

Accessing GitHub using Go

Satish Talim

This book is for sale at http://leanpub.com/accessinggithubusinggo

This version was published on 2015-04-13

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean
Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get
reader feedback, pivot until you have the right book and build traction once you do.

CMOoM

This work is licensed under a Creative Commons Attribution 3.0 Unported License

http://leanpub.com/accessinggithubusinggo
http://leanpub.com
http://leanpub.com/manifesto
http://leanpub.com/manifesto
http://creativecommons.org/licenses/by/3.0/deed.en_US
http://creativecommons.org/licenses/by/3.0/deed.en_US

Also By Satish Talim

How Do I Write And Deploy Simple Web Apps With Go?
Building a package in Go

How do I use Sourcegraph with Go?

How do I use Sourcegraph with Ruby?

How to Deploy a Go Web App to the Google App Engine 101
How to Deploy a Go Web App to Heroku 101

How do I use the template package and handle forms?

http://leanpub.com/u/satishtalim
http://leanpub.com/howdoibuildawebappwithgo
http://leanpub.com/buildingapackageingo
http://leanpub.com/howdoiusesourcegraph
http://leanpub.com/howdoiusesourcegraphwithruby
http://leanpub.com/howtodeployagowebapptothegoogleappengine101
http://leanpub.com/howtodeployagowebapptoheroku101
http://leanpub.com/howtousethetemplatepackageandhandleforms

Contents

Accessing GitHub using Go L
GitHub APT e
3-legged authorization L L
Register yourapp o e e

Let’s build our app githuboa.go L

The flow of our app githuboa.go

Code: Create an OAuth configobject

Your main htmlpage L
LogintoGitHub
Exercise e 10

EUTINS TN NG \CR \CHR N T

Accessing GitHub using Go

GitHub, like many other sites, uses OAuth 2.0 protocol for authentication. OAuth2 is a protocol that lets
external apps request authorization to private details in a user’s GitHub account without getting their
password. Applications that need to read or write private information using the API on behalf of another
user should use OAuth.

GitHub API

First, read thro’ the GitHub API documentation®.

3-legged authorization

On a conceptual level it works in the following way:

« Client has signed up to the GitHub server and got his client credentials (also known as consumer key
and secret) ahead of time

« User wants to give the client access to his protected resources on the server

« Client retrieves the temporary credentials (also known as “request token”) from the server

+ Client redirects the resource owner to the server

+ Resource owner grants the client access to his protected resources on the server

» Server redirects the user back to the client

« Client uses the temporary credentials to retrieve the token credentials (also known as “access token”)
from the server

+ Client uses the token credentials to access the protected resources on the server

Register your app

Log into your GitHub a/c and register your app at https://github.com/settings/applications®. Click on the
“Register new application” button. A registered OAuth application is assigned a unique Client ID and Client
Secret. The Client Secret should not be shared. While registering, you can fill out every piece of information
however you like, except the Authorization callback URL. This is easily the most important piece to setting
up your application. It’s the callback URL that GitHub returns the user to, after successful authentication.

I have registered my app githuboa.go at my GitHub a/c’.

'https://developer.github.com/guides/getting- started/
*https://github.com/settings/applications
*https://github.com/IndianGuru

https://developer.github.com/guides/getting-started/
https://github.com/settings/applications
https://github.com/IndianGuru
https://developer.github.com/guides/getting-started/
https://github.com/settings/applications
https://github.com/IndianGuru

Accessing GitHub using Go 2

Applications / Register a new OAuth application

Application name

githuboa
Something users will recognize and trust
Homepage URL

https:/fgithub. com/IndianGuru

Ul can't be blank
Application description

Sample Go app to access GitHub

This is displayed o all potenfial users af your application

Authorization callback URL

fttp:/127.0.0 1:7000/githuboa _cb

Your applications callback URL Read our ©Auth documentation for more Informeation

Register an app

Let’s build our app githuboa.go

We shall be using oauth2* a Go package that contains a client implementation for the OAuth 2.0 specification.
It will be useful if you read the documentation for oauth2® and the OAuth® documentation of GitHub.

Now let’s install oauth2 and the github packages.

go get golang.org/x/oauth2
go get github.com/google/go-github/github

The flow of our app githuboa.go

« the user is on your website and clicks “Log into GitHub” link

« you redirect the user to GitHub’s authorization page. In that url you specify desired access level and a
random secret

« the user authorizes your app by clicking on a link

“https://github.com/golang/oauth2
*http://godoc.org/golang.org/x/oauth2
°https://developer.github.com/v3/oauth/

https://github.com/golang/oauth2
http://godoc.org/golang.org/x/oauth2
https://developer.github.com/v3/oauth/
https://github.com/golang/oauth2
http://godoc.org/golang.org/x/oauth2
https://developer.github.com/v3/oauth/

Accessing GitHub using Go 3

+ GitHub redirects to a callback url on your website (which you provided when registering the app with
GitHub)
« in the url handler, extract “secret” and “code” arguments

« you have to check that the secret is the same as the one you sent to GitHub (security measure that
prevents forgery)

« you call another GitHub url to exchange code for access token

Access token is what you use to authenticate your API calls and allows you to make requests to the API on a
behalf of a user.

©O© 00 9 O O b» W N =

NN NN NN N R R R S 1 s s s
0 O WON P, O O Wm0 Uk WwN SO

Accessing GitHub using Go 4

Code: Create an OAuth config object

package main

import (

var (

func main() {

}

"golang.org/x/oauth2"

githuboauth "golang.org/x/ocauth2/github”

// You must register the app at https://github.com/settings/applications
// Set callback to http://127.0.0.1:7000/githuboa_cb

// Set ClientId and ClientSecret to the values you got

// after registering your app

oauthConf = &oauth2.Config{

}

ClientID: "", // please enter your value

nn

ClientSecret: , // please enter your value

// Comma separated list of scopes

// select level of access you want https://developer.github.com/v3/oauth/#scopes
Scopes: []string{"user:email"},

Endpoint: githuboauth.Endpoint,

// An unguessable random string. It is used to protect against

// cross-site request forgery attacks

oauthStateString = "arandomstring"

Config” used above describes a typical 3-legged OAuth2 flow, with both the client application information
and the server’s endpoint URLs. The Endpoint used above is defined here®.

"http://godoc.org/golang.org/x/oauth2#Config
®https://github.com/golang/oauth2/blob/master/github/github.go

http://godoc.org/golang.org/x/oauth2#Config
https://github.com/golang/oauth2/blob/master/github/github.go
http://godoc.org/golang.org/x/oauth2#Config
https://github.com/golang/oauth2/blob/master/github/github.go

O 00 9 O O b W N =~

OB D WWWWWWWWWWNDNDDNDDNDNDNDDNDDNDNDES AR,
W N O O 00 30 Ol b WN PO © 000 Ol i WP O © 00O O WD+~ O

Accessing GitHub using Go 5

Your main html page

package main

import (
"t

"net/http"

"golang.org/x/ocauth2"

githuboauth "golang.org/x/oauth2/github"

const htmlIndex

= “<html><body><p>Well, hello there!</p>

<p>We're going to now talk to the GitHub API. Ready?</p>
<p>Log into GitHub</p>

</body> </html>

var (

// You must register the app at https://github.com/settings/applications
// Set callback to http://127.0.0.1:7000/githuboa_cb

// Set ClientId and ClientSecret to the values you got

// after registering your app

oauthConf = &oauth2.Config{

}

ClientID: "", // please enter your value

nn

ClientSecret: , // please enter your value

// Comma separated list of scopes

// select level of access you want https://developer.github.com/v3/oauth/#scopes
Scopes: [Istring{"user:email"},

Endpoint: githuboauth.Endpoint,

// An unguessable random string. It is used to protect against

// cross-site request forgery attacks

oauthStateString = "arandomstring"

func main() {

http.HandleFunc("/", handleMain)

fmt.Print("Started running on http://127.0.0.1:7000\n")
fmt.Println(http.ListenAndServe(":7000", nil))

func handleMain(w http.ResponseWriter, r *http.Request) {
w.Header().Set("Content-Type", "text/html; charset=utf-8")

44
45
46

Accessing GitHub using Go 6

w.WriteHeader (http.StatusOK)
w.Write([]byte(htmlIndex))

Refer to the ResponseWriter interface’ where the functions Header(), WriteHeader() and Write() are
mentioned. Check the details of the Set'® method.

*http://golang.org/pkg/net/http/#ResponseWriter
'°http://golang.org/pkg/net/http/#Header

http://golang.org/pkg/net/http/#ResponseWriter
http://golang.org/pkg/net/http/#Header
http://golang.org/pkg/net/http/#ResponseWriter
http://golang.org/pkg/net/http/#Header

© 00 9 O O P+ W N -

W W W W W W W W WwNDNDDNDDNDDNDNDDNDDNR-S - P 2
0 N O O & WO N~ O O 00 O U k& WDN~-O O 03O0 U dh W N~

Accessing GitHub using Go 7

Login to GitHub

Once the user clicks on the “Log into GitHub” link the handler for /login url, redirects to GitHub’s
authorization page. GitHub will show the authorization page to your user. If the user authorizes your app,
GitHub will re-direct to OAuth callback. Here’s how you can turn it into a token, token into http client and
use that client to list GitHub information about the user.

package main

import (
Rp—
"net/http"

"golang.org/x/oauth2"
githuboauth "golang.org/x/ocauth2/github”
"html/template"

const htmlIndex = “<html><body><p>Well, hello there!</p>
<p>We're going to now talk to the GitHub API. Ready?</p>
<p>Log into GitHub</p>
</body></html>

var userInfoTemplate = template.Must(template.New("").Parse(’

<html> <body>

<p>This app is now authenticated to access your GitHub user info.</p>
<p>User details are:</p><p>

{{.1}

</p>

<p>That's it!</p>

</body></html>

)

var (
// You must register the app at https://github.com/settings/applications
// Set callback to http://127.0.0.1:7000/githuboa_cb
// Set ClientId and ClientSecret to the values you got
// after registering your app
oauthConf = &oauth2.Config{
ClientID: """, // please enter your value

nn

ClientSecret: , // please enter your value
// Comma separated list of scopes
// select level of access you want https://developer.github.com/v3/oauth/#scopes

Scopes: []string{"user:email"},

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
T
78
79
80
81
82
83

Accessing GitHub using Go

Endpoint: githuboauth.Endpoint,
}
// An unguessable random string. It is used to protect against
// cross-site request forgery attacks
oauthStateString = "arandomstring"

func main() {
http.HandleFunc("/", handleMain)
http.HandleFunc("/login", handleGitHublLogin)
http.HandleFunc("/githuboa_cb", handleGitHubCallback)

fmt.Print("Started running on http://127.0.0.1:7000\n")
fmt.Println(http.ListenAndServe(":7000", nil))

func handleMain(w http.ResponseWriter, r *http.Request) {
w.Header().Set("Content-Type", "text/html; charset=utf-8")
w.WriteHeader (http.StatusOK)
w.Write([]byte(htmlIndex))

// /login

func handleGitHublLogin(w http.ResponseWriter, r *http.Request) {
url := oauthConf.AuthCodeURL (oauthStateString, oauth2.AccessTypeOnline)
http.Redirect(w, r, url, http.StatusTemporaryRedirect)

// githuboa_cb. Called by github after authorization is granted

func handleGitHubCallback(w http.ResponseWriter, r *http.Request) ({
// 1f the user accepts your request, GitHub redirects back
// to your site with a temporary code in a code parameter
// as well as the state you provided in the previous step
// in a state parameter. If the states don't match, the
// request has been created by a third party and the process
// should be aborted.
state := r.FormValue("state")
if state != oauthStateString {

fmt.Printf("invalid ocauth state, expected '%s', got '%s'\n", ocauthStateString, state)

http.Redirect(w, r, "/", http.StatusTemporaryRedirect)

return

code := r.FormValue("code")

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

Accessing GitHub using Go 9

// On success, exchange this for an access token

token, err := oauthConf.Exchange(oauth2.NoContext, code)

if err '= nil {
fmt.Printf("ocauthConf.Exchange() failed with '%s'\n", err)
http.Redirect(w, r, "/", http.StatusTemporaryRedirect)
return

oauthClient := oauthConf.Client(oauth2.NoContext, token)

// https://godoc.org/github.com/google/go-github/github
client := github.NewClient(oauthClient)

user, _, err := client.Users.Get("")

if err !'= nil {
fmt.Printf("client.Users.Get() failed with '%s'\n", err)
http.Redirect(w, r, "/", http.StatusTemporaryRedirect)
return

buf := []string{"GitHub login id: ", *user.Login, "| GitHub email id: ", *user.Email}

userInfoTemplate.Execute(w, buf)

Read the details of AuthCodeURL". AuthCodeURL returns a URL to OAuth 2.0 provider’s consent page that
asks for permissions for the required scopes explicitly. State is a token to protect the user from CSRF attacks.
You must always provide a non-zero string. Opts** may include AccessTypeOnline or AccessTypeOffline, as
well as ApprovalForce.

The Exchange' method above converts an authorization code into a token. It is used after a resource
provider redirects the user back to the Redirect URI (the URL obtained from AuthCodeURL). The HTTP client
to use is derived from the context. If a client is not provided via the context, http.DefaultClient is used.
The code will be in the *http.Request.Formvalue("code"). Before calling Exchange, be sure to validate
FormValue("state").

The Client"* method above returns an HTTP client using the provided token. The token will auto-refresh as
necessary. The underlying HTTP transport will be obtained using the provided context. The returned client
and its Transport should not be modified.

client := github.NewClient(oauthClient) constructs a new GitHub client, then uses the various services
on the client to access different parts of the GitHub APL

Yhttp://godoc.org/golang.org/x/oauth2#Config. AuthCodeURL
“http://godoc.org/golang.org/x/oauth2# AuthCodeOption
*http://godoc.org/golang.org/x/oauth2#Config.Exchange
*http://godoc.org/golang.org/x/oauth2#Config.Client

http://godoc.org/golang.org/x/oauth2#Config.AuthCodeURL
http://godoc.org/golang.org/x/oauth2#AuthCodeOption
http://godoc.org/golang.org/x/oauth2#Config.Exchange
http://godoc.org/golang.org/x/oauth2#Config.Client
http://godoc.org/golang.org/x/oauth2#Config.AuthCodeURL
http://godoc.org/golang.org/x/oauth2#AuthCodeOption
http://godoc.org/golang.org/x/oauth2#Config.Exchange
http://godoc.org/golang.org/x/oauth2#Config.Client

Accessing GitHub using Go 10

user, _, err := client.Users.Get("") - see details here' fetches a user. Passing the empty string will
fetch the authenticated user.

You can get all the details about a User™®.
Run the above program on http://127.0.0.1:7000"".
That’s it!

You can download the entire program from here'®.

Exercise

How about writing an app that accesses Flickr using OAuth?

Phttps://godoc.org/github.com/google/go-github/github#UsersService.Get
“https://godoc.org/github.com/google/go- github/github#User
"http://127.0.0.1:7000
*https://gist.github.com/IndianGuru/2{686c755b4ec4cf67bb#file-githuboq-go

https://godoc.org/github.com/google/go-github/github#UsersService.Get
https://godoc.org/github.com/google/go-github/github#User
http://127.0.0.1:7000
https://gist.github.com/IndianGuru/2f686c755b4ec4cf67bb#file-githuboq-go
https://godoc.org/github.com/google/go-github/github#UsersService.Get
https://godoc.org/github.com/google/go-github/github#User
http://127.0.0.1:7000
https://gist.github.com/IndianGuru/2f686c755b4ec4cf67bb#file-githuboq-go

Accessing GitHub using Go

Application

Get a Request Token

* Request parameters:
- cauth_consumer_key
- oauth_nonce

- cauth_signature_method

- cauth_signature
- pauth_timestamp
cauth_callback

Direct user to Flickr
for Authorization

Exchange the Request
Token for an Access Token

+ Request parameters:
- pauth_consumer_key
- oauth_nonce

- oauth_signature_method

- oauth_signature
- oauth_timestamp
- oauth_verifier

- oauth_version (optional)

Use oauth_token to
access protected
resources

Returns a Request Token

= Response parameters:

oauth_wersion (optional)

ffr—

Flickr User
L A

- oauth_token
- pauth_token_secret
- oauth_callback_confirmed

Authorizes application

Prompts user to provide
) i =l
Authorization b et

Redirects user back
to Application, passing -‘
oauth_verifier

Grants an Access Token
and Token Secret

* Response parameters:
- oauth_token

- oauth_token_secret
- fullname

- username

- user_nsid

Flickr OAuth

11

	Table of Contents
	Accessing GitHub using Go
	GitHub API
	3-legged authorization
	Register your app
	Let's build our app githuboa.go
	The flow of our app githuboa.go
	Code: Create an OAuth config object
	Your main html page
	Login to GitHub
	Exercise

