

Advanced calculus II-2

Integration on higher dimensional spaces

Author: Teh, Jyh-Haur

Version: 2022

Contents of Advanced Calculus II-2

5	Rien	inn integrals in higher dimensional spaces	I
	5.1	Riemann integrals	2
	Exer	se 5.1	7
	5.2	The Riemann-Lebesgue theorem	8
	Exer	se 5.2	4
	5.3	The Fubini theorem	6
	Exer	se 5.3	3
	5.4	The change of variables formula	4
	Exer	se 5.4	8
	Appe	dix 5.4	9
	5.5	The bounded convergence theorem	7
	Exer	se 5.5	1
	5.6	Drawbacks of Riemann integrals	2
	Exer	se 5.6	4
6	Diffe	ential forms 5	7
U			
	6.1	x-chains and differential forms	
		6.1.1 k -chains	8
		5.1.2 Differential forms	9
	Exer	se 6.1	6
	Adva	ced Calculus II Practice Midterm III	8
	Adva	ced Calculus II Midterm III	0
	6.2	Wedge product and exterior derivative	2
		5.2.1 Wedge product	2
		5.2.2 Exterior derivative	7
	D	22.62	_

	6.3 Pushforward and pullback
	Exercise 6.3
	6.4 Stokes' theorem
	Exercise 6.4
	6.5 Applications of the Stokes theorem
	6.6 De Rham cohomology
	Appendix 6.6
	Advanced Calculus II Practice Final Exam
	Advanced Calculus II Final Exam
7	Lebesgue integration 117
	7.1 Outer measures
	Exercise 7.1
	7.2 Measurable sets
	Exercise 7.2
	7.3 Lebesgue measure
	Exercise 7.3
	Appendix 7.3
	7.4 Lebesgue measurable functions
	Exercise 7.4
	Appendix 7.4
	7.5 The Lebesgue monotone convergence theorem
	Exercise 7.5
	Appendix 7.5
Ref	erence 179
	ex 180

ii

Contents of Advanced Calculus II-1

1	Applications of uniform convergence	1
	1.1 Differentiable functions and uniform convergence	2
	Exercise 1.1	8
	1.2 Riemann integrable functions and uniform convergence	9
	Exercise 1.2	20
	Appendix 1.2	22
	1.3 The generalized binomial theorem	24
	Exercise 1.3	31
2	The Stone-Weierstrass theorem	33
	2.1 The Stone-Weierstrass theorem	34
	2.1.1 The real version of the Stone-Weierstrass theorem	34
	2.1.2 The complex version of the Stone-Weierstrass theorem	44
	Exercise 2.1	47
	Appendix 2.1	49
3	Differentiation of functions of several variables	52
	3.1 Differentiation of functions of several variables	53
	Exercise 3.1	60
	Advanced Calculus II Practice Midterm I	61
	Advanced Calculus II Midterm I	62
	3.2 Some properties of derivatives	64
	Exercise 3.2	72
	3.3 The mean value theorem	73
	Exercise 3.3	78

89 rity of order of partial derivatives 89 vatives 90 95 97 forms 98 103 ve test 104 111 function theorems 113 a theorem 114 121 in theorem 122 127 128
vatives 90 95 97 forms 98 103 ve test 104 111 function theorems 113 a theorem 114 121 in theorem 122 127
95
forms 98 103 we test 104 111 function theorems 113 a theorem 114 121 in theorem 122 127
forms 98 103 ve test 104 111 function theorems 113 a theorem 114 121 in theorem 122 127
ve test 103 ve test 104 111 function theorems 113 a theorem 114 121 n theorem 122 127
ve test 104 111 function theorems 113 114 121 122 127
function theorems 113 theorem 114 121 in theorem 122 127
function theorems 113 a theorem 114 121 n theorem 122 127
a theorem
a theorem
n theorem
ctice Midterm II
lterm II
148
149

Preface

Advanced calculus occupies the most fundamental position in mathematics training. It is an essential path from elementary numerical calculation to higher-level abstract thinking. Advanced calculus is a two-semester course, four credits per semester, 200 minutes of lectures a week, plus 2 hours of recitation, weekly homework, and four exams in a semester in the mathematics department of National Tsing Hua University of Taiwan. It can be said that it is the most loaded undergraduate course. Many students are quite afraid of it.

The author is trying to write some books that may help students in understanding the materials. In these books, all proofs are explained in detail, easy to understand and complete, with many graphics and colors. Also, they have to be easy to read on mobile phones.

With these ideas in mind, the author produces a series of textbooks: Advanced Calculus I-1, I-2 and Advanced Calculus II-1, II-2.

These books stemmed from lecture notes for courses of advanced calculus that the author taught in the mathematics department of National Tsing Hua University of Taiwan. A dim hope for these books is that students will be more receptive and more willing to spend time in this course.

Mathematical knowledge and the ability of abstract thinking become more and more important in modern sciences and technology industries. Mathematics is indispensable from automated processes and big data processing. Knowledge of calculus is not enough for applied sciences. This may be a reason that regardless of its heavy loading, it attracts students from electrical engineering, computer science, financial engineering, management and medical school to take.

In order to facilitate the use on mobile phones, the author needs to make the files of the books small. The content of Advanced Calculus II is divided into two books: Advanced calculus II-1 and Advanced Calculus II-2. Each contains two midterm exams. Exams and practice exams are all attached to the books. Each section is accompanied by exercises. These books can be regarded as self-complete and suitable for self-study.

Main references of Advanced Calculus II-2 are

1. Real mathematical analysis by Pugh ([P]);

- 2. Elementary classical analysis by Marsden and Hoffman ([MH]);
- 3. Measure, integral and probability by Capinski and Kopp ([CK]);
- 4. Wikipedia.

Those beautiful pictures at the end of each chapter are free pictures from pixabay.com.

 $The \ latex\ document class\ ``elegant book" (https://github.com/Elegant LaTeX/Elegant Book)\ is\ used to\ edit\ this\ book.$

Jyh-Haur Teh

Department of Mathematics

National Tsing Hua University of Taiwan

Hsinchu, Taiwan.

Website: https://www.math.nthu.edu.tw/~jyhhaur

Chapter 5 Riemann integrals in higher dimensional spaces

5.1 Riemann integrals

Definition 5.1 (Rectangle)

A rectangle in \mathbb{R}^n is a set of the form

$$R = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n] \subset \mathbb{R}^n$$

for some real numbers $a_1 \le b_1$, $a_2 \le b_2$, ..., $a_n \le b_n$.

Example 5.1

- 1. [a, a] is a rectangle in \mathbb{R} for any $a \in \mathbb{R}$.
- 2. $[1,3] \times [\sqrt{2},\sqrt{3}]$ is a rectangle in \mathbb{R}^2 .
- 3. $[-1, 4] \times [-3, -2] \times [1, 2]$ is a rectangle in \mathbb{R}^3 .

Definition 5.2 (Partition)

A partition P of a rectangle $R = [a_1, b_1] \times \cdots \times [a_n, b_n] \subset \mathbb{R}^n$ is a set of points

$$P = P_1 \times P_2 \times \cdots \times P_n$$

where

$$P_i = \{a_i = t_{i,0} < t_{i,1} < \dots < t_{i,k_i} = b_i\}$$

is a partition of $[a_i, b_i]$, $k_i \in \mathbb{N}$ for all i = 1, 2, ..., n.

Example 5.2 Let $R = [1, 2] \times [2, 5]$ be a rectangle in \mathbb{R}^2 and

$$P_1 := \{1, 1.1, 1.7, 2\}$$

$$P_2 := \{2, 2.8, 3.9, 5\}$$

Then

$$P := P_1 \times P_2 = \{(1, 2), (1, 2.8), (1, 3.9), (1, 5), (1.1, 2), (1.1, 2.8), (1.1, 3.9), (1.1, 5)\}$$

$$(1.7, 2), (1.7, 2.8), (1.7, 3.9), (1.7, 5), (2, 2), (2, 2.8), (2, 3.9), (2, 5)$$

is a partition of R.

Definition 5.3 (Volume)

The volume of the rectangle $R = [a_1, b_1] \times \cdots \times [a_n, b_n]$ is defined to be

$$vol(R) := (b_1 - a_1)(b_2 - a_2) \cdots (b_n - a_n)$$

Example 5.3 If $R = [1, 3] \times [2, 5] \times [3, 8]$, vol(R) = (3 - 1)(5 - 2)(8 - 3) = 30.

Definition 5.4 (Lower sum, upper sum and subrectangle)

Let $R = [a_1, b_1] \times \cdots \times [a_n, b_n]$ be a rectangle in \mathbb{R}^n and $f : R \to \mathbb{R}$ be a function. Given a partition

$$P = P_1 \times P_2 \times \dots \times P_n$$

of R where

$$P_i = \{a_i = t_{i,0} < t_{i,1} < \dots < t_{i,k_i} = b_i\}$$

The set

$$R_{i_1,i_2,\dots,i_n} := [t_{1,i_1-1},t_{1,i_1}] \times [t_{2,i_2-1},t_{2,i_2}] \times \dots \times [t_{n,i_n-1},t_{n,i_n}]$$

is called a subrectangle of R with respect to P. Let

$$m_{i_1,...,i_n} = \inf_{x \in R_{i_1,...,i_n}} \{f(x)\}$$

$$M_{i_1,\dots,i_n} = \sup_{x \in R_{i_1,\dots,i_n}} \{f(x)\}$$

for $1 \le i_j \le k_j, j = 1, ..., n$.

Define the lower sum of f with respect to P to be

$$L(f,P) := \sum_{i_1=1}^{k_1} \cdots \sum_{i_n=1}^{k_n} m_{i_1,i_2,\dots,i_n} vol(R_{i_1,i_2,\dots,i_n})$$

and the upper sum of f with respect to P to be

$$U(f,P) := \sum_{i_1=1}^{k_1} \cdots \sum_{i_n=1}^{k_n} M_{i_1,i_2,\dots,i_n} vol(R_{i_1,i_2,\dots,i_n})$$

Example 5.4 Let $R = [1, 2] \times [2, 4]$ and $f : R \to \mathbb{R}$ be defined by

$$f(x,y) = x + y$$

Fix $n \in \mathbb{N}$ and let

$$P_n = \{1 = t_{1,0} < t_{1,1} < \dots < t_{1,n} = 2\} \times \{2 = t_{2,0} < t_{2,1} < \dots < t_{2,n} = 4\}$$

where

$$t_{1,i} = 1 + \frac{i}{n}, \quad t_{2,j} = 2 + \frac{2j}{n}$$

Then
$$R_{i,j} = [t_{1,i-1},t_{1,i}] \times [t_{2,j-1},t_{2,j}] = [1+\frac{i-1}{n},1+\frac{i}{n}] \times [1+\frac{2(j-1)}{n},1+\frac{2j}{n}]$$

The volume

$$\operatorname{vol}(R_{i,j}) = \frac{1}{n} \frac{2}{n} = \frac{2}{n^2}$$
 We have

$$\inf_{x \in R_{i,j}} \{ f(x) \} = (1 + \frac{i-1}{n}) + (2 + \frac{2(j-1)}{n}) = 3 + \frac{i+2j-3}{n}$$

$$\sup_{x \in R_{i,j}} \{ f(x) \} = (1 + \frac{i}{n}) + (2 + \frac{2j}{n}) = 3 + \frac{i+2j}{n}$$

and

$$L(f, P_n) = \sum_{i=1}^n \sum_{j=1}^n \left(3 + \frac{i+2j-3}{n}\right) \left(\frac{2}{n^2}\right) = 9 - \frac{3}{n}$$
$$U(f, P_n) = \sum_{i=1}^n \sum_{j=1}^n \left(3 + \frac{i+2j}{n}\right) \left(\frac{2}{n^2}\right) = 9 + \frac{3}{n}$$

Definition 5.5 (Refinement)

A refinement of a partition P of a rectangle R is a partition P' of R such that $P \subseteq P'$.

Example 5.5 Let $R = [1, 2] \times [3, 4]$ and $P = \{1, 1.2, 1.5, 2\} \times \{3, 4\}$. If $P' := P \cup \{(1, 3.5), (1.2, 3.5), (1.5, 3.5), (2, 3.5)\} = \{1, 1.2, 1.5, 2\} \times \{3, 3.5, 4\}$

P' is a refinement of P.

Proposition 5.1

If $R \subset \mathbb{R}^n$ is a rectangle and $f: R \to \mathbb{R}$ is a bounded function, then

$$L(f,P) \leq L(f,P') \leq U(f,P') \leq U(f,P)$$

for any partitions $P \subseteq P'$ of R.

Proof Let $R = [a_1, b_1] \times \cdots \times [a_n, b_n]$. Suppose that

$$P = P_1 \times P_2 \times \cdots \times P_n$$

where $P_i = \{a_i = t_{i,0} < t_{i,1} < \dots < t_{i,k_i} = b_i\}$ and

$$P' = P_1' \times P_2' \times \cdots \times P_n'$$

where $P'_i = \{a_i = t'_{i,0} < t'_{i,1} < \dots < t'_{i,k'} = b_i\}.$

Let $R_1, ..., R_m$ be subrectangles of R with respect to P. Since P' is a refinement of P, for each R_i , there are subrectangles $S_{i,1}, ..., S_{i,\ell_i}$ of R with respect to P' such that

$$R_i = \bigcup_{j=1}^{\ell_i} S_{i,j}$$

Then

$$U(f, P') = \sum_{i=1}^{m} \sum_{j=1}^{\ell_i} \sup_{x \in S_{i,j}} \{f(x)\} \operatorname{vol}(S_{i,j})$$

$$\leq \sum_{i=1}^{m} \sum_{j=1}^{\ell_i} \sup_{x \in R_i} \{f(x)\} \operatorname{vol}(S_{i,j})$$

$$= \sum_{i=1}^{m} \sup_{x \in R_i} \{f(x)\} \operatorname{vol}(R_i)$$

$$= U(f, P)$$

Similar to the argument above, we have $L(f, P') \ge L(f, P)$. Since we always have

$$\inf_{x \in S_{i,j}} \{ f(x) \} \le \sup_{x \in S_{i,j}} \{ f(x) \}$$

this gives us

Combining all the inequalities obtained above, we get the result.

Definition 5.6 (Lower integral and upper integral)

Let $R \subset \mathbb{R}^n$ be a rectangle and $f: R \to \mathbb{R}$ be a function. The lower integral of f over R is

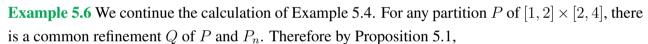
$$\underline{I}(f) := \sup_{P} \{L(f, P)\}$$

The upper integral of f over R is

$$\overline{I}(f) := \inf_{P} \{ U(f, P) \}$$

If $\underline{I}(f) = \overline{I}(f) \in \mathbb{R}$, we say that f is Riemann integrable on R and denote

$$\int_{R} f dV := \overline{I}(f) = \underline{I}(f)$$



$$L(f, P) \le U(f, Q) \le U(f, P_n) = 9 + \frac{3}{n}$$

and

$$U(f, P) \ge U(f, Q) \ge L(f, P_n) = 9 - \frac{3}{n}$$

for any $n \in \mathbb{N}$.

Therefore

$$L(f,P) \leq 9 \quad \text{and} \quad U(f,P) \geq 9$$

This implies

$$\sup_P\{L(f,P)\} \leq 9 \quad \text{and} \quad \inf_P U(f,P) \geq 9$$

This shows that

$$\overline{I}(f) = \underline{I}(f) = 9$$

Exercise 5.1

1. Let $R=[1,3]\times[2,5]$ and $f:R\to\mathbb{R}$ be defined by f(x,y)=xy. Fix $n\in\mathbb{N}$. Suppose that

$$P = \{1 + \frac{2i}{n} | i = 0, 1, ..., n\} \times \{2 + \frac{3j}{n} | j = 0, ..., n\}$$

Find L(f, P) and U(f, P). 2. Let $f: [0, 1] \times [2, 3] \rightarrow \mathbb{R}$

2. Let
$$f:[0,1]\times[2,3]\to\mathbb{R}$$
 be defined by
$$f(x,y)=\left\{\begin{array}{ll}1,&\text{if }0\leq x\leq y\leq 1\\3,&\text{otherwise}\end{array}\right.$$

Use the definition of Riemann integral to find

$$\int_{[0,1]\times[2,3]}fdV$$

3. Given a partition $P = P_1 \times \cdots P_n$ of a rectangle $R = [a_1, b_1] \times \cdots \times [a_n, b_n] \subset \mathbb{R}^n$. Suppose that

for
$$i = 1, ..., n$$
. We say that the partition P is an equal partition of R if there is a constant c

 $P_i = \{a_i = t_{i,0} < t_{i,1} < \dots < t_{i,k} = b_i\}$

for i = 1, ..., n. We say that the partition P is an equal partition of R if there is a constant such that

$$t_{i,j} - t_{i,j-1} = c$$

for all $j = 1, ..., k_i$ and i = 1, ..., n.

- (a). Let $R = [1,3] \times [1,4]$ and $P = \{1,1.2,3\} \times \{1,2.7,4\}$. Find a refinement P' of P such that P' is an equal partition.
- (b). Prove or disprove that for any partition P of a rectangle $[a,b] \subset \mathbb{R}, a < b$, there is a refinement P' of P which is an equal partition.

5.2 The Riemann-Lebesgue theorem

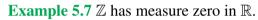
Definition 5.7 (Measure zero set)

A set $A \subset \mathbb{R}^n$ is said to have measure zero in \mathbb{R}^n if for every $\varepsilon > 0$, there exist countably many rectangles $R_1, R_2, ...$ in \mathbb{R}^n such that

$$A \subset \bigcup_{i=1}^{\infty} R_i$$

and

$$\sum_{i=1}^{\infty} vol(R_i) < \varepsilon$$



Solution Given $\varepsilon > 0$. Define $\phi : \mathbb{N} \to \mathbb{Z}$ by

$$\phi(n) := \left\{ \begin{array}{ll} \frac{1}{2}(n-1), & \textit{if n is odd}; \\ -\frac{1}{2}n, & \textit{if n is even}. \end{array} \right.$$

Then ϕ is a bijection. Let

$$R_n := [\phi(n), \phi(n)] = \{\phi(n)\}\$$

Then

$$\bigcup_{n=1}^{\infty} R_n = \bigcup_{n=1}^{\infty} \{\phi(n)\} = \mathbb{Z}$$

Since $vol(R_n) = 0$ for all $n \in \mathbb{N}$, we have

$$\sum_{n=1}^{\infty} vol(R_n) = 0 < \varepsilon$$

This shows that \mathbb{Z} has measure zero in \mathbb{R} .

Example 5.8 $\mathbb{R} \times \{0\}$ has measure zero in \mathbb{R}^2 but \mathbb{R} is not a set of measure zero in \mathbb{R} .

Solution For $n \in \mathbb{N}$, let

$$R_n := [\phi(n), \phi(n) + 1] \times [0, 0]$$

where $\phi: N \to \mathbb{Z}$ is a bijection. Then

$$\mathbb{R} \times \{0\} = \bigcup_{n=1}^{\infty} R_n$$

and

$$\sum_{n=1}^{\infty} vol(R_n) = \sum_{n=1}^{\infty} 0 = 0$$

Therefore $\mathbb{R} \times \{0\}$ has measure zero in \mathbb{R}^2 .

To show that $\mathbb R$ does not have measure zero in $\mathbb R$, we prove by contradiction. Set $\varepsilon=1$. Assume that there are rectangles $\{S_n\}_{n=1}^{\infty}$ in $\mathbb R$ that cover $\mathbb R$ and $\sum_{n=1}^{\infty} vol(S_n) < 1$. Since

$$[0,1] \subset \mathbb{R} \subset \bigcup_{n=1}^{\infty} S_n$$

we have

$$1 = vol([0, 1]) \le \sum_{n=1}^{\infty} vol(S_n) < 1$$

which is a contradiction. Therefore $\mathbb R$ does not have measure zero in $\mathbb R$.

Example 5.9 $\mathbb{S}^1 \subset \mathbb{R}^2$ has measure zero.

Solution We consider

$$X = \{(x, y) \in \mathbb{R}^2 | x \ge 0, y \ge 0\} \cap \mathbb{S}^1$$

the portion of \mathbb{S}^1 in the first quadrant. Given $\varepsilon > 0$. We first show that we can cover X by rectangles with total volume less that $\frac{\varepsilon}{4}$. By symmetry reason, there are similar covers by rectangles of \mathbb{S}^1 in other 3 quadrants. Take $n \in \mathbb{N}$ such that $\frac{1}{\sqrt{n}} < \frac{\varepsilon}{4}$. Let

$$x_i = \frac{i-1}{n}, \quad y_i = \sqrt{1-x_i^2} = \sqrt{1-(\frac{i-1}{n})^2}$$

and

$$R_i := [x_i, x_{i+1}] \times [y_{i+1}, y_i]$$

for i = 1, ..., n. Then

$$vol(R_i) = (x_{i+1} - x_i)(y_i - y_{i+1}) = \frac{1}{n} \left(\sqrt{1 - (\frac{i-1}{n})^2} - \sqrt{1 - (\frac{i}{n})^2} \right)$$

$$= \frac{(1 - (\frac{i-1}{n})^2) - (1 - (\frac{i}{n})^2)}{n \left(\sqrt{1 - (\frac{i-1}{n})^2} + \sqrt{1 - (\frac{i}{n})^2} \right)}$$

$$< \frac{(\frac{i}{n} - \frac{i-1}{n})(\frac{i}{n} + \frac{i-1}{n})}{\sqrt{n^2 - (n-1)^2}}$$

$$= \frac{2i - 1}{n^2 \sqrt{2n - 1}}$$

$$< \frac{2i - 1}{n^2 \sqrt{n}}$$

Therefore

$$=\frac{1}{n^2\sqrt{n}}(2(\frac{n(n+1)}{2})-n)$$

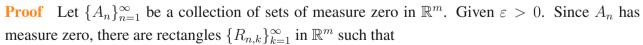
$$=\frac{n^2}{n^2\sqrt{n}}=\frac{1}{\sqrt{n}}<\frac{\varepsilon}{4}$$
 This shows that we may cover \mathbb{S}^1 by rectangles with total volume less than ε and this means that \mathbb{S}^1 has measure zero in \mathbb{R}^2

 $\sum_{i=1}^{n} vol(R_i) < \sum_{i=1}^{n} \frac{2i-1}{n^2 \sqrt{n}} = \frac{1}{n^2 \sqrt{n}} (\sum_{i=1}^{n} (2i-1))$

has measure zero in \mathbb{R}^2 .

Proposition 5.2

A countable union of sets of measure zero in \mathbb{R}^m is a set of measure zero in \mathbb{R}^m .



$$A_n \subset igcup_{n,k}^\infty R_{n,k} ext{ and } \sum^\infty ext{vol}(R_{n,k}) < rac{arepsilon}{2^n}$$

Recall that a countable union of countable sets is countable, the collection $\{R_{n,k}\}_{n,k=1}^{\infty}$ is countable.

Since

$$\bigcup_{n=1}^{\infty} A_n \subset \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{\infty} R_{n,k}$$

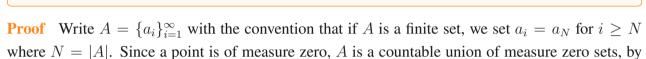
and

$$\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \operatorname{vol}(R_{n,k}) < \sum_{n=1}^{\infty} \frac{\varepsilon}{2^n} = \varepsilon \sum_{n=1}^{\infty} \frac{1}{2^n} = \varepsilon$$

Therefore $\bigcup_{n=1}^{\infty} A_n$ is of measure zero.

Corollary 5.1

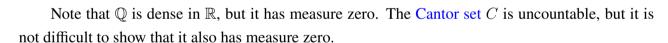
A countable set $A \subset \mathbb{R}^n$ has measure zero in \mathbb{R}^n .



the result above, A has measure zero.

Corollary 5.2

 \mathbb{Q} has measure zero in \mathbb{R} .

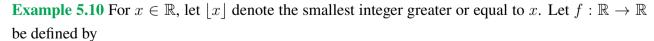


Definition 5.8 (Set of discontinuities)

Let $R \subset \mathbb{R}^n$ be a rectangle and $f: R \to \mathbb{R}$ be a function. The set

$$Disc(f) := \{x \in R | f \text{ is discontinuous at } x\}$$

is called the set of discontinuities of f.



$$f(x) = \lfloor x \rfloor$$

Then

$$Disc(f) = \mathbb{Z}$$

Example 5.11 Let $q: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$g(x,y) = \begin{cases} \frac{x}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0) \end{cases}$$

Note the along the line y = 0,

$$\lim_{x \to 0} g(x,0) = \lim_{x \to 0} \frac{x}{x^2} = \lim_{x \to 0} \frac{1}{x}$$

This limit does not exist. Therefore g is not continuous at (0,0). A theorem from calculus tells us that if two functions f_1, f_2 are continuous at a point p and $f_2(p) \neq 0$, then $\frac{f_1}{f_2}$ is continuous at p. This result implies that g is continuous on $\mathbb{R} - \{(0,0)\}$. Therefore $Disc(g) = \{(0,0)\}$.

Recall that the diameter of a set $A \subset \mathbb{R}^n$ is

$$diam(A) := \sup_{x,y \in A} \{||x - y||\}$$

Definition 5.9 (Oscillation)

Let $R \subset \mathbb{R}^n$ be a rectangle and $f: R \to \mathbb{R}$ be a bounded function. The oscillation of f at x is

$$osc_x(f) := \lim_{r \to 0^+} diam f(B_r(x) \cap R)$$

Remark

- (i) f is continuous at x if and only if $osc_x(f) = 0$.
- (ii) If $x \in R$, $M = \sup_{x \in R} \{f(x)\}$, $m = \inf_{x \in R} \{f(x)\}$, then

$$M - m \ge osc_x(f)$$

The following result gives a complete characterization of Riemann integrable functions.

Theorem 5.1 (The Riemann-Lebesgue theorem)

Let $R \subset \mathbb{R}^n$ be a rectangle. Then f is Riemann integrable if and only if $f: R \to \mathbb{R}$ is a bounded function and the set Disc(f) has measure zero.

Proof Let

$$D_k = \{ x \in R | osc_x(f) \ge \frac{1}{k} \}$$

Then

$$Disc(f) = \bigcup_{k=1}^{\infty} D_k$$

Suppose that f is Riemann integrable. By Proposition, f is bounded. Fix $k \in \mathbb{N}$. We are going to show that D_k has measure zero. Given $\epsilon > 0$. By Riemann's integrability criterion, there exists a partition

$$P = \{(t_{1,i_1}, t_{2,i_2}, ..., t_{n,i_n}) | 0 \le i_j \le k_j \text{ for } j = 1, 2, ..., n\}$$

of R such that

$$U(f,P) - L(f,P) = \sum_{i=1}^{k_n} \cdots \sum_{i=1}^{k_1} (M_{i_1,\dots,i_n} - m_{i_1,\dots,i_n}) vol(R_{i_1,\dots,i_n}) < \frac{\epsilon}{k}$$

where

$$R_{i_1,\dots,i_n} = [t_{1,i_1-1}, t_{1,i_1}] \times [t_{2,i_2-1}, t_{2,i_2}] \times \dots \times [t_{n,i_n-1}, t_{n,i_n}]$$

is a subrectangle of R with respect to P and

$$M_{i_1,\dots,i_n} = \sup_{x \in R_{i_1,\dots,i_n}} \{f(x)\}, \quad m_{i_1,\dots,i_n} = \inf_{x \in R_{i_1,\dots,i_n}} \{f(x)\}$$

Let

$$\mathscr{A} := \{(i_1, ..., i_n) \in P | R_{i_1, ..., i_n} \cap D_k \neq \emptyset \}$$

If $(i_1,...,i_n) \in \mathscr{A}$, then

$$M_{i_1,\dots,i_n} - m_{i_1,\dots,i_n} \ge \frac{1}{k}$$

Therefore

$$\sum_{(i_1,\dots,i_n)\in\mathscr{A}} \frac{1}{k} vol(R_{i_1,\dots,i_n}) \le \sum_{(i_1,\dots,i_n)\in\mathscr{A}} (M_{i_1,\dots,i_n} - m_{i_1,\dots,i_n}) vol(R_{i_1,\dots,i_n}) < \frac{\epsilon}{k}$$

and

$$\sum_{(i_1,\dots,i_n)\in\mathscr{A}} vol(R_{i_1,\dots,i_n}) < \epsilon$$

Since

$$D_k \subset \bigcup_{(i_1,\ldots,i_n)\in\mathscr{A}} R_{i_1,\ldots,i_r}$$