

[image: Use Vim Like A Pro]

 Use Vim Like A Pro

 Go from noob to pro

 Tim Ottinger

 This book is for sale at http://leanpub.com/VimLikeAPro

 This version was published on 2014-06-22

 [image: publisher's logo]

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

© 2013 - 2014 Tim Ottinger

Table of Contents

 	

 	
 Why Bother? (reasons)

 	
 Why Write This Tutorial (approach)

 	
 How should one use the tutorial? (usage)

 	
 What can I do with this tutorial? (license)

 	
 Master The Basics

 	
 A little reassurance first.

 	
 What does it look like?

 	
 Modality

 	
 Know the vim command pattern

 	
 GET OUT!

 	
 Mnemonics

 	
 Invocation

 	
 Don’t panic. You have undo/redo

 	
 Move by context, not position

 	
 Help is on its way.

 	
 Shifted letters and DEATH BY CAPS!

 	
 Quoting Your Regex Metacharacters

 	
 Insert, Overwrite, Change

 	
 NEVER PARK IN INSERT MODE.

 	
 Epilog

Why Bother? (reasons)

There are many other editors. Several are excellent. There is no reason
why you cannot use all of them.

You might want to learn vim for any of these reasons:

	With the sudden rise in Unix use (Linux and Mac OS X, in particular) the text editor known as vim (“vi improved”) has become ubiquitous

 	vim has a small footprint in RAM and on the CPU. A given system can support a great many vim users at once.

 	vim has a lot of “superpowers”, which make editing quite efficient.

 	vim has “geek appeal”.

 	vim has a very active user/developer community. It always has.

 	Learning new stuff is good for your brain.

Why Write This Tutorial (approach)

Some other tutorials are very good, and google/yahoo/bing/whatever can help you
find them all.

There are also some great books that have been written since I started this
tutorial. Those books are far more comprehensive and have had a lot of
investment from their publishers and editors.

This little tutorial has been around for a long time and has been strangely
popular. I like to think it is because I have taken a slightly different
approach.

I wrote this for the impatient developer.

There is a certain mental model that makes mastering vim much faster. I
don’t know any other materials that use the same approach, or which teach as
deeply in such a small space.

I’ve agonized and organized (and re-agonized, and reorganized) the tutorial for
top-to-bottom learning, so that anyone who emerges from the other end of this
tutorial will have professional-grade editing skills, probably better than many
of their more experienced colleagues.

When you are done here, you may want to invest in a much more comprehensive
book. I am keenly, painfully aware of how much material I have intentionally
left out.

You’ll be pleased to know that I continue to look for things to leave out,
or faster ways to shrink the content. Well, that is, other than this
apologetic section.

I think this is one of the fastest ways to improve your use of vim, and a
pretty good way to start using vim from scratch.

This work started out as a web page, for free. Now I am using leanpub
because I like the formats and styling I can get with their system.

I stil have a “suggested price” of zero dollars. Free. Gratis.

Leanpub has a nice system that allows people to give me small monetary gifts if
they want to. I have had some pizza and scotch money that I would not otherwise
have had. Thank you for the kindness you have shown. It is more than I
expected.

How should one use the tutorial? (usage)

Look at each subsection heading as the beginning of a separate lesson, and
spend a little time with it before moving onward. Maybe spend a day with each
bit of knowledge, and maybe a several days when the lesson is particularly
meaty.

Don't be in a hurry. Don't rush your brain, lest you forget old things as
fast as you learn new ones. Consider doing a few lessons a week. People have
used vim for 10 years and still don't know half as much as you'll learn in
the first major section; you can take a few months to work through this.

You can't learn vim without using vim, so you should have some text files
(preferably open source program code) to work with. It is better yet if you are
using vim at work. It also helps if you work with a partner who is also
reading this tutorial, so that you can reinforce each other.

What can I do with this tutorial? (license)

This work is licensed under a Creative Commons Attribution 3.0
License.

Copy it, share it, paste it into your web page. Don't pretend it is your own
stuff, and please give me some attribution. As a courtesy, if you find it worth
distributing, I wouldn't mind getting a copy or a link. Just let me
know.

Master The Basics

A little reassurance first.

Nobody knows all of vim. Nobody needs to know it all. You only need to know
how to do your own work. The secret is to not settle for crummy ways of doing
work.

vim has word completion, and undo, and shortcuts, and abbreviations, and
keyboard customization, and macros, and scripts. You can turn this into your
editor for your environment.

That is cool, but it may be reassuring to know that you can probably will not
need to. You can be far more productive without touching any of deeply advanced
features.

As Bram Moolenaar (vim's primary author) says, the best way to learn vim is to
use it and ask questions. This little tutorial is full of questions you might
not have thought to ask. That's the main value I can give you.

vim has a built-in tutorial. You might want to try it, especially if you don't
like my tutorial. All you have to do is type “vimtutor” at the command line. It
is a very nice tutorial, and is rather complete (compared to mine, which is
fairly nice but not very complete at all).

Finally, please consider GVIM. It will make your experience much more pleasant.
If you only have vim, then you can still use it and learn, but GVIM has a much
nicer look, lets you use your mouse and scroll wheel, and has menus and icons
for those of you who are used to such things.

What does it look like?

It does not look like much. It was not built for beauty. vim uses the default
terminal appearance. GVim adds menu bars and stuff, but vim looks like this:

 [image: a screenshot of *vim* in action]a screenshot of vim in action

As far as visible features, there is:

	the line number (I have line numbers turned on by default, you might not),

 	a bunch of tildes (~) marking empty lines

 	a line of status at the bottom of the screen.

You can usually tell by the blank line markers that you are in vim.

The status line can be turned off, but in this case it shows:

	the rightmost ~n~ characters of the filename,

 	the number of lines and characters in the file,

 	the location of the cursor.

 	where you are in the file (“All” because its all showing).

It is not exciting, and that is good.

Modality

The original vi was invented back when “green screen” ascii terminals were the
UI innovation of the day (ask your dad about ascii terminals). There were not so
many shift-like keys (shift, alt, ctrl, windows, fn) and there was no such
thing as a pointing device. Pretend that there was only a “ctrl” key and
a “shift” key, whether it is true or not.

Programming and all other computer use)was done with your eyes on the screen
and two hands on the keyboard. Vi made it possible to do so quickly,
because vi is a bit like a video game, where any little gesture on the keyboard
causes something to happen.

If you are using vim and pressing Whatkeys causes either cool or unfortunate things
to happen, you know you are in the command mode, which is the default state
of the editor. Commands are assigned to the ordinary everyday keys like ‘p’ and
‘y’ and ‘g’, not chords like Control-Alt-Shift-Escape.

vim has combinations and sequences to get the special power-ups like navigating
between functions in separate files and reformatting entire lists in the middle
of a document, code completion, abbreviations, templates and the like but that
is for later.

There has to also be a way to type text into a document, but most of the keys
already have special meanings! The only reasonable option was for the
developers to create an “insert mode” which would make the ‘a’ key type an
‘a’ character, just like a typewriter (ask your dad what a typewriter is). This
is called “insert mode”. Not much happens in “insert mode” except normal,
old, boring typing. You only want to use insert mode when you must do typing,
but all the cool stuff happens in the normal (control) mode.

You will learn many convenient ways to get into insert mode, but for now you
should know that the way out of insert mode, back to the video-game-like
control mode, is to press the ESCAPE key.

Understanding that you have basically two modes of operation will make your
stay in vim less confusing, and starts you on your way to vim guruhood.

Know the vim command pattern

Most of the time you will either get an immediate result from a keystroke, or
you will type a command and a movement command (often repeating the same
keystroke: the “double-jump”). When you start to learn the other bits and
pieces (registers, repeats, etc) then you might think vim is inconsistent, and
this is not so. The command pattern is rather consistent, but some parts are
optional.

 register repeats operation movement

 	item
 	meaning

 	register
 	Register name (optional, with default cut/paste register

 	
 	used if not otherwise specified)

 	repeats
 	Repeats (optional): 13

 	operation
 	Operation: y (for yank)

 	movement
 	Movement (depending on the operation):

 	
 	yy (repeated to take current line, a convention used in

 	
 	vi)

vim commands work with the pattern shown above. There are some commands that
don't use register and some that don't take movement, but for the most part
this is the way it goes.

A register is essencially a cut-n-paste buffer. In most editors you get only
one. In vim you have too many, but you don't have to use them, so don't worry
about it untl you get to the lesson on registers.

A repeat is a number of times you want to do something. If you don't type in a
number, the default is 1.

An operation is a keystroke that tells vim to do something. These are mostly
normal keypresses, and most operators do not require shifts or alts or
controls.

Movement is a command that takes the cursor somewhere. There are a lot of them,
because there are lots of ways you need to move. don't panic, though, because
you can use the arrow keys if you really have to. There is a whole section of
this tutor on moving around.

Lets try an example to clarify how the pattern works. If I want to copy 13
lines into my copy/paste register, I can skip specifying a register name, type
13 for a repeat count, press ‘y’ for yank, and then press one more ‘y’ as a
movement command (meaning current line). That yanks 13 lines into the default
cut-n-paste register. If I press ‘p’ (choosing to use no register name and no
repeat, recognizing that put has no movement command), then those lines are
pasted back into my document just after my current line.

If you know this pattern, then you will know how to leverage everything else
you learn about vi. Learn all the convenient ways to move, and you will know
how to cut, paste, reformat, shift, and many other things you want to do.

GET OUT!

You should be able to get out of a vim session once you are in it. There are a
few ways to do so. Try these:

 	What to Type
 	What it does

 	:q
 	Quit the current window (or editor if you’re out of windows) if there are no unsaved changes.

 	:q!
 	Quit the current window even if there are unsaved changes.

 	:qa
 	Quit all windows unless there are unsaved changes.

 	:qa!
 	Quit all windows even if there are unsaved changes.

 	:wq
 	Save changes and quit the current window.

 	ZZ
 	Save changes and quit current window

When you type a colon, the cursor drops to the lower left corner of the screen.
Later you will know why. For now, it is enough to know that it is supposed to do
that, and that these :q commands will work. Notice that there is no : in front
of ZZ.

 [image: how it looks when you quit]how it looks when you quit

If you can’t get out of vim, you should check to be sure the caps lock is OFF,
and press the escape button. If it feels good, press it a couple of times. If
it beeps, you know that you’ve escaped enough. Then these exit commands should
work.

Mnemonics

Not all commands are mnemonic. They tried, but there are more than 26 things
you might want to do in a text editor, and the distribution of letters means
that not that many words start with a ‘q’ and happen to be meaningful in
editing. However, many commands are mnemonic. There are commands for moving
Forward, Back, a Word at a time, etc.

A great many are mnemonic if you know the jargon. Since “copy” and “cut” both
start with “c”, we have the vernacular of “yank” (for copy), “delete” (for
cut), and “put” (for paste). Y, D, P. It seems a little funky but it is
possible to remember these. Remember, eventually it becomes muscle memory, but
the authors of VI and vim tried not to be arbitrary when it was totally up to
them. Sometimes, there wasn’t much of an option.

Invocation

Now that you know how to get out of vim, maybe it is time to learn how to get
into vim. We typically start vim from the command line, though you may have
menues or other ways.

There are a few ways you can start vim.

 	What to Type
 	What it does

 	vim
 	start with an empty window

 	vim file.txt
 	start with an file.txt loaded and ready to edit

 	vim +23 file.txt
 	start with an file.txt loaded and ready to edit at line 23.

 	vimtutor
 	Start in tutorial mode. This is a good idea.

 	vimdiff oldfile.txt newfile.txt
 	Start vim as a really fancy code merge tool.

 	vimdiff .
 	Start vim as a file explorer.

There is more, not shown. For now, knowing these will help you to get started.
DO try out the vimtutor and the vimdiff. Some of these won’t work until you set
up a .vimrc, but that is explained later.

 [image: starting vim]starting vim

If you type gvim instead of vim (mvim on OS X) then you will get the
gee-whiz, cool, gui version of vim (if it is installed). It has some extra
powers. You’ll typically like it better than the plain vim. It is like vim with
chocolate icing. Everything we say about vim here is also true of GVIM, so you
can use the same tutorial with either.

You don't have to edit one file at a time. You can start (g)vim with multiple
filename arguments. When you do, there are a few options you can pass to get
some fun additional effects. Of course, these are more fun after you learn how
to work with split windows, so you can refer back to it later.

 	Option
 	What it does

 	-o
 	Open multiple files in horizontally tiled windows .

 	-O
 	Open multiple files in vertically tiled windows .

 	-p
 	Open multiple files in separate tabs (I hate this).

Don’t panic. You have undo/redo

The command for undo is u. That is not too hard to remember, is it? A lot of
vim commands are pretty mnemonic-friendly.

The redo would be the r key, but the r is used for “replace” (we’ll talk
later about this). We’re stuck with control-R instead. Ah, well. You can’t
have everything.

This is a good place for an example, so lets start with some precious,
text that cost me a whole morning of text (well, a couple of minutes at least)

 [image: before making the error]before making the error

Ewww. Misspelling. Yuck, Lets change that L into a double-L.

 [image: after the error]after the error

Wow. That is far worse. As a pro vim user, I press the u button for undo.

 [image: starting vim]starting vim

There is a lot more to undo and redo, but this is enough. Be happy that you can
revert changes, and un-revert them. vim isn’t as powerless and unforgiving as
you feared it might be, though you might still not like it very much. Just wait
for that muscle memory to kick in.

If you get into a real mess, then exit the editor without saving.

If you are really afraid, or really cautious, then you should have version
control for your text files. I recommend you start editing with junk files in a
junk directory anyway, but when you are working on something important, you
should not be afraid to make changes. Version control is a good security
blanket and a useful backup strategy. Consider using Git or Mercurial, both of
which are easy and powerful.

Move by context, not position

The poor soul who is using vim for the first time will be found pressing up and
down arrows and executing key repeats, moving horribly inefficiently through
any body of code. He will be scrolling or paging (btw: \^f moves forward one
page, \^b moves backward one page) and searching with his poor eyeballs
through piles of code. This poor soul is slow and clueless, and probably
considers vim to be a really bad version of windows notepad instead of seeing
it as the powerful tool it is.

By the way, the arrow keys do not always work for vim, but do not blame vim. It is
actually an issue with the way your terminal is set up. vim can’t tell that
your arrow keys are arrow keys. If you have the problem, you have more research
to do.

To use vim well, it is essential that you learn how to move well.

Do not search and scroll. Do not use your eyes to find text. They have
computers for that now. Here are a handful of the most important movement
commands. The best way to move is by searching:

 	What to Type
 	What it does

 	/
 	search forward: will prompt for a pattern

 	?
 	search backward: will prompt for a pattern

 	n
 	repeat last search (like dot for searches!)

 	N
 	repeat last search but in the opposite direction.

 	tx
 	Move “to” letter ‘x’ (any letter will do), stopping just before the ‘x’. Handy for change/delete commands.

 	fx
 	“Find” letter ‘x’ (any letter will do), stopping on the letter ‘x’. Also handy for change/delete commands

If you’re not searching, at least consider jumping

 	What to Type
 	What it does

 	gg
 	Move to beginning of file

 	G
 	Move to end of file

 	0
 	Jump to the very start of the current line.

 	w
 	Move forward to the beginning of the next word.

 	W
 	Move forward to the beginning of the next space-terminated word (ignore punctuation).

 	b
 	Move backward to the beginning of the current word, or backward one word if already at start.

 	B
 	Move backward to the beginning of the current space-terminated word, ignoring punctuation.

 	e
 	Move to end of word, or to next word if already at end.

 	E
 	Move to end of space-terminated word, ignoring punctuation

The following commands are handy, and are even sensible and memorable if you know regex:

 	What to Type
 	What it does

 	\^
 	Jump to start of text on the current line. Far superior to leaning on left-arrow or h key.

 	$
 	Jump to end of the current line. Far superior to leaning on right-arrow or k key.

Here is some fancy movement

 	What to Type
 	What it does

 	%
 	move to matching brace, paren, etc

 	}
 	Move to end of paragraph (first empty line).

 	{
 	Move to start of paragraph.

 	(
 	Move to start of sentence (separator is both period and space).

)
 	Move to start of next sentence (separator is both period and space).

 	''
 	Move to location of your last edit in the current file.

]]
 	Move to next function (in c/java/c++/python)

 	[[
 	Move to previous function/class (in c/java/c++/python)

Finally, if you can’t move by searching, jumping, etc, you can still move with
the keyboard, so put your mouse down.

 	What to Type
 	What it does

 	h
 	move cursor to the left

 	l
 	move cursor to the right

 	k
 	move cursor up one line

 	j
 	move cursor down one line

 	\^f
 	move forward one page

 	\^b
 	move backward one page

You want to use the option hls (for “highlight search”) in your vimrc. You
will learn about that soon enough. In the short term you can type “:set hls”
and press enter.

Help is on its way.

There is an online help mechanism in vim. You should know how to use it.

Type :help and you will get a split window with help text in it. You can move
around with the arrow keys, or with any of the vim movement commands you will
learn.

You can always enter funky keys by pressing ^v first, and then the keystroke.
This is most useful in help. You can type :help \^v\^t to get help for the
keystroke ^t. By convention you can usually get what you want by typing :help
CTRL-T also. Do not underestimate how handy this is.

Most distributions of vim will install a program called vimtutor. This
program will teach you to use vim. It will do so by using vim. It is a handy
piece of work (props to the author!).

Help has links. If you see one you like, you can move the cursor to the link
(lets not just beat on the arrow keys, here!) and press ^]. Yeah, it is an odd
and arbitrary-looking command. That will not only navigate to the link, but
also push it on a stack. If you want to go back, you can press ^t (yes, also
pretty arbitrary) to pop the current link off the stack and return to the
previous location in the help. The commands \^] and \^t aren’t very
memorable, but we’ll use them for code navigation later, so learning them is
not a total waste of mental energy.

Shifted letters and DEATH BY CAPS!

For a number of commands, shift will either reverse the direction of a command
(so N is the opposite of n, see next bullet) or will modify how the command
works. When moving forward by one word at a time (pressing w), one may press
W to move forward by one word but with W the editor will consider punctuation
to be part of the word. The same is true when moving backward with b or B.

Because a shifted letter may mean something very different from the same letter
unshifted, you must be very careful not to turn on the capslock! Sometimes a
poor unwary soul will accidentally hit the capslock. When he intends to move
left with ‘j’, he instead joins the current line with the next. Many other
unwanted edits can take place as his fingers make a quick strafing run for some
complex edit. It is ugly.

If you encounter DEATH BY CAPS, you should turn off the capslock, and then try
pressing ‘u’ repeatedly to get rid of unwanted edits. If you feel that it is a
lost cause, press “:e!” followed by pressing the enter key. That will reload
the file from disk, abandoning all changes. It is a troublesome thing that will
eventually happen to you. Some people turn off their capslock key entirely for
this reason.

Quoting Your Regex Metacharacters

If you do not know what a regex is, skip this section. For those who understand
what a regex is, and who realize that the “/” command takes a regex rather than
just normal text, this will be important. For the rest of you, it will seem
totally out of place and should be skipped for now.

You should know how to use regular expressions, because a few tricks in regex
will make your whole Unix/Linux/Mac experience a little better. It is too large
a topic to expose fully here, but you might try looking at on of the good
references or
tutorials
elsewhere on the web.

The main thing to remember is that vim will side with convenience when it comes
to regex. Since you search a lot, vim will assume that /+ means that you want
to search for the nearest + character. As a result, all the metacharacters have
to be quoted with the backslash (“") character. It is sometimes a pain, but if
you really want to find a plus sign followed by a left-parenthesis, it is very
easy.

Insert, Overwrite, Change

In vim you have a variety of ways to start entering text, as mentioned above in
the section on Modality.

You are normally in command mode. When you type certain keys, you are placed
in insert mode or overtype mode. In insert mode, the text you type goes before
the cursor position, and everything after the cursor is pushed to the right or
to the next line.

In ` overtype mode` your keystrokes are input, just as they are in insert mode,
but instead of inserting the keystrokes vim will replace the next character in
the document with the character you type. You get to overtype mode by pressing
an overtype key command while in command mode.

In ex mode you are typing a string of commands to run into a little window at
the bottom of the screen. We’ll talk about this later on, because it is powerful
stuff. It is also a little cryptic, so we will wait. You get into ex mode by
typing “:” in command mode.

You always return to command mode from overtype, insert, or command mode by
pressing escape. That is one handy key.

 	What to Type
 	What it does

 	i
 	insert before the current cursor position

 	I
 	insert at the beginning of the current line. Far better than pressing ^ and then i.

 	a
 	insert after the current cursor position

 	A
 	insert/append at the end of the current line. Far better than pressing $ and then i.

 	r
 	retype just the character under the cursor

 	R
 	Enter overtype (replace) mode, where you destructively retype everything until you press ESC.

 	s
 	(substitute) delete the character (letter, number, punctuation, space, etc) under the cursor, and enter insert mode

 	c
 	the ‘change’ (retype) command. Follow with a movement command. cw is a favorite, as is cc

 	C
 	Like ‘c’, but for the entire line.

 	o
 	insert in a new line below the current line

 	O
 	insert in a new line above the current line

 	:
 	Enter command mode (for the advanced student)

 	!
 	Enter shell filter mode (for the very advanced student)

Consider the value of the c command. If you use it with the ` t or f
commands, it becomes very powerful. If you were at the C at the beginning of
the previous sentence, you could type ct. and retype the whole first
sentence, preserving the period. The same is true with other commands, such as
the d` for delete. The movement commands add a lot of power to the change
command, and that is one reason why it is important to learn to move well.

 NEVER PARK IN INSERT MODE.

vim is set up to do more navigating and editing than typing. It rewards you for
working in the same way, mostly in control mode with spurts of time in insert
mode.

If you try to use vim as a weak form of notepad, modality and navigation will
ensure that you are never really efficient. If you want to sail, you have to
get in the boat, and if you want to get good at vim, you need to get good in
command mode.

So, if you are stopping to think, hit <esc>. If you aren’t in the middle of
text typing, you should be in command mode. If you are wanting to move up or
down a line, or to some other place, hit <esc>. If you walk away from the
keyboard, hit <esc>. Otherwise, you will start to type commands and find that
you're not in command mode and you have lost your ability to meaningfully use .
or undo. </esc></esc>

Epilog

If you have followed the tutorial this far, you have a good start. There is
much more to learn, and much further to go.

As a graduate of the Vim Like A Pro school of editing, you must uphold the standards.

	Do Not Park In Insert

 	Avoid Death By Caps

 	Don’t mindlessly tap-tap-tap

 	Make your work easier

 	Learn always!

 	Remember there are other tools. Use them, too.

OEBPS/images/originals----Undo-beforeError.png
Let's pretend I had something really important to say, and I spent my entire
morning entering this text. Yes, one has to believe that I'm a very poor
typist (I'm not), but a little suspension of disbelief is a healthy thing.

And then, somewhere in the middle of the afternoon, I see that I misspeled
a word that should have two Ls in it. I hate misspelling.

1
2
3
4
5
6
7
8

Instead of changing it once, though..

INSERT -- 8,40

Al

OEBPS/images/originals----Undo-afterError.png
llet's pretend I had something realllly important to say, and I spent my entire
morning entering this text. Yes, one has to bellieve that I'm a very poor
typist (I'm not), but a llittlle suspension of disbellief is a heallthy thing.

And then, somewhere in the middlle of the afternoon, I see that I misspelled
a word that shoulld have two 1ls in it. I hate misspelllling.

Instead of changing it once, though, I accidentalllly change allll 11 into doublle

ms.

Bomuounswnr

.

21 substitutions on 7 lines 9,1 ALL

OEBPS/images/originals----VimBlankScreen.png
</VimLikeAPro/manuscript/Preview.txt* 6L, 6C 0,0-1 ALl

OEBPS/images/originals----Quitting.png
— O [NoName] - GVIM1

B8 e «&a BB

OEBPS/images/originals----Starting-Simply.png
>vim Book.txt [|

OEBPS/images/leanpub-logo.png
Leanpub
EYy—33

OEBPS/images/title_page.png
MR SO,
e N

.
_renerene

