AGILE SOFTWARE
DEVELOPMENT
IN THE LARGE

Diving Into

the Deep

,[_Li_'ti‘t__a Eckstein

=~/
‘\"'":‘_!m i

LY

Agile Software Development
in the Large

Diving into the Deep

Jutta Eckstein

This book is for sale at http://leanpub.com/agileinthelarge
This version was published on 2023-01-18

ISBN 978-3-947991-26-6

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have
the right book and build traction once you do.

© 2004 - 2022. Jutta Eckstein. 38106 Braunschweig, Germany. All
rights reserved. First publication 2004 by Dorset House Publishing,
353 West 12th Street, New York, NY 10014.

http://leanpub.com/agileinthelarge
https://leanpub.com/
https://leanpub.com/manifesto

Also By Jutta Eckstein

Diving For Hidden Treasures
Retrospectives for Organizational Change

Company-wide Agility with Beyond Budgeting, Open Space &
Sociocracy

Agile Software Development with Distributed Teams
Agiles Projektmanagement Kurz und Biindig

Agilidad empresarial con Beyond Budgeting, Open Space y
Sociocracia.

En busca de tesoros ocultos

https://leanpub.com/u/juttaeckstein
https://leanpub.com/divingforhiddentreasures
https://leanpub.com/retrospectivesfororganizationalchange
https://leanpub.com/bossanova
https://leanpub.com/bossanova
https://leanpub.com/distributed-teams
https://leanpub.com/agilesprojektmanagement
https://leanpub.com/bossanovaenespagnol
https://leanpub.com/bossanovaenespagnol
https://leanpub.com/divingforhiddentreasures-spanish

Contents

1. Dealing with Large Teams

1.1

1.2

1.3

1.4
1.5

1.6

People
Responsibility
Respect and Acceptance
Trust
Team Building
Building Teams and Subteams
TeamRoles
Team Jelling
Interaction and Communication Structures
Open-plan Office
Flexible Workplace
Encouraging Communication
Communication Team
Trouble shooting
Virtual Teams
Distributed Teams
OpenSource
Summary

1. Dealing with Large
Teams

Trust is the sister of responsibility.

— Asian proverb

The reasons for implementing a system with a large team are varied.
The most common one is that the scope of the project is too large
for a small team to handle. Of course, there are some large projects
that would be better off if implemented by a small team. So, even if
its scope is large, it might still be faster (or even better) to develop
a project with a small team, mainly because communication is not
as likely to prove a problem as it is in a large team.

The use of a large team could also be politically motivated. The
size of a team sometimes reflects the importance of the project
and, often, of the project management as well. This alone could
be reason enough to implement the system with a large team.
Tom DeMarco discussed this problem during OOPSLA 2001'. He
indicated that surprisingly often, the manager of a failed, but large
project will be valued higher than the manager of a successful but
small project.

Furthermore, it could be the case that the team is already estab-
lished and the project is shaped (and sized) to suit the team. For
instance, I witnessed a situation in an organization where a lot

'OOPSLA is an ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications

Dealing with Large Teams 2

of people just sat around, waiting for the project to start. Nobody
questioned if this mass of people was really required for the project.
Instead, everybody tried to shape the project in a way that kept all
these people busy. Granted, for some companies (in some countries)
it might be easier to shape the project according the team size than
to get rid of the employees—mainly because of legal issues—but this
is not usually the case.

Of course, it is always worth questioning the reasons for working
with a large team, but this is neither the topic of the book in general
nor of this chapter in particular. Instead, the assumption is that the
project will be run by a large team and you (still) want to use an
agile process to succeed. When changing to agile development with
a large team, you have to deal with several issues involving people,
teams, interactions and communication structures.

This chapter focuses on those aspects of agile processes that work
differently in large teams than in smaller teams. First we shall look
at the people aspect. There we will discuss how taking up respon-
sibility can work in a large team and what kind of consequences
respect, acceptance and trust have for successful collaboration.
Next we will talk about how a large team can be organized in
several subteams and what kind of team roles have to be occupied.
In the section on interaction and communication structures we
shall focus on encouraging communication in large teams. Next,
in the section trouble shooting I will present typical team problems
and their possible solutions. Finally we will look at the difficulties
that can occur when developing with dispersed teams.

1.1 People

Size matters. The size of a team provides a special risk—a team
that is too large can prove to be a hindrance to the project. One
of the reasons is that the quality of decisions typically suffers. For
example, the larger the team the more often you will find that

Dealing with Large Teams 3

decisions are unclear or postponed. The main reason for this is that
within large teams you will often find a tendency among people to
shun responsibility. Because there are so many people on the team,
there is a collective mentality of “someone else will decide.”

Unclear or postponed decisions confuse the team and make it
difficult for team members to decide which direction to take. This
leads either to project paralysis, because nobody has the courage to
move on without being told, or to a lot of individual decisions as
one thinks best. Often, those individual decisions contradict each
other, which in turn leads to a form of project stagnation, based on
contradictory development. Both symptoms are very frustrating for
the whole team. I once consulted on a restart of a failed project. I
interviewed the team about what they believed was the trap that
the restart was most likely to fall into. Interestingly enough, most
the people named a lack of clear decisions as the highest risk.

Therefore, although it might seem unusual, it is preferable to
make a clear but eventually wrong decision and to correct it later
on. Making a wrong decision enables you to learn; postponing a
decision does not. If you postpone a decision, you do not know
until it has been made whether it is the right or the wrong one.
However, if you make the wrong decision, you will learn from the
consequences of that decision and have the possibility of correcting
your mistake, based on your new experience.

Making decisions is one side of the coin, the other is making sure
that they are not only communicated to everybody involved, but
are also carried out. A decision that is made but not carried out is
essentially the same as a postponed decision. Only when realizing
the decision and living with its consequences will you know if it
was right or wrong.

Although this all sounds very obvious, it is common to find the
same problems popping up over and over again, which is a sure
sign that those decisions have either never been clearly made, or
they have not been realized.

Dealing with Large Teams 4

As I mentioned earlier, the main reason for the poor quality of
decisions on projects with large teams is probably based on an
aversion to taking responsibility. You will find that the more people
are working on a project, the harder it is to tell who took up the
responsibility for which task. Often this results in an undefined task
zone, which is defined by:

+ Multiplicated task responsibility: A lot of people are respon-
sible for the same task. The problem is that they do not know
about one another. Therefore, if you are lucky, this task will
be carried out repeatedly. If you are unfortunate, they will do
the task in ways that contradict each other.

+ Null task responsibility: Nobody takes up the responsibility
for the task. Everybody assumes that it is someone else’s
job. Funnily, enough, this can result in everybody blaming
everybody else for not taking up the responsibility.

To make things worse, you can be assured that with each additional
team member, the risk will rise and that more of such problems will
arise.

Responsibility

Due to the departmental organization, people in large companies
are not usually used to having complete responsibility for any
particular task. This is because there is almost always somebody
higher up the hierarchy who has ultimate responsibility for the
task. This is especially true for developers. They often consider
themselves to be the ones who only do whatever somebody else
tells them. No wonder they act as they do whenever somebody
“accidentally” gives them the responsibility for a specific task. They
feel uncertain when given responsibility because they are not used
to having it, and because they do not know what it implies.

On the other hand, agile processes require that everybody be
responsible for her task, and for the effects that task might have

Dealing with Large Teams 5

on the whole project. As well as those tasks, there is also the shared
responsibility of the ultimate performance of the whole system,
project, and even the process that will lead the development. Thus,
each team member is responsible in some way for every task, even
those assigned to other team members.

For example, Extreme Programming has a practice called collective
ownership, which refers to a shared responsibility for all kinds
of things: the code, the integration, the process, and so on. Best
known among these shared responsibilities is probably collective
code ownership, which enables and obliges everybody on the team
to improve every piece of code, no matter if he or she is the original
author of the code or not.

With collective ownership, every team member bears the same re-
sponsibility for all aspects of the project. While allowing everybody
to steer the project at the same time is a challenge, and, some fear,
a big burden. For instance every developer would want to have a
hand in shaping his or her development environment. On the other
hand, this increased responsibility is likely to increase fear among
the developers of making the wrong decisions.

This is why, when people first sign up for a task but aren’t used
to the responsibility it entails, you have to lead them gently into
this new ground. For example, ask the developers which task they
want to be responsible for, and then assist them in estimating the
task. Not only should you make yourself available to answer any
questions they may have, it is very important that you also ask them
regularly if they are doing ok, or if they need any help, because they
might be afraid of bringing up such issues themselves.

For example, I remember one project I was working on, where
people had problems taking responsibility. I visited all the team
members regularly and asked them how they were getting along
with their tasks. It did not take long before some of them started
complaining that they were not able to get their work done, for
various reasons. The most common reply was that they were

Dealing with Large Teams 6

waiting for something from another team: either the other team had
not yet provided some interfaces, or the interface they had provided
turned out to be different than expected. The obvious problem was
that these people did not have a consciousness of problem solving.
Instead, they complained that their peers were responsible for the
problems. However, the real, hidden problem was that they were
not taking enough responsibility. If they had, they would not have
complained, but rather would have started solving their problems.
In other words, they might have started talking to this other team
and attempted to find out why the interfaces were not ready and
addressed the situation.

Whereas the typical reaction of people not used to responsibility is
to get annoyed at the situation without taking any action to change
it. Of course, it could be worse. If, for instance, they could neither
complain nor take up the responsibility, you would never learn
about their problems.

Therefore, you have to be proactive in asking them about the
status of their assigned task. Only then you will have an idea of
any problems they may have. I am not talking about the typical
status reports, instead I am talking about walking up to the people
and talking face-to-face about their current situation. You should
encourage them to look at the big picture, and regard their assigned
task as a part of the whole. Explain to them that in doing so, they
will sometimes have to do things that are only partly related (if at
all) to their assigned task, but are important for the completion of
the project.

If people are spoon-fed responsibility, they will not learn to make
an effort to take it up themselves. Or, as Fast Company puts it:

“Telling people what to do doesn’t guarantee that they
will learn enough to think for themselves in the future.
Instead, it may mean that they’ll depend on you or
their superiors even more and that they will stop taking

Dealing with Large Teams 7

chances, stop innovating, stop learning. *”

Thus telling people what to do is not enough, they have to commit
themselves for taking up a task. The focal point of this philosophy
is that the value of team productivity is much more important than
the individual effort. Therefore, every now and then you have to
point out that only the team’s success is the individual’s success.
An individual’s success without the success of the team is of no
value. Among other things this means that a well functioning team
does not rely on its official manager—it takes up the responsibility
itself whenever the situation requires it. As Kent Beck said:

“Leadership happens every time, every minute by ev-
erybody on the team. *”

For this ideal situation to become a reality, the organization has
to change from management by command and control to manage-
ment by responsibility, trust, and teamwork.

Trust is the foundation on which such a management strategy is
built. Because when someone takes on a responsibility, you trust
that he or she is capable of handling this responsibility. However,
at the start of an organization’s first agile project, this culture of
trust and responsibility will not be in place yet. Most team members
will not be able to take up responsibility because they are not
used to it. However, I suggest that you demonstrate to them how
you take up responsibility, and that you encourage them to take
responsibility even if they do not feel ready. This shows your team
members that you trust them, even though at this early stage in
agile development they might not be able to justify your trust.
When this is the case, the most common reaction is to refrain from
giving them any responsibility in the future. But this prevents them

*Fast Company on the Web: https://tinyurl.com/2p8ed7e6
*Kent Beck, Keynote at the International Conference on eXtreme Programming and Agile
Processes in Software-Engineering 2001, Sardinia, Italy.

Dealing with Large Teams 8

from ever getting the chance to learn how to take up responsibility,
and simply reinforces their own mistrust in their capabilities. Just
as Ulrich Sollman and Roderich Heinze* say, you should give people
the chance to learn how to deal with responsibility:

“The more often you are in an uncertain situation the
better you can handle this kind of situation, or rather

the longer it will take till you will again feel uncertain.

If you want to train your team members to take up responsibility,
you have to be aware that this is an investment in their future. This
“training” is two-sided: you might also have to train the leaders to
pass on responsibility and to trust their team members. Like every
other learning process, it will be some time before you see results,
but it is worth the effort.

Respect and Acceptance

A development team is not usually organized like a team, in the
strictest sense of the word, assembled by peers with equal rights,
but more like a hierarchy. The typical hierarchy in a development
team, which can be found mainly in traditionally led projects,
follows Taylor’s® theory about centralizing a team’s knowledge.
The individual team members take up specific roles and corre-
sponding tasks. Analysts, designer, developer and tester often work
independent from one another in a linear process.

As a consequence of this separation of tasks and roles, a hierarchy
is created. Although this hierarchy might not officially exist, it

“Ulrich Sollmann and Roderich Heinze, Visionsmanagement. Erfolg als vorausgedachtes
Ergebnis (Vision Management. Success as the predefined result.).(Zirich: Orell Fiissli, 1994)

*Ulrich Sollmann and Roderich Heinze, Visionsmanagement. Erfolg als vorausgedachtes
Ergebnis (Vision Management. Success as the predefined result.) (Ziirich: Orell Fissli, 1994),
p-32

®Taylorism is characterized by the division of labor, repetitive operations, extreme labor
discipline, and the supervision of work.

Dealing with Large Teams 9

is formed by the different roles in the team, some of which have
greater prestige and/or importance (acceptance level) than others.
Often, the acceptance level is defined by the linear development.
This means that analysts have the highest acceptance level, whereas
coders, testers, and, even worse, maintainers are at the very end
of the acceptance level chain, doing all the “dirty” work. The
presented sequence of acceptance levels is just one example, but
an oft-encountered one.

However, the major problem is that nobody wants to be at the low
end of this acceptance-level chain. Therefore (as in the example
above), everybody tries to climb up the ladder from maintainer to
designer or, even better, analyst. Or, if we look at it from another
perspective, you will find the largest percentage of novices in
maintenance or implementation. Consequently, there are often too
few experienced coders in a team.

On the other hand, most agile processes require teams to have
shared knowledge and shared skills. This means knowledge cannot
serve to form a hierarchy. Therefore, the first step in forming an
agile team is to get rid of the tayloristic split. Assemble teams
that cover all the knowledge, where each member of the team is
aware of the big picture and takes her responsibility to contribute
to the whole team’s success. As a consequence, the individual role
of each member is not so obvious anymore, in terms of individual
knowledge, but in terms of contribution to the team’s success. So
acceptance is then based on performance and not on roles. However,
it is important to note that a main difference between a small and
a large agile team, is that in a small agile team, typically every
individual is requested to be a generalist. On the other hand, in
a large agile team, a whole subteam (see below in this Chapter and
not necessarily every individual team member should cover this
general knowledge.

This implies that agile teams require more generalists than special-
ists. At the least, everybody should be able and willing to under-
stand the big picture, and not find themselves interested solely in

Dealing with Large Teams 10

digging in some specific details while ignoring the interests of the
whole project.

So, as Don Wells said, in an agile project, you will find that
“Everyone is of equal value to the project. "

But this is only true if every team member bears responsibility
for the whole project. Of course each team member will still have
her individual capabilities and abilities, but they will all contribute
equally to the team and the project.

Trust

It is natural for people to be skeptical of a change like switching to
an agile process. The team members themselves, along with a lot of
people only partially involved in the project, might not have trust
in the success of this new process. The possibility that the team can
change the process over time is often even more frightening than
following a defined, but indigestible recipe.

The best argument against this mistrust is working software. There-
fore, try to complete the first low-functional version of the software
as early as possible. Another strategy for building trust is trans-
parency. Make everything transparent for everybody involved in
the project.

Different practices help to make things more transparent:

« Shared Ownership: Ask everybody on the team to take up
responsibility for all kinds of things (for instance, the code,
the process). This shows your trust in them.

"Don Wells, invited talk: Transitioning to XP or Fanciful Opinions of Don Wells, at the In-
ternational Conference on eXtreme Programming and Agile Processes in Software-Engineering
2001, Sardinia, Italy.

Dealing with Large Teams 11

« Shared Knowledge: This practice is often based on shared
ownership. The knowledge about the information, —for ex-
ample, the system— is transferred from one team member
to another. This makes the system more transparent and
understandable for everybody, and helps in turn to build
confidence in the system.

« Shared Skills: The team has a variety of backgrounds and
skills. This knowledge is accessible not only for the individ-
uals, but for the whole team. Using a different process, the
expert knowledge is often on the individual’s guard against
the whole team. Making knowledge transparent makes the
team more trustworthy. Furthermore, it allows every team
member to add new skills to their repertoire.

It is important that this transparency is always open and honest. Do
not hide any negative information. Knowing about the bad things
makes it easier to deal with them. Moreover, everybody should be
invited to comment on the information and to help improve the
situation. Thus, transparency includes controlling, auditing, and,
most importantly, the customer.

Occasionally, when coaching a project, I find that project mem-
bers assume that transparency stops right before the customer.
For example, I sometimes have to lead long discussions in order
to open the project’s wiki web® for the customer, because the
customer will then be aware of all insights of the project. Often,
when asking for more transparency towards the customer site,
project management tells me that it is afraid that the customer will
recognize the problems inside the project. This is exactly the point!
The customer should always be aware of the problems because it
is her money the project is spending. These arguments are typical
when discussing the impacts of having the customer on-site. As

8A Web based collaboration platform, which allows interactive communication and vivid
documentation by editable html pages. Originally developed by Ward Cunningham. See Bo Leuf
and Ward Cunningham, The Wiki Way: Collaboration and Sharing on the Internet (Reading,
Mass.: Addison-Wesley, 2001).

Dealing with Large Teams 12

soon as the customer becomes somewhat of an unofficial project
member, the fear disappears from both sides: From the project’s side
because team members realize that the customer is a real person,
and from the customer side because she understands the difficulties
the project members are struggling with.

This reminds me of how I was before I started scuba diving: I liked
swimming in the open sea, but I was always a bit afraid of the
creatures underneath me, and I was pretty sure that sooner or later
one of them would bite me. As soon as I started scuba diving, I
did not even fear sharks or other predators. Being close to these
creatures gave me the feeling of actually being a part of the living
sea.

1.2 Team Building

A large team is hardly manageable as a whole. Thus, in order to
establish a flexible team, the team is usually divided into subteams
of no more than ten members.

The typical structure used by large teams (and in large companies)
is still based on Taylor’s theory of building teams according to
their knowledge. Therefore, you will often find an analysis team,
a design team, a test team, and so on. The developers are typically
further subgrouped into smaller subteams, each responsible for a
specific function like presentation, database, network services, and
the like. This tayloristic split is also known as horizontal team
division. Taylorism works quite well for jobs that are repeatable.
It doesn’t work as well if a lot of creative and holistic thinking
is required. You can furthermore consider defining vertical teams,
which are focused around business functionality. These teams are
also known as domain or feature teams, as Peter Coad terms them
in the process, Feature Driven Development. On the other hand, if
you are dividing the team vertically, you might find that not every
team has all the necessary skills, or even worse, that every team
might start to address the same problems.

Dealing with Large Teams 13

Therefore, do not make this an either-or decision, but an as-well-as
one. For example, if you start with a small team, and build slowly,
you will come to the conclusion that on future projects your starting
team should be staffed with people who not only have a good
domain knowledge, but also a major technical background. This
starting team most often defines the first architecture and verifies
that the system can actually be built, and can furthermore serve
as a model for the formation of the other teams. The horizontal
and more technical focused teams should then support these new
(vertical) subteams.

Building Teams and Subteams

As mentioned earlier, dividing the whole team in several subteams
should not be a decision between a vertical or a horizontal division.
Instead it should be an as-well-as decision, to provide a better mix
of knowledge in the teams.

Dealing with Large Teams 14

Subteams ...

Either virtual or real technical service teams’ could be installed to
further support those domain teams. For example, in one of the
projects I worked for, we defined domain teams focusing on a spe-
cific (banking-) domain area, like one team focusing on accounting
and another one on customer management. Each team had the
knowledge needed to implement the features belonging to this do-
main, including the graphical user interface, the connection to the
host, the business logic, and all the other required technology. If, for
instance, the accounting team required some functionality from the
customer management team in order to implement a feature, the
accounting team just bilaterally discussed the requirements with
the customer management team. The customer management team
then in turn provided the required service within the development
cycle.

°A virtual team is not apparently recognizable as a team. Be it, that the team members are
not co-located and thus communicate via electronic media, or that the team members belong in
fact to a different (real) team, and are just getting together every now and then for working on
a specific task.

Dealing with Large Teams 15

We established in this case not virtual, but real, technical service
teams, responsible for supporting the domain teams by providing
some base functionality. For example, we assembled an architecture
team responsible for the business logic, and a presentation team for
all graphical user interface aspects. Those technical service teams
were requested to regularly visit all the domain teams. On request,
members of a technical service team supported domain teams as
regular team members for a specific amount of time.

Technical service teams should always regard themselves as a
pure service provider for the domain teams. For instance, the
technical service team responsible for building and supporting the
architecture should always shape the architecture according the
requests of the domain teams, not vice versa so that the domain
teams have to use whatever the architecture team creates as it is
often the case.

Depending on the actual size of your team, either you will establish
virtual technical service teams, or you will establish real technical
service teams. The members of the virtual teams are usually regular
members of domain teams. In contrast, members of real teams
usually lack a close connection to the domain teams. For this
reason you have to ensure that real teams do not develop the best
architecture, but the most adequate. You have to avoid that features
are implemented just because somebody believes they are needed.
Technical teams have to understand itself to be service teams,
which deliver services to their customers, where their customers
are the domain teams. The big advantage of this strategy is that
the architecture only contains what is required. This makes the
architecture much easier to maintain and, as a side effect, cheaper.
Additionally, it eliminates the often-occurring social discrepancies
between the technical and domain teams. One often gets the
impression that those teams are working on different projects (not
least from the way they talk about one another). Unfortunately,
this impression is seldom wrong, and those teams have different
objectives. Where technical teams’ objective is to make use of a

Dealing with Large Teams 16

specific technology and develop perfect frameworks not requested
by the domain teams, the domain teams’s goal is to implement the
domain, not caring if they can profit and learn from one another
(or from the frameworks the technical teams provide).

But how do the technical service teams know which service is
required and, more importantly, which requested service has the
highest priority? The team has to come up with a strategy, so
not every requirement from each and every domain team will be
implemented, because certain requirements might contradict each
other. Or, worse, implementing these requirements will cost so
many resources, that other teams will not be able to get their (more
important) requirements done.

Therefore, like real customers, the domain teams have to speak with
one voice. Retrospectives'® could serve as a forum for deciding on
new or changed requirements because all teams (or team leaders
at least) are present, and the focus of the retrospective is the
project’s status and progress anyway. If one team states that it
cannot proceed because it needs some special technical service, all
teams can decide jointly if this is a requirement they support, so if
approved, this will be a joint requirement for the technical service
team. Otherwise, the requesting domain team has to implement the
service on its own. These requirements are then scheduled in the
same way as the domain teams schedule their requirements. Thus,
the technical service team schedules requirements with the highest
priority first, and does not schedule more than it can accomplish
within the next development cycle. It might have to negotiate
workload with the domain teams. It might happen that especially
at the beginning of the project, the domain teams define many
requirements for the technical service team, but there could be
other times where there are so few requests, because for example
the architecture can just be used as is. During “high season”, you
should ensure that the technical service team does not accept more
work than it can accomplish. And in contrast during “low season”,

%Retrospective: Reflection at the end of a development cycle (see Chapter 4)

Dealing with Large Teams 17

you should ask the members of the technical service team to join
the domain teams, instead of implementing unnecessary additional
features.

Requirements Channels by Stefan Roock

In this project we had to implement a system supporting
multiple channels, which should address different user groups
with various frontend technologies (desktop, web, laptop). Our
starting project team consisted of five people from the devel-
opment company and two consultants. With seven people, it
was a size typical for an agile project. We had all the Extreme
Programming practices in place when the project had to scale
up and accept additional manpower—mainly developers. The
goal was to have about twenty-five people in the project.

When scaling up, we had to address the issue of project struc-
ture. It became clear that it would not be possible to integrate
all these people in one large team in the project. Therefore, we
decided to split the project up into teams. But, we asked our-
selves, what are the criteria for the division of teams? Do we
use the architecture as the structuring mechanism and assign
each subsystem to a team? Or do we assign each requirements
channel to a team? In the first case, each requirements channel
had to talk with every team. In the second case, each team
had to modify classes all over the system. Since the planning
games®seemed to be too complex in the former, we choose the
latter.

Dealing with Large Teams 18

Anforderungs- Anforderungs- Anforderungs-
kanal A kanal B kanal C
[] [] []

Liefert
¥ ¥ ¥ Stories
TearD Tea@ TearD
Implementiert
Stories
Subsystem A Subsystem B Subsystem C
One Team per Subsystem
Anforderungs- Anforderungs- Anforderungs-
kanal A kanal B kanal C
Liefert
Stories
Team A Team B Team C
Implementiert
Stories
Subsystem A Subsystem B Subsystem C

One Team per Requirements Channel

We then got three teams for the three requirements channels,
and a technology support team. The teams were rather small
(four people), which supported taking over responsibility.

One thing we learned was that reorganizing teams takes more
time than we thought. When we changed the organizational
structure, the developers needed several weeks to get used to
the new structure and get up to their development speed again.

Because teams were not assigned to subsystems, every devel-
oper was able to modify every part of the system. This was no

Dealing with Large Teams 19

problem because the developers were able to master the code
base (about twelve-hundred classes).

As time went by, additional developers joined the project and
the code base grew. We ended up with about thirty develop-
ers with different programming skills. Now some developers
weren’t able to modify every part of the system without it
breaking. Our first step was to tag core classes and the very
complicated parts of the system as “expert code,” which had to
be modified by a so-called system expert.

That solved the problem, but it doesn’t seem to be a very smart
solution since there is no way to guarantee that only system
experts modify the crucial part of the system. Currently, we
are searching for better mechanisms for assigning code to
teams. The main idea is to take the layering of subsystems into
account. Some subsystems are specifically for a requirements
channel and should be assigned to the relevant team. Other
subsystems are relevant to several user groups and can’t be
assigned to one of the existing teams. These subsystems are
assigned to a virtual “base subsystem” team, which is created
on demand from the system experts sitting in the existing
teams.

The planning game is an Extreme Programming technique. The customers
select and prioritize the tasks for the developers for the next development cycle
and the developers estimate the effort for these tasks.

Team Roles

The idea is that a team has all the required knowledge. Thus,
each team is a generalist on the domain covered. For instance, a
domain team will be assembled by domain experts, graphical user
interface developers, and database developers. But although the
team consists of these different experts, this does not mean, that
those experts will only ever work in their field of speciality. Instead

Dealing with Large Teams 20

it is required that team members take different roles. For example,
it is rather typical for the database developer to learn from the
graphical user interface specialist how to build the presentation,
and to then contribute to the user interface development. Thus,
the goal of having generalists rather than specialists in a team is
attainable by spreading the available knowledge.

The goal of this approach is not egalitarianism of all team members.
Distinct skills and experiences are still necessary for specific tasks.
However, the goal is to avoid the general tendency towards head
monopolies and to spread knowledge and skills.

Additionally, each agile team also covers the required adminis-
trative knowledge necessary to perform, for example, integration
and configuration management. The person who takes this role
concentrates mainly on issues based on internal team integration
and configuration, but will also be the contact person regarding
this topic, for people external to the team. However, individual
team members can have multiple roles: For instance, the person
responsible for integration and configuration can be the domain
expert as well.

It is very helpful to establish a team lead for every team. This
person acts as a contact person for reaching the whole team. Often,
the team lead coordinates who will attend a specific meeting (for
example a retrospective).

Team Jelling

The goal is that the whole project team pulls together, that all team
members communicate honestly and openly, and that everybody
has the same big picture in mind. Or, as Tom DeMarco puts it, that
the team jells."* The pulling together especially must be supported,
so it becomes natural. As well as the more official aspects of project

A team jells when it has a good chemistry, comparable to the one good jelly has. For more
on this subject, see Tom DeMarco, The Deadline. A Novel about Project Management. (New York:
Dorset House) 1997.

Dealing with Large Teams 21

development, other, more enjoyable and motivational tactics must
be employed to keep your project on track:

+ Food:If you provide food, or just snacks—healthy or otherwise—
the area where you placed the food will soon become an
extremely popular part of the office. And when groups of
people are there, taking advantage of the free food, they
will start talking. You might also want to make use of team
lunches. Although you should ensure that lunch time is also
a break time, which allows the team members to relax and
recover from their work. On the other hand, breaking bread
together always helps people come closer together.

« Party: Organize a party once in a while— after the delivery
of a major release, for example. This does not have to be
something big. It would be enough to serve some sandwiches
and beverages for a couple of hours or so. This will help
people who wouldn’t otherwise have the chance, to sit and
talk to each other. Try to convince the company of the
importance of such project parties, so it will approve them.

+ Recreation: Organize some sort of recreational outing. It can
be a sporting event, like a volleyball match, or some other
social event, like bowling, go-kart racing, or something along
those lines. Doing something as a group, this will help team
members to get to know each other, especially when people
are asked to team up with someone they do not work with
regularly, and will hopefully reinforce respect and acceptance
among all. Ensure that everybody can participate in the event,
taking into account handicapped people, for example.

+ Project Identity: Encourage the team members to instill a
sense of project identity. Mary Lynn Manns and Linda Rising
also stress the importance of having a group identity in
Introducing new Ideas into Organizations'” with a separate

*Mary Lynn Manns and Linda Rising, Introducing new Ideas into Organizations. (Reading,
Mass.: Addison-Wesley, not yet released).

Dealing with Large Teams 22

pattern, called Group Identity. Special tee-shirts, project-spe-
cific food and beverages or even project-specific phrases and
slogans help to develop a project culture. In one of the projects
I was working for we even came up with project cocktail.
However, the project should not demarcate itself from the
outside, instead it should be easier for newcomers to identify
themselves with the project.

+ Regeneration: Ensure that project members have time to
regenerate. Even when under pressure to deliver, make sure
that people are taking their vacations and that they are
not working overtime. A project is better comparable to a
marathon, not to a sprint.

Dealing with Large Teams 23

Regeneration ...

+ Communicate and visualize results: You cannot overesti-
mate how motivational the growth of the system or the
customer’s feedback can be. Therefore, make sure everybody
knows about the project’s progress.

All the strategies suggested (which are just an excerpt of possi-
bilities) reinforce communication and will ensure that your team
members will get to know each other better and, more importantly,
learn to respect one another. Try to ensure that members from
different subteams interact with another. For example, if you
organize a sporting activity, you can request that each side contain

Dealing with Large Teams 24

no more than two people from each subteam. It is astonishing how
much this contributes to a sense of a communal identity among
team members, which usually results in the project running more
smoothly.

Some strategies are not self-evident for a company. For instance
organizing a party with temporal and financial support could be a
problem. This is a sure sign that the importance of communication
is still underestimated. Thus it will be necessary to convince the
organization otherwise. It is worth the effort.

1.3 Interaction and Communication
Structures

Communication is the most important factor in the success or
failure of the whole project. Communication is difficult even when
only a few people are involved, but it gets exponentially harder the
more people there are involved. When setting up a communication
structure for a large team, you have to consider the following
constraints:

+ Direct communication is the safest form of communication,
and you know immediately if the receiver of your message un-
derstood what you said. However, the more people involved
in a communication effort, the harder it is to get a message
across. One reason for this is that there will not be enough
time for everybody to actively participate in the conversation.
Another reason is that typically only a few extroverts will
participate, whereas all the introverts will accept the message,
because they are uncomfortable discussing anything in big
groups.

« Different sensory modalities: Every person obtains infor-
mation differently. Some people, known as visuals, learn
most effectively by watching; auditories, by listening; and
kinesthetics, through action.

Dealing with Large Teams 25

« Overdose on communication media: Additionally, it seems
to be a law that as soon as a communication path works, it
is abused until it does not work anymore. For example, if
messages are transferred via e-mail, you will read your e-
mails and respond to them. However, once your inbox begins
to overflow with new e-mails when you get to work each
morning, you are likely to either be very selective about
which messages you read and respond to, or you will ignore
them all. This, of course, is bound to eventually result in your
getting in trouble for not reading an e-mail that the sender
assumed you read.

Dealing with Large Teams 26

Changing Communication Channels ...

Therefore you should also be agile and flexible with communica-
tion. Use various modes of communication, which address different
persons differently respecting their different sensory modalities.
Change the the communication channels from time to time. A
manageable, average-size agile project will always require direct
communication.

Dealing with Large Teams 27

Open-plan Office

Ideally, the whole team sits in one room together with the customer.
Because, as Craig Larman said in his book, Applying UML and
Patterns, :

“Having a team on another floor of the same building
has as much impact as if it were in a completely separate
geographical location. **”

However, in a large project with a team of a hundred or more, space
constraints make it difficult to have everyone in one office. Open-
plan offices are valuable in both creating space and enhancing
communication. They can be created by removing cubicles, or
rather positioning the cubicles around teams rather than individ-
uals. Open-plan offices can sometimes accommodate forty to fifty
people. So if you could have two or three such offices next to each
other, project members would be sitting in as close quarters as
possible.

Open-plan Offices by Nicolai M. Josuttis

I have no idea how others experienced this, but when I started
my professional life open-plan offices had a bad reputation for
me. They represented the idea of treating human beings like
machines, which can be located close together in a big hall for
saving money for the walls. And in fact, in a work life that
assigns each employee a stupid and almost communication-
free task, there is a lot to be said against putting all these people
together in a huge room like in a laying battery. Especially, if
the phone calls of the colleagues are nothing but annoying, and
one has to fight tediously for each square meter of individual-

ity.

*Craig Larman, Applying UML and Patterns. (Eaglewood Cliffs, New Jersey:Prentice Hall,
1998), p.448.

Dealing with Large Teams 28

Yet, since my first large agile project I look at open-plan offices
from a different perspective. The circumstances are changing
tremendously, if the job focuses on teamwork that enables
several people to actually create something together. All of a
sudden, moving to another room is painful, all of a sudden it is
important to know what the colleagues are working on. All of
a sudden it is important also to work physically together. The
value that is created by this kind of communication, can’t be
estimated high enough.

However, this does not mean that it is the best for an agile
project to pack all project members

together in a dreary open-plan office. Because even more
important are some other things: For example, there is still the
need to have a meeting without disturbing others. Adequate
soundproofed meeting rooms are an obligation. Also individ-
ual workplaces are important for people, who need to think,
design, or make a phone call untroubled in silence. I had the
best experience with glass. Vitreous meeting rooms, individual
vitreous workplaces, or vitreous dividing walls between teams
allow the necessary transparency without raising the noise
level to a degree that disables working seriously.

In a sense, an agile working place has a spot of all, which is
again typical for agility in general.

Always ensure that the individual subteams can sit together, even
inside an open-plan office. Although this might seem like common
sense, it is not as common a situation as it should be. Again,
whatever your constraints, the distance between team members
has a major influence on the success or failure of your project. Be
aware that this distance does not necessarily have to be physical.
For instance, if certain team members listen to music through
headphones while they work, the headphones establish a distance
between them and their peers. Therefore, the least you can do is to

Dealing with Large Teams 29

try and make it possible for all members of the team to be on the
same floor or, at the very least, in the same building. But everything
that improves the seating situation pays off during development
time.

Some people argue that the noise levels are too high in open-plan
offices. This is not usually an issue. Mainly because everybody
is concentrating too intensely on his or her work to be disturbed
by the conversations of others. However, you may have some
individuals in the team with particularly loud voices. In which case,
you should ask them to lower their voice. If this is not possible, you
should consider locating said individuals to a place where they will
not disturb their peers. But this is a highly unlikely situation. As I
said earlier, in my experience, the noise level on projects is almost
always acceptable, and the advantages of the close proximity of
team members far outweigh those of having a quiet environment.

Flexible Workplace

Nowadays, some companies do not support assigned office space.
Instead, they use a system known as flexible workplace (also known
as floating desks or desk sharing), where people just sit wherever
they find some space. Team members either use cell phones, or
have calls transferred to wherever they are sitting on a particular
day. Typically, filing cabinets are mobile, so team members can
have all their papers with them at all times. The underlying idea
of the flexible workplace is that it requires less space than a more
traditional, assigned-space system. The logic being that on any
given day, certain employees will not be in the office: People call
in sick, take vacations, make on-site visits to customers, and so on.
Utilizing flexible workplaces, then, is a very efficient way to use
office space and to save money on workplaces.

However, the catch is that you will never know for sure, where
to find a specific person, which is an additional communication
problem. Another problem is that at certain times (during the less

Dealing with Large Teams 30

popular vacation months, for example), the risk is high that some
people may spend their day wandering around looking for an
empty space to sit. In some areas, this system is so well known,
even people not working in the industry are aware of it. | remember
traveling by taxi from the airport to a customer’s office, and being
asked by the taxi driver if she should speed up to make sure I would
have a place to sit at the office. (It turned out not to be necessary,
since we had plenty of time to spare; it was just eight o’clock in the
morning.)

Another risk that teams utilizing flexible workplaces face is that
people may get to work late, and not be able to sit with the
other members of their team. At this moment, flexible workplaces
are not that beneficial anymore. If you cannot avoid it officially,
try to establish an acceptable working environment, for example
by defining (flexible) team zones, within the constraints of your
office’s seating arrangement. Be aware that in your attempts to do
so, you might get in trouble with the “office police.” As the case
may be, you have to fight this out, because as mentioned earlier,
the importance of efficient communication can not be valued high
enough. By the way, the philosophy of flexible workplaces creates
an infrastructure that allows to relocate people and teams, which
in turn can solve communication problems easily. However, if your
company has the philosphy that every associate will have the same
desk over many years, you might discover unbelievable resistance
when adapting the workplaces flexibly to better support the project.

Encouraging Communication

The real difficulty of working with a large team is looking for ways
to ensure efficient communication. I have found that the following
steps are valuable in setting up a communication structure:

« All project members should sit as close together as possible
without crowding each other.

Dealing with Large Teams 31

« The retrospectives performed after each iteration and release
cycle serve as a forum for direct communication. Typically,
you will find that optimizing space, and therefore improving
direct communication for the daily work, will be a regular
topic until it is resolved.

+ Regularly scheduled meetings for all project members are
essential. Such meetings are primarily a mode of information
transfer. In my experience, too many people attend these
meetings for there to be any effective feedback or extensive
discussions, but they work well for one-directional informa-
tion transfer. Therefore, every project member should have
the possibility to contribute—in the form of a lecture about a
specific topic, for example. It is a good idea to announce the
contents of the contributions in advance.

 Provide a wiki* on the intranet, not only as a means for
documentation, but as a means for communication.

The philosophy of a wiki is to allow all kinds of discussion on
the Web. Everybody has the right to make any changes to the
web sites. This is possible through editable HTML pages. The wiki
web only knows collective ownership, so everybody has the same
responsibility for the contents. This helps to establish a community
of trust. Furthermore, no deep knowledge of HTML is required to
contribute to the wiki web. You can even contribute by writing
plain text. If the wiki web is also used to document the project,
you can be sure that this will always be a good source of project
documentation.

« Establish different e-mail distribution lists that allow you to
address everyone involved in the project, as well as specific
groups of people.

*“The term “wiki” comes from Hawaiian and means quick, which refers to the ability to
make quick changes. For more information on wikis, see Bo Leuf and Ward Cunningham, The
Wiki Way: Collaboration and Sharing on the Internet (Reading, Mass.: Addison-Wesley, 2001).

Dealing with Large Teams 32

Communication Team

Be warned, however, that even making use of these different chan-
nels will not eliminate your communication problems. Another
very effective way of improving your team’s communication is
to establish a separate (virtual) communication team . Depending
on the size of your team, the communication team could consist
of just one person. The communication team is responsible for
visiting all the teams regularly, obtaining feedback, discovering
deficiencies and (potential) problems (and maybe even solving
them immediately). It is important that this happens proactively
by approaching the project members. This way you will recognize
problems earlier, than by waiting until they are reported officially
or they escalate. Typical topics and tasks of the communication
team are:

« Unified project culture: The goal is to establish a common
culture with regards to such things as guidelines, tests, pat-
terns, and the like.

+ Refactoring: Uncovering sources for refactoring, not only
improves the quality of the code, but also provides a learning
opportunities for everybody.

« Common understanding: The communication team needs
to ensure that all information, decisions, and announcements
are understood by the teams.

+ Problem discovery and treatment: Problems should be de-
tected and at best solved immediately and in a simple manner.
The communication team has the advantage of having an
overview of all the teams. This way the communication
team can establish contact or point to solutions other team
might have found. If several teams have the same problems,
strategies are required which will solve these problems gen-
erally (extending / adapting the framework, or providing
patterns for the solution). Furthermore, the communication

Dealing with Large Teams 33

team suggests how the process could help to overcome or
eliminate the encountered problems.

The members of the communication team should never act as super-
visors or controllers, but instead more like a team of ombudsmen.
These ombudsmen should be sensitive to the hopes and fears of
the individual team members, and should collect suggestions for
process improvements. For example, ensuring that the team under-
stands all decisions enables them to either accept these decisions or
to come up with a suggestion that supports them better.

It is very important that the members of the communication team
have a good overview, are well trusted people with good commu-
nication skills, and who are widely accepted and respected by the
rest of the project team. These people should be able to take matters
into their own hands and who are able to manage the project as a
whole, but have also good connections to the individual persons.
In smaller teams, this will often be one person only, whose tasks
cross boundaries, like running reviews, retrospectives, or coach the
process. In larger teams (with at least more than 50 people) this will
always be a fulltime job for one or even more persons.

You will hardly find a project organization that is aware of the
necessity of this role. This makes it difficult to establish this kind of
role. I often call these people communication manager or simply
catalysts. Ideally these are persons, of who Tom DeMarco and
Timothy Lister’® write that their sole presence is enough for a
project to run smoothly.

1.4 Trouble shooting

Sometimes you need to act quickly; if, for example, one of the teams
is completely under stress, one team stops either talking to another

*Tom DeMarco and Timothy Lister, Peopleware: Productive Projects and Teams (New York:
Dorset House, 1987)

Dealing with Large Teams 34

team, or two teams start continuously blaming one another and are
not able to work together anymore. In such situations, you face two
difficult tasks: One is to look at the problem and see exactly what
kind of problem it is, and the other task is to solve the problem.

5
E '§“~ !
R e

Smells ...

The first task is more difficult, because it depends a lot on the team’s
culture. Here are some typical problem signs:

+ Cynicism and sarcasm: Humor is a sign that everything is
right on track and that people are having fun doing their jobs.
But if the humor turns into sarcasm, this is a clear sign that
the team does not jell and does not believe in what it is doing.

« Blame: This sign is much more obvious, and therefore easier
to spot and tackle. The teams or people blaming each other
usually have problems respecting and understanding each
other. Although blame can sometimes be a sign of a difficulty
communicating.

« Lack of Feedback: This is often a sign that the people have
given up. They do not believe in reaching the goal and they
do not believe that anybody has an interest in their opinion
or in their effort.

Whatever the reason is, you can neither accept nor ignore the
situation. All these circumstances will slow down the project’s
progress significantly. Therefore:

Dealing with Large Teams 35

o If a team is under stress, and complains that it cannot get
its work done because there are too many meetings or its
time is spent supporting other teams, protect the team for a
couple of hours each day by arranging quiet times. It might
be necessary to arrange an office-wide quiet time, either
temporarily or permanently. For more on quiet times, see
Alistair Cockburn’s Agile Software Development, in which
the author suggests defining the period between ten am and
twelve pm as quiet time, during which no phone calls or
meetings are allowed.*®

If instituting quiet hours is not sufficient to bring the team
back on track, a more rigorous approach is required: Instead
of quiet hours, make sure the team will get one or two quiet
weeks, with one or two hours of each day as “regular office
hours,” so that team members can still process incoming
requests.

The most extreme solution is to allow the team to go to a
closed meeting for a couple of days. This is also the most
effective and probably the most expensive solution. It is often
used in different circumstances: if, for example, the team does
not jell, or has to consider different kinds of solutions. The
closed meeting is more often used as an environment for the
project kick-off (for making teams jell) and for the project
post mortems. V7

Quiet times have a tradeoff: They can also lead to a complete lack
of communication, and should therefore be carefully balanced.

« If two teams stop talking or working together efficiently, lo-
cate them next to another. This way each team will recognize
why the other team acts like it does and they will start to
respect one another.

*®Alistair Cockburn, Agile Software Development. (Reading, Mass.: Addison-Wesley, 2002).
"For more on postmortems, see Norm Kerth Project Retrospectives (New York: Dorset House
Publishing, 2001)

Dealing with Large Teams 36

Another strategy is to set up a voluntary exchange program
among teams, so that one member from every team switches
place with a member of another team.®

Both strategies help to improve the understanding for the
other team.

« If a meeting culture evolves, where people have to spend
more time in meetings than they do working, and if people
start complaining about unnecessary meetings, question all
meetings that have been established, especially all regular
meetings. Furthermore you should question if all the partici-
pants are required to attend in order for the meeting to be a
success.

Generally you should introduce the “law of the two feet”,
as described by the Open Space Technology: anybody who
feels that the meeting is a waste of time is allowed to leave.
This might require some sensitivity from the organizer of
the meeting: If a participant does not contribute, he or she
should be politely invited to contribute to the project’s success
outside the meeting.

Another possibility for overcoming the meeting culture is by
introducing quiet times.

« Finally you can at the beginning of each meeting, ask one
of the participants participant to excuse him or herself from
the meeting to do something more important (this was first
suggested by Tom DeMarco, in The Deadline*®). Take care that
the person differs each time, and is not the most junior person.

« If a team is not very well integrated—if, for example, it is
often not well informed or is often blamed by other teams
for incidents that stemmed from a lack of information— then
locate food in the team’s area. Normally it is only a matter
of hours before other teams find themselves in the food area

**Thanks to Mike Cohn for sharing this approach.
Tom DeMarco, The Deadline — A Novel about Project Management (New York: Dorset
House Publishing, 1997)

Dealing with Large Teams 37

and the communication or information flow is reestablished
naturally.

1.5 Virtual Teams

According to researchers in the area of work life, the future will
be virtual teams. Fewer and fewer real teams will physically come
together to work on a project, and more and more teams will be
assembled over the internet. This has a lot of advantages:

« Each individual project member is responsible for his or her
own work space and environment. Although sometimes the
client will provide the equipment, most often the individual
project member will have to use his or her own hardware.
This saves the client a lot of money.

» You have much better access to different skills. You are not
limited to people from your region or your company.

+ You are not responsible for the team in the long run. You only
have to pay them for as long as they work for you. You are
under no obligation to find them their next job.

« If the team is distributed all over the world, another advan-
tage is that at any time of the day at least one team member
is most likely working on the project. There is hardly any
project-off time.

The main problem with virtual teams, is that they lack the most
efficient mode of communication—direct communication. As Erran
Carmel and Ritu Agarwal said in their article Tactical Approaches
for Alleviating Distance in Global Software Development in IEEE
Software,

“Distance negatively affects communication, which in
turn reduces coordination effectiveness.?®”

*°Erran Carmel and Ritu Agarwal, Tactical Approaches for Alleviating Distance in Global
Software Development. IEEE Software, March/April, 2001, Vol. 18, No.2, pp 22-29, p.23

Dealing with Large Teams 38

In virtual teams not only the communication with the customer but
also inside the team is a problem. This way it’s very difficult for a
virtual team to get a common understanding and to pull together.

Distributed Teams

Large teams are always distributed in one way or another, just
because they are too large to contain in one room. However,
distributed development is somewhat more extreme, in that the
project members are distributed over several sites and, as the term
suggests, the project is, as such, developed in a dispersed manner.
Sometimes you might find that there is a single team spread over
several sites, whereas at other times there might be several teams,
each located at a different site. Outsourcing (see Chapter 6) is one
example of a distributed team.

One problem in this setting is ensuring that everybody on the
team pulls together. On projects like this, you will often find
that people blame one another, mainly because they do not know
each other, and therefore do not trust each other. Also, technical
topics like version and configuration management are even more
complicated in distributed teams. Of course, there are tools that
can help these more complex areas of development, but they do not
make up for the inconvenience and problems caused by distributed
development.

If you must have distributed teams, the Internet is likely to be your
main form of communication (e-mail, wiki web, chat rooms), and
video conferencing is also a good way to communicate. However, be
sure that people working out of different locations are able to meet
with each other, at least occasionally. Communicating through the
Internet will only work efficiently if people know and trust each
other—and there is no better way of building trust than through
personal contact.

Dealing with Large Teams

Distributed Teams, by David Hussman

Most agile practices ask project members to keep communi-
cation channels open and filled with honest dialog, without
regard to the message content. Nowhere is this more important
than on an agile project with distributed teams. Along with the
usual technical challenges of distributed development, agile
development brings even more challenges, mostly aimed at
those outside the development teams.

Project managers, coaches, and customers need to be vigilant
when it comes to listening to, and addressing, the developer’s
concerns; tracking successes and failures; the way in which
story content” is gathered, organized, and presented; and the
consistency of the process and the development environments.
With distributed teams, the need to embrace change and make
the necessary corrections to the direction of the project sooner
than later is even greater. Just as the last car of a long train
starts moving long after the first, so too does change take
longer to move through the distributed teams.

The following list of best and worst practices might help
those outside the development group find and address needed
changes before the project strays to far from the correct path.
Many of the listed items apply to any scaled, agile project, but
their importance is heightened when the development teams
are distributed:

Best Practices

« Customer Agility: Ensure the customer teams can make
any necessary changes, by keeping the ratio of cus-
tomers to developers as low as possible (1 customer to
3 or less developers; the larger the project, the smaller
the ratio). The ability of the customer team to react and
change direction can be difficult when stories cross team
boundaries and teams struggle to bring portions of a
software solution to fruition. For example, if five people

39

Dealing with Large Teams

are writing a book together with each person working on
a different chapter, the lucidity and cohesiveness of the
book is proportional to the amount of time the authors
spend discussing the book with each other.

« Group Speak: The more often project managers, coaches,
and trackers discuss planning and development issues,
the better. Although this discussion can take place over
e-mail, at a wiki site, and through non-verbal channels,
ensure that at some point there are conference calls
or video conferences. If possible, have a different team
lead the discussion every call (this helps all involved to
embrace the project). Also, as teams grow and change,
each group starts to form its own view of the project
picture. Sharing your team’s lingo with other teams can
aid in maintaining a common view and provide cross-
team insight.

« Common Acceptance: If possible, ensure that each
team is building and testing against a common set of
hardware and software (if this is not possible, discuss
the environmental differences regularly). The closer the
environments, the better the level of acceptance testing.
Try utilizing a common acceptance testing strategy, and
whenever possible share the data sets used for testing.
Try to start automated acceptance testing early, and run
the tests as often as possible.

« Developer Rotation: Often times, teams in the same
building feel as disconnected from each other as teams
separated by states or countries. If possible, move play-
ers from team to team. If the players cannot colocate,
explore the notion of rotating the work done by the
teams instead of the team members themselves. This
may seem like an unrealistic suggestion, but it may be a
way to help maintain a healthy project whose members
have a holistic perspective.

Worst Practices

Dealing with Large Teams

Technical Stratification: It is often a natural fit for dis-
tributed teams to work on subjects that they are familiar
with (this is often why distributed teams are brought
into a project). If at all possible, avoid splitting develop-
ment tasks across technical boundaries. Try instead to
plan and develop toward functional goals and subdivide
the work from that perspective (this will avoid the
classic producer—consumer relationship between teams,
where one team has finished all its work and is left with
nothing to do).

Failure to Communicate Mock Implementations: As
teams may not have everything that they need in order
to complete a particular feature, they may choose to
mock / stub out®temporary solutions. This is fine (and,
if everyone is using the same code base and acceptance
tests, it can be quite clear), but make sure that the
interfaces to the mocks / stubs are agreed upon by all.
Loss of Iteration Synchronization: In most cases, it is
best to keep all teams on similar iteration boundaries.
It may be that the teams (and more importantly, those
in charge of the planning) find a steady state with
varied iteration boundaries. In either case, ensure that
the iteration synchronization is as constant as possible.
Again, as with scaled, agile projects, if a team has an
iteration schedule slip, even of just a couple of days,
planning issues may arise that are best dealt with by
moving the incomplete features to the next iteration.
The difference may seem small, but the consistency will
benefit the project plan.

Conclusion

Distributed teams using agile practices face many of the same
problems that subteams face when agile projects scale to large
numbers. The need for vigilant and constant communication
is exacerbated. Small issues can quickly grow large or span
several iterations if not known to all team members. One

41

Dealing with Large Teams 42

team’s frustration can affect other teams without their even
knowing it. Strive to keep process, schedules, and environ-
ments constant, and when they change (as we know they will),
notify all involved as soon as possible. The more that can be
shared between teams (source code, data, and so on) the easier
this task will be. Ensure that planners listen to the developers,
and help them listen to one another.

*Extreme Programming uses the term stories for requirements, which are
defined by the customer for a release cycle. User stories are comparable to Use-
Cases in UML.

"Mock- and stub objects allow to test partial solutions by simulating the
missing code.

Open Source

Open source projects are well functioning examples of virtual
teams. Possible reasons for their success are

« All the team members are very idealistic. There is no need to
motivate them or try to ensure that they identify themselves
with the project. This comes all naturally.

Everybody feels responsible for the whole project, and takes
this responsibility very seriously.

o There is a broad community that provides immediate feed-
back. This feedback is what drives the whole project. There is
no difference in the value of feedback whether it comes from
peers or from users.

Everybody who contributes to the project takes pride in his
or her work.

The main underlying principle of open source projects, and the rea-
son for their success, is the gift economy (the culture of giving away
capacity and information). This means that everybody working on

Dealing with Large Teams 43

an open source project is doing so voluntarily. A lot can be learned
from this approach, especially for use on commercial projects. Mary
Poppendieck once reported that a new project manager asked her
for advice on becoming a successful team leader. She asked him
if he had led ever a team of volunteers (of any sort). He replied
by saying that, he was a successful choir leader. Poppendieck
continues,

“I suggested that if he used the same techniques with
his project team that he did with his choir, he would
be a successful project manager. He said it was the best
advice he ever received, and he blossomed as a project
manager. **”

Open Source by Dierk Konig

The open source movement derives its name from the practice
of sharing the source code of a valuable product among an
arbitrary number of developers. This so-called collective code
ownership means that the code belongs to all these developers.
They are entitled to change it and are all responsible for the
final result.

In the context of this book, open source projects may be of
interest because they share properties of both large and agile
projects. They make use of agile practices while suffering from
the same problems that large projects have in regards to team
distribution.

I’'m not so bold as to claim that open source produces better
results in general. Sure, lots of open source products are widely
known for having excellent quality with zero costs to the user.
But I'm the first to admit that there are also numerous sloppy
projects out there that will never produce anything useful.
However, maybe we can take something from the successful

*"Mary Poppendieck in a private e-mail correspondence on the gift economy.

Dealing with Large Teams

ones!
Distribution

It is evident that the physical co-location of all contributors
to an open source project is impossible. However, we have
observed that members of the core editing team of an open
source project sometimes get together to tackle a special issue,
often sacrificing personal time and money. The collaboration
then looks like an Extreme Programming pair programming?®
session.

Even the users of open source software hold events so they
can get together and share their experience. The Eclipse code
camp”is one example.

If the open source people put so much effort into overcoming
the obstacle of distribution, can we—in paid time— go upstairs
to pair up with the database guy?

Idiosyncrasies

An open source contributor is not forced into anything. If you
do not like anything about the project (the setup, the code style,
the technology, the people, and so on), you can leave at any
time or even fork (make a new project based on the old one).

This, and the fact that a lot of people write contributions in
their spare time, leads to a project staff that likes the applied
work style, or at the very least accepts it. The number of
complaints is noticeably small.

One could claim that open source projects are not limited
in time, scope, or resources, and therefore do not need the
measures of control that are applied to in-house projects. This
is not really true. Running an open source project in your spare
time, knowing you have only a few hours a week to work on
it makes you think hard about what to implement next.

Open source is opportunity-driven. Whoever needs a feature
the most will implement it and submit the contribution. Noth-

44

Dealing with Large Teams

ing is produced for the shelf. Contributors undertake their the
tasks without anyone telling them to.

Developers know that their code will be read, literally, hun-
dreds of times. This is motivation enough for them to achieve
high code quality, and it is a good opportunity to show off their
professional expertise.

Now, without any imposed order, programmers do what they
think is appropriate; surprisingly, this does not result in to-
tal chaos, but rather in automated testing techniques, stable
frequent builds, ubiquitous version control, flexible architec-
tures, and self-documenting code. Most astonishing is that
these programmers manage to achieve something that most
organizations do not: mutual respect among team members.

Architecture

Open source projects typically do not start with an up-front ar-
chitecture (Eclipse may be an exception), but they always have
one in the end. The opportunity-driven nature and the resource
constraints of open source force contributors to practice reuse.
This is especially apparent in the Jakarta project family . Every
project is built on other projects, which were built on projects
that came before them, and so on.

The new challenge is to manage project dependencies, a well-
known problem that most big organizations struggle with.
Open source offers an easy yet powerful alternative: Let the
user decide.

Another idiosyncrasy of open source architectures is the focus
on extension points and pluggability. JUnit% ANT¢ and eclipse
are perfect examples of this approach.

Just think of the effect that applying the principles of open
source software would have on your corporate IT projects.

Project Structure

In open source projects you typically see a core team of

45

Dealing with Large Teams

editors with write access to the repository. The requirements
for becoming an editor differ on every project. Some do not
have any restrictions, while others only grant write access
to contributors that consistently submit quality work. Some
projects have a fixed group of editors.

The core team decides whether contributions from the outside
get incorporated or rejected.

Communication channels are highly self-organized. The flow
of information typically takes place on mailing lists.

Project Setup

For open source projects, having a self-contained build is
absolutely crucial. It is no wonder that open source projects
were the pioneers of build automation. The same holds true for
the use of versioning systems, nightly builds, and automated
self-testing.

As the source code is highly visible, a new degree of rigor
is applied to the end result. The source code is subject to
excruciating review and refinement. Its compliance to every
standard in use will be checked for all platforms the commu-
nity uses. The contributor has total control over how to achieve
this result. Assessing results rigorously but giving developers
freedom to use their own work style is a strong agile move that
large projects can follow as well.

Documentation

Typically, in open source software there is not a lot of external
documentation. The code must speak for itself. Although it
may seem unusual, this strategy works well on open source
projects, where the code, especially the test code, must reveal
its intention.

Successful projects are often accompanied by articles and
even books. The usage documentation that comes with the
distribution typically contains only very basic help for the
beginner.

46

Dealing with Large Teams

It appears that any necessary external documentation gets
written on request. For example in Canoo WebTest” we had
a fairly complicated security use case. A user volunteered
to write the documentation for this, provided that someone
helped him figure out what to do.

The result seems to be a good medium between the two
extremes of lacking all the necessary information and having
excessive documentation in which the important information
is hidden among pages and pages of unnecessary text.

Planning

Frankly, there is no long-term planning whatsoever. There are
exceptions, but for most open source projects, there is only
a little short-term planning. The reason for this is to save
the developers unnecessary work, by not prescribing long-
term directions of any greater detail than a common vision.
Directions are derived solely from user feedback.

The most challenging part of adopting open source strategies
in corporate IT projects may be trusting in the evolution and
refinement of this complex adaptive system that is beyond
managerial control.

In Extreme Programming exists the rule that all productive code is written
by a pair of developers. Thus, a continuous review takes place throughout the
development by two developers solving a problem jointly.

"The development environment Eclipse (http://www.eclipse.org) is an open
source project as well. The developers of Eclipse meat occasionally in so called
code camps for exchanging experiences and developing the product further.

Jakarta on the web: http://www.jakarta.org

%Unit on the web: http://www.junit.org

°ANT on the web: http://www.ant.org

WebTest on the web: http://www.webtest.canoo.com

47

Dealing with Large Teams 48

1.6 Summary

You should never underestimate the value of face-to-face communi-
cation, especially with large and distributed teams. You should do
everything you can to provide as many opportunities as possible
for direct communication. Direct communication, together with
transparency, helps to build trust both inside the team and between
the team and the outside world. If team members trust one another,
they will not fear taking up responsibility.

A tool like the wiki web will help you build trust by empowering ev-
erybody through shared ownership. In doing so, such tools change
the flow of communication from control-driven to collaborative-
driven.

When building subteams, you should ensure that the skills within
each subteam are mixed. Furthermore, the technical service teams
should serve the domain teams If so desired, they can also be
established as virtual teams.

Last but not least, allow the team to have fun. This not only
helps teams jell, but more importantly, it also makes the work
environment a pleasant one, which will make everybody want to
work and succeed with the team. Consider the values of the gift
economy like open source does, it will also help to make work much
more enjoyable.

	Table of Contents
	Dealing with Large Teams
	People
	Responsibility
	Respect and Acceptance
	Trust

	Team Building
	Building Teams and Subteams
	Team Roles
	Team Jelling

	Interaction and Communication Structures
	Open-plan Office
	Flexible Workplace
	Encouraging Communication
	Communication Team

	Trouble shooting
	Virtual Teams
	Distributed Teams
	Open Source

	Summary

