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Preface

Advanced calculus occupies the most fundamental position in mathematics training. It is an es-
sential path from elementary numerical calculation to higher-level abstract thinking. Mathematical
knowledge and the ability of abstract thinking become more and more important in modern sciences
and technology industries. Quantitative finance is a perfect field for showing the power of mathemat-
ics.

In our opinion, advanced calculus for students in quantitative finance should not be the same
as the one for students in mathematics department since they have different training in mathematics
and different kinds of applications in future studies. Based on lecture notes for the advanced calcu-
lus courses that the author taught in the National Tsing Hua University of Taiwan for students from
the department of quantitative finance, the author produces two books: Advanced calculus for quan-
titative finance I & II. The goal of these books is to introduce mathematical analysis and provide
background behind the Black-Scholes model in options.

The Black-Scholes model and its variants are probably the most common models in finance.
Since even an introduction of mathematical Brownian motion is out of the reach of undergraduate
mathematics, it is not easy to talk about Ito calculus which the Black-Scholes model lies on. The
author takes up the challenge in these books. The goal is to provide deep mathematics for students in
quantitative finance and at the same time show them such mathematics is tightly related to their field
of studying.

Differences between these books and advanced calculus textbooks for students in mathematics
are that they start from a lighter mathematics prerequisites, skip some results such as the inverse
function theorem that are not directly related to the study of mathematical finance, introduce prob-
ability theory based on Lebesgue integration, provide basic stochastic calculus, give a rather rigor
derivation of the Black-Scholes model, introduce Fourier transform to solve the heat equation, and
use it to derive a solution for the Black-Scholes equation.

Each of these two books contains 3 midterm exams and 1 final exam, accompany with a practice
exam before each examination. Also at the end of each section, there are some exercises for students



to get familiar with the materials. Proofs of some more difficult theorems are provided in the appendix
of each section.

Main references are
1. Fractals everywhere by Barnsley ([B]);
2. Probability theory in finance: a mathematical guide to the Black-Scholes formula by Dineen

([D]);
3. Elementary classical analysis by Marsden and Hoffman ([MH]);
4. Real mathematical analysis by Pugh ([P]);
5. Wikipedia.

Those beautiful pictures at the end of each chapter are free pictures from pixabay.com.
The latex documentclass “elegantbook”(https://github.com/ElegantLaTeX/ElegantBook) is used

to edit this book.

Jyh-Haur Teh
Department of Mathematics
National Tsing Hua University of Taiwan
Hsinchu, Taiwan.
Website: https://www.math.nthu.edu.tw/∼jyhhaur
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Chapter 6 Higher dimensional Riemann integrals



6.1 Riemann integrals

Definition 6.1 (Rectangle)

♣

A rectangle in Rn is a set of the form

R = [a1, b1]× [a2, b2]× · · · × [an, bn] ⊂ Rn

for some real numbers a1 ≤ b1, a2 ≤ b2, ..., an ≤ bn.

Example 6.1
1. [a, a] is a rectangle in R for any a ∈ R.
2. [1, 3]× [

√
2,
√
3] is a rectangle in R2.

3. [1, 4]× [2, 3]× [1, 2] is a rectangle in R3.

Definition 6.2 (Partition)

♣

A partition P of a rectangle R = [a1, b1]× · · · × [an, bn] is a set of points

P = P1 × P2 × · · · × Pn
where

Pi = {ai = ti,0 < ti,1 < · · · < ti,ki = bi}

is a partition of [ai, bi], ki ∈ N for all i = 1, 2, ..., n.

Example 6.2 Let R = [1, 2]× [2, 5] be a rectangle in R2 and

P1 := {1, 1.1, 1.7, 2}
P2 := {2, 2.8, 3.9, 5}

Then

P := P1 × P2 ={(1, 2), (1, 2.8), (1, 3.9), (1, 5), (1.1, 2), (1.1, 2.8), (1.1, 3.9), (1.1, 5)
(1.7, 2), (1.7, 2.8), (1.7, 3.9), (1.7, 5), (2, 2), (2, 2.8), (2, 3.9), (2, 5)}

is a partition of R.
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Definition 6.3 (Volume)

♣

The volume of the rectangle R = [a1, b1]× · · · × [an, bn] is defined to be

vol(R) := (b1 − a1)(b2 − a2) · · · (bn − an)

Example 6.3 If R = [1, 3]× [2, 5]× [3, 8], vol(R) = (3− 1)(5− 2)(8− 3) = 30.

Definition 6.4 (Lower sum and upper sum)

♣

Let R = [a1, b1] × · · · × [an, bn] be a rectangle in Rn and f : R → R be a function. Given a
partition

P = P1 × P2 × · · · × Pn

of R where
Pi = {ai = ti,0 < ti,1 < · · · < ti,ki = bi}

Let
Ri1,i2,...,in := [t1,i1−1, t1,i1 ]× [t2,i2−1, t2,i2 ]× · · · × [tn,in−1, tn,in ]

mi1,...,in = inf
x∈Ri1,...,in

{f(x)}

Mi1,...,in = sup
x∈Ri1,...,in

{f(x)}

for 1 ≤ ij ≤ kj, j = 1, ..., n.
Define the lower sum of f with respect to P to be

L(f, P ) :=

k1∑
i1=1

· · ·
kn∑
in=1

mi1,i2,...,invol(Ri1,i2...,in)

and the upper sum of f with respect to P to be

U(f, P ) :=

k1∑
i1=1

· · ·
kn∑
in=1

Mi1,i2,...,invol(Ri1,i2,...,in)

Example 6.4 Let R = [1, 2]× [2, 4] and f : R→ R be defined by

f(x, y) = x+ y

3



Fix n ∈ N and let

P = {1 = t1,0 < t1,1 < · · · < t1,n = 2} × {2 = t2,0 < t2,1 < · · · < t2,n = 4}

where
t1,i = 1 +

i

n
, , t2,j = 2 +

2j

n

Then

Ri,j = [t1,i−1, t1,i]× [t2,j−1, t2,j] = [1 +
i− 1

n
, 1 +

i

n
]× [1 +

2(j − 1)

n
, 1 +

2j

n
]

The volume
vol(Ri,j) =

1

n

2

n
=

2

n2

We have
inf

x∈Ri,j

{f(x)} = (1 +
i− 1

n
) + (2 +

2(j − 1)

n
) = 3 +

i+ 2j − 3

n

sup
x∈Ri,j

{f(x)} = (1 +
i

n
) + (2 +

2j

n
) = 3 +

i+ 2j

n

and

L(f, P ) =
n∑
i=1

n∑
j=1

(3 +
i+ 2j − 3

n
)(

2

n2
)

U(f, P ) =
n∑
i=1

n∑
j=1

(3 +
i+ 2j

n
)(

2

n2
)

Definition 6.5 (Refinement)

♣A refinement of a partition P of a rectangle R is a partition P ′ of R such that P ⊆ P ′.

Example 6.5 Let R = [1, 2]× [3, 4] and P = {1, 1.2, 1.5, 2} × {3, 4}. If

P ′ := P ∪ {(1, 3.5), (1.2, 3.5), (1.5, 3.5), (2, 3.5)} = {1, 1.2, 1.5, 2} × {3, 3.5, 4}

P ′ is a refinement of P .

4



Proposition 6.1

♠

If R ⊂ Rn is a rectangle and f : R→ R is a bounded function, then

L(f, P ) ≤ L(f, P ′) ≤ U(f, P ′) ≤ U(f, P )

for any partitions P ⊆ P ′ of R.

Proof Let R = [a1, b1]× · · · × [an, bn]. Suppose that

P = P1 × P2 × · · · × Pn
where Pi = {ai = ti,0 < ti,1 < · · · < ti,ki = bi} and

P ′ = P ′
1 × P ′

2 × · · · × P ′
n

where P ′
i = {ai = t′i,0 < t′i,1 < · · · < t′i,k′i

= bi} Let

Ri1,...,in = [t1,i1−1, t1,i1 ]× · · · × [tn,in−1, tn,in ] ⊂ R

Since P ′ is a refinement of P , there is a subset Ai1,...,in ⊂ P ′ such that

Ri1,...,in ⊂
⋃

(i′1,..,i
′
n)∈Ai1,...,in

Ri′1,...,i
′
n

Therefore∑
(i′1,..,i

′
n)∈A

sup
x∈Ri′1,...,i

′
n

{f(x)}vol(Ri′1,...,i
′
n
) ≤

∑
(i′1,..,i

′
n)∈A

sup
x∈Ri1,...,in

{f(x)}vol(Ri′1,...,i
′
n
)

= sup
x∈Ri1,...,in

{f(x)}
∑

(i′1,..,i
′
n)∈Ai1,...,in

vol(Ri′1,...,i
′
n
)

= sup
x∈Ri1,...,in

{f(x)}vol(Ri1,...,in)

Note that
P ′ =

⋃
(i1,...,in)∈P

Ai1,...,in

This implies U(f, P ′) ≤ U(f, P ). Similar to the argument above, we have L(f, P ′) ≥ L(f, P ).
Since we always have

inf
x∈Ri′1,...,i

′
n

{f(x)} ≤ sup
x∈Ri′1,...,i

′
n

{f(x)}

5



this gives us
L(f, P ′) ≤ U(f, P ′)

Definition 6.6 (Lower integral and upper integral)

♣

Let R ⊂ Rn be a rectangle and f : R→ R be a function. The lower integral of f over R is

I(f) := sup
p
L(f, P )

The upper integral of f over R is

I(f) := inf
p
U(f, P )

If I(f) = I(f) ∈ R, we say that f is Riemann integrable on R and denote∫
R

fdV := I(f) = I(f)

6



K Exercise 6.1 k

1. Let R = [1, 3]× [2, 5] and f : R→ R be defined by f(x, y) = xy. Fix n ∈ N. Suppose that

P = {1 + 2i

n
|i = 0, 1, ..., n} × {2 + 3j

n
|j = 0, ..., n}

Find L(f, P ) and U(f, P ).
2. Let f : [0, 1]× [2, 3]→ R  be defined by

f(x, y) =

{
1, if 0 ≤ x ≤ y ≤ 1

3, otherwise
Use the definition of Riemann integral to find∫

[0,1]×[2,3]

fdV

3. Given a partition P = P1 × · · ·Pn of a rectangle R = [a1, b1]× · · · × [an, bn] ⊂ Rn. Suppose
that Pi = {ai = ti,0 < ti,1 < · · · < ti,ki = bi} for i = 1, ..., n. We say that the partition P is
an equal partition of R if there is a constant c such that

ti,j − ti,j−1 = c

for all j = 1, ..., ki and i = 1, ..., n.
(a). Let R = [1, 3]× [1, 4] and P = {1, 1.2, 3} × {1, 2.7, 4}. Find a refinement P ′ of P such

that P ′ is an equal partition.
(b). Prove or disprove that for any partition P of a rectangle [a, b] ⊂ R, a < b, there is a

refinement P ′ of P which is an equal partition.
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6.2 The Riemann-Lebesgue theorem

Definition 6.7 (Measure zero set)

♣

A set A ⊂ Rn is said to have measure zero in Rn if for every ε > 0, there exist countably many
rectangles R1, R2, ... in Rn such that

A ⊂
∞⋃
i=1

Ri

and
∞∑
i=1

vol(Ri) < ε

Example 6.6 Z has measure zero in R.
Solution Given ε > 0. Define ϕ : N→ Z by

ϕ(n) :=


n− 1

2
, if n is odd ;

−n
2
, if n is even

Then ϕ is a bijection. Let Rn := [ϕ(n), ϕ(n)] = {ϕ(n)}. Then
∞⋃
n=1

Rn =
∞⋃
n=1

{ϕ(n)} = Z

Since vol(Rn) = 0 for all n ∈ N, we have
∑∞

n=1 vol(Rn) = 0 < ε. This shows that Z has measure
zero in R.
Example 6.7 R× {0} has measure zero in R2 but R is not a set of measure zero in R.
Solution For n ∈ N, let

Rn := [ϕ(n), ϕ(n) + 1]× [0, 0]

Then

R× {0} =
∞⋃
n=1

Rn
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and
∞∑
n=1

vol(Rn) =
∞∑
n=1

0 = 0

Therefore R× {0} has measure zero in R2.
To show that R×{0} does not have measure zero, we prove by contradiction. Set ε = 1. Assume

that there are rectangles {Sn}∞n=1 in R2 that cover R× {0} and
∑∞

n=1 vol(Sn) < 1. Since

[0, 1] ⊂ R ⊂
∞⋃
n=1

Sn

we have

1 = vol([0, 1]) ≤
∞∑
n=1

vol(Sn) < 1

which is a contradiction. Therefore R does not have measure zero in R.
Example 6.8 S1 ⊂ R2 has measure zero.
Solution We consider

X = {(x, y) ∈ R2|x ≥ 0, y ≥ 0} ∩ S1

the portion of S1 in the first quadrant. Given ε > 0. We first show that we can cover X by rectangles
with total volume less that ε

4
. By symmetry reason, there are similar covers by rectangles of S1 in

other 3 quadrants. Take n ∈ N such that
1√
n
<
ε

4

Let

xi =
i− 1

n
, yi =

√
1− x2i =

√
1− (

i− 1

n
)2

and
Ri := [xi, xi+1]× [yi+1, yi]
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for i = 1, ..., n. Then

vol(Ri) = (xi+1 − xi)(yi − yi+1) =
1

n

(√
1− (

i− 1

n
)2 −

√
1− (

i

n
)2

)

=
(1− ( i−1

n
)2)− (1− ( i

n
)2)

n
(√

1− ( i−1
n
)2 +

√
1− ( i

n
)2
)

<
( i
n
− i−1

n
)( i
n
+ i−1

n
)√

n2 − (n− 1)2

=
2i− 1

n2
√
2n− 1

<
2i− 1

n2
√
n

Therefore
n∑
i=1

vol(Ri) <
n∑
i=1

2i− 1

n2
√
n

=
1

n2
√
n
(
n∑
i=1

(2i− 1))

=
1

n2
√
n
(2(

n(n+ 1)

2
)− n)

=
n2

n2
√
n
=

1√
n
<
ε

4

This shows that we may cover S1 by rectangles with total volume less than ε and this means that S1

has measure zero in R2.

Proposition 6.2

♠A countable union of sets of measure zero is a set of measure zero.

Proof Let {An}∞n=1 be a collection of sets of measure zero in Rm. Given ε > 0. Since An has
measure zero, there are rectangles {Rn,k}∞k=1 in Rm such that

An ⊂
∞⋃
k=1

Rn,k and
∞∑
k=1

vol(Rn,k) <
ε

2n

Recall that a countable union of countable sets is countable, the collection {Rn,k}∞n,k=1 is countable.
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Since
∞⋃
n=1

An ⊂
∞⋃
n=1

∞⋃
k=1

Rn,k

and
∞∑
n=1

∞∑
k=1

vol(Rn,k) <
∞∑
n=1

ε

2n
= ε

∞∑
n=1

1

2n
= ε

Therefore
⋃∞
n=1An is of measure zero.

Corollary 6.1

♡A countable set A ⊂ Rn has measure zero in Rn.

Proof Write A = {ai}∞i=1 with the convention that if A is a finite set, then we set ai = aN for i ≥ N

where N = |A|. Since a point is of measure zero, A is a countable union of measure zero sets, by
the result above, A has measure zero.

Corollary 6.2

♡Q has measure zero in R.

Note that Q is dense in R, but it has measure zero. The Cantor set C is uncountable, but it is
not difficult to show that it also has measure zero.

Definition 6.8 (Set of discontinuities)

♣

Let R ⊂ Rn be a rectangle and f : R→ R be a function. The set

Disc(f) := {x ∈ R|f is discontinuous at x}

is called the set of discontinuities of f .

Example 6.9 For x ∈ R, let ⌊x⌋ denote the smallest integer greater or equal to x. Let f : R→ R be
defined by

f(x) = ⌊x⌋

Then
Disc(f) = Z
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