

[image: Agile Software Development in the Large]

 Agile Software Development in the Large

 Diving into the Deep

 Jutta Eckstein

 This book is for sale at http://leanpub.com/agileinthelarge

 This version was published on 2023-01-18

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2004 - 2022. Jutta Eckstein.
38106 Braunschweig, Germany.
All rights reserved.
First publication 2004 by Dorset House Publishing, 353 West 12th Street, New York, NY 10014.

 ISBN for EPUB version: 978-3-947991-24-2

 Table of Contents

 	
 1. Dealing with Large Teams

 	
 1.1 People

 	
 Responsibility

 	
 Respect and Acceptance

 	
 Trust

 	
 1.2 Team Building

 	
 Building Teams and Subteams

 	
 Team Roles

 	
 Team Jelling

 	
 1.3 Interaction and Communication Structures

 	
 Open-plan Office

 	
 Flexible Workplace

 	
 Encouraging Communication

 	
 Communication Team

 	
 1.4 Trouble shooting

 	
 1.5 Virtual Teams

 	
 Distributed Teams

 	
 Open Source

 	
 1.6 Summary

 	
 Notes

 Guide

 	
 Begin Reading

1. Dealing with Large Teams

 Trust is the sister of responsibility.

– Asian proverb

The reasons for implementing a system with a large team are varied. The
most common one is that the scope of the project is too large for a
small team to handle. Of course, there are some large projects that
would be better off if implemented by a small team. So, even if its
scope is large, it might still be faster (or even better) to develop a
project with a small team, mainly because communication is not as likely
to prove a problem as it is in a large team.

The use of a large team could also be politically motivated. The size of
a team sometimes reflects the importance of the project and, often, of
the project management as well. This alone could be reason enough to
implement the system with a large team. Tom DeMarco discussed this
problem during OOPSLA 20011. He indicated that surprisingly often,
the manager of a failed, but large project will be valued higher than
the manager of a successful but small project.

Furthermore, it could be the case that the team is already established
and the project is shaped (and sized) to suit the team. For instance, I
witnessed a situation in an organization where a lot of people just sat
around, waiting for the project to start. Nobody questioned if this mass
of people was really required for the project. Instead, everybody tried
to shape the project in a way that kept all these people busy. Granted,
for some companies (in some countries) it might be easier to shape the
project according the team size than to get rid of the employees—mainly
because of legal issues—but this is not usually the case.

Of course, it is always worth questioning the reasons for working with a
large team, but this is neither the topic of the book in general nor of
this chapter in particular. Instead, the assumption is that the project
will be run by a large team and you (still) want to use an agile process
to succeed. When changing to agile development with a large team, you
have to deal with several issues involving people, teams, interactions
and communication structures.

This chapter focuses on those aspects of agile processes that work
differently in large teams than in smaller teams. First we shall look at
the people aspect. There we will discuss how taking up responsibility
can work in a large team and what kind of consequences respect,
acceptance and trust have for successful collaboration. Next we will
talk about how a large team can be organized in several subteams and
what kind of team roles have to be occupied. In the section on
interaction and communication structures we shall focus on encouraging
communication in large teams. Next, in the section trouble shooting I
will present typical team problems and their possible solutions. Finally
we will look at the difficulties that can occur when developing with
dispersed teams.

1.1 People

Size matters. The size of a team provides a special risk—a team that is
too large can prove to be a hindrance to the project. One of the reasons
is that the quality of decisions typically suffers. For example, the
larger the team the more often you will find that decisions are unclear
or postponed. The main reason for this is that within large teams you
will often find a tendency among people to shun responsibility. Because
there are so many people on the team, there is a collective mentality of
“someone else will decide.”

Unclear or postponed decisions confuse the team and make it difficult
for team members to decide which direction to take. This leads either to
project paralysis, because nobody has the courage to move on without
being told, or to a lot of individual decisions as one thinks best.
Often, those individual decisions contradict each other, which in turn
leads to a form of project stagnation, based on contradictory
development. Both symptoms are very frustrating for the whole team. I
once consulted on a restart of a failed project. I interviewed the team
about what they believed was the trap that the restart was most likely
to fall into. Interestingly enough, most the people named a lack of
clear decisions as the highest risk.

Therefore, although it might seem unusual, it is preferable to make a
clear but eventually wrong decision and to correct it later on. Making a
wrong decision enables you to learn; postponing a decision does not. If
you postpone a decision, you do not know until it has been made whether
it is the right or the wrong one. However, if you make the wrong
decision, you will learn from the consequences of that decision and have
the possibility of correcting your mistake, based on your new
experience.

Making decisions is one side of the coin, the other is making sure that
they are not only communicated to everybody involved, but are also
carried out. A decision that is made but not carried out is essentially
the same as a postponed decision. Only when realizing the decision and
living with its consequences will you know if it was right or wrong.

Although this all sounds very obvious, it is common to find the same
problems popping up over and over again, which is a sure sign that those
decisions have either never been clearly made, or they have not been
realized.

As I mentioned earlier, the main reason for the poor quality of
decisions on projects with large teams is probably based on an aversion
to taking responsibility. You will find that the more people are working
on a project, the harder it is to tell who took up the responsibility
for which task. Often this results in an undefined task zone, which is
defined by:

 	
Multiplicated task responsibility: A lot of people are
responsible for the same task. The problem is that they do not know
about one another. Therefore, if you are lucky, this task will be
carried out repeatedly. If you are unfortunate, they will do the
task in ways that contradict each other.

 	
Null task responsibility: Nobody takes up the responsibility for
the task. Everybody assumes that it is someone else’s job. Funnily,
enough, this can result in everybody blaming everybody else for not
taking up the responsibility.

To make things worse, you can be assured that with each additional team
member, the risk will rise and that more of such problems will arise.

Responsibility

Due to the departmental organization, people in large companies are not
usually used to having complete responsibility for any particular task.
This is because there is almost always somebody higher up the hierarchy
who has ultimate responsibility for the task. This is especially true
for developers. They often consider themselves to be the ones who only
do whatever somebody else tells them. No wonder they act as they do
whenever somebody “accidentally” gives them the responsibility for a
specific task. They feel uncertain when given responsibility because
they are not used to having it, and because they do not know what it
implies.

On the other hand, agile processes require that everybody be responsible
for her task, and for the effects that task might have on the whole
project. As well as those tasks, there is also the shared responsibility
of the ultimate performance of the whole system, project, and even the
process that will lead the development. Thus, each team member is
responsible in some way for every task, even those assigned to other
team members.

For example, Extreme Programming has a practice called collective
ownership, which refers to a shared responsibility for all kinds of
things: the code, the integration, the process, and so on. Best known
among these shared responsibilities is probably collective code
ownership, which enables and obliges everybody on the team to improve
every piece of code, no matter if he or she is the original author of
the code or not.

With collective ownership, every team member bears the same
responsibility for all aspects of the project. While allowing everybody
to steer the project at the same time is a challenge, and, some fear, a
big burden. For instance every developer would want to have a hand in
shaping his or her development environment. On the other hand, this
increased responsibility is likely to increase fear among the developers
of making the wrong decisions.

This is why, when people first sign up for a task but aren’t used to the
responsibility it entails, you have to lead them gently into this new
ground. For example, ask the developers which task they want to be
responsible for, and then assist them in estimating the task. Not only
should you make yourself available to answer any questions they may
have, it is very important that you also ask them regularly if they are
doing ok, or if they need any help, because they might be afraid of
bringing up such issues themselves.

For example, I remember one project I was working on, where people had
problems taking responsibility. I visited all the team members regularly
and asked them how they were getting along with their tasks. It did not
take long before some of them started complaining that they were not
able to get their work done, for various reasons. The most common reply
was that they were waiting for something from another team: either the
other team had not yet provided some interfaces, or the interface they
had provided turned out to be different than expected. The obvious
problem was that these people did not have a consciousness of problem
solving. Instead, they complained that their peers were responsible for
the problems. However, the real, hidden problem was that they were not
taking enough responsibility. If they had, they would not have
complained, but rather would have started solving their problems. In
other words, they might have started talking to this other team and
attempted to find out why the interfaces were not ready and addressed
the situation.

Whereas the typical reaction of people not used to responsibility is to
get annoyed at the situation without taking any action to change it. Of
course, it could be worse. If, for instance, they could neither complain
nor take up the responsibility, you would never learn about their
problems.

Therefore, you have to be proactive in asking them about the status of
their assigned task. Only then you will have an idea of any problems
they may have. I am not talking about the typical status reports,
instead I am talking about walking up to the people and talking
face-to-face about their current situation. You should encourage them to
look at the big picture, and regard their assigned task as a part of the
whole. Explain to them that in doing so, they will sometimes have to do
things that are only partly related (if at all) to their assigned task,
but are important for the completion of the project.

If people are spoon-fed responsibility, they will not learn to make an
effort to take it up themselves. Or, as Fast Company puts it:

 “Telling people what to do doesn’t guarantee that they will learn enough
to think for themselves in the future. Instead, it may mean that they’ll
depend on you or their superiors even more and that they will stop
taking chances, stop innovating, stop learning. 2”

Thus telling people what to do is not enough, they have to commit
themselves for taking up a task. The focal point of this philosophy is
that the value of team productivity is much more important than the
individual effort. Therefore, every now and then you have to point out
that only the team’s success is the individual’s success. An
individual’s success without the success of the team is of no value.
Among other things this means that a well functioning team does not rely
on its official manager—it takes up the responsibility itself whenever
the situation requires it. As Kent Beck said:

 “Leadership happens every time, every minute by everybody on the team.
3”

For this ideal situation to become a reality, the organization has to
change from management by command and control to management by
responsibility, trust, and teamwork.

Trust is the foundation on which such a management strategy is built.
Because when someone takes on a responsibility, you trust that he or she
is capable of handling this responsibility. However, at the start of an
organization’s first agile project, this culture of trust and
responsibility will not be in place yet. Most team members will not be
able to take up responsibility because they are not used to it. However,
I suggest that you demonstrate to them how you take up responsibility,
and that you encourage them to take responsibility even if they do not
feel ready. This shows your team members that you trust them, even
though at this early stage in agile development they might not be able
to justify your trust. When this is the case, the most common reaction
is to refrain from giving them any responsibility in the future. But
this prevents them from ever getting the chance to learn how to take up
responsibility, and simply reinforces their own mistrust in their
capabilities. Just as Ulrich Sollman and Roderich Heinze4 say, you
should give people the chance to learn how to deal with responsibility:

 “The more often you are in an uncertain situation the better you can
handle this kind of situation, or rather the longer it will take till
you will again feel uncertain. 5”

If you want to train your team members to take up responsibility, you
have to be aware that this is an investment in their future. This
“training” is two-sided: you might also have to train the leaders to
pass on responsibility and to trust their team members. Like every other
learning process, it will be some time before you see results, but it is
worth the effort.

Respect and Acceptance

A development team is not usually organized like a team, in the
strictest sense of the word, assembled by peers with equal rights, but
more like a hierarchy. The typical hierarchy in a development team,
which can be found mainly in traditionally led projects, follows
Taylor’s6 theory about centralizing a team’s knowledge. The
individual team members take up specific roles and corresponding tasks.
Analysts, designer, developer and tester often work independent from one
another in a linear process.

As a consequence of this separation of tasks and roles, a hierarchy is
created. Although this hierarchy might not officially exist, it is
formed by the different roles in the team, some of which have greater
prestige and/or importance (acceptance level) than others. Often, the
acceptance level is defined by the linear development. This means that
analysts have the highest acceptance level, whereas coders, testers,
and, even worse, maintainers are at the very end of the acceptance level
chain, doing all the “dirty” work. The presented sequence of acceptance
levels is just one example, but an oft-encountered one.

However, the major problem is that nobody wants to be at the low end of
this acceptance-level chain. Therefore (as in the example above),
everybody tries to climb up the ladder from maintainer to designer or,
even better, analyst. Or, if we look at it from another perspective, you
will find the largest percentage of novices in maintenance or
implementation. Consequently, there are often too few experienced coders
in a team.

On the other hand, most agile processes require teams to have shared
knowledge and shared skills. This means knowledge cannot serve to form a
hierarchy. Therefore, the first step in forming an agile team is to get
rid of the tayloristic split. Assemble teams that cover all the
knowledge, where each member of the team is aware of the big picture and
takes her responsibility to contribute to the whole team’s success. As a
consequence, the individual role of each member is not so obvious
anymore, in terms of individual knowledge, but in terms of contribution
to the team’s success. So acceptance is then based on performance and
not on roles. However, it is important to note that a main difference
between a small and a large agile team, is that in a small agile team,
typically every individual is requested to be a generalist. On the other
hand, in a large agile team, a whole subteam (see below in this Chapter and not necessarily every individual team member should cover this general knowledge.

This implies that agile teams require more generalists than specialists.
At the least, everybody should be able and willing to understand the big
picture, and not find themselves interested solely in digging in some
specific details while ignoring the interests of the whole project.

So, as Don Wells said, in an agile project, you will find that

 “Everyone is of equal value to the project. 7”

But this is only true if every team member bears responsibility for the
whole project. Of course each team member will still have her individual
capabilities and abilities, but they will all contribute equally to the
team and the project.

Trust

It is natural for people to be skeptical of a change like switching to
an agile process. The team members themselves, along with a lot of
people only partially involved in the project, might not have trust in
the success of this new process. The possibility that the team can
change the process over time is often even more frightening than
following a defined, but indigestible recipe.

The best argument against this mistrust is working software. Therefore,
try to complete the first low-functional version of the software as
early as possible. Another strategy for building trust is transparency.
Make everything transparent for everybody involved in the project.

Different practices help to make things more transparent:

 	
Shared Ownership: Ask everybody on the team to take up
responsibility for all kinds of things (for instance, the code,
the process). This shows your trust in them.

 	
Shared Knowledge: This practice is often based on
shared ownership. The knowledge about the information, —for example,
the system— is transferred from one team member to another. This
makes the system more transparent and understandable for everybody,
and helps in turn to build confidence in the system.

 	
Shared Skills: The team has a variety of backgrounds and skills.
This knowledge is accessible not only for the individuals, but for
the whole team. Using a different process, the expert knowledge is
often on the individual’s guard against the whole team. Making
knowledge transparent makes the team more trustworthy. Furthermore,
it allows every team member to add new skills to their repertoire.

It is important that this transparency is always open and honest. Do not
hide any negative information. Knowing about the bad things makes it
easier to deal with them. Moreover, everybody should be invited to
comment on the information and to help improve the situation. Thus,
transparency includes controlling, auditing, and, most importantly, the
customer.

Occasionally, when coaching a project, I find that project members
assume that transparency stops right before the customer. For example, I
sometimes have to lead long discussions in order to open the project’s
wiki web8 for the customer, because the customer will then be aware
of all insights of the project. Often, when asking for more transparency
towards the customer site, project management tells me that it is afraid
that the customer will recognize the problems inside the project. This
is exactly the point! The customer should always be aware of the
problems because it is her money the project is spending. These
arguments are typical when discussing the impacts of having the customer
on-site. As soon as the customer becomes somewhat of an unofficial
project member, the fear disappears from both sides: From the project’s
side because team members realize that the customer is a real person,
and from the customer side because she understands the difficulties the
project members are struggling with.

This reminds me of how I was before I started scuba diving: I liked
swimming in the open sea, but I was always a bit afraid of the creatures
underneath me, and I was pretty sure that sooner or later one of them
would bite me. As soon as I started scuba diving, I did not even fear
sharks or other predators. Being close to these creatures gave me the
feeling of actually being a part of the living sea.

1.2 Team Building

A large team is hardly manageable as a whole. Thus, in order to
establish a flexible team, the team is usually divided into subteams of
no more than ten members.

The typical structure used by large teams (and in large companies) is
still based on Taylor’s theory of building teams according to their
knowledge. Therefore, you will often find an analysis team, a design
team, a test team, and so on. The developers are typically further
subgrouped into smaller subteams, each responsible for a specific
function like presentation, database, network services, and the like.
This tayloristic split is also known as horizontal team division.
Taylorism works quite well for jobs that are repeatable. It doesn’t work
as well if a lot of creative and holistic thinking is required. You can
furthermore consider defining vertical teams, which are focused around
business functionality. These teams are also known as domain or feature
teams, as Peter Coad terms them in the process, Feature Driven
Development. On the other hand, if you are dividing the team
vertically, you might find that not every team has all the necessary
skills, or even worse, that every team might start to address the same
problems.

Therefore, do not make this an either-or decision, but an as-well-as
one. For example, if you start with a small team, and build slowly, you
will come to the conclusion that on future projects your starting team
should be staffed with people who not only have a good domain knowledge,
but also a major technical background. This starting team most often
defines the first architecture and verifies that the system can actually
be built, and can furthermore serve as a model for the formation of the
other teams. The horizontal and more technical focused teams should then
support these new (vertical) subteams.

Building Teams and Subteams

As mentioned earlier, dividing the whole team in several subteams should
not be a decision between a vertical or a horizontal division. Instead
it should be an as-well-as decision, to provide a better mix of
knowledge in the teams.

 [image: Subteams ...]
 Subteams …

Either virtual or real technical service teams9 could be installed
to further support those domain teams. For example, in one of the
projects I worked for, we defined domain teams focusing on a specific
(banking-) domain area, like one team focusing on accounting and another
one on customer management. Each team had the knowledge needed to
implement the features belonging to this domain, including the graphical
user interface, the connection to the host, the business logic, and all
the other required technology. If, for instance, the accounting team
required some functionality from the customer management team in order
to implement a feature, the accounting team just bilaterally discussed
the requirements with the customer management team. The customer
management team then in turn provided the required service within the
development cycle.

We established in this case not virtual, but real, technical service
teams, responsible for supporting the domain teams by providing some
base functionality. For example, we assembled an architecture team
responsible for the business logic, and a presentation team for all
graphical user interface aspects. Those technical service teams were
requested to regularly visit all the domain teams. On request, members
of a technical service team supported domain teams as regular team
members for a specific amount of time.

Technical service teams should always regard themselves as a pure
service provider for the domain teams. For instance, the technical
service team responsible for building and supporting the architecture
should always shape the architecture according the requests of the
domain teams, not vice versa so that the domain teams have to use
whatever the architecture team creates as it is often the case.

Depending on the actual size of your team, either you will establish
virtual technical service teams, or you will establish real technical
service teams. The members of the virtual teams are usually regular
members of domain teams. In contrast, members of real teams usually lack
a close connection to the domain teams. For this reason you have to
ensure that real teams do not develop the best architecture, but the
most adequate. You have to avoid that features are implemented just
because somebody believes they are needed. Technical teams have to
understand itself to be service teams, which deliver services to their
customers, where their customers are the domain teams. The big advantage
of this strategy is that the architecture only contains what is
required. This makes the architecture much easier to maintain and, as a
side effect, cheaper. Additionally, it eliminates the often-occurring
social discrepancies between the technical and domain teams. One often
gets the impression that those teams are working on different projects
(not least from the way they talk about one another). Unfortunately,
this impression is seldom wrong, and those teams have different
objectives. Where technical teams’ objective is to make use of a
specific technology and develop perfect frameworks not requested by the
domain teams, the domain teams’s goal is to implement the domain, not
caring if they can profit and learn from one another (or from the
frameworks the technical teams provide).

But how do the technical service teams know which service is required
and, more importantly, which requested service has the highest priority?
The team has to come up with a strategy, so not every requirement from
each and every domain team will be implemented, because certain
requirements might contradict each other. Or, worse, implementing these
requirements will cost so many resources, that other teams will not be
able to get their (more important) requirements done.

Therefore, like real customers, the domain teams have to speak with one
voice. Retrospectives10 could serve as a forum for deciding on new or
changed requirements because all teams (or team leaders at least) are
present, and the focus of the retrospective is the project’s status and
progress anyway. If one team states that it cannot proceed because it
needs some special technical service, all teams can decide jointly if
this is a requirement they support, so if approved, this will be a joint
requirement for the technical service team. Otherwise, the requesting
domain team has to implement the service on its own. These requirements
are then scheduled in the same way as the domain teams schedule their
requirements. Thus, the technical service team schedules requirements
with the highest priority first, and does not schedule more than it can
accomplish within the next development cycle. It might have to negotiate
workload with the domain teams. It might happen that especially at the
beginning of the project, the domain teams define many requirements for
the technical service team, but there could be other times where there
are so few requests, because for example the architecture can just be
used as is. During “high season”, you should ensure that the technical
service team does not accept more work than it can accomplish. And in
contrast during “low season”, you should ask the members of the
technical service team to join the domain teams, instead of implementing
unnecessary additional features.

 Requirements Channels by Stefan Roock

 In this project we had to implement a system supporting multiple
channels, which should address different user groups with various
frontend technologies (desktop, web, laptop). Our starting project team
consisted of five people from the development company and two
consultants. With seven people, it was a size typical for an agile
project. We had all the Extreme Programming practices in place when
the project had to scale up and accept additional manpower—mainly
developers. The goal was to have about twenty-five people in the
project.

 When scaling up, we had to address the issue of project structure. It
became clear that it would not be possible to integrate all these people
in one large team in the project. Therefore, we decided to split the
project up into teams. But, we asked ourselves, what are the criteria
for the division of teams? Do we use the architecture as the structuring
mechanism and assign each subsystem to a team? Or do we assign each
requirements channel to a team? In the first case, each requirements
channel had to talk with every team. In the second case, each team had
to modify classes all over the system. Since the planning games11
seemed to be too complex in the former, we choose the latter.

 [image: One Team per Subsystem]
 One Team per Subsystem

 [image: One Team per Requirements Channel]
 One Team per Requirements Channel

 We then got three teams for the three requirements channels, and a
technology support team. The teams were rather small (four people),
which supported taking over responsibility.

 One thing we learned was that reorganizing teams takes more time than we
thought. When we changed the organizational structure, the developers
needed several weeks to get used to the new structure and get up to
their development speed again.

 Because teams were not assigned to subsystems, every developer was able
to modify every part of the system. This was no problem because the
developers were able to master the code base (about twelve-hundred
classes).

 As time went by, additional developers joined the project and the code
base grew. We ended up with about thirty developers with different
programming skills. Now some developers weren’t able to modify every
part of the system without it breaking. Our first step was to tag core
classes and the very complicated parts of the system as “expert code,”
which had to be modified by a so-called system expert.

 That solved the problem, but it doesn’t seem to be a very smart solution
since there is no way to guarantee that only system experts modify the
crucial part of the system. Currently, we are searching for better
mechanisms for assigning code to teams. The main idea is to take the
layering of subsystems into account. Some subsystems are specifically
for a requirements channel and should be assigned to the relevant team.
Other subsystems are relevant to several user groups and can’t be
assigned to one of the existing teams. These subsystems are assigned to
a virtual “base subsystem” team, which is created on demand from the
system experts sitting in the existing teams.

Team Roles

The idea is that a team has all the required knowledge. Thus, each team
is a generalist on the domain covered. For instance, a domain team will
be assembled by domain experts, graphical user interface developers, and
database developers. But although the team consists of these different
experts, this does not mean, that those experts will only ever work in
their field of speciality. Instead it is required that team members take
different roles. For example, it is rather typical for the database
developer to learn from the graphical user interface specialist how to
build the presentation, and to then contribute to the user interface
development. Thus, the goal of having generalists rather than
specialists in a team is attainable by spreading the available
knowledge.

The goal of this approach is not egalitarianism of all team members.
Distinct skills and experiences are still necessary for specific tasks.
However, the goal is to avoid the general tendency towards head
monopolies and to spread knowledge and skills.

Additionally, each agile team also covers the required administrative
knowledge necessary to perform, for example, integration and
configuration management. The person who takes this role concentrates
mainly on issues based on internal team integration and configuration,
but will also be the contact person regarding this topic, for people
external to the team. However, individual team members can have multiple
roles: For instance, the person responsible for integration and
configuration can be the domain expert as well.

It is very helpful to establish a team lead for every team. This person
acts as a contact person for reaching the whole team. Often, the team
lead coordinates who will attend a specific meeting (for example a
retrospective).

Team Jelling

The goal is that the whole project team pulls together, that all team
members communicate honestly and openly, and that everybody has the same
big picture in mind. Or, as Tom DeMarco puts it, that the team
jells.12 The pulling together especially must be supported, so it
becomes natural. As well as the more official aspects of project
development, other, more enjoyable and motivational tactics must be
employed to keep your project on track:

 	
Food: If you provide food, or just snacks—healthy or
otherwise—the area where you placed the food will soon become an
extremely popular part of the office. And when groups of people are
there, taking advantage of the free food, they will start talking.
You might also want to make use of team lunches. Although you should
ensure that lunch time is also a break time, which allows the team
members to relax and recover from their work. On the other hand,
breaking bread together always helps people come closer together.

 	
Party: Organize a party once in a while— after the delivery of a
major release, for example. This does not have to be something big.
It would be enough to serve some sandwiches and beverages for a
couple of hours or so. This will help people who wouldn’t otherwise
have the chance, to sit and talk to each other. Try to convince the
company of the importance of such project parties, so it will
approve them.

 	
Recreation: Organize some sort of recreational outing. It can be
a sporting event, like a volleyball match, or some other social
event, like bowling, go-kart racing, or something along those lines.
Doing something as a group, this will help team members to get to
know each other, especially when people are asked to team up with
someone they do not work with regularly, and will hopefully
reinforce respect and acceptance among all. Ensure that everybody
can participate in the event, taking into account handicapped
people, for example.

 	
Project Identity: Encourage the team members to instill a sense
of project identity. Mary Lynn Manns and Linda Rising also stress
the importance of having a group identity in Introducing new Ideas
into Organizations13 with a separate pattern, called Group
Identity. Special tee-shirts, project-specific food and beverages
or even project-specific phrases and slogans help to develop a
project culture. In one of the projects I was working for we even
came up with project cocktail. However, the project should not
demarcate itself from the outside, instead it should be easier for
newcomers to identify themselves with the project.

 	
Regeneration: Ensure that project members have time
to regenerate. Even when under pressure to deliver, make sure that
people are taking their vacations and that they are not
working overtime. A project is better comparable to a marathon, not
to a sprint.

 [image: Regeneration ...]
 Regeneration …

 	
Communicate and visualize results: You cannot overestimate how
motivational the growth of the system or the customer’s feedback
can be. Therefore, make sure everybody knows about the
project’s progress.

All the strategies suggested (which are just an excerpt of
possibilities) reinforce communication and will ensure that your team
members will get to know each other better and, more importantly, learn
to respect one another. Try to ensure that members from different
subteams interact with another. For example, if you organize a sporting
activity, you can request that each side contain no more than two people
from each subteam. It is astonishing how much this contributes to a
sense of a communal identity among team members, which usually results
in the project running more smoothly.

Some strategies are not self-evident for a company. For instance
organizing a party with temporal and financial support could be a
problem. This is a sure sign that the importance of communication is
still underestimated. Thus it will be necessary to convince the
organization otherwise. It is worth the effort.

1.3 Interaction and Communication Structures

Communication is the most important factor in the success or failure of
the whole project. Communication is difficult even when only a few
people are involved, but it gets exponentially harder the more people
there are involved. When setting up a communication structure for a
large team, you have to consider the following constraints:

 	
Direct communication is the safest form of communication, and
you know immediately if the receiver of your message understood what
you said. However, the more people involved in a communication
effort, the harder it is to get a message across. One reason for
this is that there will not be enough time for everybody to actively
participate in the conversation. Another reason is that typically
only a few extroverts will participate, whereas all the introverts
will accept the message, because they are uncomfortable discussing
anything in big groups.

 	
Different sensory modalities: Every person obtains
information differently. Some people, known as visuals, learn most
effectively by watching; auditories, by listening; and kinesthetics,
through action.

 	
Overdose on communication media: Additionally, it seems to be a
law that as soon as a communication path works, it is abused until
it does not work anymore. For example, if messages are transferred
via e-mail, you will read your e-mails and respond to them. However,
once your inbox begins to overflow with new e-mails when you get to
work each morning, you are likely to either be very selective about
which messages you read and respond to, or you will ignore them all.
This, of course, is bound to eventually result in your getting in
trouble for not reading an e-mail that the sender assumed you read.

 [image: Changing Communication Channels ...]
 Changing Communication Channels …

Therefore you should also be agile and flexible with communication. Use
various modes of communication, which address different persons
differently respecting their different sensory modalities. Change the
the communication channels from time to time. A manageable, average-size
agile project will always require direct communication.

Open-plan Office

Ideally, the whole team sits in one room together with the customer.
Because, as Craig Larman said in his book, Applying UML and Patterns,
:

 “Having a team on another floor of the same building has as much impact
as if it were in a completely separate geographical location. 14”

However, in a large project with a team of a hundred or more, space
constraints make it difficult to have everyone in one office. Open-plan
offices are valuable in both creating space and enhancing communication.
They can be created by removing cubicles, or rather positioning the
cubicles around teams rather than individuals. Open-plan offices can
sometimes accommodate forty to fifty people. So if you could have two or
three such offices next to each other, project members would be sitting
in as close quarters as possible.

 Open-plan Offices by Nicolai M. Josuttis

 I have no idea how others experienced this, but when I started my
professional life open-plan offices had a bad reputation for me. They
represented the idea of treating human beings like machines, which can
be located close together in a big hall for saving money for the walls. And in fact, in a work life that assigns each employee a stupid
and almost communication-free task, there is a lot to be said against
putting all these people together in a huge room like in a laying
battery. Especially, if the phone calls of the colleagues are nothing
but annoying, and one has to fight tediously for each square meter of
individuality.

 Yet, since my first large agile project I look at open-plan offices from
a different perspective. The circumstances are changing tremendously, if
the job focuses on teamwork that enables several people to actually
create something together. All of a sudden, moving to another room is
painful, all of a sudden it is important to know what the colleagues are
working on. All of a sudden it is important also to work physically
together. The value that is created by this kind of communication,
can’t be estimated high enough.

 However, this does not mean that it is the best for an agile project to
pack all project members

 together in a dreary open-plan office. Because even more important are
some other things: For example, there is still the need to have a
meeting without disturbing others. Adequate soundproofed meeting rooms
are an obligation. Also individual workplaces are important for people,
who need to think, design, or make a phone call untroubled in silence. I
had the best experience with glass. Vitreous meeting rooms, individual
vitreous workplaces, or vitreous dividing walls between teams allow the necessary transparency without raising the noise level to a degree that disables working seriously.

 In a sense, an agile working place has a spot of all, which is again
typical for agility in general.

Always ensure that the individual subteams can sit together, even inside
an open-plan office. Although this might seem like common sense, it is
not as common a situation as it should be. Again, whatever your
constraints, the distance between team members has a major influence on
the success or failure of your project. Be aware that this distance does
not necessarily have to be physical. For instance, if certain team
members listen to music through headphones while they work, the
headphones establish a distance between them and their peers. Therefore,
the least you can do is to try and make it possible for all members of
the team to be on the same floor or, at the very least, in the same
building. But everything that improves the seating situation pays off
during development time.

Some people argue that the noise levels are too high in open-plan
offices. This is not usually an issue. Mainly because everybody is
concentrating too intensely on his or her work to be disturbed by the
conversations of others. However, you may have some individuals in the
team with particularly loud voices. In which case, you should ask them
to lower their voice. If this is not possible, you should consider
locating said individuals to a place where they will not disturb their
peers. But this is a highly unlikely situation. As I said earlier, in my
experience, the noise level on projects is almost always acceptable, and
the advantages of the close proximity of team members far outweigh those
of having a quiet environment.

Flexible Workplace

Nowadays, some companies do not support assigned office space. Instead,
they use a system known as flexible workplace (also known as floating
desks or desk sharing), where people just sit wherever they find some
space. Team members either use cell phones, or have calls transferred to
wherever they are sitting on a particular day. Typically, filing
cabinets are mobile, so team members can have all their papers with them
at all times. The underlying idea of the flexible workplace is that it
requires less space than a more traditional, assigned-space system. The
logic being that on any given day, certain employees will not be in the
office: People call in sick, take vacations, make on-site visits to
customers, and so on. Utilizing flexible workplaces, then, is a very
efficient way to use office space and to save money on workplaces.

However, the catch is that you will never know for sure, where to find a
specific person, which is an additional communication problem. Another
problem is that at certain times (during the less popular vacation
months, for example), the risk is high that some people may spend their
day wandering around looking for an empty space to sit. In some areas,
this system is so well known, even people not working in the industry
are aware of it. I remember traveling by taxi from the airport to a
customer’s office, and being asked by the taxi driver if she should
speed up to make sure I would have a place to sit at the office. (It
turned out not to be necessary, since we had plenty of time to spare; it
was just eight o’clock in the morning.)

Another risk that teams utilizing flexible workplaces face is that
people may get to work late, and not be able to sit with the other
members of their team. At this moment, flexible workplaces are not that
beneficial anymore. If you cannot avoid it officially, try to establish
an acceptable working environment, for example by defining (flexible)
team zones, within the constraints of your office’s seating arrangement.
Be aware that in your attempts to do so, you might get in trouble with
the “office police.” As the case may be, you have to fight this out,
because as mentioned earlier, the importance of efficient communication
can not be valued high enough. By the way, the philosophy of flexible
workplaces creates an infrastructure that allows to relocate people and
teams, which in turn can solve communication problems easily. However,
if your company has the philosphy that every associate will have the
same desk over many years, you might discover unbelievable resistance
when adapting the workplaces flexibly to better support the project.

Encouraging Communication

The real difficulty of working with a large team is looking for ways to
ensure efficient communication. I have found that the following steps
are valuable in setting up a communication structure:

 	All project members should sit as close together as possible without
crowding each other.

 	The retrospectives performed after each iteration and release cycle
serve as a forum for direct communication. Typically, you will find
that optimizing space, and therefore improving direct communication
for the daily work, will be a regular topic until it is resolved.

 	Regularly scheduled meetings for all project members
are essential. Such meetings are primarily a mode of
information transfer. In my experience, too many people attend these
meetings for there to be any effective feedback or extensive
discussions, but they work well for one-directional
information transfer. Therefore, every project member should have
the possibility to contribute—in the form of a lecture about a
specific topic, for example. It is a good idea to announce the
contents of the contributions in advance.

 	Provide a wiki15 on the intranet, not only as a means for
documentation, but as a means for communication.

The philosophy of a wiki is to allow all kinds of discussion on the Web.
Everybody has the right to make any changes to the web sites. This is
possible through editable HTML pages. The wiki web only knows collective
ownership, so everybody has the same responsibility for the contents.
This helps to establish a community of trust. Furthermore, no deep
knowledge of HTML is required to contribute to the wiki web. You can
even contribute by writing plain text. If the wiki web is also used to
document the project, you can be sure that this will always be a good
source of project documentation.

 	Establish different e-mail distribution lists that allow you to
address everyone involved in the project, as well as specific groups
of people.

Communication Team

Be warned, however, that even making use of these different channels
will not eliminate your communication problems. Another very effective
way of improving your team’s communication is to establish a separate
(virtual) communication team . Depending on the size of your team, the
communication team could consist of just one person. The communication
team is responsible for visiting all the teams regularly, obtaining
feedback, discovering deficiencies and (potential) problems (and maybe
even solving them immediately). It is important that this happens
proactively by approaching the project members. This way you will
recognize problems earlier, than by waiting until they are reported
officially or they escalate. Typical topics and tasks of the
communication team are:

 	
Unified project culture: The goal is to establish a common
culture with regards to such things as guidelines, tests, patterns,
and the like.

 	
Refactoring: Uncovering sources for refactoring, not only
improves the quality of the code, but also provides a learning
opportunities for everybody.

 	
Common understanding: The communication team needs to ensure
that all information, decisions, and announcements are understood by
the teams.

 	
Problem discovery and treatment: Problems should be detected and
at best solved immediately and in a simple manner. The communication
team has the advantage of having an overview of all the teams. This
way the communication team can establish contact or point to
solutions other team might have found. If several teams have the
same problems, strategies are required which will solve these
problems generally (extending / adapting the framework, or providing
patterns for the solution). Furthermore, the communication team
suggests how the process could help to overcome or eliminate the
encountered problems.

The members of the communication team should never act as supervisors or
controllers, but instead more like a team of ombudsmen. These ombudsmen
should be sensitive to the hopes and fears of the individual team
members, and should collect suggestions for process improvements. For
example, ensuring that the team understands all decisions enables them
to either accept these decisions or to come up with a suggestion that
supports them better.

It is very important that the members of the communication team have a
good overview, are well trusted people with good communication skills,
and who are widely accepted and respected by the rest of the project
team. These people should be able to take matters into their own hands
and who are able to manage the project as a whole, but have also good
connections to the individual persons. In smaller teams, this will often
be one person only, whose tasks cross boundaries, like running reviews,
retrospectives, or coach the process. In larger teams (with at least
more than 50 people) this will always be a fulltime job for one or even
more persons.

You will hardly find a project organization that is aware of the
necessity of this role. This makes it difficult to establish this kind
of role. I often call these people communication manager or simply
catalysts. Ideally these are persons, of who Tom DeMarco and Timothy
Lister16 write that their sole presence is enough for a project to
run smoothly.

1.4 Trouble shooting

Sometimes you need to act quickly; if, for example, one of the teams is
completely under stress, one team stops either talking to another team,
or two teams start continuously blaming one another and are not able to
work together anymore. In such situations, you face two difficult tasks:
One is to look at the problem and see exactly what kind of problem it
is, and the other task is to solve the problem.

 [image: Smells ...]
 Smells …

The first task is more difficult, because it depends a lot on the team’s
culture. Here are some typical problem signs:

 	
Cynicism and sarcasm: Humor is a sign that everything is right
on track and that people are having fun doing their jobs. But if the
humor turns into sarcasm, this is a clear sign that the team does
not jell and does not believe in what it is doing.

 	
Blame: This sign is much more obvious, and therefore easier to
spot and tackle. The teams or people blaming each other usually have
problems respecting and understanding each other. Although blame can
sometimes be a sign of a difficulty communicating.

 	
Lack of Feedback: This is often a sign that the people have
given up. They do not believe in reaching the goal and they do not
believe that anybody has an interest in their opinion or in
their effort.

Whatever the reason is, you can neither accept nor ignore the situation.
All these circumstances will slow down the project’s progress
significantly. Therefore:

 	If a team is under stress, and complains that it cannot get its work
done because there are too many meetings or its time is spent
supporting other teams, protect the team for a couple of hours each
day by arranging quiet times. It might be necessary to arrange an
office-wide quiet time, either temporarily or permanently. For more
on quiet times, see Alistair Cockburn’s Agile Software
Development, in which the author suggests defining the period
between ten am and twelve pm as quiet time, during which no phone
calls or meetings are allowed.17
 If instituting quiet hours is not sufficient to bring the team back
on track, a more rigorous approach is required: Instead of quiet
hours, make sure the team will get one or two quiet weeks, with one
or two hours of each day as “regular office hours,” so that team
members can still process incoming requests.

 The most extreme solution is to allow the team to go to a closed
meeting for a couple of days. This is also the most effective and
probably the most expensive solution. It is often used in different
circumstances: if, for example, the team does not jell, or has to
consider different kinds of solutions. The closed meeting is more
often used as an environment for the project kick-off (for making
teams jell) and for the project post mortems. 18

Quiet times have a tradeoff: They can also lead to a complete lack of
communication, and should therefore be carefully balanced.

 	If two teams stop talking or working together efficiently, locate
them next to another. This way each team will recognize why the
other team acts like it does and they will start to respect
one another.
 Another strategy is to set up a voluntary exchange program among
teams, so that one member from every team switches place with a
member of another team.19

 Both strategies help to improve the understanding for the
other team.

 	If a meeting culture evolves, where people have to spend more time
in meetings than they do working, and if people start complaining
about unnecessary meetings, question all meetings that have been
established, especially all regular meetings. Furthermore you should
question if all the participants are required to attend in order for
the meeting to be a success.
 Generally you should introduce the “law of the two feet”, as
described by the Open Space Technology: anybody who feels that the
meeting is a waste of time is allowed to leave. This might require
some sensitivity from the organizer of the meeting: If a participant
does not contribute, he or she should be politely invited to
contribute to the project’s success outside the meeting.

 Another possibility for overcoming the meeting culture is by
introducing quiet times.

 	Finally you can at the beginning of each meeting, ask one of the
participants participant to excuse him or herself from the meeting
to do something more important (this was first suggested by Tom
DeMarco, in The Deadline20). Take care that the person differs
each time, and is not the most junior person.

 	If a team is not very well integrated—if, for example, it is often
not well informed or is often blamed by other teams for incidents
that stemmed from a lack of information— then locate food in the
team’s area. Normally it is only a matter of hours before other
teams find themselves in the food area and the communication or
information flow is reestablished naturally.

1.5 Virtual Teams

According to researchers in the area of work life, the future will be
virtual teams. Fewer and fewer real teams will physically come together
to work on a project, and more and more teams will be assembled over the
internet. This has a lot of advantages:

 	Each individual project member is responsible for his or her own
work space and environment. Although sometimes the client will
provide the equipment, most often the individual project member will
have to use his or her own hardware. This saves the client a lot
of money.

 	You have much better access to different skills. You are not limited
to people from your region or your company.

 	You are not responsible for the team in the long run. You only have
to pay them for as long as they work for you. You are under no
obligation to find them their next job.

 	If the team is distributed all over the world, another advantage is
that at any time of the day at least one team member is most likely
working on the project. There is hardly any project-off time.

The main problem with virtual teams, is that they lack the most
efficient mode of communication—direct communication. As Erran Carmel
and Ritu Agarwal said in their article Tactical Approaches for
Alleviating Distance in Global Software Development in IEEE Software,

 “Distance negatively affects communication, which in turn reduces
coordination effectiveness.21”

In virtual teams not only the communication with the customer but also
inside the team is a problem. This way it’s very difficult for a virtual
team to get a common understanding and to pull together.

Distributed Teams

Large teams are always distributed in one way or another, just because
they are too large to contain in one room. However, distributed
development is somewhat more extreme, in that the project members are
distributed over several sites and, as the term suggests, the project
is, as such, developed in a dispersed manner. Sometimes you might find
that there is a single team spread over several sites, whereas at other
times there might be several teams, each located at a different site.
Outsourcing (see Chapter 6) is one example of a distributed team.

One problem in this setting is ensuring that everybody on the team pulls
together. On projects like this, you will often find that people blame
one another, mainly because they do not know each other, and therefore
do not trust each other. Also, technical topics like version and
configuration management are even more complicated in distributed teams.
Of course, there are tools that can help these more complex areas of
development, but they do not make up for the inconvenience and problems
caused by distributed development.

If you must have distributed teams, the Internet is likely to be your
main form of communication (e-mail, wiki web, chat rooms), and video
conferencing is also a good way to communicate. However, be sure that
people working out of different locations are able to meet with each
other, at least occasionally. Communicating through the Internet will
only work efficiently if people know and trust each other—and there is
no better way of building trust than through personal contact.

 Distributed Teams, by David Hussman

 Most agile practices ask project members to keep communication channels
open and filled with honest dialog, without regard to the message
content. Nowhere is this more important than on an agile project with
distributed teams. Along with the usual technical challenges of
distributed development, agile development brings even more challenges,
mostly aimed at those outside the development teams.

 Project managers, coaches, and customers need to be vigilant when it
comes to listening to, and addressing, the developer’s concerns;
tracking successes and failures; the way in which story content22 is
gathered, organized, and presented; and the consistency of the process
and the development environments. With distributed teams, the need to
embrace change and make the necessary corrections to the direction of
the project sooner than later is even greater. Just as the last car of a
long train starts moving long after the first, so too does change take
longer to move through the distributed teams.

 The following list of best and worst practices might help those outside
the development group find and address needed changes before the project
strays to far from the correct path. Many of the listed items apply to
any scaled, agile project, but their importance is heightened when the
development teams are distributed:

 Best Practices

 	
Customer Agility: Ensure the customer teams can make any
necessary changes, by keeping the ratio of customers to developers
as low as possible (1 customer to 3 or less developers; the larger
the project, the smaller the ratio). The ability of the customer
team to react and change direction can be difficult when stories
cross team boundaries and teams struggle to bring portions of a
software solution to fruition. For example, if five people are
writing a book together with each person working on a different
chapter, the lucidity and cohesiveness of the book is proportional
to the amount of time the authors spend discussing the book with
each other.

 	
Group Speak: The more often project managers, coaches, and
trackers discuss planning and development issues, the better.
Although this discussion can take place over e-mail, at a wiki site,
and through non-verbal channels, ensure that at some point there are
conference calls or video conferences. If possible, have a different
team lead the discussion every call (this helps all involved to
embrace the project). Also, as teams grow and change, each group
starts to form its own view of the project picture. Sharing your
team’s lingo with other teams can aid in maintaining a common view
and provide cross-team insight.

 	
Common Acceptance: If possible, ensure that each team is
building and testing against a common set of hardware and software
(if this is not possible, discuss the environmental
differences regularly). The closer the environments, the better the
level of acceptance testing. Try utilizing a common acceptance
testing strategy, and whenever possible share the data sets used
for testing. Try to start automated acceptance testing early, and
run the tests as often as possible.

 	
Developer Rotation: Often times, teams in the same building feel
as disconnected from each other as teams separated by states
or countries. If possible, move players from team to team. If the
players cannot colocate, explore the notion of rotating the work
done by the teams instead of the team members themselves. This may
seem like an unrealistic suggestion, but it may be a way to help
maintain a healthy project whose members have a
holistic perspective.

 Worst Practices

 	
Technical Stratification: It is often a natural fit for
distributed teams to work on subjects that they are familiar with
(this is often why distributed teams are brought into a project). If
at all possible, avoid splitting development tasks across
technical boundaries. Try instead to plan and develop toward
functional goals and subdivide the work from that perspective (this
will avoid the classic producer–consumer relationship between teams,
where one team has finished all its work and is left with nothing
to do).

 	
Failure to Communicate Mock Implementations: As teams may not
have everything that they need in order to complete a particular
feature, they may choose to mock / stub out23
temporary solutions. This is fine (and, if everyone is using the
same code base and acceptance tests, it can be quite clear), but
make sure that the interfaces to the mocks / stubs are agreed upon
by all.

 	
Loss of Iteration Synchronization: In most cases, it is best to
keep all teams on similar iteration boundaries. It may be that the
teams (and more importantly, those in charge of the planning) find
a steady state with varied iteration boundaries. In either case,
ensure that the iteration synchronization is as constant
as possible. Again, as with scaled, agile projects, if a team has an
iteration schedule slip, even of just a couple of days, planning
issues may arise that are best dealt with by moving the incomplete
features to the next iteration. The difference may seem small, but
the consistency will benefit the project plan.

 Conclusion

 Distributed teams using agile practices face many of the same problems
that subteams face when agile projects scale to large numbers. The need
for vigilant and constant communication is exacerbated. Small issues can
quickly grow large or span several iterations if not known to all team
members. One team’s frustration can affect other teams without their
even knowing it. Strive to keep process, schedules, and environments
constant, and when they change (as we know they will), notify all
involved as soon as possible. The more that can be shared between teams
(source code, data, and so on) the easier this task will be. Ensure
that planners listen to the developers, and help them listen to one
another.

Open Source

Open source projects are well functioning examples of virtual teams.
Possible reasons for their success are

 	All the team members are very idealistic. There is no need to
motivate them or try to ensure that they identify themselves with
the project. This comes all naturally.

 	Everybody feels responsible for the whole project, and takes this
responsibility very seriously.

 	There is a broad community that provides immediate feedback. This
feedback is what drives the whole project. There is no difference in
the value of feedback whether it comes from peers or from users.

 	Everybody who contributes to the project takes pride in his or
her work.

The main underlying principle of open source projects, and the reason
for their success, is the gift economy (the culture of giving away
capacity and information). This means that everybody working on an open
source project is doing so voluntarily. A lot can be learned from this
approach, especially for use on commercial projects. Mary Poppendieck
once reported that a new project manager asked her for advice on
becoming a successful team leader. She asked him if he had led ever a
team of volunteers (of any sort). He replied by saying that, he was a
successful choir leader. Poppendieck continues,

 “I suggested that if he used the same techniques with his project team
that he did with his choir, he would be a successful project manager. He
said it was the best advice he ever received, and he blossomed as a
project manager. 24”

 Open Source by Dierk König

 The open source movement derives its name from the practice of sharing
the source code of a valuable product among an arbitrary number of
developers. This so-called collective code ownership means that the code
belongs to all these developers. They are entitled to change it and are
all responsible for the final result.

 In the context of this book, open source projects may be of interest
because they share properties of both large and agile projects. They
make use of agile practices while suffering from the same problems that
large projects have in regards to team distribution.

 I’m not so bold as to claim that open source produces better results in
general. Sure, lots of open source products are widely known for having
excellent quality with zero costs to the user. But I’m the first to
admit that there are also numerous sloppy projects out there that will
never produce anything useful. However, maybe we can take something from
the successful ones!

 Distribution

 It is evident that the physical co-location of all contributors to an
open source project is impossible. However, we have observed that
members of the core editing team of an open source project sometimes get
together to tackle a special issue, often sacrificing personal time and
money. The collaboration then looks like an Extreme Programming pair
programming25 session.

 Even the users of open source software hold events so they can get
together and share their experience. The Eclipse code camp26 is one
example.

 If the open source people put so much effort into overcoming the
obstacle of distribution, can we—in paid time— go upstairs to pair up
with the database guy?

 Idiosyncrasies

 An open source contributor is not forced into anything. If you do not
like anything about the project (the setup, the code style, the
technology, the people, and so on), you can leave at any time or even
fork (make a new project based on the old one).

 This, and the fact that a lot of people write contributions in their
spare time, leads to a project staff that likes the applied work style,
or at the very least accepts it. The number of complaints is noticeably
small.

 One could claim that open source projects are not limited in time,
scope, or resources, and therefore do not need the measures of control
that are applied to in-house projects. This is not really true. Running
an open source project in your spare time, knowing you have only a few
hours a week to work on it makes you think hard about what to implement
next.

 Open source is opportunity-driven. Whoever needs a feature the most will
implement it and submit the contribution. Nothing is produced for the
shelf. Contributors undertake their the tasks without anyone telling
them to.

 Developers know that their code will be read, literally, hundreds of
times. This is motivation enough for them to achieve high code quality,
and it is a good opportunity to show off their professional expertise.

 Now, without any imposed order, programmers do what they think is
appropriate; surprisingly, this does not result in total chaos, but
rather in automated testing techniques, stable frequent builds,
ubiquitous version control, flexible architectures, and self-documenting
code. Most astonishing is that these programmers manage to achieve
something that most organizations do not: mutual respect among team
members.

 Architecture

 Open source projects typically do not start with an up-front
architecture (Eclipse may be an exception), but they always have one in
the end. The opportunity-driven nature and the resource constraints of
open source force contributors to practice reuse. This is especially
apparent in the Jakarta project family27. Every project is built on
other projects, which were built on projects that came before them, and
so on.

 The new challenge is to manage project dependencies, a well-known
problem that most big organizations struggle with. Open source offers an
easy yet powerful alternative: Let the user decide.

 Another idiosyncrasy of open source architectures is the focus on
extension points and pluggability. JUnit28, ANT29, and eclipse are
perfect examples of this approach.

 Just think of the effect that applying the principles of open source
software would have on your corporate IT projects.

 Project Structure

 In open source projects you typically see a core team of editors with
write access to the repository. The requirements for becoming an editor
differ on every project. Some do not have any restrictions, while others
only grant write access to contributors that consistently submit quality
work. Some projects have a fixed group of editors.

 The core team decides whether contributions from the outside get
incorporated or rejected.

 Communication channels are highly self-organized. The flow of
information typically takes place on mailing lists.

 Project Setup

 For open source projects, having a self-contained build is absolutely
crucial. It is no wonder that open source projects were the pioneers of
build automation. The same holds true for the use of versioning systems,
nightly builds, and automated self-testing.

 As the source code is highly visible, a new degree of rigor is applied
to the end result. The source code is subject to excruciating review and
refinement. Its compliance to every standard in use will be checked for
all platforms the community uses. The contributor has total control over
how to achieve this result. Assessing results rigorously but giving
developers freedom to use their own work style is a strong agile move
that large projects can follow as well.

 Documentation

 Typically, in open source software there is not a lot of external
documentation. The code must speak for itself. Although it may seem
unusual, this strategy works well on open source projects, where the
code, especially the test code, must reveal its intention.

 Successful projects are often accompanied by articles and even books.
The usage documentation that comes with the distribution typically
contains only very basic help for the beginner.

 It appears that any necessary external documentation gets written on
request. For example in Canoo WebTest30 we had a fairly complicated
security use case. A user volunteered to write the documentation for
this, provided that someone helped him figure out what to do.

 The result seems to be a good medium between the two extremes of lacking
all the necessary information and having excessive documentation in
which the important information is hidden among pages and pages of
unnecessary text.

 Planning

 Frankly, there is no long-term planning whatsoever. There are
exceptions, but for most open source projects, there is only a little
short-term planning. The reason for this is to save the developers
unnecessary work, by not prescribing long-term directions of any greater
detail than a common vision. Directions are derived solely from user
feedback.

 The most challenging part of adopting open source strategies in
corporate IT projects may be trusting in the evolution and refinement of
this complex adaptive system that is beyond managerial control.

1.6 Summary

You should never underestimate the value of face-to-face communication,
especially with large and distributed teams. You should do everything
you can to provide as many opportunities as possible for direct
communication. Direct communication, together with transparency, helps
to build trust both inside the team and between the team and the outside
world. If team members trust one another, they will not fear taking up
responsibility.

A tool like the wiki web will help you build trust by empowering
everybody through shared ownership. In doing so, such tools change the
flow of communication from control-driven to collaborative-driven.

When building subteams, you should ensure that the skills within each
subteam are mixed. Furthermore, the technical service teams should serve
the domain teams If so desired, they can also be established as virtual
teams.

Last but not least, allow the team to have fun. This not only helps
teams jell, but more importantly, it also makes the work environment a
pleasant one, which will make everybody want to work and succeed with
the team. Consider the values of the gift economy like open source does,
it will also help to make work much more enjoyable.

Notes

1OOPSLA is an ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications↩

2Fast Company on the Web:
https://tinyurl.com/2p8ed7e6↩

3Kent Beck, Keynote at the International Conference on eXtreme
Programming and Agile Processes in Software-Engineering 2001,
Sardinia, Italy.↩

4Ulrich Sollmann and Roderich Heinze, Visionsmanagement. Erfolg
als vorausgedachtes Ergebnis (Vision Management. Success as the
predefined result.).(Zürich: Orell Füssli, 1994)↩

5Ulrich Sollmann and Roderich Heinze, Visionsmanagement. Erfolg
als vorausgedachtes Ergebnis (Vision Management. Success as the
predefined result.) (Zürich: Orell Füssli, 1994), p.32↩

6Taylorism is characterized by the division of labor, repetitive
operations, extreme labor discipline, and the supervision of work.↩

7Don Wells, invited talk: Transitioning to XP or Fanciful
Opinions of Don Wells, at the International Conference on eXtreme
Programming and Agile Processes in Software-Engineering 2001,
Sardinia, Italy.↩

8A Web based collaboration platform, which allows interactive
communication and vivid documentation by editable html pages.
Originally developed by Ward Cunningham. See Bo Leuf and Ward
Cunningham, The Wiki Way: Collaboration and Sharing on the
Internet (Reading, Mass.: Addison-Wesley, 2001).↩

9A virtual team is not apparently recognizable as a team. Be it,
that the team members are not co-located and thus communicate via
electronic media, or that the team members belong in fact to a
different (real) team, and are just getting together every now and
then for working on a specific task.↩

10Retrospective: Reflection at the end of a development cycle (see Chapter 4)↩

11The planning game is an Extreme Programming technique. The
customers select and prioritize the tasks for the developers for the
next development cycle and the developers estimate the effort for
these tasks.↩

12A team jells when it has a good chemistry, comparable to the one
good jelly has. For more on this subject, see Tom DeMarco, The
Deadline. A Novel about Project Management. (New York: Dorset
House) 1997.↩

13Mary Lynn Manns and Linda Rising, Introducing new Ideas into
Organizations. (Reading, Mass.: Addison-Wesley, not yet released).↩

14Craig Larman, Applying UML and Patterns. (Eaglewood Cliffs,
New Jersey:Prentice Hall, 1998), p.448.↩

15The term “wiki” comes from Hawaiian and means quick, which refers
to the ability to make quick changes. For more information on wikis,
see Bo Leuf and Ward Cunningham, The Wiki Way: Collaboration and
Sharing on the Internet (Reading, Mass.: Addison-Wesley, 2001).↩

16Tom DeMarco and Timothy Lister, Peopleware: Productive Projects
and Teams (New York: Dorset House, 1987)↩

17Alistair Cockburn, Agile Software Development. (Reading, Mass.:
Addison-Wesley, 2002).↩

18For more on postmortems, see Norm Kerth Project Retrospectives
(New York: Dorset House Publishing, 2001)↩

19Thanks to Mike Cohn for sharing this approach.↩

20Tom DeMarco, The Deadline – A Novel about Project Management
(New York: Dorset House Publishing, 1997)↩

21Erran Carmel and Ritu Agarwal, Tactical Approaches for
Alleviating Distance in Global Software Development. IEEE Software,
March/April, 2001, Vol. 18, No.2, pp 22-29, p.23↩

22Extreme Programming uses the term stories for requirements,
which are defined by the customer for a release cycle. User stories
are comparable to Use-Cases in UML.↩

23Mock- and stub objects allow to test partial solutions by
simulating the missing code.↩

24Mary Poppendieck in a private e-mail correspondence on the gift
economy.↩

25In Extreme Programming exists the rule that all productive code
is written by a pair of developers. Thus, a continuous review takes
place throughout the development by two developers solving a problem
jointly.↩

26The development environment Eclipse (http://www.eclipse.org) is
an open source project as well. The developers of Eclipse meat
occasionally in so called code camps for exchanging experiences
and developing the product further.↩

27Jakarta on the web: http://www.jakarta.org↩

28JUnit on the web: http://www.junit.org↩

29ANT on the web: http://www.ant.org↩

30WebTest on the web: http://www.webtest.canoo.com↩

OEBPS/images/leanpub_key.png

OEBPS/images/leanpub_bug.png

OEBPS/images/leanpub_pencil.png

OEBPS/images/leanpub_comments.png

OEBPS/images/leanpub_warning.png

OEBPS/images/leanpub_question-circle.png

OEBPS/images/leanpub_info-circle.png

OEBPS/images/feierabend_s.jpg

OEBPS/images/kommunikationsvarianten_k.jpg

OEBPS/images/smells_s.jpg

OEBPS/images/subteams_k.jpg

OEBPS/images/teamPerSubsystem.jpg
Anforderungs- Anforderungs- Anforderungs-

kanal A kanal B kanal C
I I I Liefert
Stories
TeamA TeamB TeamC
Implementiert
Stories

Subsystem A Subsystem B Subsystem C

OEBPS/images/teamPerRequirement.jpg
Anforderungs- Anforderungs- Anforderungs-
kanal A kanal B kanal C
TeamA TeamB TeamC

Subsystem A

Subsystem B

Subsystem C

Liefert
Stories

Implementiert
Stories

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/title_page.jpg
AGILE SOFTWARE

% DEVELOPMENT
§ IN THE LARGE

. Diving into
the Deep

