

Actionable Agile Metrics For
Predictability: Tenth
Anniversary Edition

Daniel S. Vacanti

This book is available at https://leanpub.com/aamfp-10th

This version was published on 2025-04-02 ISBN 979-8-9867724-8-6

This is a Leanpub book. Leanpub empowers authors and publishers
with the Lean Publishing process. Lean Publishing is the act of
publishing an in-progress ebook using lightweight tools and many
iterations to get reader feedback, pivot until you have the right book
and build traction once you do.

© 2025 ActionableAgile® Press, Daniel S. Vacanti

https://leanpub.com/aamfp-10th
https://leanpub.com
https://leanpub.com
https://leanpub.com/manifesto

For Coco. And for Skye, Sicily, and Manhattan always.

Also By Daniel S. Vacanti
Actionable Agile Metrics Volume II
Flow Metrics for Scrum Teams
The Kanban Pocket Guide
When Will It Be Done?

https://leanpub.com/u/daniel_vacanti
https://leanpub.com/actionableagilemetricsii
https://leanpub.com/flowmetricsforscrumteams
https://leanpub.com/thekanbanpocketguide
https://leanpub.com/whenwillitbedone

Contents

Foreword . 1

Preface . 3
10th Anniversary Edition . 3
Preface To All Editions . 5
Why Write this Book? . 6
Who Should Read this Book . 6
Conventions Used . 7
ActionableAgile.com . 7

PART I: Foundations of Predictabil-
ity . 8

Chapter 1 - The Most Important Part of Predictability 9
Background . 9
The Moral of the Story . 11
All Assumptions Are Equal. But Some Assumptions Are

More Equal Than Others. 13
Predictability . 15
Conclusion . 17
Key Learnings and Takeaways 17

Chapter 2 - Setting Up For Predictability 19
Modeling Flow . 20
Defining Arrivals and Departures 21
Why Start and Finish Matter . 23
Conclusion . 25
Key Learnings and Takeaways 26

CONTENTS

Chapter 3 - The Basic Metrics of Flow 27
Work In Progress . 27
Cycle Time . 30
Throughput . 33
Work Item Age . 34
Conclusion . 36
Key Learnings and Takeaways 37

Chapter 3a - Flow Metrics Data and Calculation 39
What Data To Collect . 39
Flow Metrics Calculation . 40
Randomness . 43
The Flaw of Averages . 44
Conclusion . 46
Key Learnings and Takeaways 46

Chapter 4 - Introduction to Cycle Time Scatterplots 48
What is a Cycle Time Scatterplot? 48
Percentile Lines . 50
Your Data is Not Normal . 53
Conclusion . 55
Key Learnings and Takeaways 56

Chapter 5 - Service Level Expectations 57
Calculating an SLE . 58
SLEs for Different Work Item Types 62
Percentiles as Intervention Triggers 63
Right-Sizing . 66
Conclusion . 67
Key Learnings and Takeaways 67

Chapter 6 - The Work Item Aging Chart 69
What Is a Work Item Aging Chart? 69
Additional Data . 74
Conclusion . 75
Key Learnings and Takeaways 76

Chapter 7 - Leveraging the Aging Chart for Predictability . . . 77
The Daily Meeting . 77

CONTENTS

Percentiles As Intervention Triggers Redux 78
Actions to Take . 82
Conclusion . 85
Key Learnings and Takeaways 86

PART II: More Flow Principles for
Predictability . 87

Chapter 8 - Introduction to CFDs 88
What makes a CFD a CFD? . 88
Conclusion . 88
Key Learnings and Takeaways 88

Chapter 8a - Constructing a CFD 89
A Simple Example . 89
What About Knowledge Work? 89
Conclusion . 89
Key Learnings and Takeaways 89

Chapter 9 - Flow Metrics and CFDs 90
Work In Progress . 90
Approximate Average Cycle Time 90
Average Throughput . 90
Conclusion . 90
Key Learnings and Takeaways 90

Chapter 10 - Interpreting CFDs 91
Mismatched Arrivals and Departures 91
Flat Lines . 91
Stair Steps . 91
Bulging Bands . 91
Disappearing Bands . 91
The S-Curve . 91
A Boring CFD . 92
Conclusion . 92
Key Learnings and Takeaways 92

CONTENTS

Chapter 11 - Conservation of Flow Part I 93
Arrivals and Departures Revisited 93
Arrivals and Departures on a CFD 93
Conclusion . 93
Key Learnings and Takeaways 93

Chapter 12 - Conservation of Flow Part II 94
Just-in-time Prioritization . 94
Just-in-time Commitment . 94
Exceptions to Conservation of Flow 94
Conditioning Flow and Predictability 94
Conclusion . 94
Key Learnings and Takeaways 94

Chapter 13 - Flow Debt . 96
Approximate Average Greater Than Actual Average 96
Approximate Average is Less Than Actual Average 96
Approximate Average Roughly Equal to Actual Average . . . 96
How Different is Different? . 96
Conclusion . 96
Key Learnings and Takeaways 97

Chapter 14 - Pull Policies . 98
Class of Service . 98
The Impact of Class of Service on Predictability 98
Slack . 98
Conclusion . 98
Key Learnings and Takeaways 98

PART III: Getting StartedWith Pre-
dictability . 99

Chapter 15 - Getting Started . 100
Defining Your Process . 100
Capturing Data . 100
How Much Data? . 100
Create an Aging Chart . 100

CONTENTS

Create a Scatterplot . 100
Some Pitfalls to Consider . 100
Conclusion . 101
Key Learnings and Takeaways 101

Chapter 16 - Next Steps . 102
Forecasting . 102
Little’s Law (Again) . 102
Other Methods to be Wary About 102
Continue Learning . 102

Appendices . 104

Appendix A - Introduction to Little’s Law 105
We Need a Little Help . 105
A Different Perspective . 105
It is all about the Assumptions 105
Assumptions as Process Policies 105
Segmenting WIP . 105
Kanban Systems . 105
Size Does Not Matter . 106
Forecasting . 106
Conclusion . 106
Key Learnings and Takeaways 106

Appendix B - Interpreting Cycle Time Scatterplots 107
The Triangle . 107
Clusters of Dots . 107
Gaps . 107
Internal and External Variability 107
Conclusion . 107
Key Learnings and Takeaways 107

Appendix C - Cycle Time Histograms 109
What is a Histogram? . 109
Constructing a Histogram . 109
Conclusion . 109
Key Learnings and Takeaways 109

Endnotes . 110
Chapter 1 . 110
Chapter 2 . 110
Chapter 3 . 110
Chapter 3a . 110
Chapter 4 . 110
Chapter 5 . 110
Chapter 6 . 111
Chapter 7 . 111
Chapter 8 . 111
Chapter 8a . 111
Chapter 10 . 111
Chapter 11 . 111
Chapter 12 . 111
Chapter 13 . 112
Chapter 14 . 112
Chapter 15 . 112

Bibliography . 113

Acknowledgements for the 10th Anniversary Edition 114

About The Author . 115

Foreword
I don’t know if I would have ever believed you if you told me that I’d
carry around a book about metrics full of notes, dog eared pages and
post it notes. Long before Daniel changed the trajectory of my career
with ProKanban, he did it with the first edition of this book. Like many
of us who entered into the tech field as scrum masters, I floundered
to figure out if I was really adding value to the team or to their work.
I most often felt more like the team mom, reminding everyone to eat
their vegetables and pick up their socks (and to get it all done before
the sprint demo). Even though the industry—then flush with cash—
was a fun place to be, I wasn’t sure it was the right place for me. I
toyed with starting a kids after school program and collected piles of
masters degree pamphlets though I wasn’t entirely sure what I wanted
to pursue. Then I read AAMFP.

It unlocked everything that I wanted to be able to show the teams
about how they were working with concrete data. I was able to have
a daily standup that focused on organizing around the work that was
stuck or delayed without half the team tuning out. I was able to have a
sprint planning session that more accurately accounted for how much
work we could get done without resorting to a spreadsheet of available
dev hours. It gave me the tools to effectively steer retrospectives
towards measurable improvements that really had an impact on how
the team was working without another round of “what went well/not
so well.”. And it gave me ways to have a conversation about actions
the team needed to take next without feeling like their very overpaid
babysitter.

Don’t let the maths scare you. Everything in this book is data that is
easily accessible, easily digestible, and easily actionable. You likely have
all of the data you will need to get started without making any changes
to your process or tooling- and you won’t need a Masters degree in
math or statistics. Daniel’s ability to weave in stories (and a surprising
number of sports analogies for a man who is always in a blazer) will
help you make sense of each metric outside of a software context and
make it easy to recall how best to use the data in front of you.

1

Foreword 2

Daniel’s book came into my life and my career when I was looking
for a way to provide more value to my team but even more so, more
value to myself and my career…ten years later it continues to do that.
Every tool, practice, and metric used in the book is as important now
as it was back then. As we watch more organizations slash spending,
move towards AI, and attempt to do more with less, the things Daniel
offers in this book are the ways we can realistically do that without
complete and utter disrespect for the brilliant people doing the work.

I hope this book changes your career next. Whether that is how
you manage a dev team, how you set project due dates,or how you
communicate risk to your stakeholders, I know that you will finish this
book with a new perspective on how to do what you do more effectively
and with the data you need to prove that its working. I believe ten years
from now we will keep coming back to AAMFP, digitally dogeared and
full of notes, to remind us how a few simple metrics can transform the
way we work and help us all deliver value more efficiently.

Colleen Johnson
March 2025

Preface
What were you doing 10 years ago? I, myself, had just met Prateek
Singh. But that’s a story for another time.

Think about how much the world has changed in the past 10 years.
Thankfully, flow principles have not. So why a new edition to this
book?

10th Anniversary Edition
While it is true that flow principles themselves have not changed, my
understanding of them has. Especially my understanding of how to
teach them. If I am being completely honest, my motivation for writing
the first edition of this book was anger. At the time I was angry that:

1. No one was talking about flow metrics, and,
2. Instead of flow metrics, the Kanban community was only talking

about Cumulative Flow Diagrams (CFDs)—and they were even
talking about CFDs incorrectly.

That is why the first book was so CFD heavy. Don’t get me wrong, a
CFD is a powerful chart, but its power lies in teaching and not in action.
By the time you get your CFD to a point where it is usable (by following
the advice in this book), then it will be extremely boring. Seriously. It
simply won’t tell you anything useful—certainly not anything useful
that you couldn’t more easily get off of another chart.

Which brings me to my next point. When I was first starting with
this stuff, Work In Progress was my hammer. And I used to love to
beat teams over the head with it. The problem is that if you approach
a team that has never limited WIP (and I mean never because most
Agile teams never have) then it is damn near impossible to get them
to understand why they should. They have been taught—and therefore
adhere to—two false maxims:

1. The sooner you start something, the sooner you get it done.

3

Preface 4

2. The more you work on, the more you can get done.

As you will see in the coming text, neither of these statements is
true. In fact, the exact opposite is much more likely to be true.

My Work In Progress fixation caused me to completely miss the
most important metric for getting teams to adopt flow: Work Item
Age. Technically, Age was there the whole time buried deep inside
of Little’s Law’s assumptions. But I certainly didn’t make it as explicit
as I should have. This version fixes that. Age is now front and center as
it should be. If you finish reading this book and do not understand the
importance of Age when it comes to managing flow for predictability,
then I have completely and utterly failed.

Some other changes to this edition that you might note:

• I’ve removed the chapter on forecasting. Without realizing it, in
that chapter, I had started writing my second book, “When Will
It Be Done?”. If you want to learn about forecasting, read that
book (you can find the full reference in the bibliography). Further,
the whole second half of my third book (and second book in this
series): “Actionable Agile Metrics Volume II” is on forecasting
(also listed in the bibliography). As those two texts are much
better treatments, I saw no reason to include that discussion here.

• I’ve moved the chapter on Histograms to an appendix (Appendix
C). Histograms—and the dangers of them—have been given a
much richer explanation in “Actionable Agile Metrics Volume II”.
While Appendix C is a decent start, it doesn’t do a great job of
explaining how treacherous Histograms can be. Still it may be
useful to have a cursory understanding of those charts for some
parts of this text.

• I’ve made small tweaks to the “started” and “finished” language
throughout the text so that it is more in line with the current Kan-
ban Guide. No, this is not a book about Kanban, but the Kanban
Guide is currently the simplest, and therefore best, reference on
how to get started with Flow.

• I’ve removed the Siemens HS case study altogether. This is not
meant to minimize the learnings of that story. However, that
case study has now been published in several different places,
and no doubt most readers of this book have come across it in

Preface 5

one form or another previously (it is still included in “When
Will It Be Done?”). If you are not familiar with that writeup,
you can still find that story in its full, originally published form
here: https://www.infoq.com/articles/kanban-siemens-health-
services/.

• For the print edition only: the most frequent complaint that I got
about the first book was that the images were very hard to see
in print. Therefore, I’ve completely redone every single image in
the text and now offer a full colour version of the print edition. I
think this makes a big difference to readability and should address
all of those quality issues.

The above changes notwithstanding, the importance of the messag-
ing in the original Preface to the first edition remains just as relevant
now as it was 10 years ago. As such, it follows in largely unedited
condition.

Preface To All Editions
Your process is unpredictable. What you may not realize, though, is
that you are the one responsible for making it that way. But that is
not necessarily your fault. You have been taught to collect the wrong
metrics, implement the wrong policies, and make the wrong decisions.
Together, we can do better.

Until now you’ve probably assumed that the reason your process
is unpredictable is due to circumstances completely outside of your
control. However, you have much more control over the way you work
than you think you do. Whether explicit or not, you have put policies
in place that specifically prevent you from being predictable. Amongst
other things, you start new work at a faster rate than you finish old
work, you work on too many items at the same time, you ignore
systemic dependencies and impediments, and you expedite requests
that do not need to be expedited. You, in effect, initiate a denial of
service attack on yourself and then wonder why it takes so long for
things to get things done.

But all of those policies are under your control.
If we, as knowledge workers, want to get to a predictable world,

we must first start by controlling the policies we can control. Taking

Preface 6

this control will seem uncomfortable at first. It will mean saying no
to customer requests to start new work immediately. It will mean
placing much less emphasis on upfront estimation and planning. It
will mean looking at a different set of metrics than the ones you have
been trained to track. Those metrics will tell you how predictable you
are and what actions to take to improve. If you choose to collect the
metrics suggested by this book, you will see that the data provided by
them will immediately reflect the policies you have in place. That data
will in turn suggest the changes to your policies necessary to be more
predictable. Those policy changes will themselves be reflected in the
new data you collect after the change. And so on and so on.

Your process is unpredictable. You know it. Your customers know
it. Now it is time to do something about it.

Why Write this Book?
Because our customers demand predictability. Because you need
someone on your side who has been asked tough questions and has
found a way to give meaningful answers. Because most organizations
that I visit are either uninformed or have been misinformed about what
metrics and analytics they need to track to be predictable.

To get you where you need to be, however, I am going to ask you
provocative questions. I am going to challenge your assumptions about
what true Agility is. I may make you uncomfortable with some of the
conclusions that I draw. I hope you will forgive me for all of these as
my only intention is to make your process better. After all, as I just said,
I am on your side.

Who Should Read this Book
Anyone who has ever been asked to give an estimate should read this
book. Likewise, anyone who has ever asked for an estimate should read
this book.

Analysts, developers, and testers need to know how to stop giving
estimates and how to start making accurate predictions.

Product owners, project managers, and executives need to know

Preface 7

what makes for a meaningful prediction and how to hold teams
accountable to make those predictions.

Conventions Used
All metrics and analytics will be capitalized. For example: Work In
Progress, Cycle Time, Cumulative Flow Diagram, Scatterplot, etc.

I am also going to capitalize all methodology names. For example:
Agile, Scrum, Kanban, etc.

ActionableAgile.com
Finally, and unless otherwise noted, all of the images of the analytics
charts and graphs that are presented in this book were built using the
ActionableAgile® Analytics tool. This tool is one that my company
developed and can be found at:

https://www.actionableagile.com

In addition to the tool, accompanying blog posts, book updates and
errata, videos, etc. can also be found on the ActionableAgile® website.

PART I: Foundations of
Predictability

Chapter 1 - The Most
Important Part of
Predictability
Once upon a time (1960-ish), in a faraway land (Cleveland), there lived
a young professor who was tasked with teaching a class on queuing
theory. One day he reached the part of the class where he had covered
most of the specific types of queues required by the course curriculum.
It was at this point that he off-handedly remarked to his students that
an oft-reappearing formula, L = λW, seemed to apply to every queue
that they had just studied. Even more remarkably, while this generality
was widely believed to be true, it had never been definitively proven.
Several hand-wavy heuristic proofs were available, but nothing that
would stand up to serious mathematical scrutiny.

Our hero recounts what happened next: “After class, I was talking
to a number of students [about the relationship L = λW] and one of
them (Sid Hess) asked, ‘How hard would it be to prove it in general?’
On the spur of the moment, I obligingly said, ‘I guess it shouldn’t be
too hard.’ Famous last words. Sid replied, ‘Then you should do it!’ ”¹

The name of the professor of course is Dr. John Little, and the rest
is, as they say, history.

Background
Not to get too math-y this early in the book, but for our story to have a
happy ending, I need to take a step back and provide some background.

The equation that Dr. Little first proved in 1961 was²:

Equation (1): L = λ * W

Where:

9

Chapter 1 - The Most Important Part of Predictability 10

1. L = the average number of items in the queuing system.
2. λ = the average number of items arriving per unit time.
3. W = the average wait time in the system for an item.

Soon after its publication, Equation (1) forever came to be known
as Little’s Law (LL).

The problem with starting a book off with an equation—especially
when there are engineers in the audience—is everyone wants to run
off and start to plug in numbers. However, LL does not work that
way. LL will not “predict” how your process will behave in the
future. So you know, I’ll only scratch the surface of the tip of the
iceberg of Little’s Law here. Appendix A provides a much deeper
dive into LL. I highly recommend reading Appendix A if you want
to understand why LL forms the basis for much of the discussion
around predictability. For now, however, I’ll just distill LL down
to its most important part. Thanks for tuning in and back to our
regularly scheduled programming…

LL—as I just stated—applies regardless of the type of queuing system
under investigation. In case you are wondering, yes, your Agile process
is a queuing system (more on this in the next chapter). So yes, LL is
applicable to your Agile process—regardless of what that actual process
is.

Little’s Law is applicable to your Agile process—regardless
of what type of “Agile” you are doing.

But there’s a catch. There’s always a catch. With LL, you can’t
immediately assume that Equation (1) will “predict” how your process
will behave. That is because Equation (1) requires a certain set of
assumptions for it to work and chances are your process does not
meet all of these required assumptions. All mathematical formulas
work this way. Pick any well-known mathematical theorem that you
may be familiar with and there will always be assumptions baked in.
Newton’s third law of motion, and Einstein’s special relativity both

Chapter 1 - The Most Important Part of Predictability 11

require certain assumptions to be met before they can be applied. I’m
reminded here of a joke that is told on one episode of the TV show The
Big Bang Theory³:

“There’s this farmer who has a chicken that won’t lay any eggs.
So he calls a physicist to help. The physicist does some calculations
and tells the farmer, ‘I have a solution, but it only works on spherical
chickens in a vacuum.’ ”

Trust me, if you are a physicist, you are rolling in the aisles right
now.

Not to belabour the point, but Equation (1)’s spherical chickens
require:

1. A steady state (i.e., that the underlying stochastic processes are
stationary)

2. An arbitrarily long period of time under observation (to guarantee
the stationarity of the underlying stochastic processes)

3. That the calculation be performed using consistent units (e.g., if
wait time is stated in days, then Arrival Rate must also be stated
in terms of days).

Don’t worry if you do not know what “stochastic” or “stationary”
means. You don’t need to (for this book anyway). All you need to know
here is that for Equation (1) to hold there is a set of assumptions that
need to be fulfilled and those assumptions are stated above*.

The Moral of the Story
If you are not asleep yet, I’ll try to get to the point now. Most probably
if you have come across Little’s Law in the past, you did not see it as
was defined in Equation (1). Rather, you probably first saw it as:

Equation (2): WIP = CT * TH

Where:

1. WIP = the average total inventory in the system.

Chapter 1 - The Most Important Part of Predictability 12

2. CT = the average amount of time it takes for an item to flow
through the system.

3. TH = the average Throughput of the system.

[Note: Exact definitions for all of these terms will be given in
Chapter 3.]

Confusingly, Equation (2) is also called Little’s Law. Maybe that
doesn’t confuse you because, at first glance, Equation (1) and Equation
(2) might appear the same save for the names being changed. If you look
closely, however, you’ll notice the subtle difference that Equation (1) is
stated in terms of a system’s input (i.e., Arrival Rate) while Equation
(2) is stated in terms of a system’s output (i.e., Throughput). Though
indeed subtle, this change makes all the difference in the world. That’s
because—you guessed it—a different equation requires a different set of
assumptions.

The assumptions required to make Equation (2) valid are⁴:

1. The average input or Arrival Rate (λ) should equal the average
output or Departure Rate (Throughput).

2. All work that is started will eventually be completed and exit the
system.

3. The amount of WIP should be roughly the same at the beginning
and at the end of the time interval chosen for the calculation.

4. The average age of the WIP is neither increasing nor decreasing.
5. Cycle Time, WIP, and Throughput must all be measured using

consistent units.

As you can see, that simple change of perspective from the arrival
rate of (1) to the departure rate of (2) requires a whole host of new
assumptions. Those are some seriously vacuum-sealed, spherical chick-
ens.

To explain why this is important, let’s pause for a second and try
an experiment. Take a look at the process that you are operating right
now. Hopefully, you have been tracking (or have access to) the metrics
as have been defined in Equation (2) (setting aside for a moment, that, as
acknowledged earlier, I haven’t exactly defined what those metrics are).
If you do in fact know the average WIP, CT, and TH of your process (for
the last month, for example), I’d like you to plug those numbers into the

Chapter 1 - The Most Important Part of Predictability 13

Little’s Law (LL) equation now. Try several different permutations of
the equation. Maybe first divide your WIP by your TH and see if you
get your CT. Then try multiplying your CT by your TH to see if you
get your WIP, etc. What do you see? My guess is your numbers aren’t
quite coming out the way you would expect them to or as predicted by
LL. Not only are they probably off, but in some cases, they are probably
off by quite a bit.

What’s going on here? LL is supposed to be an equation. As in
equal. But the calculations you just performed for your process are
not equal. Well, the LL formula is indeed exact, but it is only exact in
contexts when that specific set of assumptions is fulfilled (see above).

Because your calculated numbers didn’t come out as predicted by
LL, that tells us that your process explicitly or implicitly violated one
or more of the LL assumptions at least once and probably at multiple
points over the time period that you chose for your calculation. The net
effect of violating LL’s assumptions is that you have destabilized your
process—as evidenced by the equation not working.

System stability (from an LL perspective) is so important because
an unstable process is by definition unpredictable. Your experience tells
you this. How easy is it to forecast a process where the number of things
you are working on increases every day? How easy is it to forecast a
process where all the things you work on get blocked by dependencies
on other teams? How easy is it to forecast a process where you are
constantly interrupted by “one-offs” that show up?

The upshot is this: if what you care about is predictability—which is
hopefully why you are reading this book—then LL’s assumptions act as
a powerful guide to policies that we should implement to help prevent
our process from destabilizing.

LL’s assumptions act as a powerful guide to policies that
we should implement to help prevent our process from
destabilizing.

And of those five, when it comes to predictability, there is one
assumption that rules them all.

Chapter 1 - The Most Important Part of Predictability 14

All Assumptions Are Equal. But Some
Assumptions Are More Equal Than
Others.
As we’ll see throughout the rest of this book, a thorough understanding
of what it means to violate each of LL’s assumptions is key to under-
standing predictability. However, there is one assumption in particular
that is the most important. A quick examination of each will be helpful
to illustrate this point.

The first thing to observe about Equation (2)’s assumptions is that
#1 and #3 are logically equivalent. Honestly, I’m not sure why Dr. Little
calls these out separately because I’ve never seen a case where one is
fulfilled but the other is not. Therefore, I think we can safely treat those
two as the same. More importantly, however, you’ll notice what Little
is not saying with either #1 or #3. He is making no judgment about
the actual amount of WIP that is required to be in the system. He says
nothing of less WIP being better nor of more WIP being worse. Little
couldn’t care less. All he cares about is that WIP itself is stable over
time. So while having arrivals match departures (and thus unchanging
WIP over time) is important, that tells us nothing about whether we
have too much WIP, too little WIP, or just the right amount of WIP.
Assumptions #1 and #3 therefore, while important, can be ruled out as
the most important.

Assumption #2 is frequently ignored. In your work, how often do
you start something but never complete it? My guess is the number of
times that has happened to you over the past few months is something
greater than zero. Even so, while this assumption is again of crucial
importance, it is usually the exception rather than the rule. Unless you
find yourself in a context where you are always abandoning more work
than you complete (in which case you have much bigger problems than
LL), this assumption will also not be the dominant reason why you have
an unpredictable workflow.

Assumption #5 is included with the others simply so that the math
works out. All it is saying is that if you want to measure CT in days,
then TH needs to be measured per day and average WIP must be
measured by day. Mixing units is a big no-no (e.g., CT in weeks and TH

Chapter 1 - The Most Important Part of Predictability 15

in story points), but that should be intuitively obvious. Again, if anyone
on your team struggles with this concept then you have bigger problems
than how to best apply LL. Assumption #5 is trivial and, therefore not
the most important.

This leaves us with assumption #4. Allowing items to age arbitrarily
is the single greatest factor as to why you are not predictable at
delivering customer value. Stated a different way,

The single most important aspect that you should be
paying attention to in order to drive predictability in your
process is to not let work items age unnecessarily.

Predictability
If you have been keeping score then you know I’ve used the word
“predictability” about a half-dozen times by now, but I’ve never really
defined it. Well here goes.

“When will it be done?”
That is the first question your customers ask you once you start

work for them. And, for the most part, it is the only thing they are
interested in until you deliver. Whether your process is predictable or
not is judged by the accuracy of your answer.

Think about that dynamic for a second. By answering “When will
it be done?” you are setting an expectation with your customers. In
your customers’ eyes, if your process meets that expectation, then you
are predictable. If it doesn’t, then you are not. It is as simple as that.

Predictable Process: A process that behaves the way it is
expected to.

This is the reason I’ve been talking so much about Little’s Law. I
said before, I don’t care about the equation. Throw that equation out of
the window. What I care about are the things that make that equation
work: the assumptions. That is, how often does your current process
violate one or more of the assumptions of LL?

For example, in your current situation:

Chapter 1 - The Most Important Part of Predictability 16

• Are you constantly asked to start new work before you have
had a chance to finish old work—for example, one-off requests,
business-as-usual work, keep-the-lights-on items, etc. (Assump-
tion #1)?

• Are you constantly asked to expedite new requests in addition
to being expected to get all of your other current work done
(Assumption #1)?

• How many features do you start but do not finish because they
get canceled while you are working on them? How likely is it that
the new items that replace the canceled work will themselves get
canceled (Assumption #2)?

• When something that you are working on gets blocked (for
whatever reason), do you simply put that blocked work aside and
start to work on something new (Assumption #2 and Assumption
#4)?

• Do you ignore the order in which you work on items currently
in progress because, for example, you think, “It all has to get
done anyway, so who cares what order we work on this stuff?”
(Assumption #4)

• Do you constantly add new scope or acceptance criteria to items
in progress because of phrases like “While we are at it…” or
“Since we are in there already, it would be easy to…”. When
new work is discovered, is it just easier to modify an existing
item in progress rather than create a new one (Assumption #4—
potentially Assumption #2)?

• Do you constantly add scope to items that have started because
“It’s not valuable unless we do all of these things” (Assumption
#4—potentially Assumption #2)

• When an item is taking too long to complete, have you ever said
or heard someone say “It is just bigger than we thought it was”
and/or “It will get done when it gets done”? (Assumption #4)

• When things take too long to complete, is management’s first
response always to have the team work overtime? Or to cancel
vacations/holidays? Or try to add more people to the team who
have no idea what they are doing? (possibly all assumptions!)

I think you get the picture. The problem with the above is it may
feel like you are doing the right things. You might be thinking, “The

Chapter 1 - The Most Important Part of Predictability 17

sooner we start stuff, the sooner it gets done.” Or, “The more we work
on, the more we’ll get done.” Or, “It doesn’t really matter what else we
are currently working on because we must start this new thing right
now.” Or, “It absolutely is easier just to add scope to this item than start
a new one.” No doubt all of these actions are well-intentioned as you
truly do believe that you are adding/delivering more value.

The problem is, that the reverse is much more likely to be true.
Each time you violate an assumption of Little’s Law you jeopardize
your ability to deliver value and you jeopardize your ability to deliver
that value predictably. I’m not saying that in your context you are not
delivering any value at all. But I am saying that you are probably not
delivering as much or as fast as your customers want.

If violating LL’s assumptions is a force of evil, this book is a force
for good. In the coming text, I’ll talk about how to identify these
problems and fix your process without the need for divine intervention.
In this first section, we’ll focus on the most important assumption
(Aging). However, by the time we are through, we will have covered
all assumptions. More importantly, by the end of this book you will
understand how to refactor your whole way of working for optimal
predictability.

Your process is no fairy tale—you have all the control you need to
get the ending you want. Take that control.

Conclusion
More than limiting WIP, more than estimation, more than fixed-length
timeboxes, more than prioritization, the only question to ask of your
Agile (flow) system is are you letting items age needlessly?

But I fear I’ve gotten way too ahead of myself in an attempt not to
bury the lede. Before we can really talk about Aging, we need to talk
about SLEs. And before we can talk about SLEs we need to talk about
Cycle Time Scatterplots. And before Scatterplots, we need Cycle Time
(CT). And before CT, we need flow data, start/finish points, and flow
modeling. A journey of a thousand miles starts with the first step, but
we’ll start ours with those last two.

Chapter 1 - The Most Important Part of Predictability 18

Key Learnings and Takeaways
• Little’s Law relates the basic metrics of flow in an elegant,

fundamental equation.
• Little’s Law is a relationship of averages.
• Do not get distracted by the math of Little’s Law—the significance

of the law does not necessarily come from plugging numbers
into the equation—the importance of LL is understanding its
assumptions.

• When stating LL in terms of Equation (2), for contexts with
continuous WIP, there are five assumptions necessary for Little’s
Law to work, they are:

1. The average input or Arrival Rate (λ) should equal the
average Throughput (Departure Rate).

2. All work that is started will eventually be completed and exit
the system.

3. The amount of WIP should be roughly the same at the
beginning and at the end of the time interval chosen for the
calculation.

4. The average age of the WIP is neither increasing nor decreas-
ing.

5. Cycle Time, WIP, and Throughput must all be measured
using consistent units.

• Although not explicitly stated as part of the formula itself, Work
Item Age is the most important metric for predictability.

*It should also be quickly noted what you don’t need to know for
LL to work. You’ll observe that the assumptions say nothing about
size/complexity (that’s right, you don’t need to estimate in order to
apply LL), they say nothing about queuing discipline (e.g., first-in-first-
out, last-in-first-out, etc.), they say nothing about the distribution of
arrival times, or the number of servers, or the number of queues feeding
the servers, etc. So, yes, you can still be predictable if your work items
are all of different size. Yes, you can still be predictable if sometimes
you have one person working on an item and sometimes you have many
people working on an item. And, yes, you can still be predictable if you
have multiple, unordered backlogs feeding your process. But more on
all of that in the coming chapters.

Chapter 2 - Setting Up For
Predictability
The whole reason for your team’s existence is to deliver value to
your customer(s). Value, however, doesn’t just magically appear.
Constant work must be done to turn potential product improvement
ideas into tangible customer value. The steps needed to turn an idea
into something concrete that our customers find valuable is called a
process.

“Agile” is not a process. “Scrum” is not a process¹. “Kanban” is not a
process². You may have used these principles and techniques to build a
process, but they, in and of themselves are not a process. Whether you
know it or not, you and your team have built a value delivery process
that goes way beyond anything Agile. That process may be explicit or
implicit, but it exists.

Why should you care about what your process actually is? Because
an understanding of your process is fundamental to an understanding
of something that we will call flow:

Flow: the movement of potential value through a given
process.

Maybe you’ve heard of the other name for process, known as
workflow. There is a reason it is called workFLOW. Because for any
process what really matters is flow.

[Note: I will often use the words “process”, “workflow”, and
“system” interchangeably. I will try my best to indicate a difference
between these when a difference is warranted. For most of the contexts
in this book, however, any difference among these words is negligible
so that they can easily be used synonymously.]

The reason you should care about flow is because your ability to
be predictable will ultimately come down to your ability to actively
manage flow.

19

Chapter 2 - Setting Up For Predictability 20

Your ability to be predictable will ultimately come down
to your ability to actively manage flow.

Since flow is all about the movement of value, it stands to reason
that our whole way of working should be oriented around optimizing
flow. By this line of reasoning, if you feel your current process is
unpredictable, the first thing to investigate is poor flow.

The problem is, that investigating poor flow is not as easy as it
sounds. Most Agile dogma is centered around the antithesis of flow
(fixed-length timeboxes, complexity estimation, upfront planning—to
name a few). As such, very few of us really understand what it means
to achieve good flow, much less measure it.

Luckily for you, I’m here to help.

Modeling Flow
I believe that all Agile processes can be modeled as a simple queuing
system as shown below³:

Figure 2.1: A Simple Queuing System

Dr. Little himself provides the best explanation of what is going on
in Figure 2.1: “A queuing system consists of discrete objects we shall call
items, which arrive at some rate to the system. The items could be cars
at a toll booth, people in a cafeteria line, aircraft on a production line,
or instructions waiting to be executed inside a computer. The stream
of arrivals enters the system, joins one or more queues and eventually
receives service, and exits in a stream of departures. The service might
be a taxi ride (travelers), a bowl of soup (lunch eaters), or auto repair
(car owners). In most cases, service is the bottleneck that creates the
queue, so we usually have a service operation with a service time, but

Chapter 2 - Setting Up For Predictability 21

this is not required. In such a case we assume there is nevertheless a
waiting time. Sometimes a distinction is made between the number in
queue and total number in queue plus service, the latter being called
number in system.”⁴

The point of Figure 2.1 is to establish the need for clearly set system
boundaries before any discussion of predictability can take place. To
illustrate this point, consider that you are traveling for your next
holiday or vacation. At what point would you consider your holiday
to have started? When you leave your front door? When your train
departs? When you get to your hotel? Or maybe you get into holiday
mode when you first booked your tickets?

What about when you consider your holiday to have ended? When
you check out of your hotel? When you physically return home? Or
when you purchase your tickets for your next trip?

You can see how your answer to “How long?” is extremely sensitive
to what you choose as your start point and what you choose as your
endpoint (what happens between those start and end points is important
too, but you’ll have to hang on a bit for that discussion).

The same is true for our Agile processes. Before any conversation
about predictability can take place, we first need to agree on what it
means for an item to have arrived to our system (started) and what it
means for an item to have departed our system (finished).

Defining Arrivals and Departures
Let’s consider arrivals first. For this, we need to establish an explicit
and obvious entry point such that once work has crossed that point, that
work is considered started. If you are visualizing your workflow, then
that start point can be any step of your choosing—but the choice must
be made. To illustrate, for many teams this entry point usually takes the
form of a Work In Progress (WIP)-limited column on the front of your
process (we’ll talk about WIP in the next chapter), and you will often
see this column labeled as “Input” or “Ready” or “To Do” or the like
(more on how to set the WIP limit on this column below). An example
of what this column might look like is shown in Figure 2.1:

Chapter 2 - Setting Up For Predictability 22

Figure 2.1: Arrivals into a Kanban System

In Figure 2.1, items that have been placed in the “Ready” column
are said to have arrived to the process. This column represents a clear,
unambiguous signal to the world that the team has accepted work.

Please note that in this example, the arrivals column is very
different from a more traditional backlog. It is not meant to be an ever-
expanding repository for all candidate customer requests. The WIP
Limit on this column represents the real-time capacity of the system
to take on new work and serves to force us to only pull in new work in
a just-in-time manner. Again, more on that a little later.

Similarly, we are going to need to establish a clear, unambiguous
departure point for our system. Items that pass this point do not
necessarily have to be visualized as part of your agile process—though
many teams do choose to do so; however—whether visualized or not—
the departure point must be chosen. Typically speaking, if a team
chooses to represent the departures column on their board, then it will
not have a WIP Limit on it. Regardless of the visualization employed, it
is important to define the exact point of the system where work departs,
(hopefully) never to return. For example, this could be the point where
we deploy code to production or the point at which we hand an item
off to a downstream team (see Figure 2.2).

Chapter 2 - Setting Up For Predictability 23

Figure 2.2: Items that have departed from the system

In the Figure 2.2 example, the demarcation line between “in our pro-
cess” and “not in our process” is the line that separates the “Test” column
from the “Deployed” column. More importantly, the expectation here
is that the team has put in place a set of policies for what it means for
items to move from Test to Deployed, and that once those items are in
Deployed, they no longer count as being part of our process.

Why Start and Finish Matter
As in the holiday analogy above, you can see how choosing a differ-
ent start point for Figure 2.2 could potentially radically change how
predictable our system is. For example what if we chose Development
Doing as our start point? Or Design Doing? Or some point earlier in
our process such as “Discovery”?

The same is true of departures. What if we chose Development
Done as our finish point? Or Test? Or some point later in our process
such as “Customer Validation”?

The task of choosing a start and end point might seem trivial, but I
assure you it is not. If you were to ask your team members to point to
the unambiguous point at which work is started in your current context,
what would they say? What about what they think about when work
is finished? If you have ten people on your team, would you get 10
different answers?

You might think that if you are employing a well-known Agile

Chapter 2 - Setting Up For Predictability 24

framework, such as Scrum, these considerations are already taken care
of for you. Not so fast. When, actually, is work considered “started” in
Scrum? Is it when a Product Backlog Item (PBI) is selected for a Sprint?
Is it when work on the PBI actually begins during the Sprint? Is it when
refinement starts on the PBI even before it is selected for a Sprint? Is it
when the PBI is first placed on the Product backlog? Believe or or not,
all of these are legitimate choices for a start point depending on context
and depending on what you want to measure. But you have to make
the choice.

Likewise, what does it mean for a PBI to be finished in Scrum? Is
it when it meets the Definition of Done (DoD)? That might be your
obvious choice, but is that what happens in practice? Maybe your
team considers all PBIs finished when the Sprint ends—whether the
DoD has been met or not? Maybe PBIs finish at some point after the
DoD has been met (e.g., maybe your DoD does not include deployment
to production, but you don’t count things as finished until they are
deployed).

Long story longer, your first step toward predictability is to sit down
and decide what you want the boundaries of your agile process to be.
And there are at least two pieces of good news here:

1. If you are not sure what start point and end points are, then feel
free to choose several. Going back to the Scrum example, there is
nothing wrong with saying we want to look at when a PBI starts
refinement AND when that same PBI starts development in the
Sprint. To clarify, you can have as many start points and as many
finish points as you want in your process—but you have to have
at least one of each (and my recommendation is usually just to
start with one of each).

2. Those start and end points can change as your system matures.
There’s nothing to say that your boundaries have to be set in
stone. Quite the opposite. As you learn about your context, you
will almost want to change what you are measuring. And that’s
generally a good sign as that means you are improving. Usually
over time, the boundaries of your process will widen to the point
that they cover your whole end-to-end workflow. Don Reinertsen
is famous for saying that your process begins when the first dollar
is spent⁵. Likewise, (I’m assuming) your process ends when the

Chapter 2 - Setting Up For Predictability 25

last dollar is spent. Granted, this is a fairly radical and idealized
view, but one that I believe that all teams should aspire to.

Push Vs. Pull In a pull-based system, an entry (or boundary) point
is fairly easy to define. That is because, in a pull system, a team
only starts work when it has capacity to do so. Thus, a work item
can only count as started if it has been voluntarily pulled into the
process by the individual, team, or organization responsible for
operating that process. The “arrival point” of the system, therefore,
could easily be defined as the point at which the team performs its
first pull transaction on the work.
For push-based systems, an entry point is much harder to define.
That is because there is no consideration for a team’s capacity when
deciding when work should be started. In a push system work
can be considered started when any stakeholder has a reasonable
expectation that work has been committed to (whether the team
responsible for performing the work knows about that work or
agrees to it or not). This expectation could be set for such arbitrary
reasons as the work has been requested, the project has been
funded, or some manager somewhere thinks it is a good idea to
start—regardless of whether there is any capacity to do so.
Obviously I have a bias for pull systems over push systems, but
the concept of started and finished applies regardless of push vs.
pull. If you find yourself operating within a push system, then the
best, first predictability exercise you might want to undertake is to
define the boundaries of your process. Getting a handle on that is a
necessary (but unfortunately not sufficient) step down the road to
predictability. Just know that at some point, optimal predictability
may require you to at some point to move to a pull-based system.

Conclusion
Modeling flow isn’t difficult. Just start by deciding the boundaries of
your process in the form of a well-defined start point and a well-defined
finish point for all value items that are flowing through your process.

Chapter 2 - Setting Up For Predictability 26

Having modeled flow, measuring it will simply be a matter of taking
a timestamp of when a potential value item crosses your newly defined
start and finish points. That will be all the data you need to get started.

So now that you’ve got your flow modeled, and you’ve started
collecting data, how do you turn that data into meaningful insights?
I’m glad you asked as that is what we will cover next.

Key Learnings and Takeaways
• All Agile processes can be modeled as a simple queuing system.
• Any predictable process needs a clear, unambiguous point at

which it considers items to have “arrived” (started).
• Any predictable process needs a clear, unambiguous point at

which it considers items to have “departed” (finished).
• You can choose several started points and several finish points for

your process, but you must have at least one of each.
• The started and finished points can change over time.
• Once started and finished points have been defined, then the

minimum data to collect is a timestamp for when an item starts
and a timestamp for when an item finishes.

Chapter 3 - The Basic
Metrics of Flow
Understanding flow and managing it requires a different paradigm
than that espoused by traditional processes and frameworks. The
answers to the essential questions of predictable process execution are
not found in project plans, resource utilization charts, or team members’
estimates. The answers will come from the monitoring, measurement,
and management of a specific set of metrics. This chapter is all about
defining the first three of these metrics: Work In Progress (WIP), Cycle
Time, Throughput, and Work Item Age.

We’ve already spent a bit of time on Age, so let’s talk about the
others first. The good news is that these other three flow metrics are
exactly the ones we need to track in order to answer the questions
that our customers are asking. The customer question “How long to
complete?” is best answered by the flow metric known as Cycle Time.
The customer question “How many new features am I going to get
in the next release?” is a question best answered by the flow metric
known as Throughput. The last of the three, Work In Progress (WIP),
does not directly answer any particular customer question, but it is the
metric that will most greatly influence the other two (as demonstrated
by Little’s Law). For that reason, I will start this discussion with it.

Work In Progress
Work In Progress is the best flow metric to begin with for two reasons.
First, as we have seen, WIP is the best predictor of overall system
performance. Second, the other metrics of flow will themselves both
be defined in terms of WIP.

Even so, WIP is probably the hardest metric to define. That is
because the definition of WIP is two-dimensional: it must cover both
the notion of “work” and the notion of “in progress”.

Let’s look at the idea of work first. For this book, I regard any direct

27

Chapter 3 - The Basic Metrics of Flow 28

or indirect discrete unit of customer value as a candidate for work. The
generic term I will use for these candidate units of customer value is
“work item”. A work item might be a user story, an epic, a feature, or
a project. It might be a requirement, use case, or enhancement. How
you capture work as work items and how you name your work items
is entirely up to you.

Secondly, to define in progress we must first consider the bound-
aries of your process. Luckily for us, we just did that in the previous
chapter. So if you skipped that part, you may want to revisit that now
before proceeding.

WIP: All discrete units of potential customer value that
have entered (started) a given process but have not exited
(finished).

If defining WIP is the hard part, then measuring it is the easy part.
To calculate WIP you simply count the discrete number of work items
within your process boundaries as defined above. That’s it: just count.

Your natural objection might be, “Doesn’t that mean you have
to make all of your work items the same size?” After all, the work
items that come through your process are of different durations, are
of disparate complexities, and may require a wide mix of resources to
work on them. How can you possibly account for all of that variability
and come up with a predictable system by just counting work items?
While that is a reasonable question, it is not something to get hung up
on.

I will spend more time on this topic a little bit later, so I am going
to ask you to just suspend disbelief here and accept that when it comes
to WIP and predictability, there is no requirement to have all of your
work items be of the same size or complexity. There is not going to be
a need for any further complexity to be added to the calculation such
as estimating your WIP in Story Points or assigning ideal hours to each
work item. This concept is probably very uncomfortable to those of you
who are used to thinking about work in terms of relative complexity or
level of effort. Trust me when I say you need to abandon that type of
thinking if you truly want to build predictable processes.

For those of you who do not want to wait, an explanation of why
size does not matter (said the actress to the bishop) is outlined in

Chapter 3 - The Basic Metrics of Flow 29

Appendix A (the deeper dive into LL). For now, all you need to know
is that WIP is calculated by counting individual work items.

Nor is there any restriction on the level at which you track work
items. You can track WIP at the portfolio, project, feature, epic, or
story level—just to name a few. All of these types of decisions will be
completely up to you.

For you Kanban practitioners out there, you will also want to note
that there is a difference between WIP and WIP limits. You cannot
calculate WIP simply by adding up all the WIP limits on your board. It
should work that way, but it does not. This result should be obvious as
most Kanban boards do not always have columns that are at their full
WIP limit. A more common situation is to have a Kanban board with
WIP limit violations in multiple columns. In either of those cases simply
adding up WIP limits will not give you an accurate WIP calculation.
Even in a Kanban world, you still have to actively track the total number
of work items in your process.

An implication of all of this is that most often items located in
a backlog do not meet the definition of being included in a WIP
calculation. There is a subtlety here that is going to require further
discussion as it refers to the “point of commitment” that I mentioned
a little earlier (for this deeper discussion, please see Chapter 8). Just
know that—for the most part—when I talk about WIP, I do not include
backlog items in that discussion.

As an interesting aside, you should know that you will have the
option to segment and report on your WIP as you see fit. In some
contexts, it may be beneficial to lump all of your WIP together and
examine it from a holistic system’s view. Or it may be beneficial to
segment that WIP into types or categories and examine each one of
those subgroups on its own.

For example, let’s say your team performs work for the sales
department, the marketing department, and the finance department.
Let’s also say that your team is responsible for the maintenance of a
variety of existing applications. When looking at WIP you may want
to combine all of those requests into one big group. Or your team may
choose to just look at the part of your WIP that pertains to sales. Or
your team may choose to look at the part of your WIP that pertains to
marketing. Or you may just want to look at how your maintenance

Chapter 3 - The Basic Metrics of Flow 30

items are doing. From a metrics perspective, performing that type
of segmentation is not only going to be perfectly okay, but also, as
mentioned earlier, in some instances is going to be desirable. If your
team does segment WIP into different categories, then it is also going to
be valid to talk about the Cycle Time and Throughput of those different
types of segments. Segmenting (or filtering) WIP into different types
may also be important from a reporting and analytics perspective which
is why I will revisit this topic in the flow analytics chapters to come.

To sum up, if you are not currently tracking WIP, then you are going
to want to start. Sooner is better than later.

Cycle Time
As I mentioned at the outset, the first question our customers ask when
we start work for them is “When will it be done?” Answering that
question will require us to measure the flow metric of Cycle Time.
Measuring Cycle Time becomes much easier now that you have a
basic understanding of WIP. Once your team determines the points of
delineation that define Work In Progress, the definition of Cycle Time
becomes very easy:

Cycle Time: The amount of elapsed time that a work item
spends as Work In Progress.

This definition is based on one offered by Hopp and Spearman
in their Factory Physics book¹ and, I believe, holds up well in most
knowledge work contexts. Defining Cycle Time in terms of WIP
removes much—if not all—of the arbitrariness of some of the other
explanations of Cycle Time that you may have seen (and been confused
by) and gives us a tighter definition to start measuring this metric.
The moral of this story is: that you essentially have control over when
something is counted as Work In Progress in your process. Take some
time to define those policies around what it means for an item to be
“Work In Progress” in your system and start and stop your Cycle Time
clock accordingly.

Not only does defining Cycle Time in terms of Work In Progress
make it more concrete and easier for people to understand, but it also

Chapter 3 - The Basic Metrics of Flow 31

brings some needed consistency when talking about Cycle Time with
respect to Little’s Law and with respect to how Cycle Time is (or is not!)
visualized on a Cumulative Flow Diagram.

Lastly, notice the emphasis on “elapsed time”. The use of elapsed
time is probably very different from the guidance you have previously
been given. Most other methodologies ask you to measure only the
actual amount of time spent actively working on a given item (if they
ask you to measure time at all). I happen to think this guidance is
wrong. I have a couple of reasons why.

First, and most importantly, your customers probably think about
the world in terms of elapsed time. For example, let’s say that on March
1, you communicate to your customers that something will be done in
30 days. My guess would be that your customer would expect that they
would get their item on or before March 31. However, if you meant
30 “business days” then your expectation is the customer would get
something sometime around the middle of April. I am sure you can see
where that difference in expectations might be a problem.

Second, if you only measure active time, you are ignoring a large
part of your predictability problem. It is the time that an item spends
waiting or delayed (i.e., not actively being worked) that is usually where
most of your unpredictability lies. It is precisely that area that we are
going to look at for the most substantial predictability improvements.
Remember, delay is the enemy of flow!

Lead Time vs. Cycle Time

If you have been exposed to Lean or Kanban concepts before
reading this book, then what I have just defined as Cycle Time
may sound a lot like what you have come to recognize as Lead
Time. I understand that most people in the Kanban community
prefer the term Lead Time to Cycle Time, but I am not one of them.
My intention here is not to dive headlong into an academic (and
ultimately useless) debate about which nomenclature is better, but
I feel that I should at least present my thoughts on why I have
chosen the terms that I have. You may agree or disagree with

Chapter 3 - The Basic Metrics of Flow 32

my reasoning, but I hope you understand my intention here is
not to be provocative or antagonistic (yet). I am going to talk
about nomenclature in general a little later, but these specific terms
require some special attention.
So why choose the term Cycle Time over Lead Time? My first
argument is that regardless of whether you are talking about Cycle
Time or Lead Time, you still have to qualify the boundaries of your
time calculation. That is to say, both terms are very dependent
on one’s perspective: one person’s Lead Time is another person’s
Cycle Time, and vice versa. For example, the development team’s
Lead Time is just the Product Manager’s Cycle Time through the
development phase. Given that with both terms boundaries must
be qualified, I see no clear advantage of the term Lead Time over
the term Cycle Time. Further, defining Cycle Time in terms of
when something is counted as WIP clears up a lot of this ambiguity.
(And this is not even to mention that as you get out of software and
manufacturing, Lead Time is defined very differently.)
Secondly, I do not buy the argument that we, the Lean-Agile
community, should shy away from using the term Cycle Time
because the manufacturing industry has already defined it in a
different way that may or may not be in agreement with how we
use the name. I do not subscribe to the thinking that the “Lean”
we are talking about here is just manufacturing theory blindly
applied to knowledge work. I fully reject this thesis. The fact
that manufacturing has its own definition of Cycle Time should
be neither influential nor consequential to how we in knowledge
work choose to define the term.
Lastly, and, I must stress, most importantly, the authors that I quote
most—Reinertsen² and Little—both favor the use of the term Cycle
Time. If it is good enough for them, then it is good enough for me.
By the way, Hopp and Spearman also sometimes refer to Cycle
Time as “Flow Time”³. I would suggest that the term “Flow Time”
might be a better way for us to communicate what we precisely
mean by Cycle Time in our context anyway. Even so, for the rest
of the book, I will use the more common term, Cycle Time, and I
will use it in the way that I have defined it here.

Maybe you are already persuaded by these reasons to track Cycle

Chapter 3 - The Basic Metrics of Flow 33

Time. But there are more.
The first supporting reason to track Cycle Time is that it can be

a rather good predictor of cost. Very generally speaking, the longer
something takes to complete the more it is going to cost. Project,
feature, or even user story cost can be one of the biggest determiners of
whether a company chooses to invest in development or not. Like it or
not, we are going to need Cycle Time data to figure out development
costs.

The final and most important reason to understand Cycle Time is
that it represents the amount of time it takes to get customer feedback.
Customer feedback is of vital importance in our knowledge work world.
Value itself is ultimately determined by the customer, which means
your team is going to want to make sure it gets that value feedback
as quickly as possible. The last thing you want is to develop something
that the customer does not need—especially if it takes you forever to
do so. Shortening Cycle Time will shorten the customer feedback loop.
And to shorten Cycle Time, you are going to first need to measure it.

Throughput
Simply put, Throughput is defined as:

Throughput: the amount of WIP (number of work items)
completed per unit of time.

Stated a slightly different way, Throughput is a measure of how
fast items depart a process. The unit of time that your team chooses for
your Throughput measurement is completely up to you. Your team can
choose to measure the number of items that get done per day, per week,
per iteration, etc. For example, you might state that the Throughput of
your system is “three stories per day” (for a given day) or “five features
per month” (for a given month).

A further thing to know about Throughput, however, is that this
metric as I have defined it here is potentially very different from the
traditional Agile metric of “Velocity”. Velocity, as you may know, can
be measured in terms of Story Points per sprint or iteration. However,
for Throughput, I am talking about actual counts of work items (e.g., the

Chapter 3 - The Basic Metrics of Flow 34

actual number of discrete Stories and not Story Points) per unit of time.
As I have just mentioned, the unit of time you choose for Throughput is
completely up to you. The implication being that your choice of a time
period need not necessarily coincide with an iteration boundary. I say
all of this because many agile coaches and consultants use the words
“Velocity” and “Throughput” interchangeably. Just know that in most
contexts these two terms are definitely not synonymous.

If Throughput is how fast items depart from a process, then Arrival
Rate is how fast items arrive to a process. I mention this fact here
because depending on your perspective, Arrival Rate can be thought
of as an analog to Throughput. For example, let’s say that the “Devel-
opment” step and “Test” step are adjacent in your workflow. Then the
Throughput from the “Development” step could also be thought of as
the Arrival Rate to the “Test” step.

Even more importantly, as I alluded to in the previous chapter,
comparing the Arrival Rate of one step in your process to the Through-
put in another, different step may give you some much-needed insight
into predictability problems (also see Chapter 11). However, my more
immediate reason for discussing Arrival Rate is simply to point out that
how fast things arrive to your process could be just as important as how
fast things depart.

The Throughput metric answers the very important question of
“How many features am I going to get in the next release?” At
some point, you are going to need to answer that question, so track
Throughput and be prepared.

Work Item Age
I have saved, as stated at the outset, the most important metric for
last. Work Item Age is the amount of time that has elapsed from when
an item crossed the well-defined start point of your process until the
present time.

Work Item Age: The amount of time that has elapsed from
when an item crossed the well-defined start point of your
process until the present time.

Stated differently, Work Item Age is the amount of elapsed time that

Chapter 3 - The Basic Metrics of Flow 35

a started but unfinished work item has spent as Work In Progress.
For example, let’s say that an item started on January 1 and today

it is January 6. Let’s further say that the item still is not finished. The
Age of that item is 6 days (as with Cycle Time, the Age calculation is
inclusive—which means we count the first day that the item started as
part of its Age). Note that Age only applies to items that have started
but not finished. Once an item finishes then what we calculate is Cycle
Time and not Age. Also, note the emphasis on elapsed time. As was
the case with Cycle Time, the calculation for Age is based on the total
time that has elapsed since the item started. There is no subtracting
out nights, weekends, holidays, etc. Remember that we want our flow
metrics to reflect how our customers see the world and Age is no
exception.

Before we get into why you should care about Age, we need to
revisit Cycle Time (CT). At the risk of repeating myself, most people
think that the reason flow emphasizes CT so much is so that we can
pressure Agile teams into getting more things done faster. Nothing
could be further from the truth. The reason that flow cares about CT is
because CT represents the time to customer feedback.

We’ll see in a later chapter that until a work item is actually in the
hands of the customer, that item represents only hypothetical value.
Value can only be determined by the customers themselves and that
determination can only be made after the item is delivered. Thus, CT
is really a measure of “time to validated feedback”.

However, CT itself can only be calculated at or after the moment
when the item has actually finished. Before it has finished all we
know is the item’s Age. That aging process starts immediately once
work begins. Further, work items will continue to Age until they are
ultimately delivered to the customer. Thus, the more items Age, the
longer we delay precious feedback from the customer.

That delayed feedback increases the chances of something going
wrong with delivery. Maybe the business environment changes, maybe
customer requirements change, maybe a global pandemic takes over—
it’s impossible to know what might happen to change a customer’s
needs. But what we do know is that a longer age represents a higher
risk. And the ultimate risk is that we spend a long time working on
something that ends up not being valuable. As my friend and colleague

Chapter 3 - The Basic Metrics of Flow 36

Prateek Singh likes to say, “It is all about finding out how wrong you are
as quickly as possible.” By letting items age unnecessarily, you are not
just sabotaging your ability to deliver, you are sabotaging your ability
to deliver what your customers really want.

So if aging is so bad, how do we prevent it from happening?
A question I love to ask in my workshops is “What are the two

most effective ways to prevent items from aging unnecessarily?” This
question usually stumps attendees because they want to run back to
the dogma that they’ve been previously taught. You’ll get answers like
“lower WIP”, or “clear blockers”, or the like. But as we’ve just seen those
answers don’t necessarily lead to shorter Age.

The first way to prevent items from aging is to finish them. It’s that
simple. If an item finishes, it is no longer aging. We can then begin the
process to get customer feedback.

The second (and probably even better) way to prevent items from
aging is to not start them. How many times are you and your team
pressured to start work when you are not ready just for the sake of
looking like you are making progress? From an LL perspective, that is
the absolute worst thing that you can do.

Now let’s put this all together. If you finish work as quickly as
possible and don’t start work until you are ready to do so, what have
you just done? You guessed it, you’ve just controlled Work In Progress.

The real reason to control WIP is to prevent unneces-
sary aging.

Maybe you’ve heard the Kanban saying “Stop Starting. Start
Finishing.” Now you know why they say that.

We can take this logic a step further and assert that all flow practices
can be derived from the basic principle that we don’t want items to
age unnecessarily. Why visualize work? So we can see where work
is piling up and items are aging unnecessarily. Why mark work as
blocked? So we can see where flow is not happening and items are
aging unnecessarily. Why implement pull policies? So some items
aren’t allowed to jump the queue which would cause other items to
age unnecessarily. And so on. We will revisit all of this in Chapter 7.

Chapter 3 - The Basic Metrics of Flow 37

Conclusion
What I have shown here are just the basic metrics of flow to get you
started: WIP, Cycle Time, Throughput, and Work Item Age. There
are most certainly other metrics that you will want to track in your
own environment, but these represent the metrics common to all flow
implementations. If your goal is predictability, then these are the
metrics that you are going to want to track.

I would also like to say one final word on vocabulary. No doubt
if you have done any reading on this topic that you have come across
different names for the concepts that I have defined in this chapter (I
discussed the most contentious example of this in the “Lead Time vs.
Cycle Time” section above). As I mentioned earlier, the point of this
discussion is not to spark any religious wars over nomenclature. The
point of this chapter is only to get you thinking about the basic concepts
that are communicated by these metrics.

For example, for us to have a conversation about predictability, we
are going to need some notion of the total amount of items in a system. I
am choosing to call that notion Work In Progress. If you prefer the term
Work in Process or something else, then, by all means, use that name.
We are also going to need some notion of the amount of time that items
spend in the system. I am choosing to call that Cycle Time. If you prefer
Lead Time, Flow Time, Time In Process, or something else, then, please
do not let me stand in your way. Lastly, we need some notion of the
amount of items that leave the system per unit of time. I am choosing to
call that Throughput. But please feel free to use the terms Completion
Rate, Departure Rate, or anything else that may make you comfortable
(so long as you do not use the term Velocity!).

Just know that it is the definitions of these concepts that are
important—not the names. However, to be clear, the rest of this book
will utilize the names and definitions of these metrics as I have outlined
in this chapter.

Having spent an inordinate amount of time defining these metrics,
it is now possible to get on the really important piece: how to calculate
them.

Chapter 3 - The Basic Metrics of Flow 38

Key Learnings and Takeaways
• Any work item can be counted as WIP when it is between the

defined entry point of a process and the defined exit point of a
process.

• The choice of what work items you count as WIP when between
those two points is completely up to you.

• WIP can be segmented into several different types.
• If WIP is segmented into several types, then it is also valid to talk

about the Cycle Time and Throughput of those type segments.
• Cycle Time and Throughput are always defined in terms of WIP.
• Cycle Time is the amount of elapsed time that an item spends as

Work In Progress.
• Throughput is the amount of Work In Progress completed during

some arbitrary interval of time.
• Work Item Age is the amount of elapsed time that an unfinished

item has spent as work in progress.
• The real reason to limit WIP is to prevent an item from aging

unnecessarily.
• All flow principles for predictability can be derived from aging.
• The names of metrics are not as important as their definitions.

Use whatever names you want for these metrics, but make sure
you define them as they are defined here.

• Track these metrics because they have predictive power, are
inexpensive to gather, and answer the important questions that
your customers are asking.

Chapter 3a - Flow Metrics
Data and Calculation
Calculating flow metrics will first depend on collecting the right data¹.
Collecting the right data will depend on modeling your flow. From
Chapter 2, we know that to model flow, we need start and finish points.

What Data To Collect
Once you have the start and finish points of your process defined, then
the only data you need to collect to calculate flow metrics is a timestamp
for when an item crosses your start point and a timestamp for when
an item crosses your finish point. That’s it. All of the metrics that I
will discuss in this book need only those data points. In the interest
of clarity, there may be other data you want and/or need to collect for
your context, but for the basic metrics of flow, those two data points
are all you need.

For example, in your context, your timestamp tracking might look
like this:

1 01/01/2016 01/03/2016
2 02/02/2016 03/03/2016
3 01/02/2016 03/04/2016

Work Item ID Arrived Departed

Figure 3a.1 – Sample Timestamp Data
[It is impossible to tell from these data in Figure 2.4, but I’m using

American-style dates. Not only are American dates represented in
Figure 2.4, but I will use that style for the rest of the book (unless
otherwise noted). It doesn’t necessarily matter here, but it might matter
later.]

39

Chapter 3a - Flow Metrics Data and Calculation 40

We’ll discuss what to do with these data in the coming chapters, but
just feel secure in the knowledge that the data won’t get much more
complicated than this. Channeling my inner broken record, these data
cannot be collected unless start and end points have been established.

If you are using a tool (like Jira) to help track work, then when it
comes to data, there is again good and bad news. The good news is
that most Agile tooling tracks timestamps as required above. The bad
news is that those tools usually do not make this data easily accessible.
You might be able to query a database or code against some API, but
almost certainly there will be some nontrivial amount of work required
to get the data you need. Thankfully, there are plugins out there to help.
The one that I recommend is ActionableAgile® Analytics. But as I said
before, I am biased.

Flow Metrics Calculation
The definitions from the previous chapter are meaningless if you don’t
know how to calculate each metric from the data you’ve collected. Now
that we understand what data we need, let’s explore how to properly
calculate each metric:

WIP
WIP is the count of all work items that have a started timestamp but
do not have a finished timestamp for a given interval of time. That
last part is a bit difficult for people to grasp. Although technically WIP
is an instantaneous metric—that is, at any time you could count all of
the work items in your process to calculate WIP—it is usually more
helpful to talk about WIP over some time unit: days, weeks, sprints,
etc. Our strong recommendation—and this is going to be our strong
recommendation for all of these metrics—is that you track WIP per day.
Thus, if we wanted to know what our WIP was for a given day, we
would just count all the work items that had started but not finished by
that date. For Figure 2.1, our WIP on January 5th is 3 (work items 3, 4,
and 5 have all started before January 5th but have not finished by that
day).

Chapter 3a - Flow Metrics Data and Calculation 41

Cycle Time
Cycle Time equals the finished date minus the started date plus one (CT
= FD - SD + 1).

If you are wondering where the “+ 1” comes from in the calculation,
it is because we count every day in which the item is worked as part
of the total. For example, when a PBI starts and finishes on the same
day, we would never say that it took zero time to complete. So we add
one, effectively rounding the partial day up to a full day. What about
items that don’t start and finish on the same day? For example, let’s say
an item starts on January 1ˢt and finishes on January 2nd. The above
Cycle Time definition would give an answer of two days (2 – 1 + 1 =
2). We think this is a reasonable, realistic outcome. Again, from the
customers’ perspective, if we communicate a Cycle Time of one day,
then they could have a realistic expectation that they will receive their
item on the same day. If we tell them two days, they have a realistic
expectation that they will receive their item on the next day, etc.

You might be concerned that the above Cycle Time calculation is
biased toward measuring Cycle Time in terms of days. In reality,
you can substitute whatever notion of “time” that is relevant for
your context (that is why up until now we have kept saying track a
“timestamp” and not a “date”). Maybe weeks are more relevant for
your specific situation. Or hours. Or even Sprints. If you are on a
Scrum team and you wanted to measure Cycle Time in terms of Sprints,
then the calculation would just be Finished Sprint – Start Sprint + 1
(assuming work items cross Sprint boundaries in your context). The
point here is that this calculation applies in all contexts. However, as
with WIP, my very strong recommendation is to calculate Cycle Time
in terms of days. The reasons are too numerous to get into here, so when
starting out, calculate Cycle Time in terms of days and then experiment
with other time units later should you feel you need them.

Work Item Age
Work Item Age equals the current date minus the started date plus one
(Age = CD - SD + 1).

The “plus one” argument is the same as for Cycle Time above. You
will never have a work item that has an Age of zero days. Again, start

Chapter 3a - Flow Metrics Data and Calculation 42

by tracking Age in days. All the reasons why are the same as what I
have outlined for CT above.

Throughput
Let’s take a look at a different set of data to make our Throughput
calculation example a bit clearer:

1 01/01/2022 03/01/2022
2 01/02/2022 03/03/2022
3 02/02/2022 03/03/2022
4 01/02/2022 03/04/2022
5 03/02/2022 03/04/2022

Work Item Id Arrived Departed

Figure 3a.2 - Sample Process Data
To calculate Throughput, begin by noting the earliest date that any

item was completed, and the latest date that any item was completed.
Then enumerate those dates. In this example, those dates in sequence
are:

03/01/2022
03/02/2022
03/03/2022
03/04/2022

Completed Date

Figure 3a.3 - Consecutive Calendar Days Between First and Last
Finished Items

Now for each enumerated date, simply count the number of items
that finished on that exact date. For this data, those counts look like
this:

Chapter 3a - Flow Metrics Data and Calculation 43

03/01/2022 1
03/02/2022 0
03/03/2022 2
03/04/2022 2

Completed Date Throughput

Figure 3a.4 - Calculated Throughput
From Figure 3.3 we can see that we had a Throughput of 1 item on

03/01/2016, 0 items the next day, 2 items the third day, and 2 items the
last day. Note the Throughput of zero on 03/02/2016—nothing finished
that day.

As stated above, you can choose whatever time units you want
to calculate Throughput. I advise very strongly that you measure
Throughput in terms of days. Again, it would be a book in itself
to explain why, but let’s consider two quick justifications: (1) using
days will provide you much better flexibility and granularity when we
start doing things like Monte Carlo simulation for planning activities
(explained in detail in my second book “When Will It Be Done?”); and,
(2) using consistent units across all of your metrics will save you a lot of
headaches. So if you are tracking WIP, Cycle Time, and Age all in days,
then you will make your life a whole lot simpler if you track Throughput
in days too (not to mention we now know this is a requirement of LL).

You still with me? I hope so because we’ve saved the most difficult
parts for last. These next couple of topics might seem out of place here,
but, trust me, you must understand these concepts before we can go
any further with metrics and data.

Randomness
From above, you now know how to calculate the four basic metrics of
flow at the individual work item level. Further, we now know that all
of these calculations are deterministic. That is, if we start a work item
on Monday and finish it a few days later on Thursday, then we know
that the work item had a Cycle Time of exactly four days.

But what if someone asks us what our overall process Cycle Time
is? What if someone asks us what our team’s Throughput is? How do
we answer those questions?

Chapter 3a - Flow Metrics Data and Calculation 44

You should immediately see the problem here. If, say, we look at
our team’s Cycle Time for the past six months, we will see that we had
work items finish in a wide range of times. Some in one day, some in
five days, some in more than 14 days, etc. In short, there is no single
deterministic answer to the question “What is our process Cycle Time?”.
Stated slightly differently, your process Cycle Time is not a unique
number, rather it is a distribution of possible values. That’s because
your process Cycle Time is really what’s known as a random variable.
[By the way, we’ve only been talking about Cycle Time in this section
for illustrative purposes, but all of the basic metrics of flow (WIP, Cycle
Time, Age, Throughput) are all random variables.]

What random variables are and why you should care is one of
those topics that is way beyond the scope of this book. But what
you do need to know is that your process is dominated by uncertainty
and risk, which means all flow metrics that you track will reflect
that uncertainty and risk, and further, that uncertainty and risk will
show up as randomness in all of your Flow Metric calculations. The
broader implication is that once randomness shows up, you can throw
determinism out the window. Once you know you are dealing with
a random process, you are required to take a probabilistic approach.
We’ll talk about what that means starting in the next chapter.

The Flaw of Averages
The lazy and innumerate love to shortcut probabilistic thinking by
using the term “average”. To illustrate, allow me to ask: do you still
commute to work? If so, how long does it take you? Maybe your answer
is something like “On average it takes me 25 minutes to get to work”. If
that was your answer, you have fallen victim to the Flaw of Averages
(FoA).

The Flaw of Averages (FoA) is a concept detailed in the book of the
same name by Dr. Sam Savage². Simply put, the Flaw of Averages can
be stated as “plans based on average fail on average”.

To explain FoA, I’d like to use the same example that Dr. Savage
uses in many of his talks. Let’s assume there is a 9:00 AM business
meeting with 10 people invited and that all attendees must be present
before the meeting can begin. Let’s further assume that, on average,

Chapter 3a - Flow Metrics Data and Calculation 45

all participants have a history of arriving to meetings on time (for this
example we’ll say that average means a 50% on-time record). What are
the chances that the meeting will start on time?

Again, you might think the answer to this question is easy. If, on
average, everyone has a history of arriving on time, then it is reasonable
to assume that there is an average chance that the meeting will start on
time. Unfortunately, again, this answer is wrong. If everyone has the
same chance of arriving on time as arriving late, then there is actually
only a 0.1% chance that the meeting will start on time. Think of it this
way: since every invitee has a 50% chance of arriving on time, then
you could use the flip of a coin to model if a given attendee will arrive
punctually—heads she/he does and tails she/he doesn’t. Remember the
meeting can only start when all participants arrive. Therefore, the case
where the meeting starts on time is the equivalent of flipping 10 heads
in a row—flipping only one tails means that the participant is late and
the meeting itself starts late. The chance of flipping 10 heads in a row
is 0.1% (1/2¹⁰)—or about 1 in 1,000. There is virtually no chance the
meeting starts on time—which is significantly worse than average.

This point can be illustrated by a joke you’ve probably heard, “If
[insert name of world’s richest person here] walks into a bar (pub),
then, on average, everyone in the bar is a billionaire”. Averages don’t
mean much outside of some very specific use cases. Predictability isn’t
one of those exceptions.

The lesson here is that any time you hear someone say “on av-
erage…” your ears should perk up because anything after the “on
average…” statement will contain little to no informational value. For
example, I currently live in South Florida, and as you may know, Florida
is fairly prone to being hit by big storms known as hurricanes. Before
every hurricane season, forecasters go through their song and dance
to try and predict the severity of the upcoming season. You will hear
statements like, “The 2022 hurricane season will be more active than
average.” It should be immediately obvious to you now how that
statement is a classic case of the FoA and contains no informational
value whatsoever. By comparing a single value (the 2022 hurricane
season) to an average (the average of all hurricane seasons in the
past) then you would expect that about 50% of the time the upcoming
season will be more active than average and about 50% of the time the

Chapter 3a - Flow Metrics Data and Calculation 46

upcoming season will be less active than average. So saying the 2022
season will be more active than average doesn’t really tell us anything
because that forecast has just as much chance of being right as being
wrong.

One final thought on the FoA before we get to more pressing
matters. English speakers are very lazy and many times they will use
the word “average” when what they really mean is “typical”. In our
commute example, if someone were to say “On average it takes me 25
minutes to get to work” what they probably really mean is “typically it
takes me 25 minutes to get to work”. The problem with this laziness is
that when it comes to probability (and the FoA) average is most often
very far from typical—and in many cases average may not even be a
possible outcome.

To demonstrate, if you were to roll a single, fair, six-sided die, the
average outcome would be 3.5. But we know that it is impossible to roll
a 3.5, so once again saying that “on average we will roll a 3.5” provides
no informational value.

Even when the average is in the realm of possibilities, the average
outcome usually isn’t very likely. Let’s say we want to roll two, fair,
six-sided dice. The average outcome in this scenario is (did you have to
look it up?) about 16.7%. This is a quirk of averages that most people
have a hard time coming to grips with. Even though rolling seven is the
average outcome and even though in this case rolling seven is the most
likely outcome, the chances of actually rolling a seven are pretty low.
To quote my friend and colleague Frank Vega, “The most likely outcome
is not very likely”. In other words, would you bet on something if on
average you only had a 16.7% chance of succeeding? In short, don’t
use averages when talking about flow metrics.

Conclusion
Admittedly, the past three and a half chapters have been a bit of a slog.
Unfortunately, that was all information that you needed to have before
we could get to the heavy-lifting part of this book. You may want to
stretch your legs or get a cuppa (or something stronger) because now is
when we get into where the predictability rubber meets the road.

Chapter 3a - Flow Metrics Data and Calculation 47

Key Learnings and Takeaways
• Once started and finished points have been defined, then the

minimum data to collect is a timestamp for when an item starts
and a timestamp for when an item finishes.

• WIP is the count of all work items that have a started timestamp
but do not have a finished timestamp for a given interval of time.

• Cycle Time equals the finished date minus the started date plus
one (CT = FD - SD + 1).

• Work Item Age equals the current date minus the started date plus
one (Age = CD - SD + 1).

• Throughput is a count of items that are finished on a given date.
• The flow metrics for your overall process as random variables.

As such, when working with them, we will need to take a
probabilistic approach.

• When using probability, beware the Flaw of Averages. There
are few things more dangerous than the word “average” when
it comes to probabilistic thinking. If you ever hear someone
discussing averages, then you can be sure they know nothing
about predictability.

Chapter 4 - Introduction to
Cycle Time Scatterplots
When I begin my analysis of any Agile team that I am working with
I almost always start by placing the historical Cycle Time Data into a
Scatterplot. I can think of only one other chart (Chapter 6) that even
comes close to giving you the analytic insights you need at a glance.

But before I get into the explanation about how to do basic quan-
titative and qualitative analysis using Scatterplots, I need to make one
thing clear about how to read this chapter. For this discussion, I am
going to focus only on how to chart the flow metric of Cycle Time on
a Scatterplot. In reality, you can put pretty much any metric that you
want to in a Scatterplot. You can put things like Throughput, bugs per
feature, work items per epic, etc. For this chapter, however, whenever
I say the word “Scatterplot” without any qualifier, what I really mean
is “Cycle Time Scatterplot” (if you would like a refresher on how I am
choosing to define Cycle Time, then please revisit Chapter 2).

What is a Cycle Time Scatterplot?
It will first be beneficial to get a basic understanding of a Scatterplot’s
anatomy before diving into what these charts can tell us.

If you have never seen a Cycle Time Scatterplot before, then one is
displayed in Figure 4.1 for your reference:

48

Chapter 4 - Introduction to Cycle Time Scatterplots 49

Figure 4.1: A Basic Cycle Time Scatterplot

As you can see from Figure 4.1, across the bottom (the X-axis) is
some representation of the progression of time. Like CFDs, the X-axis
essentially represents a timeline for our process. The tick marks on the
X-axis represent our choice of labels for that timeline. When labeling
the X-axis, you can choose whatever frequency of labels you want.
In this particular Scatterplot, we have chosen to label every month.
However, you can choose whatever label is best for your specific needs.
You can choose to label every two weeks, every month, every day, etc.

I should point out that in Figure 4.1 I have chosen to show the
timeline progression from left to right. This is not a requirement, it
is only a preference. I could have easily shown time progression from

Chapter 4 - Introduction to Cycle Time Scatterplots 50

right to left. I personally have never seen a Cycle Time Scatterplot that
shows time progression from right to left, but there is no reason why
one could not be constructed that way. However, for the rest of this
chapter (and this book), I will show all Scatterplot time progressions
from left to right.

Up the side (the Y-axis) of your chart is going to be some represen-
tation of Cycle Time. Again, you can choose whatever units of Cycle
Time that you want for this axis. For example, you can measure Cycle
Time in days, weeks, months, etc.

To generate a Scatterplot, any time a work item is completed, you
find the date that it was completed across the bottom and plot a dot
on the chart area according to its Cycle Time. For example, let’s say a
work item took seven days to complete and it finished January 1, 2013.
On the Scatterplot you would go across the bottom to find January 1,
2013, and then go up and put it a dot at seven days. Recall that for CFDs
you could choose whatever time reporting interval you wanted to plot
your data. In a Scatterplot, however, there is no concept of a reporting
interval. A dot is always plotted on the day a given work item finishes.

Note that you could have several items that finish on the same day
with the same Cycle Time. In that case, you would simply plot the
several dots on top of one another. Hopefully whatever tool you are
using to plot your Scatterplot can handle this case, and, further, can
alert you to the instances where you have several dots on top of each
other. In the ActionableAgile® Analytics tool, we signify this situation
by putting a little number on the dot to show there is more than one
work item located at that point (as also shown in Figure 4.1).

Over time as you plot more and more work item completions, a
random set of dots will emerge on your chart. The original diagram I
showed you in Figure 4.1 is a good example of what I am talking about.
So how do we get useful information off of a chart that just looks like
a bunch of random dots?

Percentile Lines
The first thing that we can do to gain a better understanding of
our process’s Cycle Time performance is to draw what I would call
“standard percentile lines” on our Scatterplot. I should stress upfront

Chapter 4 - Introduction to Cycle Time Scatterplots 51

that this standard percentile approach is only a starting point—you will
have every opportunity to change these percentiles as you get a better
understanding of your context. I would argue, however, that these
standard percentiles represent a good enough place to start for most
teams.

The best way to explain how to use standard percentiles on a
Scatterplot is by example. I want to refer you again to the chart shown
in Figure 4.1. Looking at this graph the first line that we could draw
would be at the 50tʰ percentile of Cycle Times. The 50tʰ percentile line
is going to represent the value for a Cycle Time such that if we draw
a line completely across the chart at that Cycle Time, 50% of the dots
on the chart fall below that line and 50% of the dots are above that line.
This calculation is shown in Figure 4.2 below.

In Figure 4.2, the 50tʰ percentile line occurs at seven days. That
means that 50% of the work items that have flowed through our process
took seven days or less to complete. Another way of saying that is that
when a work item enters our process it has a 50% chance of finishing in
seven days or less (more on this concept a little later).

The next line that might be of interest to us is the 85tʰ percentile.
Again this line represents the amount of time it took for 85% of our
work items to finish. In Figure 4.2 you can see that the 85tʰ percentile
line occurs at 16 days. That means that 85% of the dots on our chart
fall below that line and 15% of the dots on our chart fall above that line.
This percentile line tells us that when a work item enters our process it
has an 85% chance of finishing in 16 days or less.

Another line we might want to draw is the 95tʰ percentile line. As
before, this line represents the amount of time at which 95% of our
work items are complete. In Figure 4.2 the 95tʰ percentile line occurs at
23 days and tells us that our work items have a 95% chance of finishing
in 23 days or less. This calculation is shown in Figure 4.2 below.

Chapter 4 - Introduction to Cycle Time Scatterplots 52

Figure 4.2: 50, 85, and 95 Percentile Lines all shown on a Scatterplot

The 50tʰ, 85tʰ, and 95tʰ percentiles are probably the most popular
“standard” percentiles to draw. Other percentiles that you will see,
though, could include the 30tʰ and 70tʰ. Calculating those percentiles
is exactly the same as I have just demonstrated with the others.

I am sure you have noticed that as we increase our level of
confidence we have to increase the amount of time it takes for work
items to complete. This is due to the variability inherent in our process.
We will spend a little bit of time talking about variability later in this
chapter. What we will see in that discussion is that no matter how hard
we try to drive it out, variability will always be present in our system.
But that is okay. It turns out that we do need a little variability to protect

Chapter 4 - Introduction to Cycle Time Scatterplots 53

flow. However, what we are going to want to understand is how much
of that variability is self-imposed, and how much of that variability is
outside of our control. The good news is that I will give you ways to
identify each of these cases and strategies with which to handle them.

As I mentioned earlier, drawing these standard percentile lines is
a good start, but you can see that you can easily add or subtract other
percentile lines to your chart as you see fit. Which lines to draw is
mostly going to be a function of what you want to learn from your
data.

Your Data is Not Normal
Many electronic tools will draw arithmetic mean and standard de-
viation lines on their Scatterplots instead of drawing the standard
percentile lines as described above. That is to say, these tools will
figure out the arithmetic mean of all of their Cycle Time data and
then first draw that horizontal line on the chart. They will then
compute a standard deviation for that data and draw horizontal lines
corresponding to the mean plus one standard deviation and the mean
minus one standard deviation.

They might go further and draw the +2 standard deviation and -
2 standard deviation lines as well as the +3 standard deviation and -3
standard deviation lines. They will call the top standard deviation line
the “Upper Control Limit” (UCL) and they will call the bottom standard
deviation line the “Lower Control Limit” (LCL). They will then call the
resulting graph a “Control Chart”. If you are using an electronic tool to
track your process maybe you have seen an example of a Control Chart.

You might have further heard several claims about these charts.
First, you may have heard that on a Control Chart (as described above)
about 68% of the dots fall between the plus-one standard deviation line
and the minus-one standard deviation line. They might further go on
to say that over 99% of the dots fall between the +3 standard deviation
in the -3 standard deviation line. You might have further heard that the
reason you want to segment your data this way is because this type of
visualization will be able to tell you if your process is in control or not
(hence the name Control Chart). Any dots that fall above the UCL or
below the LCL, it is argued, signify the points in your process that are

Chapter 4 - Introduction to Cycle Time Scatterplots 54

out of control.
What is being called a Control Chart here is supposedly inspired

by the work of Walter A. Shewhart while employed at Bell Labs in
the 1920s¹. Shewhart’s work was later picked up by W. Edwards
Deming² who became one of the biggest proponents of the Control
Chart visualization.

There is only one problem. By using the method outlined above
what they have created is most certainly not a Control Chart—at least
not in the Shewhart tradition. What Shewhart Control Charts are and
how to construct them are the topic of Volume II of this book series, but
just know that you should be skeptical whenever you see someone show
you something that is labeled “Control Chart”—as it most certainly is
not.

As these things usually go, the problem is much worse than you
might think. That tools vendors’ charts are most assuredly not Control
Charts notwithstanding, there remains one (at least) fatal flaw with
a pseudo-Control Chart approach. These charts—especially the cal-
culations for the UCLs and LCLs—assume that your data is normally
distributed (to be clear, Shewhart never made this assumption). I can
all but guarantee you that your Cycle Time data is not and will not be
normally distributed. So know that for now the conclusions based on
the standard deviation calculations above when applied to your non-
normally distributed data will be incorrect.

The use of this normal distribution method is so pervasive because
that is the type of statistics that most of us are familiar with. One very
important consequence of working in the knowledge work domain is
that you pretty much have to forget any statistics training that you may
have had up until this point (for a great book on why we need to forget
the statistics that we have been taught read “The Flaw of Averages”).
We do not live in a world of normal distributions. But as we are about
to see with Scatterplots, that is not going to be a problem at all.

As a quick aside, you may have also heard the name “Run Chart”
in association with these diagrams. Again, the Scatterplots I am talking
about here are not Run Charts. A deep discussion of Run Charts is
also covered in Volume II of this book series. I am not saying that Run
Charts are not useful, by the way—far from it. I am just trying to be
clear that this chapter’s Cycle Time Scatterplots are most certainly not

Chapter 4 - Introduction to Cycle Time Scatterplots 55

Run Charts.
Getting back to standard percentiles, there are at least three reasons

why I like those lines better than the dubious Control Chart tactic
mentioned above. First, notice that when I described how to draw the
standard percentile lines on a Scatterplot I never made one mention of
how the underlying Cycle Time data might be distributed. And that is
the beauty of it. To draw those lines I don’t need to know how your data
is distributed. In fact, I don’t care. These percentile line calculations
work regardless of the underlying distribution.

Second, note how simple the calculations are. You just count up all
the dots and multiply by percentages. Simple. You are not required to
have an advanced degree in statistics in order to draw these lines.

Third, percentiles are not skewed by outliers. One of the great
disadvantages of a mean and standard deviation approach (other than
the false assumption of normally distributed data) is that both of those
statistics are heavily influenced by outliers. You have probably heard
the saying, “If Bill Gates walks into a bar, then on average everyone
in the bar is a millionaire”. Obviously, in the Bill Gates example, the
average is no longer a useful statistic. The same type of phenomenon
happens in our world. However, when you do get those extreme Cycle
Time outliers, your percentile lines will not budge all that much. It is
this robustness in the face of outliers that is why percentile lines are
generally better statistics for the analysis of Cycle Time.

As I mentioned at the beginning of this section, chances are if you
are using an electronic tool for metrics it will not show you a Scatterplot
view with percentile lines overlaid. So what are you to do? You can use
a tool like Excel and generate the charts yourself. Or you can use the
ActionableAgile® Analytics tool as it takes care of everything for you.

Conclusion
Randomness exists in all processes. One of the best ways to visualize
the randomness in your process is to put your Cycle Time data into
a Scatterplot. A Cycle Time Scatterplot can yield vast amounts of
quantitative information and qualitative information.

I mentioned at the beginning of this chapter that Cycle Time
Scatterplots are a great way to visualize Cycle Time data that goes far

Chapter 4 - Introduction to Cycle Time Scatterplots 56

beyond simple analysis by average. I hope that you are convinced of
that now.

There is so much more to Scatterplots, but this brief introduction
should be more than enough to get you started. For a guide on how
to interpret some common patterns on Cycle Time Scatterplots, please
see Appendix B. You’ll want to study Appendix B closely because those
patterns can give you an initial idea if your process is straying from
predictability.

Better insight, however, comes from understanding why we made
such a big fuss about those percentile lines in the first place. That
explanation happens now.

Key Learnings and Takeaways
• Scatterplots are one of the best analytics for visualizing Cycle

Time data.
• This type of visualization communicates a lot of quantitative and

qualitative information at a glance.
• The anatomy of a Scatterplot is:

– The X-axis represents the process timeline.
– The Y-axis represents the Cycle Time for an item to com-

plete.
– The labels and reporting intervals on the chart are at the sole

discretion of the graph’s creator.

• A Cycle Time Scatterplot is not a Control Chart. It is not a Run
Chart, either.

• One of the best ways to put some structure around Cycle Time
Scatterplot data is to draw percentile lines. Consider starting with
the 50tʰ, 70tʰ, 85tʰ, and 95tʰ percentiles.

• Percentiles have the advantages of being easy to calculate, being
agnostic of the underlying data distribution, and not being skewed
by outliers.

Chapter 5 - Service Level
Expectations
Maybe you’ve heard a myth about flow practices that goes something
like this:

“Because flow has no timeboxes, items are allowed to take as much
time as they need to finish.”

Work Items in a flow system do not get to sit in progress forever
and finish whenever we get around to working on them. That is the
antithesis of flow. Flow implies movement or progress. And if items are
just sitting and aging then there is no flow. No flow, no predictability.

So, no, in a flow system items don’t get to take as long as they
want to finish. But what is the forcing function to make sure that
items do indeed finish? Well, as always, it’s helpful to look at things
from the perspective of our customers. What’s the first question our
customers will ask us once we start to work on something for them? If
you answered “When will it be done?” then you win a prize. Whether
you agree or not, that is a reasonable question for our customers to ask.
And we need a way to provide them with an answer.

If you think about it, what our customers are really asking us to do is
to predict the future. Therefore, any answer we give them is tantamount
to a forecast. A funny thing about the future, however, is that it has
this nasty habit of being full of uncertainty. Despite what some people
might tell you, no one can predict the future with 100% certainty. The
second that uncertainty is involved in any endeavour, a probabilistic
approach is warranted.

For example, before I flip this coin, tell me with 100% certainty that
it will come up exactly heads. Obviously, you can’t give 100% certainty
before the flip, but what you can say is you have a 50% chance of being
heads (and a 50% chance of it being tails). As another example, before
I roll this 6-sided die tell me with 100% certainty that I will roll exactly
a 3. Again, 100% certainty doesn’t exist, but I do know I have about a
17% chance of rolling a 3.

The same principle applies to our work. Once I start to work on

57

Chapter 5 - Service Level Expectations 58

an item, it is impossible for me to say with 100% certainty exactly how
long it will take for that item to finish. But what I can do is look at
historical data to come up with a probabilistic statement about how
long it should take (e.g., “85% chance of finishing in 12 days or less”).
By the way, another word for “probabilistic statement about the future”
is “forecast”.

A forecast is a statement about the future that contains a
range of possible outcomes and a probability of an outcome
occurring within that range.

Putting this all together, when our customers ask “When will it
be done?” we need to answer them with a forecast. With flow, the
probabilistic statement about how long it will take for individual items
to finish once started is known as the Service Level Expectation or SLE.

A Service Level Expectation is a probabilistic statement
about how long it should take a work item to finish once
started.

While this is not a book specifically about Kanban, one of the best
statements about an SLE is from the Kanban Guide: “The SLE is a
forecast of how long it should take a single work item to flow from start
to finish. The SLE itself has two parts: a period of elapsed time and a
probability associated with that period (e.g., “85% of work items will be
finished in eight days or less”). The SLE should be based on historical
Cycle Time, and once calculated, should be visualized on the Kanban
board. If historical cycle time data does not exist, a best guess will do
until there is enough historical data for a proper SLE calculation.”¹

The SLE serves two functions. First, it provides a completion
forecast for work items once they have started. Second, the SLE helps
us to answer the question, “How much age is too much age?”.

Calculating an SLE
The way we determine what date range and confidence level that we
can reasonably commit to is by looking at the percentile lines on our
Scatterplot.

Chapter 5 - Service Level Expectations 59

To explain, I want to refer you back to Figure 4.2. You can see in this
diagram that the 50tʰ percentile for the Cycle Times is 7 days, the 85tʰ
percentile is 15 days, and the 95tʰ percentile is 23 days. That means that
any item that enters our process has a 50% chance of finishing in 7 days
or less, an 85% chance of finishing in 15 days or less, or a 95% chance
of finishing in 23 days or less. Armed with this information we can sit
down with our customers and ask them what kind of confidence level
they would be most comfortable with. If they are ok with us missing
our commitments 50% of the time, then the team would choose 7 days
at 50% as its SLE. If, however, they want greater confidence in terms
of the team meeting its commitments, then the team may choose to go
with an SLE of 23 days at 85%. To reiterate, the choice of a team’s SLE
should be made in close collaboration with their customers.

While there is no hard and fast rule on this, it is been my experience
that most teams start at the 85tʰ percentile as their SLE. The goal of the
team then should be to first meet that SLE at least 85% of the time (true
predictability) but then also to bring down the total number of days that
the 85tʰ percentile represents over time. Part of process improvement
is going to be to shift all the percentile lines down as much as possible
(but no further!). A wider spread in those lines means not only a higher
number of days that we must communicate for our SLE, but it also
means that our process is suffering from more variability. Both of those
things decrease our overall predictability.

Take the following example of Figure 5.1:

Chapter 5 - Service Level Expectations 60

Figure 5.1: A Wider Spread in Percentiles

In Figure 5.1 the 50tʰ percentile for the chart is 20 days, the 70tʰ
percentile is 25 days, the 85tʰ percentile is 54 days, and the 95tʰ percentile
is 75 days. Think for a second about what an interesting conversation
this would be when we present this data to our customers. At 70%
confidence, the team would require a 25-day or less SLE. But to go to
an 85% confidence—that is just a 15% increase in confidence—the team
would have to more than double their SLE from 25 days to 54 days!
This particular example is taken from a real-world client of mine and,
in this instance, the customer chose the 70% SLE to start. Interestingly
enough, though, the team, by implementing the strategies outlined in
this book, was able to shift all of those percentile lines down over the
course of the project such that by the end, the 85% percentile was now
25 days—exactly what the 70% percentile had been just months before.
The team removed unnecessary variability, and, by definition, became
more predictable.

I have just explained how to use standard percentiles to establish
an SLE, but you might question, “How do I know if these standard per-
centiles are the right ones to use for my context?” Great question. The
answer is that if you are just starting, then those standard percentiles
are most likely good enough. How you might detect if you need to
move to another percentile more suitable for your specific situation is
a more advanced topic that will need to wait for my next book. The

Chapter 5 - Service Level Expectations 61

point is that there is no hard and fast rule in terms of what percentile
numbers to use. All I can say is to begin with these standard ones and
experiment from there.

Another question you might ask is, “How many data points do I
need before I can establish an SLE?” The answer to that is—as always—
dependent on your specific context. But I can tell you it is probably
less than you think. As few as maybe 11 or 12. Probably no more than
30. The bigger question is in terms of quality not quantity. Instead of
considering the number of dots, one question you may ask yourself is
how well your process is obeying the assumptions of Little’s Law in
producing those Cycle Times. The better you are at adhering to those
assumptions, the fewer data points you will need. If you consistently
violate some or all of the assumptions, then almost no amount of
data is going to provide you with a confidence level that you can be
comfortable with.

The last thing I want to say about SLEs is that there are generally
three mistakes I see when they are set. Those mistakes are:

1. To set an SLE independent of analyzing your Cycle Time data.
2. To allow an SLE to be set by an external manager or external

management group.
3. Set an SLE without collaborating with customers and/or other

stakeholders.

For the first point, I want to say that there is nothing (necessarily)
wrong with choosing an SLE that is not supported by the data. For
example, let’s say your data communicates that 85tʰ percentile is 45
days. It would technically be ok to publish an SLE of 35 days at 85%.
But at least make that decision in context after having reviewed what
your Scatterplot is telling you.

The second mistake should be obvious, but it is worth reiterating.
The whole point of an SLE is not to beat a team into submission or to
punish them when they miss their commitments. Since it is the team
that is making the commitment, it should be the team that chooses
what that commitment point is. The only other party that should be
involved in the decision to set an SLE should be a customer and/or
other stakeholder.

Which brings me to the last point. We are nothing without our
customers. As stated in Chapter 1, they are the whole reason for our

Chapter 5 - Service Level Expectations 62

existence. It is our professional obligation to design a process that
works for them. Therefore, our customers should have a seat at the
table when discussing what commitment confidence level is acceptable.
They may surprise you. They may opt for a shorter Cycle Time SLE
with a higher uncertainty. They may be fine with a longer Cycle Time
SLE if that means greater certainty. Our customers and stakeholders
almost certainly have contextual information that we do not that will
have some bearing on our choice of an SLE. Listen to them.

SLEs for Different Work Item Types
In Appendix A, I talked about the strategy of filtering different work
item types to generate different views of your data. The same approach
is available for us to use on Cycle Time Scatterplots. Let’s say we had
a dataset that included the work item types of user stories, defects, and
maintenance requests. With this data, we could generate a Scatterplot
and corresponding percentile lines for the data that included all three
work items. Or we could generate a Scatterplot that included data
for just the user stories. Or one that included just the defects, or
one for just the maintenance requests, or one for some combination
thereof. As with CFDs, any one of these data segmentations—and their
corresponding analysis—is perfectly valid.

But why might we want to segment our data in this way? There
are at least two answers to this question. The first might be that
you have tagged the items that did not finish “normally” (e.g., were
abandoned) and want to filter your data to show only those. Displaying
only the abandoned items would give you a good visualization of the
time wasted on those activities. That might give rise to questions and
conversations about how to minimize those occurrences.

The second reason for segmenting is that the Cycle Time percentiles
for a Scatterplot consisting of data for only the work item type of “story”
is probably going to be much different from the Cycle Time percentiles
for a Scatterplot consisting of data for only the work item type of
“defect”. Segmenting our data this way would allow us—if we wanted—
to offer different SLEs for different work item types. For example, our
SLE for user stories might be 14 days at 85% but for defects, it might be
five days at 85%.

Chapter 5 - Service Level Expectations 63

I am reluctant to discuss this SLE segmentation now because you
have to be very careful here. Remember that all the assumptions
of Little’s Law still apply. If you are going to offer different SLEs
for different work item types, then you have to ensure that all the
assumptions for Little’s Law for each and every subtype are adhered
to.

Offering different SLEs for different work item types is a fairly
advanced behavior. If you are just starting out with flow principles, I
would highly recommend just setting one global SLE for all your work
item types and getting predictable that way first. Ignore “conventional
wisdom” that you have to design in things like Classes of Service up
front and offer different SLEs for those different Classes of Service
immediately. To put it delicately, I believe this type of advice is
misguided (a fuller treatment of Class of Service and its dangers is
presented in Chapter 13). If you are new to these metrics, begin by
applying the principles presented in this book and then measure and
observe. Get predictable at an overall system level first. You may find
that is good enough. Only optimize for subtypes later if you absolutely
need to.

Percentiles as Intervention Triggers
There is still another reason to look at our Cycle Time data percentiles
as they pertain to SLEs. And to understand this other reason, we need
to first talk about life expectancy.

According to a life expectancy calculator at WorldLifeEx-
pectancy.com (at the time of this writing), a female born in the United
States has a life expectancy of 85.8 years at the time of her birth. If
she lives to be 5 years old, her life expectancy goes up to 86.1 years. If
she lives to be 50, her life expectancy becomes 87.3 years. And if she
lives to be 85 (her life expectancy at the time of her birth), her new
life expectancy jumps to 93! This data is summarized in the following
table:

Chapter 5 - Service Level Expectations 64

Figure 5.2: Life Expectancies at Different Ages

It is a little-known fact that the older you get, the longer your life
expectancy is. That is because the older you get the more things you
have survived that should have killed you.

The same phenomenon happens with Cycle Time. Generally
speaking, the older a work item gets, the greater chance it has of aging
still more. That is bad. Remember, delay is the enemy of flow!

This is why it is so important to study the aging of work items in
progress. As items age (as items remain in progress without complet-
ing), we gain information about them. We need to use this information
to our advantage because, as I have said many times before, the true
definition of Agile is the ability to respond quickly to new information.
To paraphrase Don Reinertsen, this new information should cause our
tactics to change¹. The percentiles on our Scatterplot work as perfect
checkpoints to examine our newfound information. We will use these
checkpoints to be as proactive as possible to ensure that work gets
completed in a timely and predictable manner.

How does this work? Let’s talk about the 50tʰ percentile first. And
let’s assume for this discussion that our team is using an 85tʰ percentile
SLE. Once an item remains in progress to a point such that its age is the
same as the Cycle Time of the 50tʰ percentile line, we can say a couple of
things. First, we can say that, by definition, this item is now larger than

Chapter 5 - Service Level Expectations 65

half the work items we have seen before. That might give us a reason
to pause. What have we found out about this item that might require
us to take action on it? Do we need to swarm on it? Do we need to
break it up? Do we need to escalate the removal of a blocker? (More on
these actions later.) The urgency of these questions is due to the second
thing we can say when an item’s age reaches the 50tʰ percentile. When
we first pulled the work item into our process it had a 15% chance of
violating its SLE (that is the very definition of using the 85tʰ percentile
as an SLE). Now that the item has hit the 50tʰ percentile, the chance of
it violating its SLE has doubled from 15% to 30%. Remember, the older
an item gets the larger the probability that it will get older. Even if that
does not cause concern, it should at least cause conversation. This is
what actionable predictability is all about.

When an item has aged to the 70tʰ percentile line, we know it is
bigger than more than two-thirds of the other items we have seen
before. And now its chance of missing its SLE has jumped to 50%. Flip
a coin. The conversations we were having earlier (i.e. when the item
hit the 50tʰ percentile line) should now become all the more urgent.

And they should continue to be urgent as that work item’s age gets
closer and closer to the 85tʰ percentile. The last thing we want is for
that item to violate its SLE—even though we know it is going to happen
15% of the time. We want to make sure that we have done everything
we can to prevent a violation from occurring. The reason for this is
just because an item has breached its SLE does not mean that we all of
a sudden take our foot off the gas. We still need to finish that work.
Some customer somewhere is waiting for their value to be delivered.

However, once we breach our SLE we are squarely in unpredictable
land because now we cannot communicate to our customers when this
particular item will complete. For example, take a look at the figure
below (Figure 5.3):

Chapter 5 - Service Level Expectations 66

Figure 5.3: The Danger of Breaching an SLE

You can see in this chart that the 85tʰ percentile is 43 days. But there
is an item in late October that took 181 days to finish (do you see that
isolated dot right at the top of the chart?). That no man’s land between
43 days and 181 days (and potentially beyond) is a scary place to be in.
We want to do whatever we can not to have items fall in there.

Right-Sizing
One last thing about percentiles and SLEs. More than being able
to forecast when an item will complete, the biggest advantage of
calculating an SLE is it allows us to perform a “right-size” check on
the item before we pull that item into progress.

Before you ask, right-sizing does not mean you do a lot of upfront
estimation and planning. Remember, this book emphasizes measure-
ment and observation over estimation and planning. The SLE we have
chosen is the measurement we are looking for. In other words, the SLE
will act as the litmus test for whether an item is of the right-size to
flow through the system. For example, let’s say we have chosen an SLE
of fourteen days or less at 85%. Before a team pulls an item into the
process, a quick question should be asked if the team believes that this
particular item can be finished in fourteen days or less. The length of

Chapter 5 - Service Level Expectations 67

this conversation should be measured in seconds. Seriously, seconds.
Remember, at this point, we do not care if we think this item is going
to take exactly five days, or exactly nine days, or exactly 8.247 days.
We are not interested in that type of precision as it is impossible to
attain that upfront. We also do not care what the particular relative
complexity is compared to the other items. The only thing we do care
about is we think we can get it done in 14 days or less. If the answer to
that question is yes, then the conversation is over and the item is pulled.
If the answer is no, then maybe the team goes off and thinks about how
to break it up, change the fidelity (e.g., tweak acceptance criteria), or
spike it to get more information.

Some of you out there may be arguing that right-sizing is a form of
estimation. I would say that you are probably right. I never said that
all estimation goes away. All I said was that the amount and frequency
with which you do estimation will change. Think about all the time
you have wasted in your life doing estimation. Think about all the
time wasted in “pointless” debates of whether a story is two points or
three points. Using these percentiles is a means to get rid of all of that.
Measuring to get an SLE allows us to adopt a much lighter approach
to estimation and planning. To me, this is one of the biggest reasons to
gather the data in the first place.

Conclusion
SLEs are one of the most important and yet least talked about topics in
all of Lean-Agile. SLEs not only allow teams to make commitments at
the individual work item level, but they also give us extremely useful
information about when teams need to intervene to ensure the timely
completion of those items. Further, if a team follows all of the principles
presented in this book, then the SLE can be used as a substitute for many
upfront planning and estimation activities.

Even so, there is a much more effective tactical way to use SLEs—
especially when talking about percentiles as intervention triggers. This
is where the predictability rubber meets the road, so you are going to
really want to pay attention to what comes next.

Chapter 5 - Service Level Expectations 68

Key Learnings and Takeaways
• Use your Scatterplot’s percentiles to collaborate with your cus-

tomers in choosing a Service Level Expectation for your process.
• It is possible to segment your data by type. You might choose

to do this to offer different SLEs for different work item types in
your process.

• SLEs allow for commitment (and estimation) at the work item
level.

• SLEs provide a sense of urgency to items that have been commit-
ted to.

• You can also use Cycle Time data percentiles as a guide for “right-
sizing” items that come into your process. Use this right-sizing as
a shortcut for estimation.

• Comparing an item’s age to its SLE can provide useful informa-
tion about when to intervene to ensure timely completion.

Chapter 6 - The Work Item
Aging Chart
The problem with the Cycle Time Scatterplot—if there is a problem
with that chart—is that by definition, a dot does not show up on a
Scatterplot until an item has finished. However, if something is taking
too long to complete, waiting until it is finished to get the signal that
it is taking too long to complete is too late. Ideally what we want is a
much, much earlier signal that maybe something is wrong so that we
can do something about it. Enter the Aging Work In Progress (or Work
Item Aging Chart or simply “Aging Chart” for short).

What Is a Work Item Aging Chart?
To understand an Aging chart, let’s consider a process workflow that
looks like this:

69

Chapter 6 - The Work Item Aging Chart 70

Figure 6.1 - Sample Workflow

An example Aging Work In Progress chart for this particular
workflow might look like Figure 6.2:

Chapter 6 - The Work Item Aging Chart 71

Figure 6.2 - Aging Work In Progress Chart for Sample Workflow

Before I get into how this chart should be used, let me quickly go
over the anatomy of the chart so you know what you are looking at.
Unlike the Scatterplot, you can see that across the bottom all of the
states of your workflow have been mapped out in the same order as they
appear in Figure 6.1. In fact, the whole chart itself has been segmented
into columns to match your process’s workflow (much like a Kanban
board). Up the side of the chart is the Age of work items. Recall that
Age is defined as the amount of elapsed time that an item has spent
inside the workflow.

Obviously, Age in this context is very different from Cycle Time
on the Scatterplot. What we are representing on this chart (Figure

Chapter 6 - The Work Item Aging Chart 72

6.2) is the total elapsed time that an item has spent started but not
completed (Age) as opposed to the total elapsed time it took for an item
to complete (Cycle Time). However, just like Cycle Time, for Age you
can use whatever time units you want: days, weeks, months, sprints,
etc. Thus, every dot on the chart represents an item that has entered
the process but has not exited the process. To plot a dot, you simply
find the workflow stage that it is currently in and then subtract today’s
date from the item’s start date (remember you should have tracked the
timestamp for when the item entered your process!).

At the risk of belabouring the subject, I would like to re-emphasize
that the “Age” of each item is the total elapsed time from your chosen
start point. Therefore, don’t be confused in thinking that the height of
each dot represents the amount of time that an item has spent in that
particular column. For example, in Figure 6.2 you’ll see a dot in the
Analysis Done column at 10 days. That does not mean that that work
item has been in Analysis Done for 10 days. Rather, it means that 10
days have elapsed since the item crossed our well-defined start point—
in this case that is the Analysis Active column. I emphasize this point
as some tooling only tracks Age per workflow state. As we will see in
the next chapter, while time per state may be of interest, what we really
care about for predictability is the total amount of elapsed time that an
unfinished item has spent as Work In Progress.

You’ll also notice that some dots in Figure 6.2 have numbers inside
of them. For example, it might be hard to see, but the top dot in the
Testing column has a number four inside of it. What the “4” is telling
us is that that is not a single dot. It is actually four dots right on top of
each other. If you are using the ActionableAgile® Analytics tool¹, you
can click on the dot to expand it further as shown in Figure 6.3:

Chapter 6 - The Work Item Aging Chart 73

Figure 6.2 - Inspecting Multiple Items

What this is telling us is that there are four items in the Testing stage
each with the same Age of 18 days. The dot right below that one (also
in Testing) has a 3 in it. That means those next three items in Testing
each have an Age of 17 days. And so on for any dot with a number on
it in any column. So at first glance, it may only look like there are four
dots in Test, you have to be careful and look closely as there may be
more. Luckily, the chart itself helps us in that regard.

See the “WIP” text at the top of each column in Figure 6.2? These
numbers are a point of possible confusion even though they are here
to help us. Don’t be fooled. Those numbers are not WIP Limits. They
are simply a count of the number of items that are currently in progress
and aging in that column. Continuing on the discussion from above,

Chapter 6 - The Work Item Aging Chart 74

the Testing column has a WIP of 11 (if you are verifying yourself, make
sure to count the items that are all stacked on top of each other as one
dot). That means there are currently 11 items in progress in Testing—
not that your board has a WIP Limit of 11. You’ll recall from Chapter 3
that we distinguished between WIP and WIP limits. The Aging Chart
only communicates the former. Thus, this graph tells you nothing about
whether the number of items that you currently have in progress is
above or below any limit that you have established. To determine that,
you’ll have to look at your board—which is not a bad thing, by the way.

Next, you will see percentile lines on the Aging Chart. These
percentile lines are the same lines that we calculated for our Scatterplot.
Let me repeat that to be clear. The percentile lines that you see on
your Aging Chart are the exact percentile lines that you calculated and
placed on your Cycle Time Scatterplot. You overlay the Scatterplot
percentiles lines on the Aging Chart so that you can see how items
that are currently being worked on are progressing as compared to the
total amount of time it took previous items to complete.

The percentile lines on the Aging Chart are the percentile
lines from the Cycle Time Scatterplot. They are not
percentile lines calculated from Aging data.

I started the explanation of why you would want to overlay Cycle
Time percentiles on the Aging chart in the previous discussion about
SLEs. I’ll finish that explanation in the next chapter when we do a deep
dive into how to leverage the Aging Chart. For now, simply be aware
that those percentiles are Cycle Time percentiles, not Aging percentiles.

Finally, you’ll note the last column on the chart. That last column
represents our “finished” state. As such there are no dots in that column.
If you look more closely at Figure 6.2 you will see that the text of the
last column tells us as much: “…Items that have reached this stage are
classified as done are shown in the Scatterplot chart.” In other words,
all work items age until they are finished at which point of that Age
is immediately converted to Cycle Time. The dot thus disappears from
the Aging Chart and reappears on the Scatterplot. Believe it or not,
that is the exact property that we want from this chart as that is what
is going to allow us to get the most out of it. But more on that in the
next chapter.

Chapter 6 - The Work Item Aging Chart 75

Additional Data
To construct the chart seen in Figure 6.2 we are going to need a little
more data than what I have previously mentioned. But not much.
Instead of simply taking a timestamp of the start and finish points of
your process, the data we’ll need for the Aging Chart is a timestamp
for the date that every item arrives to each stage of the workflow—as
pictured below:

Figure 6.3 - Data for the Aging Chart

The justification of why you need this type of data will be covered
ad nauseam in Section II. For now, you’ll just have to take it as a leap
of faith that Figure 6.3 represents all the data you need for Aging.

[Note: There is absolutely no reason why you couldn’t construct
an Aging Chart with just start and end point timestamp data. In that
case, your workflow would simply be To Do -> Doing -> Done—which
is perfectly valid. And that might even be a decent enough place to start
if it is hard to get more detailed process data. In general, though, it is
preferred to be able to model each step of your workflow in an Aging
Chart as in Figure 6.2. So even if you do start with To Do -> Doing ->
Done, chances are you’ll want to move to a more granular model as
soon as is reasonable in order to exploit all of the advantages that the
more detailed workflow grants you.]

Chapter 6 - The Work Item Aging Chart 76

Conclusion
The Aging chart will be the most important tool in your predictability
arsenal—that’s all you need to know about the chart itself. Remarkably,
as has been shown, the anatomy of the Work Item Aging Chart is
extremely simple. And as you will see, form indeed does follow
function…

Key Learnings and Takeaways
• The columns on your Aging Chart represent the defined steps in

your workflow.
• The height of a dot in any column represents the total Age for

that item. It does not represent the amount of time that the item
has spent in a particular column.

• One dot could represent multiple items of the same age.
• WIP at the top of the columns represents items currently in

progress. It does not represent a WIP Limit.
• The percentiles on the Aging chart are the percentiles calculated

from the Scatterplot. They are not percentiles calculated from
Aging data.

• If possible, capture a timestamp for the date that every item
arrives to each stage of the workflow.

Chapter 7 - Leveraging the
Aging Chart for
Predictability
We’ve talked about the most important flow metric for predictability
and the most important chart for predictability, so let’s now talk about
potentially the most important place to use both of those.

The Daily Meeting
If you are currently practicing some flavour of Agile, then no doubt
you have established some sort of daily meeting. That meeting could
be called a standup, or daily scrum, or whatever. The name itself is of no
consequence. What is of consequence is the purpose of that meeting—
which, unfortunately, most teams get wrong.

The purpose of your daily is not to get status, nor is it to go around
the room and hear from everyone. No, the purpose of your daily is for
the team to come together and decide on the team’s plan for the day.

The purpose of your daily meeting is for the team to come
together and decide on the team’s plan for the day.

By plan, I mean what collective actions is the team going to take
to ensure the optimal execution of their process. In flow terms, that
means taking action on the parts of the process where flow is suffering
(or non-existent). Trust me when I say that there is no better indicator
of problems with flow than Work Item Age.

Earlier we stated that flow implies movement; not just movement
for movement’s sake, but movement toward the delivery of customer
value. But we know that once work items start, they begin to Age. That
is not necessarily a bad thing. It is not reasonable to expect that work
items will accumulate no Age as they are being worked on. So what is

77

Chapter 7 - Leveraging the Aging Chart for Predictability 78

reasonable to expect? It is reasonable to expect that items that are being
worked on only Age to some agreed upon service level—you guessed it:
a Service Level Expectation.

Percentiles As Intervention Triggers
Redux
This is where we go back to our discussion in Chapter 5. The whole
reason that we have Cycle Time percentile lines on the Aging chart
is so that we can constantly compare current items’ Age to how long
it has taken us to complete work in the past. Specifically, we want to
know how work is Aging relative to our SLE. Using the Aging chart, we
can in near-real time determine what work items have either violated
our SLE or are about to violate our SLE and, most importantly, take the
necessary action.

Let’s walk through an example to explain how this works. Assume
for a moment that the Aging Chart in Figure 7.1 is for your team.

Chapter 7 - Leveraging the Aging Chart for Predictability 79

Figure 7.1: First Aging Chart

Further, assume that you are about to start your daily meeting and
that your team has chosen the 85th percentile as your SLE. How might
we leverage the information in Figure 7.1 during our meeting?

Before reading further, I’d like you to take a moment and consider
what you might do in this situation. As a hint, remember that the thing
we are looking for is the team’s plan for the day. Also, remember that
this plan should be based on attacking any problems that we see with
flow. How might the Aging chart indicate such problems? Once you
have your answer, then read on.

All other things being equal, issues with flow are indicated by items
that have aged the most in our process. In Figure 7.1 specifically, if you

Chapter 7 - Leveraging the Aging Chart for Predictability 80

look closely, you will see that 7 items have aged past the team’s SLE. In
terms of our plan for the day, it should be all hands on deck to get those
items finished (we’ll talk through some more detailed optional actions
below). Of even additional importance is to note how close those things
are to being done. Why would anyone on the team focus on the item
in Analysis Active, for example, when we have seven items that have
breached their SLE and are one step away from being finished?

In case you haven’t guessed it by now, the general heuristic for pre-
dictability is—assuming no other overriding contextual information—
always work on the oldest items first. To be clear, I am saying work
on the oldest item first regardless of what column it is in. It is really
that simple. In your daily, pull up your Aging Chart and, as a team,
start with the oldest item on the board and discuss what can be done
to get that item moving (or even better to get that item to done). Then
proceed to the next oldest item and do the same thing. Continue these
steps until you have your plan for the day.

FIFO vs. FIFS
Many people mistake the “work on the oldest item first” strategy
to mean “implement a First-In-First-Out (FIFO)” queuing strategy.
That’s not quite correct. What we are really implementing is a
First-In-First-Served (FIFS) queuing strategy. I don’t want to bore
you with the details of FIFO vs. FIFS—I’ll leave that as an exercise
for you to look that up. I just want to point out here that I am
advocating for the latter and not (necessarily) the former.

Note that by doing the preceding, you may not necessarily “walk
the whole board”. Or maybe not everyone on the team will have a
chance to speak. That’s ok. The goal is to come up with a plan for the
team. The goal is not to come up with a plan for each individual. Once
we have the plan, the meeting is over and let’s get to work. Remember
that flow (and thus predictability) is achieved by actually doing work
not just talking about it.

Getting back to Figure 7.1, then, we would start our discussion with
the oldest dot (which, as you can see, is the highest dot in Testing and as

Chapter 7 - Leveraging the Aging Chart for Predictability 81

we saw before is in reality four items represented as one dot). Discuss
those. If we still feel like we have more capacity for the day, discuss
the next oldest dot (which as we also saw before is in reality three
items represented as one dot in Testing). Discuss those. We have now
considered seven items. Maybe at that point, we decide that is all we
can take on for today. Perfect. The meeting is over and let’s get to work.

Some of you might still be worried about all of those other items
on the board. Why not discuss those? Well, let’s consider that for a
second. What would be the problem with allocating team capacity to
work on the item that I mentioned earlier in Analysis Active? If we as
a team decide we want to work on that item instead of the four oldest
in Testing, what would happen to those four oldest items? That’s right,
they would just get older. What’s the problem with that?

This gets us to how I would like you to “see” the Aging Chart.
I personally don’t look at the Aging Chart as dots on this particular
chart. The way that I look at the Aging Chart is every dot here is a
potential dot on my Scatterplot (LL Assumption #2). In the last chapter,
we learned that the text on the chart itself tells us this. When an item
gets to done, its dot disappears from the Aging Chart and reappears
on the Scatterplot (at the appropriate height for Cycle Time). Simply
put, the higher a dot gets on the Aging Chart, the higher it will be
on the Scatterplot. If we constantly allow items to Age unnecessarily,
then over time the dots on our Scatterplot will get higher and higher,
and correspondingly, our percentile lines will get wider and wider. As
I’ve said so many times before, that is exactly what we don’t want to
happen.

Therefore, by examining our items’ Age on a daily basis, we will be
able to immediately spot issues with flow, and we will be able to take
immediate action.

By examining our items’ Age on a daily basis, we will be
able to immediately spot issues with flow, and we will be
able to take immediate action.

I cannot overstate the importance of that statement too much.
Every day your team is making dozens of decisions that—whether they
know it or not—impact Age. Decisions like, “What item(s) should we
work on today?”, “What item should we start next?”, “Should we even

Chapter 7 - Leveraging the Aging Chart for Predictability 82

start something new?”. “Should we be concerned about this blocked
item?”, etc. Traditional Agile frameworks give almost no guidance on
how to handle these questions. What follows is an attempt to change
that.

Actions to Take
I am going to present here a deeper dive into some actions you can take
when you see that items are taking too long to complete. This is by no
means an exhaustive list, but these are very good places to start. As you
read through this, think about what other actions you might consider
that might be specific to your team’s context.

Pairing, Swarming, and Mobbing
Work items often reveal previously unknown complexity as they move
through the workflow. This complexity can cause them to Age more
than other items. An item that has aged to the extent that it stands
out in the context of the team’s flow, deserves some special attention.
This might come in the form of having multiple team members jump
in to help on this item (beware of Brooks’s Law¹). This will often mean
lowering WIP to help the aging item make progress. Team members
who finish their items should be asked to help out with currently Aging
work items instead of picking up new ones. Using this practice then,
over time, you may even want to lower your WIP to below the number
of members on the team.

This act of lowering WIP to below the number of team members is
known by multiple names - Pairing, Swarming, and Mobbing to name
a few. For ease of reference, we will refer to all these as Ensemble work.
There are three major ways in which ensemble work can help control
Age.

• Completing downstream tasks earlier As an item Ages in an
earlier stage, we can enable faster flow through later stages. We
can perform steps in the later stages earlier so that the task does
not continue to Age unnecessarily once it is past the current stage.

• Dividing work item tasks amongst team members If the work
item itself cannot be broken down into deliverable chunks, it is

Chapter 7 - Leveraging the Aging Chart for Predictability 83

possible to identify sub-tasks of the item. Different team members
can take on the varying subtasks in parallel to help the item move
forward.

• Removing Sticking Points Often getting fresh perspectives on a
problem a single team member has been facing helps in coming up
with creative solutions. Whether these are just a result of “rubber
ducking” or cross-functional pairing to get new perspectives, they
help an aging item make progress.

Unblocking Blocked Work
Any work that is blocked or on hold is by definition not flowing. These
work items Age, usually due to internal or external dependencies. If
the cause is an internal dependency, we need to examine our process
policies and look for improvement. If the cause is external, we need to
figure out how to reduce the likelihood of this external dependency for
future items or reduce the impact of this dependency on Age. In other
words, how do we get closer to eliminating the dependency or making
the resolution time insignificant? Bringing external expertise in-house,
improving partner/vendor relationships, or completely removing the
dependency are all options we can exercise here. Whether the depen-
dency is internal or external, we need to establish some policies around
how we treat blocked work. There are at least three levels of blocked
that need to be established -

• When to mark an item as blocked - How much time needs to pass
before we mark an item whose progress is stopped as blocked? Is
this in the order of hours, days, or weeks?

• Blocked Items and WIP Limits - How long should a blocked item
count towards our WIP limits and stop us from picking up other
work? Does including it in WIP increase our focus on resolving
it?

• Removing Blocked Items from the system - At what point do we
say that the item is going to be blocked for so long that it might
not be relevant to track it? Should we cancel the item or move it
back to the backlog?

Chapter 7 - Leveraging the Aging Chart for Predictability 84

Right Sizing
Read Don Reinertsen’s “Principles of Product Development Flow”² book
and you will quickly realize that one of the biggest detriments to flow is
working on items that are too big. In flow terms, that means controlling
batch size. We saw earlier that usually when an item is stuck in your
process it is because it is too big—it hasn’t been right sized.

Right-sizing is the art of enabling work to flow in small batches
of value at every level. This means breaking things down into small,
manageable chunks.

For sizing, all you need to do before you pull an item into your
process is have a quick conversation about whether you can—based on
what you know right now—get the item done in 12 days or less. If the
answer is yes, then the conversation is over and you pull the item in and
start working on it. If the answer is no, then you talk about how you
can redefine the work item such that it is of the right size. Maybe you
need to break it up. Maybe you need to tweak the acceptance criteria
(more on breaking items up in the next section). Whatever the case,
take the action you need beforehand and only pull the item in once you
are 85% confident you can finish it in 12 days or less.

Prateek Singh communicated this guidance on right-sizing when
working with one of his teams:

“We have a general idea of how large work items at every level have
been in the past. We can use this to ‘size’ upcoming items. Currently,
we have a very good idea of sizing at the story level due to the data
available. We are also going to lay out guidelines at the Epic level based
on the historical understanding of flow.

“In the Cycle Time Scatterplot for our team, we noticed that 85%
of the stories that we work on get done in 11 days or less. This is a
guide for right-sizing. Whenever the team picks up the next story, they
should be able to ask themselves the question, ‘Is this the smallest bit
of value and can it get done in 11 days or less?’ If the answer to those
questions is yes, great, no more estimation is needed, start work on it. If
the answer is no, let us try to break this story down. This is the essence
of right-sizing. Each team will figure out their right-size stories from
their own data.

“For Epics - since we do not have great data, but a decent general
idea in this regard, we are issuing some guidance. Epics should be 10

Chapter 7 - Leveraging the Aging Chart for Predictability 85

stories or less, 90% of the time. 10 is a soft number, it is something to
aim for. The reality is that there will be Epics that will become 11/12
stories big. 90% of our Epics should be 10 stories or less.

This does not mean that we try to make all Epics close to 10 stories.
The ‘or less’ part is important. If an Epic can be delivered to a customer
in 3 stories, great, let us leave it that way. 10 is a soft upper bound, not
a target.“³

Still Valuable?
One final aspect to consider when “unsticking” work should be, “Is this
item still valuable?” Maybe the reason a work item is Aging is because
we are simply ignoring it. And maybe the reason we are ignoring it is
that we no longer consider that item valuable. Obviously, all items have
a perceived value when we start them (otherwise, why did you start
them?) but it is always possible that while working on them we learn
something that changes our minds. Maybe we can’t get the feature to
work the way we want it to. Maybe it does work but we understand
the problem better now and need a different solution. Maybe it is
technologically difficult or impossible to implement. Or maybe the
business environment changed such that the item is no longer needed.

Whatever the reason, the second you decide that a work item is no
longer valuable, then kick it out of your process. For me, that is one of
the truest acts of agility. We’ve learned something and we took action.
We don’t fall victim to the sunk cost fallacy and continue to work on an
item just because we started it. As any good product manager will tell
you, there is nothing worse than investing money in the wrong thing.
So if an item is not valuable, stop working on it!

As a quick aside, the above paragraph might seem to run afoul of
LL’s Assumption #2. Well done if you spotted that. In Section II, we
will discuss how to “account” for items that need to exit our process
abnormally so that we can still faithfully uphold all of the assumptions
of LL.

Chapter 7 - Leveraging the Aging Chart for Predictability 86

Conclusion
If you are not paying attention to aging, you are missing the only real
opportunity to achieve predictability.

The most basic way to use the Aging chart is to compare an item’s
current Age to how long it has taken us to complete items in the past.
In other words, as items Age, we gain information about them. Are
they taking too long? Are they spending too much time in one column?
Have their chances of violating our SLE changed? This new information
provides the actionable evidence we need to proactively manage for
predictability. The percentiles from our Scatterplot work as perfect
checkpoints to discuss if intervention is needed.

When it comes to interventions, consider breaking items up, pair-
ing/swarming, unblocking blocked items, and removing items that are
no longer valuable.

Once you start to pay attention to Work Item Age, and more
importantly, once you start to take action on the information that aging
gives you, then you will inevitably begin to complete items faster.
Faster completion times will have the effect of lowering the percentiles
on your Scatterplot over time. Lower percentile lines mean that we have
smaller ranges of possible outcomes for the same percentile confidence.
And that, if you recall, is exactly what we are after.

Key Learnings and Takeaways
• Use the Work Item Aging chart in your daily team meeting to

quickly and in near-real time spot problems with flow.
• Compare the current Age of items with how long it has taken

work items to complete in the past (Scatterplot percentiles).
• One area of focus is those items that have either breached their

SLE or are about to breach their SLE.
• All other things being equal start with the oldest item first

(regardless of column) and proceed to each next oldest item until
you have a plan.

• Some actions you can take on aged items: break them up,
pair/swarm on them, unblock them, or kick them out of the
system if no longer valuable.

PART II: More Flow
Principles for
Predictability

This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

https://leanpub.com/aamfp-10th

Chapter 8 - Introduction to
CFDs
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

What makes a CFD a CFD?
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Conclusion
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Key Learnings and Takeaways
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

88

https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th

Chapter 8a - Constructing
a CFD
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

A Simple Example
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

What About Knowledge Work?
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Conclusion
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Key Learnings and Takeaways
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

89

https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th

Chapter 9 - Flow Metrics
and CFDs
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Work In Progress
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Approximate Average Cycle Time
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Average Throughput
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Conclusion
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Key Learnings and Takeaways
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

90

https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th

Chapter 10 - Interpreting
CFDs
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Mismatched Arrivals and Departures
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Flat Lines
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Stair Steps
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Bulging Bands
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Disappearing Bands
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

91

https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th

Chapter 10 - Interpreting CFDs 92

The S-Curve
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

A Boring CFD
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Conclusion
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Key Learnings and Takeaways
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th

Chapter 11 - Conservation
of Flow Part I
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Arrivals and Departures Revisited
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Arrivals and Departures on a CFD
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Conclusion
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Key Learnings and Takeaways
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

93

https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th

Chapter 12 - Conservation
of Flow Part II
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Just-in-time Prioritization
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Just-in-time Commitment
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Exceptions to Conservation of Flow
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Conditioning Flow and Predictability
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Conclusion
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

94

https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th

Chapter 12 - Conservation of Flow Part II 95

Key Learnings and Takeaways
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

https://leanpub.com/aamfp-10th

Chapter 13 - Flow Debt
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Approximate Average Greater Than
Actual Average
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Approximate Average is Less Than
Actual Average
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Approximate Average Roughly Equal to
Actual Average
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

How Different is Different?
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

96

https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th

Chapter 13 - Flow Debt 97

Conclusion
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Key Learnings and Takeaways
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th

Chapter 14 - Pull Policies
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Class of Service
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

The Impact of Class of Service on
Predictability
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Slack
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Conclusion
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Key Learnings and Takeaways
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

98

https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th

PART III: Getting
Started With
Predictability

This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

https://leanpub.com/aamfp-10th

Chapter 15 - Getting
Started
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Defining Your Process
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Capturing Data
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

How Much Data?
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Create an Aging Chart
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Create a Scatterplot
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

100

https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th

Chapter 15 - Getting Started 101

Some Pitfalls to Consider
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Conclusion
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Key Learnings and Takeaways
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th

Chapter 16 - Next Steps
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Forecasting
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Forecasts for a Single Item
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Forecasts for Multiple Items
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Little’s Law (Again)
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Other Methods to be Wary About
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

102

https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th

Chapter 16 - Next Steps 103

Continue Learning
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

https://leanpub.com/aamfp-10th

Appendices

This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

https://leanpub.com/aamfp-10th

Appendix A - Introduction
to Little’s Law
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

We Need a Little Help
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

A Different Perspective
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

It is all about the Assumptions
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Assumptions as Process Policies
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Segmenting WIP
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

105

https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th

Appendix A - Introduction to Little’s Law 106

Kanban Systems
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Size Does Not Matter
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Forecasting
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Conclusion
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Key Learnings and Takeaways
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th

Appendix B - Interpreting
Cycle Time Scatterplots
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

The Triangle
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Clusters of Dots
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Gaps
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Internal and External Variability
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Conclusion
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

107

https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th

Appendix B - Interpreting Cycle Time Scatterplots 108

Key Learnings and Takeaways
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

https://leanpub.com/aamfp-10th

Appendix C - Cycle Time
Histograms
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

What is a Histogram?
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Constructing a Histogram
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Conclusion
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Key Learnings and Takeaways
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

109

https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th

Endnotes
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Chapter 1
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Chapter 2
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Chapter 3
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Chapter 3a
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Chapter 4
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

110

https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th

Endnotes 111

Chapter 5
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Chapter 6
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Chapter 7
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Chapter 8
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Chapter 8a
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Chapter 10
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Chapter 11
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th

Endnotes 112

Chapter 12
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Chapter 13
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Chapter 14
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

Chapter 15
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th
https://leanpub.com/aamfp-10th

Bibliography
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

113

https://leanpub.com/aamfp-10th

Acknowledgements for the
10th Anniversary Edition
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

114

https://leanpub.com/aamfp-10th

About The Author
This content is not available in the sample book. The book can be
purchased on Leanpub at https://leanpub.com/aamfp-10th.

115

https://leanpub.com/aamfp-10th

	Table of Contents
	Foreword
	Preface
	10th Anniversary Edition
	Preface To All Editions
	Why Write this Book?
	Who Should Read this Book
	Conventions Used
	ActionableAgile.com

	PART I: Foundations of Predictability
	Chapter 1 - The Most Important Part of Predictability
	Background
	The Moral of the Story
	All Assumptions Are Equal. But Some Assumptions Are More Equal Than Others.
	Predictability
	Conclusion
	Key Learnings and Takeaways

	Chapter 2 - Setting Up For Predictability
	Modeling Flow
	Defining Arrivals and Departures
	Why Start and Finish Matter
	Conclusion
	Key Learnings and Takeaways

	Chapter 3 - The Basic Metrics of Flow
	Work In Progress
	Cycle Time
	Throughput
	Work Item Age
	Conclusion
	Key Learnings and Takeaways

	Chapter 3a - Flow Metrics Data and Calculation
	What Data To Collect
	Flow Metrics Calculation
	Randomness
	The Flaw of Averages
	Conclusion
	Key Learnings and Takeaways

	Chapter 4 - Introduction to Cycle Time Scatterplots
	What is a Cycle Time Scatterplot?
	Percentile Lines
	Your Data is Not Normal
	Conclusion
	Key Learnings and Takeaways

	Chapter 5 - Service Level Expectations
	Calculating an SLE
	SLEs for Different Work Item Types
	Percentiles as Intervention Triggers
	Right-Sizing
	Conclusion
	Key Learnings and Takeaways

	Chapter 6 - The Work Item Aging Chart
	What Is a Work Item Aging Chart?
	Additional Data
	Conclusion
	Key Learnings and Takeaways

	Chapter 7 - Leveraging the Aging Chart for Predictability
	The Daily Meeting
	Percentiles As Intervention Triggers Redux
	Actions to Take
	Conclusion
	Key Learnings and Takeaways

	PART II: More Flow Principles for Predictability
	Chapter 8 - Introduction to CFDs
	What makes a CFD a CFD?
	Conclusion
	Key Learnings and Takeaways

	Chapter 8a - Constructing a CFD
	A Simple Example
	What About Knowledge Work?
	Conclusion
	Key Learnings and Takeaways

	Chapter 9 - Flow Metrics and CFDs
	Work In Progress
	Approximate Average Cycle Time
	Average Throughput
	Conclusion
	Key Learnings and Takeaways

	Chapter 10 - Interpreting CFDs
	Mismatched Arrivals and Departures
	Flat Lines
	Stair Steps
	Bulging Bands
	Disappearing Bands
	The S-Curve
	A Boring CFD
	Conclusion
	Key Learnings and Takeaways

	Chapter 11 - Conservation of Flow Part I
	Arrivals and Departures Revisited
	Arrivals and Departures on a CFD
	Conclusion
	Key Learnings and Takeaways

	Chapter 12 - Conservation of Flow Part II
	Just-in-time Prioritization
	Just-in-time Commitment
	Exceptions to Conservation of Flow
	Conditioning Flow and Predictability
	Conclusion
	Key Learnings and Takeaways

	Chapter 13 - Flow Debt
	Approximate Average Greater Than Actual Average
	Approximate Average is Less Than Actual Average
	Approximate Average Roughly Equal to Actual Average
	How Different is Different?
	Conclusion
	Key Learnings and Takeaways

	Chapter 14 - Pull Policies
	Class of Service
	The Impact of Class of Service on Predictability
	Slack
	Conclusion
	Key Learnings and Takeaways

	PART III: Getting Started With Predictability
	Chapter 15 - Getting Started
	Defining Your Process
	Capturing Data
	How Much Data?
	Create an Aging Chart
	Create a Scatterplot
	Some Pitfalls to Consider
	Conclusion
	Key Learnings and Takeaways

	Chapter 16 - Next Steps
	Forecasting
	Little's Law (Again)
	Other Methods to be Wary About
	Continue Learning

	Appendices
	Appendix A - Introduction to Little's Law
	We Need a Little Help
	A Different Perspective
	It is all about the Assumptions
	Assumptions as Process Policies
	Segmenting WIP
	Kanban Systems
	Size Does Not Matter
	Forecasting
	Conclusion
	Key Learnings and Takeaways

	Appendix B - Interpreting Cycle Time Scatterplots
	The Triangle
	Clusters of Dots
	Gaps
	Internal and External Variability
	Conclusion
	Key Learnings and Takeaways

	Appendix C - Cycle Time Histograms
	What is a Histogram?
	Constructing a Histogram
	Conclusion
	Key Learnings and Takeaways

	Endnotes
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 3a
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 8a
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15

	Bibliography
	Acknowledgements for the 10th Anniversary Edition
	About The Author

