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Preface

Advanced calculus, or called mathematical analysis in some universities, is fundamental in
mathematical training. It is a two-semester four-credit course in the mathematics department of
National Tsing Hua University. This book stems from lecture notes for the classes of advanced
calculus I that I taught several times. The goal of this book is to provide rigorous but easy to follow
mathematical proofs and a book that is convenient to read on portable digital devices. I try to make
this book friendly and, hopefully, readers may find those colorful paragraphs and beautiful pictures of
the book attractive. Many students find this course difficult as many abstract concepts are introduced
at a rather rapid pace. But being able to think abstractly is probably one of the most important
abilities in modern sciences and technologies. Learning mathematics is similar to learning language,
we need to have enough vocabulary to express our mathematical ideas and we need to spend enough
time on it to get connection of different concepts. I try to cut proofs into small pieces so that readers
may verify them easier. Based on some knowledge of basic calculus, this book is self-contained and
suitable for self-study. Exercises are provided at the end of each section.

Due to the length and size, materials for advanced calculus I is separated into two books:
Advanced Calculus I-1 and Advanced Calculus I-2. We had 3 midterm exams and 1 final exam in
the course of advanced calculus I. The book Advanced Calculus I-1 contains materials for midterm
exam 1 and 2, and the book Advanced Calculus I-2 contains materials for midterm exam 3 and final
exam. Practice exams and exam questions are attached to the books.

Main references of Advanced Calculus I-2 are
1. Fractals everywhere by Barnsley ([1]);
2. Real mathematical analysis by Pugh ([2]);
3. Elementary classical analysis by Marsden and Hoffman ([3]);
4. Wikipedia.



Those beautiful pictures at the end of each chapter are free pictures from pixabay.com.
The latex documentclass “elegantbook"(https://github.com/ElegantLaTeX/ElegantBook) is used

to edit this book.

Jyh-Haur Teh
Department of Mathematics
National Tsing Hua University
Hsinchu, Taiwan.
Website: http://www.math.nthu.edu.tw/∼jyhhaur
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Chapter 5 Some topological properties



5.1 Connectedness

Definition 5.1. Proper subset

♣

A subset A ⊂ X is said to be proper if

A ̸= ∅ and A ̸= X

Definition 5.2. Connectedness

♣

Let X be a topological space. If X has a proper subset A which is both open and closed, then
X is said to be disconnected, and we say that A and Ac separate X . If X is not disconnected,
then X is connected.

Example 5.1 The set
X = R− {0}

is disconnected. It is separated by (−∞, 0) and (0,∞).

Proposition 5.1

♠The closed interval [a, b] ⊂ R is connected.

Proof We prove by contradiction. Assume that [a, b] is not connected. Then there exists a proper
subset U ⊂ [a, b] which is both open and closed. We have

[a, b] = U
∐

U c

We may assume b ∈ U c. Since U is nonempty and bounded, by the least upper bound property of R,
there exists

c = sup(U)

Since U is closed in [a, b] and [a, b] is closed in R, by the inheritance principle, Corollary 2.5, U is
closed in R, and by Lemma 4.2, c ∈ U . Since c /∈ U c, c ̸= b. The openness of U in [a, b] implies
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there is r > 0 such that
[c, c+ r) ⊂ U

and hence c + r
2
∈ U which contradicts to the fact that c is an upper bound of U . Hence [a, b] is

connected.

Remark Suppose that X is a connected topological space. If a nonempty subset A ⊂ X is both open
and closed, then A = X . This follows directly from the definition.

Definition 5.3. Path-connectedness

♣

Let X be a topological space and φ : [a, b] → X be a continuous function. If

φ(a) = x1, φ(b) = x2

the function φ is said to be a path joining x1 and x2. We say that X is path-connected if for
any x1, x2 ∈ X , there is a path joining x1 and x2.

Example 5.2 The set
R2 − B1(0)

is path-connected.

Theorem 5.1

♡All path-connected topological spaces are connected.
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Proof Let X be a path-connected topological space. Assume that X is not connected. Then there
is a proper, open and closed subset U ⊂ X such that

X = U
∐

U c

Let x ∈ U, y ∈ U c. Since X is path-connected, there is a path γ : [a, b] → X such that

γ(a) = x, γ(b) = y

But U,U c are both open and closed, the continuity of γ implies that

γ−1(U), γ−1(U c) = (γ−1(U))c

are both nonempty, closed and open subsets of [a, b] and

[a, b] = γ−1(U)
∐

(γ−1(U))c

This means that [a, b] is not connected which contradicts to Proposition 5.1. So X is connected.

Theorem 5.2

♡

Suppose that f : X → Y is a continuous function between topological spaces.
1. If X is connected, then f(X) is connected.
2. If X is path-connected, then f(X) is path-connected.

Proof

4



1. Assume that f(X) is not connected. Then there exists a proper, open and closed subset
U ⊂ f(X) such that U and U c separate f(X). Then f−1(U) and

f−1(U c) = (f−1(U))c

separate X . Therefore X is not connected which is a contradiction.
2. Let p, q ∈ f(X). Take x, y ∈ X such that

f(x) = p, f(y) = q

Since X is path-connected, there is a path γ : [a, b] → X such that

γ(a) = x, γ(b) = y

The composition of two continuous functions f ◦ γ : [a, b] → f(X) is continuous. Since

(f ◦ γ)(a) = p, (f ◦ γ)(b) = q

f ◦ γ is a path in f(X) joining p and q which means that f(X) is path-connected.
Example 5.3 The Euclidean spaceRn is clearly path-connected, hence connected. Note thatRn−{0}
is path-connected for n > 1. For n ≥ 1, define f : Rn+1 − {0} → Sn by

f(X) :=
X

||X||
Since f is a surjective continuous function, by the result above, Sn is path-connected.
Example 5.4 Let n ∈ N. If GL(n,R) is connected, then the image

det (GL(n,R)) = R− {0}

is connected which is a contradiction. Therefore GL(n,R) is disconnected.

Theorem 5.3. Generalized Intermediate Value Theorem
Let X be a connected topological space and f : X → R be a continuous function. Suppose
that c ∈ R and

f(x) < c < f(y)

5



♡

for some x, y ∈ X . Then there exits z ∈ X such that

f(z) = c

Proof Assume that c is not in the image of f . Let

U = f−1((c,∞))

Then
U c = (f−1((−∞, c)))c = f−1((−∞, c)c) = f−1([c,∞)) = f−1((c,∞))

By the continuity of f , U and U c are both open, therefore U is also closed. Since y ∈ U and x /∈ U ,
U is proper. Therefore X is disconnected which is a contradiction.

Recall that a point c ∈ X is called a fixed point of a function f : X → X if

f(c) = c

Corollary 5.1. Brouwer fixed point theorem for dimension 1

♡Let f : [0, 1] → [0, 1] be a continuous function. Then f has a fixed point.

Proof
Case 1: If f(0) = 0 or f(1) = 1, we are done.
Case 2: Suppose that f(0) ̸= 0 and f(1) ̸= 1. Since the image is contained in [0, 1], we have

f(0) > 0 and f(1) < 1

Let g : [0, 1] → R be defined by
g(x) = f(x)− x

Then g is continuous. Since

g(0) = f(0)− 0 = f(0) > 0

6



and
g(1) = f(1)− 1 < 0

By the Intermediate Value Theorem, there exists c ∈ [0, 1] such that

g(c) = 0

and hence
f(c) = c

Corollary 5.2

♡

Let f : Sn → R be a continuous function. There exists X0 ∈ Sn such that

f(X0) = f(−X0)

Proof Define g : Sn → R by
g(X) := f(X)− f(−X)

Then
g(−X) = f(−X)− f(X) = −g(X)

If g(X) = 0, f(X) = f(−X). If g(X) ̸= 0, g(X) and g(−X) have different signs, and hence 0 lies
between g(X) and g(−X). Since Sn is connected, by the generalized intermediate value theorem
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(Theorem 5.3), there is X0 ∈ Sn such that

g(X0) = 0

and thus
f(X0) = f(−X0)

Lemma 5.1

♡

Let X be a topological space and x, y, z ∈ X .
1. If there is a path γ : [a, b] → X joining x, y, then there is a path γ′ : [0, 1] → X joining

x, y.
2. If there is a path joining x, y and a path joining y, z, then there is a path joining x, z.

Proof
1. Define γ′ : [0, 1] → X by

γ′(t) := γ((1− t)a+ tb)

Then γ′ is a composition of the path γ and the continuous function f : [0, 1] → [a, b] defined
by

f(t) = (1− t)a+ tb

Thus γ′ is a path in X joining

γ′(0) = γ(a) = x and γ′(1) = γ(1) = y

2. By (1), there are paths γ1, γ2 : [0, 1] → X such that

γ1(0) = x, γ1(1) = y, and γ2(0) = y, γ2(1) = z

Define

γ(t) =

{
γ̃1(t) = γ1(2t), if t ∈ [0, 1

2
]

γ̃2(t) = γ2(2t− 1), if t ∈ [1
2
, 1]

8



Note that on the intersection of the domains

[0,
1

2
] ∩ [

1

2
, 1] = {1

2
}

γ̃1(
1

2
) = γ̃2(

1

2
) = y

Thus γ : [0, 1] → X is a function. For a closed subset C ⊂ X , note that we have

γ−1(C) = γ̃−1
1 (C)

⋃
γ̃−1
2 (C)

Since γ̃1 is continuous, γ̃−1
1 (C) is closed in [0, 1

2
]. Furthermore, [0, 1

2
] is closed in [0, 1], by the

inheritance principle, γ̃−1
1 (C) is closed in [0, 1]. Similarly, γ̃−1

2 (C) is closed in [0, 1] which
implies the union γ−1(C) is closed in [0, 1]. This means that γ is continuous and thus a path
joining x and z.

Proposition 5.2

♠Let U ⊂ Rn be an open set. Then U is connected if and only if U is path-connected.

Proof Suppose that U is connected. We may assume that U is nonempty. Fix p ∈ U . Let

V := {q ∈ U |p and q are joined by a path}

If q ∈ V , since U is open in Rn, there is r > 0 such that Br(q) ⊂ U . For x ∈ Br(q), the path

γ(t) := (1− t)q + tx, t ∈ [0, 1]

lies in Br(q) which joins q and x. With the path joining p and q, by Lemma 5.1, we have a path
joining x and p. Thus x ∈ V . This means Br(q) ⊂ V and hence V is open in U . Let y be a limit
point of V in U . There exists a sequence {yn}∞n=1 in V that converges to y. Since U is open in Rn,
there is δ > 0 such that Bδ(y) ⊂ U . For n large enough,

dE(yn, y) < δ

The path
(1− t)yn + ty, t ∈ [0, 1]

9



lies in Bδ(y) ⊂ U that joins yn and y and hence y ∈ V . This means that V is closed in U . Since V

is nonempty, both open and closed in U , the connectedness of U implies that U = V . Therefore any
points in U can be joined by some paths to p and thus U is path connected.

Proposition 5.3

♠

Let X be a metric space and S ⊂ X be a connected subset. If

S ⊂ T ⊂ S

then T is connected. In particular, the closure of a connected set is connected.

Proof Assume that T is not connected. By the definition, there exists a proper subset A ⊂ T which
is both open and closed in T such that A and Ac separate T . By the inheritance principle, A ∩ S is
open in S. Pick a ∈ A and r > 0 such that Br(a) ⊂ A. If

A ∩ S = ∅

then
Br(a) ∩ S = ∅

By Lemma 2.1, a is not a limit point of S which contradicts to the fact that

A ⊂ T ⊂ S
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Therefore A ∩ S is nonempty. Similarly, Ac ∩ S is nonempty. Then A ∩ S and Ac ∩ S separate S

which contradicts to the fact that S is connected. Hence T is connected.

Proposition 5.4

♠

Let X be a topological space and A ⊂ X . Suppose that A and Ac separate X . If S ⊂ X is
connected and S ∩ A ̸= ∅, then S ⊂ A.

Proof If S is not contained in A, then the sets

U = A ∩ S, U c = Ac ∩ S

separate S which is a contradiction.
Example 5.5 (Topologist’s sine curve) Let

A = {(x, sin 1

x
)|x ∈ (0,

1

π
]} ∪ {(0, y)|y ∈ [−1, 1]}.

Then A is connected but not path-connected.

Solution Let
S = {(x, sin 1

x
)|x ∈ (0,

1

π
]}

It is clear that S is path-connected. If A is not connected, there are two nonempty open subsets U,U c

of A that separate A. We may assume (0, 0) ∈ U . Since 0 × [−1, 1] is connected, by Proposition
5.4, 0× [−1, 1] ⊂ U . By the openness of U , There is r > 0 such that Br((0, 0)) ⊂ U . Note that for
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n ∈ N with 1
nπ

< r,

(
1

nπ
, 0) ∈ Br((0, 0))

Since S is connected, by Proposition 5.4, S ⊂ U . Therefore U = A which contradicts to the
properness of U . So A is connected.

Assume that A is path-connected. Then there is a path γ : [0, 1] → A such that

γ(0) = (
1

π
, 0) and γ(1) = (0, 0)

Let
c = inf{t ∈ [0, 1]|γ(t) ∈ 0× [−1, 1]}

Then γ([0, c]) contains at most one point of 0 × [−1, 1]. Note that for any p ∈ S, S − {p} is not
path-connected, therefore to reach the y-axis,

S ⊂ γ([0, c])

Since each point of 0× [−1, 1] is a limit point of S, the closure γ([0, c]) contains all of 0× [−1, 1].
Therefore

γ([0, c]) ̸= γ([0, c])

In particular, γ([0, c]) is not closed and hence not compact. But γ is continuous and [0, c] is compact,
γ([0, c]) is compact which is a contradiction. Therefore, A is not path-connected.
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K Exercise 5.1 k

1. Show that a continuous function f : [0, 1] → Z is a constant function.
2. Show that R−Q and R− Z are not homeomorphic.
3. Let D = {(x, y) ∈ R2|x2 + y2 ≤ 1} be the unit closed disc in R2 and

E := {(x, y) ∈ D|y = mx for some m ∈ Q}

(a). Are E ∩ S1 and [0, 1] ∩Q homeomorphic?
(b). Are E and D − E homeomorphic?
(c). Are R2 − E and R2 − (D − E) homeomorphic?

4. What are connected subsets of Q?
5. Suppose that A,B ⊂ R2.

(a). If A and B are homeomorphic, are Ac and Bc homeomorphic?
(b). If A and B are connected and homeomorphic, are Ac and Bc homeomorphic?

6. Show that R1 and R2 are not homeomorphic. How about R1 and Rn for n ≥ 2?
7. Let f : R → R be a uniformly continuous function. Show that there are constants A,B such

that
|f(x)| ≤ A+B|x|

for all x ∈ R.
8. Let U ⊂ Rm be an open set. If h : U → Rm is a homeomorphism and uniformly continuous

on U , show that U = Rm.
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