

Accessing GitHub using Go

Satish Talim

This book is for sale at http://leanpub.com/accessinggithubusinggo

This version was published on 2015-04-13

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean
Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get
reader feedback, pivot until you have the right book and build traction once you do.

This work is licensed under a Creative Commons Attribution 3.0 Unported License

http://leanpub.com/accessinggithubusinggo
http://leanpub.com
http://leanpub.com/manifesto
http://leanpub.com/manifesto
http://creativecommons.org/licenses/by/3.0/deed.en_US
http://creativecommons.org/licenses/by/3.0/deed.en_US

Also By Satish Talim
How Do I Write And Deploy Simple Web Apps With Go?

Building a package in Go

How do I use Sourcegraph with Go?

How do I use Sourcegraph with Ruby?

How to Deploy a Go Web App to the Google App Engine 101

How to Deploy a Go Web App to Heroku 101

How do I use the template package and handle forms?

http://leanpub.com/u/satishtalim
http://leanpub.com/howdoibuildawebappwithgo
http://leanpub.com/buildingapackageingo
http://leanpub.com/howdoiusesourcegraph
http://leanpub.com/howdoiusesourcegraphwithruby
http://leanpub.com/howtodeployagowebapptothegoogleappengine101
http://leanpub.com/howtodeployagowebapptoheroku101
http://leanpub.com/howtousethetemplatepackageandhandleforms

Contents

Accessing GitHub using Go . 1
GitHub API . 1

3-legged authorization . 1
Register your app . 1
Let’s build our app githuboa.go . 2
The flow of our app githuboa.go . 2
Code: Create an OAuth config object . 4
Your main html page . 5
Login to GitHub . 7
Exercise . 10

Accessing GitHub using Go
GitHub, like many other sites, uses OAuth 2.0 protocol for authentication. OAuth2 is a protocol that lets
external apps request authorization to private details in a user’s GitHub account without getting their
password. Applications that need to read or write private information using the API on behalf of another
user should use OAuth.

GitHub API

First, read thro’ the GitHub API documentation¹.

3-legged authorization

On a conceptual level it works in the following way:

• Client has signed up to the GitHub server and got his client credentials (also known as consumer key
and secret) ahead of time

• User wants to give the client access to his protected resources on the server
• Client retrieves the temporary credentials (also known as “request token”) from the server
• Client redirects the resource owner to the server
• Resource owner grants the client access to his protected resources on the server
• Server redirects the user back to the client
• Client uses the temporary credentials to retrieve the token credentials (also known as “access token”)
from the server

• Client uses the token credentials to access the protected resources on the server

Register your app

Log into your GitHub a/c and register your app at https://github.com/settings/applications². Click on the
“Register new application” button. A registered OAuth application is assigned a unique Client ID and Client
Secret. The Client Secret should not be shared. While registering, you can fill out every piece of information
however you like, except the Authorization callback URL. This is easily the most important piece to setting
up your application. It’s the callback URL that GitHub returns the user to, after successful authentication.

I have registered my app githuboa.go at my GitHub a/c³.

¹https://developer.github.com/guides/getting-started/
²https://github.com/settings/applications
³https://github.com/IndianGuru

https://developer.github.com/guides/getting-started/
https://github.com/settings/applications
https://github.com/IndianGuru
https://developer.github.com/guides/getting-started/
https://github.com/settings/applications
https://github.com/IndianGuru

Accessing GitHub using Go 2

Register an app

Let’s build our app githuboa.go

We shall be using oauth2⁴ a Go package that contains a client implementation for the OAuth 2.0 specification.

It will be useful if you read the documentation for oauth2⁵ and the OAuth⁶ documentation of GitHub.

Now let’s install oauth2 and the github packages.

1 go get golang.org/x/oauth2

2 go get github.com/google/go-github/github

The flow of our app githuboa.go

• the user is on your website and clicks “Log into GitHub” link
• you redirect the user to GitHub’s authorization page. In that url you specify desired access level and a
random secret

• the user authorizes your app by clicking on a link

⁴https://github.com/golang/oauth2
⁵http://godoc.org/golang.org/x/oauth2
⁶https://developer.github.com/v3/oauth/

https://github.com/golang/oauth2
http://godoc.org/golang.org/x/oauth2
https://developer.github.com/v3/oauth/
https://github.com/golang/oauth2
http://godoc.org/golang.org/x/oauth2
https://developer.github.com/v3/oauth/

Accessing GitHub using Go 3

• GitHub redirects to a callback url on your website (which you provided when registering the app with
GitHub)

• in the url handler, extract “secret” and “code” arguments
• you have to check that the secret is the same as the one you sent to GitHub (security measure that
prevents forgery)

• you call another GitHub url to exchange code for access token

Access token is what you use to authenticate your API calls and allows you to make requests to the API on a
behalf of a user.

Accessing GitHub using Go 4

Code: Create an OAuth config object

1 package main

2

3 import (

4 "golang.org/x/oauth2"

5 githuboauth "golang.org/x/oauth2/github"

6)

7

8 var (

9 // You must register the app at https://github.com/settings/applications

10 // Set callback to http://127.0.0.1:7000/githuboa_cb

11 // Set ClientId and ClientSecret to the values you got

12 // after registering your app

13 oauthConf = &oauth2.Config{

14 ClientID: "", // please enter your value

15 ClientSecret: "", // please enter your value

16 // Comma separated list of scopes

17 // select level of access you want https://developer.github.com/v3/oauth/#scopes

18 Scopes: []string{"user:email"},

19 Endpoint: githuboauth.Endpoint,

20 }

21 // An unguessable random string. It is used to protect against

22 // cross-site request forgery attacks

23 oauthStateString = "arandomstring"

24)

25

26 func main() {

27 }

Config⁷ used above describes a typical 3-legged OAuth2 flow, with both the client application information
and the server’s endpoint URLs. The Endpoint used above is defined here⁸.

⁷http://godoc.org/golang.org/x/oauth2#Config
⁸https://github.com/golang/oauth2/blob/master/github/github.go

http://godoc.org/golang.org/x/oauth2#Config
https://github.com/golang/oauth2/blob/master/github/github.go
http://godoc.org/golang.org/x/oauth2#Config
https://github.com/golang/oauth2/blob/master/github/github.go

Accessing GitHub using Go 5

Your main html page

1 package main

2

3 import (

4 "fmt"

5 "net/http"

6

7 "golang.org/x/oauth2"

8 githuboauth "golang.org/x/oauth2/github"

9)

10

11 const htmlIndex = `<html><body><p>Well, hello there!</p>

12 <p>We're going to now talk to the GitHub API. Ready?</p>

13 <p>Log into GitHub</p>

14 </body></html>

15 `

16

17 var (

18 // You must register the app at https://github.com/settings/applications

19 // Set callback to http://127.0.0.1:7000/githuboa_cb

20 // Set ClientId and ClientSecret to the values you got

21 // after registering your app

22 oauthConf = &oauth2.Config{

23 ClientID: "", // please enter your value

24 ClientSecret: "", // please enter your value

25 // Comma separated list of scopes

26 // select level of access you want https://developer.github.com/v3/oauth/#scopes

27 Scopes: []string{"user:email"},

28 Endpoint: githuboauth.Endpoint,

29 }

30 // An unguessable random string. It is used to protect against

31 // cross-site request forgery attacks

32 oauthStateString = "arandomstring"

33)

34

35 func main() {

36 http.HandleFunc("/", handleMain)

37

38 fmt.Print("Started running on http://127.0.0.1:7000\n")

39 fmt.Println(http.ListenAndServe(":7000", nil))

40 }

41

42 func handleMain(w http.ResponseWriter, r *http.Request) {

43 w.Header().Set("Content-Type", "text/html; charset=utf-8")

Accessing GitHub using Go 6

44 w.WriteHeader(http.StatusOK)

45 w.Write([]byte(htmlIndex))

46 }

Refer to the ResponseWriter interface⁹ where the functions Header(), WriteHeader() and Write() are
mentioned. Check the details of the Set¹⁰ method.

⁹http://golang.org/pkg/net/http/#ResponseWriter
¹⁰http://golang.org/pkg/net/http/#Header

http://golang.org/pkg/net/http/#ResponseWriter
http://golang.org/pkg/net/http/#Header
http://golang.org/pkg/net/http/#ResponseWriter
http://golang.org/pkg/net/http/#Header

Accessing GitHub using Go 7

Login to GitHub

Once the user clicks on the “Log into GitHub” link the handler for /login url, redirects to GitHub’s
authorization page. GitHub will show the authorization page to your user. If the user authorizes your app,
GitHub will re-direct to OAuth callback. Here’s how you can turn it into a token, token into http client and
use that client to list GitHub information about the user.

1 package main

2

3 import (

4 "fmt"

5 "net/http"

6

7 "golang.org/x/oauth2"

8 githuboauth "golang.org/x/oauth2/github"

9 "html/template"

10)

11

12 const htmlIndex = `<html><body><p>Well, hello there!</p>

13 <p>We're going to now talk to the GitHub API. Ready?</p>

14 <p>Log into GitHub</p>

15 </body></html>

16 `

17

18 var userInfoTemplate = template.Must(template.New("").Parse(`

19 <html><body>

20 <p>This app is now authenticated to access your GitHub user info.</p>

21 <p>User details are:</p><p>

22 {{.}}

23 </p>

24 <p>That's it!</p>

25 </body></html>

26 `))

27

28 var (

29 // You must register the app at https://github.com/settings/applications

30 // Set callback to http://127.0.0.1:7000/githuboa_cb

31 // Set ClientId and ClientSecret to the values you got

32 // after registering your app

33 oauthConf = &oauth2.Config{

34 ClientID: "", // please enter your value

35 ClientSecret: "", // please enter your value

36 // Comma separated list of scopes

37 // select level of access you want https://developer.github.com/v3/oauth/#scopes

38 Scopes: []string{"user:email"},

Accessing GitHub using Go 8

39 Endpoint: githuboauth.Endpoint,

40 }

41 // An unguessable random string. It is used to protect against

42 // cross-site request forgery attacks

43 oauthStateString = "arandomstring"

44)

45

46 func main() {

47 http.HandleFunc("/", handleMain)

48 http.HandleFunc("/login", handleGitHubLogin)

49 http.HandleFunc("/githuboa_cb", handleGitHubCallback)

50

51 fmt.Print("Started running on http://127.0.0.1:7000\n")

52 fmt.Println(http.ListenAndServe(":7000", nil))

53 }

54

55 func handleMain(w http.ResponseWriter, r *http.Request) {

56 w.Header().Set("Content-Type", "text/html; charset=utf-8")

57 w.WriteHeader(http.StatusOK)

58 w.Write([]byte(htmlIndex))

59 }

60

61 // /login

62 func handleGitHubLogin(w http.ResponseWriter, r *http.Request) {

63 url := oauthConf.AuthCodeURL(oauthStateString, oauth2.AccessTypeOnline)

64 http.Redirect(w, r, url, http.StatusTemporaryRedirect)

65 }

66

67 // githuboa_cb. Called by github after authorization is granted

68 func handleGitHubCallback(w http.ResponseWriter, r *http.Request) {

69 // If the user accepts your request, GitHub redirects back

70 // to your site with a temporary code in a code parameter

71 // as well as the state you provided in the previous step

72 // in a state parameter. If the states don't match, the

73 // request has been created by a third party and the process

74 // should be aborted.

75 state := r.FormValue("state")

76 if state != oauthStateString {

77 fmt.Printf("invalid oauth state, expected '%s', got '%s'\n", oauthStateString, state)

78 http.Redirect(w, r, "/", http.StatusTemporaryRedirect)

79 return

80 }

81

82 code := r.FormValue("code")

83

Accessing GitHub using Go 9

84 // On success, exchange this for an access token

85 token, err := oauthConf.Exchange(oauth2.NoContext, code)

86 if err != nil {

87 fmt.Printf("oauthConf.Exchange() failed with '%s'\n", err)

88 http.Redirect(w, r, "/", http.StatusTemporaryRedirect)

89 return

90 }

91

92 oauthClient := oauthConf.Client(oauth2.NoContext, token)

93

94 // https://godoc.org/github.com/google/go-github/github

95 client := github.NewClient(oauthClient)

96

97 user, _, err := client.Users.Get("")

98 if err != nil {

99 fmt.Printf("client.Users.Get() failed with '%s'\n", err)

100 http.Redirect(w, r, "/", http.StatusTemporaryRedirect)

101 return

102 }

103

104 buf := []string{"GitHub login id: ", *user.Login, "| GitHub email id: ", *user.Email}

105

106 userInfoTemplate.Execute(w, buf)

107 }

Read the details of AuthCodeURL¹¹. AuthCodeURL returns a URL to OAuth 2.0 provider’s consent page that
asks for permissions for the required scopes explicitly. State is a token to protect the user from CSRF attacks.
You must always provide a non-zero string. Opts¹² may include AccessTypeOnline or AccessTypeOffline, as
well as ApprovalForce.

The Exchange¹³ method above converts an authorization code into a token. It is used after a resource
provider redirects the user back to the Redirect URI (the URL obtained from AuthCodeURL). The HTTP client
to use is derived from the context. If a client is not provided via the context, http.DefaultClient is used.
The code will be in the *http.Request.FormValue("code"). Before calling Exchange, be sure to validate
FormValue("state").

The Client¹⁴ method above returns an HTTP client using the provided token. The token will auto-refresh as
necessary. The underlying HTTP transport will be obtained using the provided context. The returned client
and its Transport should not be modified.

client := github.NewClient(oauthClient) constructs a new GitHub client, then uses the various services
on the client to access different parts of the GitHub API.

¹¹http://godoc.org/golang.org/x/oauth2#Config.AuthCodeURL
¹²http://godoc.org/golang.org/x/oauth2#AuthCodeOption
¹³http://godoc.org/golang.org/x/oauth2#Config.Exchange
¹⁴http://godoc.org/golang.org/x/oauth2#Config.Client

http://godoc.org/golang.org/x/oauth2#Config.AuthCodeURL
http://godoc.org/golang.org/x/oauth2#AuthCodeOption
http://godoc.org/golang.org/x/oauth2#Config.Exchange
http://godoc.org/golang.org/x/oauth2#Config.Client
http://godoc.org/golang.org/x/oauth2#Config.AuthCodeURL
http://godoc.org/golang.org/x/oauth2#AuthCodeOption
http://godoc.org/golang.org/x/oauth2#Config.Exchange
http://godoc.org/golang.org/x/oauth2#Config.Client

Accessing GitHub using Go 10

user, _, err := client.Users.Get("") - see details here¹⁵ fetches a user. Passing the empty string will
fetch the authenticated user.

You can get all the details about a User¹⁶.

Run the above program on http://127.0.0.1:7000¹⁷.

That’s it!

You can download the entire program from here¹⁸.

Exercise

How about writing an app that accesses Flickr using OAuth?

¹⁵https://godoc.org/github.com/google/go-github/github#UsersService.Get
¹⁶https://godoc.org/github.com/google/go-github/github#User
¹⁷http://127.0.0.1:7000
¹⁸https://gist.github.com/IndianGuru/2f686c755b4ec4cf67bb#file-githuboq-go

https://godoc.org/github.com/google/go-github/github#UsersService.Get
https://godoc.org/github.com/google/go-github/github#User
http://127.0.0.1:7000
https://gist.github.com/IndianGuru/2f686c755b4ec4cf67bb#file-githuboq-go
https://godoc.org/github.com/google/go-github/github#UsersService.Get
https://godoc.org/github.com/google/go-github/github#User
http://127.0.0.1:7000
https://gist.github.com/IndianGuru/2f686c755b4ec4cf67bb#file-githuboq-go

Accessing GitHub using Go 11

Flickr OAuth

	Table of Contents
	Accessing GitHub using Go
	GitHub API
	3-legged authorization
	Register your app
	Let's build our app githuboa.go
	The flow of our app githuboa.go
	Code: Create an OAuth config object
	Your main html page
	Login to GitHub
	Exercise

