten te brengen.

Ongeacht de context, moet het ontwikkelteam zijn verantwoordelijkheid nemen voor het plannen en
afwerken van alle testactiviteiten, zelfs als daarvoor specialisten nodig zijn. Als ze athankelijkheden hebben,
dan moeten ze samenwerken met andere teams om die athankelijkheden te beheren of te voorkomen, en dit
bij voorkeur voordat het coderen start. Dat gezegd zijnde, er zullen altijd bijsturingen nodig zijn om geschikt
te zijn voor elke unieke situatie.

Product

Het kwaliteitsniveau dat jouw stakeholders willen, hangt af van je product evenals het type en de hoeveelheid
testen die mogelijk vereist zijn. Een contentmanagementsysteem dat alleen door interne gebruikers wordt
gebruikt, heeft bijvoorbeeld andere prioriteiten dan software voor medische hulpmiddelen. Beide situeren
zich in een andere omgeving en dat brengt verschillende risico’s met zich mee.

Hoofdstuk 3: Testplanning in agile contexten 29

Hou zeker ook rekening met de grootte van je product, hoeveel mensen het gebruiken en of het is geintegreerd
met externe toepassingen. Denk na over hoe het product wordt opgeleverd en het risico dat gepaard gaat met
het opleveringsmechanisme. Als de organisatie bijvoorbeeld zelf zijn webapplicatie host, heeft ze veel meer
controle over wanneer en hoe vaak het product een update krijgt. Of als het product op veel apparaten
zoals mobiele telefoons moet werken, hoe kunnen updates dan plaatsvinden zonder het reguliere gebruik te
onderbreken?

Eén van de belangrijkste doelen van testen is het identificeren en verminderen van risico’s - voor de
gebruiker en de business. Uiteraard speelt het een grote rol in hoe je je testen plant. Dit is een van de
redenen waarom ontwikkelteams het bedrijfsdomein leren kennen en nauw samenwerken met bedrijfsexperts.
Domeinexpertise helpt bij het plannen van wat exact te testen. Heeft je team een heel goed idee van hoe het
product wordt gebruikt? Hebben alle teamleden domeinkennis? Sowieso helpt samenwerken met product-
en bedrijfsexperts het ontwikkelteam om optimale manieren te vinden om functionaliteiten te bouwen die je
klanten waarderen.

Er zijn veel dingen om te overwegen met betrekking tot je productdomein. Het is niet alleen de software die
je test; het is ook het product waar je eindgebruikers van afhankelijk zijn.

Planning op verschillende detailniveaus

Testen op meerdere niveaus (figuur 3.1) vereist extra planning. Releasecycli beginnen meestal met het bepalen
van wat er in de eerste ‘learning release’ kan worden opgeleverd. Misschien wordt slechts een deel van een
functionaliteit opgeleverd. Functionaliteiten worden opgesplitst in stories en geprioriteerd, zodat het team
weet welke als eerste moet worden opgeleverd. Het is belangrijk dat het team het grote geheel begrijpt voordat
ze stories in een iteratie opnemen. Wanneer ontwikkelaars aan een story werken, zijn ze meer gericht op het
voltooien van individuele taken. Testers trappen soms in de val van alleen te denken aan de story die ze testen,
dus is het belangrijk hen regelmatig te herinneren aan het grote geheel.

Hoofdstuk 3: Testplanning in agile contexten 30

)
Release |_ E
g
L 53 £
_ o
Features o %
(Story dependencies) D £
£ s
o O

=
Stories 2 if
(Story tests) Wl e
=
Task level *i
(Unit tests) 2

Figuur 3.1: Detailniveaus voor planning

Release/functionaliteitsniveau

Teams moeten begrijpen hoe elke geleverde story het grote geheel kan beinvloeden, vooral in grotere of
wereldwijde organisaties. Elke release kan bestaan uit vele functionaliteiten, die op hun beurt kunnen bestaan
uit vele stories en taken die van invloed zijn op het systeem als geheel.

In grote organisaties, waar meerdere teams aan hetzelfde product werken, zien we vaak dat teams de neiging
hebben om ‘silo’s’ te worden. Ze vergeten met andere teams te praten om mogelijke afhankelijkheden op te
lossen.

Figuur 3.2 toont het belang van een testaanpak waarbij alle teams werken aan één productrelease. Om een
globaal overzicht te geven van de testdekking, overweeg om mensen van verschillende teams samen te
brengen om een test mindmap of een functionaliteit test matrix (details in More Agile Testing) te maken
die betrekking heeft op het product.

Hoofdstuk 3: Testplanning in agile contexten 31

)
Team A
Planning
———

Release
Test Planning

)
Team B

Planning
| —

Test Mind Map
—>{
)
Team C

Planning] _/_

——

Release Planning

R
Team D Test Matrix

Planning

) ~—
Figuur 3.2: Planning voor meerdere teams

Vergeet niet dat een standaardaanpak niet voor iedereen geschikt is. Hou dus zeker rekening met de
grootte van de teams en het aantal teams, waar de teams zich bevinden, hoe het werk tussen teams wordt
gecoordineerd en of alle vaardigheden die nodig zijn voor het testen beschikbaar zijn voor elk team.

Idealiter worden activiteiten geco6rdineerd met andere teams naarmate de ontwikkeling van functionaliteiten
vordert. Het is echter belangrijk om op te merken dat een meer voltooid product kan nodig zijn voor zaken als
het toevoegen van definitieve screenshots aan gebruikers- of trainingsdocumentatie. Of, omdat het meestal
geen snel proces is om een patch voor een mobiele applicatie te implementeren, kunnen aanvullende tests
nodig zijn waarbij het hele team de nieuwste versie nog een keer verkent.

Hint: * Maak niet de fout om testers, en eventueel operationeel personeel, de voorbereiding van
de uitrol naar productie te laten afronden terwijl ontwikkelaars nieuwe stories beginnen. Net als
ontwikkelingen, moet de voorbereiding van de oplevering een inspanning van het hele team zijn*

Storyniveau

Op dit niveau maakt het niet uit of teams hun iteraties timeboxen of werken in een flow gebaseerde methode
zoals Kanban. Begin met acceptatietests op hoog niveau (zie Hoofdstuk 4: Ontwikkeling begeleiden met
voorbeelden voor details). Verzamel voorbeelden om ervoor te zorgen dat iedereen de story goed begrijpt
en zet die voorbeelden om in tests. Als de testen geschreven worden voor het coderen, kunnen ze helpen bij
de ontwikkeling en het voorkomen van defecten.

Hint: Overweeg welke verkennende testcharters nodig kunnen zijn (zie Hoofdstuk 6: Onderzoe-
kend Testen). Denk na over de beperkingen van het product en wat dat betekent voor het testen
van kwaliteitskenmerken (Zie Hoofdstuk 7: Testkwaliteitskenmerken).

Terwijl teams testen plannen en de implementatie voor elke story bespreken, komen details over het
testgebeuren naar boven. Maak nieuwe voorbeelden en testen aan om weer te geven wat er geleerd is over
elke story.

Hoofdstuk 3: Testplanning in agile contexten 32

Taakniveau

Ontwikkelaars gebruiken Test-Driven Development (TDD) om testen op een laag niveau (unit) te schrijven
voorafgaand aan elk klein stukje code. Sommige ontwikkelaars noemen dit Design-Driven Development
omdat het hen helpt om hun code te ontwerpen in functie van testbaarheid. Deze tests zijn relatief eenvoudig
te schrijven, lopen snel en geven vlug feedback aan het team. Ze vormen een groot deel van de basis van
het model van de testautomatiseringspiramide dat we behandelen in hoofdstuk 10: Het Visualiseren van een
Testautomatiseringsstrategie

Planning voor regressietesten

Regressietesten hebben als doel ervoor zorgen dat het systeem doet wat het gisteren deed. Hedendaagse
praktijken om regelmatig kleine veranderingen in productie op te leveren, laten geen tijd voor volledige
handmatige regressiecontroles. Daarom werkt men aan testautomatisering terwijl het product wordt ontwik-
keld. Testautomatisering zou deel moeten uitmaken van elke story, vooral op de servicelaag (zie Hoofdstuk
10: Visualiseren van een testautomatiseringsstrategie). Let op als een story een functionaliteit wijzigt, zorg er
dan voor dat er taken opgenomen worden om de bestaande testen te wijzigen.

Geautomatiseerde regressietesten zorgen ervoor dat feedback snel komt, wat ons in staat stelt om vertrouwen
te hebben in ons product. Veel (zo niet alle) testen worden uitgevoerd als onderdeel van Continuous
Integration (CI). Sommige teams plannen dat de testen die langer duren minder vaak worden uitgevoerd.
Bijvoorbeeld door ze meerdere keren per dag uit te voeren in plaats van bij elke build. Door releasefunc-
tionaliteitsschakelaars te gebruiken om wijzigingen voor productiegebruikers te “verbergen”, kunnen teams
sommige testactiviteiten asynchroon uitvoeren terwijl ze voortdurend in productie geimplementeerd worden.
De functionaliteit wordt “aangeschakeld” in productie wanneer alle testen voltooid zijn (zie hoofdstuk 8:
Testen in DevOps).

Meer informatie hierover vind je in Hoofdstuk 23: Testen en DevOps in Meer Agile Testen.

Chapter 3: Test Planning in Agile Contexts

One of our top seven success factors from Agile Testing is “Don’t Forget the Big Picture” Teams often get
caught up in building, testing, and delivering the small increments - which we encourage - and forget about
how that small slice fits into the system or how it works toward solving the business problem.

To plan testing activities effectively, a team needs to consider its context. To understand your context, think
about three aspects of it: the team, the product, and the levels of detail of your system.

The team

Not all teams are created equal. If you’re on a small, co-located team, you have an ideal situation for easy
communication. You have a good chance of learning each other’s values and sharing them. It’s a sweet spot
for delivering a great product, and planning is much easier. Teams can easily understand the next feature and
dig down into story and task level planning.

However, many people work in large, globally distributed organizations. That brings on different challenges.
Larger organizations have multiple projects and many teams. When they adopt agile, they often replace the
silos based on role, such as developers and QA, with Scrum or feature team silos.

When many large teams work in the same code base, integration can become a huge challenge. Teams
may need specialists such as performance, security, and reliability testers, but there may not be enough
of them to go around to all the cross-functional teams. It’s even hard to make all these issues and challenges
visible. Release-level planning is particularly challenging in this environment but is critical to delivering new
capabilities to customers.

No matter what the context, the delivery team must take responsibility for planning and completing all testing
activities, even if it means bringing in specialists. If they have dependencies, they need to work with other
teams to manage or eliminate those dependencies, preferably before coding starts. That said, adjustments
need to be made to suit each unique context.

The product

The level of quality that your stakeholders want depends on your product as well as the type and amount of
testing that might be required. For example, a content management system used only by internal users has
different priorities than medical device software. Each has a different environment in which they dwell and
involves different risks.

Consider the size of your product, how many people use it, or whether it is integrated with external
applications. Think about how the product is delivered and the risk associated with the delivery mechanism.
For example, if the organization is hosting its own web application, it has much more control about when
and how often the product is updated. Or if the product needs to work on many devices such as phones, how
do updates happen without interrupting regular usage?

Chapter 3: Test Planning in Agile Contexts 34

One of the main purposes of testing is to identify and mitigate risks — to the user and to the business. Obviously,
this plays a big part in how you plan your testing. This is one reason why delivery teams need to learn the
business domain and work closely with business experts. Domain expertise helps when it comes to planning
what to test. Does your team have a really good idea of how the product is used? Do all team members have
domain knowledge? Collaborating with product and business experts helps the delivery team find optimal
ways to build capabilities that your customers value.

There are many things to consider around your product domain. It is not only the software you are testing;
it is the product that your end users depend on.

Planning across levels of detail

Testing across multiple levels (Figure 3.1) requires extra planning. Release cycles usually start by determining
what might be delivered in the first “learning release” Perhaps only part of a feature will be delivered. Features
are broken into stories and prioritized so the team knows which to deliver first. It’s important that the team
understands the big picture before they bring stories into an iteration. When developers work on a story,
they’re more focused on making sure individual tasks are completed. Testers sometimes fall into the trap of
thinking only of the story they are testing, so reminders of the big picture are important.

)
Release |_ _%
g
L 53 £
_ o
Features g %
(Story dependencies) D £
e s
o O

=
Stories 2 if
(Story tests) o e
=
Task level *i
(Unit tests) 2

Figure 3.1: Levels of detail for planning

Release/feature level

Teams need to understand how each delivered story may affect the big picture, especially in larger or global
organizations. Every release could be made up of many features, which in turn may be made up of many
stories and tasks that have an impact on the system as a whole.

Chapter 3: Test Planning in Agile Contexts 35

In large organizations with multiple teams all working on the same product, one of the problems we often
see is that teams tend to become “siloed.” They forget to talk to other teams to solve possible dependencies.

Figure 3.2 shows the importance of a test approach that includes all teams working toward a single product
release. To give a big picture of test coverage, consider bringing people from different teams together to create
a testing mind map or a feature test matrix (details in More Agile Testing) that encompasses the product.

)

Team A

Planning
| —

Release
Test Planning

)
Team B

Planning
——

Test Mind Map
—>{
R
Team C

Planning] J

———

Release Planning

) ——
Team D Test Matrix

Planning

) -
Figure 3.2: Planning for multiple teams

Remember, one size does not fit all, so make allowances for the size and number of your teams, where they
are located, how work will be coordinated among teams, and whether all the skills needed for testing are
available to each team.

Ideally, activities are coordinated with other teams as feature development progresses. However, it is
important to note that a more finalized product may be needed for things like adding final screenshots to
user or training documentation. Or, because it’s not usually a quick process to deploy a patch for a mobile
application, additional testing may be needed where the whole team explores the newest version one more
time.

Hint: Do not make the mistake of having testers and perhaps operations staff wrapping up the pre-
deploy endgame while developers start new stories. Just like development, preparing for delivery
should be a whole-team effort.

Story level

At this level, it doesn’t matter whether teams are time-boxing their iterations or working in a flow-based
method such as Kanban. Start with high-level acceptance tests (see Chapter 4: Guiding Development with
Examples for details). Get examples to increase shared understanding of the story and turn those examples
into tests. If the tests are written before coding happens, they help guide the development and prevent defects.

Hint: Consider what exploratory test charters might be needed (see Chapter 6). Think about the
product’s constraints and what that means for testing quality attributes (Chapter 7).

As teams plan testing and discuss implementation for each story, details about testing emerge. Create new
examples and tests to reflect what has been learned about the story.

Chapter 3: Test Planning in Agile Contexts 36

Task level

Programmers use Test-Driven Development (TDD) to write low-level (unit) tests prior to each small piece
of code. Some programmers call it Design-Driven Development since it helps them to design their code for
testability. These tests are relatively easy to write, and they run quickly and give fast feedback to the team.
They form much of the base of the test automation pyramid model we discuss in Chapter 10: Visualizing a
Test Automation Strategy.

Planning for regression testing

Regression testing is about making sure the system does what it did yesterday. Contemporary practices for
delivering small changes to production frequently leave no time for full manual regression checking, so the
test automation is created as the product is developed. Test automation should be part of each story, especially
at the service layer (see Chapter 10). If a story changes functionality, be sure to include tasks to change the
existing tests.

Automated regression tests allow us to have confidence in our product with fast feedback. Many (if not all)
of the tests run as part of continuous integration (CI). Some teams schedule slower tests to run less often.
For example, running them several times a day instead of every build. Using release feature toggles to “hide”
changes from production users allows teams to do some testing activities asynchronously as they continually
deploy to production. The feature is “turned on” in production when all testing is completed (see Chapter 8:
Testing in DevOps).

You’ll find more information about this in Chapter 23: Testing and DevOps in More Agile Testing.

DEEL 2: Testaanpakken

In dit deel duiken we in de basistechnieken van agile testen. Het gebruik van concrete voorbeelden om de
ontwikkeling te sturen, is een van de effectiefste manieren om vertrouwen op te bouwen bij elke nieuwe
wijziging. We delen manieren om teamleden in verschillende rollen te helpen leren samen te werken
om kwaliteit in het product in te bouwen. Onderzoekend testen is een andere vertrouwen-opbouwende
kernpraktijk waar het hele team zich zou moeten mee bezighouden.

Agile teams trappen vaak in de valkuil om enkel functionaliteit te testen; hoe elke functionaliteit of
mogelijkheid zich moet gedragen. Er zijn nog veel andere belangrijke kwaliteitskenmerken die we moeten
testen, die we ook behandelen in dit deel.

DevOps en continuous delivery zijn vandaag de dag hot topics. We kijken hoe testen and testers daarin passen
en helpen hun team succesvol te zijn bij deze aanpakken.

« Hoofdstuk 4: De ontwikkeling in goede banen leiden met voorbeelden
+ Hoofdstuk 5: Samenwerking mogelijk maken

« Hoofdstuk 6: Onderzoekende testen

« Hoofdstuk 7: Testkwaliteitskenmerken

« Hoofdstuk 8: Testen binnen devops teams

SECTION 2: Testing Approaches

In this section, we dive into core practices for agile testing. Using concrete examples to guide development is
one of the most effective ways to build confidence in each new change. We share ways to help team members
in different roles learn to collaborate to build quality into the product. Exploratory testing is another core
confidence-building practice in which the whole team should engage.

Agile teams often fall into the trap of only testing for functionality 8™ how each feature or capability should
behave. There are many other important quality attributes that we need to test, which we also cover in this
section.

DevOps and continuous delivery are hot topics today. We look at how testing and testers fit in and help their
team succeed with those approaches.

« Chapter 4: Guiding Development with Examples
« Chapter 5: Enabling Collaboration

« Chapter 6: Exploratory Testing

+ Chapter 7: Testing Quality Attributes

« Chapter 8: Testing in DevOps

Hoofdstuk 4: De ontwikkeling in goede
banen leiden met voorbeelden

Het idee om voorbeelden te gebruiken om de ontwikkeling van functionaliteiten en stories in goede banen te
leiden, wordt al jaren door veel teams toegepast. We beschouwen het als een beproefde, waardevolle aanpak.
Vooraanstaande beoefenaars blijven nieuwe manieren vinden om teams te helpen slagen met deze technieken,
bijvoorbeeld met Matt Wynne’s Example Mapping (zie meer in Hoofdstuk 5).

Concrete voorbeelden van gewenst en ongewenst systeemgedrag helpen teams om gedeeld begrip op te
bouwen van elke functionaliteit of story. Hierdoor kunnen ze de juiste dingen ontwikkelen, met minder
afgewezen stories en een kortere cyclustijd van start tot productie. De bijdrage van testers bestaat erin naar
deze concrete voorbeelden te vragen en ze te gebruiken om uitvoerbare testen te maken die de ontwikkeling
in goede banen leiden. Zij kunnen de ervaringsdeskundige zijn bij het leiden van deze gesprekken.

Voorbeeldgebaseerde methoden

Er zijn een paar varianten voor het bouwen van functionaliteiten en stories op basis van voorbeelden.
Gedragsgestuurde ontwikkeling of Behavior-driven development (BDD) is degene waarvan Janet hoort dat
de meeste teams beweren dat ze deze gebruiken. BDD, voor het eerst geintroduceerd door Daniel Terhorst-
North, legt voorbeeldscenario’s vast in een natuurlijke, domeinspecifieke taal. De “Given/When/Then”
syntax beschrijft precondities, een triggeractie en de resulterende postconditie. Tijdens het schrijven van
productiecode is het waarschijnlijk dat ontwikkelaars enkele of alle scenario’s automatiseren om te weten of
ze hebben opgeleverd wat de klant wil.

Het schrijven van deze scenario’s klinkt misschien eenvoudig, maar het vergt oefening om testen zo te
vereenvoudigen dat echt maar één ding wordt getest. Zie Figuur 4.1 voor een voorbeeld.

Acceptatietest gestuurde testen of Acceptance test-driven development (ATDD) is vergelijkbaar. Het is
een generiekere manier om ontwikkeling met voorbeelden in goede banen te leiden zonder een strikte
taal of regels. De meeste mensen gebruiken ATDD voor functionele testen, hoewel vereisten van andere
kwaliteitskenmerken, zoals beveiligbaarheid of toegankelijkheid er ook kunnen worden in opgenomen. Eén
ATDD aanpak die we hebben gebruikt, is om bij het plannen van een story tenminste één voorbeeld
van het gewenst gedrag of succespad (happy path) vast te leggen en tenminste één voorbeeld voor ieder
type ongewenst gedrag. Testers en andere teamleden achterhalen meer gedetailleerde voorbeelden terwijl
het programmeerwerk aan de story doorgaat. Ten minste enkele van de voorbeelden worden omgezet in
uitvoerbare testen die het team helpen bepalen wanneer ze klaar zijn.

Figuur 4.1 toont de voortgang van activiteiten, startend met het opdelen van een feature in user stories. De
blauwe activiteiten worden gedaan als onderdeel van story readiness workshops, backlog refinement of “three
amigos” discussies.

Hoofdstuk 4: De ontwikkeling in goede banen leiden met voorbeelden 40

< 4 [P ° .
| Feature ‘, x = N y ’
| (witheg) / (U \ o~ Explore \
N T= N \ story | ! \ Examples /
T— e x b / —a R 4
[Accept — ‘_«'/ High , =<3
\ Story) l | Level i B

Py
" Fix u
E:,E'::i Y™

(‘ ~/ Expand ‘
, Testig / \ Tests /
‘ S - . 4
i i ’r ~s
i . X

Defects

/ Other) &’ ~"Code” ™, . | p;
\ Testing / (&) [Auto ’
M A | Execute |/ « Tests | ’l

o Tests

Figuur 4.1: Acceptatietest gestuurde testen (ATDD)

Teams die specificatie door voorbeeld of Specification by Example (SBE) toepassen, beginnen met het
identificeren van doelen rond de story, bijvoorbeeld met een aanpak als Impact Mapping (zie meer in
hoofdstuk 5). Tijdens een specificatie workshop achterhalen teams vervolgens belangrijke voorbeelden, die
uitgroeien tot specificaties. Tijdens de verdere ontwikkeling worden voorbeelden verfijnd en omgezet in
uitvoerbare specificaties om zo het product regelmatig te valideren. Deze uitvoerbare voorbeelden worden,
net als bij BDD en ATDD, levende documentatie van de applicatie. Toen Gojko Adzic als eerste de term
Specification by Example gebruikte, heeft hij bewust niet het woord ‘testen’ gebruikt om deze activiteiten te
beschrijven.

Waarom voorbeelden helpen

Door elke nieuwe functionaliteit vanuit verschillende perspectieven te bekijken, is de kans groter dat een team
de waarde vaststelt die klanten uit elke nieuwe functionaliteit halen. Deze diversiteit helpt alle teamleden
om onbewuste vooroordelen te overwinnen en “out of the box” te denken. Wanneer elke stakeholder wordt
gevraagd naar concrete voorbeelden van systeemgedrag, bekijkt het team al die voorbeelden en is het
gemakkelijk om afwijkingen te ontdekken. Het is ook gemakkelijker om de minimale specifieke waarde van
wat de klant nodig heeft, te achterhalen. Dat maakt het voor het team mogelijk om “net genoeg” van het
juiste te leveren.

We zullen je laten zien wat we bedoelen aan de hand van een voorbeeld.

Story: Als Canadese klant wil ik de kassierster cash betalen en verwacht ik het correcte wisselgeld terug,
zodat ik het juiste bedrag betaal voor mijn boodschappen. De kassa toont het juiste wisselgeld om terug te
geven.

Scenario: Het succespad waar de klant meer geeft dan het bedrag voor de boodschappen en het juiste
wisselgeld terugkijgt.

Given Ik ben een Canadese klant en heb boodschappen gekocht ter waarde van $4.97,

Hoofdstuk 4: De ontwikkeling in goede banen leiden met voorbeelden 41

When Tk geef de kassierster $5.00,
Then Ik verwacht $0.05 wisselgeld terug te krijgen.

Opmerking: Door dit voorbeeld te gebruiken, ontdekte het team een bedrijfsregel waar nog niet aan was
gedacht. In Canada zijn er geen pennies (0.01), bedragen worden afgerond naar boven of beneden naar de
dichtsbijzijnde nickel (0.05).

Eén van Janet’s favoriete manieren om voorbeelden weer te geven is in tabelformaat. Daarmee wordt snel
zichtbaar wat ontbreekt en wat mensen denken als ze discussiéren. Elke regel kan een test worden. Figuur 4.2
toont dit formaat voor het scenario hierboven.

497 5.00 0.05 Happy path
4.97 4.00 0.00 Not enough cash
497 10.00 5.05 Happy path

Figuur 4.2: Voorbeeld van een tabelformaat van het gebruik van concrete voorbeelden

Er zijn zoveel goede manieren om gesprekken te structureren waarbij teams voorbeelden achterhalen. Jeff
Patton’s Story Mapping” helpt het hele team de klantreis (customer journey) van hun product te doorlopen. We
gebruiken graag Example Mapping om specifieke bedrijfsregels met illustrerende voorbeelden vast te leggen.
Gestructureerde gesprekken met behulp van Ellen Gottesdiener en Mary Gorman’s 7 product dimensies®
zorgen ervoor dat teams voorbeelden krijgen van veel verschillende aspecten van waarde. Elke techniek
die face-to-face samenwerking in kleine, cross-functionele groepen promoot, is het proberen waard. Zie
hoofdstuk 7 in More Agile Testing voor meer details en verhalen.

Dit is je basis

Leden van oplever- en businessteams samenbrengen om voorbeelden te verzamelen is de sleutel tot het
frequent opleveren van waarde aan klanten in een duurzaam tempo. Het stelt teams in staat om het z6
belangrijke gedeeld begrip op te bouwen nog voér ze beginnen te programmeren. Het helpt iedereen om met
beide benen op de grond te staan. De concrete voorbeelden worden uitvoerbare tests, die ervoor zorgen dat
we het juiste bouwen en dat dit in de toekomst correct blijft werken totdat klanten het willen wijzigen.

Hint: *Wanneer je merkt dat je in een vage discussie bent beland over de vereisten van een
functionaliteit, of in een twist over hoe een functionaliteit zich moet gedragen, STOP. Vraag om
een voorbeeld. Of beter nog, zet de groep aan het tekenen van voorbeelden op een whiteboard
(echt of virtueel). Je zal veel tijd besparen en dichter komen bij het bouwen van het juiste ding.

"https://www.jpattonassociates.com/user- story- mapping/
®https://discovertodeliver.com/image/data/Resources/visuals/DtoD-7-Product- Dimensions.pdf

https://www.jpattonassociates.com/user-story-mapping/
https://discovertodeliver.com/image/data/Resources/visuals/DtoD-7-Product-Dimensions.pdf
https://www.jpattonassociates.com/user-story-mapping/
https://discovertodeliver.com/image/data/Resources/visuals/DtoD-7-Product-Dimensions.pdf

Chapter 4: Guiding Development with
Examples

The idea of using examples to guide development of features and stories has been used by many teams for
years. We see it as a tried-and-true, valuable approach. Leading practitioners continue to find new ways to
help teams succeed with these techniques: for example, Matt Wynne’s example mapping (see more in Chapter

5).

Concrete examples of desired and undesired system behavior help teams build a shared understanding of
each feature and story. This enables them to build the right thing with fewer story rejections and shorter
cycle time from start to production deploy. Testers contribute by asking for these concrete examples and
using them to create executable tests that guide development. They can be the voice of experience at leading
these conversations.

Example-based methods

There are a few variations for building features and stories based on examples. Behavior-driven development
(BDD) is the one that Janet hears most teams claim they use. BDD, first introduced by Daniel Terhorst-
North, captures example scenarios in a natural, domain-specific language. The “Given/When/ Then” syntax
describes preconditions, some trigger action, and resulting post-condition. As developers write the production
code, they are likely to automate some or all the scenarios to help know when they’ve delivered what the
customer wants.

Writing these scenarios may sound easy, but it takes practice to simplify tests so that there really is only one
thing being tested. See Figure 4.1 for an example.

Acceptance test-driven development (ATDD) is similar. It is a more generic form of guiding development with
examples without strict language or rules. Most people use ATDD for functional tests, although requirements
for other quality attributes, such as security or accessibility, can be included. One ATDD approach we’ve used
is to capture at least one high-level example of desired or “happy path” behavior and at least one example for
each type of misbehavior as the team plans the story. Testers and other team members elicit more detailed
examples as coding proceeds on the story. At least some of the examples are turned into executable tests that
help the team decide when they’re done.

Figure 4.1 shows a progression starting with slicing the feature into stories. The blue bubbles are done as part
of story readiness workshops, backlog refinement, or “three amigos” discussions.

Chapter 4: Guiding Development with Examples 43

< : ~ P ° g
| Feature ‘, x N y ’
| (witheg))/ AT o~ _.‘/ Explore \
b SN | G “ ! . Examples /
— b ™ h 4 . b 4
[Accept | T ‘_«'/ H|gh \“;‘ If
\ Story) l | Level i B

t iy
" Fix)
E::;':z:: AN

(‘ ~/ Expand ‘
‘ S - . 4
. /— 1 ’r ~s
e 1 ‘ — " ~ ’
i e ™~

“"Code” ™,
Other .“/ \ y;

| Testing / (& \ [Auto) ’
N p |\ Execute |/ « Tests | ’/
\Jests /N~

Defects

Figure 4.1: Acceptance test-driven development (ATDD)

Teams practicing Specification by Example (SBE) start by identifying goals around the story using an
approach like impact mapping (See more in Chapter 5). The team then elicits key examples, which become the
specifications, during a specification workshop. As development proceeds, examples are refined and turned
into executable specifications to validate the product frequently. These executable examples, as with BDD and
ATDD, become living documentation of the application. When Gojko Adzic coined the term Specification by
Example, he deliberately did not use the word “test” to describe any of the activities.

Why examples help

Looking at each new capability from a variety of perspectives helps a team be more likely to pinpoint the
value customers get from each new capability. That diversity helps each team member overcome unconscious
biases and “think outside the box.” When each stakeholder is asked for concrete examples of system behavior,
teams look at those examples, and it’s easy to see discrepancies. It is also easier to dig down to the minimum
specific value of what customers need and enables teams to deliver “just enough” of the right thing.

We'll show you what we mean by using an example scenario.

Story: As a Canadian shopper, I want to give the cashier cash and I expect the correct change so that I only
pay the right amount for my groceries. The cash register reports the correct amount of change to give.

Scenario: The happy path where the shopper gives more than the amount of the groceries and receives the
correct change.

Given I am a Canadian shopper and have purchased groceries worth $4.97,
When I give the cashier $5.00,
Then I expect to get $0.05 change.

Note: By using this example, a business rule that the team may not have considered is that in Canada, there
are no pennies in use, so the number is rounded up or down, and change is given to the nearest nickel (0.05).

Chapter 4: Guiding Development with Examples 44

One of Janet’s favorite ways to show examples is in a tabular format. It quickly shows what you are missing
and what people are thinking as they have the discussion. Each line can become a test. Figure 4.2 shows this
format for the scenario we used above.

497 5.00 0.05 Happy path
497 4.00 0.00 Not enough cash
497 10.00 5.05 Happy path

Figure 4.2: Example of a tabular format of using concrete examples

There are so many good ways to structure conversations where teams can elicit examples. Jeff Patton’s story
mapping” helps the entire team walk their user’s journey through their product. We like to capture specific
business rules as well as examples that illustrate them with example mapping. Structured conversations using
Ellen Gottesdiener and Mary Gorman’s 7 product dimensions® ensure teams get examples of many different
aspects of value. Any technique that promotes face-to-face collaboration in small cross-functional groups is
worth trying. See Chapter 7 in More Agile Testing for more details and stories.

This is your foundation

Getting delivery and business team members together to gather examples is key to delivering value to
customers at a frequent and sustainable pace. It enables teams to build the all-important shared understanding
before they start coding. It helps everyone stay grounded in reality. The concrete examples become executable
tests that ensure we build the right thing and that thing keeps working correctly into the future until customers
want to change it.

Hint: When you find yourself in a hand-wavy discussion about requirements for a feature or an
argument over how a certain capability should behave, STOP. Ask for an example. Even better, get
the group to start drawing examples on the whiteboard (real or virtual). You’ll save lots of time
and get closer to building the right thing.

°https://www.jpattonassociates.com/user- story- mapping/
“https://discovertodeliver.com/image/data/Resources/visuals/DtoD-7-Product-Dimensions.pdf

https://www.jpattonassociates.com/user-story-mapping/
https://www.jpattonassociates.com/user-story-mapping/
https://discovertodeliver.com/image/data/Resources/visuals/DtoD-7-Product-Dimensions.pdf
https://www.jpattonassociates.com/user-story-mapping/
https://discovertodeliver.com/image/data/Resources/visuals/DtoD-7-Product-Dimensions.pdf

Chapter 5: Samenwerking mogelijk
maken

Samenwerking binnen een team en tussen teams is één van de pijlers die agile teams succesvol maken. We
merken echter dat veel teams geen idee hebben hoe te beginnen met het opbouwen van die relaties. In dit
hoofdstuk zullen we het hebben over een paar zeer eenvoudige oefeningen die jou en je team kunnen helpen
grip te krijgen.

Samenwerken met klanten

Laten we beginnen met de samenwerking met de klant — meestal vertegenwoordigd door een product owner.
Als teams niet begrijpen welk probleem de klant probeert op te lossen, kunnen ze het verkeerde probleem
oplossen. Het is essentieel dat teams samenwerken met hun klant om zijn ware behoeften te begrijpen.

Ten eerste, raden we ten zeerste aan dat iedereen in het team het domein begrijpt. Dit kan worden bereikt
door nauw samen te werken met eindgebruikers, te vragen naar voorbeelden of scenario’s, of zelfs tekeningen
te maken op whiteboards om verschillen te begrijpen en betekenissen te verduidelijken.

Vragen als deze zullen de klant doen nadenken over het gebruik en het bijbehorende risico.

“Hoe zal u dit gebruiken?”

“Wat is het ergste dat er kan gebeuren?”

Testers kunnen de communicatie tussen ontwikkelaar en klant vergemakkelijken, maar het is belangrijk om
niet in de weg te staan. We noemen de praktijk van het samenbrengen van een tester, een programmeur en
een bedrijfsexpert (product owner, product manager of business analist) om te praten over een user story,
de “Kracht van drie” George Dinwiddie noemt het de Drie Amigo’s''. Het is een krachtige manier om een
gedeeld begrip op te bouwen over stories, functionaliteiten en hoe ze in het product passen.

Hint: * Breng de tester, programmeur en bedrijfsexpert en misschien één of twee andere rollen,
samen wanneer er een vraag opkomt. Een ontwikkelaarspaar werkt bijvoorbeeld aan een nieuwe
story en één van de bedrijfsgerichte testen mislukken. Ze gaan met een tester praten en zeggen dat
ze denken dat de test het verkeerde gedrag verwacht. Dat is het moment om een product owner
vast te nemen en een drieweggesprek te voeren. Deze korte conversatie bespaart later zoveel tijd
bij het herstellen van een defect dat in de code is geraakt”

Afhankelijk van het product en het type functionaliteiten dat wordt ontwikkeld, kunnen meer perspectieven
nodig zijn, zoals die van een UX-ontwerper, een data-expert, of een operationeel expert.

"https://www.agileconnection.com/article/three-amigos- strategy- developing-user-stories

https://www.agileconnection.com/article/three-amigos-strategy-developing-user-stories
https://www.agileconnection.com/article/three-amigos-strategy-developing-user-stories

Chapter 5: Samenwerking mogelijk maken 46

Figuur 5.1: Nodig de juiste mensen uit

Impact mapping

Frameworks zoals impact mapping'® zijn nuttig bij het beslissen welke functies we moeten bouwen en
bepalen misschien zelfs wat de prioriteit moet zijn. Begin met het doel van een functionaliteit (het “waarom”).
Stel vervolgens vast wie kan helpen dat doel te bereiken en wie ons in de weg zou kunnen staan. Vraag voor
elke “wie,” hoe ze ons kunnen helpen of hinderen bij het bereiken van het doel (dat zijn de impacten). Denk
ten slotte eens na welke resultaten kunnen voortvloeien uit elke impact (het “wat”). Deze oefening helpt het
team het grote plaatje en de redenen voor wat ze ontwikkelen te begrijpen.

Goal Actor Impact Deliverable

Who?

f_)
\—> Who?

))

Figuur 5.2: Impact mapping

Het beantwoordt de vraag “Hoe weten we of deze functionaliteit het doel bereikt nadat we het hebben
gereleased?”

“https://www.impactmapping.org/

https://www.impactmapping.org/
https://www.impactmapping.org/

Chapter 5: Samenwerking mogelijk maken 47

Stel vragen

Het is gebruikelijk dat een feature planning meeting begint met een discussie over de implementatie van de
functionaliteit. Soms komt de product owner met eigen ideeén: “Neem dezelfde code die wij gebruiken voor
kortingscodes en maak er negatieve bedragen van zodat we toeslagen kunnen toevoegen.” (Ja, Lisa had exact
die ervaring.) Het is belangrijk om dat niet te laten gebeuren - begin met het waarom.

Wanneer je samenkomt met een business stakeholder, zoals een product owner, om te praten over aankomende
functionaliteiten, is de eerste vraag die gesteld moet worden: “Waarom doen we deze functionaliteit?” Andere
goede vragen: “Welk probleem lost dit op voor het bedrijf, de klant of de eindgebruiker?”

QA staat voor “Question Asker” — een idee dat we kregen van Pete Walen. Testers stellen routinematig vragen
die niemand anders denkt te stellen, dus als je geen tester in het team hebt, probeer dan een vraagsteller-rol
aan te wijzen.

Ervaren teams bouwen kwaliteitscriteria vaak in de manier waarop ze werken. Als ze bijvoorbeeld beveili-
gingsproblemen zoals cross-site scripting (XSS) en SQL-injectie willen vermijden, zit dit waarschijnlijk in de
architectuur van het systeem ingebouwd.

Onze ervaring is echter dat business stakeholders vaak ten onrechte van uitgaan dat het technische team al
weet welke kwaliteitsattributen belangrijk zijn - attributen zoals hoeveel gelijktijdige gebruikers het product
gaan gebruiken, welke apparaten moeten ondersteund worden, of hoe snel de waargenomen antwoordtijd
van een toepassing moet zijn. Zie hoofdstuk 7 voor meer informatie over kwaliteitsattributen.

Het stellen van zowel specifieke als open vragen helpt om verborgen aannames bloot te leggen.

« “Is het mogelijk dat we deze functionaliteit implementeren en het probleem niet oplossen?”
« “Wat zullen gebruikers doen voordat ze deze functionaliteit gebruiken?”
« “Wat gaan ze daarna doen?”

Voorbeeld mapping

Matt Wynne heeft ons kennis laten maken met het idee van voorbeeldmapping®® (example mapping), en
wij vonden het een geweldige manier om een nieuwe functionaliteit te verkennen en de waarde die het zou
opleveren. Werk samen met de product owner of andere stakeholders over de bedrijfsregels in een discussie
van het type “Kracht van drie”. Bedrijfsregels zijn geweldig om te beginnen met het onderzoeken van een
functionaliteit, omdat ze ons kunnen helpen een functionaliteit op te delen in stories en eveneens een gedeeld
begrip te verkrijgen van hoe de functionaliteit zich zou moeten gedragen.

De voorbeeldmappingtechniek van Matt Wynne is een zeer effectieve basis voor dit type gesprek omdat
concrete voorbeelden worden gebruikt om ons begrip van de regels te helpen verduidelijken. Hou tijdens het
gesprek het hoofddoel voor ogen en concentreer je op de waarde die de functionaliteit oplevert voor klanten
en eindgebruikers. Teams vinden vaak dat er meer bedrijfsregels worden blootgelegd door het gebruik van
echte voorbeelden.

Phttps://cucumber.io/blog/example- mapping-introduction/

https://cucumber.io/blog/example-mapping-introduction/
https://cucumber.io/blog/example-mapping-introduction/

Chapter 5: Samenwerking mogelijk maken 48

c for\, Question

Questipn
Rule Rule Rule

Erample Evample

The e wheve.. Thg e er&‘.

Example

The e where..

Example

The e where..

Question

Figuur 5.3: Example mapping

Het gebruik van voorbeeldmapping om bedrijfsregels, voorbeelden, en vragen die beantwoord moeten
worden, in kaart te brengen, is een effectieve manier om ervoor te zorgen dat het team op één lijn zit wanneer
ze de iteratie plannen.

Bouw vertrouwen op met zichtbaarheid

Testen stelt teams in staat risico’s te identificeren, zodat klanten de beste beslissingen kunnen maken, wat op
zijn beurt vertrouwen opbouwt. Wanneer het team om input vraagt krijgen klanten het vertrouwen dat ze
werkende software krijgen.

We kunnen mindmaps, stroomdiagrammen, contextdiagrammen, toestandsdiagrammen, of andere hulpmid-
delen gebruiken om te kijken naar de afhankelijkheden en de rimpeleffecten van elke nieuwe functionaliteit.
Als onze functionaliteiten niet gemakkelijk door iedereen worden begrepen en gebruikt, kunnen ze niet de
beoogde waarde bieden. Het grote geheel in de gaten houden is één van de sterke punten die testers brengen
in agile teams.

Tekenen op een whiteboard tijdens het bespreken van een story is een bewezen manier om communicatie te
optimaliseren. Opstaan en bewegen helpt mensen doen denken en leren.

Hint: Pak een stift en wat indexkaarten, plakbriefjes, een whiteboard. Krijg mensen zo ver om
recht te staan en actief mee te doen door te tekenen of indexkaarten of plakbriefjes te verplaatsen.

Chapter 5: Samenwerking mogelijk maken 49

Figuur 5.4: Gebruik zichtbaarheid om vertrouwen op te bouwen

Als er deelnemers op afstand zijn, gebruik dan online samenwerkingstools om te helpen. Onze teams
hebben ontdekt dat het gebruik van mindmaps, ofwel op een fysiek whiteboard of via een real-time

samenwerkingstool zoals Mindmup, uiterst effectief kan zijn in het helpen om de onbekenden te identificeren
en creatieve oplossingen te vinden.

Dit soort visuele hulpmiddelen stellen teams in staat om beter en gerichter vragen te stellen. Telkens wanneer
het team een probleem tegenkomt, vinden ze een manier om het zichtbaar te maken, zodat ze kunnen
beginnen na te denken over experimenten om het probleem kleiner te maken.

Chapter 5: Enabling Collaboration

Collaboration within a team and between teams is one of the cornerstones that make agile teams successful.
However, we find that many teams have no idea how to get started with building those relationships. In this
chapter, we will talk about a few very simple practices that can help you and your team get traction.

Collaborate with customers

Let’s start with collaborating with the customer - usually represented by a product owner. If teams don’t
understand what problem the customer is trying to solve, they may solve the wrong one. It is essential that
teams work with their customer to understand their true needs.

First, we strongly suggest that everyone on the team understands the domain. This can be accomplished by
working closely with end users, asking for examples or scenarios, or even drawing pictures on whiteboards
to understand differences and clarify meanings.

Questions such as these will make the customer consider the usage and the associated risk.

“How will you use this?”

“What’s the worst that can happen?”

Testers can facilitate developer-customer communication, but it’s important not to get in the way. We call
the practice of getting a tester, a programmer, and a business expert (product owner, product manager, or
business analyst) together to talk about a user story, the “Power of Three” George Dinwiddie refers to it as
the Three Amigos**. It is a powerful way to build shared understanding about stories, features, and how they
fit into the product.

Hint: Gather the tester, programmer, and business expert, and perhaps one or two other roles,
together anytime a question comes up. For example, a developer pair is working on a new story,
and one of the business-facing tests fails. They go talk to a tester and say they think the test
is expecting the wrong behavior. That’s the time to grab a product owner and have a three-way
discussion. This quick conversation saves so much time later trying to fix a defect that made it
into the code.

Depending on the product and the type of features being developed, more perspectives may be needed, such
as from a UX designer, a data expert, or an operations expert.

“https://www.agileconnection.com/article/three-amigos- strategy- developing-user-stories

https://www.agileconnection.com/article/three-amigos-strategy-developing-user-stories
https://www.agileconnection.com/article/three-amigos-strategy-developing-user-stories

Chapter 5: Enabling Collaboration 51

Figure 5.1: Invite the right people

Impact mapping

Frameworks such as impact mapping'® are helpful in deciding what features we should build and maybe
even determine what the priority should be. Start with the goal of a feature (the “why”). Then identify who
might help us achieve that goal and who might get in our way. For each “who,” ask how they might help
or hinder us in achieving the goal (those are the impacts). Lastly, think about what deliverables might result
from each impact (the “what”). This exercise helps the team understand the big picture and the reasons behind
what they are developing.

Goal Actor Impact Deliverable

Who?

f_)
\—> Who?

))

Figure 5.2: Impact mapping

It answers the question “How will we know if this feature achieves the goal after we release it?”

https://www.impactmapping.org/

https://www.impactmapping.org/
https://www.impactmapping.org/

Chapter 5: Enabling Collaboration 52

Ask questions

It’s common that a feature planning meeting starts with a discussion about how to implement the feature.
Sometimes the product owner has come with her own ideas: “Take the same code as we use for discount
codes and make them negative amounts so we can add surcharges.” (Yes, Lisa had that exact experience.) It
is important not to let that happen — start with the why.

When you get together with a business stakeholder such as a product owner to talk about upcoming features,
the first question to ask is, “Why are we doing this feature?” Other good questions: “What problem will this
solve for the business, the customer, or the end user?”

QA stands for “Question Asker” — an idea we got from Pete Walen. Testers routinely ask questions that
nobody else thinks of asking, so if you don’t have a tester on the team, try designating a question-asker role.

Experienced teams often build quality criteria into the way they do work. For example, if they want to prevent
security issues such as cross-site scripting (XSS) and SQL injection, it is probably built into the architecture
of the system.

However, in our experience, business stakeholders often assume incorrectly that the technical team already
knows what quality attributes are important - attributes like how many concurrent users will be using the
product, what devices need to be supported, or how fast the perceived response time of an application needs
to be. See Chapter 7 for more on quality attributes.

Asking specific as well as open-ended questions help expose hidden assumptions.

« “Is it possible we could implement this feature and not solve the problem?”
« “What will users do before using this feature?”
« “What will they do afterwards?”

Example mapping

Matt Wynne introduced us to the idea of example mapping'®, and we found it to be a great way to explore
a new feature and the value it should deliver. Work with the product owner or other stakeholders about
the business rules in a “Power of Three” type discussion. Business rules are great places to start exploring a
feature, since they can help us slice a feature into stories as well as get a shared understanding of how the
feature should behave.

Matt Wynne’s example-mapping technique is a highly effective basis for this type of conversation because
concrete examples are used to help clarify our understanding of the rules. As the conversation continues,
keep the main goal in mind, and focus on the value the feature delivers to customers and end users. Teams
often find that more business rules are exposed as a result of using real examples.

*Shttps://cucumber.io/blog/example- mapping-introduction/

https://cucumber.io/blog/example-mapping-introduction/
https://cucumber.io/blog/example-mapping-introduction/

Chapter 5: Enabling Collaboration

Sfor\;

Rule Rule
Erample Evample

The ne where..

Example

The e where..

Example

The e wheve..

The e where,

Question

Questipn
Rule

Question

Figure 5.3: Example mapping

53

Using example mapping to elicit business rules, examples, and questions that need answering is an effective
way to make sure the larger team starts on the same page when they plan the iteration.

Build trust using visibility

Testing allows teams to identify risks so customers can make the best decisions, which in turn builds trust.

When the team asks for their input, customers gain confidence that they will get working software.

We can use mind maps, flow diagrams, context diagrams, state diagrams, or other tools to look at
dependencies and ripple effects of each new feature. If our features aren’t easily understood and used by
everyone, they can’t provide the intended value. Keeping an eye on the big picture is one strength that testers

bring to agile teams.

Drawing on a whiteboard while discussing a story is a proven way to optimize communication. Getting up

and moving helps people think and learn.

Hint: Grab a marker and some cards, stickies, a whiteboard. Get people to stand up and actively

participate by drawing or moving index cards or sticky notes around.

Chapter 5: Enabling Collaboration 54

Figure 5.4: Use visibility to create trust

If there are remote participants, use online collaborative tools to help. Our teams have found that using mind
maps, either on a physical whiteboard or via a real-time collaborative tool such as Mindmup, can be extremely
effective in helping to identify the unknowns and find creative solutions.

These types of visual aids enable teams to ask better and more focused questions. Anytime the team
encounters a problem, they find a way to make it visible, so that they can start thinking of experiments
to make the problem smaller.

Hoofdstuk 6: Onderzoekend Testen

Meer agile teams vinden waarde in onderzoekende testen, maar het is nog steeds een nieuw of onbekend idee
voor veel teams. We beginnen met het uitleggen van het doel van onderzoekende testen en wat daarbij komt
kijken.

In Explore It! definieert Elisabeth Hendrickson onderzoekende testen als “..gelijktijdig ontwerpen en
uitvoeren van tests om meer te weten te komen over het systeem, waarbij je je inzichten uit het laatste
experiment gebruikt om het volgende te informeren. ’

2]

Bij onderzoekende testen werkt een persoon met het systeem en observeert hij het echte gedrag, waarbij
kleine experimenten worden ontworpen. Op basis van wat ze leren, passen ze het experiment aan en blijven
ze meer leren over het systeem. In het proces kunnen ze verrassende ontdekkingen doen, zoals gevolgen van
interacties waar niemand aan had gedacht. Onderzoekende testen leggen misverstanden bloot over wat de
software zou moeten doen.

Testers, programmeurs of andere teamleden die onderzoekende testen uitvoeren, moeten openstaan om te
observeren, te leren, hun kritisch denkvermogen te gebruiken en verwachtingen in vraag te stellen. Het doel
van onderzoekende testen is om het risico te verminderen en vertrouwen te krijgen in het product. Er zijn
geen scripts of lijsten met verwachte outputs. In plaats daarvan wordt een doel geidentificeerd, met middelen
(of variaties) en een missie. Teamleden maken aantekeningen terwijl ze onderzoeken en leren en debriefen
later met andere teamleden en business stakeholders. Als resultaat van een onderzoekende testsessie kan de
tester eventuele gevonden bugs aan teamgenoten laten zien of nieuwe functionaliteiten of stories voorstellen
die mogelijk nodig zijn.

Onderzoekende testen is een gedisciplineerde aanpak van testen. Het moet niet worden verward met ad-
hoctesten, die worden gedaan zonder enige planning of documentatie, of monkey testen, waarbij willekeurige
invoer en willekeurige acties worden ingevoerd om te zien wat er kapot gaat. Denk aan het verschil tussen
willekeurig ronddwalen (misschien verloren) en bedachtzaam onderzoeken (om inzicht te krijgen en met een
doel). We zullen een paar technieken introduceren die je kunnen helpen om doelgericht te onderzoeken.

Persona’s, banen, and rollen

Een nieuw product testen met een frisse blik is een geschenk! Er zijn niet zoveel vooroordelen over hoe het
product zich zou moeten gedragen, en het bevestigingsvooroordeel van mensen is niet zo sterk. Een nieuw
paar ogen is beter in staat om het product objectief te observeren, al heeft natuurlijk iedereen onbewuste
cognitieve vooroordelen. Lisa heeft gemerkt dat wanneer ze met nieuwe testers in haar team samenzit, ze
onmiddellijk de bugs opmerken die er altijd al waren, maar niemand anders kon ze “zien”!

Een persona®, of een rol, opnemen stelt een teamlid in staat met een frisse blik een product te testen dat
zij van binnen en van buiten kennen; onbewuste cognitieve vooroordelen zoals: onoplettende blindheid"® en
bevestigingsvooroordeel'” kunnen worden overwonnen.

https://www.stickyminds.com/article/how- pragmatic- personas-help-you-understand-your-end-user
*®http://www.theinvisiblegorilla.com/gorilla_experiment.html
https://en.wikipedia.org/wiki/Confirmation_bias

https://www.stickyminds.com/article/how-pragmatic-personas-help-you-understand-your-end-user
http://www.theinvisiblegorilla.com/gorilla_experiment.html
https://en.wikipedia.org/wiki/Confirmation_bias
https://en.wikipedia.org/wiki/Confirmation_bias
https://www.stickyminds.com/article/how-pragmatic-personas-help-you-understand-your-end-user
http://www.theinvisiblegorilla.com/gorilla_experiment.html
https://en.wikipedia.org/wiki/Confirmation_bias

Hoofdstuk 6: Onderzoekend Testen 56

Een persona is een fictieve gebruiker die het team maakt met kenmerken zoals leeftijd, opleiding, ervaring,
persoonlijkheid, beroep, enzovoort. Sommige teams hebben een vastgelegde set persona’s die hun doelgroep
vertegenwoordigen en die ze gebruiken bij het ontwerpen van nieuwe functionaliteiten. Figuur 6.1 toont een
hacker persona dat je zou kunnen gebruiken om te testen.

=

; o ~
7 http://Your.Bank ‘q

Figuur 6.1: Hacker persona

Het combineren van persona’s met banen of rollen is nog beter voor onderzoekende testen. Hier is een
voorbeeld.

Jill, een directieassistente, is 30 jaar oud, heeft altijd haast met te veel zaken, ze zoekt naar
sluipwegen bij het gebruiken van het product. Test de hotelreserveringsapplicatie van uw team
zoals Jill, die op het laatste moment een hotel boekt voor haar baas.

Wanneer een tester de persona van Jill aanneemt, zal ze de mogelijkheden van de functionaliteit waarschijnlijk
op een andere manier gebruiken dan ze normaal zou doen. Ze kan bijvoorbeeld ontdekken dat het meerdere
keren klikken op de verzendknop uit ongeduld dubbele reserveringen veroorzaakt.

Werkstromen en tours

Een veelgebruikte manier om te onderzoeken is door verwachte werkstromen of gebruikerstrajecten in de
toepassing te gaan. Begin met één traject en onderzoek vervolgens variaties daarop. In die hotelboekingsap-
plicatie is een voor de hand liggend traject het zoeken naar een specifieke locatie en datumbereik voor een
bepaald aantal gasten, het kiezen van een kamer, en het invoeren van adresgegevens om te bevestigen. Een
variatie op die aanpak zou zijn om te proberen een adres uit een ander land in te voeren. Accepteert het
formulier meerdere formaten voor postcode? Doet het de validatie op de postcode versus het adres?

Een andere populaire aanpak is het gebruik van tours. Vergelijk het met een tour op een reisbestemming. Als
toerist, wanneer je naar Parijs gaat, wil je misschien verschillende bezienswaardigheden zien: de Eiffeltoren,
het Louvre, de Arc de Triomphe of misschien zelfs de Notre Dame. Als je dat eenmaal hebt gedaan, herhaal
je de tour, maar ga je in een andere volgorde naar de bezienswaardigheden. Dingen kunnen er anders
uitzien! Hetzelfde gebeurt in software. Bij de [landmark tour (https://blogs.msdn.microsoft.com/james_whit-
taker/2009/04/06/tour-of-the-month-the-landmark-tour/) worden verschillende functionaliteiten in verschil-
lende volgordes onderzocht wat onverwacht gedrag kan veroorzaken.

Hoofdstuk 6: Onderzoekend Testen 57

Hint: Zoek op internet naar “onderzoekende test tours” en je zal veel verschillende ideeén vinden
- we raden je aan jouw eigen ideeén te maken.

ATl ey

Figuur 6.2: Landmark tour

Risico’'s en waarde voor de klant

Teams zien vaak de bedrijfsrisico’s of wat van waarde is voor een klant over het hoofd. Onderzoekende testses-
sies kunnen worden ontworpen om zich op deze aspecten te concentreren om verborgen veronderstellingen
bloot te leggen. De vraag stellen: “Wat is het ergste dat er kan gebeuren?” kan een risico blootleggen dat moet
worden onderzocht. Als diefstal van klantgegevens bijvoorbeeld een enorm risico is, dan wil het team extra
tijd besteden aan het onderzoeken van de beveiligingsaspecten van het product.

De keerzijde van risico is waarde, dus vraag: “Wat is het beste dat kan gebeuren?” en onderzoek die
bedrijfswaarde.

Onderzoek in pairs or groepen

Onderzoeken kan op elk moment gedaan worden. Programmeurs kunnen onderzoeken tijdens het coderen
om hun feedbacklus voor visuele problemen te verkorten, of testers kunnen de browsercompatibiliteit
onderzoeken naar browsercompatibiliteit. We raden echter aan om met iemand te pairen om het meeste
uit de ervaring te halen (Figuur 6.2).

Figuur 6.3: Pairing

Een manier om op functionaliteitsniveau te onderzoeken, is met groepen. Eén van Lisa’s teams bracht
vaak mensen bij elkaar voor ad-hoc- of onderzoekende testsessies voor extra vertrouwen in belangrijke of
risicovolle functionaliteiten. Samenwerken om gelijktijdigheidsproblemen te testen is hier een goed voorbeeld
van. Meer ogen op het probleem betekent een grotere kans dat er iets wordt gevonden.

Hoofdstuk 6: Onderzoekend Testen 58

Net zoals mob-programmeren, kan mob-testen®® worden gebruikt voor onderzoekende testen. Dit betekent
dat er één aanvoerder is (een rol die om de paar minuten wisselt) met meerdere mensen die helpen door
vragen te stellen of suggesties te maken. Meerdere perspectieven kunnen effecten op andere delen van het
systeem blootleggen.

Charters

In haar boek Explore It! beschrijft Elisabeth Hendrickson hoe charters gebruikt kunnen worden voor effectieve
onderzoekende testen. Charters helpen je de informatie die je nodig hebt om meer te weten te komen over
uw aanvraag te organiseren, in voldoende geconcentreerde timeboxsessies. Deze werken goed in combinatie
met persona’s, banen en rollen.

Het sjabloon van Elisabeth ziet er als volgt uit:

Onderzoek <doel>
Met <middelen>

Om <informatie van waarde voor iemand> te ontdekken;

Gezien de middelen (of soorten variaties, zoals Janet er graag over denkt) die zullen worden gebruikt, is dit een
goede manier om te beginnen met het schrijven van een charter. Beveiligbaarheidstests moeten bijvoorbeeld
verschillende format-exploits kunnen testen. Er kan een charter worden geschreven om verschillende pagina’s
in de gebruikersinterface met deze exploits te onderzoeken. Het volgende voorbeeld toont één mogelijkheid.

Onderzoek de gebruikersaanmeldingspagina voor 30 minuten
Met cross-site scripting exploits
Om zwakke plekken te ontdekken

We houden ervan om onze sessies te time-boxen om te helpen bij het scherpstellen van het charter. Een
eenvoudige manier om dit te doen, is door de tijdslimiet aan het charter zelf toe te voegen, zoals in ons vorige
voorbeeld.

Lisa laat mensen graag kennismaken met onderzoekende testen door ze in kleine groepjes speelgoed en
spelletjes voor jonge kinderen te laten testen. Ze creéren eerst een persona, zoals: “Judy is een zeer sterke,
actieve vierjarige” Daarna testen ze een spel dat is ontworpen voor kinderen van 3-6 jaar met een charter:

Onderzoek het spel als Judy
Met al haar energie, onverwachte bewegingen, en kracht

Om te ontdekken of het spel wel veilig is voor haar leeftijdsgroep

Als ze een klein stukje kunnen afbreken dat verstikkingsgevaar oplevert, is het spel mogelijk niet veilig. Dat
is een andere manier om te testen dan wanneer je het spel gewoon als je volwassen zelf zou gebruiken.

Er zijn andere manieren om charters te schrijven. Sommige teams gebruiken mindmaps, terwijl andere
ezelsbruggetjes gebruiken of gewoon een zin schrijven over wat ze willen onderzoeken.

*https://www.stickyminds.com/article/amplified-learning-mob- testing

https://www.stickyminds.com/article/amplified-learning-mob-testing
https://www.stickyminds.com/article/amplified-learning-mob-testing

Hoofdstuk 6: Onderzoekend Testen 59

Uitvoeren, leren, sturen

Mensen lopen vaak vast bij het schrijven of uitvoeren van hun eerste charter.

Hint: We raden je aan om de eerste keer niet te hard na te denken als je zich in deze positie
bevindt (vastgelopen). Schrijf het op en probeer het dan. Gebruik je observatievaardigheden, je
kritisch denken en je intuitie.

Terwijl charters worden uitgevoerd, leert de ontdekkingsreiziger en kan hij nieuwe charters schrijven. We
stimuleren ook het maken van aantekeningen. Een voordeel van pairen is dat de persoon die niet leidt de
notities kan schrijven. We zijn ook van mening dat debriefing met andere teamleden na het onderzoek de
sleutel is tot het leren en delen van informatie.

Aanvullende technieken

Andere technieken helpen ons ‘buiten de kaders te denken’. Mike Talks heeft bijvoorbeeld zijn “Oblique
Testing”-kaarten® die de tester kunnen helpen op een pad dat anders niet zou zijn overwogen. De TestSphere?-
kaarten van Beren van Daele zetten testers ook op verschillende manieren aan het denken en praten over hun
testen. Als mensen hebben wij onbewuste vooroordelen en die kunnen ons ervan weerhouden om belangrijke
problemen te zien. Het gebruik van dergelijke kaarten kan die vooroordelen compenseren en teams helpen
creatiever te zijn.

Maak gebruik van tools voor effectief te onderzoeken

Onderzoekende testen is mensgericht, maar geautomatiseerde scripts of tools kunnen worden gebruikt om
testgegevens te genereren of om de toon te zetten. Andere tools kunnen ook helpen bij het onderzoeken.
Emulators kunnen bijvoorbeeld worden gebruikt voor embedded of mobiele apparaten, hoewel echte
apparaten ook moeten worden getest en onderzocht. Bronnen zoals logbestanden kunnen worden gebruikt
om “stille” storingen of mogelijk gegevensverlies op te sporen. Eén van Janet’s teams begon bijvoorbeeld
waarschuwingen te markeren om ze beter zichtbaar te maken, wat een groot probleem aan het licht bracht in
de manier waarop een methode onjuist werd gebruikt. Tools zoals recorders kunnen bijhouden welke pagina’s
zijn bezocht of welke gegevens zijn gebruikt, zodat het kan worden afgespeeld als er iets onverwachts wordt
gevonden.

**https://leanpub.com/obliquetesting
**https://www.ministryoftesting.com/dojo/series/testsphere

https://leanpub.com/obliquetesting
https://leanpub.com/obliquetesting
https://www.ministryoftesting.com/dojo/series/testsphere
https://leanpub.com/obliquetesting
https://www.ministryoftesting.com/dojo/series/testsphere

Chapter 6: Explore Continuously

More agile teams are finding value in exploratory testing, but it’s still a new or unknown idea to many teams.
We'll start by explaining the purpose of exploratory testing and what’s involved.

In Explore It!, Elisabeth Hendrickson defines exploratory testing as “..simultaneously designing and
executing tests to learn about the system, using your insights from the last experiment to inform the next.”

In exploratory testing, a person interacts with the system and observes actual behavior, designing small
experiments. Based on what they learn, they adapt the experiment and continue to learn more about the
system. In the process, they may make surprising discoveries, including implications of interactions that no
one had considered. Exploratory testing exposes misunderstandings about what the software is supposed to

do.

Testers, programmers, or other team members who perform exploratory testing need to be open to observe,
learn, use critical thinking skills, and challenge expectations. The goal of exploratory testing is to reduce
risk and gain confidence in the product. There are no scripts or lists of expected outputs. Instead, a goal is
identified, with resources (or variations), and a mission. Team members take notes as they explore and learn
and debrief with other team members and business stakeholders later. As a result of an exploratory testing
session, the tester may show any bugs found to teammates or propose new features or stories that may be
needed.

Exploratory testing is a disciplined approach to testing. It is not to be confused with ad hoc testing, which is
done without any planning or documentation, or monkey testing, which entails entering random inputs and
random actions to see what breaks. Think about the difference between wandering randomly (perhaps lost)
and exploring thoughtfully (to gain insight and with a purpose). We’ll introduce a few techniques that might
help you explore with purpose.

Personas, jobs, and roles

Testing a new product with a fresh set of eyes is a gift! There are not as many preconceptions about how the
product should behave, and people’s confirmation bias is not as strong. A new pair of eyes are better able
to observe the product objectively, although of course everyone has unconscious cognitive biases. Lisa has
noticed that when she pairs with new testers on her team, they immediately notice bugs that have been there
all along, but nobody else could “see” them!

Assuming a persona®, or a role, enables a team member to test a product they know inside and out with a
fresh perspective; unconscious cognitive biases such as inattentional blindness** and confirmation bias* can
be overcome.

A persona is a fictitious user the team creates with characteristics such as age, educational background,
experience, personality quirks, profession, and so on. Some teams have a defined set of personas representing

“https://www.stickyminds.com/article/how-pragmatic- personas- help-you-understand-your-end-user
**http://www.theinvisiblegorilla.com/gorilla_experiment.html
**https://en.wikipedia.org/wiki/Confirmation_bias

https://www.stickyminds.com/article/how-pragmatic-personas-help-you-understand-your-end-user
http://www.theinvisiblegorilla.com/gorilla_experiment.html
https://en.wikipedia.org/wiki/Confirmation_bias
https://www.stickyminds.com/article/how-pragmatic-personas-help-you-understand-your-end-user
http://www.theinvisiblegorilla.com/gorilla_experiment.html
https://en.wikipedia.org/wiki/Confirmation_bias

Chapter 6: Explore Continuously 61

their target customer base that they use as they design new features. Figure 6.1 shows a hacker type of persona
that you could use for testing.

=

7 http://Your.Bank “

Figure 6.1: Hacker persona

Combining personas with jobs or roles is even better for exploratory testing. Here’s an example.

Fill, an executive assistant, is 30 years old, always in a hurry with too much to do, and looks for
shortcuts as she uses the product. Test your team’s hotel reservation application as Jill, who is
booking a hotel at the last minute for her boss.

When a tester assumes Jill’s persona, she’s likely to use the feature’s capabilities in a different way than she
normally would. For example, she might discover that clicking on the submit button multiple times out of
impatience causes duplicate reservations.

Workflows and tours

A common way to explore is to go through expected workflows or user journeys in the application. Start
with one journey and then explore variations on it. In that hotel-booking application, an obvious journey is
searching for a specific location and date range for a certain number of guests, choosing a room, and entering
address information to confirm. A variation on that approach would be to try to enter an address from a
different country. Does the form accept multiple formats for postal code? Does it do validation on the postal
code versus the street address?

Another popular approach is to use tours. Compare it to taking a tour in a travel destination. As a tourist, if you
go to Paris, you might like to see several landmarks: the Eiffel Tower, the Louvre, Arc de Triomphe, or maybe
even Notre Dame cathedral. Once you’ve done that, repeat the tour but go to the sights in a different order.
Things may look different! The same thing happens in software. Trying the landmark tour uses different
features and capabilities in different orders and may cause unexpected behavior.

Hint: Search for “exploratory test tours” on the internet and you’ll find many different ideas — we
suggest designing your own.

**https://blogs.msdn.microsoft.com/james_whittaker/2009/04/06/tour-of-the-month-the-landmark-tour/

https://blogs.msdn.microsoft.com/james_whittaker/2009/04/06/tour-of-the-month-the-landmark-tour/
https://blogs.msdn.microsoft.com/james_whittaker/2009/04/06/tour-of-the-month-the-landmark-tour/

Chapter 6: Explore Continuously 62

ATl ey

Figure 6.2: Landmark tour

Risks and value to the customer

Teams often overlook business risks or what is of value to a customer. Exploratory test sessions can be
designed to focus on these aspects to uncover hidden assumptions. Asking the question, “What is the worst
thing that can happen?” may expose a risk that needs exploring. For example, if theft of customer data is a
huge risk, then the team wants to spend extra time exploring the security aspects of the product.

The flip side of risk is value, so ask, “What is the best thing that can happen?” and explore around that business
value.

Explore in pairs or groups

Exploring can happen at any time. Programmers may explore during coding to shorten their feedback loop
for visual issues, or testers may explore for browser compatibility. However, we recommend pairing with
someone to get the most out of the experience (Figure 6.2).

Figure 6.3: Pairing

One way to explore at the feature level is with groups. One of Lisa’s teams often got people together for ad hoc
or exploratory test sessions for extra confidence on major or risky features. Collaborating to test concurrency
issues is a great example of this. More eyes on the problem means better chances of something being found.

Much like mob programming, mob testing” can be used for exploratory testing. This means there is one
driver (a role that rotates every few minutes) with multiple people helping by asking questions or making
suggestions. Multiple perspectives may uncover impacts to other parts of the system.

*"https://www.stickyminds.com/article/amplified-learning-mob- testing

https://www.stickyminds.com/article/amplified-learning-mob-testing
https://www.stickyminds.com/article/amplified-learning-mob-testing

Chapter 6: Explore Continuously 63

Charters

In her book Explore It! Elisabeth Hendrickson details how to use charters for effective exploratory testing.
Charters help you organize the information you need to learn about your application into appropriately
focused time-boxed sessions. These work well in combination with personas, jobs, and roles.

Elisabeth’s template looks like this:

Explore <target>
With <resources>

To discover <information of value to someone>

Considering the resources (or types of variations, as Janet likes to think of them) that are going to be used is
a good way to start writing a charter. For example, security testing may need to test various format exploits.
A charter can be written to explore several pages in the Ul with these exploits. The following example shows
one possibility.

Explore the user signup page for 30 minutes
With cross-site scripting exploits

To discover any vulnerabilities

We like to time-box our sessions to help with focusing the charter. One simple way to do this is to add the
time limit to the charter itself, as in our previous example.

Lisa likes to introduce people to exploratory testing by having them get into small groups to test toys and
games for young children. They first create a persona, such as: “Judy is a very strong, active four-year-old.”
Then they test a game designed for ages 3-6 with a charter:

Explore the game as Judy
Using all her energy, unexpected movements, and strength

To discover whether the game is safe for her age group

If they’re able to break off a small piece that’s a choking hazard, the game may not be safe. That’s a different
way to test than if you simply used the game as your adult self.

There are other ways to write charters. Some teams use mind maps, while others use mnemonics or simply
write a sentence about what they want to explore.

Executing, learning, steering

People often get stuck trying to write or execute their first charter.

Chapter 6: Explore Continuously 64

Hint: We suggest that if you find yourself in this position (stuck), don’t think too hard the first
time. Write it, then try it. Use your observation skills, your critical thinking, and your intuition.

As charters are executed, the explorer learns and can write new charters. We also encourage notetaking. One
advantage to pairing is that the person not driving can write the notes. We also believe that debriefing with
other team members after the exploration is key to learning and sharing information.

Additional techniques

Other techniques help us “think outside the box.” For example, Mike Talks has his “Oblique Testing” cards®®
that can help the tester down a path that might not have been considered otherwise. Beren van Daele’s
TestSphere® cards also get testers thinking and talking about their testing in different ways. As human beings,
our unconscious biases can keep us from seeing important problems. Using cards like this can offset those
biases and help teams be more creative.

Leverage tools for effective exploring

Exploratory testing is human-centric, but automated scripts or tools can be used to generate test data or to
set the scene. Other tools can assist exploring as well. For example, emulators can be used for embedded or
mobile devices, although real devices do need to be tested and explored as well. Resources like log files can
be used to spot “silent” failures or potential data loss. For example, one of Janet’s teams started highlighting
warnings to make them more visible, which exposed a major issue in how one method was used incorrectly.
Tools like recorders can keep track of what pages have been visited or what data was used, so it can be
replayed if something unexpected was found.

**https://leanpub.com/obliquetesting
**https://www.ministryoftesting.com/dojo/series/testsphere

https://leanpub.com/obliquetesting
https://www.ministryoftesting.com/dojo/series/testsphere
https://leanpub.com/obliquetesting
https://www.ministryoftesting.com/dojo/series/testsphere

Hoofdstuk 7: Testkwaliteitskenmerken

Kwaliteitskenmerken - of zoals sommige mensen ze graag noemen, niet-functionele vereisten - worden vaak
over het hoofd gezien bij het bespreken van een nieuwe functionaliteit of story. Een kwaliteitskenmerk
definieert de eigenschappen waaronder een functionaliteit moet werken. In plaats van ze te beschouwen
als iets dat er bijkomt, beschouwen we ze liever als een beperking waarmee het team rekening moet houden
bij elke functionaliteit of story.

Kwaliteitskenmerken definiéren

Twee belangrijke soorten kwaliteitskenmerken waarmee rekening moet worden gehouden, zijn
ontwikkelings- en operationele kenmerken. Ontwikkelingskenmerken omvatten onderhoudbaarheid
van code, hergebruik van code en testbaarheid - het ‘hoe’ we onze code ontwikkelen. Dat is interne of
technologiegerichte kwaliteit en is eigendom van het software opleverteam.

Als mensen het hebben over kwaliteitskenmerken, bedoelen ze meestal de operationele kenmerken. Ellen
Gottesdiener en Mary Gorman classificeren enkele van de kwaliteitskenmerken in figuur 7.1 als operationele
of ontwikkelingskenmerken.

Operational Development
Availability		Recoverability		CEfficiency
Installabilty		Robustness		Flexibility
Interoperabiliy		Safety		Modifiabiliy
Performance		Scalability		Portability
Reliabilty	[Securiy		Reusability	
Usabily		Testibity		

Figuur 7.1: Metamodel kwaliteitskenmerken

Veel van deze kwaliteitskenmerken zijn technologiegericht (zie Hoofdstuk 9: De Agile Testkwadranten voor
uitleg). Als de business stakeholders hen niet goed begrijpen, kan het opleverteam hen helpen bij het instellen
van de juiste kwaliteitsniveaus voor elk kenmerk.

Risico’s beperken door vroeg samen te werken

Elk product of organisatie heeft unieke behoeften en risico’s die moeten worden beoordeeld. Door na te gaan
welke kwaliteitskenmerken belangrijk zijn voor uw klanten, kan het team praten over de risico’s voor het
product. Janet werkte bijvoorbeeld in een team waar betrouwbaarheid het belangrijkste kwaliteitskenmerk

Hoofdstuk 7: Testkwaliteitskenmerken 66

was (hoewel niet het enige). Het team vroeg zich af: “Wat hebben we nodig om de betrouwbaarheid aan te
kunnen tonen?” Bij het beantwoorden van de vraag realiseerde de organisatie zich dat ze moesten investeren
in een complete betrouwbaarheidstestomgeving waar de build aan het einde van elke iteratie kon worden
ingezet om een complete set geautomatiseerde tests uit te voeren, samen met enkele onderzoekende testen.
Het team werkte eraan om de geautomatiseerde tests en simulaties voor elke story te laten werken.

Sommige teams denken na over hun kwaliteitskenmerken nadat ze de functionaliteit hebben geleverd en ze
creéren stories voor de “niet-functionele” vereisten. Dit is over het algemeen geen goed idee, omdat het kan
betekenen dat zowel de architectuur als het codeontwerp opnieuw moeten gedaan worden. Deze kenmerken
kunnen zelfs een hogere prioriteit hebben dan functionele of gedragsvereisten. Waardevolle functionaliteit in
sommige gebieden kan het gebrek aan beveiliging of resultaten in andere bedrijfsdomeinen niet wegnemen.
Teams die te lang wachten met het testen van deze kenmerken (vaak tijdens het eindspel net voor de release)
lopen volledig vast. Dit zijn meestal ontwerpproblemen en kunnen niet zo laat in de releasecyclus nog worden
opgelost.

Wees als opleverteam proactief. Wacht niet tot de product owner het gesprek begint. Ze denkt waarschijnlijk
aan functionaliteiten en neemt kwaliteitskenmerken als vanzelfsprekend aan. Bedenk als team welke aspecten
van kwaliteit het meest waardevol zijn voor klanten en het bedrijf. Een goede manier om te beginnen is door
een contextdiagram van de voorgestelde nieuwe functionaliteit te tekenen om te zien hoe deze omgaat met
andere functionaliteiten of systemen. Door de afthankelijkheden en potentieel kwetsbare gebieden in een
vroeg stadium te kennen, is er voldoende tijd om de juiste ontwerpbeslissingen te nemen en ervoor te zorgen
dat het team over de nodige technische kennis beschikt. Het team kan van plan zijn om een spike te doen
(een experiment of onderzoeksstory) om mogelijke ontwerpen en architectuur te onderzoeken.

Release- of functionaliteitsplanning geeft een uitstekende gelegenheid om de business stakeholders de
volgende vragen te stellen:

« Wat is het ergste dat kan gebeuren nadat we deze functionalteit releasen? Is dit dan een hoog risico?

« Is het een probleem als het systeem of de systeemfunctionaliteit voor een tijdje plat ligt? En als dit zo
is, wat is de maximumtijd of percentage van de tijd dat het plat kan liggen?

« Voor een webgebaseerde app, welke browsers zouden klanten gebruiken?

« Kunnen we ervan uitgaan dat klanten mobiele apparaten gaan gebruiken? Zijn dit zowel telefoons als
tablets, en is dit zowel Apple als Android? Hoe zit het met7

» Hoe weten we of de functionaliteit succesvol is als we deze eenmaal hebben uitgebracht?

Planning voor pre-release testen

Sommige kwaliteitskenmerken vereisen mogelijk meer tests vlak voor de release wanneer alle componenten
van de functionaliteitsset zijn aangesloten. Het team kan bijvoorbeeld belasting- of prestatietests doen in een
staging-omgeving om een definitieve baseline te krijgen. Als het team blue/green deploys® gebruikt in een
cloudinfrastructuur, kunnen ze deze tests uitvoeren in de inactieve productieomgeving.

Teams kunnen releasefunctionaliteitsschakelaars en andere technieken gebruiken om nieuwe functionalitei-
ten voor klanten te verbergen totdat ze verschillende kwaliteitskenmerken in productie testen. Zodra ze
zeker zijn van het kwaliteitsniveau voor alle aspecten van de functionaliteit, kunnen ze de functionaliteit
inschakelen. (Zie meer over testen in productie in hoofdstuk 8: Testen binnen devops teams.)

*https://docs.cloudfoundry.org/devguide/deploy-apps/blue-green.html

https://docs.cloudfoundry.org/devguide/deploy-apps/blue-green.html
https://docs.cloudfoundry.org/devguide/deploy-apps/blue-green.html

Hoofdstuk 7: Testkwaliteitskenmerken 67

Plannen om later te leren

“Hoe weten we of de functionaliteit succesvol is als we deze eenmaal hebben gereleased?” - deze laatste vraag
stellen is een geweldige manier voor het team om te praten over het doel van de nieuwe functionaliteit en
hoe ze kunnen meten of deze aan de gewenste doelen voldoet. Provisioning data voor analysetools moeten
worden gepland in de stories voor elke functionaliteit. Bedenk op storyniveau hoe het team het systeem kan
monitoren om het gebruik en de kwaliteit van de kenmerk te meten. Het team heeft mogelijk nieuwe tools
nodig voor de juiste logging en monitoring.

Op taakniveau moeten de programmeurs nadenken over hoe de code kan opgebouwd worden zodat het
team kan meten met geautomatiseerde tests of monitoringtools (zie figuur 7.2). De oplossing kan zo simpel
zijn als het uitvoeren van een optimalisatieprogramma op een nieuwe databasequery of het gebruik van
een statische analysetool om te controleren of de code voldoet aan de toegankelijkheidsnormen. Een meer
holistische benadering, zoals het inbouwen van elk event in de code, zodat productieproblemen snel kunnen
worden gelokaliseerd en opgelost, kan geschikt zijn.

Ready In Progress | To Review Done

Story 1

‘ Code Ul

Instrument
the code

Create test
data

Create DB
tables

Send log Automate
datato... tests

Figuur 7.2: Taakbord met de toekomst in gedachten

Naleving van de regelgeving

Het naleven van de regelgeving wordt niet altijd als een kwaliteitskenmerk beschouwd, maar net als de
kwaliteitskenmerken die we hebben genoemd, moet je er vanaf het begin rekening mee houden. Regelgeving
betekent niet per se stapels documenten, maar er komt meestal wel extra werk bij kijken voor het team en
het is verstandig om het al vroeg te plannen.

Organisaties moeten samenwerken met auditors en regelgevende instanties om te begrijpen welke informatie
nodig is om naleving aan te tonen. Het is belangrijk dat iedereen dezelfde visie heeft op een adequaat
gedisciplineerde aanpak. Als het team bijvoorbeeld geautomatiseerde tests heeft die elke dag worden
uitgevoerd en de tests levende documentatie opleveren in de vorm van testresultaten, kunnen die dan worden
gebruikt als bewijs om de aanpak of dekking te ondersteunen? We hebben allebei gewerkt met teams die
naleving moesten aantonen (medische apparatuur en financieel) en deden dat met heel weinig “extra” werk.
Zie hoofdstuk 21, “Agile testen in gereguleerde omgevingen” in More Agile Testing voor meer voorbeelden
en informatie.

Chapter 7: Testing Quality Attributes

Quality attributes - or as some people like to call them, non-functional requirements - are often overlooked
when discussing a new feature or story. A quality attribute defines the properties under which a feature must
operate. Rather than thinking about them as an “add-on,” we prefer to think of them as a constraint the team
must consider with every feature or story.

Defining quality attributes

Two main types of quality attributes that need to be considered are development and operational attributes.
Development attributes include code maintainability, code reuse, and testability - the “how” we develop our
code. That’s internal or technology-facing quality and is owned by the software delivery team.

When people talk about quality attributes, they usually mean the operational attributes. Ellen Gottesdiener
and Mary Gorman classify some of the quality attributes in Figure 7.1 as operational or development
attributes.

Operational Development
Availability		Recoverability		CEfficiency
nstallability	[Robustess		Flexbity	
Interoperability		Safety		Modifiability
Performance		Scalability		Portability
Reliabilty		Securiy		Reusability

Figure 7.1: Quality attributes meta model

Many of these quality attributes are technology-facing (see Chapter 9: Agile Testing Quadrants for an
explanation). If the business stakeholders don’t understand them well, the delivery team can help them set
the appropriate quality levels for each attribute.

Mitigating risks by collaborating early

Every product or organization has unique needs and risks that need to be assessed. By considering what
quality attributes are important to your customers, the team can talk about the risks for the product. For
example, Janet worked on a team where reliability was the most important quality attribute (although not
the only one). The team asked themselves, “What do we need to be able to prove reliability?” When answering
the question, the organization realized they needed to invest in a complete reliability testing environment

Chapter 7: Testing Quality Attributes 69

where the build could be deployed at the end of every iteration to run a complete set of automated tests along
with some exploratory tests. The team worked to get the automated tests and simulations working with every
story.

Some teams think about their quality attributes after they deliver the functionality, and they create stories
for the “non-functional” requirements. This is generally not a good idea because it may mean having to
go back and re-do the architecture or code design. These attributes may in fact be higher priority than
functional or behavioral requirements. Valuable functionality in some areas doesn’t overcome lack of security
or performance in some business domains. Teams that wait too late in the cycle to test these attributes (often
during the endgame just before release) hit a total roadblock. These types of issues are usually design issues
and can’t be fixed that late in the release cycle.

As a delivery team, be proactive. Don’t wait for the product owner to start the conversation. She’s probably
thinking about feature capabilities and taking quality attributes for granted. As a team, consider which aspects
of quality are most valuable to customers and the business. A good way to start is by drawing a context
diagram of the proposed new feature to see how it interacts with other capabilities or systems. Knowing
the dependencies and potentially fragile areas early means there is enough time to make the right design
decisions and ensure the team has the necessary technical knowledge. The team might plan to do a spike (an
experiment or investigation story) to explore potential designs and architecture.

Release or feature planning offer great opportunities to ask business stakeholders questions like these:

« What’s the worst thing that can happen after we release this capability? Does that make it high risk?

o Is it ok if the system or a system capability is down for some amount of time? If not, what is the
maximum time or percentage of time it can be down?

« For a web-based app, what browsers might customers use?

« Can we assume that customers will be using mobile devices? Would that include phones and tablets,
and does that mean both Apple and android? What about?

+ How will we know if the feature is successful once we release it?

Planning for pre-release testing

Some quality attributes might require more testing immediately before the release when all components
of the feature set are connected. For example, the team may do load or performance testing in a staging
environment to get a final baseline. If the team uses blue/green deploys®' in a cloud infrastructure, they may
do this testing on the idle production environment.

Teams can use release feature toggles and other techniques to hide new features from customers until they
test various quality attributes in production. Once they are confident in the level of quality for all aspects
of the feature, they can toggle the feature on. (See more on testing in production in Chapter 8: Testing in
DevOps.)

*'https://docs.cloudfoundry.org/devguide/deploy-apps/blue-green.html

https://docs.cloudfoundry.org/devguide/deploy-apps/blue-green.html
https://docs.cloudfoundry.org/devguide/deploy-apps/blue-green.html

Chapter 7: Testing Quality Attributes 70

Planning for later learning

Asking that last question - How will we know if the feature is successful once we release it? - is a great way
for the team to talk about the purpose of the new feature and how they can measure whether it meets the
desired goals. Provisioning data for analytics tools needs to be planned into the stories for each feature. At the
story level, think about how the team can monitor the system to measure usage and quality of the attribute.
The team may need new tools for appropriate logging and monitoring.

At the task level, the programmers should be thinking about instrumenting the code so that the team can
measure with automated tests or monitoring tools (see Figure 7.2). The solution might be as simple as running
an optimizer on a new database query or using a static analysis tool to check that the code meets accessibility
standards. A more holistic approach, such as instrumenting every event in the code so that production issues
can be quickly pinpointed and fixed, may be appropriate.

Ready In Progress | To Review | Done

‘ Code Ul

Instrument
the code

Create test

data tables

Create DB ‘

‘ Send log h‘ Automate

datato.. tests
‘ o] H o ‘

Figure 7.2: Task board with future in mind

Regulatory compliance

Regulatory compliance isn’t always deemed a quality attribute, but like the quality attributes we’ve
mentioned, you need to consider it from the beginning. Compliance does not necessarily mean stacks of
documents, but there is usually extra work involved for the team, and it’s wise to plan early.

Organizations need to work together with auditors and regulatory agencies to understand what information is
required to show compliance. It is important that everyone has the same vision of an appropriately disciplined
approach. For example, if the team has automated tests that run every day and the tests provide living
documentation in the form of test results, can those be used as evidence to support the approach or coverage?
Both of us have worked with teams that needed to show compliance (medical devices and financial) and did
it with very little “extra” work. See Chapter 21, “Agile Testing in Regulated Environments” in More Agile
Testing for more examples and information.

Hoofdstuk 8: Testen binnen devops
teams

Algemeen gesproken gaat ‘software development’ over het continue proces van in productie zetten van
nieuwe wijzigingen aan de software voor de gebruikers. In het verleden waren dit voornamelijk manuele
taken. Tegenwoordig bestaan er nieuwe hulpmiddelen en technieken om software producten te ontwikkelen
en om ze te naar een testomgeving en productieomgeving te brengen. Het basis principe blijft hetzelfde: de
development teams hebben veel verschillende test activiteiten met als doel het vertrouwen winnen in de
gemaakte wijzigingen aan hun product in productie. Men beschikt momenteel over een nieuwe terminologie
voor deze test activiteiten, uiteraard blijven ook hier de basis testvaardigheden relevant.

De devops beweging is gegroeid vanuit het idee dat sommige organisaties agile willen werken maar vergeten
om hun volledige operationeel personeel te betrekken binnen de transitie. Daarnaast is het ook het resultaat
van de verandering naar cloud gehoste toepassingen en infrastructuur als code vervangende ‘command
line interface’. Rollen worden aangepast en aan de operationele specialisten leert men programmeren. De
developers nemen verantwoordelijkheid over hun eigen code zelf wanneer deze al in productie staat in plaats
van het over de haag te gooien richting het operationeel personeel.

De test analisten passen ook hun eigen vaardigheden en activiteiten aan. Zo zullen zij proberen om op
verschillende manieren bij te dragen aan het team door bijvoorbeeld geautomatiseerde testsets te ontwikkelen
die betrouwbare en waardevolle informatie kunnen aanleveren. Daarnaast kunnen ze ook helpen met het
optimaliseren van de pijnlijn van de opleveringen en het testen van de infrastructuurcode om zo een
betrouwbare uitvoering te garanderen.

Hoofdstuk 23 in More Agile Testing gaat meer in detail over hoe operationele specialisten het opleverteam
kunnen helpen om de kwaliteit te verbeteren bijvoorbeeld door het opzetten van test omgevingen, het helpen
implementeren van geautomatiseerde test kaders, het genereren van test data en vele andere taken.

Het voortdurend opleveren en naar omgevingen brengen
met een pijplijn

Teams die ‘continious delivery (CD)’ gebruiken hebben telkens een kandidaat als bruikbare release elke
keer men een nieuwe wijziging aan de code bibliotheek aanbrengt en wanneer deze succesvol door de
implementatie pijplijn gaat. De pijplijn start met continue integreren, dit kan geautomatiseerde testsuites op
verschillende test levels omvatten zoals unit testen, API testen en het volledig testen van de workflow door
middel van de gebruikserinterface. Dit kan verschillende stappen bevatten zoals statische code-analyse voor
geautomatiseerde implementaties in de verschillende test omgevingen. Op basis van deze gegevens kunnen
de zakelijke stakeholders beslissen om deze ‘release kandidaat’ in productie te zetten. Dit kan op meerdere
momenten per dag. Figuur 8.1 toont een voorbeeld van een continue leveringspijplijn.

Hoofdstuk 8: Testen binnen devops teams 72

Accessibility

Quioinaled Manual Steps Testing

Steps

Exploratory

Testing
Static Code Unit Test Suite [+ API Test Suite [—»| DEPloy to test Delglqy ? SheracEi | Accgsgnce L Deploy to
Analysis environment / staging Suite Tegtmg production

!
¥

environment

Ul Test Suite

Performance
Test Suite

Team Member
commits a change

Figuur 8.1: Continue leveringspijplijn

‘Continious deployment (ook CD)’ is hetzelfde proces met als verschil dat elke succesvolle releasekandidaat
automatisch wordt geimplementeerd in productie. Figuur 8.2 toont een voorbeeld van het continue naar een
omgeving brengen met een pijplijn.

Accessibility
A“{g’ggfd Manual Steps Ui
User
Acceptance
Testing
Exploratery
Testing
Static Code ’ Deploy to test
Analysis > Unit Test Suite —»| API Test Suite |—» ERraent
Ul Test Suite
LR Stress Test Deploy to
staging — > By
e Suite production
Performance
Test Suite

Team Member
commits a change

Figuur 8.2: Het continue naar omgevingen brengen met een pijnlijn

Dit klinkt even eng als het uitvoeren van testen in productie indien je dit nog nooit gedaan hebt. Maar
als je meerdere keren per dag een release uitvoert, hoe kan je dan alle testen doen die je moet doen?
Makkelijk: het manueel uitvoeren van testen (menselijk werk), door het ontbreken van geautomatiseerde
testen of in het kader van verkennende testen en toegankelijksheidstesten, zijn evenzeer een onderdeel van

Hoofdstuk 8: Testen binnen devops teams 73

de leveringspijplijn net zoals de testen die wel geautomatiseerd zijn.

De sleutel is het herkennen van het verschil tussen het naar omgevingen brengen van code en het
vrijgeven van code.

Dankzij verschillende technieken zoals het in- en uitschakelen van bepaalde functionaliteiten is het mogelijk
om wijzigingen te verbergen voor klanten totdat men alle noodzakelijke testen kan uitvoeren. Het testen zelf
kan asynchroon gedaan worden.

‘Continuous delivery’ of ‘continuous deployment’ toont aan dat het team op een hoog niveau kan presteren.
Noodzakelijk hierbij is dat alle personen binnen het opleverteam en alle zakelijk stakeholders een gedeeld
begrip hebben van elke functionaliteit en van elke story die moet opgeleverd worden. Daarnaast beheersen de
ontwikkelaars verschillende manieren om bepaalde functionaliteiten voor sommige (of voor alle) gebruikers
te verbergen totdat ze klaar zijn om opgeleverd te worden. De leveringspijplijn moet vlot verlopen zodanig
dat het mogelijk is om dagelijks of zelfs meerdere keren per dag de code over te brengen naar productie.
Om dit te verwezenlijken is een goede infrastructuur zeer belangrijk, met andere woorden: meer beschikbare
en kwalitatieve code om op verder te bouwen en om op te testen. Daarnaast zijn er verschillende nieuwe
vaardigheden nodig om dit alles te beheersen. Wanneer elk lid van het team zijn “T-vormige’ vaardigheden®
aanbrengt en iedereen vlot samenwerkt, dan kan het team makkelijker problemen oplossen en werken aan
het verkorten van hun feedbackloop van hun eigen pijplijn.

Testen in productie

In het verleden klonk de term “testen in productie” als “zet de code in productie en laat de gebruikers de
defecten vinden en laat ze het ons zelf vertellen” of “laten we alles testen in productie en hopen dat we
niemand tijdens het gebruik beinvloeden”. Helaas werd dit in het verleden door sommige teams zo gedaan.
Tegenwoordig hebben de woorden “testen in productie” een minder beangstigende connotatie. Testen in
productie is zelfs in vele gevallen een noodzaak geworden. Maar hiermee bedoelt men helemaal niet dat men
een kwalitatief mindere code in productie moet zetten en de gebruikers zelf de bugs moeten laten ontdekken.

Het uitvoeren van testen in productie helpt bedrijven op verschillende manieren. Vaak is het onmogelijk om
een testomgeving op te zetten die er uitziet net zoals in productie. Algemeen genomen is er geen makkelijke
manier om te weten te komen hoe software zal reageren todat het in productie staat.

Technieken zoals het in- en uitschakelen van functionaliteiten maken het mogelijk dat teams bepaalde
functionaliteiten ‘aanzetten’ voor een specifieke doelgroep met als doel het snel verkrijgen van feedback.
Men geeft dit soms namen zoals ‘leerrelease’ of ‘minimaal levensvatbaar product’. Het A/B testen is hiervan
de meest gekende test techniek om te testen in productie. Hierbij toont men verschillende ontwerpen aan
verschillende mensen en laat men deze personen beoordelen bij welke men het vaakst doorklikt of welke de
grootste verkoop kan genereren.

Er bestaan geavanceerde analyse technieken en traceringsmethoden die details tonen over hoe een individuele
gebruiker navigeert doorheen de applicatie of men kan geaggregeerde statistieken genereren zoals het
percentage van klanten die een bepaalde functie gebruikt. Het verwijderen van ongebruikte functies kan
net zo belangrijk zijn als het toevoegen van nieuwe populaire functies. Dit omdat elke regel van code die men
schrijft bepaalde onderhoudskosten heeft en risico’s toevoegt. Het uitvoeren van testen in productie gaat over
monitoren en observeren.

**https://lisacrispin.com/tag/t-shaped- skills/

https://lisacrispin.com/tag/t-shaped-skills/
https://lisacrispin.com/tag/t-shaped-skills/

Hoofdstuk 8: Testen binnen devops teams 74

Monitoren en observeren

Het belang van het monitoren van de gezondheid van het systeem in productie bestaat al even lang als
software systemen relevante informatie registeren over gebeurtenissen in de systemen zelf. Teams kunnen
waarschuwingen instellen voor bepaalde soorten fouten of wanneer bepaalde foutbudgetten overschreven
worden; zoals “Plaats een waarschuwing wanneer het aantal 503 fouten stijgt tot met 10% ten opzichte
van het gemiddelde” Wanneer men een waarschuwing ontvangt, kunnen de teamleden dit opzoeken in de
logbestanden en analyse doen om het probleem in kaart te brengen. Dit met het oog op het vinden van een
oplossing voor het probleem.

Professionele testers weten dat het niet mogelijk is om alle fouten die in productie kunnen optreden vooraf
op te sporen. De afgelopen jaren gaf dit de aanleiding tot het ontstaan van een nieuwe praktijk met als naam
‘observeerbaarheid’. Vaak duid men dit aan als “011y”, wat staat voor de 11 tekens tussen de ‘0’ en de ‘y’ in
het Engelse alfabet. Teams die het 011y instrument gebruiken, registreren elke gebeurtenis in hun productie
code afzonderlijk zodat het kan geanalyseerd worden met de juiste hulpmiddelen indien nodig. Door het
gebruik van deze instrumenten en experimenten, kunnen teams informatie bestuderen uit gestructureerde log
bestanden, statistieken en andere traceerbare info. Op deze manier leren ze andere zaken over hun product
dan deze die ze kunnen leren van de testen in een testomgeving. Dit is een omgeving waar testers, met hun
vaardigheden om ongewone patronen te identifiéren en risico’s te spotten, hun meerwaarde zichtbaar maken.
Zoals Abby Bangser® aangeeft, is dit een soort van verkennend testen (exploratory testing) ondersteund door
een tool.

Observeerbaarheid stelt teams in staat om snel te reageren wanneer een gebruiker een probleem rapporteert
die het team nog nooit eerder gezien heeft of wanneer de systeemstatistieken ongewonen patronen tonen
die wijzen op een mogelijk probleem. De gestructureerde loggegevens maken het mogelijk voor het team om
gebruikersactiviteiten te traceren en snel te identificeren waar het systeem zich verkeerd begon te gedragen.
Hierdoor kunnen teams een wijziging ongedaan maken of een fix in productie zetten. Dit kan gebeuren
binnen enkele minuten. Het vermogen om zo snel in te grijpen bij productiestoringen zorgt ervoor dat het
team continue kleine wijzigingen durft in productie te zetten zonder grote angst. Dit alles zorgt ervoor dat
continue oplevering of implementatie in productie als een veilige manier van werken kan gezien worden.

Nieuwe technologie brengt ons nieuwe mogelijkheden

In de afgelopen jaren is “big data”-opslag betaalbaar geworden voor kleine bedrijven. Hierdoor kunnen
teams informatie bijhouden over elke gebeurtenis die men detecteert in een testomgeving of in productie.
Krachtige technologie, inclusief Artificiéle Intelligentie (AI) en Machine Leren (ML) kunnen versneld deze
grote hoeveelheid data verwerken en analyseren. Hierdoor kunnen wij snel leren hoe klanten onze producten
gebruiken, problemen ontdekken voor klanten ze opmerken en snel oplossingen voorzien voor problemen in
productie.

Testen uitvoeren in productie is slechts een deel van de volledige aanpak die teams gebruiken om kwaliteit in
te bouwen voor hun product. De teams plannen en voeren nog steeds alle nodige test activiteiten uit samen
met het schrijven van de code voor productie. Daarnaast kunnen ze ook het productiegebruik observeren
en risicovrije testen uitvoeren in productie om een extra niveau van vertrouwen en betrouwbaarheid toe te

**https://club.ministryoftesting.com/t/power-hour-curious- stuck- or-need- guidance- on- devops- or-observability/24963/3

https://club.ministryoftesting.com/t/power-hour-curious-stuck-or-need-guidance-on-devops-or-observability/24963/3
https://club.ministryoftesting.com/t/power-hour-curious-stuck-or-need-guidance-on-devops-or-observability/24963/3

Hoofdstuk 8: Testen binnen devops teams 75

voegen. Figuur 8.3 is een mooi voorbeeld van Cindy Sridharan uit haar artikel Monitoring and Observability**,
en geeft weer hoe teams proberen om hun productieomgeving te stimuleren in hun testomgevingen, hoe ze
de productieomgeving monitoren om voorspelbare storingen waar te nemen, en observeerbaarheid inzetten
om over het hoofd geziene problemen op te vangen die toch gebeuren ondanks alle inspanning in functie van
kwaliteit.

evmutations of Hll ond f»fk'n\ Lailove

‘)\\ ?oss'\ ble i

OBSERVARTLI T #

Figuur 8.3: Cindy Sridharan, testen, monitoren, and observeerbaarheid

**https://medium.com/@copyconstruct/testing-in-production- the- safe- way- 18ca102d0ef1

https://medium.com/@copyconstruct/testing-in-production-the-safe-way-18ca102d0ef1
https://medium.com/@copyconstruct/testing-in-production-the-safe-way-18ca102d0ef1

Chapter 8: Testing in DevOps

Software development has always included the process of getting new changes to the software into production
for customers to use. In the past, much of this process was manual. There are new tools and practices for
creating software artifacts and deploying them into test and production environments. But the basic process
is the same. Teams have many testing activities to help them feel confident about the changes they make
to their production product. There are new terms for some of this testing, but basic testing skills are still
relevant.

The DevOps movement grew out of the idea that some organizations had embraced agile development but
left their entire operations staff out of the transition. It’s also a result of the move to cloud-hosted applications
and infrastructure as code replaced command line interfaces. Roles have adapted. Operations specialists learn
how to code. Programmers take responsibility for their code even after it is in production, instead of throwing
it over the wall to operations.

Testers also adapt their own skills and activities. They contribute in many ways, such as helping to design the
automated test suites that provide reliable and valuable information, optimizing the delivery pipeline, and
testing infrastructure code to ensure reliable execution.

Chapter 23 in More Agile Testing goes into detail about how operations specialists can help the delivery
team improve quality by setting up test environments, helping to implement test automation frameworks,
generating test data, and more.

Continuous delivery and deployment

Teams practicing continuous delivery (CD) have a deployable release candidate each time a new change
is committed to the code repository and subsequently passes successfully through a deployment pipeline.
The pipeline starts with continuous integration, which may include automated test suites at different levels
such as unit, API, and full workflow through the user interface. It may include other steps such as static code
analysis for automated deployments to various environments. The business stakeholders can decide to deploy
the release candidate to production and may do so many times per day. Figure 8.1 shows an example of a
continuous delivery pipeline.

Chapter 8: Testing in DevOps 77

Accessibility
Automated ;
Steps Manual Steps Testing

Exploratory

Testing
Static Code Unit Test Suite [+ API Test Suite [—»| DEPloy to test D:lg:;:iﬁgto 2 I Accgsgnce L Deploy to
Analysis environment / o] Suite Tasting production

!

v
!

Ul Test Suite

Performance
Test Suite

Team Member
commits a change

Figure 8.1: Continuous delivery pipeline

Continuous deployment (also CD) is the same process, except that each successful release candidate
automatically deploys to production. Figure 8.2 shows an example of a continuous deployment pipeline.

Accessibility
4 u!‘ggr:;s g Manual Steps RS=iy
User
Acceptance
Testing
Exploratory
Testing
Static Code | Deploy to test
Analysis —» Unit Test Suite |—» API Test Suite |—» S T
Ul Test Suite
R Stress Test Deploy to
staging |—» . o ploy |
T Suite production
Performance
Test Suite

Team Member
commits a change

Figure 8.2: Continuous deployment pipeline

This sounds as scary as testing in production if you haven’t done it before. If you release multiple times per
day, how can you possibly fit in all the testing that you need to do? Human-centric testing, whether tests the

team hasn’t automated yet or testing activities like exploratory and accessibility testing, is as much a part of
a delivery pipeline as automated tests.

The key is recognizing the difference between deploying and releasing.

Chapter 8: Testing in DevOps 78

Thanks to techniques such as release feature toggles, it’s possible to hide changes from customers until all
necessary testing is completed. Testing can be done asynchronously.

Continuous delivery or deployment represents a high standard of achievement for a team. Delivery team
members and business stakeholders need to create a shared understanding of each feature and story to be
delivered. The developers master ways of hiding features from some (or all) customers until they are ready to
release that feature. The delivery pipeline must be fast in order to potentially deploy daily or multiple times
per day. That requires a good infrastructure, which means more code to build and test. There are many new
skills to master. When each team member brings their T-shaped skills®* and everyone collaborates, the team
can more easily solve problems and continue to shorten their feedback loops represented in the pipeline.

Testing in production

At one time, the term “testing in production” sounded like “Throw the code into production and let the
customers find the bugs and tell us,” or “Let’s test in production and hope that we don’t affect anybody’s
account.” Sadly, some teams did just that. Today, the words “testing in production” have a less fearful
connotation. Testing in production has become a necessity in many cases, but it does not mean releasing
poor quality code and letting customers find the bugs!

Testing in production helps companies in multiple ways. It’s usually impossible to create a test environment
that looks exactly like production. There is no easy way to really know what the software will do until it’s in
the production environment.

Techniques such as release feature toggling enable teams to “turn on” specific functionality to specific
customers to get quick feedback. Sometimes this is called a learning release or minimal viable product
(MVP). A/B testing may be the most well-known testing-in-production technique, showing different designs
to different people and judging which lead to the most “click-throughs” or sales.

Sophisticated analytics and tracing can show details such as how an individual user navigates through
the application, or aggregate statistics like what percentage of customers are using a specific capability.
Removing unused features can be just as important as adding popular new ones, since every line of code
has a maintenance cost and adds risk. Testing in production is about monitoring and observing.

Monitoring and observability

The importance of monitoring system health in production has existed as long as software systems have
logged pertinent information about events in the system. Teams can set up alerts for certain types of errors
or for exceeding an error budget - for example, “Post an alert when the number of 503 errors goes up by 10%
over average.” When alerted, team members dig into the log files and analytics to investigate the problem so
they can resolve it.

Professional testers know that it’s not possible to predict all the possible errors that can occur in production! In
recent years, this has given rise to a new practice called observability, often referred to as “o11y,” representing
the 11 characters between the ‘0’ and the ‘y’ in the English alphabet. Teams that practice 011y instrument

**https://lisacrispin.com/tag/t-shaped- skills/

https://lisacrispin.com/tag/t-shaped-skills/
https://lisacrispin.com/tag/t-shaped-skills/

Chapter 8: Testing in DevOps 79

and log every single event in their production code so it can be analyzed by appropriate tools when needed.
Using tools and experiments, teams study information from structured log data, metrics, and traces to learn
different things about their product than what can be learned in a test environment. This is an area where
testers, with their ability to notice unusual patterns and identify risks, contribute value. As Abby Bangser*
has said, it is a form of tool-assisted exploratory testing.

Observability lets teams respond quickly when a user reports a problem that the team has never seen before,
or when system metrics show unusual patterns indicating a potential problem. The structured log data enables
the team to trace user activity and quickly identify where the system started behaving incorrectly. This allows
teams to revert a change or deploy a fix, often in a matter of minutes. This ability to recover so quickly from
production failures lets the team release these continual small changes to the product fearlessly, and it’s what
makes continuous delivery or deployment a safe practice.

New technology brings us new capabilities

In the past few years, “big data” storage has become affordable even for small companies. Teams can log
information about every event that occurs in any test or production environment. Powerful technology,
including artificial intelligence (AI) and machine learning (ML), has sped up processing and analysis of these
huge amounts of data. We can quickly learn how customers are using our products, discover problems before
they do, and quickly recover from failures.

Testing in production is just one part of any team’s approach to building quality into their product. They still
plan and execute all the appropriate testing activities along with writing the production code. They can also
observe production use and run risk-free tests in production to add another level of confidence and reliability.
Figure 8.3 is a wonderful graphic by Cindy Sridharan from her article Monitoring and Observability*’, and
represents how teams test trying to simulate production, monitor for predictable failures in production, and
use observability to catch anything that slips through those other quality-driven efforts.

DBESER BB TLT 3 7

Figure 8.3: Cindy Sridharan’s testing, monitoring, and observability

*https://club.ministryoftesting.com/t/power-hour- curious- stuck-or-need-guidance- on-devops-or-observability/24963/3
*"https://medium.com/@copyconstruct/testing-in-production- the- safe- way- 18ca102d0ef1

https://club.ministryoftesting.com/t/power-hour-curious-stuck-or-need-guidance-on-devops-or-observability/24963/3
https://medium.com/@copyconstruct/testing-in-production-the-safe-way-18ca102d0ef1
https://club.ministryoftesting.com/t/power-hour-curious-stuck-or-need-guidance-on-devops-or-observability/24963/3
https://medium.com/@copyconstruct/testing-in-production-the-safe-way-18ca102d0ef1

DEEL 3: Handige Modellen

Wij hebben ontdekt dat visuele modellen een essentieel ingrediént zijn om teams te helpen bij het plannen
en uitvoeren van alle noodzakelijke testactiviteiten en het formuleren van een effectieve testautomatiserings-
strategie. In deze sectie leggen we uit hoe je de agile testkwadranten kan gebruiken om alle soorten tests
te identificeren die nodig zijn voor elke nieuwe functionaliteitsset of story, en om ervoor te zorgen dat
ze worden uitgevoerd wanneer ze het meest effectief zijn. Daarna bekijken we hoe we visuele modellen
zoals de testautomatiseringspiramide kunnen gebruiken om teamgesprekken te begeleiden die gaan over een
realistische automatiseringsstrategie binnen hun specifieke context.

« Hoofdstuk 9: De Agile Testkwadranten
» Hoofdstuk 10: Visualiseren van een testautomatiseringsstrategie

SECTION 3: Helpful Models

We have found visual models an essential ingredient in helping teams plan and execute all necessary testing
activities and formulate an effective test automation strategy. In this section, we explain how to use the Agile
Testing Quadrants to identify all the types of tests that are needed for each new feature set or story, and make
sure they are done when they are the most effective. Then we look at how to use visual models such as the

Test Automation Pyramid to guide team conversations about a realistic automation strategy that works for
their context.

« Chapter 9: The Agile Testing Quadrants
+ Chapter 10: Visualizing a Test Automation Strategy

Hoofdstuk 9: De Agile Testkwadranten

Brian Marick beschreef als eerste de agile testkwadranten (Figuur 9.1) in 2003, toen Lisa en Janet probeerden
uit te zoeken hoe over testen te praten met de agile gemeenschap, en specifiek met de testers. Op dat
moment behandelden de agilisten enkel “klant testen” en “programmeur testen.” Veel teams focusten enkel
op functionele acceptatietesten — hoe de functionaliteiten zich moesten gedragen. Vandaag de dag is dit nog
steeds een potentiéle valkuil voor teams in de overgang naar agile. De kwadranten gaven hen een manier om
alle verschillende soorten testen te behandelen die een team mogelijk dient te overwegen. Ze helpen hen om
het grote geheel te zien.

De agile testkwadranten zijn een taxonomie van verschillende types van testen. We gebruiken ze als
denkgereedschap om teams te helpen bepalen welke testactiviteiten ze zouden kunnen nodig hebben en om
zeker te zijn dat ze over de juiste mensen, gereedschappen en omgevingen beschikken om ze uit te voeren.

Business Facing

- R

1npoid ayl anbiu)

Guide Development

. /

Technology Facing

Figuur 9.1: De Agile Testkwadranten

Testen aan de linkerkant zijn degene die de ontwikkeling in goede banen leiden, degene die geschreven worden
voordat code geschreven wordt of terwijl de codering vordert. De testen aan de rechterkant zijn degene die
het product beoordelen (evalueren) wanneer de code klaar is. Testen links helpen defecten te voorkomen.
Testen rechts vinden defecten in de code of identificeren misschien ontbrekende functionaliteiten.

De bovenste helft van de kwadranten focust op testen die leesbaar zijn door business stakeholders. Deze
testen beantwoorden de vraag, “Zijn we het juiste ding aan het bouwen?” De onderste helft omvat testen
die geschreven zijn door en voor technische teamleden. Voor de business stakeholders zijn waarschijnlijk
de eindresultaten belangrijk, ze zullen niet proberen de testen te lezen. De bovenste helft gaat over externe
kwaliteit zoals bepaald door de business. De onderste helft gaat over de correctheid van de interne code of
de infrastructuur.

De kwadranten zijn genummerd voor het gemak. De vier kwadranten zijn:

Hoofdstuk 9: De Agile Testkwadranten 83

« Kwadrant 1 (K1
« Kwadrant 2 (K2
- Kwadrant 3 (K3
« Kwadrant 4 (K4

: Technologiegerichte testen die de ontwikkeling in goede banen leiden
: Businessgerichte testen die de ontwikkeling in goede banen leiden

: Businessgerichte testen die het product beoordelen

: Technologiegerichte testen die het product beoordelen

~— — ~— —

Het agile testkwadrantenmodel helpt teams doordenken over de testactiviteiten die nodig zijn om vertrouwen
te geven in het product dat ze bouwen. Het helpt ook een gemeenschappelijke testtaal te ontwikkelen met het
team en de organisatie wanneer het wordt gebruikt om te communiceren tussen teams. Janet is fan van dit
model omdat het niet enkel een holistisch beeld geeft van testen maar dat het ook zichtbaar maakt dat het
ganse team verantwoordelijk is voor die testactiviteiten.

Elk team heeft zijn eigen verschillende combinatie van business domein, product, vaardigheden, productma-
turiteit, technische stack, regelgevend toezicht, en meer. Het model kan toegepast worden om de testen die
nodig zijn in elke context weer te geven. In Figuur 9.2 delen we enkele typische types van testen voor elk
kwadrant.

Hint: Onthoud: Gebruik deze voorbeelden als richtlijnen. Het is een gereedschap, geen regel, en
er zijn heel wat grijze zones. De context van jullie team is uniek, en jullie testkwadranten moeten
dat ook zijn. Pas het model toe voor de testen die jullie moeten doen.

Business Facing

/ Examples Exploratorytesting \
] Story acceptance tests Workflows, usability testing 2
g UX (user experience) tests UAT (user acceptance test) .E
g— Prototypes, simulations Monitoringand observability 2
g 3
ﬂJ)
a Unit tests Performance tests §-
:g Component tests Load tests, security tests g
(G] (code level) Quality attributes(...ilities) e

K Recoverability /

Technology Facing

Figuur 9.2: Voorbeelden van testing types voor de kwadranten

Welke testen in welke volgorde?

We hebben de kwadranten 1, 2, 3, 4 genummerd voor het gemak. Omdat het een hele mond vol is om te zeggen
“Businessgerichte testen die de ontwikkeling in goede banen leiden,” spreken we hierna van “Kwadrant 2” of
“K2” De nummers zijn niet bedoeld om aan te geven dat de types van testactiviteiten moeten gebeuren in die

Hoofdstuk 9: De Agile Testkwadranten 84

volgorde. Terwijl het team zijn testen plant, dienen ze na te denken over het gepaste moment om elk type
testactiviteit uit te voeren.

Een voorbeeld. Een team beslist om met een nieuwe architectuur te starten voor nieuwe functionaliteiten in
de toekomst. Ze moeten zeker zijn dat de architectuur op een aangepaste manier zal schalen om voldoende
gebruikers aan te kunnen en om een zekere belasting van het systeem aan te kunnen. Het team voert
een “spike” uit wat betekent dat ze een beetje weggooicode schrijven, enkel en alleen met als doel de
nieuwe architectuur te testen. Ze voeren belastings- en performantietesten uit op de “spike” om te kijken
of de architectuur tegemoetkomt aan de vereisten qua antwoordtijden en stabiliteit. Als ze tevreden zijn,
verwijderen ze de spike en beginnen te werken aan stories voor een nieuwe functionaliteit, waarbij ze deze
keer hun gewone ontwikkelingspraktijken volgen. Als ze niet tevreden zijn, dienen ze mogelijk de architectuur
te her-denken en het proces te herhalen.

Voor de ontwikkeling van functionaliteiten starten de meeste teams waarschijnlijk in K2. Misschien tekenen
ze prototypes op papier en tonen ze aan potentiéle klanten. Het oplever- en business team heeft misschien een
story-mapping of specificatie workshop om functionaliteiten te behandelen en in stories te snijden. Tijdens de
backlog verfijning of story-gereedheid workshops kan het team activiteiten zoals example mapping gebruiken
om meer details naar te boven te brengen.

Zodra het team start aan de ontwikkeling van een story, werken ze aan testen van K1, door unittesten te
schrijven als onderdeel van testgedreven ontwikkeling. Tegelijkertijd kunnen ze werken aan storytesten in
K2. Van zodra voldoende ontwikkeld is van een functionaliteit om te onderzoeken, beginnen ze aan K3
testing. Nochtans als beveiliging de nummer één concern is voor zowel business als de klanten, dan kunnen
beveiligingstesten van K4 geprioriteerd worden boven functionele storytesten van K2. Elk team vindt zijn
eigen werkwijze, en die kan anders zijn voor verschillende types functionaliteiten of projecten.

De kwadranten gebruiken

Janet en Lisa hebben teams de kwadranten zien gebruiken op veel verschillende manieren. Sommige teams
hangen een poster op de muur met de lege kwadranten. Wanneer ze een nieuwe functionaliteit of release
plannen, bespreken ze alle testen die ze nodig hebben en noteren elk type in het gepaste kwadrant. Ze
gebruiken het om hen eraan te herinneren wat ze moeten doen of wat ze zouden kunnen vergeten zijn.

Kwadrant 1

Teams kunnen de kwadranten ook gebruiken om te bespreken welke testen ze moeten automatiseren. K1
testen worden typisch geautomatiseerd door de ontwikkelaars van de productiecode. Veel teams werken
volgens testgedreven ontwikkelingspraktijken (TDD), waarbij ze een kleine unittest schrijven voor een klein
stukje functionaliteit, en nadien de code toevoegen die ervoor moet zorgen dat de test slaagt. K1 testen zijn
ontworpen om snel uit te voeren omdat ze maar een klein stukje code testen en gewoonlijk geen interacties
omvatten met andere lagen van de applicatie of databases. Ze geven teams de snelle feedback die nodig is om
snel en zonder angst wijzigingen te kunnen maken aan de code.

Hoofdstuk 9: De Agile Testkwadranten 85

Kwadrant 2

De businessgerichte testen van K2 die de ontwikkeling in goede banen leiden zijn een belangrijk fundament
voor de meeste teams. Product owners, ontwikkelaars, testers, en anderen ontmoeten elkaar vaak om
functionaliteiten en stories te plannen. Ze gebruiken daarbij technieken zoals example mapping om business
regels uit te klaren voor elke story, samen met de voorbeelden die ze illustreren. Teams die gedragsgestuurde
ontwikkeling (BDD), door acceptatietesten gestuurde ontwikkeling (ATDD), of specificatie door voorbeelden
(SBE) beoefenen, vertalen deze naar scenarios die gedrag specifiéren als uitvoerbare testen. Deze scenarios
kunnen worden geautomatiseerd terwijl de code wordt geschreven.

Kwadrant 3

Testen in K3 zijn eerder mens-centraal, en leren of de ontwikkelde stories en functionaliteiten de beoogde
waarde opleveren aan klanten. Automatisatie kan daarbij gebruikt worden om dit soort testen te vereenvoudi-
gen door het voorzien van data of status. Het is een vaak gebruikte werkwijze om exploratory testen te doen
in productie, gebruik makend van feature toggles om nieuwe functionaliteiten te “verbergen” voor klanten
tot het testen is voltooid. K3 testen omvatten testen in productie zoals monitoring analyses om te leren wat er
echt gebeurt en hoe klanten de functionaliteiten gebruiken. Wat geleerd wordt van K3 testen keer vaak terug
naar K2, en resulteert dan in het maken van nieuwe stories of functionaliteiten.

Kwadrant 4

Veel K4 testen zijn gebaseerd op automatisatie en gereedschappen, maar sommige aspecten kunnen bij-
komende testen vereisen. Bijvoorbeeld, de geautomatiseerde gereedschappen om toegankelijkheidstesten
uit te voeren, zijn nog steeds niet zo effectief als manuele exploratory testen voor dit kwaliteitskenmerk.
Resultaten van deze testen keren vaak terug als K1 activiteiten wanneer het team het code ontwerp
wijzigt om verschillende kwaliteitskenmerken te verbeteren. Prestatiemonitoring en fouten in productie, of
herstelbaarheidstesten kunnen ook beschouwd worden als een type van testen dat in K4 thuishoort. De
technologie van vandaag heeft het haalbaar en veilig gemaakt om in productie te testen. Dit betekent niet dat
we klanten bugs voor ons laten ontdekken maar dat we met zekerheid leren hoe de code zich gedraagt in een
echte productie-omgeving. (Details over testing in productie zijn te vinden in Hoofdstuk 8.)

“Klaar"” definiéren

Gebruik de kwadranten om te bepalen wat “Klaar” betekent voor jouw team. Veel teams hebben het moeilijk
wanneer ze proberen te beslissen welke testen ingesloten moeten worden in die definitie. In Hoofdstuk 3
spraken we over niveaus van detail, en die niveaus worden hier toegepast. In plaats van “Klaar” te definiéren,
sporen we teams aan om meer specifiek te zijn en te spreken van “Story Klaar”. Testen die “Story Klaar”
bepalen, omvatten waarschijnlijk alles van K1, alles van K2, en misschien wat van K3 zoals exploratory
testen.

Als we een stap verder gaan en “Functionaliteit Klaar” definiéren, nemen we alle testen voor stories, maar
misschien ook testen zoals gebruikersacceptatietesten (UAT) en exploratory testen van de functionaliteit. We

Hoofdstuk 9: De Agile Testkwadranten 86

bevelen aan om alle kwaliteitskenmerken die niet konden getest worden op story niveau uit te voeren op het
niveau van de functionaliteit.

Je kan zelfs “Release Klaar” definiéren. Dat zou alle testen omvatten die van toepassing is op jouw context,
vanuit elk kwadrant.

Hint: Onthoud, wanneer we spreken van “klaar-heid” van een story, een functionaliteit, of een
release, leggen we niet op dat deze testen in een vaste volgorde moeten uitgevoerd worden. Het
verdient eerder aanbeveling te overwegen welke testen de ontwikkeling in goede banen leiden
(fouten vermijden) en dewelke het product beoordelen (tekorten in de code ontdekken).

Figuur 9.3: Zoeken en “oplossen” van fouten

De modellen vinden die passen in jouw context

Veel teams vonden de agile testkwadranten nuttig bij het plannen van hun testactiviteiten. Andere hebben
het kwadrantenmodel aangepast om beter te voldoen aan hun noden. Er zijn veel nuttige variaties op de
kwadranten. Je kan Hoofdstuk 8 van More Agile Testing downloaden (in het Engels) van agiletester.ca®, om
verschillende variaties op de kwadranten te vinden. Bekijk onze bronnenlijst voor meer informatie.

Welk model ook het beste werkt voor jullie, zorg ervoor dat je het zichtbaar houdt en gebruik het om
conversaties te stimuleren over hoe jullie continu jullie testen kunnen verbeteren.

**https://agiletester.ca

https://agiletester.ca/
https://agiletester.ca/

Chapter 9: The Agile Testing Quadrants

Brian Marick first wrote about the agile testing quadrants (Figure 9.1) in 2003, when Lisa and Janet were
trying to figure out how to talk about testing to the agile community, especially the testers. At that time,
most of the agile folks were discussing only “customer tests” and “programmer tests” A lot of teams were
focused only on functional acceptance tests — how the features should behave. Today, this is still a potential
pitfall for teams transitioning to agile. The quadrants gave us a way to discuss all the different types of testing
that a team might need to consider. They help us see the big picture.

The agile testing quadrants are a taxonomy of different types of testing. We use it as a thinking tool to help
teams discuss what testing activities they might need and make sure they have the right people, resources,
and environments to perform them.

Business Facing

- R

1npoid ayl anbnu)

Guide Development

o /

Technology Facing

Figure 9.1: Agile Testing Quadrants

Tests on the left-hand side are those that guide development, the ones that are written before coding happens
or concurrently as coding proceeds. The tests on the right-hand side are those that critique (evaluate) the
product after coding is complete. Tests on the left help prevent defects. Tests on the right find defects in the
code or perhaps identify missing features.

The top half of the quadrants focuses on tests that are readable by business stakeholders. These tests answer
the question, “Are we building the right thing?” The bottom half includes tests that are written by and for
technical team members. The business stakeholders probably care about the end results, but they would not
try to read the tests. The top half is about external quality as defined by the business. The bottom half is about
internal code or infrastructure correctness.

The quadrants are numbered for ease of reference. The four quadrants are labeled as:

« Quadrant 1 (Q1): Technology-facing tests that guide development

Chapter 9: The Agile Testing Quadrants 88

+ Quadrant 2 (Q2): Business-facing tests that guide development
« Quadrant 3 (Q3): Business-facing tests that critique the product
« Quadrant 4 (Q4): Technology-facing tests that critique the product

The agile testing quadrants model helps teams think through testing activities that are needed to give
confidence to the product they are building. It also helps to build a common testing language with the team
and with the organization if used to help communicate across teams. Janet’s favorite thing about this model
is that it not only represents a holistic view into testing but also makes the whole team’s responsibility for
testing activities visible.

Each team has its own distinct combination of business domain, product, skills, product maturity, technical
stack, regulatory oversight, and more. The model can be applied to represent the testing required in each
context. In Figure 9.2, we share some typical types of tests that might be found in each quadrant.

Hint: Remember: Use these examples as a guideline. It’s a tool, not a rule, and there are lots of
gray areas. Your team’s context is unique, and your quadrants should be too. Apply the model to
the testing you need to do.

Business Facing

/ Examples Exploratorytesting \
E Story acceptance tests Workflows, usability testing 2
g UX (user experience) tests UAT (user acceptance test) .E
g— Prototypes, simulations Monitoringand observability 2
3 Unit tests Performance tests §-
:g Component tests Load tests, security tests g
(G] (code level) Quality attributes(...ilities) e

\ Recoverability /

Technology Facing

Figure 9.2: Examples of testing types for the quadrants

What tests in what order?

We have numbered the quadrants 1, 2, 3, 4 simply for ease of reference. It’s a mouthful to say “Business-facing
tests that guide development,” so we say, “Quadrant 2” or “Q2” The numbers are not intended to represent
that the types of testing activities should be done in that order. As the team plans their testing, they will think
about the appropriate time to do each testing activity.

Chapter 9: The Agile Testing Quadrants 89

Here’s an example. A team decides to start using a new architecture for the new features going forward. They
need to be sure that the architecture will scale appropriately to accommodate a certain number of users and a
potential load on the system. The team does a “spike,” which means they write some throw-away code solely
for the purpose of testing out the architecture. They do load and performance testing on the “spike” to see if
it meets response time requirements and remains stable. If they’re satisfied, they delete the spike and start
working on stories for a new feature, this time following their usual development practices. If they’re not
satisfied, they may re-think the architecture and repeat the process.

For feature development, most teams probably start in Q2. They might draw prototypes on paper and show
them to potential customers. The delivery and business team might have a story-mapping or specification
workshop to discuss features and slice them into stories. During backlog refinement or story-readiness
workshops, the team can use activities such as example mapping to extract more details.

Once the team starts developing a story, they work on tests from Q1, writing unit tests as part of test-driven
development. They may simultaneously be working on story tests in Q2. If enough of a feature is delivered
to explore, they may move into Q3 testing. However, if security is the number one concern for the business
and customers, security testing in Q4 may be prioritized over functional story testing from Q2. Each team
finds their own way of working, and it may change for different types of features or projects.

Using the quadrants

Janet and Lisa have seen teams use the quadrants in many ways. Some teams put a poster on the wall with
the blank quadrants. As they plan a new feature or release, they talk about all the testing they’ll need and
write each type in the appropriate quadrant. They use it as a reminder about what they need to do or what
they may have forgotten.

Quadrant 1

Teams can also use the quadrants to talk about what tests should be automated. Q1 tests are typically
automated by the developers writing the production code. Many teams practice test-driven development
(TDD), writing a small unit test for some small piece of functionality, then the code to make that test pass.
Q1 tests are designed to run quickly since they test such a small area of code and generally don’t include
interaction with other layers of the application or databases. They give teams the fast feedback needed to
make changes to the code quickly and fearlessly.

Quadrant 2

The business-facing tests that guide development in Q2 are an important foundation for most teams. Product
owners, developers, testers, and others meet frequently to plan features and stories. They may use techniques
such as example mapping to elicit business rules for each story along with the examples that illustrate
them. Teams practicing behavior-driven development (BDD), acceptance test-driven development (ATDD),
or specification by example (SBE) turn these into scenarios that specify behavior as executable tests. These
scenarios can be automated as the code is written.

Chapter 9: The Agile Testing Quadrants 90

Quadrant 3

Tests in Q3 tend to be human-centric, learning whether the delivered stories and features provide the intended
value to customers. Automation may be used to facilitate this testing via data or state setup. It’s becoming
more common for teams to do exploratory testing in production, using release feature toggles to “hide” new
features from customers until testing is complete. Q3 tests include forms of testing in production such as
monitoring analytics to learn what really happens and how customers use the features. Information learned
from Q3 testing feeds back into Q2, often resulting in creating new stories or features.

Quadrant 4

Many Q4 tests depend on automation and tools, but some may require additional testing. For example, the
automated tools for accessibility (often shortened to “ally,” representing the starting and ending letters
and the number of letters in between) testing are still not as effective as manual exploratory testing for
those capabilities. Results of these tests often feed back into Q1 activities as the team changes the code
design to improve various quality attributes. Monitoring performance and errors in production, or testing
for recoverability, can also be considered a type of testing that falls into Q4. Today’s technology has made it
feasible and safe to test in production. This doesn’t mean that we let customers find bugs for us but that we
learn for sure how the code behaves in a true production environment. (Details on testing in production can
be found in Chapter 8.)

Defining “Done”

Use the quadrants to define what “Done” means to your team. Many teams struggle when trying to decide
what testing should be included in that definition. In Chapter 3, we talked about levels of detail, and those
levels apply here. Instead of defining “Done,” we encourage teams to be more specific and call it “Story Done.”
Testing that can be included in “Story Done” would likely be all of Q1, all of Q2, and perhaps some of Q3 like
exploratory testing.

Go one step further and define “Feature Done,” which would include all testing for stories, but perhaps also
includes tests like user acceptance testing (UAT) and exploratory testing at the feature level. We recommend
that all quality attributes that could not be tested at the story level should be performed at the feature level.

You may even choose to define “Release Done.” That would include every test that applies in your context,
from every quadrant.

Hint: Remember, when we talk about “done-ness” at story, feature, and release levels, we are not
mandating that tests be done in a certain order. Rather, consider which tests guide development
(prevent defects) and which ones are critiquing the product (finding defects in the code).

Chapter 9: The Agile Testing Quadrants 91

Figure 9.3: Finding and “fixing” bugs

Find the models that fit your context

Many teams have found the agile testing quadrants useful in planning their testing activities. Others have
adapted the quadrants model to better suit their needs, and there are many useful variations on the quadrants.
You can find Chapter 8 from More Agile Testing available for download on agiletester.ca®, and it includes
several adaptations of the quadrants. Check our resources list for more.

Whatever model works best for you, be sure to keep it visible and use it to stimulate conversations about how
to continually improve your testing.

**https://agiletester.ca

https://agiletester.ca/
https://agiletester.ca/

Hoofdstuk 10: Visualiseren van een
testautomatiseringsstrategie

Veel teams hebben nog steeds geen geautomatiseerde regressietesten. Sommige teams voelen dat ze het proces
onder de knie hebben, maar als ze nieuwe technologie in hun product gebruiken, merken ze dat hun bestaande
testautomatisering gereedschappen hier niet mee kunnen omgaan. Ze worstelen constant met de balans tussen
waarde en onderhoudskosten. Waar een individueel team ook op zijn testautomatisering reis is, is het nuttig
om een stap terug te zetten en te denken op prioriteiten en verbeteringen, waarop vervolgens kan worden
gefocust. Dit hoofdstuk is niet bedoeld om een uitgebreide introductie te geven over testautomatisering,
maar om teams te laten zien hoe visuele modellen kunnen helpen om hun testautomatiseringsstrategieén
te ontwerpen.

Gebruik maken van visuele modellen

Het betrekken van het gehele team in het formuleren van een strategie om de automatiseringsbehoeften in
kaart te brengen en het uitvoeren van die strategie is de sleutel om te slagen met automatisering. Visuele
modellen leiden deze gesprekken.

De testkwadranten, besproken in hoofdstuk 9, kunnen deze teams helpen om hun teststrategieén te plannen
als ze zowel deze testtypes die nodig zijn als de vaardigheden, gereedschappen en infrastructuur, die ze nodig
zullen hebben om dit voor elkaar te krijgen. In dit hoofdstuk kijken we naar aanvullende modellen, die teams
kunnen helpen om een succesvolle automatiseringsstrategie te vinden.

Hint: Onthoud, dat dit denk gereedschappen zijn om te worden gebruikt voor het starten van
gesprekken over hoe jouw team testen wilt automatiseren..

De klassieke testautomatiseringspiramide

Mike Cohns testautomatiseringspiramide heeft veel teams geholpen sinds de eerste jaren na 2000. We hebben
het wat aangepast vanaf toen (Figuur 10.1) om onze intentie duidelijk te maken, door een wolk in te voegen
aan de top om aan te geven dat niet alle regressietesten kunnen worden geautomatiseerd. Vaak hebben we
een mens centrale testen nodig, die onderzoekende testen (ET) bevatten.

Hoofdstuk 10: Visualiseren van een testautomatiseringsstrategie 93

Manual / ET 000
Tests

’;‘"WOrkflow‘
Tests \

Through the Ul

API / Service Layer
Business Rules
Functional Test

Unit Tests / Component Tests

(Programmer Tests)

Figuur 10.1: Klassieke Testautomatiseringspiramide

Sommige regressies vinden alleen plaats wanneer twee of meer lagen van de applicatie zijn betrokken. Dit
zou workflow testen door de Ul vereisen die de server, database, en/of extern systeem erbij betrekken. In de
meeste contexten is het beste om het aantal end-to-end workflow testen te minimaliseren. Deze testen zijn
langzaam, zijn vaak het meest breekbaar en vereisen meestal het meeste onderhoud. De wolk op de top van
de piramide bevat mens centrale activisten zoals exploratory testen en andere taken, die niet kunnen worden
geautomatiseerd.

De testautomatiseringspiramide helpt ons te bedenken om “testen lager te duwen”, de regressietesten tot één
deel van de applicatie te maximaliseren en degenen die meerdere lagen van het systeem erbij betrekken, te
minimaliseren. Wanneer teams testen plannen, kunnen ze naar de piramide kijken om te zien welke testen
het meest geschikt kunnen worden geautomatiseerd.

De klassieke piramide is niet bedoeld dat er een bepaald nummer of percentage van geautomatiseerde testen
op elk niveau is. Seb Rose vormde het model een beetje anders zoals getoond in Figuur 10.2.

Hoofdstuk 10: Visualiseren van een testautomatiseringsstrategie 94

How much of the
application the
test exercises

Number of tests

Figuur 10.2: Seb Roses versie van de piramide, aantal testen ten opzichte van testdekking.

Sebs model verduidelijkt dat wat een test duurder maakt is het aantal lagen van de applicatie, die nodig is om
het uit te voeren. Het is bijvoorbeeld mogelijk om een unit niveau test te hebben van de UI die niet andere
lagen van de applicatie erbij te betrekken. Het is mogelijk om TDD te gebruiken voor elke geisoleerde laag
van de applicatie ongeacht of het de server, de API, de UI of de microservice is.

Er zijn veel aanpassingen van het piramidemodel (en ja, de klassieke is echt een driehoek) over de jaren.
Hoofdstuk 15 van “More Agile Testing” bevat verscheidene aanpassingen inclusief die van Alister Scott en
Sharon Robson.

Teams die geautomatiseerde testen hebben, kunnen de “vorm” van hun piramide tekenen om te visualiseren
waar hun huidige testen passen. Veel teams starten met meestal Ul testen en een “ondersteboven” piramide
of “ijshoorn*’” Anderen hebben wellicht een zandloper. Geen van deze vormen zijn strikt verkeerd, maar als
de huidige automatisering niet aan de behoeften van het team voldoet, kunnen plaatjes helpen om te zien
welke veranderingen nodig zijn.

Gesprekken over een visueel model helpen teams die net aan het starten zijn met automatisering inspannin-
gen, om te beslissen over hun eventuele doel en hun eerste prioriteiten.

Geautomatiseerde testen als levende documentatie

De tijd, kosten en moeite, die in het automatiseren van verschillende soorten van testen op verschillende lagen
van de applicatie, zijn niet enige overwegingen bij het samenstellen van de automatiseringsstrategie. Een
andere overweging is om rekening te houden met degene, die in staat zijn om de tests te lezen en begrijpen. Seb
Roses testautomatisering ijsberg (Figuur 10.3) herinnert ons aan één van de meest waardevolle eigenschappen
van geautomatiseerde testen is de levende documentatie die het ons geeft. Ze zijn altijd bijgewerkt, omdat
het team hen de gehele tijd succesvol doet slagen, zodat je op elk gegeven moment kan vertellen, wat jouw
systeem doet.

“*https://watirmelon.blog/testing-pyramids/

https://watirmelon.blog/testing-pyramids/
https://watirmelon.blog/testing-pyramids/

Hoofdstuk 10: Visualiseren van een testautomatiseringsstrategie 95

Business-readable

Technical

Die delen van de ijs-
berg boven de waterlijn zijn testen, die leesbaar zijn voor de business, terwijl degene eronder dat niet zijn
(zijn geschreven in een technische taal) De hoeveelheid testen zal variéren per team; bijvoorbeeld, Lisa werkte
in een team, wiens product was bedoeld voor andere oplever teams. ledereen in het team inclusief de product
owner kon de geautomatiseerde regressietesten geschreven in low-level code begrijpen. Ze hadden geen
“bedrijf leesbare” testen. In andere gebieden is het kritisch dat bedrijf stakeholders de acceptatietesten kunnen
begrijpen. Dit model helpt ons te herinneren om te denken over wat er nodig is in de context van het team.

Het model uitbreiden

Zelfs de meest ijverige geautomatiseerde regressietesten dekking zou falen om de regressiefouten te identifice-
ren. Geen enkele testomgeving is precies hetzelfde als productie. Sommige bugs worden gevonden in productie
zoals besproken in hoofdstuk 8. In haar boek “A Practical Guide In DevOps” presenteert Katrina Clokie haar
DevOps filter. Het is een handig plaatje, dat unit testen alleen kleine fouten eruit filteren, terwijl verschillende
lagen van integratietesten en end-to-end testen voortschrijdend grotere detecteren. Om de volledig gevormde
bugs te vinden hebben teams logs, alarmeringen en monitoring nodig voor hun productiesysteem.

Gedeelde verantwoordelijkheid

We moedigen teams aan om de verantwoordelijkheid van het testen van de bedrijfsregels en hogere
niveaus van integratie op API niveau te delen. Testers zouden ook inzicht moet hebben in de unit — en

Hoofdstuk 10: Visualiseren van een testautomatiseringsstrategie 96

componenttesten geschreven door de ontwikkelaars. Als teamlid is het belangrijk om de applicatie van jouw
team en de interne werking te begrijpen bij het benaderen van jouw automatiseringsstrategie.

Omdat het automatiseren van testen door de Ul de neiging heeft om meer tijd te consumeren, is er de
verleiding om dit over te dragen aan een apart automatiseringsteam of de testers in het team volledige
verantwoordelijkheid hiervoor te geven. Wij raden aan, dat de ontwikkelaars die efficiénte onderhoudbare
code schrijven, samen te werken met de testers, die goed zijn in het specificeren van testgevallen door zowel
de UI als de andere lagen boven de basislaag van de piramide. Onthoud, dat net als de andere modellen
is de testautomatiseringspiramide een gids. Teams die alle leden in alle rollen samenbrengen om vragen
te stellen, praten over de antwoorden, op het whiteboard tekenen en experimenten ontwerpen, hebben het
beste succes met automatisering. Visuele modellen zoals de voorbeelden in dit hoofdstuk helpen teams te
praten waarom ze testen automatiseren, wat de grootste automatisering pijnpunten zijn, hoe mensen met
verschillende vaardigheden kunnen helpen en wat hun volgende experimenten zouden zijn. Volgens onze
ervaring werkt een stap bij stap benadering het beste.

Chapter 10: Visualizing a Test
Automation Strategy

Test automation is a constant challenge for software teams everywhere. Many teams still have no automated
regression tests. Some teams feel they’ve mastered the process, but then they update their product to
incorporate new technology that their existing automation tools can’t handle. They often struggle to maintain
a balance between value and maintenance cost.

Wherever an individual team is on its automation journey, it’s helpful to take a step back and think about
priorities and what improvements to focus on next. This chapter is not meant to give you an extensive
introduction into automation but to show how using visual models can help teams design their automation
strategy.

Using visual models

Getting the whole team involved in formulating a strategy for addressing different automation needs and
executing that strategy is key to succeeding with automation. Visual models help guide these conversations.

The agile testing quadrants model covered in Chapter 9 can help teams plan their automation strategy as they
discuss the different types of testing that are needed, as well as what skills, tools, and infrastructure they will
need to complete it. In this chapter, we look at some additional models that can help teams find a successful
automation strategy.

Hint: Remember, these are thinking tools, to be used to start conversations about how your team
wants to automate tests.

The classic test automation pyramid

Mike Cohn’s test automation pyramid has helped many teams since the early 2000s. We’ve adjusted it slightly
since then (Figure 10.1) to make our intent clear, including the cloud bubble on top to represent that not all

regression tests can be automated. Sometimes we need human-centric tests, which include exploratory tests
(ET).

Chapter 10: Visualizing a Test Automation Strategy 98

Manual / ET 000
Tests

;"’WOrkﬂow‘
Tests ‘\1

Through the Ul

API / Service Layer
Business Rules
Functional Test

Unit Tests / Component Tests

(Programmer Tests)

Figure 10.1: Classic Test Automation Pyramid

This model helps teams understand that in most contexts, it pays to automate tests at the most granular level
of the application as possible, to provide adequate protection against regression failures. Teams that practice
test-driven development (TDD) build up a solid base of unit- and component-level tests that help guide code
design. These tests run very fast, so they give the team quick feedback.

With most applications, testing interactions between different layers of the architecture is required. For
example, business logic usually requires interaction with the database. Doing as much automation of this
type at the service or API level without going through a user interface (UI) is generally the most efficient
way.

Some regressions only occur when two or more layers of the application are involved. That may require
workflow tests through the UI that involve the server, database, and/or an external system. In most contexts,
it’s best to minimize the number of end-to-end workflow tests. These tests run slowly, are often the most
brittle, and usually require the most maintenance. The cloud at the top of the pyramid includes human-centric
activities such as exploratory testing and other tasks that can’t be automated.

The test automation pyramid helps us think of ways to “push tests lower,” maximize the regression tests that
are isolated to one part of an application, and minimize those that involve multiple parts of the system. When
teams plan testing for a feature, they can look at the pyramid to see where each test can most appropriately
be automated.

The classic pyramid is not meant to imply that there is a certain number or percentage of automated tests at
each level. Seb Rose envisions the model a bit differently, as shown in Figure 10.2.

Chapter 10: Visualizing a Test Automation Strategy 99

How much of the
application the
test exercises

Number of tests

Figure 10.2: Seb Rose’s version of the pyramid, number of tests vs. test coverage

Seb’s model clarifies that what makes a test more expensive is the number of layers of the application it
requires to execute. For example, it’s possible to have a unit-level test of the UI that does not involve any
other layers of the application. It’s possible to use TDD for each isolated layer of the application, whether it’s
the server, the API, the Ul or a microservice.

There have been many adaptations of the pyramid model (and yes, the classic one is really a triangle) over
the years. Chapter 15 of More Agile Testing includes several adaptations, including those from Alister Scott
and Sharon Robson.

Teams that have automated tests can draw the “shape” of their pyramid to visualize where their current tests
fit. Many teams start out with mostly UT tests and an “upside-down” pyramid or “ice cream cone*'” Others
may have an hourglass. None of these shapes are necessarily wrong, but if the current automation doesn’t
meet the team’s needs, the visuals can help picture what changes are needed.

Conversations around a visual model help teams that are just starting their automation efforts decide their
eventual goal and their first priorities.

Automated tests as living documentation

The time, cost, and effort that goes into automating different types of tests at different levels of the application
are not the only considerations when putting together an automation strategy. Another consideration is
remembering who needs to be able to read and understand the tests. Seb Rose’s Test Automation Iceberg
(Figure 10.3) reminds us that one of the most valuable attributes of automated tests is the living documentation
that they provide. They’re always up to date because the team keeps them passing all the time, so you can
tell at any given time exactly what your system does.

“'https://watirmelon.blog/testing- pyramids/

https://watirmelon.blog/testing-pyramids/
https://watirmelon.blog/testing-pyramids/

Chapter 10: Visualizing a Test Automation Strategy 100

Business-readable

Technical

Figure 10.3: Seb Rose’s test automation iceberg

Those portions of the iceberg above the waterline are tests that are business readable, while those below are
not (are written in a technical language). The amount of tests will vary by team; for example, Lisa worked on
a team whose product was intended for other delivery teams. Everyone on the team including the product
owner could understand the automated regression tests written in low-level code. They didn’t need “business-
readable” tests. In other domains, it’s critical that business stakeholders can understand the acceptance tests.
This model helps remind us to think about what’s needed in the team’s context.

Extending the model

Even the most diligent automated regression test coverage may fail to identify some regression failures. No
test environment is exactly like production. Some bugs may be found via “testing in production,” as discussed
in Chapter 8.

In her book A Practical Guide to Testing in DevOps, Katrina Clokie presents her DevOps bug filter. It’s a
helpful visual showing that unit tests can only filter out the small bugs, while different levels of integration
and end-to-end tests detect progressively bigger ones. To find the fully formed bugs, teams need logging,
alerting, and monitoring for their production system.

Shared responsibility

We encourage teams to share the responsibility of testing the business rules and higher levels of integration
at the API level. Testers should also have visibility into the unit and component tests written by developers.
As a team member, it’s important to understand your team’s applications and the inner workings when
approaching your automation strategy.

Because automating tests through the Ul tends to be more time-consuming, there’s a temptation to hand that
off to a separate automation team or have the testers on the team take full responsibility for it. We recommend

Chapter 10: Visualizing a Test Automation Strategy 101

that the developers, who are good at writing efficient, maintainable code, work together with the testers, who
are good at specifying test cases, to automate tests through the UT as well as all other layers above the base
level of the pyramid.

Remember, like all the other models, the test automation pyramid is a guide. Teams that get members in all
roles together to ask questions, chat about the answers, draw on the whiteboard, and design experiments
have the best success with automation. Visual models like the examples in this chapter help teams talk about
why they’re automating tests, what their biggest automation pain points are, how people with different skills
could help, and what their next experiments should be. In our experience, a step-by-step approach works
best.

DEEL 4: Agile testing vandaag

De grondbeginselen van agile testen - zoals het gebruik van de teambrede aanpak, het begeleiden van de
ontwikkeling met voorbeelden en het samenwerken tussen verschillende rollen om kwaliteit in te bouwen
- zijn vandaag net zo effectief als 20 jaar geleden. Is er iets dat we moeten veranderen om de uitdagingen
van nu aan te gaan? In deze sectie delen we wat enkele toonaangevende agile testers zien veranderen aan de
testing rol. We sluiten af met een aantal ingrediénten om teams te helpen slagen met hun agile testen.

« Hoofdstuk 11: De nieuwe rol van de tester
» Hoofdstuk 12: Ingrediénten voor succes

SECTION 4: Agile Testing Today

The basics of agile testing - such as using the whole-team approach, guiding development with examples,
and collaborating across roles to build quality in - are as effective today as they were 20 years ago. Is there
anything we need to change to meet today’s challenges? In this section, we share what some leading agile

testing practitioners see changing for the role of testers. We’ll wrap up with a bunch of ingredients to help
teams succeed with agile testing.

« Chapter 11: A Tester’s New Role
« Chapter 12: Ingredients for Success

Hoofdstuk 11: De nieuwe rol van de
tester

Veel teams worstelen met slechts één tester als onderdeel van het team — of zelfs erger nog, een tester die
meer dan één opleverteam ondersteund. Als de tester de enige is die de testactiviteiten uitvoert, creéert het
over het algemeen een knelpunt. Agile teams die elke iteratie wijzigingen naar productie doorvoeren (of zelfs
vaker als ze aan continuous delivery doen) kunnen het zich niet veroorloven om slechts één tester te hebben
die alle testen doet.

We kunnen de toekomst niet voorspellen, maar het is informatief om rond te kijken hoe de rol van een tester
aan het veranderen is. We vroegen andere ervaren agile test coaches en trainers om erachter te komen wat
hun ideeén zijn over de veranderende rol van een tester. Deze verschillende perspectieven kunnen je helpen
begrijpen hoe testers en teams zich kunnen aanpassen en kunnen helpen bouwen aan een kwaliteitscultuur.

Testers zijn kwaliteitslijm voor een team

Alex Schladebeck - Duitsland

Toen ik begon, was de rol van tester in een team (als de tester al een deel van het team was) vaak
alleen verantwoordelijk voor Ul-automatisering en handmatig testen. Over de laatste 12 jaar heb ik een
enorme diversificatie van de rol gezien, en altijd in een contextafhankelijke manier op basis van hoe het
team opereerde. Ik zie testers werken aan meer automatiseringstaken, zelfs pairen op eenheidsniveau met
ontwikkelaars. Ik zie dat ze bij alle procespunten betrokken zijn. Ik zie ze organiseren van mob-testsessies
met het team om verkennende testen uit te voeren. Ik zie ze campagne voeren voor betere feedback loops. Tk
heb zelfs testers zien beginnen met het repareren van bugs of het implementeren van functionaliteiten.

Maak verbindingen

Voor mij is deze diversificatie en rolvervaging een enorme vrijheid en een grote verantwoordelijkheid. Het
betekent dat we ons moeten afvragen: “Hoe kan ik, mijn vaardigheden en mijn leerpotentieel het best passen

http://www.schladebeck.de/

Hoofdstuk 11: De nieuwe rol van de tester 105

in de context van dit team?” We worden heel erg ‘kwaliteits- en communicatielijm’, identificeren en opvullen
van de gaten gaten in elk team.

Ik ben de term “embedded kwaliteits ingenieur” of “embedded kwaliteitsadviseur” gaan gebruiken voor deze
rol. Het probleem met de titel “tester” is dat het de naam bevat van een van de vele activiteiten die we doen,
dus jij hoort vragen als: “Als iedereen betrokken is bij testen, waarom hebben we dan een tester nodig?”
of uitspraken als: “De ontwikkelaars automatiseren tests, dus we hebben geen testersrol nodig” Testen is
slechts één van de vele dingen dat een tester doet. Naar mijn mening moeten we tegen het idee vechten
dat een agile team moet bestaan uit “chimeras™ een mix van verschillende rollen, of een Swiss-Army-
knife-teamlid dat alles kan: vereisten, UX, testen, beveiliging, front- en backend. Agile teams moeten divers
en multifunctioneel zijn, en dat betekent dat we mensen nodig hebben met verschillende achtergronden,
interesses en specialisaties, zonder dat iemand een silo of bottleneck is. Ik denk dat dit een haalbare balans is.

Ik zie de rol van een tester als bestaande uit meerdere activiteiten. Er zijn dingen die altijd al deel uitmaakten
van de rol, zoals werken met belanghebbenden, expertise inbrengen om activiteiten te testen, koppelen met
developers en andere testers, ondersteunen van de product owner, organiseren en het aanpassen van de
algehele kwaliteitsstrategie, het verkrijgen van goede testgegevens, en risico’s identificeren. Ik denk dat er
in de toekomst nog meer taken overgenomen of ondersteund zullen worden door testers. Sommige hiervan
kunnen zijn: samenwerken met het team om te zorgen voor testbaarheid en waarneembaarheid voor testen en
monitoren in productie, vragen stellen over het productie systeem om te onderzoeken hoe het wordt gebruikt,
onze prestaties aan te scherpen en het aanleren van vaardigheden voor verkennende testen, waardoor het
team zich kan concentreren op waarde (en soms op minimalisme, d.w.z. de waarde van iets niet te doen).
Ik zie ook dat testers ‘teamgezondheid’ aan hun kwaliteitsattributen beginnen toe te voegen, lettend op de
communicatie en stressniveaus van de ploeg als geheel. Dit zijn immers zaken die de kwaliteit enorm kunnen
beinvloeden. Kortom, ik denk dat de rol van tester belangrijk blijft. Zij zijn de persoon in het team wiens
belangrijkste prioriteit kwaliteit is. Ze zijn ook de persoon met de passie voor kwaliteit en testen, en zij
pleiten en supporteren voor hen.

De professionele reis van een agile tester

Paul Carvalho - Canada

Als ik agile teams coach, help ik het hele team om te leren samenwerken en voortbouwen op elkaars
sterke punten. Een product owner brengt kennis van het bedrijfsleven en de industrie, een programmeur
brengt sterke codeer- en ontwikkelingsvaardigheden, een ontwerper brengt inzichten in het perspectief en de
ervaring van de gebruiker, en een tester brengt ook iets van waarde op tafel.

De professionele reis van een tester begint met afstand te nemen van toevalligheden en willekeurig testen,
tot een doordacht ontwerp van testen door middel van modellen, technieken en andere gespecialiseerde
vaardigheden en kennis. Agile zet een sterke focus op de nauwe samenwerking met anderen, dus testers
moeten uit hun hoofd komen wanneer ze aan testen denken en hun stem vinden om te helpen andere
teamleden te begrijpen de vele manieren om kwaliteit te genereren met informatie over de systemen in
ontwikkeling. Een geweldige agile tester brengt meer tijd door met een whiteboard-marker in de hand en
koppelt met anderen teamleden dan iets anders. Het gaat erom de rest van het team te helpen om meer over
het systeem te zien en te begrijpen, voordat het systeem wordt gebouwd. “Bouw kwaliteit in” is meer dan

https://www.quality-driven.com/

Hoofdstuk 11: De nieuwe rol van de tester 106

een slogan; het is een realiteit die geweldige testers kunnen helpen bij het inschakelen van goed presterende
samenwerkende teams.

Mentor

De professionele reis van een agile tester verloopt van willekeurig, lukraak testen, tot het begrijpen van de
technieken en het ontwerp van goed testen, tot een stem vinden en deze ideeén uiten, zodat ze kunnen helpen
de prestaties te verhogen van de rest van uw team.

Probeer als tester ieders begrip van de systemen te vergroten en te laten groeien door middel van doordachte
verkenning. Als je het idee loslaat dat jij degene moet zijn die de testgevallen of testautomatisatie moet
schrijven, bedenk waar uw unieke vaardigheden en inzichten kunnen helpen om het team te dragen.

Het fascinerende pad om te evolueren als tester

Claudia Badell - Uruguay

Als testers kunnen wij bijdragen en waarde toevoegen vanuit verschillende perspectieven: als facilitators
en evangelisten naar testen en kwaliteit in een productteam, als coaches, als testadviseurs, als experts
in bepaalde soorten testen (bruikbaarheidstesten, toegankelijkheid onder andere testen, beveiligingstesten,
prestatietesten) en meer. Testers worden niet meer gezien als poortwachters voor kwaliteit, dus wij mogen
gezien en gewaardeerd worden als pleitbezorgers van kwaliteit.

Tegenwoordig is het steeds vaker dat testers deel uitmaken van het ontwikkelingsteam en bijdragen leveren
vanaf het begin van het ontwikkelingsproces. Mijn ervaring is de rol van een tester in deze context evolueert.
Naast het uitvoeren van testwerkzaamheden ter ondersteuning van handmatige testen en geautomatiseerde
controles, werken testers samen om bruggen te bouwen binnen het team om tot een gemeenschappelijk begrip
te komen en betrokkenheid bij de testen. Ook het definiéren, opvolgen en bijsturen van teststrategieén die
door het hele team moeten worden toegepast. Bovendien delen en evangeliseren zij hun kennis van testen
binnen het team.

Naarmate technologie, methodologieén en processen evolueren en teams en gemeenschappen volwassen
worden, denk ik dat het belangrijk voor ons is om een proactieve houding aan te nemen om zich aan
dergelijke veranderingen aan te passen. De toekomst brengt nieuwe uitdagingen en kansen. Afhankelijk van
de context, kunnen verschillende vaardigheden en testactiviteiten nodig zijn, maar in mijn ervaring zijn er
kernvaardigheden die nodig zijn om gelijke tred te houden met software ontwikkeling.

https://www.linkedin.com/in/claudiabadell/

Hoofdstuk 11: De nieuwe rol van de tester 107

?i

Experimenteer en ontdek nieuwe kansen

Deze kernvaardigheden zijn:

« wees leergierig en probeer nieuwe experimenten uit om de teststrategieén in het team te verbeteren.

« wees een uitstekende vragensteller gedurende de hele levenscyclus van het product. Afhankelijk van
het type informatie dat we verzamelen, kunnen vragen op verschillende manieren geformuleerd
worden. Ze kunnen mondeling of schriftelijk gemaakt worden, dus duidelijke en goed gestructureerde
communicatieve vaardigheden zijn belangrijk. Ze kunnen ook programmatisch gemaakt worden;
bijvoorbeeld als we wilden bepaalde antwoorden tussen twee services willen controleren, technisch
vaardigheden zijn belangrijk.

» modelleringsvaardigheden hebben als een manier om te begrijpen wat te testen en het definiéren van
teststrategieén die de verschillende aspecten omvatten die nodig zijn.

« een zekere mate van technische kennis hebben om samen te werken bij het definiéren van de
testbaarheidsaspecten van de oplossing terwijl de software in ontwikkeling is - bijvoorbeeld ter
ondersteuning van unit testing en geautomatiseerde integratie testen.

« een delende en samenwerkende houding hebben.

We zitten in een spannende tijd waarin we een deel van onze toekomst vorm kunnen geven. Hoe ben jij je
erop aan het voorbereiden?

Wees alles wat je kan zijn

Mike Talks - Nieuw-Zeeland

In de afgelopen zes jaar is mijn testteam verdwenen van één enkele groep die aan één watervalproject tegelijk
werkt tot individuen die in meerdere teams werken. Er wordt veel gesproken over een teambrede aanpak van
kwaliteit en testen, maar testers als specialisten worden gezien als leiders in deze ruimte. Dat betekent het
creéren van een first-pass-benadering bij een nieuw verhaal of functionaliteit, maar het is ook belangrijk om
een discussie met het grotere team te faciliteren over deze benaderingen om feedback te krijgen en de aanpak
te verkennen. Het betekent ook dat een testtaak te zwaar is voor testers om alleen te voltooien, ze kunnen
helpen bij het organiseren van een taakverdeling onder de leden van een bereidwillig team.

https://testsheepnz.github.io/

Hoofdstuk 11: De nieuwe rol van de tester 108

Ik vind een veel voorkomende kandidaat hiervoor het testen van verschillende browsers/apparaten. Wij testen
vaak functionaliteiten tijdens de iteratie op onze kernapparaten, maar bezoeken af en toe ons product op een
veel breder scala van apparaten. Dit is waar het team en hun frisse ogen kunnen helpen, en een klein beetje
organisatie van de tester kan een enorm verschil maken.

Hoewel de meeste gesprekken over het testen van een product plaatsvinden binnen uw team, is het ook handig
om “bij te praten” met anderen in dezelfde disciplines om ideeén te delen en te zien wat er in andere teams
werkt. Dit kan ook evolueren in het begeleiden van individuen te helpen omgaan met specifieke problemen
alsook de moed om meer nieuwe ideeén uit te proberen.

Wees alles wat je kan zijn

Begin met een gesprek

Kathleen Naughton - Verenigde Staten

Het testen van software is tegelijkertijd geévolueerd en stond het stil. Het is geévolueerd tot het punt dat
sommige organisaties het aantal testers verminderde of zelfs elimineerde in hun teams. Het stond stil omdat
diezelfde organisaties moeite hebben gehad om de speciale vaardigheden te waarderen die een tester aan
teams toevoegd.

In mijn ervaring, waar testers zijn verminderd of geélimineerd, hebben de teams dit geprobeerd op te vangen
door dichter bij TDD-praktijken te komen, zodat ze een groot aantal geautomatiseerde unit-tests hebben.
Ze proberen wat intra-team testen (elkaars code testen) te doen en zijn sterk afhankelijk van hun continue
leveringspijplijn om hun geautomatiseerde testen uit te voeren. Wat vaak gemist wordt zijn de integratie-
en gebruikerservaringstesten die essentieel zijn voor hoogwaardige producten. Als er testers binnen deze
organisaties zijn, ze zijn aanwezig om handmatige tests uit te voeren nadat de code reeds klaar is. Alle
inzichten of suggesties van deze testers hebben de neiging om gedeprioriteerd te worden in de product backlog
in uitstel voor functionaliteitenontwikkeling.

http://www.linkedin.com/in/agilekathleen

Hoofdstuk 11: De nieuwe rol van de tester 109

Wees relevant en beinvloed de mensen om je heen

Ik geloof dat een essentiéle vaardigheid die testers nodig hebben om relevant te zijn, is code kunnen lezen
en begrijpen. Hierdoor kunnen ze begrijpen wat unit testen of andere geautomatiseerde tests controleren en
maken de identificatie van testlacunes mogelijk die de tester kan invullen. Het laat ook vermindering toe voor
van testoverlapping. Als er al een eenheid of integratie test aanwezig is, kan de testaanpak meer gericht zijn op
de eindgebruiker activiteiten die niet gedekt zijn. Een andere essentiéle vaardigheid die nodig is, kan volgens
mij worden beschouwd als een zachte vaardigheid. De vaardigheid van het hebben van gesprekken met
programmeurs over hun unit- en integratietesten is krachtig. Deze gesprekken kunnen leiden tot beinvloeding
van ontwerpbeslissingen die op hun beurt opleveringen van hogere kwaliteit mogelijk maken. Kennis brengen
over hoe cruciale gesprekken te voeren stelt het hele team in staat betere software produceren.

De wereld heeft niet meer controleurs nodig

Aldo Rall - Nieuw-Zeeland

Testen is in de loop der jaren geévolueerd, en de industrie heeft testtechnische vaardigheden en praktijken
ontwikkeld, echter niet zo vlot. Ik denk dat we een tijdperk zijn ingegaan waarin verlichting op de proef
wordt gesteld, en er is een grote verschuiving in hoe organisaties en testers nu denken over de testende rol.

Ik zie een toenemende beweging in de richting van het belang van vaardigheden. De meer vaardigheden een
individu heeft, hoe waardevoller ze worden voor een team of organisatie. Die personen met vaardigheden die
verder gaan dan alleen test technische vaardigheden kunnen meer bijdragen dan iemand die beschikt over
een basisset van testontwerp- en uitvoeringsvaardigheden. Dit idee wordt benadrukt door het denken van
generaliseren van specialisten als besproken door Scott Ambler*” of T-vormige vaardigheden zoals besproken
door Lisa en Janet in hun boeken. Als jij je carriére toekomstbestendig wilt maken, je testengineeringvaar-
digheden wilt opbouwen, maar ook vaardigheden buiten de traditionele testwereld. Vergeet de titels maar;
over tien jaar zal het voor niemand veel betekenen als jij “testingenieur”, “testspecialist”, “tester”, “test analist”
of “verificatie-engineer” genoemd werd. Vaardigheden zijn uiteindelijk meer waardevoller dan verzamelde
functietitels; Ik heb dit zeker als waarheid gevonden in mijn eigen carriere.

“*http://www.agilemodeling.com/essays/generalizingSpecialists.htm

https://www.linkedin.com/in/aldorall/
http://www.agilemodeling.com/essays/generalizingSpecialists.htm
http://www.agilemodeling.com/essays/generalizingSpecialists.htm

Hoofdstuk 11: De nieuwe rol van de tester 110

Breadih

Deptia

T-vormige vaardigheden

Ik zou kijken naar een holistische benadering die wordt gekenmerkt door inclusiviteit “en” gesprekken.
Het beste voorbeeld dat ik kan bedenken is om je verzameling van vaardigheden te combineren op
een unieke manier die past bij uw specifieke context, wetende dat zelfs dat zal veranderen. Hoe kun
je een set test technische en analytische vaardigheden combineren in een bepaalde situatie? Hoe kun je
onderhandelingsvaardigheden combineren met leervaardigheden? Hoe kun je verschillende vaardigheden
combineren op het gebied van testtechnieken om een betere testdekking te verkrijgen? Denk “en.”

Ik geloof dat één van de belangrijkste vaardigheden die een moderne beoefenaar moet hebben is het vermogen
om een context te begrijpen, de veranderende aard ervan te begrijpen, en overeenkomstig aan te passen.
De echte meesters van de toekomstige werkplek zullen degenen zijn die een context kunnen observeren,
en de combinatie van de gepaste vaardigheden toe te passen, en vervolgens voortdurend de combinatie van
vaardigheden bij te stellen naarmate de context evolueert. Die intuitie heeft tijd nodig om zich te ontwikkelen,
en het is een constant veranderend domein. Het leren van nieuwe vaardigheden zal de bekwaambheid en de
waarde van zo’n persoon verhogen bij de organisaties en teams.

We brengen veel verschillende vaardigheden mee dan alleen test technische vaardigheden. Ik zou willen
suggereren dat we overwegen (door onbeschaamd te lenen van anderen) een veelzijdige aanpak. Noem het
de “Holistische agile test vaardigheden” of “De tien denkhoeden van agile testen”, of wat dan ook logisch is
voor jou. Sommige van deze facetten kunnen zijn

« Consultant: Ja, soms zullen we in ons team moeten “raadplegen” of met een ander team om problemen
op te lossen.

« Test engineering specialist: We moeten onze test uien kennen van onze sjalotten. We hebben goede
en solide testengineeringvaardigheden nodig.

« Agile geleerde: Blijf studeren en leren over agile, breng ideeén naar het team en experimenteer.

« Coach: We hebben geweldige kansen om het team te coachen of zelfs collega’s (binnen en buiten het
team). Dit is een levensvaardigheid, in mijn mening.

« Mentor: Soms moeten we iemand begeleiden bij het testen.

« Facilitator: Soms moeten we gewoon in de rol stappen van facilitator voor een beslissing, discussie,
uitleg, enz.

 Veranderingsagent: We kunnen soms verandering en onrust teweegbrengen, pleiten voor een nieuwe
praktijk/techniek/methode om mee te experimenteren en van te leren.

Hoofdstuk 11: De nieuwe rol van de tester 111

+ Leider: Ja, het kan soms nodig zijn om op te treden en de leiding te nemen in/namens het team.

« Leraar: Dat spreekt voor zich, vooral als er een tekort aan testvaardigheden in het team/organisatie is.

« Bedrijfsdomein geleerde / verdediger van gezond verstand / grote geheel denker: Soms is het goed
om even weg te gaan en het bos los te zien van de bomen.

De gedachten van Lisa en Janet

We hopen dat je het leuk vond om de gedachten van andere mensen te lezen over wat ze beschouwen als de rol
van een tester. Nu zullen we de onze delen. We hebben testers aangemoedigd om hun niet-tester-teamgenoten
testvaardigheden te helpen leren. Wanneer het hele team de verantwoordelijkheid neemt voor kwaliteit en
testen, heeft elk teamlid enige basis nodig in testvaardigheden. Om dit te bereiken, hebben we vaardigheden
geidentificeerd die we aanraden die testspecialisten zouden moeten leren.

Gebruik uw denkvaardigheden

« samenwerkingsvaardigheden om actief deel te nemen aan praktijken zoals mindmapping of voor-
beeldmapping

faciliteringsvaardigheden om teamleden te helpen beter te communiceren, faciliteren van bijeenkom-
sten zoals retrospectives, faciliteren van workshops tot het helpvan van niet-testers testvaardigheden
aan te leren

+ onderwijsvaardigheden om hun kennis te delen met andere teamleden

« coachingvaardigheden om het team te helpen problemen te identificeren en experimenten te ontwer-
pen voor verbeteringen

« communicatieve vaardigheden om effectief feedback te geven en te ontvangen (zie hoofdstuk 4,
“Denkvaardigheden voor testen”, in More Agile Testen voor aanvullende informatie)

We zien een groeiende behoefte aan testers om op te treden als testconsulent voor hun teams. Veel teams
hebben een lage verhouding tussen toegewijde testers en ontwikkelaars en andere niet-testrollen. Wij testers
kunnen meer waarde toevoegen door iedereen te helpen die de competenties nodig heeft om essentiéle
testactiviteiten uit te voeren. ledereen in het team zal meer nadenken over testen en zich zo meer bewust
zijn van de noodzaak om vanaf het begin kwaliteit in te bouwen.

Chapter 11: A Tester's New Role

Many teams struggle with only one tester as part of the team — or even worse, a tester who supports more than
one delivery team. If the tester is the only one doing testing activities, it generally creates a bottleneck. Agile
teams who deliver changes to production at every iteration (or even more frequently if they’re implementing
continuous delivery) cannot afford to have a single tester to do all the testing.

We can’t predict the future, but it is informative to look around to see how a tester’s role is changing. We asked
other experienced agile testing coaches and trainers to find out what their thoughts are about the changing
role of a tester. These different perspectives may help you understand how testers and teams can adapt and
help build a quality culture.

Testers are quality glue for a team

Alex Schladebeck - Germany

When I started out, the tester role in a team (if the tester was even a part of the team) was often to be solely
responsible for UI automation and manual testing. Over the last 12 years, I've seen a huge diversification of
the role, and always in a context-dependent way based on how the team operated. I see testers working on
more automation tasks, even pairing at the unit level with developers. I see them being involved at all process
points. I see them organizing mob testing sessions with the team to perform exploratory testing. I see them
campaigning for better feedback loops. I've even seen testers start to fix bugs or implement features.

Make connections

For me, this diversification and role-blurring is a huge freedom and a great responsibility. It means that we
have to ask ourselves, “How do I, my skills, and my potential to learn best fit into this team’s context?” We
become very much “quality and communication glue,” identifying and filling in the gaps in any team.

I've started using the term “embedded quality engineer” or “embedded quality consultant” for this role. The
problem with the title “tester” is that it contains the name of one of the many activities we do, so you
hear questions like, “If everyone is involved in testing, why do we need a tester?” or statements like, “The
developers are automating tests, so we don’t need a tester role” Testing is just one of the many things that a

http://www.schladebeck.de/

Chapter 11: A Tester’s New Role 113

tester does. In my opinion, we need to fight against the idea that an agile team should consist of “chimeras”:
a mix of different roles, or a Swiss-Army-knife team member that can do everything: requirements, UX,
test, security, front and backend. Agile teams need to be diverse and cross-functional, and that means we
need people with different backgrounds, interests, and specializations, without any one person being a silo
or bottleneck. I think that’s a balance that is achievable.

I see the tester role as consisting of multiple activities. There are things that have always been part of the
role, like working with stakeholders, bringing expertise to test activities, pairing with developers and other
testers, supporting the product owner, organizing and adapting the overall quality strategy, getting good test
data, and identifying risk. I think there will be even more tasks that can be taken on or supported by testers in
the future. Some of these might be: working with the team to ensure testability and observability for testing
and monitoring in production, asking questions of the production system to explore how it is being used,
honing our performance and teaching skills for exploratory testing, helping the team to focus on value (and
sometimes on minimalism, i.e., the value of something not done). I also see testers starting to add “team
health” to their quality attributes, looking out for the communication and stress levels of the team as a whole.
These are, after all, things that can affect quality greatly.

In short, I believe that the tester role remains important. They are the person in the team whose main priority
is quality. They are also the person with the passion for quality and testing, and they advocate and champion
for them.

An agile tester’s professional journey

Paul Carvalho - Canada

When I coach agile teams, I help the whole team learn to work together and build upon each others’
strengths. A product owner brings business and industry knowledge, a programmer brings strong coding
and development skills, a designer brings insights into the user’s perspective and experience, and a tester
brings something of value to the table as well.

A tester’s professional journey starts with moving away from accidental and random testing, to thoughtful
design of tests through models, techniques, and other specialized skills and knowledge. Agile puts a strong
focus on working closely with others, so testers need to get out of their heads when thinking about testing
and find their voice to help other team members understand the many ways to generate quality information
about the systems in development. A great agile tester spends more time with a whiteboard marker in hand
and pairing with other team members than anything else. It’s about helping the rest of the team to see and
understand more about the system, before the system is built. “Build Quality In” is more than a slogan; it is
a reality that great testers can help enable on high-performing collaborative teams.

https://www.quality-driven.com/

Chapter 11: A Tester’s New Role 114

Mentor

An agile tester’s professional journey progresses from random, haphazard testing, to understanding the
techniques and design of good testing, to finding a voice and expressing these ideas so they may help elevate
the rest of your team’s performance.

As a tester, aim to enhance and grow everyone’s understanding of the systems and solutions through
thoughtful exploration. If you let go of the notion that you must be the one to write test cases or program
automation, think about where your unique skills and insights can help carry your team.

The fascinating path of evolving as testers

Claudia Badell - Uruguay

As testers, we can contribute and add value from different perspectives: as facilitators and evangelists toward
testing and quality in a product team, as coaches, as test consultants, as experts at certain types of testing
(usability testing, accessibility testing, security testing, performance testing, among others), and more. Testers
are no longer seen as gatekeepers for quality, so we can be seen and valued as quality advocators.

Nowadays, it is more and more frequent that testers are part of the development team and make contributions
from the beginning of the development process. In my experience, the role of a tester in this context is evolving.
Besides performing testing activities to support manual testing and automated checks, testers collaborate to
build bridges within the team in order to reach a common understanding and engagement about testing.
They also define, follow up, and adjust the testing strategies to be applied by the whole team. In addition,
they share and evangelize their knowledge of testing within the team.

As technology, methodologies, and processes evolve and teams and communities mature, I believe it is
important for us to have a proactive attitude to adapt to such changes. The future will bring new challenges
and opportunities. Depending on the context, different skills and different testing activities may be needed,
but in my experience, there are core skills that are necessary to keep pace with software development.

https://www.linkedin.com/in/claudiabadell/

Chapter 11: A Tester’s New Role 115

?i

Experiment and find new opportunities

These skills are:

« be eager to learn and try new experiments to enhance testing strategies in the team.

+ be an excellent question asker throughout the product lifecycle. Depending on the type of information
that we gather, questions can be formulated in different ways. They can be made verbally or in
writing, so clear and well-structured communication skills are important. They can also be made
programmatically; for example, if we wanted to check certain responses between two services, technical
skills are important.

« have modeling skills as a way of understanding what to test and defining testing strategies that cover
the different aspects that are needed.

« have some degree of technical knowledge to collaborate in defining testability aspects of the solution
while the software is being developed - for example, to support unit testing and automated integration
testing.

« have a sharing and collaborative attitude.

We are in an exciting time where we can shape part of our future. How are you getting prepared for it?

Be all that you can be

Mike Talks - New Zealand

Over the last six years, my test team has gone from a single group working on one waterfall project at a time
to individuals working across multiple teams.

There’s a lot of talk about a whole-team approach to quality and testing, but testers as specialists are looked to
lead in this space. That means creating a first-pass approach at a new story or feature, but it is also important to
facilitate a discussion with the larger team about these approaches to gain feedback and explore the approach.
It also means if a testing task is too onerous for testers to complete alone, they can help organise a division
of labor among willing team members.

I find a frequent candidate for this is cross browser/device testing. We often test stories in the iteration using
our core devices but will occasionally visit our product on a much broader range of items. This is where the

https://testsheepnz.github.io/

Chapter 11: A Tester’s New Role 116

team and their fresh sets of eyes can help, and a little bit of organization from the tester can make a huge
difference.

Although most conversations about testing a product happen within your team, it’s also useful to “catch up”
with others in the same disciplines to share ideas and what’s been working on other teams. This can also
turn into mentoring to help individuals deal with specific problems as well as become more daring to try new
ideas.

Be all you can be

Start with a conversation

Kathleen Naughton - United States

Software testing has simultaneously evolved and stood still. It has evolved to the point that some organizations
have reduced the number or even eliminated testers on their teams. It has stood still because these same
organizations have struggled to value the specialty skills a tester brings to teams.

In my experience, where testers have been reduced or eliminated, the teams have tried to fill in by moving
closer to TDD practices so that they have a large number of automated unit tests. They try to do some intra-
team testing (testing each other’s code) and rely heavily on their continuous delivery pipeline to execute
their automated tests. What often ends up being missed are the integration and user experience tests that are
essential for high-quality products. If there are testers in these organizations, they are present to do manual
testing after the code is finished. Any insights or suggestions made by these testers tend to be deprioritized
in the product backlog in deferment to feature development.

Be relevant and influence those around you

I believe an essential skill that testers need to be relevant is being able to read and understand code. This allows
them to understand what unit tests or other automated tests are checking and enables the identification
of testing gaps that the tester can fill. It also allows for reduction in test overlap. If there are already unit

http://www.linkedin.com/in/agilekathleen

Chapter 11: A Tester’s New Role 117

or integration tests present, the testing approach can be more targeted at the end-user activities that are
not covered. Another essential skill I believe is needed might be considered a soft skill. The skill of having
conversations with programmers about their unit and integration tests is powerful. These conversations can
lead to influencing design decisions that in turn enable higher-quality deliverables. Bringing knowledge about
how to have crucial conversations enables the whole team to produce better software.

The world doesn’t need more checkers

Aldo Rall - New Zealand

Testing has evolved over the years, and the industry has developed test engineering skills and practices,
although not smoothly. I think we have entered an era of testing enlightenment, and there is a big shift in
how organizations and testers now think of the testing role.

I observe an increasing movement toward the importance of skills. The more skills an individual has, the
more valuable they become for a team or organization. Those individuals with skills that span beyond test
engineering skills only are the ones that can contribute more than someone who has a basic set of test design
and execution skills. This idea is emphasized by the thinking about generalizing specialists as discussed
by Scott Ambler (http://www.agilemodeling.com/essays/generalizingSpecialists.htm) or T-Shaped Skills as
discussed by Lisa and Janet in their books. If you want to future-proof your career, build your test engineering
skills, as well as skills outside the traditional world of testing. Forget about titles; in ten years’ time it is not
going to mean much to anyone if you were called “test engineer,” “test specialist,” “tester,” “test analyst,” or
“verification engineer.” Skills are ultimately more valuable than collected job titles; I have certainly found

that true in my own career.

| Breadih

T-shaped skills

I would look at a holistic approach characterized by inclusive “and” conversations. The best example I can
think of is to combine your collection of skills in unique ways that suits your specific context, knowing that
even that will change. How can you combine a set of test engineering and analysis skills in a given situation?
How can you combine a set of negotiating skills with teaching skills? How can you combine different test
engineering skills together to obtain better test coverage? Think “and”

https://www.linkedin.com/in/aldorall/
http://www.agilemodeling.com/essays/generalizingSpecialists.htm

Chapter 11: A Tester’s New Role 118

I believe one of the key skills a modern practitioner must have is the ability to understand a context,
understand its changing nature, and adjust accordingly. The true masters of the future workplace will be those
who will be able to observe a context, apply the fit-for-purpose combination of skills, and then continually
adjust the combination of skills as the context evolves. That intuition takes time to develop, and it is a
constantly changing domain. Learning new skills will enrich the capability and the value that such a person
brings to organizations and teams.

We bring many different skills than just test engineering skills. I would like to suggest that we consider (by
unashamedly borrowing from others) a multifaceted approach. Call it the “Holistic agile testing skills” or
“The ten thinking hats of agile testing,” or whatever else makes sense to you. Some of these facets might be:

« Consultant: Yes, sometimes we will have to “consult” inside our team or with another team to help
solve problems and issues.

« Test engineering specialist: We have to know our testing onions from shallots. We require good and
solid test engineering skills.

« Agile scholar: Keep studying and learning about agile, bring ideas to the team, and experiment.

« Coach: We have great opportunities to coach the team or even co-workers (inside and outside the team).
This is a life skill, in my opinion.

+ Mentor: Sometimes we have to mentor someone in testing.

« Facilitator: Sometimes we just need to step into the role of facilitator for a decision, discussion,
explanation, etc.

+ Change agent: We may sometimes bring about change and upheaval, advocate a new practice/techni-
que/method to experiment with and learn from.

« Leader: Yes, we may sometimes be required to step up and perform leadership in/on behalf of the team.

« Teacher: That goes without saying, especially if there is a shortage of testing skills in the team/organi-
zation.

+ Business domain scholar / defender of common sense / big picture thinker: Sometimes it is good
to step away and see the forest from the trees.

Lisa’'s and Janet’s thoughts

We hope you’ve enjoyed reading other people’s thoughts about what they consider to be a tester’s role. Now
we’ll share ours. We've encouraged testers to help their non-tester teammates learn testing skills. When the
whole team takes responsibility for quality and testing, every team member needs some grounding in testing
skills. To accomplish this, we’ve identified skills we recommend that testing specialists should learn.

Use your thinking skills

Chapter 11: A Tester’s New Role 119

« collaboration skills to participate actively in practices like mind mapping or example mapping

« facilitation skills to help team members communicate better, facilitate meetings such as retrospectives,
facilitate workshops to help non-testers learn testing skills

« teaching skills to share their knowledge with other team members

« coaching skills to help the team identify problems and design experiments for improvements

« communication skills to give and receive feedback effectively (see Chapter 4, “Thinking Skills for
Testing,” in More Agile Testing for additional information)

We see a growing need for testers to act as test consultants for their teams. Many teams have a low ratio
of dedicated testers to developers and other non-testing roles. We testers can add more value by helping
everyone have the competencies needed to do essential testing activities. Everyone on the team will think
more about testing and be more conscious of the need to build quality in from the start.

Hoofdstuk 12: Ingrediénten voor succes

Elk agile software delivery-team bewandelt zijn eigen leertraject. Ons doel is om voortdurend ons vermogen
te verbeteren om waarde te leveren aan onze klanten en op regelmatige basis, met behoud van de gewenste
kwaliteitsstandaard van het bedrijf. Elk team doet dit met een unieke combinatie van het bedrijfsdomein,
softwareproduct, technologiestack, framework en praktijken.

In de loop der jaren hebben we ontdekt dat tussen al deze verschillen, bepaalde ingrediénten voor succes
zitten waar elk team van kan profiteren.

Succesfactoren

In ons eerste boek, Agile Testing, bevatte ons samenvattend hoofdstuk zeven succesfactoren waarvan
we dachten dat ze nodig waren (hoewel niet voldoende) om succesvol te zijn in het leveren van een
kwaliteitsproduct. Het is gemakkelijk overweldigend te zijn door het plannen en uitvoeren van testactiviteiten
gedurende korte delivery cycli. Hieronder vindt u een korte lijst van de belangrijkste succesfactoren en kern
agile testpraktijken om uw teams te begeleiden.

“Teambrede aanpak”

Elisabeth Hendrickson leerde ons dat “testen een activiteit is, geen fase.” Testen is een integraal onderdeel van
softwareontwikkeling, samen met coderen en zoveel andere activiteiten. Met dit perspectief is het gemakkelijk
voor iedereen om te helpen met testtaken mocht het nodig zijn.

Testers kunnen andere teamleden vaardigheden leren, zoals het uitlokken van concrete voorbeelden van
gewenst en ongewenst gedrag van bedrijfsdeskundigen, het evalueren van verschillende kwaliteitsattributen
of het doen van onderzoekende testen.

Programmeurs kunnen testers helpen de systeemarchitectuur te begrijpen om beter te testen of ze zelfs een
basis van coderen aan te leren. Elk teamlid kan sommige van zijn diepgaande vaardigheden overdragen aan
andere teamleden, ongeacht de rol.

Wanneer teams zich realiseren dat testen en kwaliteit een teamprobleem zijn, kunnen ze hun diverse
vaardigheden integreren en een sfeer van vertrouwen en veiligheid ontwikkelen, alsook een leeromgeving
creéren waar ze kunnen experimenteren en continu verbeteren.

Hoofdstuk 12: Ingrediénten voor succes 121

we need nput from

Drawing by Constance Hermit

Agile test mentaliteit

Testers zijn niet langer de ‘kwaliteitspolitie’ die de ‘go/no-go’ bepalen. Testers of teamleden die testactiviteiten
uitvoeren kunnen de risico’s en de impact van testresultaten uitleggen, zodat het bedrijf een weloverwogen
beslissing kan nemen over de uitrol naar productie.

Als teamlid met een agile-testmentaliteit betekent dit dat je leergierig bent en meer wil weten over alles om je
te helpen bij het uitvoeren van uw job. Het betekent dat je de agile principes en waarden toepast. Het betekent
ook samenwerken met de technische en zakelijke teamleden, waarbij je het grote geheel in gedachten houdt
terwijl je de kleine functionaliteiten incrementeel toevoegt. Je bent gefocust op het voorkomen van bugs, op
deze manier hoef je later niet zoveel tijd te spenderen aan het vinden van bugs.

bransfey
Skuls

Drawing by Constance Hermit

Hoofdstuk 12: Ingrediénten voor succes 122

Automatiseer uw regressietesten

Er zijn een paar dingen om te onthouden wanneer uw team begint te automatiseren. Het is een teamprobleem,
dus denk aan “het hele team” en werk samen om te automatiseren op alle niveaus. Programmeurs zijn
goed in het schrijven van code, testers zijn goed in het specificeren van de testen en mensen met andere
gespecialiseerde vaardigheden in het team kunnen helpen met testgegevens, infrastructuur en meer. De
testautomatisering piramide is een goed visueel model om de automatisering van het team te vormen en
de strategie te laten evolueren. Door de testen eenvoudig en gemakkelijk onderhoudbaar te houden, kan een
team werken aan het hebben van voldoende regressietests om hen vertrouwen te geven om de applicatie uit
te rollen.

Testautomatisering is een controle om er zeker van te zijn dat je niet bent vergeten iets te veranderen, d.w.z.
het is een veranderingsdetector. Een goede automatisering strategie geeft u de tijd om verkennende tests uit
te voeren om problemen te vinden voordat uw klant dat doet.

Geef en ontvang feedback

Succesvolle softwareontwikkeling is afhankelijk van snelle feedback. Teams moeten meteen weten of
een wijziging een onbedoelde storing heeft veroorzaakt. Zij willen weten hoe klanten reageren op een
nieuwe functionaliteit. Testers staan centraal bij het creéren en het blijvend verkorten van de verschillende
feedbackloops, waaronder: geautomatiseerde tests maken, verkennend testen en het observeren van het
productiegebruik om te leren hoe klanten het product gebruiken.

Mensen hebben ook feedback voor zichzelf nodig, zodat ze meer manieren kunnen vinden om waarde toe te
voegen. Luister- en observatievaardigheden staan centraal.

Hint: Als je samenwerkt met andere teamleden, vraag ze dan welke hiaten jij kan opvullen en hoe
Jje effectiever kan bijdragen.

Bouw een basis van kerntechnieken

Er zijn kerntechnieken die effectief zijn gebleken bij het helpen van teams om kwaliteit in hun product in te
bouwen.

Hoofdstuk 12: Ingrediénten voor succes 123

« Elk team heeft continue integratie nodig om succesvolle software te kunnen leveren met een
frequente cadans in de tijd. Elke keer dat een teamlid een wijziging begaat in de broncode, zou er
een automatisch een bouwproces moeten starten dat alle codewijzigingen integreert en deze verifieert
met de geautomatiseerde tests. Elk team heeft een deployment pipeline nodig om een release-kandidaat
te maken en deze in te zetten voor een test of productieomgeving. Zelfs ook als deze handmatige fasen
bevat.

+ Veel teams hebben nog steeds moeite om betrouwbare testomgevingen te hebben die zoveel mogelijk
op productie lijken en hen in staat stellen om eenvoudig bepalen welke buildversie er uitgerold is. De
cloud infrastructuur van vandaag biedt nog meer mogelijkheden om tijdelijke test omgevingen aan te
maken om een specifieke buildversie te testen en automatisch nieuwe versies uit te rollen in permanente
testomgevingen.

+ Technische schuld is als kredietkaartschuld; het blijft groeien als alleen het minimumbedrag of een
deel van de rente wordt betaald. De technische schuld blijft groeien als het team geen tijd neemt om de
code te refactoren, creéren van adequate geautomatiseerde regressietesten, upgrade van frameworks, en
het beheren van andere noodzakelijke infrastructuur. Na een tijdje kan zelfs de kleinste codewijziging
grote risico’s met zich meebrengen en veel tijd vereisen aan handmatige testtaken. Investeer de tijd in
het managen van technische schuld in de code en in uw geautomatiseerde tests.

+ Kleine, frequente veranderingen zijn over het algemeen minder riskant dan grote, zeldzame. Er
kan minder fout gaan en mislukkingen kunnen sneller gediagnosticeerd worden. Teams die grote
functionaliteiten opdelen in kleine ‘lerende releases” en zelfs kleinere stories hebben meer kans om op
tijd te leveren wat hun klanten willen.

« Progammeren en testen zijn onderdeel van één proces. Dit is de kern van de teambrede aanpak
van testen en kwaliteit. Testen en programmeren gebeurt samen, hand in hand, van feature-idee tot
evaluatie van de functie in de productie.

+ Synergie tussen praktijken komt van het doen van al deze kernpraktijken samen. Test-driven
Development, collectieve code eigendom en continue integratie zorgen voor consistentie en snelle
feedback. Refactoring is afhankelijk van het al dan niet hebben van geautomatiseerde regressietesten.
Binnen agile-praktijken is dit uitgetest en werkend. Deze praktijken zijn dan ook ontworpen om dit
allemaal samen te doen.

Samenwerken met klanten

Testers spreken de domeintaal van zakelijke stakeholders en de technische taal van de leden van het
opleverteam. De juiste mensen samenkrijgen wanneer een gesprek nodig is over hoe een functie zich moet

Hoofdstuk 12: Ingrediénten voor succes 124

gedragen of hoe een ontwerp eruit moet zien is ook belangrijk. Testers kunnen product owners helpen
bedrijfsregels te formuleren voor elk verhaal en deze illustreren met concrete voorbeelden. Dit is een van
de meest waardevolle manieren waarop testers bijdragen aan teams.

Kijk naar het grote geheel

Terwijl agile teams zich concentreren op kleine veranderingen en kleine stukjes functionaliteit, moeten ze op
elk moment ook het grote geheel in gedachten houden. Testers zijn getalenteerd in het identificeren van welke
delen van het systeem beinvloed worden door een bepaalde kleine verandering, en ze hebben het perspectief
van een klant.

Het agile testkwadrantenmodel helpt het team het grote geheel in gedachten te houden bij het plannen
van testactiviteiten. Verkennende testen zijn een voorbeeld van een testactiviteit die onverwachte gevolgen
van een nieuwe toepassingsmogelijkheid kan ontdekken. We hebben goede manieren om te analyseren hoe
klanten ons product gebruiken. Dit helpt ons allemaal focus houden op het leveren van de juiste waarde.

Praktijken voor het opbouwen van vertrouwen

In ons tweede boek, More Agile Testing, hebben we een aantal test kernpraktijken geidentificeerd die teams
helpen het vertrouwen op te bouwen dat nodig is om regelmatig veranderingen in de productie uit te
rollen. Deze praktijken zijn vooral belangrijk naarmate meer teams evolueren naar continuous delivery of
continuous deployment.

Gebruik voorbeelden

Concrete voorbeelden van hoe een applicatie zich zou moeten gedragen helpt iedereen in het team de
bedrijfsregels te begrijpen. Deze voorbeelden kunnen omgezet worden in testen die de ontwikkeling
begeleiden. Ze kunnen zo worden geautomatiseerd dat het team weet wanneer de story of functionaliteit
klaar is. De geautomatiseerde testen worden onderdeel van de regressietestsuites die snelle feedback geven
of een nieuwe wijziging het bestaande productiegedrag heeft beinvloed. Voorbeelden helpen teams op het
juiste pad te blijven.

Hoofdstuk 12: Ingrediénten voor succes 125

Verkennende testen

Door regressietests te automatiseren, blijft er meer tijd over voor verkennende testen, een van de beste
manieren om de “onbekende onbekenden” te vinden die ernstige productiestoringen kunnen veroorzaken.
Programmeurs kunnen leren verkennende testen te doen op elke story voordat ze hun werk als ‘af’
beschouwen. Dit is nog een snelle feedbacklus. Iedereen in het team kan verkennende testvaardigheden
leren en gebruiken. Ze zullen niet alleen onverwachte problemen identificeren, maar vinden ook ontbrekende
mogelijkheden die worden teruggekoppeld naar nieuwe functionaliteiten.

Functionaliteit testen

Het is essentieel om op alle detailniveaus te testen. Omdat agile teams zich focussen op het verhaal, moeten
ze onthouden om ook op functionaliteit niveau te testen. Een belangrijk onderdeel hiervan is het identificeren
van wat de functionaliteit werkelijk hoeft te omvatten. Testers kunnen helpen erachter te komen wat
waardevol is voor de klanten door vragen te stellen over wat het bedrijf zou moeten laten vallen ten voordele
van het leveren van andere zeer waardevolle functionaliteiten.

Voortdurend leren

Teamsucces hangt af van de psychologische veiligheid, vertrouwen en tijd om te leren. Het team moet
samenwerken om het grootste obstakel te identificeren voor het leveren van de gewenste kwaliteitsniveau,
of het nu onvoldoende test automatisering, feedback die te lang duurt of het bouwen van functionaliteiten
die niemand wilde. Dan kunnen ze kleine experimenten ontwerpen om te beginnen met het overwinnen van
dat obstakel. Testers kunnen het team helpen kwaliteit in te bouwen door testvaardigheden over te dragen.
Andere teamleden kunnen testers helpen hun T-vormige vaardigheden te vergroten zodat ze op meerdere
manieren een meerwaarde zijn.

Contextgevoeligheid

Elk team werkt binnen zijn unieke context. De grootte van het bedrijf, het zakelijke domein en zijn regelge-
vende omgeving, de betrokken technologie, infrastructuurbehoeften - dit zijn slechts enkele overwegingen
voor een team als het overweegt hoe het zijn capaciteit kan verbeteren om regelmatig waarde aan klanten te

Hoofdstuk 12: Ingrediénten voor succes 126

leveren. Gebruik geen tool of oefening omdat het is wat Google of Facebook doet - gebruik wat geschikt is
voor uw context.

Hou het realistisch

Testers blinken uit in het geven van feedback. Het kan moeilijk zijn om slecht nieuws te leveren. Maar
het is belangrijk om realistisch te blijven. Als een wijziging riskant is en het team heeft dat risico niet
voldoende gemitigeerd met testen en andere activiteiten, moeten stakeholders dit weten. Testers kunnen
fungeren als raadgevers om iedereen in het team te helpen hun testvaardigheden te verbeteren en in staat
zijn om bezorgdheden over de kwaliteit zichtbaar te maken voor het bedrijf. Wanneer het team knelpunten
ervaart bij het testen, maak dit dan zichtbaar, maak er een teamprobleem van om op te lossen. Het kan
verleidelijk zijn om problemen te verdoezelen om de stakeholders tevreden te houden, maar ze zullen niet
gelukkig zijn als de klanten de pijn ervaren.

Het is ook belangrijk voor het moraal van het team om te weten dat ze ‘nee’ kunnen zeggen. Bijvoorbeeld:
“Nee, we kunnen geen stories meer opnemen”, of “Nee, we kunnen geen nieuwe story toevoegen, tenzij je
één van de andere verwijdert.” Houd het realistisch!

Paden naar succes

We weten dat er veel testers en teams zijn die stress voelen, vooral bij teams die nog steeds aan het
omvormen zijn naar het gebruik van de agile ontwikkelingswaarden, principes en praktijken. Bijvoorbeeld,
het management is er nog niet achter hoe hun rol moet veranderen en kan frequentere leveringen eisen
en onrealistische deadlines opleggen. De testen moeten nog gebeuren en in teveel gevallen dragen testers
nog steeds volledige verantwoordelijkheid voor alle testactiviteiten. We denken graag dat er een magische
applicatie is die al onze problemen zal oplossen, maar we weten dat dit niet de realiteit is!

Testproblemen omzetten in problemen voor het hele leveringsteam is essentieel om te leren hoe je kwaliteit
in je producten kunt inbouwen en duurzaam succes kan behalen. Deze belangrijke succesfactoren en
vertrouwenwekkende praktijken bieden een kader om het team te helpen beslissen over de volgende stappen
op weg naar verbetering.

In onze ervaring duurt het jaren voordat een leveringsteam hun gewenste prestatie- en kwaliteitsniveau
behaald. We kunnen een achtste sleutel toevoegen aan deze succesfactor: geduld! Regelmatige teamretrospec-
tieven (we raden aan voor minstens één per week bij nieuwe teams) zijn ook essentieel bij het identificeren
van het grootste kwaliteitsgerelateerde probleem en het ontwerpen van een klein experiment om te beginnen

Hoofdstuk 12: Ingrediénten voor succes 127

dit te verbeteren. De diverse vaardigheden en ervaringen in een multifunctioneel team maakt het oplossen
van deze problemen veel gemakkelijker.

Een voorbeeld

Het team is gefrustreerd omdat de product owner een hoog percentage afwijst van de stories die ze opleveren.
Het constante herwerk, soms dagen nadat het team dacht dat de story “af” was, vertraagt hen. Cyclustijd
- de tijd vanaf het moment dat ze aan een story beginnen te werken tot wanneer het wordt opgeleverd in
productie - is veel langer dan ze zouden willen. Welke belangrijke succesfactor kan helpen?

De teambrede aanpak is duidelijk. Laten we het hele team, of een representatieve groep inclusief alle rollen,
samenkomen om het te bespreken. Wat vertrouwen opbouwen zou helpen? Wanneer de product owner een
story weigert, is dat meestal omdat het gedrag van dat deel van de toepassing, niet het gedrag is dat hij/zij
voor ogen had. Het team heeft de vereisten verkeerd begrepen. Het team leert voortdurend bij (één van
de vertrouwenwekkende praktijken), en één van de testers heeft zojuist geleerd over example mapping. Ze
besluiten te experimenteren met example mapping om te kijken of het een beter gedeeld begrip van de story
zal opleveren. Zij veronderstellen dat example mapping het afwijzingspercentage voor de stories met 20%
zal verminderen in de komende twee weken, wat zal resulteren in een besparing van 10% op de gemiddelde
cyclus tijd.

Ze meten en experimenteren om te zien of hun hypothese waar is. In dit echt voorbeeld, was het
experiment een succes. De doelen voor de vermindering van het afwijzingspercentage en de cyclustijd werden
overschreden. Binnen de twee maanden werden het afwijzingspercentage en de cyclustijd beide met 50%
verminderd. Het team vond meer voordelen van example mapping omdat het hielp bij het specificeren van
de scenario’s om de ontwikkeling te sturen in de vorm van gedragsgestuurde ontwikkelingstesten. Maar als
het experiment zou mislukt zijn, zou het team een nieuw experiment ontwerpen, geleid door de succesfactoren
en vertrouwenwekkende praktijken.

Wanneer onze eigen teams het gevoel hebben vast te zitten met een probleem, vallen we terug op de sleutel
succesfactoren en vertrouwenwekkende praktijken. Dit samen met de tien principes voor agile testen uit
hoofdstuk 1, om ons te helpen bij het plannen van onze volgende stappen. Ze zullen ons begeleiden tijdens
onze leerreis terwijl we ons vermogen verbeteren om regelmatig kleine, waardevolle wijzigingen bij onze
klanten door te voeren.

Bedankt voor het lezen, en we hopen dat je succesvol bent in uw eigen reis.

Chapter 12: Ingredients for Success

Each agile software delivery team travels its own learning journey. Our goal is to continually improve our
ability to deliver value to our customers frequently, while maintaining our business’s desired standard of
quality. Each team is doing this with a unique combination of business domain, software product, technology
stack, frameworks, and practices.

Over the years, we have found that among all these differences, certain ingredients for success benefit every
team.

Success factors

In our first book, Agile Testing, our summary chapter comprised seven success factors we thought were
necessary (although not sufficient) to be successful in delivering a quality product. It is easy to get over-
whelmed by planning and executing testing activities during short delivery cycles. Below is a short list of key
success factors and core agile testing practices to guide your teams.

“Whole-team approach”

Elisabeth Hendrickson taught us that “testing is an activity, not a phase.” Testing is an integral part of software
development, along with coding and so many other activities. With this perspective, it is easy for everyone
to help with testing tasks as necessary.

Testers can teach other team members skills like eliciting concrete examples of desired and undesired behavior
from business experts, evaluating different quality attributes, or doing exploratory testing.

Programmers can help testers understand the system architecture to get better testing or even teach them
basic coding constructs. Each team member can transfer some of their deep skills to other team members,
regardless of role.

When teams realize that testing and quality are a team problem, they can incorporate their diverse skillsets
and develop an atmosphere of trust and safety, as well as create a learning environment where they can
experiment and continually improve.

Chapter 12: Ingredients for Success 129

we need nput from

Drawing by Constance Hermit

Agile testing mindset

Testers are no longer the “quality police,” determining “go/no-go” decisions. Testers or team members who
are performing testing activities can explain the risks and impacts of test results so that the business can make
an informed decision about releasing to production.

As a team member with an agile testing mindset, it means you’re inquisitive and want to learn more about
everything to help you do your job. It means that you apply agile principles and values. It means collaborating
with the technical and business team members, keeping the big picture in mind as you put the small feature
increments together. You’re focused on bug prevention, so you don’t have to spend so much time finding
bugs later.

bransfey
Skuls

Drawing by Constance Hermit

Chapter 12: Ingredients for Success 130

Automate your regression tests

There are a few things to remember when your team starts to automate. It is a team problem, so think “whole
team” and collaborate to automate at all levels. Programmers are good at writing code, testers are good at
specifying tests, and people with other specialized skills on the team can help with test data, infrastructure,
and more. The test automation pyramid is a good visual model to form and evolve the team’s automation
strategy. By keeping the tests simple and easy to maintain, a team can work toward having enough regression
tests to give them confidence about releasing.

Test automation is a check to ensure that you haven’t forgotten to change something, i.e., it is a change
detector. A good automation strategy gives you the time to perform exploratory testing to find issues before
your customer does.

Provide and obtain feedback

Successful software development depends on fast feedback. Teams need to know right away if a change has
caused an unintended failure. They want to know how customers react to a new feature. Testers are central to
creating and continuing to shorten the various feedback loops, including creating automated tests, engaging
in exploratory testing, and observing production usage to learn how customers use the product.

People also need feedback for themselves so they can find more ways to add value. Listening and observing
skills are key.

Hint: As you collaborate with other team members, ask them what gaps you can fill and how you
can contribute more effectively.

Build a foundation of core practices

There are core practices that have proven effective in helping teams build quality into their product.

« Every team needs continuous integration to successfully deliver software at a frequent cadence over
time. Each time a team member commits a change to the source code control repository, it should kick
off a build process that integrates all code changes and verifies them with automated tests. Every team

Chapter 12: Ingredients for Success 131

has a deployment pipeline to create a release candidate and deploy it to a test or production environment
— even if it includes manual stages.
+ Many teams still struggle to have reliable test environments that resemble production as much as
possible and allow them to easily control which build version is deployed. Today’s cloud infrastructure
provides even more options to create temporary test environments to test a specific build version and
automatically deploy new versions to permanent test environments.
Technical debt is like credit card debt; it continues to grow if only the minimum amount or part of the
interest is paid. The technical debt continues to grow if the team doesn’t take time to refactor code, create
adequate automated regression tests, upgrade frameworks, and manage other necessary infrastructure.
Over time even the smallest code change poses large risks and requires much time spent with manual
testing tasks. Invest the time to manage technical debt in the code and in your automated tests.

« Small, frequent changes are generally less risky than large, infrequent ones. Less can go wrong, and
failures can be quickly diagnosed. Teams that slice big feature ideas into small “learning releases” and
even smaller stories are more likely to deliver what their customers want in a timely manner.

« Coding and testing are part of one process. This is the core of the whole-team approach to testing and
quality. Testing and coding happen together, hand in hand, from feature idea to evaluating the feature
in production.

« Synergy between practices comes from doing all these core practices together. Test-driven devel-
opment, collective code ownership, and continuous integration ensure consistency and fast feedback.
Refactoring depends on having automated regression tests. Agile practices are tried and true and are
designed to be done all together.

Collaborate with customers

Testers speak the domain language of business stakeholders and the technical language of delivery team
members. Getting the right people together when a conversation is needed about how a feature should behave
or how a design should look is also important. Testers can help product owners articulate business rules for
each story and illustrate them with concrete examples. This is one of the most valuable ways testers contribute
on teams.

Look at the big picture

While agile teams focus on small changes and small slices of features at any given time, they also need to
keep the big picture in mind. Testers are talented at identifying what parts of the system might be affected

Chapter 12: Ingredients for Success 132

by a particular small change, and they have a customer’s perspective.

The agile testing quadrants model goes a long way toward helping the team keep the big picture in mind as
they plan testing activities. Exploratory testing is an example of a testing activity that can uncover unexpected
consequences of a new application capability. We have good ways to analyze how customers are using our
product. This all helps us focus on delivering the right value.

Confidence-building practices

In our second book, More Agile Testing, we identified some core testing practices that help teams build the
confidence needed to frequently release changes to production. These practices are especially important as
more teams move toward continuous delivery or continuous deployment.

Use examples

Concrete examples of how an application capability should behave help everyone on the team understand
the business rules. These examples can be turned into tests that guide development. They can be automated
so the team knows when it’s done with a story or feature. The automated tests become part of regression
test suites that provide quick feedback on whether a new change has affected existing production behavior.
Examples help teams stay on track.

Exploratory testing

Automating regression tests leaves more time for exploratory testing, one of the best ways to find the
“unknown unknowns” that could cause dire production failures. Programmers can learn to do exploratory
testing on each story before they deem their work “finished.” This is another fast feedback loop. Everyone on
the team can learn and use exploratory testing skills. They will not only identify unexpected problems but
will also find missing capabilities that feed back into new feature ideas.

Feature testing

It’s essential to test at all levels of detail. Because agile teams focus on the story, they need to remember to
also test at the feature level. An important part of this is identifying what the feature really needs to include.

Chapter 12: Ingredients for Success 133

Testers can help figure out what is valuable to customers by asking questions concerning what the business
should drop in favor of delivering other highly valuable features.

Continual learning

Team success depends on psychological safety, trust, and time to learn. The team needs to work together
to identify the biggest obstacle to delivering their desired level of quality, whether it’s inadequate test
automation, feedback that takes too long, or building features that nobody wanted. Then they can design
small experiments to start overcoming that obstacle. Testers can help the team learn to build quality in by
transferring testing skills. Other team members can help testers ramp up their T-shaped skills so they can
contribute in more ways.

Context sensitivity

Every team is working within its unique context. The size of the company, the business domain and its
regulatory environment, the technology involved, infrastructure needs — these are just some considerations
for a team as it considers how to improve its ability to deliver value to customers frequently. Don’t adopt a
tool or practice because it’s what Google or Facebook does — use what is appropriate for your context.

Keep it real

Testers excel at providing feedback. It can be difficult to deliver bad news. But it’s important to stay grounded
in reality. If a change is risky and the team hasn’t adequately mitigated that risk with testing and other
activities, business stakeholders need to know. Testers can act as consultants to help everyone on their team

Chapter 12: Ingredients for Success 134

improve their testing skills and be able to make quality concerns visible to the business. When the team
experiences bottlenecks with testing, make it visible, make it a team problem to solve. It can be tempting
to gloss over issues to keep the business executives happy, but they won’t be happy if customers experience
pain.

It is also important for team morale to know they can say no. For example, “No, we can’t take in any more
stories,” or “No, we can’t add a new story unless you remove one of the others.” Keep it real!

Paths to success

We know there are a lot of testers and teams out there who feel stressed, especially on teams that are
still transitioning to using agile development values, principles, and practices. For example, management
hasn’t yet figured out how their role needs to change and may demand more frequent deliveries and impose
unrealistic deadlines. The testing still must be done, and in too many cases, testers still bear total responsibility
for all testing activities. We’d like to think there is some magic silver bullet tool out there that will solve all
our problems, but we know that’s not reality!

Turning testing problems into problems for the whole delivery team to address is vital to learning how to
build quality into your products and achieving sustainable success. These key success factors and confidence-
building practices provide a framework to help the team decide its next steps along a path to improvement.

In our experience, it takes years for a delivery team to achieve their desired level of performance and quality.
We might add an eighth key success factor: patience! Frequent team retrospectives (we recommend at least
one a week for new teams) are also key in identifying the biggest quality-related problem and designing a
small experiment to start chipping away at it. The diverse skills and experience in a cross-functional team
makes solving those problems much easier.

An example

The team is frustrated because the product owner rejects a high percentage of the stories they deliver. The
constant re-work, sometimes days after the team thought the story was “finished,” is slowing them down.
Cycle time - the time from when they start working on a story to when it is deployed to production - is
much longer than they’d like. What key success factor can help?

The whole-team approach is obvious. Let’s get the whole team, or a representative group including all roles,
together to discuss it. What confidence-building practice would help? When the product owner rejects a
story, it’s usually because the behavior of that part of the application is not what she wanted. The team
misunderstood the requirements. The team is continually learning (one of the confidence-building practices),
and one of the testers has just learned about example mapping. They decide to experiment with example
mapping to see if it will build better shared understanding of each story. They hypothesize that example
mapping will reduce story rejection rate by 20% over the next two weeks, resulting in a 10% savings of
average cycle time.

They measure and experiment to see if their hypothesis is true. In this real example, the experiment was a
success. The goals for reduction in rejection rate and cycle time were exceeded. Within two months, rejection
rate and cycle time were both reduced by 50%. The team found more benefits from example mapping as it

Chapter 12: Ingredients for Success 135

helped with specifying scenarios to guide development in the form of behavior-driven development tests.
But if the experiment had failed, the team would have designed another experiment, guided by the success
factors and confidence-building practices.

When our own teams feel stuck on a problem, we fall back on the key success factors and confidence-building
practices, along with the ten principles for agile testing in Chapter 1, to help us plan our next steps. They will
guide us along our learning journey as we improve our ability to get small, valuable changes to our customers
frequently and sustainably.

Thank you for reading, and we hope you are successful in your own journey.

Begrippenlijst

Ad hoc testen: Een informele testactiviteit waarbij men bugs zoekt op een ongestructureerde manier zonder
plan vooraf.

Context diagram: Een diagram op hoog niveau dat alle externe entiteiten weergeeft die kunnen interacteren
met een systeem, inclusief andere systemen, omgevingen en activiteiten.

Klant: Extreme programming (XP) gebruikt de term “klant” om te verwijzen naar een business stakeholder,
product persoon of eind- gebruiker die bijeenkomt met het ontwikkelteam om prioriteiten te stellen, vragen
te beantwoorden en besluiten te nemen over gewenste functionaliteit. In moderne agile teams kan de term
verwijzen naar een of meer business stakeholders, leden van een productteam, eind gebruikers en/of iedereen
die helpt bij het ontwikkelen en accepteren van opgeleverde stories.

Eindspel: Het eindspel is de tijd voor release, wanneer het ontwikkelteam de laatste hand legt aan het
product. Niet een periode om bugs of technische achterstanden te fixen, maar een mogelijkheid om samen te
werken met groepen buiten het ontwikkelteam om de software naar productie te brengen. Voorbeelden van
eindspelactiviteiten zijn aanvullende testen van database migratie en installatie.

Iteratie: Timebox gebruikt voor planning, met de intentie dat een “potentieel opleverbaar product” beschik-
baar is op het einde van de iteratie. De Scrum term voor iteratie is “sprint”. Plannen in tijdblokken van twee
weken is een tegenwoordig een gangbare praktijk, zelfs bij teams die continous delivery toepassen en vaker
naar productie gaan.

Kanban: Een aanpak om te plannen die is afgeleid van Lean manufacturing waarbij teams werken op een
flow gebaseerde manier. Zij gebruiken limieten voor werk in uitvoering (WIP) en pakken nieuw werk op dat
klaar staat (Ready) wanneer een lege plek beschikbaar komt. Het team plant, wanneer nodig, een paar nieuwe
stories tegelijk.

Leer Release: De eerste release(s) opgeleverd aan een klant, voor feedback om van te leren en aan te passen.
The Learning Release*.

Mind map: Een visueel diagram gebruikt als gereedschap voor brainstorming, vooral wanneer meer mensen
tegelijk samenwerken. Het begint met een concept, idee of onderwerp als startpunt, waarbij nieuwe ideeén
worden verbonden met dit startpunt en met elkaar. Mind maps kunnen goed werken voor test planning en
andere activiteiten.

Pairing: (pair programmeren, pair testen) Twee personen die zij aan zij werken aan hetzelfde werkstation,
bij voorkeur met twee gespiegelde monitoren, twee toetsenborden en twee muizen, om samen productie-
of testcode te schrijven of andere testactiviteiten uit te voeren. Beschikken over twee personen, elk met
verschillend perspectief en vaardigheden, helpt om problemen in een vroeg stadium op te vangen en betere
oplossingen te bereiken. Bij de strikte stijl van pairing is één persoon, de navigator, vrij om te observeren
en suggesties te doen, terwijl de andere persoon optreedt als bestuurder. De navigator en bestuurder rollen
worden regelmatig gewisseld.

Toestandsdiagram: Een visuele techniek gebruikt als abstracte beschrijving van het gedrag* van een

“*https://medium.com/@Ardita_K/the-learning-release-70374d2450b3
“*https://nl.wikipedia.org/wiki/Gedrag

https://medium.com/@Ardita_K/the-learning-release-70374d2450b3
https://nl.wikipedia.org/wiki/Gedrag
https://medium.com/@Ardita_K/the-learning-release-70374d2450b3
https://nl.wikipedia.org/wiki/Gedrag

Begrippenlijst 137

systeem* in reactie op diverse gebeurtenissen. Dit gedrag wordt geanalyseerd en weergegeven als aaneen-
schakeling van gebeurtenissen die kunnen plaatsvinden in één of meer toestanden.

Test-driven Development (TDD): Bij test-driven development, schrijft en automatiseert de programmeur
een kleine unittest die initieel faalt. Pas daarna wordt een minimale hoeveelheid programmacode geschreven
waardoor de test slaagt. De structuur van de programmacode wordt waar nodig verbeterd om te voldoen aan
acceptabele standaarden. De productiecode wordt zo stap voor stap geschreven. TDD, ook bekend als Test-
driven Design, is meer een code ontwerp praktijk dan een testactiviteit. TDD helpt om robuuste, gemakkelijk
onderhoudbare code te schrijven.

“*https://nl.wikipedia.org/wiki/Systeem

https://nl.wikipedia.org/wiki/Systeem
https://nl.wikipedia.org/wiki/Systeem

Glossary

Ad hoc testing: An informal testing activity where one looks for bugs in a non-structured way without any
advance plan.

Context diagram: A high-level diagram that represents all external entities that may interact with a system,
including other systems, environments, and activities.

Customer: Extreme programming (XP) uses the term “customer” to refer to a business stakeholder, product
person, or end user who meets with the programming team to set priorities, answer questions, and make
decisions about feature behavior. In contemporary agile teams, the term can represent any and all business
stakeholders, product team members, end users, and anyone who helps guide development and accept
delivered stories.

Endgame: The endgame is the time before release when the delivery team applies the finishing touches
to the product. Not a bug-fix or “hardening” period, it is an opportunity to work with groups outside of
development to help move the software into production. Examples of endgame activities include additional
testing of database migrations and installation.

Iteration: Time box used for planning, with the intent that there is a “potentially shippable product” by the
end. The Scrum term for this is “sprint.” Planning in two-week timeframes is a common practice today, even
in teams doing continuous delivery and deploying to production more often.

Kanban: A planning approach derived from Lean manufacturing in which teams work in a flow-based
manner. They use work-in-progress (WIP) limits, pulling new stories in that are “ready,” to fill a newly empty
WIP slot. The team plans, as needed, a few new stories at a time.

Learning Release: The first release(s) delivered to a customer in order to get feedback to learn and adjust
(https://medium.com/@Ardita_K/the-learning-release-70374d2450b3).

Mind map: A visual diagram used as a brainstorming tool, especially when multiple people are collaborating
at once. It starts with a concept, idea, or topic in the root node, with ideas connected to the root node and to
each other as they are generated. Mind maps can work well for test planning and other activities.

Pairing (pair programming, pair testing): Two people working side by side at the same workstation, preferably
with two mirrored monitors, two keyboards, and two mice, to write production or test code or do other testing
activities. Having two people, each with a different perspective and skill set, helps catch problems immediately
and reach better solutions. In strong-style pairing, one person, the navigator, is free to observe and suggest
ideas, while the other person acts as the “driver”; the driver/navigator roles switch frequently.

State Diagram: A visual technique used to give an abstract description of the behavior*® of a system*’” in
response to various events. This behavior is analyzed and represented as a series of events that can occur in
one or more possible states.

Test-driven Development (TDD): In test-driven development, the programmer writes and automates a small
unit test, which initially fails, before writing the minimum amount of code that will make the test pass. The
code is refactored as needed to meet acceptable standards. The production code is made to work one test at

“*https://en.wikipedia.org/wiki/Behavior
“"https://en.wikipedia.org/wiki/System

https://medium.com/@Ardita_K/the-learning-release-70374d2450b3
https://en.wikipedia.org/wiki/Behavior
https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Behavior
https://en.wikipedia.org/wiki/System

Glossary 139

a time. TDD, also known as test-driven design, is more of a code design practice than a testing activity, and
helps build robust, easily maintainable code.

Bronnen voor verder leren

Algemeen

Agile Testing: A Practical Guide for Testers and Agile Teams, En More Agile Testing: Learning Journeys for
the Whole Team, Lisa Crispin en Janet Gregory, https://agiletester.ca*®

Bibliografie van More Agile Testing, gedigitaliseerd door Kristine Corbus

« https://testretreat.com/2018/01/28/more-agile-testing-introduction/

« https://testretreat.com/2018/01/29/more-agile-testing-learning-better-testing/
+ https://testretreat.com/2018/01/29/more-agile-testing-planning/

« https://testretreat.com/2018/01/30/more-agile-testing-business-value

« https://testretreat.com/2018/02/15/more-agile-testing-test-automation/

Gemeenschappelijk begrip - Samenwerking

Discovery: Explore behavior using examples, Seb Rose en Gaspar Nagy, 2017, http://bddbooks.com/

User Story Mapping: Building Better Products Using Agile Software Design, Jeff Patton, O’Reilly Media, 2014.
Impact Mapping, Gojko Adzic, http://impactmapping.org

“Experiment with Example Mapping,” https://lisacrispin.com/2016/06/02/experiment-example-mapping/
“Introduction to Example Mapping,” Matt Wynne, https://cucumber.io/blog/example-mapping-introduction/

“Three Amigos Strategy,” George Dinwiddie, https://www.agileconnection.com/article/three-amigos-
strategy-developing-user-stories

“Our team’s first mobbing session,” Lisi Hocke, https://www lisihocke.com/2017/04/our-teams-first-mobbing-
session.html

“The Driver-Navigator in Strong-Style Pairing,” Maaret Pyhéajarvi, https://medium.com/@maaret.pyhajarvi/
the-driver-navigator-in-strong-style-pairing-2df0ecb4f657

Strong-Style Pair Programming and Mob Programming Guidebook, Maaret Pyhajarvi, https://leanpub.com/
u/maaretp

Onderzoekend testen

Explore It: Reduce Risk and Increase Confidence with Exploratory Testing, Elisabeth Hendrickson, 2013, https:
//pragprog.com/book/ehxta/explore-it

Exploratory Testing, Maaret Pyhajarvi, https://leanpub.com/exploratorytesting

“*https://agiletester.ca/

https://agiletester.ca/
https://testretreat.com/2018/01/28/more-agile-testing-introduction/
https://testretreat.com/2018/01/29/more-agile-testing-learning-better-testing/
https://testretreat.com/2018/01/29/more-agile-testing-planning/
https://testretreat.com/2018/01/30/more-agile-testing-business-value
https://testretreat.com/2018/02/15/more-agile-testing-test-automation/
http://bddbooks.com/
http://impactmapping.org
https://lisacrispin.com/2016/06/02/experiment-example-mapping/
https://cucumber.io/blog/example-mapping-introduction/
https://www.agileconnection.com/article/three-amigos-strategy-developing-user-stories
https://www.agileconnection.com/article/three-amigos-strategy-developing-user-stories
https://www.lisihocke.com/2017/04/our-teams-first-mobbing-session.html
https://www.lisihocke.com/2017/04/our-teams-first-mobbing-session.html
https://medium.com/@maaret.pyhajarvi/the-driver-navigator-in-strong-style-pairing-2df0ecb4f657
https://medium.com/@maaret.pyhajarvi/the-driver-navigator-in-strong-style-pairing-2df0ecb4f657
https://leanpub.com/u/maaretp
https://leanpub.com/u/maaretp
https://pragprog.com/book/ehxta/explore-it
https://pragprog.com/book/ehxta/explore-it
https://leanpub.com/exploratorytesting
https://agiletester.ca/

Bronnen voor verder leren 141

DevOps, Monitoring, Waarneembaarheid

A Practical Guide to Testing in DevOps, Katrina Clokie, https://leanpub.com/testingindevops

“Testing in production the safe way,” Cindy Sridharan, https://medium.com/@copyconstruct/testing-in-
production-the-safe-way-18ca102d0ef1

“Monitoring and observability,” Cindy Sridharan, https://medium.com/@copyconstruct/monitoring-and-
observability-8417d1952elc

“Charity Majors on Observability and Understanding the Operational Ramifications of a System,” InfoQ
interview met Charity Majors, https://www.infoq.com/articles/charity-majors-observability-failure

Google Site Reliability Engineering, https://landing.google.com/sre/

“What is Chaos Engineering**?” Joe Colontonio (inclusief een link naar de podcast met Tammy Butow), https:
//www .joecolantonio.com/chaos-engineering/

“Tracing vs Logging vs Monitoring: What’s the Difference?” Chrissy Kidd, https://www.bmc.com/blogs/
monitoring-logging-tracing/

Test Automatisering

“Keep your automated tests simple and avoid anti-patterns,” Lisa Crispin, https://www.mabl.com/blog/keep-
your-automated-testing-simple

“Test automation: Five questions leading to five heuristics,” Joep Shuurkes, https://testingcurve.wordpress.
com/2015/03/24/test-automation-five-questions-leading-to-five-heuristics/

“Powerful test automation practices,” deel 1 en 2, Lisa Crispin en Steve Vance, https://www.mabl.com/blog/
powerful-test-automation-practices-pt-1, https://www.mabl.com/blog/powerful-test-automation-practices-
pt-2

“Test Suite Design,” Ashley Hunsberger, https://github.com/ahunsberger/testSuiteDesign

Accelerate: The Science of Lean and DevOps, Nicole Forsgren, en anderen, https://itrevolution.com/book/
accelerate/

“Analyzing automated test failures,” Lisa Crispin, https://www.mabl.com/blog/lisa-webinar-analyzing-
automated-ui-test-failures

“The Testing Iceberg,” Seb Rose, http://claysnow.co.uk/the-testing-iceberg/

“Lower level automation and testing? Be more precise! The automation triangle revisited again!” Toyer
Mamoojee, https://toyerm.wordpress.com/2018/10/16/lower-level-automation-and-testing-be-more-precise-
the-automation-triangle-revisited-again

The Team Guide to Software Testability, Ash Winter en Rob Meaney, https://leanpub.com/softwaretestability

“’https://www.joecolantonio.com/chaos-engineering/

https://leanpub.com/testingindevops
https://medium.com/@copyconstruct/testing-in-production-the-safe-way-18ca102d0ef1
https://medium.com/@copyconstruct/testing-in-production-the-safe-way-18ca102d0ef1
https://medium.com/@copyconstruct/monitoring-and-observability-8417d1952e1c
https://medium.com/@copyconstruct/monitoring-and-observability-8417d1952e1c
https://www.infoq.com/articles/charity-majors-observability-failure
https://landing.google.com/sre/
https://www.joecolantonio.com/chaos-engineering/
https://www.joecolantonio.com/chaos-engineering/
https://www.joecolantonio.com/chaos-engineering/
https://www.bmc.com/blogs/monitoring-logging-tracing/
https://www.bmc.com/blogs/monitoring-logging-tracing/
https://www.mabl.com/blog/keep-your-automated-testing-simple
https://www.mabl.com/blog/keep-your-automated-testing-simple
https://testingcurve.wordpress.com/2015/03/24/test-automation-five-questions-leading-to-five-heuristics/
https://testingcurve.wordpress.com/2015/03/24/test-automation-five-questions-leading-to-five-heuristics/
https://www.mabl.com/blog/powerful-test-automation-practices-pt-1
https://www.mabl.com/blog/powerful-test-automation-practices-pt-1
https://www.mabl.com/blog/powerful-test-automation-practices-pt-2
https://www.mabl.com/blog/powerful-test-automation-practices-pt-2
https://github.com/ahunsberger/testSuiteDesign
https://itrevolution.com/book/accelerate/
https://itrevolution.com/book/accelerate/
https://www.mabl.com/blog/lisa-webinar-analyzing-automated-ui-test-failures
https://www.mabl.com/blog/lisa-webinar-analyzing-automated-ui-test-failures
http://claysnow.co.uk/the-testing-iceberg/
https://toyerm.wordpress.com/2018/10/16/lower-level-automation-and-testing-be-more-precise-the-automation-triangle-revisited-again
https://toyerm.wordpress.com/2018/10/16/lower-level-automation-and-testing-be-more-precise-the-automation-triangle-revisited-again
https://leanpub.com/softwaretestability
https://www.joecolantonio.com/chaos-engineering/

Resources for Further Learning

General

Agile Testing: A Practical Guide for Testers and Agile Teams, and More Agile Testing: Learning Journeys for
the Whole Team, Lisa Crispin and Janet Gregory, https://agiletester.ca®

Bibliography from More Agile Testing, digitized by Kristine Corbus
-https://testretreat.com/2018/01/28/more-agile-testing-introduction/
-https://testretreat.com/2018/01/29/more-agile-testing-learning-better-testing/
-https://testretreat.com/2018/01/29/more-agile-testing-planning/
-https://testretreat.com/2018/01/30/more-agile-testing-business-value

-https://testretreat.com/2018/02/15/more-agile-testing-test-automation/

Getting Shared Understanding - Collaboration

Discovery: Explore behavior using examples, Seb Rose and Gaspar Nagy, 2017, http://bddbooks.com/

User Story Mapping: Building Better Products Using Agile Software Design, Jeff Patton, O’Reilly Media, 2014.
Impact Mapping, Gojko Adzic, http://impactmapping.org

“Experiment with Example Mapping,” https://lisacrispin.com/2016/06/02/experiment-example-mapping/
“Introduction to Example Mapping,” Matt Wynne, https://cucumber.io/blog/example-mapping-introduction/

“Three Amigos Strategy,” George Dinwiddie, https://www.agileconnection.com/article/three-amigos-
strategy-developing-user-stories

“Our team’s first mobbing session,” Lisi Hocke, https://www lisihocke.com/2017/04/our-teams-first-mobbing-
session.html

“The Driver-Navigator in Strong-Style Pairing,” Maaret Pyhéajarvi, https://medium.com/@maaret.pyhajarvi/
the-driver-navigator-in-strong-style-pairing-2df0ecb4f657

Strong-Style Pair Programming and Mob Programming Guidebook, Maaret Pyhajarvi, https://leanpub.com/
u/maaretp

Exploratory Testing

Explore It: Reduce Risk and Increase Confidence with Exploratory Testing, Elisabeth Hendrickson, 2013, https:
//pragprog.com/book/ehxta/explore-it

°https://agiletester.ca/

https://agiletester.ca/
https://testretreat.com/2018/01/28/more-agile-testing-introduction/
https://testretreat.com/2018/01/29/more-agile-testing-learning-better-testing/
https://testretreat.com/2018/01/29/more-agile-testing-planning/
https://testretreat.com/2018/01/30/more-agile-testing-business-value
https://testretreat.com/2018/02/15/more-agile-testing-test-automation/
http://bddbooks.com/
http://impactmapping.org
https://lisacrispin.com/2016/06/02/experiment-example-mapping/
https://cucumber.io/blog/example-mapping-introduction/
https://www.agileconnection.com/article/three-amigos-strategy-developing-user-stories
https://www.agileconnection.com/article/three-amigos-strategy-developing-user-stories
https://www.lisihocke.com/2017/04/our-teams-first-mobbing-session.html
https://www.lisihocke.com/2017/04/our-teams-first-mobbing-session.html
https://medium.com/@maaret.pyhajarvi/the-driver-navigator-in-strong-style-pairing-2df0ecb4f657
https://medium.com/@maaret.pyhajarvi/the-driver-navigator-in-strong-style-pairing-2df0ecb4f657
https://leanpub.com/u/maaretp
https://leanpub.com/u/maaretp
https://pragprog.com/book/ehxta/explore-it
https://pragprog.com/book/ehxta/explore-it
https://agiletester.ca/

Resources for Further Learning 143

Exploratory Testing, Maaret Pyhajarvi, https://leanpub.com/exploratorytesting

DevOps, Monitoring, Observability

A Practical Guide to Testing in DevOps, Katrina Clokie, https://leanpub.com/testingindevops

“Testing in production the safe way,” Cindy Sridharan, https://medium.com/@copyconstruct/testing-in-
production-the-safe-way-18ca102d0ef1

“Monitoring and observability,” Cindy Sridharan, https://medium.com/@copyconstruct/monitoring-and-
observability-8417d1952e1c

“Charity Majors on Observability and Understanding the Operational Ramifications of a System,” InfoQ
interview with Charity Majors, https://www.infoq.com/articles/charity-majors-observability-failure

Google Site Reliability Engineering, https://landing.google.com/sre/

“What is Chaos Engineering®'?” Joe Colontonio (includes link to podcast with Tammy Butow), https://www.
joecolantonio.com/chaos-engineering/

“Tracing vs Logging vs Monitoring: What’s the Difference?” Chrissy Kidd, https://www.bmc.com/blogs/
monitoring-logging-tracing/

Test Automation

“Keep your automated tests simple and avoid anti-patterns,” Lisa Crispin, https://www.mabl.com/blog/keep-
your-automated-testing-simple

“Test automation: Five questions leading to five heuristics,” Joep Shuurkes, https://testingcurve.wordpress.
com/2015/03/24/test-automation-five-questions-leading-to-five-heuristics/

“Powerful test automation practices,” parts 1 and 2, Lisa Crispin and Steve Vance, https://www.mabl.com/blog/
powerful-test-automation-practices-pt-1, https://www.mabl.com/blog/powerful-test-automation-practices-
pt-2

“Test Suite Design,” Ashley Hunsberger, https://github.com/ahunsberger/testSuiteDesign
Accelerate: The Science of Lean and DevOps, Nicole Forsgren, et al, https://itrevolution.com/book/accelerate/

“Analyzing automated test failures,” Lisa Crispin, https://www.mabl.com/blog/lisa-webinar-analyzing-
automated-ui-test-failures

“The Testing Iceberg,” Seb Rose, http://claysnow.co.uk/the-testing-iceberg/

“Lower level automation and testing? Be more precise! The automation triangle revisited again!” Toyer
Mamoojee, https://toyerm.wordpress.com/2018/10/16/lower-level-automation-and-testing-be-more-precise-
the-automation-triangle-revisited-again

The Team Guide to Software Testability, Ash Winter and Rob Meaney, https://leanpub.com/softwaretestability

>'https://www.joecolantonio.com/chaos-engineering/

https://leanpub.com/exploratorytesting
https://leanpub.com/testingindevops
https://medium.com/@copyconstruct/testing-in-production-the-safe-way-18ca102d0ef1
https://medium.com/@copyconstruct/testing-in-production-the-safe-way-18ca102d0ef1
https://medium.com/@copyconstruct/monitoring-and-observability-8417d1952e1c
https://medium.com/@copyconstruct/monitoring-and-observability-8417d1952e1c
https://www.infoq.com/articles/charity-majors-observability-failure
https://landing.google.com/sre/
https://www.joecolantonio.com/chaos-engineering/
https://www.joecolantonio.com/chaos-engineering/
https://www.joecolantonio.com/chaos-engineering/
https://www.bmc.com/blogs/monitoring-logging-tracing/
https://www.bmc.com/blogs/monitoring-logging-tracing/
https://www.mabl.com/blog/keep-your-automated-testing-simple
https://www.mabl.com/blog/keep-your-automated-testing-simple
https://testingcurve.wordpress.com/2015/03/24/test-automation-five-questions-leading-to-five-heuristics/
https://testingcurve.wordpress.com/2015/03/24/test-automation-five-questions-leading-to-five-heuristics/
https://www.mabl.com/blog/powerful-test-automation-practices-pt-1
https://www.mabl.com/blog/powerful-test-automation-practices-pt-1
https://www.mabl.com/blog/powerful-test-automation-practices-pt-2
https://www.mabl.com/blog/powerful-test-automation-practices-pt-2
https://github.com/ahunsberger/testSuiteDesign
https://itrevolution.com/book/accelerate/
https://www.mabl.com/blog/lisa-webinar-analyzing-automated-ui-test-failures
https://www.mabl.com/blog/lisa-webinar-analyzing-automated-ui-test-failures
http://claysnow.co.uk/the-testing-iceberg/
https://toyerm.wordpress.com/2018/10/16/lower-level-automation-and-testing-be-more-precise-the-automation-triangle-revisited-again
https://toyerm.wordpress.com/2018/10/16/lower-level-automation-and-testing-be-more-precise-the-automation-triangle-revisited-again
https://leanpub.com/softwaretestability
https://www.joecolantonio.com/chaos-engineering/

Over de auteurs

Jeanet Gregory is een agile testing coach en procesbegeleider bij DragonFire Inc. Haar vakgenoten
hebben haar in 2015 uitgeroepen tot de ‘Meest Invloedrijke Agile Testing Professional Persoon’. Janet is
gespecialiseerd in tonen aan agile teams hoe testpraktijken nodig zijn om producten van goede kwaliteit
te ontwikkelen. Ze geeft wereldwijd agile testing cursussen en brengt haar zomers door in de bergen buiten
Calgary.

Lisa Crispin verspreidt al twee decennia lang agile plezier in de testwereld en testplezier in de agile wereld.
Haar vakgenoten verkozen haar tot de ‘Meest Invloedrijke Agile Testing Professional Persoon’ in 2012. Haar
huidige interesses zijn het helpen van teams om te slagen met continuous delivery en deployment; ze is dan
ook een uitgesproken voorstander van testen en werkt bij mabl om toonaangevende praktijken op het gebied
van testen in de softwaregemeenschap te verkennen. Lisa woont met haar man, ezels, katten en honden in
het prachtige Vermont.

Janet en Lisa zijn auteurs van: Agile Testing Condensed: A Brief Introduction (2019), More Agile Testing:
Learning Journeys for the Whole Team (2014), Agile Testing: A Practical Guide for Testers and Agile Teams
(2009), de Agile Testing Essentials LiveLessons video cursus, en de 3-daagse training “Agile Testing for the
Whole Team” aangeboden door de Agile Testing Fellowship. Samen hebben zij de Agile Testing Fellowship
opgericht om een gemeenschap te laten groeien voor alle beoefenaars die kwaliteit hoog in het vaandel dragen.
Janet Gregory: janetgregory.ca® Twitter: @janetgregoryca

Lisa Crispin: lisacrispin.com® Twitter: @lisacrispin

Agile Testing Fellowship: agiletestingfellow.com® agiletester.ca®

*https://janetgregory.ca/
>*https://lisacrispin.com/
**https://agiletestingfellow.com/
**https://agiletester.ca/

https://janetgregory.ca/
https://lisacrispin.com/
https://agiletestingfellow.com/
https://agiletester.ca/
https://janetgregory.ca/
https://lisacrispin.com/
https://agiletestingfellow.com/
https://agiletester.ca/

About the Authors

Janet Gregory is an agile testing coach and process consultant with DragonFire Inc. Her peers voted her as
the Most Influential Agile Testing Professional Person in 2015. Janet specializes in showing agile teams how
testing practices are necessary to develop good quality products. She teaches agile testing courses worldwide
and enjoys spending her summers in the mountains outside Calgary.

Lisa Crispin has been spreading agile joy to the testing world and testing joy to the agile world for two
decades and her peers voted her as the Most Influential Agile Testing Professional Person in 2012. Her current
interests include helping teamssucceed with continuous delivery and deployment and she is a testing advocate
working at mabl to explore leading practices in testing in thesoftware community. Lisa lives with her husband,
donkeys, cats and dogs in beautiful Vermont.

Janet and Lisa are authors of Agile Testing Condensed: A Brief Introduction (2019), More Agile Testing:
Learning Journeys for the Whole Team (2014), Agile Testing: A Practical Guide for Testers and Agile Teams
(2009), the LiveLessons Agile Testing Essentials video course, and “Agile Testing for the Whole Team” 3-day
training course offered through the Agile Testing Fellowship. Together, they founded the fellowship to grow
a community of practitioners who care about quality.

Janet Gregory: janetgregory.ca® Twitter: @janetgregoryca

Lisa Crispin: lisacrispin.com®” Twitter: @lisacrispin

Agile Testing Fellowship: agiletestingfellow.com®® agiletester.ca®

>https://janetgregory.ca/
*"https://lisacrispin.com/
**https://agiletestingfellow.com/
**https://agiletester.ca/

https://janetgregory.ca/
https://lisacrispin.com/
https://agiletestingfellow.com/
https://agiletester.ca/
https://janetgregory.ca/
https://lisacrispin.com/
https://agiletestingfellow.com/
https://agiletester.ca/

Vertalers

Naam

Geike Hanoulle
Han Toan Lim
Harry Nieboer
Jolien Schoukens
Katrien Verheyden
Kim Lauwers
Peter Wynands
Sven Cipido

Yves Hanoulle

	Inhoudsopgave
	DEEL 1: Fundamenten
	SECTION 1: Foundations
	Hoofdstuk 1: Wat bedoelen we met agile testen?
	Continue testmodellen
	Tien principes voor agile testen
	Testmanifest
	Definitie van Agile Testen

	Chapter 1: What Do We Mean by Agile Testing?
	Continuous testing models
	Ten principles for agile testing
	Testing manifesto
	Agile testing definition

	Hoofdstuk 2: Teambrede aanpak en agile testmentaliteit
	Focus op kwaliteit
	Hoe teams omgaan met fouten
	Meerdere perspectieven

	Chapter 2: Whole-Team Approach and Agile Testing Mindset
	Focus on quality
	How teams deal with defects
	Multiple perspectives

	Hoofdstuk 3: Testplanning in agile contexten
	Team
	Product
	Planning op verschillende detailniveaus
	Planning voor regressietesten

	Chapter 3: Test Planning in Agile Contexts
	The team
	The product
	Planning across levels of detail
	Planning for regression testing

	DEEL 2: Testaanpakken
	SECTION 2: Testing Approaches
	Hoofdstuk 4: De ontwikkeling in goede banen leiden met voorbeelden
	Voorbeeldgebaseerde methoden
	Waarom voorbeelden helpen
	Dit is je basis

	Chapter 4: Guiding Development with Examples
	Example-based methods
	Why examples help
	This is your foundation

	Chapter 5: Samenwerking mogelijk maken
	Samenwerken met klanten
	Impact mapping
	Stel vragen
	Voorbeeld mapping
	Bouw vertrouwen op met zichtbaarheid

	Chapter 5: Enabling Collaboration
	Collaborate with customers
	Impact mapping
	Ask questions
	Example mapping
	Build trust using visibility

	Hoofdstuk 6: Onderzoekend Testen
	Persona's, banen, and rollen
	Werkstromen en tours
	Risico's en waarde voor de klant
	Onderzoek in pairs or groepen
	Charters
	Uitvoeren, leren, sturen
	Aanvullende technieken
	Maak gebruik van tools voor effectief te onderzoeken

	Chapter 6: Explore Continuously
	Personas, jobs, and roles
	Workflows and tours
	Risks and value to the customer
	Explore in pairs or groups
	Charters
	Executing, learning, steering
	Additional techniques
	Leverage tools for effective exploring

	Hoofdstuk 7: Testkwaliteitskenmerken
	Kwaliteitskenmerken definiëren
	Risico's beperken door vroeg samen te werken
	Planning voor pre-release testen
	Plannen om later te leren
	Naleving van de regelgeving

	Chapter 7: Testing Quality Attributes
	Defining quality attributes
	Mitigating risks by collaborating early
	Planning for pre-release testing
	Planning for later learning
	Regulatory compliance

	Hoofdstuk 8: Testen binnen devops teams
	Het voortdurend opleveren en naar omgevingen brengen met een pijplijn
	Testen in productie
	Monitoren en observeren
	Nieuwe technologie brengt ons nieuwe mogelijkheden

	Chapter 8: Testing in DevOps
	Continuous delivery and deployment
	Testing in production
	Monitoring and observability
	New technology brings us new capabilities

	DEEL 3: Handige Modellen
	SECTION 3: Helpful Models
	Hoofdstuk 9: De Agile Testkwadranten
	Welke testen in welke volgorde?
	De kwadranten gebruiken
	“Klaar” definiëren
	De modellen vinden die passen in jouw context

	Chapter 9: The Agile Testing Quadrants
	What tests in what order?
	Using the quadrants
	Defining “Done”
	Find the models that fit your context

	Hoofdstuk 10: Visualiseren van een testautomatiseringsstrategie
	Gebruik maken van visuele modellen
	De klassieke testautomatiseringspiramide
	Geautomatiseerde testen als levende documentatie
	Het model uitbreiden
	Gedeelde verantwoordelijkheid

	Chapter 10: Visualizing a Test Automation Strategy
	Using visual models
	The classic test automation pyramid
	Automated tests as living documentation
	Extending the model
	Shared responsibility

	DEEL 4: Agile testing vandaag
	SECTION 4: Agile Testing Today
	Hoofdstuk 11: De nieuwe rol van de tester
	Testers zijn kwaliteitslijm voor een team
	De professionele reis van een agile tester
	Het fascinerende pad om te evolueren als tester
	Wees alles wat je kan zijn
	Begin met een gesprek
	De wereld heeft niet meer controleurs nodig
	De gedachten van Lisa en Janet

	Chapter 11: A Tester’s New Role
	Testers are quality glue for a team
	An agile tester's professional journey
	The fascinating path of evolving as testers
	Be all that you can be
	Start with a conversation
	The world doesn't need more checkers
	Lisa’s and Janet’s thoughts

	Hoofdstuk 12: Ingrediënten voor succes
	Succesfactoren
	Praktijken voor het opbouwen van vertrouwen
	Paden naar succes

	Chapter 12: Ingredients for Success
	Success factors
	Confidence-building practices
	Paths to success

	Begrippenlijst
	Glossary
	Bronnen voor verder leren
	Algemeen
	Gemeenschappelijk begrip - Samenwerking
	Onderzoekend testen
	DevOps, Monitoring, Waarneembaarheid
	Test Automatisering

	Resources for Further Learning
	General
	Getting Shared Understanding - Collaboration
	Exploratory Testing
	DevOps, Monitoring, Observability
	Test Automation

	Over de auteurs
	About the Authors
	Vertalers

