

[image: Accessing GitHub using Go]

 Accessing GitHub using Go

 Satish Talim

 This book is for sale at http://leanpub.com/accessinggithubusinggo

 This version was published on 2015-04-13

 [image: publisher's logo]

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

[image: Creative Commons by]

This work is licensed under a Creative Commons Attribution 3.0 Unported License

Table of Contents

 	
 Accessing GitHub using Go

 	
 GitHub API

 	
 3-legged authorization

 	
 Register your app

 	
 Let’s build our app githuboa.go

 	
 The flow of our app githuboa.go

 	
 Code: Create an OAuth config object

 	
 Your main html page

 	
 Login to GitHub

 	
 Exercise

Accessing GitHub using Go

GitHub, like many other sites, uses OAuth 2.0 protocol for authentication. OAuth2 is a protocol that lets external apps request authorization to private details in a user’s GitHub account without getting their password. Applications that need to read or write private information using the API on behalf of another user should use OAuth.

GitHub API

First, read thro’ the GitHub API documentation.

3-legged authorization

On a conceptual level it works in the following way:

	Client has signed up to the GitHub server and got his client credentials (also known as consumer key and secret) ahead of time

 	User wants to give the client access to his protected resources on the server

 	Client retrieves the temporary credentials (also known as “request token”) from the server

 	Client redirects the resource owner to the server

 	Resource owner grants the client access to his protected resources on the server

 	Server redirects the user back to the client

 	Client uses the temporary credentials to retrieve the token credentials (also known as “access token”) from the server

 	Client uses the token credentials to access the protected resources on the server

Register your app

Log into your GitHub a/c and register your app at https://github.com/settings/applications. Click on the “Register new application” button. A registered OAuth application is assigned a unique Client ID and Client Secret. The Client Secret should not be shared. While registering, you can fill out every piece of information however you like, except the Authorization callback URL. This is easily the most important piece to setting up your application. It’s the callback URL that GitHub returns the user to, after successful authentication.

I have registered my app githuboa.go at my GitHub a/c.

 [image: Register an app]Register an app

Let’s build our app githuboa.go

We shall be using oauth2 a Go package that contains a client implementation for the OAuth 2.0 specification.

It will be useful if you read the documentation for oauth2 and the OAuth documentation of GitHub.

Now let’s install oauth2 and the github packages.

1 go get golang.org/x/oauth2
2 go get github.com/google/go-github/github

The flow of our app githuboa.go

	the user is on your website and clicks “Log into GitHub” link

 	you redirect the user to GitHub’s authorization page. In that url you specify desired access level and a random secret

 	the user authorizes your app by clicking on a link

 	GitHub redirects to a callback url on your website (which you provided when registering the app with GitHub)

 	in the url handler, extract “secret” and “code” arguments

 	you have to check that the secret is the same as the one you sent to GitHub (security measure that prevents forgery)

 	you call another GitHub url to exchange code for access token

Access token is what you use to authenticate your API calls and allows you to make requests to the API on a behalf of a user.

Code: Create an OAuth config object

 1 package main
 2
 3 import (
 4 	"golang.org/x/oauth2"
 5 	githuboauth "golang.org/x/oauth2/github"
 6)
 7
 8 var (
 9 	// You must register the app at https://github.com/settings/applications
10 	// Set callback to http://127.0.0.1:7000/githuboa_cb
11 	// Set ClientId and ClientSecret to the values you got
12 	// after registering your app
13 	oauthConf = &oauth2.Config{
14 		ClientID: "", // please enter your value
15 		ClientSecret: "", // please enter your value
16 		// Comma separated list of scopes
17 		// select level of access you want https://developer.github.com/v3/oauth/#scopes
18 		Scopes: []string{"user:email"},
19 		Endpoint: githuboauth.Endpoint,
20 	}
21 	// An unguessable random string. It is used to protect against
22 	// cross-site request forgery attacks
23 	oauthStateString = "arandomstring"
24)
25
26 func main() {
27 }

Config used above describes a typical 3-legged OAuth2 flow, with both the client application information and the server’s endpoint URLs. The Endpoint used above is defined here.

Your main html page

 1 package main
 2
 3 import (
 4 	"fmt"
 5 	"net/http"
 6
 7 	"golang.org/x/oauth2"
 8 	githuboauth "golang.org/x/oauth2/github"
 9)
10
11 const htmlIndex = `<html><body><p>Well, hello there!</p>
12 <p>We're going to now talk to the GitHub API. Ready?</p>
13 <p>Log into GitHub</p>
14 </body></html>
15 `
16
17 var (
18 	// You must register the app at https://github.com/settings/applications
19 	// Set callback to http://127.0.0.1:7000/githuboa_cb
20 	// Set ClientId and ClientSecret to the values you got
21 	// after registering your app
22 	oauthConf = &oauth2.Config{
23 		ClientID: "", // please enter your value
24 		ClientSecret: "", // please enter your value
25 		// Comma separated list of scopes
26 		// select level of access you want https://developer.github.com/v3/oauth/#scopes
27 		Scopes: []string{"user:email"},
28 		Endpoint: githuboauth.Endpoint,
29 	}
30 	// An unguessable random string. It is used to protect against
31 	// cross-site request forgery attacks
32 	oauthStateString = "arandomstring"
33)
34
35 func main() {
36 	http.HandleFunc("/", handleMain)
37
38 	fmt.Print("Started running on http://127.0.0.1:7000\n")
39 	fmt.Println(http.ListenAndServe(":7000", nil))
40 }
41
42 func handleMain(w http.ResponseWriter, r *http.Request) {
43 	w.Header().Set("Content-Type", "text/html; charset=utf-8")
44 	w.WriteHeader(http.StatusOK)
45 	w.Write([]byte(htmlIndex))
46 }

Refer to the ResponseWriter interface where the functions Header(), WriteHeader() and Write() are mentioned. Check the details of the Set method.

Login to GitHub

Once the user clicks on the “Log into GitHub” link the handler for /login url, redirects to GitHub’s authorization page. GitHub will show the authorization page to your user. If the user authorizes your app, GitHub will re-direct to OAuth callback. Here’s how you can turn it into a token, token into http client and use that client to list GitHub information about the user.

 1 package main
 2
 3 import (
 4 	"fmt"
 5 	"net/http"
 6
 7 	"golang.org/x/oauth2"
 8 	githuboauth "golang.org/x/oauth2/github"
 9 	"html/template"
 10)
 11
 12 const htmlIndex = `<html><body><p>Well, hello there!</p>
 13 <p>We're going to now talk to the GitHub API. Ready?</p>
 14 <p>Log into GitHub</p>
 15 </body></html>
 16 `
 17
 18 var userInfoTemplate = template.Must(template.New("").Parse(`
 19 <html><body>
 20 <p>This app is now authenticated to access your GitHub user info.</p>
 21 <p>User details are:</p><p>
 22 {{.}}
 23 </p>
 24 <p>That's it!</p>
 25 </body></html>
 26 `))
 27
 28 var (
 29 	// You must register the app at https://github.com/settings/applications
 30 	// Set callback to http://127.0.0.1:7000/githuboa_cb
 31 	// Set ClientId and ClientSecret to the values you got
 32 	// after registering your app
 33 	oauthConf = &oauth2.Config{
 34 		ClientID: "", // please enter your value
 35 		ClientSecret: "", // please enter your value
 36 		// Comma separated list of scopes
 37 		// select level of access you want https://developer.github.com/v3/oauth/#scopes
 38 		Scopes: []string{"user:email"},
 39 		Endpoint: githuboauth.Endpoint,
 40 	}
 41 	// An unguessable random string. It is used to protect against
 42 	// cross-site request forgery attacks
 43 	oauthStateString = "arandomstring"
 44)
 45
 46 func main() {
 47 	http.HandleFunc("/", handleMain)
 48 	http.HandleFunc("/login", handleGitHubLogin)
 49 	http.HandleFunc("/githuboa_cb", handleGitHubCallback)
 50 	
 51 	fmt.Print("Started running on http://127.0.0.1:7000\n")
 52 	fmt.Println(http.ListenAndServe(":7000", nil))
 53 }
 54
 55 func handleMain(w http.ResponseWriter, r *http.Request) {
 56 	w.Header().Set("Content-Type", "text/html; charset=utf-8")
 57 	w.WriteHeader(http.StatusOK)
 58 	w.Write([]byte(htmlIndex))
 59 }
 60
 61 // /login
 62 func handleGitHubLogin(w http.ResponseWriter, r *http.Request) {
 63 	url := oauthConf.AuthCodeURL(oauthStateString, oauth2.AccessTypeOnline)
 64 	http.Redirect(w, r, url, http.StatusTemporaryRedirect)
 65 }
 66
 67 // githuboa_cb. Called by github after authorization is granted
 68 func handleGitHubCallback(w http.ResponseWriter, r *http.Request) {
 69 	// If the user accepts your request, GitHub redirects back
 70 	// to your site with a temporary code in a code parameter
 71 	// as well as the state you provided in the previous step
 72 	// in a state parameter. If the states don't match, the
 73 	// request has been created by a third party and the process
 74 	// should be aborted.
 75 	state := r.FormValue("state")
 76 	if state != oauthStateString {
 77 		fmt.Printf("invalid oauth state, expected '%s', got '%s'\n", oauthStateString, state)
 78 		http.Redirect(w, r, "/", http.StatusTemporaryRedirect)
 79 		return
 80 	}
 81
 82 	code := r.FormValue("code")
 83 	
 84 	// On success, exchange this for an access token
 85 	token, err := oauthConf.Exchange(oauth2.NoContext, code)
 86 	if err != nil {
 87 		fmt.Printf("oauthConf.Exchange() failed with '%s'\n", err)
 88 		http.Redirect(w, r, "/", http.StatusTemporaryRedirect)
 89 		return
 90 	}
 91
 92 	oauthClient := oauthConf.Client(oauth2.NoContext, token)
 93
 94 	// https://godoc.org/github.com/google/go-github/github
 95 	client := github.NewClient(oauthClient)
 96
 97 	user, _, err := client.Users.Get("")
 98 	if err != nil {
 99 		fmt.Printf("client.Users.Get() failed with '%s'\n", err)
100 		http.Redirect(w, r, "/", http.StatusTemporaryRedirect)
101 		return
102 	}
103
104 	buf := []string{"GitHub login id: ", *user.Login, "| GitHub email id: ", *user.Email}
105 	
106 	userInfoTemplate.Execute(w, buf)
107 }

Read the details of AuthCodeURL. AuthCodeURL returns a URL to OAuth 2.0 provider’s consent page that asks for permissions for the required scopes explicitly. State is a token to protect the user from CSRF attacks. You must always provide a non-zero string. Opts may include AccessTypeOnline or AccessTypeOffline, as well as ApprovalForce.

The Exchange method above converts an authorization code into a token. It is used after a resource provider redirects the user back to the Redirect URI (the URL obtained from AuthCodeURL). The HTTP client to use is derived from the context. If a client is not provided via the context, http.DefaultClient is used. The code will be in the *http.Request.FormValue("code"). Before calling Exchange, be sure to validate FormValue("state").

The Client method above returns an HTTP client using the provided token. The token will auto-refresh as necessary. The underlying HTTP transport will be obtained using the provided context. The returned client and its Transport should not be modified.

client := github.NewClient(oauthClient) constructs a new GitHub client, then uses the various services on the client to access different parts of the GitHub API.

user, _, err := client.Users.Get("") - see details here fetches a user. Passing the empty string will fetch the authenticated user.

You can get all the details about a User.

Run the above program on http://127.0.0.1:7000.

That’s it!

You can download the entire program from here.

Exercise

How about writing an app that accesses Flickr using OAuth?

 [image: Flickr OAuth]Flickr OAuth

OEBPS/images/githubcb.jpg
Applications / Register a new OAuth application

Application name
githuboa

Something users wil recognize and trust
Homepage URL

hitps//github com/IndianGury
Application description

Sample Go app to access GitHub

This is displayed {o all potential users of your appiicaion

Authorization callback URL
http://127.0.0.17000/githuboa_ct

Yourapplication's callback URL Read our OAuth documentation for more Information

OEBPS/images/flickr_oauth_flow.jpg
Application Flickr User

vw
Geta Request Token 0 Returns a Reauest Token
- Request parameters + Rospionss parameters:
couth.onsumer ey “omuth token
~omuth-ronce ~ Sauth token,secret

- cauth_signature_method - oauth_callback_confirmed
- cauth_signature

- cauth_timestamp

- cauth_callback

- cauth_version (optional)

—

Direct user to Flickr Prompts user to provide Authorizes application
for Authorization Authorization bt

wvw
Redirects user back
A= 1o Appiication, passing ==

oauth_verifier

Exchange the Request Grants an Access Token
Token for an Access Token and Token Secret

* Request parameters: + Response parameters:
- oauth_consumer_key . - oauth_token
- oauth_nonce - oauth_token_secrt
- oauth_signature_method - fullname.
- oauth_signature - username

- oauth_timestamp
- oauth_verifier
- oauth_version (optional)

—

Use oauth_token to
access protected
resources

- user_nsid

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/title_page.png

OEBPS/images/cc-by.png
() _®

