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Preface

Advanced calculus plays a pivotal role in the realm of mathematics education, serving as the
bridge that connects elementary numerical computations to the more intricate world of advanced ab-
stract thinking. It is a subject that often instills trepidation in students as they begin their journey
into its complexities. The pages that follow are a product of the author’s extensive experience in
teaching advanced calculus courses at the mathematics department of National Tsinghua University
of Taiwan. The primary objective of these books is to provide mathematics textbooks optimized for
mobile phone readability, complete with vibrant visuals to enhance the learning experience. Within
these pages, every proof is presented with simplicity in mind, making them accessible, comprehen-
sive, and enriched with graphics and colors. The author’s aspiration is to foster greater receptiveness
among students, encouraging them to invest more time in this essential course.

Advanced calculus is a rigorous two-semester course, bearing the weight of four credits per
semester, with 200 minutes of instruction weekly, accompanied by two hours of recitation, weekly
assignments, and four exams per semester. It stands as one of the most challenging classes in the
mathematics department, demanding a substantial commitment from students. In the modern era,
proficiency in mathematics and abstract thinking is becoming increasingly critical in scientific and
technological fields. Mathematics is intrinsically linked to automated processes and big data analysis,
making it an indispensable skill. This is why this demanding course continues to attract students
from diverse disciplines, including electrical engineering, computer science, financial engineering,
management, and medical school.

To cater to the needs of mobile phone users, the book files are designed to be manageable in
size. As a result, the content of Advanced Calculus I is divided into two volumes, each aligned
with specific exam content: Advanced Calculus I-1 and Advanced Calculus I-2, each encompassing
two exams. All exams and practice tests are thoughtfully included within the books, with exercises
accompanying each section. Despite being written in English, the language used is intentionally not
overly complex. Building upon foundational calculus knowledge, these textbooks can be regarded as
self-contained and suitable for self-study.



The main references for Advanced Calculus I-1 are:
1. Real mathematical analysis by Pugh ([P]);
2. Elementary classical analysis by Marsden and Hoffman ([MH]);
3. Principles of mathematical analysis by Rudin ([R]);
4. Wikipedia.
The beautiful pictures found at the end of each chapter are sourced from the generous offerings
of pixabay.com.
This book is edited using the LaTeX document class “elegantbook™
(https://github.com/Elegantl.aTeX/ElegantBook).

Jyh-Haur Teh

Department of Mathematics

National Tsing Hua University

Hsinchu, Taiwan

Website: http://www.math.nthu.edu.tw/~jyhhaur
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Chapter 1 Set theory and cardinality



1.1 Review

1.1.1 Number systems and logic

The set of natural numbers is
N:={1,2,3,4,...}

The set of integers is
Z:={.,-2,-1,0,1,2,....}
The set of is

Q:{SP,QEZ,Q%O}

The set of real numbers is R. These real numbers {7, e, V2, —2‘/5} are not rational numbers. The

set of complex numbers is
C:={a+bi:abeR}

Let P, @, R be some statements. There are two equivalent forms which are frequently used in

proofs.
1.

(P=Q)=(Q="P)=(CPVQ)



2.
(P=QVR)=(PAN" Q= R)

Definition 1.1.1

A predicate P(x) assigns x a statement.
1. The symbol
(Vz € A)P(x)

is defined to be
r € A= P(x)

2. The symbol
(Fz € A)Q(z)

is defined to be
(x € A) A Q(x)

Proposition 1.1.1

“((Vz € A)P(x)) = (3z € A)(CP(x))

“((3z € A)P(z)) = (Vz € A)("P(x))

(Vre A)P(x)=" (r€ A= P(x)=(x € AN Px)=(Fx € A)"P(x)

(Fre APx)=" (€ A)ANP(x)="(xr€ A) V" P(x)
=(xeA) =" Plx)= (Vx e A)("P(x))



1.1.2 Set theory
Given sets Ay, Ag, As, ..... The union of these sets is

UA" :={z:x € A, for some i € N}
i=1

and the intersection of these sets is
ﬂA,- :={x: 2 € A, foreach i € N}
i=1

More generally, if B is a set and a set A; is given for each ¢ in B, define the union of sets indexed by

15 to be
UAZ' :={z: 2 € A, for some i € B}
i€B

and the intersection of sets indexed by B to be
ﬂAi :={x:x € A, foreachi € B}
i€B

In the following, we recall the definition of Cartesian product.

Definition 1.1.2 (Cartesian product)

Let XY be sets. The Cartesian product of X and 'Y is the set
X xY ={(z,y)|lr e X,y e Y}

of ordered pairs. The n-th Cartesian product of X is the set
X" = {(z1, 29, ..o,y |z € X, i =1,2,...,n}
of n-tuples. &
A function f : S — T from a set S to a set'l" is a subset
gr(f) €S xT

with the following property: for any s € S, there is a unique t € T such that (s,t) € gr(f).
Usually we write f(s) = t. The set S is called the domain of f and the set T' is called the




codomain of f. &

Fae UU{DP AN

\_._73

Example 1.1.1 Let f : R — R be defined by
and g : R — [0, 00) be defined by

These two function are two distinct functions since they have different codomains.

Definition 1.1.4

If f: S — T isafunction and A C S, we write

f(A) :=={f(a)|la € A}
and call f(A) the image of A under f.




If B C T, we write
f7Y(B) :={s € S|f(s) € B}

and call f~'(B) the preimage of B under f.

Definition 1.1.5

Let f : S — T be a function. We say that

1. f is injective if whenever x1 # xs, f(x1) # f(22);
2. fis surjective if for every t € T, there is s € S such that f(s) = t;

3. fis bijective if f is both injective and surjective and call such f a bijection.




If f : S — T is a bijective function, the function g : T — S defined by

g(t) = f({t})

is called the inverse function of f.




1.2 Countable and uncountable sets

Definition 1.2.1 (Same cardinality)
We say that two sets A and B have the same cardinality if there is a bijection from A to B. &

Note that if A and B have the same cardinality, then B and A also have the same cardinality.

Definition 1.2.2

A set S is said to be finite if there exist a positive integer N and a bijective function
f:4{3,2,..,.N} = S

Empty set is defined to be a finite set. A set which is not finite is called infinite. An infinite set

S is said to be denumerable if there is a bijective function
fN—=S

A set which is either finite or denumerable is said to be countable. A set which is not countable

is said to be uncountable. &

We show the classifications by the following diagrams:

finite sets
countable sets
sets denumerable sets
uncountable sets
finite sets
sets denumerable sets

infinite sets
uncountable sets

Example 1.2.2 Show that Z is denumerable.
Proof List elements of Z as {0,1,—1,2,—2,3, -3, ...}. Define f : N — Z by

f(n) = { 5, ifniseven

—% . ifnisodd
Then f is bijective and hence Z is denumerable.



Proposition 1.2.1
N2 = N x N is denumerable. P

Solution We write elements of N? in the following array and list elements of N? along the 45° line

Jfrom the bottom rows to the left columns:

(ILn+m—1)

(1>3)\(273 )\\
\

(3,2)- - (n+m—2,2)

\\

(1,1) (2, (n+m—1,1)
The number of elements contamed in the triangle below the line through (n, m) is
—2 -1
1+2—|—~~~—|—(n+m—2):(n+m )2(n+m )
Formally, we define a function f : N> — N by
(n+m—2)(n+m—1)

f(n,m) = 5 +m

Now we claim that f is bijective. We show that f is injective first. Let (ni,m1), (ny, my) € N2

Suppose that (ny, my) and (ny, ms) are not the same. We need to show that

f(ni,ma) # f(n2,mo)
We consider 3 cases:
Case 1: ny, +mg > ny +my
Let
Ny +mg =nq +mq + k, where k > 1



Then
(nl—i—m1+k—2)(n1+m1+k— 1)

f(nz,mz) = 5 + Mo
(nl + m1)2 — 3(711 + ml) + Qk(nl + ml) + (k — 1)(]{} — 2)
- 9 ‘I‘mg
ny +ma)? — 3(ny + 2 k—1)(k—2
_ (ny 4+ my) (ny +mq) + + k(g 4+ my) + ( )( ) Ty —1

2

—~ DN W

> (nl—l—m1—2) n1+m1—1)

+ my

[\

= f(n1,m1)
Case 2: ny +mo =nqy +my
If f(n1,mq) = f(na, ms), then my = my and hence ny = ny. This contradicts to the assump-
tion that (ny, my) and (na, ms) are different. Therefore f(ny,my) # f(na, ms).
Case 3: ny, +mo < ny +my

Interchange the roles of (n1, my), (ne, my) in Case 1, we have

f(ng.mq) < f(ny,my)

This shows that f is injective. To show that f is surjective. Let M € N. Take N € N such that

<N_2)2(N_1><M§ (N_21>N
Let
m::M—(N_z)z(N_Dandn::N—m

Thenn +m = N and
p p _ 2 ; p _ 1
(n+m )Q(n +m ) .

f(n,m):
:(N—2)(N—1)+M_(N—2)(N—1)

2 2

=M

This shows that f is surjective. Therefore f : N> — N is bijective. Let g : N — N2 be the inverse
function of f. Since g is bijective, N* is denumerable.

Let us recall the well-ordering principle of the natural numbers.

10



Theorem 1.2.1 (Well-ordering principle)
Every nonempty subset of the natural numbers has a least element. V) ’

We have the following result.

Theorem 1.2.2 (Subsets of a countable set are countable)

If f : A — Sisan injective function and S is countable, then A is countable. V) ’

Proof  Assume that A is not finite. We need to show that A is denumerable. Since f is injective, the
function f : A — f(A) is bijective, hence f(A) is an infinite set. But f(A) C S, S has to be infinite,
and since S is countable, we know that .S is denumerable. List elements of S as

{817 52, 53, }
Let
N = {ils; € f(A)} € N

By the well-ordering principle 1.2.1, there is a smallest positive integerny € N. Wehave s,,, € f(A).
Suppose that we have chosen n; < ng < - -+ < ny such that s,,. Sp,, .., Sp, are in f(A). Since
f(A) is infinite, f(A) — {s,,, ..., sn, } 18 not empty. Let
M = {ils; € f(A) —{snys--»Sn, }} CN
By the well-ordering principle, there exists a smallest positive integer ni; € M. We have
Nk41 > ny, otherwise s, would have been chosen before. Note that s, ., € f(A).
For an arbitrary s; € f(A), by at most choosing ¢ times, s; will be in the list. So all elements in

f(A) are listed as

{Snys Snys Sngs oo}

Define a function g : N — f(A) by mapping % to s,,,. According to the construction, g is bijective
and hence f(A) is denumerable. Since f : A — f(A) is bijective, A is also denumerable.

11



Corollary 1.2.1

Every infinite subset of a denumerable set is denumerable. V)

Proof Let S be a denumerable set and A C S be an infinite subset. Let f : A — S be the inclusion
map, that is, for a € A, f(a) = a. Then f is injective. By the result above, A is countable and by the
assumption, A is an infinite set, so A is denumerable.

Remark A very useful method in proving mathematical results is the so-called “proof by contradic-
tion”. The strategy is that we assume something that is just opposite to what we want to prove and
then deduce by some mathematical arguments to get a conclusion that contradicts to some known
fact. This implies that the assumption we made is not true and thus proves what we want. This
method will be used throughout this class.

We exemplify the “proof by contradiction” method by proving the following result.

Corollary 1.2.2

Every subset of a countable set is countable. v

Proof Let S be a countable set. Assume that there exists a subset A C .S which is uncountable. By
the definition of an uncountable set, A is an infinite set. Since A C S, S is also infinite. Then S is
denumerable. By the theorem above, A is countable. This contradicts to our assumption. So there
does not exist an uncountable subset of .S.

12



Theorem 1.2.3 (A countable union of countable sets is countable)

Let {E, }2° | be a sequence of countable sets and
S=|JE.
n=1
Then S is countable. Q

Proof We list elements of £, as
Tty Tn2y Tpgy eee
If E, is a finite set, we list the last element of £, repeatedly infinitely many times, that is, we let
Tni = Tk
for all 7« > k where

k = |E,| := the number of elements of F,,

So we have an array

T4

Z13 2 3 4

-
e

T2 22 x32 Ty

S S

/
/

x11 21 31 41

By Proposition 1.2.1, N? is denumerable, so there exists a bijection f : N — N2, Define g : N — S
by

9(n) =T pw)
Then g is surjective but g may not be injective. For s € S, let

h(s) := the smallest number of g~ (s)

13



where
97 '(s) ={n € N|g(n) = s}
is the pre-image of s under g. Then i : S — N is injective. Since N is countable, by the Theorem

1.2.2, S is also countable.

Proposition 1.2.2

Q is denumerable. a

Proof Forn € N, let
m
E, = {z|m €7}

Then the function f : Z — E,, defined by

m
flm) = -
is bijective. Therefore £, is countable. Since
n=1

By the result above, Q is countable. Since Q has infinitely many elements, it is denumerable.

Corollary 1.2.3

Let X be a countable set. If for each x € X, E, is a countable set, then

U 2

xeX
is countable. Q

Proof  Since X is countable, we may list elements of X as
{.’171, To, T3, }
with the convention that if X is finite, we write x;, = x,, for £ > |X|. Then

Je=Ue
=1

reX
The result follows from the above theorem.

14



Theorem 1.2.4

If X and 'Y are countable sets, then the Cartesian product
X xY

is countable. V)

Proof Forx € X, let
Y, = {(z,y)ly € Y}

Define a function f : Y — Y, by

fly) = (z,y)
Then f is a bijection and hence Y, is countable since Y is countable. We observe that
Xxv=Jv
zeX

and by Corollary 1.2.3, a countable union of countable sets is countable, we get the result.

Let A be a countable set. Then A™ is countable for any n € N. V)

Proof We prove by induction. When n = 1, A' = A is countable. Suppose that A" is countable.
Define f : A"t — A" x A by

flat, ..., an,ani1) = (a1, ...y an), Gpyr)
Then f is a bijection. This implies that A" and A™ x A have the same cardinality. Since A™ and
A are countable, by the theorem above, A" x A is countable, therefore, A"*! is countable. By the
principle of induction, A™ is countable for any n € N.

We recall that for two integers p, ¢, not both zero, if their greatest common divisor(ged) is 1,
then we say that they are relatively prime. Note that

ged(0,3) =3, ged(—2,—6) =2
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