Advanced Kotlin

Advanced Kotlin

Marcin Moskata
This book is available at http://leanpub.com/advanced_kotlin
This version was published on 2024-12-03

Leanpub

Thisisa Leanpub book. Leanpub empowers authors and publishers with the
Lean Publishing process. Lean Publishing is the act of publishing an in-progress
ebook using lightweight tools and many iterations to get reader feedback, pivot
until you have the right book and build traction once you do.

© 2022 - 2024, Marcin Moskata

http://leanpub.com/advanced_kotlin
https://leanpub.com/
https://leanpub.com/manifesto

For those who helped and inspired me on my path of learning programming
craftsmanship, especially Kamil Kedzia, Rafat Trzeciak, Bartek Wilczynski, Michat
Malanowicz, and Mateusz Mikulski.

Contents

Introduction
Who is this book for?
The structure of this book
That will be covered?
The Kotlin for Developers series
Conventions
Code conventions
Exercises and solutions
Acknowledgments

Part 1: Advanced Kotlin features

Generic variance modifiers
List variance
Consumer variance
Function types
Exercise: Usage of generic types
The Covariant Nothing Object
The Covariant Nothing Class
Variance modifier limitations
UnsafeVariance annotation
Variance modifier positions
Star projection
Summary
Exercise: Generic Response
Exercise: Generic Consumer

Interface delegation
The delegation pattern
Delegation and inheritance
Kotlin interface delegation support
Wrapper classes
The decorator pattern
Intersection types

QAULDE WWN = =

(o]

11
13
15
17
18
24,
25
30
31
33
33
34
35

37
37
37
37
37
37
38

CONTENTS

Limitations

Conflicting elements from parents
Summary

Exercise: ApplicationScope

Property delegation

How property delegation works

Other getValue and setValue parameters
Implementing a custom property delegate
Provide a delegate

Property delegates in Kotlin stdlib

The notNull delegate

Exercise: Lateinit delegate

The lazy delegate

Exercise: Blog Post Properties

The observable delegate

The vetoable delegate

A map as adelegate

Review of how variables work

Summary

Exercise: Mutable lazy delegate

Kotlin Contracts

The meaning of a contract

How many times do we invoke a function from an argument?
Implications of the fact that a function has returned a value

Using contracts in practice
Summary
Exercise: Coroutine time measurement

Part 2: Kotlin on different platforms

Java interoperability

Nullable types
Kotlin type mapping
JVM primitives
Collection types
Annotation targets
Static elements
JvmPField

Using Java accessors in Kotlin
JvmName
JvmMultifileClass
JvmOverloads

Unit

38
38
38
38

39
39
39
39
39
39
40
40
40
40
40
40
40
41
41
41

42
42
42
42
42
42
43

44

45
45
45
45
45
45
46
46
46
46
46
46
46

CONTENTS

Function types and function interfaces
Tricky names

Throws

JvmRecord

Summary

Exercise: Adjust Kotlin for Java usage

Using Kotlin Multiplatform

Multiplatform module configuration
Expect and actual elements

Possibilities

Multiplatform libraries

A multiplatform mobile application
Summary

Exercise: Multiplatform LocalDateTime

JavaScript interoperability

Setting up a project

Using libraries available for Kotlin/JS
Using Kotlin/JS

Building and linking a package
Distributing a package to npm
Exposing objects

Exposing Flow and StateFlow

Adding npm dependencies
Frameworks and libraries for Kotlin/JS
JavaScript and Kotlin/JS limitations
Summary

Exercise: Migrating a Kotlin/JVM project to KMP

Part 3: Metaprogramming

Reflection

Hierarchy of classes
Function references
Parameter references
Property references

Class reference
Serialization example
Referencing types

Type reflection example: Random value
Kotlin and Java reflection
Breaking encapsulation
Summary

Exercise: Function caller

47
47
47
47
47
47

48
48
48
48
48
48
49
49

50
50
50
50
50
50
51
51
51
51
51
51
51

52

53
53
53
53
53
53
54
54
54
54
54
54
54

CONTENTS

Exercise: Object serialization to JSON
Exercise: Object serialization to XML
Exercise: DSL-based dependency injection library

Annotation processing
Your first annotation processor
Hiding generated classes
Summary
Exercise: Annotation Processing execution measurement wrapper

Kotlin Symbol Processing
Your first KSP processor
Testing KSP
Dependencies and incremental processing
Multiple rounds processing
Using KSP on multiplatform projects
Summary
Exercise: KSP execution measurement wrapper

Kotlin Compiler Plugins
Compiler frontend and backend
Compiler extensions
Popular compiler plugins
Making all classes open
Changing a type
Generate function wrappers
Example plugin implementations
Summary

Static Code Analysers
What are Static Analysers?
Types of analysers
Kotlin Code Analysers
Setting up detekt
Writing your first detekt Rule
Conclusion

Ending

Exercise solutions

55
55
55

56
56
56
56

57
57
57
57
57
57
58

59
59
61
64
65
67
68
69
70

72
72
72
73
74
74
75

76

77

Introduction

You can be a developer - even a good one - without understanding the topics
explained in this book, but at some point, you’ll need it. You're likely already
using tools made using features described in this book every day, such as libraries
based on annotation processing or compiler plugins, classes that use variance
modifiers, functions with contracts, or property delegates, but do you under-
stand these features? Would you be able to implement similar tools yourself?
Would you be able to analyze and debug them? This book will make all this
possible for you. It focuses exclusively on the most advanced Kotlin topics, which
are often not well understood even by senior Kotlin developers. It should equip
you with the knowledge you need and show you possibilities you never before
imagined. I hope you enjoy it as much as I enjoyed writing it.

Who is this book for?

Thisbook is for experienced Kotlin developers. I assume that readers understand
topics like function types and lambda expressions, collection processing, cre-
ation and usage of DSLs, and essential Kotlin types like Any? and Nothing. If you
don’t have enough experience, I recommend the previous books from this series:
Kotlin Essentials and Functional Kotlin.

The structure of this book

The book is divided into the following parts:

- Part 1: Advanced Kotlin features - dedicated to advanced Kotlin features,
including generic variance modifiers, delegation, and contracts.

- Part 2: Kotlin on different platforms - dedicated to multiplatform pro-
gramming, including interoperability with Java, JavaScript, and multi-
platform libraries.

- Part 3: Metaprogramming - dedicated to Kotlin metaprogramming capa-
bilities, including reflection, annotation processing, Kotlin Symbol Pro-
cessing, and Kotlin Compiler Plugins.

That will be covered? 2

That will be covered?

The chapter titles explain what will be covered quite well, but here is a more
detailed list:

+ Generic variance modifiers

« The Covariant Nothing Object pattern

+ Generic variance modifier limitations

- Interface delegation

+ Implementing custom property delegates

« Property delegates from Kotlin stdlib

« Kotlin Contracts

+ Kotlin and Java type mapping

- Annotations for Kotlin and Java interoperability

- Multiplatform development structure, concepts and possibilities
- Implementing multiplatform libraries

 Implementing Android and iOS applications with shared modules
- Essentials of Kotlin/JS

- Reflecting Kotlin elements

- Reflecting Kotlin types

- Implementing custom Annotation Processors

+ Implementing custom Kotlin Symbol Processors

+ KSPincremental compilation and multiple-round processing
- Defining Compiler Plugins

- Core Static Analysis concepts

- Overview of Kotlin static analyzers

- Defining custom Detekt rules

This book is full of example projects, including:

- A type-safe task update class using the Covariant Nothing Object pattern
(Generic variance modifiers chapter)

- Logging a property delegate (Property delegation chapter)

+ An object serializer (Reflection chapter)

- Arandom value generator for generic types (Reflection chapter)

« An annotation processor that generates an interface for a class (Annotation
Processing chapter).

« A Kotlin symbol processor that generates an interface for a class (Kotlin
Symbol Processing chapter).

« A Detekt rule that finds System.out.println usage.

The Kotlin for Developers series 3

The Kotlin for Developers series

This book is a part of a series of books called Kotlin for Developers, which includes
the following books:

« Kotlin Essentials, which covers all the basic Kotlin features.

« Functional Kotlin, which is dedicated to functional Kotlin features, includ-
ing function types, lambda expressions, collection processing, DSLs, and
scope functions.

+ Kotlin Coroutines: Deep Dive, which covers all the Kotlin Coroutines fea-
tures, including how to use and test them, using flow, the best practices,
and the most common mistakes.

+ Advanced Kotlin, which is dedicated to advanced Kotlin features, including
generic variance modifiers, delegation, multiplatform programming, an-
notation processing, KSP and compiler plugins.

« Effective Kotlin: Best Practices, which is dedicated to the best practices of
Kotlin programming.

Do not worry, you do not need to read the previous books in the series to
understand this one. However, if you are interested in learning more about
Kotlin, I recommend considering the other books from this series.

Conventions

When I refer to a concrete element from code, I will use code-font. To name a
concept, I will capitalize the word. To reference an arbitrary element of some
type, I will not capitalize the word. For example:

+ Flow is a type or an interface, so it’s printed in code-font (as in “Function
needs to return Flow”),

- Flow represents a concept, so it is capitalized (as in “This explains the
essential difference between Channel and Flow”),

- a flow is an instance, like a list or a set, which is why it is not capitalized
(“Every flow consists of a few elements”).

Another example: List refers concretely to a list interface or type (“The type of 1
is List”), while List represents a concept (“This explains the essential difference
between List and Set”), and a list is one of many lists (“The 1ist variable holds a
list”).

Code conventions 4

Code conventions

Most of the presented snippets are executable, so if you copy-paste them to a
Kotlin file, you should be able to execute them. The source code of all the snippets
is published in the following repository:

https://github.com/MarcinMoskala/advanced_kotlin_sources

Snippet results are presented using the println function. The result will often be
placed in comments after the statement that prints it.

import kotlin.reflect.KType
import kotlin.reflect.typeOf

fun main() {
val tl: KType = typeOf<Int?>()
println(tl) // kotlin.Int?
val t2: KType = typeOf<List<Int?>>()
println(t2) // kotlin.collections.List<kotlin.Int?>
val t3: KType = typeOf<() -> Map<Int, Char?>>()
println(t3)
// () —-> kotlin.collections.Map<kotlin.Int, kotlin.Char?>

In other cases, the result will be printed in comments after the code.

fun main() {
(1..3).forEach(::println)

}

/] 1

/] 2

/] 3

Sometimes, some parts of code or resultsare shortened with . . . inacomment. In
such cases, you can read it as “there should be more here, but the author decided
to omit it”.

Exercises and solutions 5

class A {
val b by lazy { B() }
val ¢ by lazy { C() }
val d by lazy { D() }

/] ...

In some snippets, you might notice strange formatting. This is because the line
length in this book is only 67 characters, so I adjusted the formatting to fit the
page width.

Exercises and solutions

At the end of most chapters, you will find exercises. They are designed to help
you understand the material better. Starting code and unit tests for most of those
exercises can be found in the MarcinMoskala/kotlin-exercises project on GitHub.
You can clone this project and solve these exercises locally. Solutions can be found
at the end of the book.

Suggestions

If you have any suggestions or corrections regarding this book, send them to
contact@kt.academy

Acknowledgments 6

Acknowledgments

Owen Griffiths has been developing software since
the mid-1990s and remembers the productivity of lan-
guages such as Clipper and Borland Delphi. Since 2001,
he’s focused on web, server-based Java, and the open-
source revolution. With many years of commercial Java
experience, he picked up Kotlin in early 2015. After tak-
ing detours into Clojure and Scala, he - like Goldilocks
- thinks Kotlin is just right and tastes the best. Owen
enthusiastically helps Kotlin developers continue to succeed.

Nicola Corti is a Google Developer Expert for Kotlin.
He’s been working with this language since before
version 1.0 and is the maintainer of several open-
source libraries and tools for mobile developers (De-
tekt, Chucker, ApplIntro). He’s currently working in the
React Native core team at Meta, building one of the
most popular cross-platform mobile frameworks, and
he’s an active member of the developer community. His
involvement goes from speaking at international conferences to being a member
of CFP committees and supporting developer communities across Europe. In his
free time, he also loves baking, podcasting, and running.

Matthias Schenk started his career with Java over ten
years ago, mainly in the Spring/Spring Boot Ecosystem.
Eighteen months ago, he switched to Kotlin and has
since become a big fan of working with native Kotlin
frameworks like Koin, Ktor, and Exposed.

Jacek Kotorowicz graduated from UMCS and is now an Android developer based
in Lublin. He wrote his Master’s thesis in C++ in Vim and LaTeX. Later, he
found himself in a love-hate relationship with JVM languages and the Android
platform. He first used Kotlin (or, at least, tried to) before version 1.0. He’s still
learning how NOT to be a perfectionist and how to find time for learning and
hobbies.

Acknowledgments 7

Endre Deak is a software architect building Al infrastructure at Disco, a market-
leading legal tech company. He has 15 years of experience building complex
scalable systems, and he thinks Kotlin is one of the best programming languages
ever created.

I would also like to thank Michael Timberlake, our language reviewer, for his
excellent corrections to the whole book.

Part 1: Advanced Kotlin features

There are Kotlin features that are often not understood even by experienced
developers. Many developers use property delegates, like lazy or observable,
without understanding how property delegation works, or benefit from variance
modifiers or Kotlin Contracts, without even noticing that they are using them. If
you are one of those developers, this chapter is for you, because it will explain in
detail how the most advanced Kotlin features work.

Generic variance modifiers

Let’s say that Puppy is a subtype of Dog, and you have a generic Box class to
enclose them both. The question is: what is the relation between the Box<Puppy>
and Box<Dog> types? In other words, can we use Box<Puppy> where Box<Dog> is
expected, or vice versa? To answer these questions, we need to know what the
variance modifier of this class type parameter is'.

When a type parameter has no variance modifier (no out or in modifier), we say
it is invariant and thus expects an exact type. So, if we have class Box<T>, then
there is no relation between Box<Puppy> and Box<Dog>.

class Box<T>
open class Dog
class Puppy : Dog()

fun main() {
val d: Dog = Puppy() // Puppy 1is a subtype of Dog

val bd: Box<Dog> = Box<Puppy>() // Error: Type mismatch
val bp: Box<Puppy> = Box<Dog>() // Error: Type mismatch

val bn: Box<Number> = Box<Int>() // Error: Type mismatch
val bi: Box<Int> = Box<Number>() // Error: Type mismatch

Variance modifiers determine what the relationship should be between
Box<Puppy> and Box<Dog>. When we use the out modifier, we make a covariant
type parameter. When A is a subtype of B, the Box type parameter is covariant
(out modifier) and the Box<A> type is a subtype of Box. So, in our example, for
class Box<out T>,the Box<Puppy> type isa subtype of Box<Dog>.

In this chapter, I assume that you know what a type is and understand the
basics of generic classes and functions. As a reminder, the type parameter is
a placeholder for a type, e.g., T in class Box<T> or fun a<T>() {}. The type
argument is the actual type used when a class is created or a function is called,
e.g., Int in Box<Int>() or a<Int>(). A type is not the same as a class. For a class
User, there are at least two types: User and User?. For a generic class, there are
many types, like Box<Int>, and Box<String>.

class Box<out T>
open class Dog
class Puppy : Dog()

fun main() {
val d: Dog = Puppy() // Puppy 1is a subtype of Dog

val bd: Box<Dog> = Box<Puppy>() // OK
val bp: Box<Puppy> = Box<Dog>() // Error: Type mismatch

val bn: Box<Number> = Box<Int>() // OK
val bi: Box<Int> = Box<Number>() // Error: Type mismatch

10

When we use the in modifier, we make a contravariant type parameter. When A
is a subtype of B and the Box type parameter is contravariant (in modifier), then
type Box is a subtype of Box<A>. So, in our example, for class Box<in T>the

Box<Dog> type is a subtype of Box<Puppy>.

class Box<in T>
open class Dog
class Puppy : Dog()

fun main() {
val d: Dog = Puppy() // Puppy is a subtype of Dog

val bd: Box<Dog> = Box<Puppy>() // Error: Type mismatch
val bp: Box<Puppy> = Box<Dog>() // OK

val bn: Box<Number> = Box<Int>() // Error: Type mismatch
val bi: Box<Int> = Box<Number>() // OK

These variance modifiers are illustrated in the diagram below:

List variance 11

Invariance Covariance Contravariance
class Box <T> class Box <out T> class Box <in T>

m

Atthispoint, you might be wondering how these variance modifiersare useful. In
particular, contravariance might sound strange to you, so let me show you some
examples.

List variance

Let’sconsider that you have the type Animal and itssubclass Cat. You also have the
standalone function petAnimals, which you use to pet all your animals when you
get back home. You also have a list of cats that is of type List<Cat>. The question
is: can you use your list of cats as an argument to the function petAnimals, which
expects a list of animals?

interface Animal {
fun pet()

class Cat(val name: String) : Animal {
override fun pet() {
println("$name says Meow")

fun petAnimals(animals: List<Animal>) {
for (animal in animals) {
animal.pet()

fun main() {
val cats: List<Cat> = listOf(Cat("Mruczek"), Cat("Puszek'"))
petAnimals(cats) // Can I do that?

List variance 12

The answer is YES. Why? Because in Kotlin, the List interface type parameter is
covariant, so it has the out modifier, which is why List<Cat> can be used where
List<Animal> is expected.

ds in this interface support only read-c

utablelList interface

public interface List<out E> : Collection<E> {
// Query Operations

override val size: Int
override fun isEmpty(): Boolean
Covariance (out) is a proper variance modifier because List is read-only. Covari-

ance can’t be used for a mutable data structure. The MutableL1ist interface hasan
invariant type parameter, so it has no variance modifier.

1d removing elements

1 in the list. The mutable list is invariant in its
8, public interface MutablelList<E> : List<E>, Mutable(
// Modification Operations

Adds the specified element to the end of this list.
Returns: true because the list is always modified as the result of this operation
.ot override fun add(element: E): Boolean

Thus, MutableList<Cat> cannot be used where MutablelList<Animal> is expected.
There are good reasons for this which we will explore when we discuss the safety
of variance modifiers. For now, I will just show you an example of what might
go wrong if MutablelList were covariant: we could use MutableList<Cat> where
MutableList<Animal> isexpected and then use this reference to add bog to our list
of cats. Someone would be really surprised to find a dog in a list of cats.

Consumer variance 13

interface Animal
class Cat(val name: String) : Animal
class Dog(val name: String) : Animal

fun addAnimal(animals: MutablelList<Animal>) {
animals.add(Dog("Cookie"))

fun main() {
val cats: MutableList<Cat> =
mutableListOf(Cat("Mruczek"), Cat("Puszek"))
addAnimal(cats) // COMPILATION ERROR
val cat: Cat = cats.last()
// If code would compile, it would break here

This illustrates why covariance, as its name out suggests, is appropriate for types
that are only exposed and only go out of an object but never go in. So, covariance
should be used for immutable classes.

Consumer variance

Let’s say that you have a class that can be used to send messages of a certain type.

interface Sender<T : Message> {
fun send(message: T)

interface Message

interface OrderManagerMessage : Message
class AddOrder(val order: Order) : OrderManagerMessage
class CancelOrder(val orderId: String) : OrderManagerMessage

interface InvoiceManagerMessage : Message
class MakeInvoice(val order: Order) : OrderManagerMessage

Now, you've made a class called GeneralSender that is capable of sending any
kind of message. The question is: can you use GeneralSender where a class for
sending some specific kind of messages is expected? You should be able to! If
GeneralSender can send all kinds of messages, it should be able to send specific
message types as well.

Consuwmer variance

class GeneralSender (

val

val

serviceUrl: String
Sender<Message> {
private val connection = makeConnection(serviceUrl)

override fun send(message: Message) {
connection.send(message.toApi())

orderManagerSender: Sender<OrderManagerMessage> =
GeneralSender (ORDER_MANAGER_URL)

invoiceManagerSender: Sender<InvoiceManagerMessage>
GeneralSender (INVOICE_MANAGER_URL)

14

For a sender of any message to be a sender of some specific message type, we
need the sender type to have a contravariant parameter, therefore it needs the
in modifier.

interface Sender<in T : Message> {

fun send(message: T)

Let’s generalize this and consider a class that consumes objects of a certain type.
If a class declares that it consumes objects of type Number, we can assume it can
consume objects of type Int or Float. If a class consumes anything, it should
consume strings or chars, therefore its type parameter, which represents the

type this class consumes, must be contravariant, so use the in modifier.

class Consumer<in T> {

fun

fun consume(value: T) {
println("Consuming $value")

main() {

val numberConsumer: Consumer<Number> = Consumer ()
numberConsumer.consume(2.71) // Consuming 2.71

val intConsumer: Consumer<Int> = numberConsumer
intConsumer.consume(42) // Consuming 42

val floatConsumer: Consumer<Float> = numberConsumer
floatConsumer.consume(3.14F) // Consuming 3.14

Function types 15

val anyConsumer: Consumer<Any> = Consumer ()
anyConsumer .consume (123456789L) // Consuming 123456789
val stringConsumer: Consumer<String> = anyConsumer
stringConsumer.consume("ABC") // Consuming ABC

val charConsumer: Consumer<Char> = anyConsumer
charConsumer.consume('M"') // Consuming M

It makes a lot of sense to use contravariance for the consumer or sender values
as both their type parameters are only used in the in-position as argument types,
so covariant type values are only consumed. I hope you're starting to see that the
out modifier is only appropriate for type parameters that are in the out-position
and are thus used as a result type or aread-only property type. On the other hand,
the in modifieris only appropriate for type parameters that are in the in-position
and are thus used as parameter types.

Function types

In function types, there are relations between function types with different
parameters and result types. To see this in practice, think of a function that as
an argument expects a function that accepts an Int and returns an Any:

fun printProcessedNumber (transformation: (Int) -> Any) {
println(transformation(42))

Based on its definition, such a function can accept a function of type (Int)->Any,
but it would work with (Int)->Number, (Number)->Any, (Number)->Number,
(Any)->Number, (Number)->Int, etc.

val intToDouble: (Int) -> Number = { it.toDouble() }

val numberAsText: (Number) -> String = { it.toString() }
val identity: (Number) -> Number = { it }

val numberToInt: (Number) -> Int = { it.toInt() }

val numberHash: (Any) -> Number = { it.hashCode() }
printProcessedNumber (intToDouble)

printProcessedNumber (numberAsText)

printProcessedNumber (identity)

printProcessedNumber (numberToInt)

printProcessedNumber (numberHash)

Function types 16

This is because there is the following relation between all these types:

(Int)->Any

/\

(Int)->Number (Number)->Any
(Number)->Number

(Any)->Number (Number)->Int

Notice that when we go down in this hierarchy, the parameter type moves toward
types that are higher in the typing system hierarchy, and the return type moves
toward lower types.

o

Kotlin type hierarchy

This is no coincidence. All parameter types in Kotlin function types are con-
travariant, as the name of the in variance modifier suggests. All return types
in Kotlin function types are covariant, as the name of the out variance modifier
suggests.

Exercise: Usage of generic types 17

1in’? 2in out
in out
(contravariance) (covariance)

In this case — as in many other cases — you don’t need to understand variance
modifiers to benefit from using them. You just use the function you would like
to use, and it works. People rarely notice that this would not work in another lan-
guage or with another implementation. This makes a good developer experience.
People don’t attribute this good experience to generic type modifiers, but they
feel that using Kotlin or some libraries is just easier. As library creators, we use
type modifiers to make a good developer experience.

The general rule for using variance modifiers is really simple: type parameters
that are only used for public out-positions (function results and read-only prop-
erty types) should be covariant so they have an out modifier. Type parameters
that are only used for public in-positions (function parameter types) should be
contravariant so they have an in modifier.

Exercise: Usage of generic types

The code below will not compile due to a type mismatch. Which lines will show
compilation errors?

fun takeIntList(list: List<Int>) {}
takeIntList(listOf<Any>())
takeIntList(listOf<Nothing>())

fun takeIntMutablelList(list: MutableList<Int>) {}
takeIntMutableList(mutableListOf<Any>())
takeIntMutableList(mutableListOf<Nothing>())

fun takeAnyList(list: List<Any>) {}
takeAnyList(listOf<Int>())
takeAnyList(listOf<Nothing>())

The Covariant Nothing Object 18

class BoxOut<out T>

fun takeBoxOutInt(box: BoxOut<Int>) {}
takeBoxOutInt(BoxOut<Int>())
takeBoxOutInt (BoxOut<Number>())
takeBoxOutInt (BoxOut<Nothing>())

fun takeBoxOutNumber (box: BoxOut<Number>) {}
takeBoxOutNumber (BoxOut<Int>())
takeBoxOutNumber (BoxOQut<Number>())
takeBoxOutNumber (BoxOut<Nothing>())

fun takeBoxOutNothing(box: BoxOut<Nothing>) {}
takeBoxOutNothing(BoxOut<Int>())
takeBoxOutNothing(BoxOut<Number>())
takeBoxOutNothing(BoxOut<Nothing>())

fun takeBoxOutStar(box: BoxOut<*>) {}
takeBoxOutStar (BoxOut<Int>())
takeBoxOutStar (BoxOut<Number>())
takeBoxOutStar (BoxOut<Nothing>())

class BoxIn<in T>

fun takeBoxInInt(box: BoxIn<Int>) {}
takeBoxInInt(BoxIn<Int>())
takeBoxInInt (BoxIn<Number>())
takeBoxInInt(BoxIn<Nothing>())
takeBoxInInt(BoxIn<Any>())

The Covariant Nothing Object

Consider that you need to define a linked list data structure, which is a type of
collection constructed by two types:

- node, which represents a linked list with at least one element and includes
a reference to the first element (head) and a reference to the rest of the
elements (tail).

- empty, which represents an empty linked list.

In Kotlin, we would represent such a data structure with a sealed class.

The Covariant Nothing Object 19

sealed class LinkedList<T>
data class Node<T>(
val head: T,
val tail: LinkedList<T>
) : LinkedList<T>()
class Empty<T> : LinkedList<T>()

fun main() {
val strs = Node("A", Node("B", Empty()))
val ints = Node(l, Node(2, Empty()))
val empty: LinkedList<Char> = Empty()

There is one problem though: for every linked list, we need a new object to
represent the empty list. Every time we use Empty (), we create a new instance.
We would prefer to have only one instance that would serve wherever we need to
represent an empty linked list. For that, we use object declaration in Kotlin, but
object declarations cannot have type parameters.

sealed class LinkedList<T>
data class Node<T>(
val head: T,
val tail: LinkedList<T>
) : LinkedList<T>()
object Empty<T> : LinkedList<T>() // Error

There is a solution to this problem. We can make the LinkedList type parameter
covariant (by adding the out modifier’). This is perfectly fine for a type that
is only returned, i.e., for all type parameters in immutable classes. Then, we
should make our Empty object extend LinkedList<Nothing>. The Nothing type is
a subtype of all types; so, if the LinkedList type parameter is covariant, then
LinkedList<Nothing> is a subtype of all linked lists.

The Covariant Nothing Object 20

Any LinkedList<Any>
Animal LinkedList<Animal>
Dog LinkedList<Dog>

Nothing —— LinkedList<Nothing>

sealed class LinkedList<out T>
data class Node<T>(
val head: T,
val tail: LinkedList<T>
) : LinkedList<T>()
object Empty : LinkedList<Nothing>()

fun main() {
val strs = Node("A", Node("B", Empty))
val ints = Node(l, Node(2, Empty))
val empty: LinkedList<Char> = Empty

This pattern is used in many places, even in the Kotlin Standard Library. As you
already know, List is covariant because it is read-only. When you create a list
using 1istOf or emptyList, they both return the same object, EmptyList, which
implements List<Nothing>, therefore EmptyList is a subtype of all lists.

The Covariant Nothing Object 21

v S
public fun <T> emptyList(): List<T> = EmptylList

v S
public inline fun <T> 1listOf(): List<T> = emptyList()

internal object EmptylList : List<Nothing>, Serializable, RandomAccess {
private const val serialVersionUID: Long = -7390468764508069838L

override fun equals(other: Any?): Boolean = other is List<*> && other.isEmpty()
override fun hashCode(): Int = 1
override fun toString(): String = "[]"

override val size: Int get() = 0

override fun isEmpty(): Boolean = true

override fun contains(element: Nothing): Boolean = false

override fun containsAll(elements: Collection<Nothing>): Boolean = elements.isEmpty()

Every empty list created with the 1ist0f or emptyList functions from Kotlin stdlib is actually the same
object.

fun main() {
val empty: List<Nothing> = emptyList()
val strs: List<String> = empty
val ints: List<Int> = empty

val other: List<Char> = emptyList()
println(empty === other) // true

This pattern occurs in many places; for instance, when we define generic mes-
sages and some of them don’t need to include any parameters, we should make
them objects.

sealed interface ChangesTrackerMessage<out T>

data class Change<T>(val newValue: T) : ChangesTrackerMessage<T>
data object Reset : ChangesTrackerMessage<Nothing>

data object UndoChange : ChangesTrackerMessage<Nothing>

sealed interface SchedulerMessage<out T>

data class Schedule<T>(val task: Task<T>) : SchedulerMessage<T>
data class Delete(val taskId: String) : SchedulerMessage<Nothing>
data object StartScheduled : SchedulerMessage<Nothing>

data object Reset : SchedulerMessage<Nothing>

Even though this pattern repeats in Kotlin projects, I couldn’t find a name that
would describe it. I decided to name it the “Covariant Nothing Object”. This

The Covariant Nothing Object 22

is not a precise name; a precise description would be “pattern in which the
object declaration implements a generic class or interface with the Nothing type
argument used in the covariant type argument position”. Nevertheless, the name
needs to be short, and “Covariant Nothing Object” is clear and catchy.

Another example of a Covariant Nothing Object comes from a library my team
co-created. It was used to schedule tasks in a microservice environment. For
simplicity, you could assume that each task can be modeled as follows:

data class Task<T>(
val id: String,
val scheduleAt: Instant,
val data: T,
val priority: Int,
val maxRetries: Int? = null

We needed toimplement a mechanism to change scheduled tasks. We also needed
to represent change within a configuration in order to define updates and pass
them around conveniently. The old-school approachisto makea TaskUpdate class
which uses null as a marker which indicates that a specific property should not
change.

data class TaskUpdate<T> (
val id: String? = null,
val scheduleAt: Instant? = null,
val data: T? = null,
val priority: Int? = null,
val maxRetries: Int? = null

This approach is very limiting. Since the null value is interpreted as “do not
change this property”, there is no way to express that you want to set a particular
value to null. Instead, we used a Covariant Nothing Object in our project to
represent a property change. Each property might be either kept unchanged
or changed to a new value. We can represent these two options with a sealed
hierarchy, and thanks to generic types we might expect specific types of values.

The Covariant Nothing Object 23

data class TaskUpdate<T> (
val id: TaskPropertyUpdate<String> = Keep,
val scheduleAt: TaskPropertyUpdate<Instant> = Keep,
val data: TaskPropertyUpdate<T> = Keep,
val priority: TaskPropertyUpdate<Int> = Keep,
val maxRetries: TaskPropertyUpdate<Int?> = Keep

sealed interface TaskPropertyUpdate<out T>
data object Keep : TaskPropertyUpdate<Nothing>
data class ChangeTo<T>(val newValue: T) : TaskPropertyUpdate<T>

val update = TaskUpdate<String>(
id = ChangeTo("456"),
maxRetries = ChangeTo(null), // we can change to null

data = ChangeTo(123), // COMPILATION ERROR

// type mismatch, expecting String

priority = ChangeTo(null), // COMPILATION ERROR
// type mismatch, property is not nullable

This way, we achieved a type-safe and expressive way of representing task
changes. What is more, when we use the Covariant Nothing Object pattern, we
can easily express other kinds of changes as well. For instance, if our library
supports default values or allows a previous value to be restored, we could add
new objects to represent these property changes.

data class TaskUpdate<T>(
val id: TaskPropertyUpdate<String> = Keep,
val scheduleAt: TaskPropertyUpdate<Instant> = Keep,
val data: TaskPropertyUpdate<T> = Keep,
val priority: TaskPropertyUpdate<Int> = Keep,
val maxRetries: TaskPropertyUpdate<Int?> = Keep

sealed interface TaskPropertyUpdate<out T>

data object Keep : TaskPropertyUpdate<Nothing>

data class ChangeTo<T>(val newValue: T) : TaskPropertyUpdate<T>
data object RestorePrevious : TaskPropertyUpdate<Nothing>

data object RestoreDefault : TaskPropertyUpdate<Nothing>

val update = TaskUpdate<String>(
data = ChangeTo("ABC"),

The Covariant Nothing Class 24,

maxRetries = RestorePrevious,
priority = RestoreDefault,

The Covariant Nothing Class

There are also cases where we want a class toimplement a class or interface which
uses the Nothing type argument as a covariant type parameter. Thisisa patternI
call the Covariant Nothing Class. For example, consider the Either class, which
can be either Left or Right and must have two type parameters that specify what
data typesit expects on the Left and on the Right. However, both Left and Right
should each have only one type parameter to specify what type they expect. To
make this work, we need to fill the missing type argument with Nothing.

sealed class Either<out L, out R>
data class Left<out L>(val value: L) : Either<L, Nothing>()
data class Right<out R>(val value: R) : Either<Nothing, R>()

With such definitions, we can create Left or Right without specifying type
arguments.

val left = Left(Error())
val right = Right("ABC")

Both Left and Right can be up-casted to Left and Right with supertypes of the
types of values they hold.

val leftError: Left<Error> = Left(Error())
val leftThrowable: Left<Throwable> = leftError
val leftAny: Left<Any> = leftThrowable

val rightInt = Right(123)
val rightNumber: Right<Number> = rightInt
val rightAny: Right<Any> = rightNumber

They can also be used wherever a result with the appropriate Left or Right type
is expected.

Variance modifier limitations 25

val leftError: Left<Error> = Left(Error())
val rightInt = Right(123)

val el: Either<Error, Int> = leftError
val er: Either<Error, Int> = rightInt

val etnl: Either<Throwable, Number> = leftError
val etnr: Either<Throwable, Number> = rightInt

This, in simplification, is how E1ther is implemented in the Arrow library.

Variance modifier limitations

In Java, arrays are reified and covariant. Some sources state that the reason
behind this decision was to make it possible to create functionslike Arrays: :sort
that make generic operations on arrays of every type.

Integer[] numbers= {1, 4, 2, 3};
Arrays.sort(numbers); // sorts numbers

String[] letters= {"B", "C", "A"};
Arrays.sort(letters); // sorts letters

However, thereisabig problem with this decision. To understand it, let’sanalyze
the following Java operations, which produce no compilation time errors but
throw runtime errors:

// 3Java

Integer[] numbers= {1, 4, 2, 3};

Object[] objects = numbers;

objects[2] = "B"; // Runtime error: ArrayStoreException

As you can see, casting numbers to Object[] didn’t change the actual type used
inside the structure (it is still Integer); so, when we try to assign a value of type
String to this array, an error occurs. This is clearly a Java flaw, but Kotlin pro-
tects us from it by making Array (as well as IntArray, CharArray, etc.) invariant
(so upcasting from Array<Int> to Array<Any> is not possible).

To understand what went wrong in the above snippet, we should understand
what in-positions and out-positions are.

Atypeisusedinanin-position whenitisused asa parameter type. In the example
below, the Dog typeisusedin an in-position. Note that every object type can be up-
casted; so, when we expect a Dog, we might actually receive any of its subtypes,
e.g., a Puppy or a Hound.

Variance modifier limitations 26

open class Dog
class Puppy : Dog()
class Hound : Dog()

fun takeDog(dog: Dog) {}

takeDog(Dog())

takeDog (Puppy())
takeDog (Hound ())

In-positions work well with contravariant types, including the in modifier,
because they allow a type to be transferred to a lower one, e.g., from Dog to Puppy
or Hound. This only limits class use, so it is a safe operation.

open class Dog
class Puppy : Dog()
class Hound : Dog()

class Box<in T> {
private var value: T? = null

fun put(value: T) {
this.value = value

fun main() {
val dogBox = Box<Dog>()
dogBox.put(Dog())

dogBox.put (Puppy())
dogBox.put(Hound())

val puppyBox: Box<Puppy> = dogBox
puppyBox.put (Puppy())

val houndBox: Box<Hound> = dogBox
houndBox.put (Hound())

However, public in-positions cannot be used with covariance, including the
out modifier. Just think what would happen if you could upcast Box<Dog> to
Box<Any?>. If this were possible, you could literally pass any object to the put
method. Can you see the implications of this? That is why it is prohibited in
Kotlin to use a covariant type (out modifier) in public in-positions.

Variance modifier limitations 27

class Box<out T> {
private var value: T? = null

fun set(value: T) { // Compilation Error
this.value = value

fun get(): T = value ?: error("Value not set")

val dogHouse = Box<Dog> ()

val box: Box<Any> = dogHouse

box.set("Some string")

// Is this were possible, we would have runtime error here

This is actually the problem with Java arrays. They should not be covariant
because they have methods, like set, that allow their modification.

Covariant type parameters can be safely used in private in-positions.

class Box<out T> {
private var value: T? = null

private fun set(value: T) { // OK
this.value = value

fun get(): T = value ?: error("Value not set")

Covariance (out modifier) is perfectly safe with public out-positions, therefore
these positions are not limited. This is why we use covariance (out modifier)
for types that are produced or only exposed, and the out modifier is often used
for producers or immutable data holders. Thus, List has the covariant type
parameter, but MutableList must have the invariant type parameter.

There is also a symmetrical problem (or co-problem, as some like to say) for
contravariance and out-positions. Types in out-positions are function result
types and read-only property types. These types can also be up-casted to any
upper type; however, since we are on the other side of an object, we can expect
types that are above the expected type. In the example below, Amphibious isin an
out-position; when we might expect it to be Amphibious, we can also expect it to
be Car or Boat.

Variance modifier limitations 28

open class Car
interface Boat
class Amphibious : Car(), Boat

fun getAmphibious(): Amphibious = Amphibious()

val amphibious: Amphibious = getAmphibious()
val car: Car = getAmphibious()
val boat: Boat = getAmphibious()

Out positions work well with covariance, i.e., the out modifier. Upcasting
Producer<Amphibious> to Producer<Car> or Producer<Boat> limits what we can
expect from the produce method, but the result is still correct.

open class Car
interface Boat
class Amphibious : Car(), Boat

class Producer<out T>(val factory: () -> T) {
fun produce(): T = factory()

fun main() {
val producer: Producer<Amphibious> = Producer { Amphibious() }
val amphibious: Amphibious = producer.produce()
val boat: Boat = producer.produce()
val car: Car = producer.produce()

val boatProducer: Producer<Boat> = producer
val boatl: Boat = boatProducer.produce()

val carProducer: Producer<Car> = producer
val car2: Car = carProducer.produce()

Out-positions do not get along with contravariant type parameters (in
modifier). If Producer type parameters were contravariant, we could up-cast
Producer<Amphibious>to Producer<Nothing>and then expect produce to produce
literally anything, which this method cannot do. That is why contravariant type
parameters cannot be used in public out-positions.

Variance modifier limitations 29

open class Car
interface Boat
class Amphibious : Car(), Boat

class Producer<in T>(val factory: () -> T) {
fun produce(): T = factory() // Compilation Error

fun main() {
val carProducer = Producer<Amphibious> { Car() }
val amphibiousProducer: Producer<Amphibious> = carProducer
val amphibious = amphibiousProducer.produce()
// If not compilation error, we would have runtime error

val producer = Producer<Amphibious> { Amphibious() }

val nothingProducer: Producer<Nothing> = producer

val str: String = nothingProducer.produce()

// If not compilation error, we would have runtime error

You cannot use contravariant type parameters (in modifier) in public out-
positions, such as a function result or a read-only property type.

class Box<in T>(
val value: T // Compilation Error

) 1

fun get(): T = value // Compilation Error
?: error("Value not set")

Again, it is fine when these elements are private:

class Box<in T>(
private val value: T

) {

private fun get(): T = value
?: error("Value not set")

This way, we use contravariance (in modifier) for type parameters
that are only consumed or accepted. A well-known example is
kotlin.coroutines.Continuation:

UnsafeVariance annotation 30

public interface Continuation<in T> {
public val context: CoroutineContext
public fun resumeWith(result: Result<T>)

Read-write property types are invariant, so public read-write properties support
neither covariant nor contravariant types.

class Box<in T1l, out T2> {
var vl: Tl // Compilation error
var v2: T2 // Compilation error

UnsafeVariance annotation

Every good rule must have some exceptions. In general, using covariant type
parameters (out modifier) in public in-positions is considered unsafe, therefore
such a situation blocks code compilation. Still, there are situations where we
would like to do this anyway because we know we will do it safely. A good example
1S List.

As we have already explained, the type parameter in the List interface is covari-
ant (out modifier), and this is conceptually correct because it is a read-only inter-
face. However, it uses this type of parameter in some public in-positions. Just
consider the contains or index0f methods: they use covariant type parameters
in a public in-position, which is a clear violation of the rules we just explained.

fun main() {
val 1: List<String> = listOf("A", "B", "C")
1

} v size Int
@ contains(element: String) Boolean
@ get (index: Int) String
@ [](index: Int) String
@ index0f (element: String) Int
» lastIndexOf (element: String) Int

How is that possible? According to the previous section, it should not be possible.
The answer is the unsafevariance annotation, which is used to turn off the
aforementioned limitations. Itislike saying, “Iknowitis unsafe, butI know what
I'm doing and I will use this type safely”.

Variance modifier positions 31

public interface List<out E> : Collection<E> {
// Query Operations

override val size: Int

override fun isEmpty(): Boolean

override fun contains(element: @UnsafeVariance E): Boolean
override fun iterator(): Iterator<E>

// Bulk Operations
override fun containsAll(elements: Collection<gUnsafeVariance E>): Boolean

// Positional Access Operations
Returns the element at the specified index in the list

public operator fun get(index: Int): E

// Search Operations

Returns the ind

element is not contain

public fun indexOf(element: gUnsafeVariance E): Int

Returns the inc
element is not

irrence of the specified element in the list, o f the specifiec

public fun lastIndexOf(element: @UnsafeVariance E): Int

It is ok to use UnsafeVariance for methods like contains or index0f because
their parameters are only used for comparison, and their arguments are not set
anywhere or returned by any public functions. They could also be of type Any?,
and the type of those parameters is only specified so that a user of these methods
knows what kind of value should be used as an argument.

Variance modifier positions

Variance modifiers can be used in two positions?. The first one, the declaration
side, is more common and is a modifier on the class or interface declaration. It
will affect all the places where the class or interface is used.

// Declaration-side variance modifier
class Box<out T>(val value: T)

val boxStr: Box<String> = Box("Str")
val boxAny: Box<Any> = boxStr

The other position is the use-site, which is a variance modifier for a particular
variable.

2This is also called mixed-site variance.

Variance modifier positions 32

class Box<T>(val value: T)

val boxStr: Box<String> = Box("Str'")
// Use-site variance modifier
val boxAny: Box<out Any> = boxStr

We use use-site variance when, for some reason, we cannot provide variance
modifiers for all the types generated by a class or an interface, yet we need
some variance for one specific type. For instance, MutableList cannot have the
in modifier because then its method’s result types would return Any? instead of
the actual element type. Still, for a single parameter type we can make its type
contravariant (in modifier) to allow any collections that can accept a type:

interface Dog

interface Pet

data class Puppy(val name: String) : Dog, Pet
data class Wolf(val name: String) : Dog

data class Cat(val name: String) : Pet

fun fillwithPuppies(list: MutableList<in Puppy>) {
list.add(Puppy ("Jim"))
list.add (Puppy("Beam"))

fun main() {
val dogs = mutablelListOf<Dog>(Wolf("Pluto"))
fillwWithPuppies(dogs)
println(dogs)
// [Wolf(name=Pluto), Puppy(name=Jim), Puppy(name=Beam)]

val pets = mutablelListOf<Pet>(Cat("Felix"))
fillWithPuppies(pets)

println(pets)

// [Cat(name=Felix), Puppy(name=Jim), Puppy(name=Beam)]

Note that some positions are limited when we use variance modifiers. When
we have MutableList<out T>, we can use get to get elements, and we receive
an instance typed as T, but we cannot use set because it expects us to pass an
argument of type Nothing. This is because a list with any subtype of T might be
passed there, including the subtype of every type that is Nothing. When we use
MutablelList<in T>, we can use both get and set; however, when we use get,
the returned type is Any? because there might be a list with any supertype of T,
including the supertype of every type that is Any?. Therefore, we can freely use

Summary 33

out when we only read from a generic object, and we can freely use in when we
only modify that generic object.

Star projection

On the use-site, we can also use the star » instead of a type argument to signal that
it can be any type. This is known as star projection.

if (value 1is List<x>) {

Star projection should not be confused with the Any? type. It is true that List<x>
effectively behaves like List<Any?>, but this is only because the associated type
parameter is covariant. It might also be said that Consumer<x> behaves like
Consumer<Nothing> if the Consumer type parameter is contravariant. However,
the behavior of Consumer<x> is nothing like Consumer<aAny?>, and the behavior of
List<*> is nothing like List<Nothing>. The most interesting case is MutableList.
As you might guess, MutablelList<Any?> returns Any? as a result in methods like
get Oor removeAt, but it also expects Any? as an argument for methods like add or
set. On the other hand, MutableList<*> returns Any? as a result in methods like
getor removeAt, butit expectsNothingasan argument for methodslike add or set.
This means MutableList<*> can return anything but accepts (literally) nothing.

Use-site type In-position type Out-position type

T T T

out T Nothing T

in T T Any?

* Nothing Any?
Summary

Every Kotlin type parameter has some variance:

+ The default variance behavior of a type parameter is invariance. If, in
Box<T>, type parameter T is invariant and A is a subtype of B, then there is
no relation between Box<A> and Box.

+ The out modifier makes a type parameter covariant. If, in Box<T>, type
parameter T is covariant and A is a subtype of B, then Box<A> is a subtype
of Box. Covariant types can be used in public out-positions.

Exercise: Generic Response 34

+ The in modifier makes a type parameter contravariant. If, in Box<T>, type
parameter T is contravariant and A is a subtype of B, then Cup is a
subtype of Cup<A>. Contravariant types can be used in public in-positions.

In Kotlin, it is also good to know that:

- Type parameters of List and Set are covariant (out modifier). So, for
instance, we can pass any list where List<Any> is expected. Also, the type
parameter representing the value type in Map is covariant (out modifier).
Type parameters of Array, MutableList, MutableSet, and MutableMap are
invariant (no variance modifier).

- Infunction types, parameter types are contravariant (in modifier), and the
return type is covariant (out modifier).

+ Weuse covariance (out modifier) for types that are only returned (produced
or exposed).

- We use contravariance (in modifier) for types that are only accepted (con-
sumed or set).

Exercise: Generic Response

Youneeded to model a response from a server that can be represented as a success
orafailure, both of which contain data of a generic type. Thisis how you modeled
it:

sealed class Response<R, E>
class Success<R, E>(val value: R) : Response<R, E>()
class Failure<R, E>(val error: E) : Response<R, E>()

However, you found that this implementation is problematic. To create a Success
object, you need to provide two generic types, but you only need one. To create
a Failure object, you need to provide two generic types, but you only need one.
Your task is to fix this problem.

val rsi Success(1l) // Compilation error

val rs2 Success("ABC") // Compilation error
val rel = Failure(Error()) // Compilation error
Failure("Error") // Compilation error

val re2

You need to define Success and Failure in a way that each can be created with
only one generic type argument. You want to be able to use Success and Failure
without specifying generic types, so just use Success (1) or Failure("Error").

Exercise: Generic Consumer 35

You also want to allow Success<Int> to be upcast to Success<Number> or to
Success<Any>, and Failure<Error> to be upcast to Failure<Throwable> or
to Failure<Any>. You want to be able to use Success<Int> as Response<Int,
Throwable>.

val rsl = Success(1l)

val rs2 = Success("ABC")
val rel = Failure(Error())
val re2 = Failure("Error'")

val rs3: Success<Number> = rsl
val rs4: Success<Any> = rsl

val re3: Failure<Throwable> = rel
val re4: Failure<Any> = rel

val rl: Response<Int, Throwable> rsi

val r2: Response<Int, Throwable> = rel

Starting code and example usage can be found in the MarcinMoskala/kotlin-
exercises project on GitHub in the file advanced/generics/Response.kt. You can
clone this project and solve this exercise locally.

Exercise: Generic Consumer

Inyour project, you use a class that represents a consumer of some type. You have
two implementations of this class: Printer and Sender. A printer that can accept
Number should also accept Int and Double. A sender that can accept Int should also
accept Number and Any. In general, aconsumer that can accept T should also accept
sifitisasubtype of T. Update the Consumer, Printer and Sender classes to achieve
this.

abstract class Consumer<T> {
abstract fun consume(elem: T)

class Printer<T> : Consumer<T>() {
override fun consume(elem: T) {

/7

class Sender<T> : Consumer<T>() {

Exercise: Generic Consumer 36

override fun consume(elem: T) {

/7

Example usage:

val pl = Printer<Number>()
val p2: Printer<Int> = pl
val p3: Printer<Double> = pl

val sl = Sender<Any>()
val s2: Sender<Int> = sl
val s3: Sender<String> = sl

val cl: Consumer<Number> = pl
val c2: Consumer<Int> = pl
val c3: Consumer<Double> = pl

Starting code and example usage can be found in the MarcinMoskala/kotlin-
exercises project on GitHub in the file advanced/generics/Consumer.kt. You can
clone this project and solve this exercise locally.

Interface delegation

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

The delegation pattern

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Delegation and inheritance

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Kotlin interface delegation support

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Wrapper classes

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

The decorator pattern

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

37

http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin

Intersection types 38

Intersection types

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Limitations

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Conflicting elements from parents

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Summary

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Exercise: ApplicationScope

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin

Property delegation

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

How property delegation works

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Other getvalue and setValue parameters

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Implementing a custom property delegate

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Provide a delegate

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Property delegates in Kotlin stdlib

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

39

http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin

The notNull delegate 40

The notNull delegate

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Exercise: Lateinit delegate

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

The lazy delegate

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Exercise: Blog Post Properties

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

The observable delegate

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

The vetoable delegate

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

A map as a delegate

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin

Review of how variables work 41

Review of how variables work

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Summary

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Exercise: Mutable lazy delegate

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin

Kotlin Contracts

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

The meaning of a contract

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

How many times do we invoke a function from an
argument?

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Implications of the fact that a function has returned
a value

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Using contracts in practice

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Summary

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

42

http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin

Exercise: Coroutine time measurement 43

Exercise: Coroutine time measurement

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

http://leanpub.com/advanced_kotlin

Part 2: Kotlin on different platforms

Kotlinisamultiplatform language. It means that you can write code once and run
it on different platforms. This is a powerful feature, especially when you want
to share the business logic between different platforms, like Android, iOS, and
the web. But with great power comes great responsibility. Interoperability with
each platform has its own challenges. In this part, we will explore how to write
multiplatform code and how to deal with interoperability between Kotlin and
other languages.

44

Java interoperability

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Nullable types

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Kotlin type mapping

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

JVM primitives

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Collection types

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Annotation targets

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

45

http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin

Static elements 46

Static elements

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

JvmField

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Using Java accessors in Kotlin

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

JvmName

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

JvmMultifileClass

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

JvmOverloads

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Unit

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin

Function types and function interfaces 47

Function types and function interfaces

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Tricky names

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Throws

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

JvmRecord

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Summary

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Exercise: Adjust Kotlin for Java usage

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin

Using Kotlin Multiplatform

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Multiplatform module configuration

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Expect and actual elements

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Possibilities

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Multiplatform libraries

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

A multiplatform mobile application

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

ViewModel class

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

48

http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin

Summary 49

Platform-specific classes

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Observing properties

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Summary

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Exercise: Multiplatform LocalDateTime

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin

JavaScript interoperability

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Setting up a project

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Using libraries available for Kotlin/JS

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Using Kotlin/JS

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Building and linking a package

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Distributing a package to npm

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

50

http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin

Exposing objects 51

Exposing objects

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Exposing Flow and StateFlow

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Adding npm dependencies

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Frameworks and libraries for Kotlin/JS

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

JavaScript and Kotlin/JS limitations

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Summary

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Exercise: Migrating a Kotlin/JVM project to KMP

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin

Part 3: Metaprogramming

Some tools and libraries analyze your code to help with programming. They can
generate code, analyze it, or even modify it. This is called metaprogramming.
In this part, we will explore different ways of how to use metaprogramming in
Kotlin. Those techniques can help you understand how popular libraries work,
since they are used by many of them. This can help you better understand how to
use them and how to write your own libraries.

52

Reflection

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Hierarchy of classes

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Function references

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Parameter references

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Property references

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Class reference

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

53

http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin

Serialization example 54,

Serialization example

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Referencing types

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Type reflection example: Random value

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Kotlin and Java reflection

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Breaking encapsulation

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Summary

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Exercise: Function caller

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin

Exercise: Object serialization to JSON 55

Exercise: Object serialization to JSON

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Exercise: Object serialization to XML

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Exercise: DSL-based dependency injection library

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin

Annotation processing

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Your first annotation processor

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Hiding generated classes

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Summary

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Exercise: Annotation Processing execution
measurement wrapper

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

56

http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin

Kotlin Symbol Processing

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Your first KSP processor

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Testing KSP

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Dependencies and incremental processing

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Multiple rounds processing

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Using KSP on multiplatform projects

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

57

http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin

Summary 58

Summary

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Exercise: KSP execution measurement wrapper

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin

Kotlin Compiler Plugins

The Kotlin Compiler is a program that compiles Kotlin code but is also used by
the IDE to provide analytics for code completion, warnings, and much more. Like
many programs, the Kotlin Compiler can use plugins that change its behavior.
We define a Kotlin Compiler plugin by extending a special class, called an ex-
tension, and then register it using a registrar. Each extension is called by the
compiler in a certain phase of its work, thereby potentially changing the result
of this phase. For example, you can register a plugin that will be called when
the compiler generates supertypes for a class, thus adding additional supertypes
to the result. When we write a compiler plugin, we are limited to what the
supported extensions allow us to do. We will discuss the currently available
extensions soon, but let’s start with some essential knowledge about how the
compiler works.

Compiler frontend and backend

Kotlin is a multiplatform language, which means the same code can be used
to generate low-level code for different platforms. It is reasonable that Kotlin
Compileris divided into two big parts:

« Frontend, responsible for parsing and transforming Kotlin code into a
representation that can be interpreted by the backend and used for Kotlin
code analysis.

- Backend, responsible for generating actual low-level code based on the
representation received from the frontend.

The compiler frontend is independent of the target, and its results can be reused
when we compile a multiplatform module. However, there is a revolution going
on at the moment because a new K2 frontend is replacing the older K1 frontend.

The compiler backend is specific to your compilation target, so there is a separate
backend for JVM, JS, Native, and WASM. They have some shared parts, but they
are essentially different.

59

Compiler frontend and backend 60

Frontend Backend

JVM backend

_» K1 frontend k=

e S JSbackend | ——— s
=l K2 frontend
. [N
Native | ,
backend S0

Compiler frontend is responsible for parsing and analyzing Kotlin code and transforming it into a repre-
sentation that is sent to the backend, on the basis of which the backend generates platform-specific files.
The frontend is target-independent, but there are two frontends: older K1, and newer K2. The backend is
target-specific.

When you use Kotlin in an IDE like IntelliJ, the IDE shows you warnings, errors,
component usages, code completions, etc., but IntelliJ itself doesn’t analyze
Kotlin: all these features are based on communication with the Kotlin Compiler,
which has a special API for IDEs, and the frontend is responsible for this commu-
nication.

Each backend variant shares a part that generates Kotlin intermediate represen-
tation from the representation provided by the frontend (in the case of K2, it is
FIR, which means frontend intermediate representation). Platform-specific files
are generated based on this representation.

Compiler extensions 61

[y

kt

Y

Frontend

Syntax tree +
semantic info

JVM backend Js backend | —— . Native backend

iR generator + optimizel:‘

IR ' IR ; IR
¥ 1 ! Y i : i
JVM bytecode JavaScript LLVM code
' generator + ' : generator + ! ! generator +
i optimizer i i optimizer i optimizer

______________ i /\\ t

[[y w w
J - -

Each backend shares a part that transforms the representation provided by the frontend into Kotlin
intermediate representation, which is used to generate target-specific files.

You can find detailed descriptions of how the compiler frontend and the com-
piler backend work in many presentations and articles, like those by Amanda
Hinchman-Dominguez or Mikhail Glukhikh. I won’t go into detail here because
we’ve already covered everything we need in order to talk about compiler plug-
ins.

Compiler extensions

Kotlin Compiler extensions are also divided into those for the frontend or the
backend. All the frontend extensions start with the Fir prefix and end with
the Extension suffix. Here is the complete list of the currently supported K2
extensions®:

+ FirStatusTransformerExtension-called when an element status (visibility,
modifiers, etc.) is established and allows it to be changed. The All-open

3K1 extensions are deprecated, so I will just skip them.

Compiler extensions 62

compiler plugin uses it to make all classes with appropriate annotations
open by default (e.g., used by Spring Framework).

+ FirDeclarationGenerationExtension - can specify additional declarations
to be generated for a Kotlin file. Its different methods are called at different
phases of compilation and allow the generation of different kinds of ele-
ments, like classes or methods. Used by many plugins, including the Kotlin
Serialization plugin, to generate serialization methods.

+ FirAdditionalCheckersExtension - allows the specification of additional
checkers that will be called when the compiler checks the code; it can also
report additional errors or warnings that can be visualized by IntelliJ.

+ FirSupertypeGenerationExtension - called when the compiler generates
supertypes for a class and allows additional supertypes to be added. For
instance, if the class A inherits from B and implements ¢, and the extension
decides it should also have supertypes D and F, then the compiler will
consider A to have supertypes B, C, D and F. Used by many plugins, including
the Kotlin Serialization plugin, which uses it to make all classes annotated
with the Serializer annotation have an implicit KSerializer supertype
with appropriate type arguments.

« FirTypeAttributeExtension-allowsanattribute tobeadded toatypebased
on an annotation or determines an annotation based on an attribute. Used
by the experimental Kotlin Assignment plugin, which allows a number
type to be annotated as either positive or negative and then uses this
information to throw an error if this contract is broken. Works with the
code of libraries used by our project.

+ FirExpressionResolutionExtension - can be used to add an implicit exten-
sion receiver when a function is called. Used by the experimental Kotlin
Assignment plugin, which injects Algebra<T> as an implicit receiver if
injectAlgebra<T> () is called.

+ FirSamConversionTransformerExtension - called when the compiler con-
verts a Java SAM interface to a Kotlin function type and allows the result
type to be changed. Used by the SAM-with-receiver compiler pluginto
generate a function type with a receiver instead of a regular function type
for SAM interfaces with appropriate annotation.

« FirAssignExpressionAltererExtension - allows a variable assignment to
be transformed into any kind of statement. Used by the experimental
Kotlin Assignment plugin, which allows the assignment operator to be
overloaded.

+ FirFunctionTypeKindExtension - allows additional function types to be
registered. Works with the code of libraries used by our project.

* FirDeclarationsForMetadataProviderExtension - currently allows
additional declarations to be added in Kotlin metadata. Used by the
Kotlin Serialization plugin to generate a deserialization constructor or a
method to write itself. Its behavior might change in the future.

Compiler extensions 63

+ FirScriptConfiguratorExtension-currently called when the compiler pro-
cesses a script; it also allows the script configuration to be changed. Its
behavior might change in the future.

+ FirExtensionSessionComponent - currently allows additional extension ses-
sion components to be added for a session. In other words, it allows a
component to be registered so that it can be reused by different extensions.
Used by many plugins. For instance, the Kotlin Serialization plugin uses it
to register a component that keeps a cache of serializers in a file or KClass
first from file annotation. Its behavior might change in the future.

Beware! In this chapter we only discuss K2 frontend extensions be-
cause the K1 frontend is deprecated and will be removed in the future.
However, the K2 compiler frontend is currently not used by default.
To use it, you need to have at least Kotlin version 1.9.0-Beta and add
the -Pkotlin.experimental.tryk2=true compiler option.

As you can see, these plugins allow us to apply changes to compilation and
analysis. They can be used to show a warning or break compilation with an
error. They can also be used to change the visibility of specific elements, thus
influencing the behavior of the resulting code and suggestions in IDE.

Regarding the backend, there is only one extension: IrGenerationExtension. It
is used after IR (Kotlin intermediate representation) is generated from the FIR
(frontend intermediate representation) but before it is used to generate platform-
specific files. IrGenerationExtension is used to modify the IR tree. This means
that IrGenerationExtension can change absolutely anything in the generated
code, but using it is hard as we can easily introduce breaking changes, so it
must beused with great care. Also, IrGenerationExtensioncannotinfluence code
analysis, so it cannot impact IDE suggestions, warnings, etc.

Popular compiler plugins 64

FIR

IR generator + optimizer

IR

Y

Backend Plugins

IR
Y

Backend generators

.class/ .js/ .s0

Backend plugin extensions are used after IR (Kotlin Intermediate Representation) is generated from the FIR
(frontend intermediate representation), but before it is used to generate platform-specific files.

I want to make it clear that the backend cannot influence IDE analysis. If you
use IrGenerationExtension to add a method to a class, you won'’t be able to call
it directly in IntelliJ because it won’t recognize such a method, so you will only
be able to call it using reflection. In contrast, a method added to a class using the
frontend FirDeclarationGenerationExtension can be used directly because the
IDE knows about its existence.

The majority of popular Kotlin plugins require multiple extensions, both fron-
tend and backend. For instance, Kotlin Serialization uses backend extensions to
generate all the functions for serialization and deserialization; on the other hand,
it uses frontend extensions to add implicit supertypes, checks and declarations.

This is the essential knowledge about Kotlin Compiler plugins. To make it a bit
more practical, let’s take a look at a couple of examples.

Popular compiler plugins

Many compiler plugins and libraries that use compiler plugins are already avail-
able. The most popular ones are:

+ Kotlin Serialization - a plugin that generates serialization methods for
Kotlin classes. It’s multiplatform and very efficient because it uses a com-
piler plugin instead of reflection.

Making all classes open 65

- Jetpack Compose - a popular UI framework that uses a compiler plugin
to support its view element definitions. All the composable functions are
transformed into a special representation that is then used by the frame-
work to generate the UI.

+ Arrow Meta - a powerful plugin introducing support for features known
from functional programming languages, like optics or refined types. It
also supports Aspect Oriented Programming.

+ Parcelize - a plugin that generates Parcelable implementations for Kotlin
classes. It uses a compiler plugin to add appropriate methods to existing
classes.

- All-open - a plugin that makes all classes with appropriate annotations
open by default. The Spring Framework uses it to make all classes with
@Component annotation open by default (to be able to create proxies for
them).

The majority of plugins use more than one extension, so let’s consider the simple
Parcelize plugin, which uses only the following extensions:

+ IrGenerationExtension to generate functions and properties that are used
under the hood.

+ FirDeclarationGenerationExtension to generate the functions required
for the project to compile.

* FirAdditionalCheckersExtensionto show errorsand warnings.

Kotlin compiler pluginsare defined in build.gradle(.kts) in the plugins section:

plugins {
id("kotlin-parcelize")

}

Some plugins are distributed as part of individual Gradle plugins.

Making all classes open

We’ll start our journey with a simple task: make all classes open. This behavior is
inspired by the AllOpen plugin, which opensall classes annotated with one of the
specified annotations. However, our example will be simpler as we will just open
all classes.

As a dependency, we only need kotlin-compiler-embeddable that offers us the
classes we can use for defining plugins.

Making all classes open 66

Just like in KSP or Annotation Processing, we need to add a file to
resources/META-INF/services with the registrar’s name. The name of this file
should be org.jetbrains.kotlin.compiler.plugin.CompilerPluginRegistrar,
which is the fully qualified name of the CompilerPluginRegistrar class. Inside it,
you should place the fully qualified name of your registrar class. In our case, this
will be com.marcinmoskala.AllOpenComponentRegistrar.

// org.jetbrains.kotlin.compiler.plugin.
// CompilerPluginRegistrar
com.marcinmoskala.AllOpenComponentRegistrar

Our AllOpenComponentRegistrar registrar needs to register an extension regis-
trar (we’ll call it FirAllOpenExtensionRegistrar), which registers our extension.
Note that the registrar has access to the configuration so that we can pass pa-
rameters to our plugin, but we don’t need this configuration now. Our extension
is just a class that extends FirStatusTransformerExtension; it has two methods:
needTransformStatus and transformStatus. The former determines whether the
transformation should be applied; the latter applies it. In our case, we apply our
extension to all classes, and we change their status to open, regardless of what
this status was before.

@file:0OptIn(ExperimentalCompilerApi::class)

class AllOpenComponentRegistrar : CompilerPluginRegistrar() {
override fun ExtensionStorage.registerExtensions(
configuration: CompilerConfiguration
) {
FirExtensionRegistrarAdapter
.registerExtension(FirAllOpenExtensionRegistrar())

override val supportsk2: Boolean
get() = true

class FirAllOpenExtensionRegistrar : FirExtensionRegistrar(){
override fun ExtensionRegistrarContext.configurePlugin() {
+::FirAllOpenStatusTransformer

class FirAllOpenStatusTransformer (
session: FirSession
) : FirStatusTransformerExtension(session) {

Changing a type 67

override fun needTransformStatus(
declaration: FirDeclaration
): Boolean = declaration is FirRegularClass

override fun transformStatus/(
status: FirDeclarationStatus,
declaration: FirDeclaration

): FirDeclarationStatus =
status.transform(modality = Modality.OPEN)

This is just a simplified version, but the actual AllOpen plugin is slightly more
complicated as it only opens classes that are annotated with one of the specified
annotations. For that, FirAll0penExtensionRegistrar registers a plugin that is
used by FirAllOpenStatusTransformer to determine if a specific class should be
opened or not. If you are interested in the details, see the AllOpen plugin in the
plugins folder in the Kotlin repository.

Changing a type

Our following example will be the SAM-with-receiver compiler plugin,
which changes the type of function types generated from SAM interfaces
with appropriate annotations to function types with a receiver. It uses the
FirSamConversionTransformerExtension, which is quite specific to this plugin
because it is only called when a SAM interface is converted to a function type,
and it allows the type that will be generated to be changed. This example is
interesting because it adds a type that will be recognized by the IDE and can be
used directly in code. The complete implementation can be found in the Kotlin
repository in the plugins/sam-with-receiver folder, but here I only want to
show a simplified implementation of this extension:

class FirScriptSamWithReceiverConventionTransformer (
session: FirSession
) : FirSamConversionTransformerExtension(session) {
override fun getCustomFunctionTypeForSamConversion(
function: FirSimpleFunction
): ConelLookupTagBasedType? {
val containingClassSymbol = function
.containingClassLookupTag()
?.toFirRegularClassSymbol(session)
?: return null

return if (shouldTransform(it)) {

Generate function wrappers 68

val parameterTypes = function.valueParameters
.map { it.returnTypeRef.coneType }

if (parameterTypes.isEmpty()) return null

createFunctionType(
getFunctionType(it),
parameters = parameterTypes.drop(l),
receiverType = parameterTypes[0],
rawReturnType = function.returnTypeRef

.coneType
)
} else null

/7

If the getCustomFunctionTypeForSamConversion function doesn’t return null, it
overrides the type that will be generated for a SAM interface. In our case, we de-
termine whether the function should be transformed; if so, we create a function
type with a receiver by using the createFunctionType function. There are builder
functions that help us to create many elements that are represented in FIR.
Examples include buildSimpleFunction or buildRegularClass, and most of them
offer a simple DSL. Here, the createFunctionType function creates a function
type with a receiver representation of type ConeLookupTagBasedType, which will
replace automatically generated types from a SAM interface. In essence, this is
how this plugin works.

Generate function wrappers

Let’s consider the following problem: Kotlin suspend functions can only be called
in Kotlin code. This means that if you want to call a suspend function from Java,
you can use, for example, runBlocking to wrap it in a regular function that calls
the suspend function in a coroutine.

suspend fun suspendFunction() = ...

fun blockingFunction() = runBlocking { suspendFunction() }

We might use a plugin to generate such wrappers over suspend functions auto-
matically using either a backend or a frontend plugin.

A backend plugin would require an extension for IrGenerationExtension that
generates an additional wrapper function in IR for the appropriate function.

Example plugin implementations 69

These wrapper functions will be present in the generated platform-specific code
and are therefore available for Java, Groovy, and other languages. The problem
is that these wrapper classes will not be visible in Kotlin code. This is fine if
our wrapper functions are meant to be used from other languages anyway, but
we need to know about this serious limitation. There is an open-source plugin
called kotlin-jvm-blocking-bridge that generates blocking wrappers for suspend
functions using a backend plugin; you can find its source code under the link
github.com/Him188/kotlin-jvm-blocking-bridge.

A frontend plugin would require an extension for the class
FirDeclarationGenerationExtension to generate wrapper functions for the
appropriate suspend functions in FIR. These additional functions would then be
used to generate IR and finally platform-specific code. Those functions would
also be visible in IntelliJ, so we would be able to use them in both Kotlin and Java.
However, such a plugin would only work with the K2 compiler, so since Kotlin
2.0. To support the previous language version, we need to define an additional
extension that supports K1.

Example plugin implementations

Kotlin Compiler Plugins are currently not documented, and generated elements
must respect many restrictions for our code to not break, so defining custom
pluginsis quite hard. If you want to define your own plugin, my recommendation
isto first get the Kotlin Compiler sources and then analyze the existing pluginsin
the plugins folder.

Summary 70

- plugins

» allopen [kotlin-allopen-compiler-plugin]

* android-extensions

» assign-plugin [kotlin-assignment-compiler-plugin]

» atomicfu

> fir-plugin-prototype

> imports-dumper [kotlin-imports-dumper-compiler-plugin]
» jvm-abi-gen

» kapt3

» kotlink-serialization [kotlinx-serialization-compiler-plugin]
» lombok [kotlin-lombok-compiler-plugin]

> noarg [kotlin-noarg-compiler-plugin]

» parcelize

» pill

> sam-with-receiver [kotlin-sam-with-receiver-compiler-plugin]
> scripting

This folder includes not only K2 plugins but also K1 and KSP-based plugins. We
are only interested in K2 plugins, so you can ignore the rest.

Alist of all the supported extensions can be found in the FirExtensionRegistrar
class. To analyze how the compiler uses an extension, you can search for the
usage of its open methods. To do this, hit command/Ctrl and click on a method
name to jump to its usage. This should show you where the Kotlin Compiler uses
this extension. Beware, though, that all the knowledge that is not documented is
more likely to change in the future.

Summary

As you can see, the capabilities of Kotlin Compiler Plugins are determined by
the extensions supported by the Kotlin Compiler. On the compiler’s frontend,
these extension capabilities are limited, so there is currently only a specific set
of things that can be done on the frontend with Kotlin Compiler Plugins. On the
compiler backend, you can change generated IR representation in any way; this
offers many possibilities but can also easily cause breaking changes in your code.

Kotlin Compiler Plugins technology is still young, undocumented, and changing.
It should be used with great care as it can easily break your code, but it is
also extremely powerful and offers possibilities beyond comprehension. Jetpack
Compose is a great example. I have only been able to share with you the general

Summary 71

idea of how Kotlin Compiler Plugins work and what they can do, but I hope it is
enough for you to understand the key concept and possibilities.

In the next chapter, we will talk about another tool that helps with code devel-
opment: static code analyzers. On the one hand, it is more limited than KSP or
Compiler Plugins because it cannot generate any code; on the other hand, static
code analyzers are also extremely powerful as they can seriously influence our
development process and help us improve our actual code.

Static Code Analysers

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

What are Static Analysers?

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Types of analysers

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Formatters

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Code Quality Analysers

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Data-Flow Analysers

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Code Manipulation

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

72

http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin

Kotlin Code Analysers 73

Embedded vs Standalone

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Kotlin Code Analysers

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Kotlin Compiler

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Intelli) IDEA

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

ktlint

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

ktfmt

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Android Lint

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

detekt

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin

Setting up detekt 74

Setting up detekt

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

detekt Rules and Rulesets

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Configuring detekt

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Incremental Adoption

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Writing your first detekt Rule

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Setting up your rule project

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Coding your rule

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Using your rule

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin

Conclusion 75

Rules with type resolution

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Conclusion

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin

Ending

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

76

http://leanpub.com/advanced_kotlin

Exercise solutions

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Solution: Usage of generic types

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Solution: Generic Response

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Solution: Generic Consumer

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Solution: ApplicationScope

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Solution: Lateinit delegate

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Solution: Blog Post Properties

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Solution: Mutable lazy delegate

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

77

http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin

78

Solution: Coroutine time measurement

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Solution: Adjust Kotlin for Java usage

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Solution: Multiplatform LocalDateTime

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Solution: Migrating a Kotlin/JVM project to KMP

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Solution: Function caller

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Solution: Object serialization to JSON

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Solution: Object serialization to XML

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Solution: DSL-based dependency injection library

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin

79

Solution: Annotation Processing execution measurement
wrapper

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

Solution: KSP execution measurement wrapper

This content is not available in the sample book. The book can be purchased on
Leanpub at http://leanpub.com/advanced_kotlin.

http://leanpub.com/advanced_kotlin
http://leanpub.com/advanced_kotlin

	Table of Contents
	Introduction
	Who is this book for?
	The structure of this book
	That will be covered?
	The Kotlin for Developers series
	Conventions
	Code conventions
	Exercises and solutions
	Acknowledgments

	Part 1: Advanced Kotlin features
	Generic variance modifiers
	List variance
	Consumer variance
	Function types
	Exercise: Usage of generic types
	The Covariant Nothing Object
	The Covariant Nothing Class
	Variance modifier limitations
	UnsafeVariance annotation
	Variance modifier positions
	Star projection
	Summary
	Exercise: Generic Response
	Exercise: Generic Consumer

	Interface delegation
	The delegation pattern
	Delegation and inheritance
	Kotlin interface delegation support
	Wrapper classes
	The decorator pattern
	Intersection types
	Limitations
	Conflicting elements from parents
	Summary
	Exercise: ApplicationScope

	Property delegation
	How property delegation works
	Other getValue and setValue parameters
	Implementing a custom property delegate
	Provide a delegate
	Property delegates in Kotlin stdlib
	The notNull delegate
	Exercise: Lateinit delegate
	The lazy delegate
	Exercise: Blog Post Properties
	The observable delegate
	The vetoable delegate
	A map as a delegate
	Review of how variables work
	Summary
	Exercise: Mutable lazy delegate

	Kotlin Contracts
	The meaning of a contract
	How many times do we invoke a function from an argument?
	Implications of the fact that a function has returned a value
	Using contracts in practice
	Summary
	Exercise: Coroutine time measurement

	Part 2: Kotlin on different platforms
	Java interoperability
	Nullable types
	Kotlin type mapping
	JVM primitives
	Collection types
	Annotation targets
	Static elements
	JvmField
	Using Java accessors in Kotlin
	JvmName
	JvmMultifileClass
	JvmOverloads
	Unit
	Function types and function interfaces
	Tricky names
	Throws
	JvmRecord
	Summary
	Exercise: Adjust Kotlin for Java usage

	Using Kotlin Multiplatform
	Multiplatform module configuration
	Expect and actual elements
	Possibilities
	Multiplatform libraries
	A multiplatform mobile application
	Summary
	Exercise: Multiplatform LocalDateTime

	JavaScript interoperability
	Setting up a project
	Using libraries available for Kotlin/JS
	Using Kotlin/JS
	Building and linking a package
	Distributing a package to npm
	Exposing objects
	Exposing Flow and StateFlow
	Adding npm dependencies
	Frameworks and libraries for Kotlin/JS
	JavaScript and Kotlin/JS limitations
	Summary
	Exercise: Migrating a Kotlin/JVM project to KMP

	Part 3: Metaprogramming
	Reflection
	Hierarchy of classes
	Function references
	Parameter references
	Property references
	Class reference
	Serialization example
	Referencing types
	Type reflection example: Random value
	Kotlin and Java reflection
	Breaking encapsulation
	Summary
	Exercise: Function caller
	Exercise: Object serialization to JSON
	Exercise: Object serialization to XML
	Exercise: DSL-based dependency injection library

	Annotation processing
	Your first annotation processor
	Hiding generated classes
	Summary
	Exercise: Annotation Processing execution measurement wrapper

	Kotlin Symbol Processing
	Your first KSP processor
	Testing KSP
	Dependencies and incremental processing
	Multiple rounds processing
	Using KSP on multiplatform projects
	Summary
	Exercise: KSP execution measurement wrapper

	Kotlin Compiler Plugins
	Compiler frontend and backend
	Compiler extensions
	Popular compiler plugins
	Making all classes open
	Changing a type
	Generate function wrappers
	Example plugin implementations
	Summary

	Static Code Analysers
	What are Static Analysers?
	Types of analysers
	Kotlin Code Analysers
	Setting up detekt
	Writing your first detekt Rule
	Conclusion

	Ending
	Exercise solutions

