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Preface

Advanced calculus occupies the most fundamental position in mathematics training. It is an es-
sential path from elementary numerical calculation to higher-level abstract thinking. Mathematical
knowledge and the ability of abstract thinking become more and more important in modern sciences
and technology industries. Quantitative finance is a perfect field for showing the power of mathemat-
ics.

In our opinion, advanced calculus for students in quantitative finance should not be the same
as the one for students in mathematics department since they have different training in mathematics
and different kinds of applications in future studies. Based on lecture notes for the advanced calcu-
lus courses that the author taught in the National Tsing Hua University of Taiwan for students from
the department of quantitative finance, the author produces two books: Advanced calculus for quan-
titative finance I & II. The goal of these books is to introduce mathematical analysis and provide
background behind the Black-Scholes model in options.

The Black-Scholes model and its variants are probably the most common models in finance.
Since even an introduction of mathematical Brownian motion is out of the reach of undergraduate
mathematics, it is not easy to talk about Ito calculus which the Black-Scholes model lies on. The
author takes up the challenge in these books. The goal is to provide deep mathematics for students in
quantitative finance and at the same time show them such mathematics is tightly related to their field
of studying.

Differences between these books and advanced calculus textbooks for students in mathematics
are that they start from a lighter mathematics prerequisites, skip some results such as the inverse
function theorem that are not directly related to the study of mathematical finance, introduce prob-
ability theory based on Lebesgue integration, provide basic stochastic calculus, give a rather rigor
derivation of the Black-Scholes model, introduce Fourier transform to solve the heat equation, and
use it to derive a solution for the Black-Scholes equation.

Each of these two books contains 3 midterm exams and 1 final exam, accompany with a practice

exam before each examination. Also at the end of each section, there are some exercises for students



to get familiar with the materials. Proofs of some more difficult theorems are provided in the appendix
of each section.
Main references are
1. Fractals everywhere by Barnsley ([B]);
2. Probability theory in finance: a mathematical guide to the Black-Scholes formula by Dineen
([DD);
Elementary classical analysis by Marsden and Hoffman ([MH]);

oY)

Real mathematical analysis by Pugh ([P]);

Wikipedia.
Those beautiful pictures at the end of each chapter are free pictures from pixabay.com.
The latex documentclass “elegantbook” (https://github.com/ElegantLaTeX/ElegantBook) is used
to edit this book.

wno&

Jyh-Haur Teh

Department of Mathematics

National Tsing Hua University of Taiwan
Hsinchu, Taiwan.

Website: https://www.math.nthu.edu.tw/~jyhhaur
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Chapter 6 Higher dimensional Riemann integrals



6.1 Riemann integrals

Definition 6.1 (Rectangle)

A rectangle in R" is a set of the form
R = [a1,b1] X [ag, by] X - -+ X [ay, b,] CR"

for some real numbers ay < by, as < by, ..., a, < by.

Example 6.1
1. [a,a] is a rectangle in R for any a € R.
2. [1,3] x [V/2,/3] is a rectangle in R?.
3. [1,4] x [2,3] x [1,2] is a rectangle in R3.

Definition 6.2 (Partition)

A partition P of a rectangle R = [a1,b1] X -+ X [ay, b,] is a set of points
P=PxPx---xP,
where
Po={ai=tip <ty < - <tip, = b}

is a partition of [a;, b;), k; € N foralli=1,2,...,n.

Example 6.2 Let R = [1,2] x [2, 5] be a rectangle in R? and
P o={1,1.1,1.7,2}
P, = {2,2.8,3.9,5}
Then
P =P x Py ={(1,2),(1,2.8),(1,3.9),(1,5),(1.1,2), (1.1,2.8), (1.1,3.9), (1.1, 5)
(1.7,2), (1.7,2.8), (1.7,3.9), (1.7,5), (2,2), (2,2.8), (2,3.9), (2,5)}

is a partition of R.



Definition 6.3 (Volume)

The volume of the rectangle R = [a1,b1] X -+ X [ay, by,] is defined to be
vol(R) := (by — ay)(ba — ag) - -+ (b, — ay,)

Example 6.3Tf R = [1,3] x [2,5] x [3,8], vol(R) = (3 — 1)(5 — 2)(8 — 3) = 30.

Definition 6.4 (Lower sum and upper sum)

Let R = [ay,b1] X -+ X [ay, b,] be a rectangle in R" and f : R — R be a function. Given a

partition
P=P xP,x---xP,
of R where
Pi={a;=tig<tig <--- <ty =b}
Let

Rijigin = [t1i1—1, t141] X [t240—1,T245] X =+ X [tnin—1, tnin)

.....

for1 <i; <k;,j=1,...n
Define the lower sum of f with respect to P to be

k1 kn
L(f7 P) = Z T Z My, ig,..., inVOI(Ri17i2-~-,’in)
i1=1 in=1

and the upper sum of [ with respect to P to be

k1 kn
U(f,P):=> Y M. iv0l(Rirsy...c)

i1=1 in=1

Example 6.4 Let R = [1,2] x [2,4] and f : R — R be defined by
flry) =2ty



Fix n € N and let
P:{1:t170<t171<"'<t17n:2}X{2:t2,0<t271<"'<t27n:4}

where . 9
tl,izl—i_ia 7t _2+_j
n n
Then
1 ’ 2(7 —1 27
Ry = et % [togen o = 1+ 2 1 D 020 10
The volume 19 5
(R, ;) =——=—
vol(£:) nn n?
We have ) 2 — 1) t9i_3
2 J— 2 J —
f 2 =3
@)=+ )+ 2+ ) =3
1 ¥ 142
sup {f(z)} =(1+—-)+(2+—=)=3+
zER; n n
and
& Z+2j—3 2
>+ L)
i=1 j=1
G i+2j. 02
U P) =2 > B+—=)(>)
i=1 j=1

Definition 6.5 (Refinement)
A refinement of a partition P of a rectangle R is a partition P' of R such that P C P’. &

Example 6.5 Let R = [1,2] x [3,4] and P = {1,1.2,1.5,2} x {3,4}. If
P = PU{(1,35),(1.2,3.5),(1.5,3.5),(2,3.5)} = {1,1.2,1.5,2} x {3,3.5,4}

P’ is a refinement of P.



Proposition 6.1

If R C R" is a rectangle and | : R — R is a bounded function, then
L(f,P) < L(f,P) <U(f,P) <U(f,P)
for any partitions P C P’ of R. o

Proof Let R = [ay,b1] X -+ X [an, b,]. Suppose that
P=P xPx---xPF,
where P, = {a; = t;0 <t;1 <--- <t = b} and
P' =P xPyx---x P!
where P/ = {a; = t}y <ti; <--- <tj,, = b} Let
Rii i = [ti—1,ta ] X oo X [tnin—1,tni,) C R
i, C P’ such that

77777

Therefore
> sup {f@)vol(Ry a) < Y sup {f(z)}vol(Ry. i)
(i ,LI)GAIGRill ,,,,, il (i 1/)€Ax€Ri1 ~~~~~ in
= sup {f(®)} > vol(Ry i)
xERz‘l ,,,,, in (7;/17“71-/”)61411 ,,,, in
= sup {f(J:)}VOl(Rn ----- zn)
xeR’Ll ..... in
Note that
P/: U An ..... in
(il ..... ’in)EP

This implies U(f, P') < U(f,P). Similar to the argument above, we have L(f, P') > L(f, P).
Since we always have

inf ) {f(x)} < sup {f(x)}

xERi/ i1
1

,,,,, in



this gives us
L(f,P)) <U(f, P')

Definition 6.6 (Lower integral and upper integral)
Let R C R" be a rectangle and f : R — R be a function. The lower integral of f over R is

I(f) = SgpL(f, P)

The upper integral of f over R is

1(f) = infU(f, P
IFL(f) = I(f) € R, we say that f is Riemann integrable on R and denote
[ 1av =10 = 1)




= Exercise 6.1 <

1. Let R=[1,3] x [2,5] and f : R — R be defined by f(z,y) = xy. Fix n € N. Suppose that
21 37
P={1+2)i=0,1,...0yx {2+ Z|j=0,...n}
n n
Find L(f, P) and U(f, P).
2. Let f:]0,1] x [2,3] = R  be defined by
1, f0<z<y<I1
x? = .
f(x9) { 3, otherwise

Use the definition of Riemann integral to find

/ fdv
[0,1]x[2,3]

3. Given a partition P = P, x --- P, of arectangle R = [ay,b1] X - - - X [an, b,] C R™. Suppose
that P, = {a; = t;0 < t;1 < --- < ti, = b;} fori = 1,...,n. We say that the partition P is
an equal partition of R if there is a constant ¢ such that

lij—tij—1=c¢
forallj=1,...k;and7 =1,....n.
(a). Let R=[1,3] x [1,4] and P = {1,1.2,3} x {1,2.7,4}. Find a refinement P’ of P such
that P’ is an equal partition.
(b). Prove or disprove that for any partition P of a rectangle [a,b] C R,a < b, there is a

refinement P’ of P which is an equal partition.



6.2 The Riemann-Lebesgue theorem

Definition 6.7 (Measure zero set)

A set A C R" is said to have measure zero in R™ if for every € > 0, there exist countably many

rectangles Ry, Ry, ... in R" such that

and

Example 6.6 Z has measure zero in R.

Solution Given ¢ > 0. Define ¢ : N — Z by
n—1

b(n) = 5 ifnisodd;
-5 if n is even
Then ¢ is a bijection. Let R, := [¢p(n), ¢(n)] = {¢#(n)}. Then

Since vol(R,) = 0 for alln € N, we have Y~ vol(R,,) = 0 < e. This shows that 7 has measure
zero in R.

Example 6.7 R x {0} has measure zero in R? but R is not a set of measure zero in R.
Solution Forn € N, let

Ry, = [¢(n), ¢(n) + 1] x [0, 0]
Then -
R x {0} = | J Ran



and

Therefore R x {0} has measure zero in R*.
To show that R x {0} does not have measure zero, we prove by contradiction. Set ¢ = 1. Assume
that there are rectangles {S,}22, in R? that cover R x {0} and Y7 vol(S,) < 1. Since

0,1] CR C GSn

n=1

we have .
1 =0l([0,1]) <> vol(S,) < 1
n=1
which is a contradiction. Therefore R does not have measure zero in R.
Example 6.8 S! C R? has measure zero.

Solution We consider
X ={(z,y) €eR?*|lz >0,y > 0}nS*

the portion of S' in the first quadrant. Given £ > 0. We first show that we can cover X by rectangles
with total volume less that 5. By symmetry reason, there are similar covers by rectangles of St in

other 3 quadrants. Take n € N such that
1

— <

Jn

— 1  — 1
r= =y Jlmat =1 ()

n n

R := (@i, i) X [Yig1, Ui

W~ ™

Let

and



fori=1,...,n. Then

Vol = (@i = 2) (s — i) = 7 Wl Sl il

< n
n?—(n—1)>2
21
Con22n—1
21 —1
n?\/n
Therefore
< "2 — 1 1O
vol(R;) < = 2t —1
; (R:) ;ng\/ﬁ ng\/ﬁ(;( )
1 n(n+1)

ZnQﬁ@( 5—)—n)

n 1 €

:—:—<_
n?/n n 4

This shows that we may cover S* by rectangles with total volume less than ¢ and this means that S*

has measure zero in R?.

Proposition 6.2
A countable union of sets of measure zero is a set of measure zero.

)

Proof Let {A4,}52, be a collection of sets of measure zero in R”™. Given £ > 0. Since A,, has

measure zero, there are rectangles { R, ;. }7°, in R such that

oo oo E
A, C R, and vol(R, 1) < —

Recall that a countable union of countable sets is countable, the collection { R2,, ; }7°.—; is countable.

10



Since
o0

n=1 k=1
and 0o 00 00 (9]
ZZVOI(Rmk> < Z 2% = Z QL =
n=1 k=1 n=1 n=1

Therefore | J.~, A, is of measure zero.

Corollary 6.1
A countable set A C R™ has measure zero in R"™. v

Proof Write A = {a;}$2, with the convention that if A is a finite set, then we set a; = ay fori > N

where N = |A|. Since a point is of measure zero, A is a countable union of measure zero sets, by

the result above, A has measure zero.

Corollary 6.2
Q has measure zero in R. V)

Note that QQ is dense in R, but it has measure zero. The Cantor set C' is uncountable, but it is

not difficult to show that it also has measure zero.

Definition 6.8 (Set of discontinuities)

Let R C R™ be a rectangle and f : R — R be a function. The set
Disc(f) .= {z € R|f is discontinuous at x}

is called the set of discontinuities of f. &

Example 6.9 For z € R, let |z denote the smallest integer greater or equal to z. Let f : R — R be
defined by

f(z) =[]

Then
Disc(f) =Z

11
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