
 of 	 Technoscopes1 223

 

	 	 March 9-10 2019 Edit

 of 	 Technoscopes2 223

TECHNOSCOPES
100 Powerful Thinking Tools in Planguage

By Tom@Gilb.com

‘Technoscope Tools’: In 5 Parts of 20 Tools Each
1 Requirements
2 Designs
3 Value Tables (Value Decision Process)
4 Spec QC
5 Evo
This booklet will focus on at least 100 ‘tools’, for understanding complex systems and plans. I call them ‘Technoscopes’.

Each tool can generally be used stand alone. Pick it up, use it today.

But the tools can be connected together, to give even better understanding, of the products, services, organizations, political decisions, or organiza-
tional improvements, that you are working to improve.

The booklet is my personal idea-toolkit, that I have invented, and used, for decades. I want to share these power-tools with you. I would love to
know that my ideas helped make you a superior professional! You would not be the first ones! Do please share your experiences!

'Technoscopes’ is more advanced than anything you probably have learned, or used, before, because it focusses on delivering multiple quantified
values and qualities at the same time. Do let me know if you know about anything better at this!

It also is logical engineering, rather than touchy-feely, yellow stickies.

 It is about methods that can initially be used on whiteboards, but can easily be made into ‘digital tools’.

So, it is ‘too advanced’ for some of us. But it is the right stuf for ambitious right-brained techies. As Erik Simmons, Intel, said after years of imple-
menting it at Intel, for 20,000 engineers, “This Stuff Works”. Find out for yourself. Welcome to a ‘more serious’ culture of planning.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes3 223

	 	 March 9-10 2019 Edit

 of 	 Technoscopes4 223

Detailed Structure

Tool Area

Part 1: Requirements
1 Tags

2 Scales

3 Meters

4 Scale Parameters

5 Type

6 Ambition

7 Benchmarks
8 Past

9 Trend

10 Ideal and Record

11 Status

12 Scalar Constraints
13 Tolerable,Worst Case

14 OK

15 Targets
16 Wish

17 Goal

18 Stretch

19 Stakeholder

20 Source <-

	 	 March 9-10 2019 Edit

 of 	 Technoscopes5 223

	 	 March 9-10 2019 Edit

 1. In this example

a wide variety of planning objects are listed.

They are grouped by type of object,

and they each have a unique reference tag.

 of 	 Technoscopes6 223

1. Tags: The name of any planning object.

• The objectives, stakeholders, and strategies, are all assigned a unique, and long term ‘tag’, for all related planning
and delivery processes.

• Tags are in All Capitals, for all words.

• Tags are things that can be used to reference any planning object.

• Tags are unique. They only refer to one thing. They are ‘unambiguous’.

• Tags can be hierarchical: ‘Stakeholders.Group.Board’

• Tags are essentially a cross-reference device.

• Tags Can Have synonyms: EU:Europe

• Tags help us keep track of large quantities of planning objects.

• Tags help us to reuse a specification, rather than redefine it anew, elsewhere

• Tags imply that something is already defined, or that we plan to define it later.

• Tags should be reasonably short. Mnemonic, but just like a person’s name, not a full description.

• Tags should not be misleading, but cannot describe most details about a planning object.

• Behind a single tag, we could have dozens of sub-objects (like details in a requirement), and each sub-object

could be described by a dozen or more attributes (like Deadline, Country, Task, for a Scale of a requirement)

• If we did not have tags, if we had just bullet points, or many different numeric lists, all beginning with 1, 2 , 3 then

we would have confusion, and difficulty keeping track of a large plan or model

• Tags are quite usable as digital links: one click and you get the detail.

• I like to emphasize the tag on its definition by bold and underlined. Tom: Name: Tom Gilb.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes7 223

Service Availability:

Type: Critical Product Line Objective.

Stakeholders: Service Personnel, Product Users, Consumer Associations.

Ambition: highest service availability in our business.

Scale: % of [Instances] for defined [Users] for defined [Products] and defined [Problems]
where service can begin within the hour, and be completed within an hour.

Tolerable [Instances = Life Threatening, Users = Medical, Products = Body Monitors, Problems =
Total Malfunction] 99.0%

OK [Instances = Life Threatening, Users = Individual Patients at Home, Products = Body Moni-
tors, Problems = Total Malfunction] 99.5%

Goal [Instances = Unable to Modify, Users = Medical, Products = Body Monitors, Problems = Pain
or Discomfort] 99.98%.!

2. THE ‘SCALE’ PARAMETER DEFINES A PLANNING CONCEPT IN TERMS OF A ‘SCALE OF MEASURE’, SO THAT WE CAN
SPECIFY DIFFERENT TYPES OF NUMERIC LEVELS ON THAT SCALE; FOR EXAMPLE BENCHMARKS, TARGETS (GOAL) AND

CONSTRAINTS (TOLERABLE, OK).

	 	 March 9-10 2019 Edit

 of 	 Technoscopes8 223

2. Scale: a definition of a variable attribute, like a quality, or a cost.

• ‘Scale’ is a definition of something that varies. Like a quality, Value, Performance Level, or Resource.

• Scale is perhaps the most important single idea in this book, because it moves us from ‘lack of clarity’ to ‘extremely

good clarity’, regarding the critical attributes (values, qualities, costs, constraints) of your system.

• ‘Scale’ definition moves us from chat to engineering, from ‘misunderstanding' to ‘got it’

• Scale definitions can be reused: both many times, in a single requirement specification. And also by reusing a scale

definition in different projects, and companies.

• Scales apply to a variety of purposes like: specify requirement, get feedback and measurement, evaluate solution at-

tributes, determine project progress towards goals.

• A Scale can be copied from a library of previously used Scales, or standard Scales

• A Scale can be tailored, or modified, from a Scale Template, or from an earlier-used variation.

• A Scale can have a Tag for Cross reference like: ‘Reliability: Scale: Mean Time Between Failure.’

• A Scale can be found, or at least a template or structure for it found, by internet search (like ‘organizational flexibility

metrics’)

• There are very few standardized scales, for most values, qualities and costs. You have to expect to tailor them yourself.

• The Scale can be derived from an ‘Ambition Level’ statement. (see ‘Ambition’ below). Scale is more precise, than Am-

bition, and must always be ‘numeric’

• Scales can be enriched considerably by adding ‘[Scale Parameters]’, which give added dimensions (see below)

• Numbers on the Scale, for benchmarks, targets and constraints, automatically and implicitly, refer to the one single

Scale, directly above them.

• The Scale can be reused, any useful number of times

• The fact that the scale is written once, and reused, permits us to write a rich and detailed scale, without shortening it

‘for convenience in later use’. If we do need to explicitly refer to it, we can use a Tag on the Scale. This results in more
realistic and accurate modeling of your system world.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes9 223

Productivity:

Scale: Average Time for Average Salesperson to Make Sales Activity Report, Daily

Past: 60 minutes.

D1: Goal [End this Year, New Salespersons] 30 minutes.

Meter: Stopwatch by Trainer.

D2: Goal [Within 3 Years, Top Salespersons] 15 minutes.

Report ST: Meter: Self Timing Reports.

D3: Goal [Within 5 Years, All Salesforce] < 5 minutes.

Meter [After App is used by everybody] Automated measurement in the reporting app.

3 A. AN EXAMPLE OF METER SPECIFICATION, ALL RELATED TO THE ONE SCALE,
BUT TAILORED FOR 3 DIFFERENT TYPES OF GOALS

	 	 March 9-10 2019 Edit

3B. QUANTIFICATION AND ESTIMATION
 USES A ‘SCALE’.

MEASUREMENT IS DONE
 WITH THE ‘METER’

 of 	 Technoscopes10 223

3. Meter: the test or measurement process specification.

• The Meter parameter specifies how we intend to measure ‘which numeric level’, a system currently is at.

• The Meter specifies, or at least refers to, a process for measurement.

• A Meter does not have to be specified initially, the Scale is sufficient for us to understand a requirement.

• A Meter spec might be only or initially, a rough suggestion to a test planner, or to a system builder; who will design and
detail the measurement process later, when necessary. And even change the actual Meter spec, when necessary, to
reduce costs, or to increase credibility.

• A Meter has a large number of quality and cost attributes, which must meet the needs of a given project.

• For example a Meter spec has these attributes: Accuracy, Consistency, Credibility, Standards Compliance, Setup
Time, Cost to Measure, Automation Capability.

• There can be several different Meters which can measure along a single defined Scale.

• And we can specify any useful number of different Meters, for different situations.

• Meters can have Tags to reference them, and they can be selected from a library of measuring processes

• Meters are intimately related to a particular Scale. You cannot define a relevant Meter, until the Scale definition is set-
tled.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes11 223

Scale: the average % defined [Responses] from de-
fined [Customers] for defined [Reasons] per year.

Goal [Deadline = First Release, Market = Asia, Re-
sponses = Complaints, Customers = Long Term,
Reasons = Product Failure, If Product is NOT in Beta]
less than 1%

4. AS YOU CAN SEE, WE CAN ADD ANY OTHER [CONDITIONS] OF INTEREST, IN ADDITION TO THE ONES DEFINED IN
THE SCALE PARAMETERS. WE ADDED ‘DEADLINE’, ‘MARKET’ AND ‘IF’, IN THIS EXAMPLE.

THIS ALLOWS US TO MODEL OUR REALITY, MORE EXACTLY AND MORE RELEVANTLY.

WE AVOID UNNECESSARY GENERALIZATION. WE GET REALISTIC."

	 	 March 9-10 2019 Edit

 of 	 Technoscopes12 223

4. Scale Parameters: Dimensions in time, space, activity and conditions.

• Scale Parameters, are tags in [Square Brackets] inside a Scale definition

• They demand explicit and specific definition in any Scale Level specification (like ‘Goal') below the Scale.

• Additional parameters, not specified in a Scale, may be employed in a Scale Level specification (see example at left)

• The options, in the actual interpretation, of a ‘Scale Parameter’, can be invented on the fly, as we actually specify Scale Levels

• Directly in Benchmarks like Past, Targets like Wish, Constraints like Tolerable.

• Like: Goal [Deadline : Next Year, City = Stockholm, Task = Report Incident.] 60%

• The Scale Parameter Options can also be specified as a set, in advance. These can be extended, later, as needed.

• Examples [Cities]: London, Oslo, Paris, [Tasks]: Setup, Operated, Maintain, Restore

• A Scale Level Specification can specify 1 or more Scale Parameter Options (as examples above), and in addition, can specify
generic groups, such as All, All Others, Any, or None.

• Example Goal [Cities = All, Tasks = All Except Restore] 42%

• The Scale Parameters are useful for avoiding a large number of different variations of Scale definitions. Scale Parameters ‘general-
ize' the scale.

• Scale Parameters help us think about the various dimensions of our problem, that we might want to consider.

• Scale Parameters allow us to specify different deadlines, and different performance levels on the Scale, for essentially different
circumstances, like people and places, and tasks dimensions.

• Pre-defined sets of Scale parameters allow us to check for ‘complete specification’, for all valid or interesting combinations of the
Scale Parameter dimensions. It enables Quality Control.

• Scale Parameters are a key Technoscope for modelling complex, large-volume, and changing systems, such as a National political
decision, or plan. For example Leaving a Treaty, or Improving schools and healthcare.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes13 223

 5. SOME PLANGUAGE ‘TYPES’ OF REQUIREMENT SPECIFICATION,
AS FORMALLY DEFINED IN THE PLANGUAGE GLOSSARY [CE BOOK]

	 	 March 9-10 2019 Edit

 of 	 Technoscopes14 223

5. ‘Type’: the class of specification, which has special or distinguish-
able needs and forms.

• The specification of ‘Type’ in a planning object, announces to the reader, more-exactly, what they are looking at.

• Each type has specific expected characteristics (like ‘variable’, like ‘a resource’) which make it different from the other
Types.

• This saves the reader the effort of asking themselves: ‘what exactly is this specification about generally?’

• Type enables the reader (and diagnostic apps) to determine what to expect, and what is not valid in the specification

• Type enables a Digital app, or a textbook, to immediately suggest a suitable template of specification options, along
with some potential extra options.

• Type forces the planner to ‘make up their mind’ about what they are doing: commitment to the idea

• many people have very different ideas for example, of ‘what are ends’ and ‘what are means’ to the ends.

• Type helps us enforce rules of specification (see Rules, below)

• Like: the specification Rule ‘all qualities must be defined by at least one Scale’

• Standard: Type enables standards to be taught, and used in organizations, for many people, in many places, over a
longer time period. 

	 	 March 9-10 2019 Edit

 of 	 Technoscopes15 223

Development Capacity:

Version: 3 Sept 20xx 16:26

Type: Main <Compound/Elementary> Objective for a project.

Ambition Level: radically increase the capacity for developers to do defined tasks. <-
Tsg

Scale: the Calendar Time for defined [Developers] to Successfully carry out defined [Tasks].

Calendar Time: defined as: full working days within the start to delivery time frame.

Owner: Tim Fxxx.

Past [at 20xx, Site = {Bxx, Lxx, Gxx}, If QA Approved Processes used, Developer = Architect, Task =
Draft Architecture] 15 days ±4 ?? <- Rob

Goal [By 20xx, Site = { Bxx, Lxx, Gxx }, If QA Approved Processes used, Developer = Architect, Task =
Draft Architecture] 1.5 days ± 0.4 ?? <- Rob

	

Justification: Really good architects are very scarce, so we need to optimize their use.

	

Risks: we mis-use effort that should be directed to really high volume, or even more-critical areas (like
Main Objective).

 6. ACTUAL CAPTURE BY ME, AT A MEETING, IN 20 MINUTES TIME, WITH DEPARTURE POINT, A BADLY
WRITTEN OBJECTIVE, ‘IMPROVED DEVELOPMENT ENVIRONMENT’. I AM LISTENING IN TO REMARKS OF 4
CLIENT PEOPLE, AND ASKING SOME STRUCTURED PLANGUAGE QUESTIONS. ‘XX’ = REAL DATA OBLITER-

ATED IN THIS EDIT. <- VP BOOK, PLANGUAGE EXAMPLE 9.2

	 	 March 9-10 2019 Edit

 of 	 Technoscopes16 223

6. Ambition (Level): the informal, but possibly official improvement
objective.

• The Ambition parameter. The Ambition level statement, describes a requirement level, or ‘objective level’, in more de-
tail than the Tag, but in far less detail than a subsequent set of Planguage statements.

• Ambition is typically 5 to 15 words or so.

• Ambition might be an attempt at a summary, of the value requirement, by the planners.

• Or Ambition can be viewed as a Headline for a many-line specification, so people can decide if they want to look at
the detail. Like a newspaper headline, allowing you to decide if you want read the detail.

• Ideally Ambition is a “quote” from some officially named person, or official plan: and our job below it, is to flesh it out in
appropriate detail, with better clarity, than a few ‘Ambition’ words can give.

• Ambition must contain some notion of a ‘level’, even if it is vague, like ‘improved’, ‘radically transformed’

• It is vital that the exact source of the Ambition statement, be documented, even if that is just ‘a planner’

• The source annotation, for Ambition, serves several purposes: credibility, priority, power, showing respect, alignment,
and access to changes

• Example:

• Ambition: to be 10 times better in product and service quality than any competitor within a decade <- HP CEO

	 	 March 9-10 2019 Edit

 of 	 Technoscopes17 223

7. ‘BENCHMARKS’ ARE CLEAR FACTUAL NUMERIC LEVELS, TO HELP US DECIDE AND UNDERSTAND,
PLANNED FUTURE LEVELS (CONSTRAINTS AND TARGETS)"

	 	 March 9-10 2019 Edit

 of 	 Technoscopes18 223

7. Benchmarks: numeric levels of ‘system performance’, past,
present and future, which we can use as a basis for planning re-
quirements.

• Benchmarks (Past, Status, Trend, Record),

• points for comparison with future plans.

• Benchmarks are ‘levels of performance’ worth knowing about, in comparison with future planned levels.

• For us, for competitors, for the past, and possible future specification.

• Capturing benchmarks initially is often thought of as a ‘systems analysis’ phase.

• Continuous: benchmarks can be ‘continuously updated’, as a project, and a live system, or product pro-
gress. They are not merely static history. ‘Status’, ’Trend’ and ‘Record’ are good examples.

• Dynamic status agile: in Agile (incremental Evolutionary delivery cycles) updating the benchmarks is a necessary con-
dition for management.

• Integration into Plans: in Pre-agile tradition the benchmarks were used for ‘early project analysis', and ‘to set future
improvement objectives’. We need to integrate benchmarks, and update them into the live project plans, and we need
to be ‘agile’ with reference to changes in competition, technology, economics and politics.

• Benchmarks are useful tools for helping us analyze risks.

• Like making a plan to ‘go for a level no-one on Earth has achieved yet’. (Risky, right?)

• Benchmarks are tools to help us understand instantaneous priorities

• like ‘catch up with a competitor’s new levels of quality’.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes19 223

8. "THOSE WHO DO NOT REMEMBER THE PAST
• ARE CONDEMNED TO REPEAT IT."

(SANTAYANA)"
	 	 March 9-10 2019 Edit

 of 	 Technoscopes20 223

8. Past Benchmarks: are any estimated, or measured, level for us, or
others, that is interesting to compare our future plans to.

• Past is a basic benchmark, and is a historic, static, record of a level of performance

• One use of Past is as a baseline (i.e. a benchmark) to determine what level we are at currently, and therefore what
other level constitutes an ‘improvement’, or even a ‘degradation’ of a quality, value, performance attribute, or even a
cost or resource.

• Past (and other benchmarks like Status) can be chosen as a zero base (‘0%’) for % improvement, in strategy planning
(see Value Decision Making below)

• We are consciously trying to motivate you to adopt a serious ‘fact-based culture’.

• People who do not have any Past/Status, or have only a ‘dubious’ measured level, should not go ahead and set tar-
gets and constraints for their future.

• They could end up planning to be ‘worse than they already are’!

	 	 March 9-10 2019 Edit

 of 	 Technoscopes21 223

Customer Service Availability:

Type: Systems Analysis.

Scale: % of 24/7 a customer gets a qualified answer without waiting, or
without failing, when they use the qualified answer.

Past [Last Year, Our Main Service System] 95% <- Service Report.

Record [Last Year, Our best competitor] 98% <- Their PR.

Record [Worldwide, Last 10 years, Similar Customer Service. Systems to
Ours] 99.98% <- Industry Surveys.

Trend [by Next Year, Based on Last 5 years, Our Main Service
System] 93% ?

Trend [Next Year, Our best competitor] 99% ??

9. EXAMPLE OF 3 TYPES OF BENCHMARKS. INCLUDING 2 TRENDS. ‘<-‘ MEANS ‘SOURCE IS’
NOTICE THIS IS NOT YET A REQUIREMENT SPECIFICATION

(NO TARGETS OR CONSTRAINTS HERE): PURE SYSTEMS ANALYSIS"

	 	 March 9-10 2019 Edit

 of 	 Technoscopes22 223

9. Trend: an estimation of the levels, good or bad, that will possibly
be reached by us, or others, at defined times in the future, and under
defined circumstances.

• Trend is a ‘future’ benchmark. It is looking out of the front window of a moving car, instead of the rear-view mirror
(Past). Or in the case of some cars the video screen rear-view camera.

• The purpose of Trend specifications is to try to estimate, and understand, how things might become in the future, with
regard to your own systems, or for competitors, or enemy systems.

• Competitors might be getting better, much faster than you thought

• Your own systems/products/services might be degrading, much faster than you thought

• By comparing Trend data, to our current improvement plans (levels, dimensions, timing) we can be ‘agile’ and respond
faster to priority changes, in our current plans

• Trend is a tool for risk management.

• Trend is a tool for helping us prioritize agile value-delivery cycles (more later)

Trend is something your Marketing people, should be very interested in helping you with. It is part of their job."

	 	 March 9-10 2019 Edit

 of 	 Technoscopes23 223

Usability.Intuitiveness:

Type: Product Line Critical Quality Level.

Version: 18 September 21xx 01:52

Scale: Time needed to Correctly do a defined [Task] by a defined [User] given defined [Experience] and defined [Knowledge
Access] for a defined [Product].

Past [Date = January 2018, Task = Assemble + First Use, User = Average, Experience = None, Knowledge Access = On Product
Help + Manual, Product = Product Line X] < 10 minutes.

Ideal:zero time to do task for everybody

Record [Date = June 2018, Task = Assemble, User = Professional, Experience = Years, Knowledge Access = On Product Help +
Manual + Internet + Tele Help Line , Product = X 3.0] 1.5 minutes.

Trend [Date = End 202x, Task = Assemble + First Use, User = Novice, Experience = None, Knowledge Access = On Product Help
+ Manual, Product = X 5.0] 15 minutes. “Getting worse as product gets complex”

Goal [Date = End 202x, Task = Assemble, User = Professional, Experience = Years, Knowledge Access = Online Help + Manual +
Internet + Tele Help Line, Product = X 3.0] 1.0 minutes “would be new record”.

Goal [Date = Mid 202x, Task = Assemble + First Use, User = Novice, Experience = None, Knowledge Access = On Product Help,
Product = X 5.0] 1.5 minutes

10. USEFUL BACKGROUND SPECIFICATIONS IN AN OBJECTIVE. DIFFERENT GOALS FOR DIFFERENT STAKEHOLDERS.

THE + INDICATES MEMBERS OF A SET OF THINGS, OR A LIST OF THEM.
IN THIS EXAMPLE, THE PAST, RECORD, AND TREND ARE ALL ‘BENCHMARKS’ WHICH IS ONE TYPE OF BACKGROUND IN-
FORMATION ABOUT THE PLANNED OBJECTIVE. THEY ARE NOT THE CORE OBJECTIVE ITSELF (NOT OUR FUTURE

TARGETS OR CONSTRAINTS). <- PLANGUAGE EXAMPLE 4.3

	 	 March 9-10 2019 Edit

 of 	 Technoscopes24 223

10. Ideal and Record: a state-of-the-art extreme, attained under de-
fined conditions.

• These ‘Ideal’ and ‘Record’ benchmark levels, are informative warning signals.

• The ‘Ideal' Level, I rarely use, except when someone mumbles ’24/7’ as managers do, and I point out

that they, taken literally, are asking for ‘perfection’.

• For example, 24/7 implies ‘100% availability’. Nice, but real engineers know it cannot be done in the

long term, and that the cost of trying to get there, tends towards infinity.

• So the Ideal, is a way of saying, we have no illusions of doing the impossible quickly.

• The Record Level is a similar nature. A warning sign. Maybe for some an interesting challenge.

• Record Level synonym is ‘state of the art’. Analogies are ‘World Records’.

• Knowing the Record is a sign of expertise.

• If your requirements are near, at-or-above the Records, then there is a warning signal, a risk warning,

that you had better be more-expert than those who set the Record!

• And even if you can ‘beat the record’ there is a high risk of delays, and costs that nobody can under-

stand, or forsee yet.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes25 223

11. STATUS LEVEL. YOU NEED TO KNOW ‘WHERE YOU ARE’ BEFORE
YOU CAN MAKE GOOD DECISIONS ABOUT ‘WHERE YOU WANT TO GO’.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes26 223

11. Status Level

• ‘Status’ generally, is any registered set of conditions, for example the Quality status of a plan.

• Status here, is a short form for ‘Current Status Level’. It represents a moving, changing, level of real-time report, right
now.

• Once the Status moment is passed, then it becomes a Past level report.

• Status has very similar uses to what Past Level does.

• A good practice is to clarify exactly when and where the Status data was collected.

• Status:[2018 September 18, Oslo, Adults, Calling In to Us] 42.

• So that even when the Status moment has passed, we can still understand the analysis data, and realize that it is
not a ‘current’ status.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes27 223

12. DOUGHNUT DIAGRAM [CE BOOK G19], SHOWING HOW SCALAR CONSTRAINTS DEFINE
MORE-OR-LESS ACCEPTABLE RANGES OF ATTRIBUTE LEVELS.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes28 223

12. Scalar Constraints: levels to avoid.

• Scalar Constraints specify a requirement to avoid certain performance levels.

• They help us map ranges of performance that are unpleasant, unacceptable, illegal, or disastrous.

• They are a tool to help us see risks in our planned designs, and in our project execution

• They are a tool to help us prioritize using resources, so that we use resources to achieve the minimum constraint levels
(not too cold), and also to stop using resources when we threaten to achieve more than necessary (too hot)

	 	 March 9-10 2019 Edit

 of 	 Technoscopes29 223

13. SETTING A LOWER BOUNDARY A ‘TOLERABLE LEVEL’;
 A PRIORITY SIGNAL ABOUT THE ‘WORST ACCEPTABLE’ LEVELS"

	 	 March 9-10 2019 Edit

 of 	 Technoscopes30 223

13. Tolerable Level: we can live with this level, but are not happy bun-
nies.

• From the Tolerable level, and better, we have a ‘acceptable’ range of performance.

• The Tolerable Level is just above the Fail Level.

• Fail-and-worse levels, down to the Survival Level, are a ‘Failure’ range of performance.

• Failure ranges might be tied to non-payment for systems or products.

• ‘Acceptable’ ranges might bear some penalty for less-than-desired performance (Wish, Goal, Stretch).

• We can specify a wide range of tailored scalar constraints using Scale Parameters, and other conditions in the Scalar
constraint level statements (Tolerable, OK, Survival)

• This is a Technoscope helping us to distinguish between success and failure, and in-between levels of performance.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes31 223

Sleep:

Scale: Hours deep sleep per night, average.

Tolerable: 0.2 .

OK: 4.

Goal: 7.

Hunger:

Scale: % of belly full.

Tolerable: 1%.

OK: 50%.

Goal: 100%.

Air:

Scale: % of clean air needed per day.

Tolerable: 1%. (below this is intolerable)

OK: 50%. (at this level or better, things are satisfactory, but not good)

Goal: 100%. (at this level, we have ‘success’)

Stretch [For Pensioners and Athletes] 130%. (this level is valued, but marginal, luxurious)

14. THREE CONCURRENT HUMAN BODY OBJECTIVES.

OUR PRIORITIES VARY DEPENDING ON SUPPLY AND NEED

	 	 March 9-10 2019 Edit

 of 	 Technoscopes32 223

14. OK: a range just above the tolerable range.

• Not intolerable.

• Not failing.

• Pretty ‘good’,

• but not yet at an ambitious and competitive ‘success’ level, (called the Goal). Not yet a 'Success'; see Targets, be-
low.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes33 223

15. TARGETS ARE LEVELS OF PERFORMANCE, ON MANY SIMULTANEOUS VALUE SCALES.
THESE TARGETS NEED TO COMPETE FOR MULTIPLE LIMITED RESOURCES, AS SPECIFIED BY A ‘BUDGET’ LEVEL"

	 	 March 9-10 2019 Edit

 of 	 Technoscopes34 223

15. Targets: Performance levels we want achieve. Success.

• Target Levels is a class of requirement levels, that express sufficient, and successful

• Target Levels: include Wish, Goal, and Stretch (details below)

• Target levels can be tied to completion, meeting deadlines, and being within budget, if you achieve them.

• The main distinction is that:

• Wish acknowledges a stakeholder desire

• Goal expresses a project delivery commitment

• Stretch articulates some additional value, if you can still afford the resources

• These concepts can help us prioritize our use of resources,

• Like: Goals before Wishes. Goals before Stretch

• And help us understand and manage risks

• ‘You might not get paid if you don’t reach the Goal level on time’.

• High target-levels will generally drive costs up.

• There needs to be a reasonable correlation, between the benefits from reaching the target levels, and the total costs of
attaining them. Return on Investment.

• Target levels are used as the 100% level in Value Decision Tables (below). They help us make decisions about different
strategies, and their related value attributes, compared to our plans.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes35 223

W1: Wish [Deadline = New Years Day next year, Area = Canada, People
= Teenagers, If Trade Agreement Valid] 30%.

Planning Status: [W1, December 24, 20XX]

PS1: Strategies: S1, S2, and S5 are estimated to get us to about 150%
±60% of the Goal <- IET ABC.

PS2: Capital Costs of the strategies are estimated to be 35% of total
project budget

PS3: We do not know if we have qualified people available to carry out S5.

PS4: We do not know, at this stage of planning, if this Wish will have suffi-
cient priority, ahead of all current commitments at that time; and there are
still possibilities of additional commitments which could interfere.

16. DOCUMENTATION, INTEGRATED IN THE PLAN, EXPLAINING WHY THE WISH STATUS

CANNOT BE CONVERTED TO A ‘WE PROMISE’ GOAL IN THE PLAN. [VP PLANGUAGE 6.10 C] "

	 	 March 9-10 2019 Edit

 of 	 Technoscopes36 223

16. Wish Level: a stakeholder desire for a performance level with
some value for them.

• A wish level is a level of performance that at least one stakeholder desires, because it has some value for them

• A wish level is not a project-committed requirement (like Goal, or Tolerable are)

• A wish level has to pass some tests: feasibility, economics, consistency with other commitments (see Goal below)

• A Wish level is a project’s way of saying:

• we understand this level would be valuable to you. So we cannot promise anything. But we will look into it for you. If
we convert it to a ‘Goal’, then that means, we are promising to deliver it.

• The decision to re-classify a Wish level to a committed Goal level, requires systematic consideration of a large number
of related factors (other objectives, other resources, specified constraints). See the map next to Goal Level below.

• This (Wish to Goal analysis) is a serious Technoscope tool for helping us manage complex sets of stakeholders, their
wishes, and limited resources.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes37 223

17. GOAL LEVEL REQUIREMENTS ARE ONE PART OF A LARGER PICTURE OF REQUIREMENTS.
ALL REQUIREMENTS MUST BE CONSIDERED,
FOR MULTIPLE SIMULTANEOUS OBJECTIVES,

 BEFORE COMMITTING TO A SINGLE ‘GOAL’ LEVEL REQUIREMENT SERIOUSLY [CE FIG 2.2]

THIS EXCELLENT VISUALIZATION ENTIRELY DUE TO CE EDITOR, DR. L. BRODIE"

	 	 March 9-10 2019 Edit

 of 	 Technoscopes38 223

17 Goal Level: one of several simultaneous (Target and Constraint)
commitments to ‘deliver levels of value to stakeholders’.

Here is the set of conditions that we think are logically necessary, for a project team to
commit to a ‘Goal level’ value delivery.

The Goal Level should:

1. be technically possible - within the state of art. There are known strategies to get there.

2. be economically possible - resources exist, or can be obtained.

3. have costs consistent with other requirements. This is not the only objective!

4. be effective, and it must deliver the effect necessary to satisfy real stakeholder needs.

5. be profitable: value exceeds costs.

6. be prioritized: by agreed rules of priority, such as Effectiveness, Profitability, or Politics.

7. have all [Qualifier Conditions] in the Goal statement as ‘true’.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes39 223

O—18. Stretch level, a Target, if we can prioritize any remaining resources.—Cat-
astrophe|Tolerable————Fail|OK---------|Goal----------|Stretch---%

 Dead |Alive | Good | Success | Incredible

	 	 March 9-10 2019 Edit

 of 	 Technoscopes40 223

18. Stretch Level: additional value if we have any resources left, after
reaching all Goal levels.

• A Stretch requirement level, has a priority AFTER all currently required Goal levels are reached.

• But if we have reached all currently (value requirement deadline decides what is ‘current’) then we can use any remain-
ing resources (people, time, money) to work towards reaching one-or-more specified Stretch Levels.

• The ‘Stretch’ implication is that there is some value (knock-on value at a higher level) to be attained by reaching, or at
least moving towards the Stretch level.

• So, without further bureaucratic decisions, the project is authorized to make use of residual resources, to go beyond
the Goal level, and up to, but NOT beyond, the Stretch level.

• This tool helps us to prioritize and differentiate, the essential (Tolerable, then Goal) from the ‘nice to have’ if you can
afford it.

• Meeting Stretch levels within resource constraints, and with all current Goal levels met, could be the subject of some
motivation, like contractual bonus awards.

• The Stretch level is not necessarily for the same set of [Qualifiers] in the corresponding Goal statement.

• We can specify any narrow priority of conditions, for the Stretch target that interest the stakeholders

• Goal [By Next Year, People = Adults & Pensioners, Tasks = Economic Support] 60%

• Stretch [Within 18 Months, People Schoolchildren, Tasks = Educational Support] 70%

	 	 March 9-10 2019 Edit

 of 	 Technoscopes41 223

19. SOME STAKEHOLDER EXAMPLES, AND TYPES"

	 	 March 9-10 2019 Edit

 of 	 Technoscopes42 223

19. Stakeholder: any entity with requirements for us to consider.

• Stakeholders can be individuals, groups of individuals, types of individuals, and non-human requirement sources such
as laws, standards, plans, policies, rules, and principles.

• A critical stakeholder has at least one critical requirement: if you do not meet it, success is threatened, failure is a pos-
sibility.

• There are normally many stakeholders; dozens.

• New stakeholders can pop up, at any stage of a system lifecycle

• New and critical stakeholder needs, can pop up at any time.

• Systematic stakeholder analysis is a critical tool, for understanding non-trivial systems, over time.

• One objective (like ‘Reliability’) can be of interest to several stakeholders simultaneously

• But different stakeholders may require different Goal levels, for that one common objective.

So when one stakeholder requests a change in the Goal, the other stakeholders should probably be consulted.

That implies you need to keep real-time track of stakeholders during a project."

	 	 March 9-10 2019 Edit

 of 	 Technoscopes43 223

20. 3 SOURCES OF 3 DIFFERENT STATEMENTS "

	 	 March 9-10 2019 Edit

 of 	 Technoscopes44 223

20. Source <- : The written or human source of any planning state-
ment.

• It is very cost effective to annotate the exact source, for many specifications, in direct proximity to that specification.

• This is primarily so we can easily do quality control, by accessing that source, and checking that it is still a valid speci-
fication (things and people move on)

• It is secondarily, so people can see the ‘status’ of the source, and show ‘due respect’ to the decision

• It is also useful to ask people to take personal responsibility for being the source: they will then be motivated to make
sure the specification is correct and complete. Take ownership

• The ‘keyed icon’ ‘<-‘ meaning, ‘the source of this is to the right’, has been found very convenient, if you do this as
often as you should.

• But you can also just write. ‘XXXXX. Source: URL gilb.com ‘ for example

• Or use other conventional source annotation, such as footnotes, or [Brackets]

• You can also use Tags, which bring you to more detail via the tag, to both keep it short, and to reuse the source
specification, which is useful if it is a long citation.

• Tag: Statement <- Source Tag

Source Tag: lots of detail, here as you please. "

	 	 March 9-10 2019 Edit

http://gilb.com

 of 	 Technoscopes45 223

“A COMMON MISTAKE PEOPLE MAKE WHEN TRYING TO DESIGN SOMETHING COMPLETELY FOOL PROOF
IS TO UNDERESTIMATE THE INGENUITY OF COMPLETE FOOLS.”

Douglas Adams (1952-2001) Mostly Harmless

	 	 March 9-10 2019 Edit

 of 	 Technoscopes46 223

Part 2: Designs, and Planguage
21 Design Constraint

22 Design Specification

23 Design Components

24 Independence of Implementation

25 Value Delivery Design

26 Concepts

27 Local Definitions

28 Global Definitions

29 Reusability

30 Risks

31 Issues

32 Dependencies

33 Supports

34 Supported By

35 Decomposition Principles

36 Design Principles

37 Templates (with hints)

38 Design Logic

39 Design to Objectives

40 Multiple Attributes

	 	 March 9-10 2019 Edit

 of 	 Technoscopes47 223

21. A ‘DESIGN CONSTRAINT’ (*218) IS A ‘DESIGN IDEA’ WHICH IS A ‘REQUIREMENT’, NOT A ‘DESIGN OPTION’
SOURCE: ‘COMPETITIVE ENGINEERING’ [CE]

	 	 March 9-10 2019 Edit

 of 	 Technoscopes48 223

Source: ‘Competitive engineering’ book 2005, planguage concept glossary

21. Design Constraint: Solutions you must use, or must NOT use.

• A design constraint is an explicit and direct restriction regarding your choice of design ideas.

• It either declares a design idea to be compulsory (Mandatory Design), or to be excluded (Prohibited Design).

• Design constraints are dictated from an ‘earlier system development stage’ (a higher level or a more specialized level).

• For example, the system architects, pass on a number of design constraints, within the architecture specifications,

to the system engineers.

• A design constraint is a binary requirement. Do or Don’t.

• It can be a generic constraint or involve specific design(s).

• A Generic Constraint example: “Use Only Designs from our Own Patents, where possible”

• Specific Design example: “Use ISO Standard 123-4567 (April 2018)”

• This is a tool to help designers, architects, strategic planners to ‘home in on’ solutions early, and to avoid fear that
some solutions, which violate the Design Constraint, will be rejected later, because we were not aware of the Design
Constraint.

• A Design Constraint needs an authority behind it, and even that authority needs a Justification for the decision.

• The Justification should be embedded in writing, together with the Design Constraint.

• The justification might turn out to have lower priority than other requirements, and this can lead to rejecting the De-
sign Constraint.

• A Design Constraint, is not absolute, there are many competing priorities.

• It is probably a good idea, to discuss rejection of the Design Constraint, with the source of it, or authority for it.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes49 223

22. A DESIGN SPECIFICATION (*586) IS A ‘TEMPORARY’ IDEA, FOR SATISFYING SOME REQUIREMENTS.
IT IS NOT ‘HOLY’ AND CAN AND MUST BE CHANGED, IF WE GET BETTER IDEAS. SOURCE: [CE]"

	 	 March 9-10 2019 Edit

 of 	 Technoscopes50 223

22. Design Specification: how we ‘plan to satisfy' requirements

• A design specification is the written specification of a design idea.

• A set of many individual complementary design specifications is the main output of a design engineering process.

• A specific set of design specifications, when implemented, will, to some degree, try to meet the stated requirements.

• ‘Design’ is generic, and covers any useful variety of more-specialized design specification ideas, such as:

• Architecture, Specialist Design (eg Security, Usability), Project Delivery Step Design, etc.

• Design is only ‘design’ specifically in relation to a defined set of requirements. Design is a relative point of view.

• At one extreme, a design could be expressed in terms of ‘Means Objectives' (R Keeney), a set of requirements,

• which when satisfied, will result, we hope, in the delivery of a higher-level of requirements.

• Simple example, A Technical Security Requirement, when achieved, will lead to lower economic hacker-losses at

a higher level of concern.

• But those ‘means objectives’ (like Security) might not yet have their own technical design specification, yet.

• The design spec can be articulated by any useful variety of words, numbers, tables, illustrations.

• Ideally, a design spec is clear, and ultimately complete (complete enough to meet all requirements).

• Clear so that we can logically understand its claim to deliver the requirements,

• and so that the implementors cannot misunderstand the designers’s intent.

• We know how to quality control design specifications, in relation to good design rules, and in relation to their purpose
of helping us to meet requirements. See below in this booklet for several methods.

• (Spec QC, VDT, Evo are specific Technoscopes for measuring the quality and suitability of a design spec)

• Design Specs answer the Technoscope question ‘how?’, by which means?, do we think we can reach our objectives?

	 	 March 9-10 2019 Edit

 of 	 Technoscopes51 223

23. DIFFERENT TYPES OF DECOMPOSITION INTO COMPONENTS OR SUB-SETS

Source: Value Planing book, Chapter 5 Decomposition "

	 	 March 9-10 2019 Edit

Value Decomposition
Methods Details
Design Decomposition Independently Implementable Measurable Value Delivery

ability
Urgent subset

Value Decomposition Multiple Values Scale Dimensions Scale Dimension Sets

Deadline Decomposition Date Due

Start Date

Event Synchronization

like 'Law in Force',

'Official Holiday'

Condition Synchronization

like 'Interest Rates over
5%','Heat Wave'

Priority Type Decomposi-
tion

Wish

(Desired Level)

Tolerable

(Minimum Level)

Goal

(Committed Level)

 of 	 Technoscopes52 223

23. Design Components: useful subsets of your solutions.

• Sometimes our design ideas need to be decomposed into a set of smaller ideas.

• There are several potential purposes for design decomposition:

• to bring out more-specific detail. To define it better.

• to understand costs better.

• to understand different values, from each sub-design

• to enable us to implement high-priority design components, earlier

• In all these cases, decomposition into a set of separate design components is a Technoscope: it helps us understand a
complex system better.

• The methods of decomposition is a separate subject. But the end result, decomposition, is the tool for understanding
the complex system, better.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes53 223

24. HERE IS A REAL EXAMPLE OF MY CLIENT’S DECOMPOSITION OF DESIGN SOLUTIONS INTO INDEPENDENTLY IMPLE-
MENTABLE COMPONENTS. ON THE RIGHT LOWER CORNER IS AN ESTIMATE OF THE EFFECTIVENESS OF EACH SUB-

COMPONENT, SO THAT WE CAN CHOOSE TO GO IMPLEMENT THE MOST EFFECTIVE ONE EARLY

Source: ADVANCED AGILE SOFTWARE ENGINEERING Turkey, April 2018, Polish Case

	 	 March 9-10 2019 Edit

 of 	 Technoscopes54 223

24. Independence of Implementation: we can choose any design
component, before all the others, and implement it, to get a result.

• When we decompose our designs, solutions, or architecture, there are several ways to do it.

• One very useful purpose, for a decomposition, is that each sub-component can be implemented, incrementally into a
system you are improving, without us needing to implement any other sub-component before it, or at the same time.

• We can implement any single sub-component next, without ‘dependencies’ on any other sub-components.

• A simple way to create independent sub-components, is simply to separate into sub-components, then ask, can I im-
plement this one before any of the rest of it. If yes: I have an independently implementable sub-component. Continue
the process. If not, go back and try again. We can discuss more direct and elegant ways to do this. But this will serve
as a starter method.

• My experience is that people are very good at just doing this, when they are asked to ‘make them independent’: but if
not asked, they unconsciously decompose without independence of implementation. You need to be conscious of it.

• Why is this decomposition tool a Technoscope? A tool for understanding a complex system.

• Because

• It gives us more realistic detail, than a non-decomposed top-level solution

• We can use agile methods, to try out some of the best ideas early, and measure how well they work in practice,
before committing to further extended implementation, of what might be a bad idea, or an idea needing re-design

	 	 March 9-10 2019 Edit

 of 	 Technoscopes55 223

25. THE PROCESS OF DESIGNING AND DELIVERING MULTIPLE VALUE-REQUIREMENTS: ENGINEERING VALUE.
USING VALUE DECISION TABLES (VDT). SOURCE: ADVANCED AGILE SOFTWARE ENGINEERING TURKEY APRIL 2018

	 	 March 9-10 2019 Edit

 of 	 Technoscopes56 223

25. Value Delivery Design: Consciously designing for specific value
levels, on time.

• Most projects do not consciously and explicitly design for 'value delivery’: for any type of value, not just financial.

• There are almost no quantified values specified in your requirements, to start with (check it out)

• There is no explicit design process matching design ideas, to the required values, numerically (like VDT)

• Without these explicit design-for-values processes, there is no ‘value transparency’, at early decision-making stages

• The consequence is that huge sums of investment is wasted, when the ‘talked about’ values never materialize.

• Value Transparency requires the following set of tools, discussed in more detail, elsewhere in this booklet

• Quantified value requirements.

• Decomposition of big ideas, into smaller more finite, implementable, testable ideas

• Estimation of the value impacts of the ideas, on the ‘required values’ (using Value Decision Tables)

• Prioritization of ideas into high-effect, and low-risk, partial-implementation, delivery

• Measurement of the real value-effectiveness, in small increments, to prove good ideas really work, or not

• This set of tools is necessary to see the values of design ideas, at all stages of consideration and implementation.

• You are probably missing these tools, so you are ‘flying blind’, and will fail.

• But that is OK, if you are good at covering up, and blaming other causes, for failure.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes57 223

26. CONCEPTS CAN BE REFERENCED BY A WIDE VARIETY OF TERMS AND SYMBOLS. THIS SOLVES THE ‘DICTIONARY
PROBLEM’ OF PEOPLE DIFFERING ON ‘WHAT THEY MEAN BY A WORD’. IS ALSO OPENS UP FOR OTHER LANGUAGES’

TERMS, ‘POINTING TO A CONCEPT DEFINITION’. AND IT ALLOWS GRAPHICAL SYMBOLS TO POINT DIRECTLY TO A CON-
CEPT DEFINITION, RATHER THAN TO A TERM, WHICH WILL HAVE ‘VARIOUS’ INTERPRETATIONS. SOURCE [CE]"

	 	 March 9-10 2019 Edit

 of 	 Technoscopes58 223

26. Concepts: ideas and definitions, independent of actual words, or
symbols, which we use, to refer to the concepts.

• Part of seeing what is going on in a complex system, is understanding the exact intended meaning of the terminology
in use. Here are our Technoscopes for that problem.

• The problem is that very few ‘words’ actually have an exact standard definition

• The Planguage approach to this everyday problem is to

• Assume that all undefined words are dangerous, and can mean almost anything
• Make sure that all critical words are formally defined somewhere

• Make sure that undefined, but critical words, are marked explicitly as <fuzzy>, i.e. ‘needing definition’

• This starts in the Planguage Concept Glossary (not called a ‘dictionary’). This contains under 800 concepts at present.
Each concept is defined, and given a number like *123. Then I attach pretty good English words to it, as my personal
choice of a useful term for the concept. But I explicitly recognize synonyms, translations, symbols, and acronyms. In
addition I give any user, the freedom to attach any terms, they feel they want to use.

• These planguage terms are then use in specs, like requirements (Scale, Past etc) and designs (Impacts, Impacted By)
giving a pretty good beginning, to understanding more-exactly what is specified.

• Then, in addition:

• All Tags, and we use many, are in fact a reference to something which is defined more fully in the specs

• Special definitions, can and should be created everywhere, where it seems important that all spec readers, have an

accurate understanding of the terms, not just ‘their best guess’.

• Our Planguage app (valplan.net) encourages reuse of Tagged Terms, and building specialist glossaries.

Understanding of Terms can never be perfect, but we have measured (Using Spec QC, see Terzakis Intel, 2013) that
we can make intelligibility at least 100X better using these methods"

	 	 March 9-10 2019 Edit

 of 	 Technoscopes59 223

27. YOU NEED TO TAKE RESPONSIBILITY FOR YOUR WORDS, AND BE THEIR MASTER

Source: Gilb, Competitive Engineering. [CE]

	 	 March 9-10 2019 Edit

 of 	 Technoscopes60 223

27. Local Definitions: making sure people understand your intent, on
this page or screen.

• One Technoscope Tactic, is to allow, and encourage direct Tagged definitions of words, which are then used quite lo-
cally, in one design spec, or one requirement spec.

• I take no chances. It is much cheaper to define in writing right now, than to hope that everybody on the Planet, will un-
derstand you correctly, later. Too Late.

• Even when I have underestimated the need to define initially, I get a clear message when I hear someone either clearly
misunderstand a term, or directly ask me or us what it means. I almost do not bother to answer them orally then and
there. I immediately write the definition into the specifications. Done. Forever. Preventing the next misunderstanding,
when I am probably not even there to take action. This also gives you an immediate chance to get feedback on your
definition!

• As a simple example:

Motivation

Type: Design

Description: <Teams>, not Individuals will be Motivated and Rewarded as <groups>

	 Motivated: inspired explicitly or implicitly or internally by any applicable legal ethical means.

	 Rewarded: acknowledged by any means that actually works in the specific situation.

Note: the words in <Fuzzy Brackets>, are acknowledged to need better local definition. The Capital ‘I’ in Individ-
ual, indicates intent to define, even though it is not done, yet, here.

• If you think this is too much work, then you have too little experience of cleaning up, after the loss of time, money
and credibility the happens, when people misunderstand (like your management, and suppliers). 1000x more + ‘re-
work’.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes61 223

28. “AIR QUALITY INDEX” IS A ‘GLOBAL’ VALUE REQUIREMENT DEFINITION (‘GLOBAL’ FOR THIS PROJECT),

IT CAN BE REUSED AND UPGRADED TO ‘AVAILABILITY FOR A WHOLE ORGANIZATION’.
“AREA” IS A HOT LINK TO A PROJECT-WIDE DEFINITION,

AND CAN ALSO BE UPGRADED TO ORGANIZATION-WIDE USE.
“POLLUTANT” IS, FOR THE MOMENT, LOCAL (TO THIS REQUIREMENT),

BUT CAN BE UPGRADED, FOR REUSE IN OTHER SPECS.
	 	 March 9-10 2019 Edit

<—— The moment we used [Area] in the Scale, it
found that this Term was defined in the Project

Specification Glossary, and inserted the definition
below, and made ‘Area’ a hot link to the Glossary.

[Pollutant] was not in the Glossary. But an option to
put it there was displayed immediately

 of 	 Technoscopes62 223

28. Global Definitions: Definitions with a project.

• One way to make large-and-complex specification clearer, is to promote global definitions: definitions which apply to
either one project, or to one organization.

• Anybody can create and deploy global dictionaries or glossaries, and they do.

• This works even better, when you build it into a supporting app, as we normally do today.

• Here is a simple example of definitions, with the Term ‘Area’ (Capital A hints at formal definition): see the example in
the illustration to the left.

• Of course these 2 Terms, function as Local Definitions, right under the Scale. But one of them is Global, as indicated
by the colored hot link.

 "

	 	 March 9-10 2019 Edit

 of 	 Technoscopes63 223

29. THE REQUIREMENTS TAGS, ENSURE REUSABILITY OF THE THE REQUIREMENTS, AND PARTIAL CAPTURE, IN THIS
TABLE, OF CURRENT STATUS AND WISH LEVELS, AND SCALE.

THE 3 STRATEGY TAGS ENSURE REUSE OF THE STRATEGY DEFINITIONS.
THE NUMBERS IN THE CELLS, ARE REUSE OF CONCEPT DEFINITIONS OF ‘SCALE IMPACT’, ‘± IMPACT’, ‘UNCERTAINTY,’
THE ‘0->’ ICON IS REUSE OF THE ‘VALUE SCALE ICON’. THE BAR CHART RECTANGLE IS REUSE OF THE ‘DESIGN IMPACT

EXTENT’ RECTANGLE. THE LIGHTBULB ICON IS CONSISTENTLY REUSED IN THE APP.
BECAUSE IT SEEMS EASY TO GRASP AT A GLANCE.

THE UPDATED DETAILS OF OBJECTIVES AND STRATEGIES ARE ONE CLICK AWAY"

	 	 March 9-10 2019 Edit

 of 	 Technoscopes64 223

29. Reusability: avoiding repetition, motivating quality definitions.

• If you reuse definitions, then there are some things that happen, which improve intelligibility

• You can gradually become familiar with a Term, and get to know its specific definition from previous experience

• A larger project group, or organization, can develop a higher degree of standardization, and common understanding

• It will be worthwhile to create and maintain really high-quality definitions. Define once well, use good definition many

times. The definition can be adjusted, as you get insight, that it needs more clarity or detail.

• You can avoid the same Term having different interpretations in different parts of the plan.

• Updating a common Term’s definition, will upgrade the quality of all current uses of the Term’s definition, and give

better quality, when you refer to it, and reuse it, in the future.

• You will avoid people claiming they had ‘misunderstood’ a term, when it is clearly ‘Marked’ as a defined term (Capi-

tal Letters send a clear signal), with easy access to the definitions both locally, and via digital links. Plan writers are
then ‘ethically obliged’ to know that they can, and must, check the current definition.

• In Planguage, there are very many reusability devices: and the key to them all is the Tag, discussed above.

• Designs and Requirements are ‘reused’ by reference to their Tags. There is no rewriting or paraphrasing of a defini-

tion, which could lead to misinterpretation. There is only one definition, it is always reused. And when it is edited in
the future, all references to it are automatically upgraded, and in sync, because we use the same Tag.

• I once had a 26,000 employee client, in UK, building software for international corporate sale, with their hardware.
The CEO of one of their largest customers called our CEO and complained about the bad application quality. I got
the job of analyzing the root cause. Single ideas (like a ‘requirement’) were found in two dozen variations. Written, re-
written, paraphrased, never quality controlled, for different purposes. Nobody understood anything the same way.
The solution was reusability. One master definition for all. Simple, but nobody thought of it, until the shit hit the fan,
and it got high-power attention.
Re-usability is a Technoscope that makes complex plans easier to understand, easier to update and improve, and

makes planners more motivated to invest, in writing more-intelligible plans, in the first place. Write once, use many."

	 	 March 9-10 2019 Edit

 of 	 Technoscopes65 223

Strategy A. [Country, City, Target, Product Line, Service Level]

A1 [Country = UK, City = London, Product Line = Magic, Service Level = None] 50% of Planned revenue.

A2 [Country = USA, City = Los Angeles, Product Line = Magic Version 2, Service Level = 24 Hour Help]
30% of Planned revenue.

A3 [Country = Norway, City = Oslo, Product Line = Magic Version 2, Service Level = {24 Hour Help, Nor-
wegian Language}] 15%±5% ?? of Planned revenue. <- German Sales Planner

30. A SIMPLE PLANGUAGE DESIGN STATEMENT CONTAINING MANY ‘RISK MANAGEMENT’ TECHNOSCOPES.
SEE COMMENTS.

THREATS AND RISKS TO OUR PLANS COME FROM MANY SOURCES
	 	 March 9-10 2019 Edit

 of 	 Technoscopes66 223

30. Risks: keeping track of potential problems.
• How do you ‘see’ risks? Sometimes they are invisible. Sometime you can infer them. Planguage has a large number of Techno-

scope Tools to alert you to potential risks, connected with all elements of your plans. You could safely say that we are ‘fanatic’
about managing risks, in every detail of a plan. ‘If anything can happen, it will’ (Murphy’s Law)

• We do not believe that risk management is a separate and specialized discipline, done by Risk Managers. We like the ‘Ericsson
Policy' that risk is the concern of every engineer, at all times

• Comments on the example ‘Strategy A’ (<-left page). Why Planguage is a Technoscope for Risks

• The decomposition of Strategy A into A1, A2, A3 helps define a realistic and useful definition, or ‘subsets’ of Strategy

A. We do not risk understanding that any other options are included, or planned, yet.

• These could have been intentionally decomposed into high risk and lower risk sets. A3 shows signs of being a bit ‘special’.

• The set of Generic Qualifiers (Country, City etc.) limit the scope of consideration, clearly. But also permit us to ask

‘which valid combinations we have not planned at all’ . Planned yet. Omission risk.

• The 15%±5% (A3 statement) reduces the chance that anyone will expect, or assume, 15% exactly. We also announce

that there is a risk that the reality will be in the area 10% to 20%.

• <- German Sales Planner (last phrase). Informs us that the Norway plan was estimated by a German, and a Sales

Planner. This is a warning that there may be a risk of irrelevant nationality competence.

• The ?? is a clear warning that the estimate is not to be taken seriously. There is a risk it is very wrong.

• ‘Norwegian Language’: the capital letters ‘N’ ‘L’ are a signal that this is a ‘formally defined’ term, some-

where. If it is not in fact formally and properly defined, there is a risk that the specification will be misun-
derstood. Hint, there are at least 4 ‘official’ Norwegian languages (Bokmål, Nynorsk, Sami, Kven (never heard of it either!))

• The Statement Tags (Strategy A & A1 & A2 & A3) permit us to have one-single tagged ‘master’ planning element, inde-
pendent of updates, avoiding the confusion of multiple versions, in multiple plans and presentations. All plans must refer
to these tags, rather than, dangerously cutting and pasting the content. Updating the master plan element, updates all ref-
erences to it simultaneously.

• We find it amazing how little formal ‘tagging’ conventional planners do, in their plans; and how little co-ordination there is, of
various versions of the ‘truth’. They are doomed to be misunderstood.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes67 223

Confidentiality:

Type: Marketing Product-Line Objective.

Ambition: Safest place for personal data on the internet.

Scale: % Integrity of defined [Data] for defined [Purposes] for defined [People] by defined [Attacker]s.

Integrity: defined as: data not being ever used in unintended, unauthorized or negative ways. Not stolen, shared,
exposed, destroyed, corrupted, correlated or anything else regarded as negative by the data supplier.

Goal: > 99.998%.

[Product = Friend-Book 2.0, Integrity = All Types, Data = Personal Data Submitted or Observed Behaviour, Pur-
poses = Marketing, People = Paying Users, Attacker = Our Corp. & Any External Instance].

Constraints:

C1: Euro Privacy Laws.

C2: National Country Privacy Laws.

Issues:

I1: Marketing Partners as weak Links?

Assumptions:

A1: we (Product Development) are willing to invest in extreme data protection technology. No holds barred.

Risks:

R1: Legal pressure from National Security Agencies to share data.

Mitigation [R1]: the data or access keys are not under our control, only user control, and local storage ??

31. A SIMPLE EXPLICIT METHOD OF KEEPING TRACK OF DANGERS IN YOUR PLANS: INTEGRATE THEM !
DO NOT SEPARATE THEM. KEEP THEM IN FRONT OF EVERYBODY, UNTIL THEY ARE RESOLVED.

NOTE THAT THE FULL UNIQUE HIERARCHICAL TAG IDENTITY OF ‘I1’ IS ‘CONFIDENTIALITY.ISSUES.I1’

Source ‘Value Planning’ book, Planguage Example 3.10. Artificial teaching example."

	 	 March 9-10 2019 Edit

 of 	 Technoscopes68 223

31. Issues, Assumptions, Explicit Risks: Raising a flag, so that poten-
tial problems are not forgotten.

• An ‘Issue’ is defined in Planguage, as a ‘question we have asked, but for which we have not got a good answer yet’.
The answer can turn out to have many possible different consequences, including serious and critical risks.

• I have a personal practice, that when such questions are asked orally, for example at a meeting, I make sure they are
written down immediately, under the Parameter Tag ‘Issue’, and all Issues get a separate identity tag (usually, a ‘local
Tag’ like I1, I2, I3)

• In our automated tool (ValPlan.net) we keep track of, and can report on ALL Issues, in the plan, no matter how large
and complex it is. This combination of a defined concept ‘Issue’ parameter, and a practice of putting Issues in writing
INTEGRATED into the plan, at the appropriate locality (NOT on a separate Risk list!), and a little digital help to keep
track of all of them; is a Technoscope Tool

• Sometimes, I sit a ‘domain expert' down, alone, and ask them to simply ‘write down a list of all the Issues, Risks, and
Assumptions (all of these are just different angles of ‘stimulating people to think of problems’) that they can think of’,
for ‘one planning object’ (an Objective, a Design).

• If they are really ‘the’ expert, then they quickly produce a dozen items, that few others on the team would know
about, or even think of. But this initial list stimulates the team to add to, or to correct the list, once it is made.
Teamwork!

• Any Domain Expert makes a great contribution to the team’s knowledge. Domain Expert time may be allocated to
other teams concurrently, so it is important they can ‘do a brain dump’, and leave the rest, to the team.

• ‘Risk Knowledge’ is no longer locked in the expert’s head; with them thinking ‘surely everybody knows this obvious
stuff’.

• Project Management can then decide when, and how, to deal with these documented problems.

• The Technoscope, of explicit Issues, Risks, and Assumptions is helping us manage our complexity, and threats.

	 	 March 9-10 2019 Edit

http://ValPlan.net

 of 	 Technoscopes69 223

	 	 March 9-10 2019 Edit

 Risks: <Name or refer to tags of any factors,
which could threaten your estimated impacts>.

R1. FCxx is delayed. Mitigation: continue to use
Pxx<- tsg 2.12

R2: the technical integration of Px+ is not as easy
as thought & we must redevelop Oribit

R3: the and or scalability and cost of coherence
will not allow us to meet the delivery.

R4: scalability of Orbit team and infrastructure,
first year especially <- BB. People, environments,
etc.

R5: re Cross Desk reporting Requirement, major
impact on technical design. Solution not
currently known. Risk no solution allowing us to
report all P/L

Issues: <Unresolved concerns or problems in the

specification or the system>.

I1: Do we need to put the fact that we own Orbit
into the objectives (Ownership). MA said, other
agreed this is a huge differentiator. Dec 2.

I2: what are the time scales and scope now?
Unclear now BB

I3: what will the success factors be? We don’t

know what we are actually being asked to do. BB
2 dec 20xx

I4: for the business other than flow options, there

is still a lack of clarity as to what the
requirements are and how they might differ from
Extra and Flow Options. BB

I5: the degree to which this option will be seen to
be useful without Intra Day. BB 2 dec

 of 	 Technoscopes70 223

32. Dependencies: Making Sure we recognize things that have to be
done.

• Often there are tasks, or results, or products, or services, that must be completed, before we can begin, or before we
can complete something. These are ‘Dependencies’.

• It is useful to be very explicit about dependencies, so that we can double check in good time, whether they are ready
for us to ‘depend on’, or to understand if there are any delays.

• It is not good enough in a large, fast changing, complex, distributed plan, that such dependencies are ‘taken for grant-
ed’ as ‘OK’. No problem! No! Problems!

• This dependency idea is of course fundamental to Critical Path Planning

<- 32. ILLUSTRATION. THIS IS A DOCTORED (XXX), BUT OTHERWISE REAL, SPECIFICATION FOR A DESIGN FOR A BANK.
I INTERVIEWED THE DOMAIN EXPERT (BB) BY TELEPHONE AT HIS HOME. AND DELIVERED THIS TO THE TEAM, AT THE
OFFICE, AFTERWARDS. YOU CAN SEE BY THE FIRST ROUND NUMBER OF ASSUMPTIONS, RISKS, ISSUES AND A DEPEN-
DENCY THAT BB KNOWS A LOT OF INTERESTING STUFF ABOUT THE DESIGN IN QUESTION. THE DESIGN IS A MAJOR
ARCHITECTURE ALTERNATIVE FOR MERGING 2 BANKING SYSTEMS.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes71 223

 In this case the ‘CEO Vision Statement’. We could have also written

Security Strategy:

Type: Top level security strategy.

Responsible Strategy Planner: Tom Gilb, Chief Planner, Sept 6 2018.

Security Architect: Steven Shad, of Yale Inc. Santa Monica.

Side Effects Analyst: Wendy Bartlett, Business Analyst.

Description: xxxxxxxx (the basis for analyzing impacts).

Supports: Security Objective.

Impacts: Usability, Training Costs, Terrorist Laws.

Risks: Unknown operational cost, Unknown Maintenance Cost.

Issues: not thoroughly defined, no contract guarantees, effects not proven on similar projects.

33. EXPLICIT ‘SUPPORTS’ STATEMENT FOR A STRATEGY

BECAUSE THE TAGS AND PARAMETERS HAVE A CLEAR AND DEFINED MEANING,

WE CAN AUTOMATE ‘DRAWING OF RELATION DIAGRAMS’, ‘SELECTING THE INTERESTING RELATIONS’
ONLY.

Some ways of documenting various aspects of a strategy. Most everything is ‘background’ information about the
strategy. Notice the 3 explicitly named responsibilities relations (line 3 to 5). Source: Value Planning, 2.2 B.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes72 223

33. Supports: Making sure we recognize why things are there.
• ‘Supports’ is one of many relational parameters to describe a planning object.

• It is important to know how things are related and connected.

• If you are going to change one of them, the other might be affected, and you need to know explicitly where to look to find out the

possible consequences.

• One frequently used method in planning notation is to draw arrows between boxes to indicate relationships.

• Our automated app (ValPlan.net) will to some degree automatically draw lines between related entities. Based on such parameters

as these. But the relationships can get dense and messy, in complex plans. So the use of different parameters, and Tags means
we can keep track of relations digitally, and draw maps and lines when we want to and selectively, to get rid of the line-relation
noise. We think it is better to keep track of relationships this way, and let a computer draw diagrams as needed.

• Digital to Diagram is a smarter way to build Technoscope Overviews. Here is one example.

	 	 March 9-10 2019 Edit

http://ValPlan.net

 of 	 Technoscopes73 223

Contract Flexibility:

Type: Project level Critical Objective.

Owner: Project Manager.

Supports: CTO Objectives, especially Technical Adaptability.

Scale: The Speed which a Contract can be Changed at minimum cost of loss to reflect Cir-
cumstances.

Goal: < 1 month.

Contract: All IT Services and IT Products.

Changed: Deleted or modified.

Circumstances: changed economics, or failure to live up to expectations.

Deadline: This Year.

Supported By (Strategies):

 FlexiCon: www.FlexibleContracts.com.

Supported By (Objectives):

 Legal Dept: % of Flexible Contracts in Force.

34. TWO SIMPLE EXAMPLES OF ‘SUPPORTED BY’ STATEMENTS FOR AN OBJECTIVE

SOURCE: VALUE PLANNING Planguage Example 1.3 The mapping of many relationships for a single objective. "

	 	 March 9-10 2019 Edit

 of 	 Technoscopes74 223

34. Supported By: Making sure we understand who our friends are.

• ‘Supported By’ is similar to ‘Supported’. Just the ‘other way’

• It documents anything we know is available, and responsible, in order to exclusively, or non-exclusively, support our

specification object; our requirement, or our design

• However, it is just a general notion of support, and there are many other more-specialized parameters for ‘support’ in

the examples to the left (Contract Flexibility) and above it (Security Strategy)

• For example the ‘Owner’ is the official ‘Specification Owner’ for that particular one specification object (Contract Flex-

ibility). Not the entire plan set (all planning objects for a project).

• We can use this, specialized supporting relation (‘Specification Owner’), to, for example, make a diagram, or report, of

all specification objects, in this project, or all projects, which are ‘Owned' by a particular ‘Spec Owner’ because:

• They (one Owner) might like to get an overview of their personal current responsibilities

• Maybe their responsibilities have to be transferred to others, as they have moved.

• It is worth noting that although we are documenting that there is a ‘relationship, between two entities: we do not yet
know how deep, and how rich the relationship is. Something we are going to do below (VDTables)

• We do not know the degree, or strength of the relationship (a point ‘diagrams’ alone, seem to miss)

• We do not know how many types of simultaneous relationships there are, between the entities. For example, there

may be a variety of qualities and costs in the relationship.

We are going to need even more-advanced Technoscopes to specify this type of information. Coming up!"

	 	 March 9-10 2019 Edit

 of 	 Technoscopes75 223

35. AFTER A VERY BRIEF (1 WEEK) DETERMINATION OF TOP LEVEL OBJECTIVES AND STRATEGIES,
WE NEED TO START THE VALUE-DELIVERY CYCLES.

BUT WE CAN LEARN FROM THESE CYCLICAL EXPERIENCES,
AND FEED BACK FACTS, TO TOP LEVEL PLANNING.

Source. Value Planning, 2.8.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes76 223

35. Decomposition Principles: detailing strategies so you understand
them better.

• We did a simple discussion of this subject above, in ‘Independence of Implementation’.

• There is more to the decomposition of strategies, designs, and architecture, that I’d like to add now.

• There are a large number of possible decomposition criteria, which might be interesting at any give time.

• For example; Decompose by political sensitivity, decompose by security classes, decompose by privacy concerns, decompose by

economics, decompose by return on investment, and so on endlessly.

• But there is one ‘primary general decomposition rule’ that I would like to elaborate on here. It is a good set of rules for Agile project

management, where we are going to deliver small selected prioritized increments of strategy, in an effort to build a rich and contin-
uous stream of measurable results, for our prioritized stakeholders. That means to make people happy fast, for sure.

• We need to decompose strategy ideas, by the following rules, at the same time:

• Independence. Ability of the sub-strategy to be implemented, before any of the other remaining, 'unimplemented yet’ strate-

gies

• As discussed in some detail above in Independence of Implementation

• Result Delivery. This is the ability, when implemented in real life, incrementally to a system, or product, or service, to deliver
measurable, and expected as estimated, value (quality improvements, cost and time savings etc.) either directly, or as knock-
on consequences. If you cannot do this, then:

• You are wasting your time

• You do not know what you are doing

• You cannot get any useful feedback, except that you are totally failing.

• Suitable Size Effort. The ‘value delivery steps’ as we call them, need to be small enough to do, in a short time (a week or so),
but large enough to make a real difference (non-trivial result). This delivery cycle size is roughly 2% of the entire project effort, or
50 weekly increments in a year’s project, or 48 monthly cycles in a 4 year project.

• Some good reasons for the 2% size is that it is big enough to make a difference in results, and it is short enough to keep

people’s attention focussed, and small enough to ‘lose totally’ (2% of 100%) without destroying all credibility and resources.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes77 223

36. HERE IS A TECHNOSCOPE FOR ENVISAGING THE COST-EFFECTIVENESS OF EACH SOLUTION
THE BAR CHART IS COMPUTED BASED ON QUANTIFIED REQUIREMENTS AND COSTS, AND RELATED ESTIMATES

THAT WE MADE, FOR EACH SOLUTION’S IMPACTS ON THE REQUIREMENTS "

	 	 March 9-10 2019 Edit

 of 	 Technoscopes78 223

36. Design Principles: Technoscopes for seeing relevant design
emerge.
Here are some Principles of ‘Design Transparency’: making sure people understand what is going on, and if it is useful.

1. All design must directly relate to all affected requirements: connections should be explicit, and well documented.

1. Design must satisfy some value requirements, at least: if not, get rid of them

2. Design cannot have ‘too’ destructive side-effects on other value requirements: if so, re-design

3. Design must not, singly or in total, violate constraint requirements: constant Contraint awareness.

2. Design can, and should be, estimated before selection, at least with enough effort and accuracy, to avoid wasting time and effort,
and getting locked into bad designs.

• Shall we say 1 to 8 hours of estimation for every week of design implementation

3. Design risks and uncertainties, need to be documented and evaluated, before selecting design increments.

4. Designs shall be piloted on a small scale, measured ‘for real’, and scaled up only when successful.

5. Designs should be designed, so that we are not locked into them in any way, if they fail.

• What happens if you ‘haven’t got time for this (it takes a day)?

• You will fail to get expected value for money.

• You may fail totally and embarrassingly (you will find someone else to blame, of course).

• You have wasted your time with this book, and these ideas.

• I think you are wasting a great professional opportunity

• But I won’t be there to tell your boss. But maybe your boss reads books like this ?

• Most projects have nowhere-like this level of ‘engineering’ discipline:

• so you will have the same failure rate as all the others (horrendously high, Google it). Comforting?

• You will have missed an opportunity to ‘look like a genius’, to ‘further your career’, get rich and be happy. :)

• Most people are not interested in putting in the effort to be superior. By definition.

• But I can hope that some readers, and leaders, and top managers are ambitious enough to be more disciplined about plan-

ning. Try out some of these ideas and see if they work for you! You do not have to do it all at once.

More detail on how we implement these Technoscopes Design Principles above, in the following section below. "
	 	 March 9-10 2019 Edit

 of 	 Technoscopes79 223

37. A TEMPLATE WITH <HINTS> (TOP HALF), SOURCE: [CE]

	 	 March 9-10 2019 Edit

 of 	 Technoscopes80 223

37. Templates (with hints): a simple Technoscope to instruct people
‘on the spot’.

• At McDonnell Douglas (Now Boeing) we found that engineers made too many mistakes, when just filling in an Engi-
neering Order form.

• The detailed instructions, for filing the form, were in a thick Engineering Handbook, and in forgotten training courses.

• So we ‘moved the instruction directly into the form’ (in the format of <Hints>), and it was immediately a success.

• What you need to know is there, when you need to know it.

• It is easy to improve the <hints text> when experience shows it is not good enough

• This works well in a simple paper form, but more likely in a PC text processor

• In our more sophisticated apps (valplan.net) we have applied the principle in the form of a greyed text."

	 	 March 9-10 2019 Edit

http://valplan.net

 of 	 Technoscopes81 223

"

	 	 March 9-10 2019 Edit

38. Design Logic Steps

 of 	 Technoscopes82 223

38. Design Logic: Technoscopes for seeing what you have to do and
when

• We all know that we need to do requirements, before design, and design before deployment of the design.

• But how many people are conscious of the fact that they need to do stakeholder analysis before understanding and
finding requirements?

• How many people are very aware of all 14-steps in the ’Design Steps Logic’ list to the left?

• How many people dive in, with their strategy or design, without really thinking about all of their many requirements, or
without really clarifying them (like 'quantifying all qualities’ for a start?

• OK, my point is that, most people are not as good as they can be in this area, and this checklist of 'logical design
steps’ might be a Technoscope, to help you and others, see that, ‘some vital steps are missing here!’

• You might be able to use this checklist, helped by the corresponding paper , as a way to point out that your organiza1 -
tion, or your project planning, can be improved.

 gilb.com/DL857 TheLogic Of Design1

	 	 March 9-10 2019 Edit

http://gilb.com/DL857

 of 	 Technoscopes83 223

&''$
(

)*+$,'-./0$12$345'61.7'-

 Mills, H. 1980. The management of software engineering: part 1: principles of software engineering. IBM Systems Jour2 -
nal 19, issue 4 (Dec.):414-420. http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan
	 	 March 9-10 2019 Edit

http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan

 of 	 Technoscopes84 223

39. Design to Objectives: constant iterative refocus on Values, and
changing Values, when developing designs and implementing de-
signs

• Design, or ‘strategy planning’, or ‘architecture, or ‘problem solving’ (same things essentially) must keep a continuous,
iterative focus on a ‘fluid (changing) set of value-objectives’, and changing constraints.

• We need to continuously ask: are our design ideas really moving us, in practice, towards the current updated require-
ments (objectives, constraints).

• Adopting a particular design or strategy, once - is not enough.

• The real-and-valid requirements will inevitably change, even during your project:

• is the design still good enough then?

• New technologies, economics, and markets, will change the possible selection of designs, during a project

• Feedback, from agile incremental delivery of sub-designs will tell you that:

• The design is not as good as you hoped, for primary requirement values.

• The design has some unforeseen side-effects, that are not tolerable.

• The design has costs, that are unacceptable.

• The design violates some constraints, and some new unknown stakeholders are making a fuss about it

• You have to learn what is true, as you go along. Nobody knows these things for sure in advance.

• Keeping this focus has to be done using quantification, feedback, and measurement: a formal continuous process.

• This ‘Design To Objectives’ is the Technoscope: the tool for dynamically keeping track of success and failure.

• Most people do not have that disciplined process. Most people fail too much, too often.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes85 223

40. SOME OF THE OBVIOUS MULTIPLE ATTRIBUTES OF AN OPERA HOUSE."

	 	 March 9-10 2019 Edit

 of 	 Technoscopes86 223

40. Multiple Attributes: a more-complete picture of reality

• Nothing can be managed or evaluated successfully on any single dimension of value, quality, function, or costs, alone.

• You have to learn how to juggle a large number of factors, at least 10, at the same time. Sorry!

• Juggling many balls in the air, at the same time is difficult, takes practice, and needs suitable methods.

• We humans resist this juggling, because we feel that we cannot cope with it successfully.

• The real problem is that you don’t know ‘the juggling methods’, and have not practiced like all jugglers obviously have
to do. Does 10 thousand hours of practice to master something scare you? Lower your ambition level.

• The inherent problem is that if you are always dealing with a system, with about 10 critical objectives, and if 1 single
one of these ‘balls’ falls down, then you probably have a total system failure.

• If your brain stops working, it does not much matter that your heart and lungs are working fine.

• To succeed in the real world, in almost anything, you have to be good at keeping you eyes on many balls in the air.

• You need Technoscopes to help you. Your eyes, ears, and brain are a good start: but ways to ‘model’ the balls moving
on the air need to be added to your Technoscope tools.

• More detail follows, and a pretty good set of Technoscopes has already been discussed above.

• You do not have to spend 10 thousand hours to get practical use from Technoscopes. Not everyone needs to be a
master.

• You may have noticed that many of these Technoscopes can be of practical use: ‘the same day’.

• But being good at all these Technoscopes might take some more effort, weeks, months, years: but it feels so
good to pick up these practical tools, and use them on an everyday basis. They are like ‘superpowers’.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes87 223

 PART 3. A VALUE DECISION TABLE (VDT)

PART 3: A ‘VALUE DECISION TABLE’ CAPTURES ESTIMATES: AND LATER IT CAPTURES ‘MEASURES’ OF THE IMPACT,
WHICH STRATEGIES HAVE, ON REQUIREMENTS (VALUES AND RESOURCES)"

	 	 March 9-10 2019 Edit

 of 	 Technoscopes88 223

Part 3: Value Tables (Value Decision Process)
41 Impact Estimate

42 Impact Measurement

43 % Impact

44 ± uncertainty

45 Resource Estimates

46 Value Estimate Sum

47 Resource Sum

48 Values to Resource Ratio

49 Prioritization Options (Static, Next Step)

50 Feedback

51 Deviation Analysis

52 Safety Factor

53 App: Needs And Means = ValPlan

54 Bar Charts

55 Modeling versus Measurement

56 Time, Micro Deadlines

57 Long Term Short Term

58 Side effect Analysis

59 Risk Prevention

60 Evidence and Credibility

	 	 March 9-10 2019 Edit

 of 	 Technoscopes89 223

41. WE CAN ESTIMATE
THE DEGREE TO

WHICH A DESIGN WILL
HELP US PROGRESS

TOWARDS OUR GOALS
NEVER EXACTLY,

BUT WELL ENOUGH TO
DECIDE WHICH DE-

SIGNS ARE WORTH DO-
ING FIRST "3

 All PotShots in this book are used by paid contractual permission from the © author. Ashleigh Brilliant.3

	 	 March 9-10 2019 Edit

Source [CE]

 of 	 Technoscopes90 223

41. Impact Estimate (IE): how good is your idea, exactly?

• We always expect some value from our investment in designs or strategies

• It does matter a great deal to us, whether the value delivered is trivial, enough, or overwhelmingly great

• We can of course ‘just do it’, and see what happens.

• But of course, we might well waste time and money, and our credibility

• So the smart thing is, to get a reasonable idea, of what we can expect, before we ‘take the plunge’.

• I call this ‘Impact Estimation’

• This means putting a number on how great your ideas going to be.

• Not just comforting words, like ‘It will be fantastic. Everybody just loves it’

• Estimating, especially about the future, is difficult, as our weather-people are well aware.

• But, they try every day, every hour, every cyber second, to ‘predict’.

• If we are serious about our work and our projects, we have to try too.

• We have to put our opinions and experiences into numbers: words are not good enough.

• We do not have to get it right, not exactly right.

•
• But:

• We should mostly get the right ‘order of magnitude’ (factor of 10)

• If we cannot do that, we do not deserve to do this difficult job.

• Decisions can just as well be made by random lottery, or by innocent children

• The IE idea is pretty simple. But it does require you to have quantified your value objectives, first.

• Then you can Estimate the Impact (degree of change you will get, from deploying your idea) in practice.

• You can give a real number on your scale of measure (like ‘improvement 3 seconds’)

• And sometimes we express progress as a %. 100% means ‘all the way tour goal level, on time.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes91 223

8(+$Source: Ryan Shriver, ‘Measurable Value with Agile. in Overload Journal February 2009. https://accu.org/index.php/journals/1534

	 	 March 9-10 2019 Edit

https://accu.org/index.php/journals/1534

 of 	 Technoscopes92 223

42. Impact Measurement.

• Guessing ‘what impact’ a design will have, is useful. But what really counts is the real result.

• So when the idea, or a trial-size part of it, is implemented, we need to measure, as best we can, the real effect.

• The Real measure tells us if we are on the right road, and can ‘scale up’, or if we need to dump, or adjust the delivery
idea that disappointed us.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes93 223

43. IN EACH VALUE DECISION TABLE CELL, THE UPPER NUMBER IS THE ‘REAL ONE’ (20±5) ON THE DEFINED SCALE.
THE LOWER NUMBER IS A COMPUTED %. (40±10%)

 NOTICE THERE ARE 2 TYPES OF ‘SUMS’ (PERF., RESOURCES) AND ALL ARE IN %. MORE BELOW

Source Geoff Cooper, UK, Startup Plan, 2015 "

	 	 March 9-10 2019 Edit

 of 	 Technoscopes94 223

43. % Impact: A relative-to-goal measure.

• There are two useful alternative ways to express the idea of ‘how much effect’ a design has.

• The ‘real’ number is a number on our defined Scale of measure. For example, in ‘seconds’, or ‘number of people’.

• A real number allows us to present results in a language that domain specialists understand easily.

• But we have found that it is very useful to have a ‘scale-neutral’ way of expressing the impact idea.

• ‘% Impact’ is simple.

• 0% means ‘no change’ from a defined benchmark.

• 100% means ‘all the way’ to a selected Target (usually a Goal), on time.

• All other numbers -50%, +50%, 150% are relative to these two points.

• The % is computable, automatically, from the ‘real’ numbers. Like Celsius to Fahrenheit

You might well say ’why bother’ with the %?

• it turns out it is a Technoscope tool.

• It allows us to ‘add up impacts’ (in %) from quite different ‘Scales of Measure’.

• And that allows us to get an overview of the ‘bigger picture’. The ‘Overall view.

• And that is what we expect from a good Technoscope

• More below see: Value Estimate Sum, Resource Sum, Values to Resource Ratio.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes95 223

44. A TECHNOSCOPE FOR UNDERSTANDING THE 'SUM OF WORST-CASE POSSIBILITIES’ FOR VALUES AND COSTS
 (THE I BAR) INDICATES WORST LEVEL.

THIS CHART IS GENERATED FROM THE SPREADSHEET ABOVE, BY COOPER.

Source Geoff Cooper, UK, Startup Plan, 2015 "

	 	 March 9-10 2019 Edit

 of 	 Technoscopes96 223

44. ± Uncertainty: a Technoscope for seeing uncertainty, and the
worst case.

• We need Technoscopes to help us deal with risk. And there are many different tools for that, here.

• I am a strong believer that nobody can estimate ‘exactly’. So the thing I ask everyone to do, is ‘to add a ± number’ to

their estimate, to indicate ‘how bad it might be’, and ‘how good’.

• Denying that this is needed, is like saying ‘±0’ - wanna make a bet on that?

• This ‘±’ Technoscope gives us a window, on uncertainty, on possible disappointment and risk.

• The ± number should reflect the range of experience, for that value or cost, with that Design.

• What is the lowest number observed?

• What is the highest number observed?

• Another term for this is Evidence-Based Decision Making. Or would you prefer ‘wild guesses’ for your career?

• You might object, I can hear you as I write this ‘But I don’t have such data!’

• Probably, you do not have ideal facts, not for most things

• But it is amazing what you can dig up, by an internet search, or by asking a real expert, or even asking the Design

Product/Service Supplier, who has often done this, all over the world, for years. Surely they have some facts?

• And if you cannot dig up facts and numbers?

• Write it down as an Issue or a Risk.

• Estimate a very large ± like ‘99±90’, which will

• Make proponents of the design angry enough to dig up some facts.

• Allow us to compute a very bad worst case (99 - 90 = 9) and radically lower the priority that this design will be

awarded, when we do a ‘worst case’ analysis (quite automated in spreadsheets and our apps).

	 	 March 9-10 2019 Edit

 of 	 Technoscopes97 223

45. AN EXAMPLE OF CONSIDERING 2 LIMITED RESOURCES, AND ADDING THEIR EFFECTS AS A % OF BUDGET SUM.
THE VALUE DECISION TABLE IS TRYING TO LOOK AT ALL VALUE IMPACTS OF ALL STRATEGIES,

AND THE SUM, AT THE BOTTOM, IS A TECHNOSCOPE FOR GETTING SOME IDEA OF
THE COMBINED EFFECT (VALUES FOR RESOURCES).

	 	 March 9-10 2019 Edit

 of 	 Technoscopes98 223

45. Resource Estimates: how to understand the possible costs.

• I find it amazing how often people planning something, do not really ask about the costs of their plans.

• I guess they are spending someone else’s money (like your taxpayer money, or their employer’s or client’s)

• But, it is not as simple as that, ‘the up-front financial cost’ or ‘CapEx’

• There are many cost concepts we need to plan for.

• Money, time, effort, people, space

• Up-front costs, annual maintenance costs

• We need to plan for costs for several reasons:

• Avoid overrunning budgets and deadlines.

• Avoid reducing the planned return-on-investment of your project.

• Make sure you are prioritizing (your agile stream of value delivery) the most cost-effective things, early.

So each individual design (solution, strategy, architecture), needs to be estimated, for at least more than one, critical re-
source, it consumes.

It is not just a matter of estimation of the resources. We need to followup actual costs, at least time and money, in rela-
tion to the corresponding estimates, as we gradually release agile value delivery cycles. We need to spot ‘threateningly
bad’ cost deviations early, and do something about them immediately. Before we ‘scale up’ bad costs.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes99 223

46. THE COMBINED POWER, TOWARDS ALL VALUES, OF A SINGLE STRATEGY

	 	 March 9-10 2019 Edit

 of 	 Technoscopes100 223

46. Value-Estimate Sum: A Technoscope for getting the overview of
all values delivered, by a design or strategy.

• We have a tendency to focus on a single value of a strategy or design. Just human simplification I guess.

• But, like it or not, all designs and strategies, will have substantial effects on many, or most, of your critical value objec-

tives, and on your many cost aspects.

• It is very much like a chess move, which like it or not, has many value and cost aspects.

• And you lose the game, if you do not think about them all, before you move a piece.

• Life would be nice and simple, if a design had one-single effect, on one value. But that is unrealistic.

• Designs have useful positive effects, on several other value requirements

• They can have negative effects, on other requirements. Enough to kill the project.

• When evaluating, and prioritizing designs, we could ‘just look at one single value that interests us at the moment pri-
marily’, for example ‘security’. But nice and convenient as that seems,

• we might miss the opportunity to chose another design that makes a large positive contribution (‘for free’) to many

other critical objectives.

• Or, worse, we might miss the fact that we are totally wasting our time with that design, because it has an unaccept-

able negative ‘side effect’ on another critical objective.

• You choice is to use an hour of evaluation, to save a month of regret (for doing a bad design).

• Most planners I see, ‘happily ignore’ side effects, until ‘bad things happen’. But you are reading this book because you
want to be better than those failures. Right?

• Planners will do what they do. The changes come when a leader or manager decides to insist that their team does
things much better. I am hoping some change leaders are reading this, and will act on it.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes101 223

47. WE ADD UP THE 4 DIFFERENT COST CONSTRAINTS, TO GET A SUM.
THIS SUM IS FURTHER ANALYZED WITH REGARD TO ± UNCERTAINTY AND CREDIBILITY OF THE ESTIMATE

RED(ISH) CELLS INDICATE BUDGET EXCEEDED. GREEN MEANS WITHIN BUDGET.
Source: London 21 June 2018 BCS Architecture Engineering Class

	 	 March 9-10 2019 Edit

 of 	 Technoscopes102 223

47. Resource Sum: understanding the economic footprint, big pic-
ture.

• We presented ‘Resource Estimates’ just above. Now we will look at the %-impact sum of the individual resource es-
timates for all the 'concurrent strategies’, the ones we might all use sometime. Not exclusive alternatives.

• Since the various types of resources, will usually have quite different Scales of measure, we cannot simply ‘add them
up’. But we can however add up the % of the budget or deadline, which each design is estimated to consume.

• This allows us to get a rough idea, of the resource consumption total, for each design.

• We could complicate this model by ‘weighting’ each resource. But I think it is probably not worth the effort. It could be
done, if you think it is worth it for you.

• We do end up with a Resource Sum number, that primarily is used to develop a Values Sum / Resources Sum; an
overall cost effectiveness number.

• This can be used to identify alternative designs with better cost-effectiveness, than others.

• This in turn is primarily used in Value Decision mode: (VD = analyzing the impact data on the Table),

• to chose one design option, instead of others

• to choose one design option as the probably best, and anyway very cost-effective design: and it should be the one
we prioritize to do next (and of course then measure what really happened, with costs and values).

	 	 March 9-10 2019 Edit

 of 	 Technoscopes103 223

48. FINALLY USING THE PERFORMANCE SUM FOR EACH DESIGN, AND THE DEVELOPMENT RESOURCE
SUM,

WE CAN COMPUTE AN OVERALL VALUE/COST RATIO.
THIS EFFECTIVENESS/COST RATIO IS ALSO ANALYSED WITH REGARD TO UNCERTAINTY AND CREDIBILITY

	 	 March 9-10 2019 Edit

Source Geoff Cooper, UK,
Startup Plan, 2015

 of 	 Technoscopes104 223

48. Values-to-Resources Ratio: a Technoscope for Cost-Effective-
ness.

• It is important to somehow capture an idea of the effectiveness/cost ratio for design ideas.

• This can help us make decisions about which designs are ‘best’ in that (cost-effective) sense, and which ones we
should prioritized early delivery of.

• We can even program spreadsheets and apps, to highlight the 'best options’.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes105 223

The situation for the 4 person team, at week 9 of 12 before International Product
Update Release, is shown in the column D (Improvements %).

Two of the goals are already reached (100%, 200%). Priority color Green.

One Goal is halfway there (50%), and has reached its Tolerable level (F7). Priority
color Yellow. Tolerable.

Three goals are not at all improved from their Past Level (0%).They are priority
color Red.

We have 4 choices to work on: one (or more) of the 0.0 % , or the 50%.

They chose ‘Usability.Productivity’, currently at 65 minutes, for ‘time to setup a
marketing report’ (The Scale).

And decided to see if they could improve that, to at least a tolerable 35 minutes
(F15), and perhaps to the Goal of 25 minutes (G15).

They did in fact achieve, that week, getting it down to 20 minutes: a 112.5%
impact.

So, this is a decomposition based on dynamically available choices for ‘filling the
gap’ to the Goal levels.

49. NOTICE HOW THE SPREADSHEET COM-
PUTED THE PRIORITY

AND MARKS PRIORITY REQUIREMENTS
WITH TRAFFIC LIGHT COLORS.

Source. The Confirmit (Norway, confirmit.com) case, in Value Planning book 5.10. 2003.

	 	 March 9-10 2019 Edit

http://confirmit.com

 of 	 Technoscopes106 223

49. Prioritization Options: Estimated Static, Next Step Measured Computed.

• Prioritization is an evaluation process, which helps us make our projects more cost-effective. Cost-effective refers to
the ratio of value-effectiveness /costs. Another good term for cost-effectiveness is ‘efficiency’ (value/cost)

• Our ability to prioritize, depends on the data we have, about the designs, or other planning objects (stakeholders, ob-
jectives).

• The purpose of Planguage is to provide us with a language, and an opportunity to provide prioritization information.

• There are many different artifacts, that can help us to understand the relative priority of a planning object.

• There is nothing simple like a ‘weight’ or a ‘priority declaration’ to prioritize. Those are primitive and static tools.

• Priority can be partly determined by for example, power of a stakeholder, geographical location, constraints, such as

laws, and dozens of other factors. People will subjectively decide on the basis of this data what they ‘prioritize’

• But, there is one method of prioritization I want to spell out here.

• It is one that we people use intuitively all the time, for example to decide how to prioritize our body actions: breathe,

sleep, eat, drink.

• It is so natural we don’t initially think much about it.

• I call it nature’s own prioritization method.

• It is based one the following concepts: multiple critical factors (breath, heart beat, energy), and of variable priori-

tization signals (starving, hungry, satisfied, over-satisfied)

• I think that there is a lot of planning power in the Technoscope, of making this dynamic and multi-attribute prioritization

process practical and operative, in everyday planning.

• All of the above factors of multi-dimensional ‘value’, and levels of the values (Tolerable, Goal) are in Planguage, and are

discussed above.

• All we have to do is ‘put it all together’. Do the maths. We can compute our priorities, and determine them with agreed

logic (EXAMPLE: a factor that is not life-threatening (Tolerable or Goal level), has lower priority than one that is Intoler-
able)

• There are two major types of priority determination: estimated, and measured:

• in ‘Estimated Prioritization’ we determine priority based on impact estimates, in a Value Decision Table.

• In ‘Measured Prioritization’ we have deployed an agile design-increment and measured the resulting values and

costs. We compute our priorities just like our body does, on the run: we prioritize by ‘satisfying the weakest
satisfied value up to now’, using the ‘most plentiful remaining resources’.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes107 223

“Make small changes in the SOTA”

50. ’SOTA’ = ENGINEERING STATE OF THE ART HEURISTICS

Source: Prof. Billy Koen, ‘Discussion of the Method’, p. 48, quoted in ‘Value Planning’

“Always give yourself a chance to retreat; and

Use feedback to stabilize the design process”

	 	 March 9-10 2019 Edit

 of 	 Technoscopes108 223

50. Feedback: the most powerful Technoscope of all.

• Feedback means ‘data from a real world action’

• Feedback tells us what is true and real, well at least compared to our overoptimistic estimates.

• Feedback, if we get it early enough, gives us a chance to correct a bad situation, or to capitalize on a surprising oppor-

tunity

• Feedback, when negative or disappointing, can allow us to cut or reduce our losses quickly: IF

• We have made a small investment (2% !), and/or IF

• we can reverse our commitments (return the hardware, opt out of the contract, not pay the supplier for their bad re-

sults)

• Decades ago I held a talk in Japan about the most powerful principles I knew. And feedback was top of this list. I did 4

this by observing my clients’ results, for decades internationally, a simple fact. Methods with good feedback mecha-
nisms work surprisingly well. Methods with bad-or-no feedback mechanisms work surprisingly badly, and fail.

• In Planguage, the most important feedback, is about the level or increment of value delivery. Secondarily, the feedback
about the consumption of resources is important feedback.

 “Work implies not only that somebody is supposed to do the job, but also accountability, a deadline and, finally,
the measurement of results —that is, feedback from results on the work and on the planning process itself,”

Drucker wrote this in ‘Management: Tasks, Responsibilities, Practices’. Quoted from Value Planning book.

Peter Drucker,: Business Author (1909 Vienna - 2005 Claremont, California).

 https://pdfs.semanticscholar.org/5402/6ac180c0ac0ae6a83c5978b1f0afed1307ee.pdf4

	 	 March 9-10 2019 Edit

http://www.brainyquote.com/quotes/authors/p/peter_drucker.html
http://www.brainyquote.com/quotes/type/type_businessman.html
https://pdfs.semanticscholar.org/5402/6ac180c0ac0ae6a83c5978b1f0afed1307ee.pdf

 of 	 Technoscopes109 223

51. 3 TYPES OF ESTIMATES FOR EACH DESIGN, (‘PLANNED’)
TOGETHER WITH CORRESPONDING MEASUREMENT FEEDBACK (ANOTHER 3 MEASURES) ‘ACTUAL’

IT LOOKS LIKE ACTUAL RESULTS ARE FAR BETTER THAN THE ESTIMATES
OPPORTUNITY KNOCKS!"

	 	 March 9-10 2019 Edit

 of 	 Technoscopes110 223

51. Deviation Analysis: what to look for and how to analyze devia-
tions.

• There will usually be some deviation from your estimates, or expectations. When you get feedback from an incremental
delivery. Using a step size of about 2% of total budget.

• Here are some deviations you should be interested in

• When the result is well outside the ± uncertainty

• When the incremental total (value progress to date) is far below expectations, at this stage

• When the costs are way outside of estimates

These are all Technoscopes, for seeing feedback, and inviting you to action

“True wisdom is knowing what you don't know”

“By three methods we may learn wisdom:
First, by reflection, which is noblest;

Second, by imitation, which is easiest; and
third by experience, which is the bitterest.”

 Confucius, Died 479 BC (aged 71–72) Sorry, no photo 9$$:;$<=$*+>

	 	 March 9-10 2019 Edit

http://www.goodreads.com/author/show/15321.Confucius

 of 	 Technoscopes111 223

 Source VP Book Quote 9.9 C

It's a very sobering feeling to be up in space and realize that one's safety factor was
determined by the lowest bidder on a government contract.

Alan Bartlett Shepard (1923-1998) Astronaut.

52. THE SAFETY FACTOR IS
STIPULATED TO 2 (200%

OVER-DESIGN IS NEEDED)

THE RIGHT HAND RED CELL IS
A WARNING THAT WE DO NOT
HAVE ENOUGH DESIGN YET:

GREEN=OK

Source: Architecture Engineer-
ing Course, London 21 June
2018, BCS

	 	 March 9-10 2019 Edit

http://www.brainyquote.com/quotes/authors/a/alan_shepard.html

 of 	 Technoscopes112 223

52. Safety Factor: making sure it will work, when expectations don’t
work out they way you hoped.
“Safety is not an intellectual exercise to keep us in work. It is a matter of life and
death. It is the sum of our contributions to safety management that determines
whether the people we work with live or die” –

Sir Brian Appleton after Piper Alpha (Oil Platform Disaster, 1988).

 (Kai and I used the methods, in this book, to help plan Oil Platforms.)

• ‘Safety Factor’ is an engineering tradition. See the 2 quotations here.

• It is also a Technoscope that can help you understand if you have enough ‘design power’ to be on the safe side.

• Access to this safety factor, is through a set of quantified attributes: 1. quantifying the Goal level, 2. Estimating the impact of a De-

sign, 3. Adding up the % impacts of a set of designs.

• If they total 200% we accept we have a safety factor (of 2x), good enough to dive in to the agile value delivery process. And then

see what really happens.

• We can set our own safety factor, based on experience, and risk willingness.

• If your agile increments, in fact, get you to your 100% Goal level, long before you have run out of design ideas, then you do not
strictly need the other design ideas. Unless you want to improve upon the Goal level (go for a Stretch level).

• Obviously we need to prioritize doing the most cost-effective estimated increments of design FIRST!

	 	 March 9-10 2019 Edit

 of 	 Technoscopes113 223

53. APP: FOR PLANGUAGE

	 	 March 9-10 2019 Edit

 of 	 Technoscopes114 223

53. App: Needs And Means = ValPlan.net

Since about 2014-2018 we have had the pleasure of Beta Testing an app to 'do Planguage’. ‘NeedsAndMeans’, now ValPlan.net

It is developed by Richard Smith, of London. He learned our methods at Citigroup about 2003, and has been using them industrially, and success-
fully since then. His basis for design of the Technoscope tool is the definition of Planguage in ‘Competitive Engineering’ (2005).

Kai Gilb and I, along with our clients and students, have been giving him feedback for years, and Richard has rapidly continued improving the app
considerably. Kai will do the marketing from 2018 via ValPlan.net

Kai himself spent about 15 years building a Planguage tool in Excel. But that language has its limitations. Most of our clients have built tools in Word
and Excel. But there is a limit to how much one user can invest.

Bechtel (major Construction, USA, Frederick Gibson) used Competitive Engineering to build a Planguage based tool for Bechtel and the Building
Industry. In 2018 he has a new startup, to go public with a similar offering. https://graphmetrix.com

The 3 D Graphics he showed me reminded me of Tom Cruise in Minority Report. The surprise for me is that Fredrick, who is a building Architect, felt
that Planguage was such a good basis for organizing tools for the construction industry ! We are on his advisory board.

Apps are not a pre-condition for use of these Technoscopes. Pen and paper, or whiteboards work well too.

Shakespeare, Wren, and Ibsen used a quill pen.

But automation has some advantages: especially for large and complex plans.

• Less work to build a plan, and to edit it

• More-automated calculations (Like ‘sum value’ and ‘safety factor’)

• Ability to derive selective reports and graphical presentations

• Ability to standardize the definitions.

• Ability to train the app to do quality control analysis

• Ability to build standard libraries, and local libraries of terms, processes, scales, and much more.

Some people are initially skeptical about learning a new tool. I am too! I stick to the old stuff I know!

But our practical experience is that in two days of training, a whole classroom of people, happily learn to use the tool, while learning Planguage and
discovering new Technoscopes. We are also building super fool-proof interfaces for inputting stuff. So you will not really have to be conscious of
the Planguage rules themselves. Exciting times. Follow progress at Gilb.com

	 	 March 9-10 2019 Edit

http://ValPlan.net
http://ValPlan.net
https://graphmetrix.com

 of 	 Technoscopes115 223

54. THE COMPLICATED, BUT NECESSARY DETAIL, CAN EASILY BE CONVERTED TO BAR CHARTS
IN THIS CASE THEY ARE SORTED LEFT TO RIGHT IN PRIORITY SEQUENCE

THE I BAR GIVING SOME IDEA OF THE WORST CASE
TOTAL VALUES ON LEFT, AND TOTAL COSTS TO THEIR RIGHT FOR EACH STRATEGY"

	 	 March 9-10 2019 Edit

 of 	 Technoscopes116 223

54. Bar Charts: A simplified presentation of complex evaluations.

• Graphical visualization of complex sets of detail is a useful Technoscope

• Some people do not need to know all the scales and numbers, just the ‘bottom line’

• They or others, can ‘drill down’ to the details, if necessary

• And we can automatically sort the choices into priority order, so we easily see the winner, and why

• Let me point out that this is a sequencing and choice of agile result delivery options

• When the feedback changes things, and other circumstances change, we can easily update and calculate new priori-
ties.

• Or look at ‘what if’ optional scenarios.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes117 223

55. THE GILB VALUE DELIVERY CYCLE: SPLIT BETWEEN MEASUREMENT AND MODELLING
	 	 March 9-10 2019 Edit

 Measurement Modelling

 of 	 Technoscopes118 223

55. Modelling versus Measurement.

• =?@0/A@/'$.-$BC$D'6E02-62F'$G2H$B2I'??.0/J$'-F'6.@??C$G2H$B2I'??.0/$KLA@01.G.'I$7@?A'-M$@0I$62-1-+

• N2I'??.0/$@0I$'-1.B@1.20-$E@7'$1E'.H$?.B.1@1.20- : we hope they guide us, but cannot be sure they are true.
5

• So, as much as I enjoy better modelling, and also detailed modelling of complex systems,

• I believe we need to limit the modelling, keep the effort short and sweet, or quick and dirty

• Then, using the rough prioritization results, we need to dive in there really early (2nd week of a project) and JUST DO
IT.

• We need to get a confrontation with real people, and real systems ASAP

• And, feed the measurements and stakeholder feedback, into the model.

• One key to this, was discussed earlier: decomposition of strategies and designs, so that we in fact have something

specific we can do, in the second week of a project; to deliver some value, to get some feedback, and to help you

check your modelling estimates, before your over-optimism gets in the way of disappointing reality.

• Model, to set the stage for fast results, and fast learning in practice.

 "What is drastically wrong with most software engineering modeling languages and approaches, and 10 necessary 5

principles for a really good modeling language” http://concepts.gilb.com/dl795
	 	 March 9-10 2019 Edit

http://concepts.gilb.com/dl795

 of 	 Technoscopes119 223

56. ALL TARGETS (LIKE ‘WISH’) AND CONSTRAINTS (LIKE ‘TOLERABLE’)
CAN HAVE A DIFFERENT DEADLINE FOR DELIVERY OF THAT DEFINED VALUE

Source: Polish Export Plan, Class Case 2017, Warsaw"

	 	 March 9-10 2019 Edit

 of 	 Technoscopes120 223

56. Time, Micro Deadlines; continuous and early deadlines.

• In conventional project culture, there is ‘one big deadline at the end' (‘project done’), with perhaps some large phases
of partial delivery before the end. Interspersed with a lot of tasks, to build something, like the phases.

• In our Planguage planning, method, which is anchored in ‘agile incremental value delivery', small steps, we have a tra-
dition of much smaller ‘phases’, a week to a smonth. And the ‘deadline’ concept is entirely different.

• We want the earliest possible delivery of the highest priority values, to the most critical stakeholder, conditions, and
places.

• In particular, we are rarely bound to the idea, that we are going to build something big, from scratch; so that any useful
result, of that building effort, will be years in the making.

• We prefer the idea that if at all possible, we will NOT focus on building a new system.

• We will focus on delivery of improved values,

• And we will do so in increments to the existing systems (even though these might be replaced in time)

The consequence of all this, is that we can choose to prioritize increments of value, early, continuously, without waiting
and hoping for the big-bang system, after some years (which seems usually to be a big disappointment).

That means we can stipulate very many ‘deadlines', dates, for delivery of increments to selected values, to high priority
stakeholders.

We end up with many ‘Micro Deadlines’, spread out over the several years span of a large project.

The big advantage of this is simple: early results, early feedback and correction, no big failures.

I call this ‘agile as it should be’: I call it ‘Evo’. More later.

The Micro Deadlines are a Technoscope into the timing and priorities of the project.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes121 223

57. AT THE LEFT OF THE ARROWS IS THE ‘SHORT TERM’, AND AT THE GOAL IS THE LONGEST PLANNED TERM
THIS IS A SIMPLE MODEL, AND REAL PROJECTS HAVE 50 TO 100 OR MORE CYCLES OF DELIVERY

AND OF COURSE WE CAN PLAN PARALLEL VALUE DELIVERIES.
THERE IS NOTHING SIMPLE LIKE A RIGOROUS SINGLE SERIES OF DELIVERY CYCLES.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes122 223

Source: Kai Gilb

57. Long-Term Short-Term.

• Once we shift our focus from ‘building systems’, to ‘delivering improved value’,

• we have opened the door to a ‘series of small deadlines’,

• NOT for delivery of tasks,

• but for delivery of improved value to stakeholders.

We can consciously plan for short term, prioritized results, while still on an incremental path to longer-term results, or
‘value delivery.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes123 223

58. SIDE-EFFECT IMPACT ANALYSIS: WHICH STRATEGY IS
BEST? MIGHT BE NICE WITH A NUMERIC OVERVIEW? (VDT!)

Source: Value Planning, 2.3B

	 	 March 9-10 2019 Edit

 of 	 Technoscopes124 223

58. Side-effect Analysis: Technoscopes for side-effects.
• All designs and strategies have a large number of side-effects.

• Side-effects are simply ‘not the primary reason’ you picked the design.

• You may have focussed on a ‘Security’ objective, and picked a great security design. The best you can find.

• But like it or not, that design comes with a whole lot of other attributes, good and bad

• To begin with there are all the costs, long-term and short-term: nothing in life is free.

• You cannot simply pick a design because ‘it is the greatest at your primary objective’, or for the objective you are

focussing on at the moment.

• You have to consider the costs, all kinds of costs, not just capital outlay, but just as important, and sometimes

much bigger, the running costs, year after year.

• Not just the money, but people time, and the need for rare specialized experts

• (think ‘Cyber Crime’, the best experts seem to be on the Criminal side)

• And then there are all the value effects, the good the bad and the ugly, on things like usability, maintainability,
throughput, and other critical things like that.

• You need Technoscopes to help you see all these side-effects.

• You need to see these side-effects quantitatively. You can’t just note that ‘this design also impacts usability’.

• You need to estimate, as best you can, always quite difficult, but never impossible, hoping for an early insight

which will prevent you doing ‘something stupid’ (there is a Sinatra song about that).

• And, that is just the beginning: estimating designs pre-selection.

• We also need to get feedback, after incremental change implementation, to learn how the side effects really work!

• And to follow up, and adjust, for nasty surprises, early.

• So, as you may have observed by now, we have a Technoscope for side-effect estimation: the Value Decision Table.

• Most people do not have such a tool. They do not ‘bother’ to manage the side effects. They get problems and

they fail. They do not blame themselves and their poor methods. They just say, it was ‘surprising’.

• If you do not get the side-effects first, the side-effects will get you, late
	 	 March 9-10 2019 Edit

 of 	 Technoscopes125 223

Threats are anything that can possibly result
in an attack on your system.

Attacks are when something attempts to
misuse or destroy your system

Built in Mitigation is when some device you
have planned and invested in, attempts to
detect and possibly stop the attack

Gross Damage is the successful attack ex-
tent; not prevented by your Built-In mitiga-
tion

Post Damage Mitigation Strategies: are
what you can do, now that the damage is
done

Net Damage is Gross Damage Loss, minus
what you can salvage using Post-Damage
Mitigation Strategi

59. THREAT AND ‘ACTUAL ATTACK’ ANALYSIS
GIVES YOU INSIGHT AS TO WHAT YOU NEED
TO DESIGN.
THERE ARE AT LEAST 2 LEVELS OF ATTACK
MITIGATION, PLUS A POTENTIAL TO DESIGN
SO THAT THREATS DO NOT TURN INTO REAL ATTACKS (THREAT MITIGATION). SOURCE [VP]

	 	 March 9-10 2019 Edit

 of 	 Technoscopes126 223

59. Risk Prevention: you have to spot the risks, to prevent them.

• If you do not see problems, threats and risks in time: don’t worry!

• They will find you, sooner or later: at 100 times the costs of dealing with them early.

• That is the essence of all planning: not just finding 'a way to succeed’, but to ‘avoid ways of failing’, at the same time.

• Understanding the risks is difficult. But you will have to find a balance between effort to deal with risks early, and the
pain of enduring them later.

• As should already be clear, for readers thus far (60% of the booklet), we have presented many Technoscope tools to
identify risks, to specify risks, and to do something early about risks.

• In fact practically every detail in Planguage is some sort of a Technoscope for dealing with some sort of risks

• For example Tags, Scale, Record, Safety Factor, ± uncertainty, Source, Value Decision Tables, Evo:

• practically all Planguage detailed artifacts deal with risks, fairly directly.

• One of the problems with risks is that they are so infinite in variety, and it is very difficult to ‘predict' the rare ones.

• So one useful tactic is to plan for general classes of risks, not the detailed ones.

• I particularly like, at risk of repetition, the ‘Ericsson Quality Policy’ (one of our favorite clients for a decade) which says

• that risk analysis and risk management is the ongoing work of every engineer, at all times, in every detail.

• Well maybe I exaggerate a little, but not much!

	 	 March 9-10 2019 Edit

 of 	 Technoscopes127 223

60. ENLARGED ‘CELL’ DATA. WITH FULL EVIDENCE, AND EVIDENCE SOURCE

RATED HIGH, AT 0.8 

	 	 March 9-10 2019 Edit

 of 	 Technoscopes128 223

60. Evidence and Credibility.

• O'E@7'$'PF?2H'I$1E'$.I'@$1E@1Q'6@0$estimate the impacts of designs, on our values.

• We do not think that people can be allowed to just ‘estimate a number they believe in’

• We think that, not only should an estimate specify the uncertainty, ’60±25’,

• We need to document the basis for our estimate,

• even if it is ‘just our personal opinion’.

• Planguage has the following devices, Technoscopes, to clarify the evidence and its quality.

• The Evidence

•
• The Source of the Evidence

•
• The ‘Credibility’ level of the Source and its Evidence

• The Credibility level is on a scale of 0.0 (none) to 1.0 (perfect)

• This forces us to think seriously about our estimates

• Credibility level is a Technoscope to see the credibility, of all estimates, in a Value Delivery Table.

• Credibility motivates planners to take their work more seriously, and it

• Gives managers, and plan evaluators, a tool for understanding risks.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes129 223

PART 4. THE ‘SPECIFICATION QUALITY CONTROL’ (SQC) PROCESS
MOTIVATING PEOPLE TO REALLY FOLLOW STANDARD BEST PRACTICES : A GENERIC TECHNOSCOPE FOR ALL PLANS

Source: Value Planning, 10.2A

	 	 March 9-10 2019 Edit

 of 	 Technoscopes130 223

Part 4: Spec QC: (‘Specification Quality Control’)
61 Defect

62 Specification Rules

63 Source Specs

64 Major (Defect)

65 Defects Per Page

66 Entry Conditions

67 Exit Conditions

68 Exit Level

69 Sample

70 Individual Learning Process

71 Checklists

72 Checking Rate

73 Checking Teams

74 Spec QC Measurement

75 Inspection Defect Removal (obsolete process)

76 No Blame Culture

77 Result Anonymity

78 Early and Continuous Sampling

79 Defect Prevention Process

80 Automated Spec QC

	 	 March 9-10 2019 Edit

 of 	 Technoscopes131 223

61. DETECTING ‘DEFECTS’ IN RELATION TO RULES OR STANDARDS IS AN ANCIENT IDEA"

	 	 March 9-10 2019 Edit

 of 	 Technoscopes132 223

61. Defect: a window to future threats to your project.
• Our subject now is a Technoscope that helps us to see potential error in our plans, so we can both correct them, and

more important prevent them.

• I call it Specification Quality Control (Spec QC, or SQC), because it is focussed on Quality Control of any type of

specification, and plans, contracts, technical drawings, computer programs, test plans, requirements, architecture, etc.

• The thing we are trying to identify is called a ‘defect’, and this is short for ‘specification defect’

• A specification defect is like an illegal act, it is anything against current ‘laws’; which we call ‘Specification Rules’.

• The concept of doing QC against a ‘standard’, like a law or a spec rule, is at least as old as the Egyptians (see ill. 61).

• But in modern times, we all too often, see people reviewing a specification, by simply reading it, or scanning it, looking

for ‘something that does not seem right’. And indeed, if their personal rules are sound ones, they will find defects.

• The problem is that we cannot trust just any ‘individual’ to know ‘all the good rules’. And even if the best of us did in-

deed know all the good rules, it might be nice if other people knew those rules too, and that all the top experts agreed
on what the ‘good rules’ were.

• This practice above is subjective QC, and there are some good reasons to move serious work to Objective QC

• Since specification defects, are in plans for real world systems, we might get lucky. Someone could discover the de-

fect in time, or ignore it, or even correct the real-world faults it causes, at an early stage, before it does too much dam-
age.

• But it is a good ‘lean’ preemptive practice to reduce the ‘density of defects', in our planning documents. We might not
get lucky finding all the defects. In fact, in software we get lucky about 70% of the time (Capers Jones), and the defect
leads to a ‘bug’ in the software ‘only’ about 30% of the time.

• Some people, misleadingly, believe: ‘no problem’, we will test the system, and find and fix all the bugs. But they do not
understand some powerful economic facts:

• The tests might only find 15% to 85% (Capers Jones data) of the bugs. About half, on average. The rest threaten us.

• The cost of preventing the errors (or software ‘bugs’) is about 12 times less than the cost of finding and fixing after

tests (Robert Mays, IBM, DPP)

• And as the old saying goes: “A stitch in time saves nine”

	 	 March 9-10 2019 Edit

 of 	 Technoscopes133 223

 62. The Norwegian Mountain Rules

1. Be prepared. Be sufficiently fit and experienced for your intended trek.

2. Leave word of your route. This can mean life or death in case a search is necessary.

3. Be weather wise. Check the weather forecasts, but don’t always trust reports of good weather.

Good weather can turn bad in an instant.

4. Be equipped for bad weather and frost, even on short walks. Always carry a backpack and proper

mountain gear.

5. Learn from the locals. Experienced local trekkers can inform you of safe routes, weather conditions

and things to look out for.

6. Use a map and compass. GPSes are handy too, but don’t rely on them. A flat battery and poor re-

ception can cause problems.

7. Don’t go solo. Being all alone in the mountains can be a magnificent experience, but in case of an

accident it’s good to have someone who can give first aid or get help.

8. Turn back in time; sensible retreat is no disgrace. If you are not sure if you can reach your destina-

tion because of weather or conditions, turn around! Others might have to risk their lives trying to
rescue you. Also try to notify anyone that may have been expecting you.

9. Conserve energy and build a snow shelter if necessary. Eat and drink frequently, and try not to
work up a sweat. If you need to build a shelter, do so before you are exhausted.

10. Source: Value Planning Quotation 9.9 A.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes134 223

62. Specification Rules: a formal ‘quality culture’ for any specs.

• ‘Specification Rules’ (Rules, for short) are specific written guidance on how to specify something.

• Rules are the ‘laws’ of specification for a given organization.

• Rule violations are called ‘specification defects’.

• Rules should, like good laws, be gradually adjusted to capture smart and economic practices, and to keep up with

changing times.

• Rules define a culture, and what they have ‘agreed to be’ the ‘right thing’ to do. The ‘best practice’.

• There are two major types of specification rules:

• Clarity Rules: making the spec intelligible, so we can understand the content.

• Content Rules: making sure the content is complete, correct, accurate, and aligned with other specs.

• If a spec is perfectly intelligible for all, it can still be wrong, and useless, or dangerous

• If a spec is unintelligible, it is logically impossible to determine if the content is right.

• So you need a two phase review process: intelligibility, then content.

• Very basic intelligibility rules are: Clear, Unambiguous, and Right Stuff (‘requirements’ are really requirements, not de-
signs)

• Content rule basics are things like: Designs must be effective in meeting requirements. Requirements must be aligned
with stakeholder interests. Agile delivery planning will plan to deliver the highest value for the lowest cost, in small in-
crements.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes135 223

63. AN OVERVIEW OF PROCESS COMPONENTS IN THE SPEC QC PROCESS
‘SOURCE DOCUMENTS’, UPPER RIGHT CORNER

&2AH6'J$R2BF'1.1.7'$S0/.0''H.0/T$(UUVT$$W./+$X+X"

	 	 March 9-10 2019 Edit

 of 	 Technoscopes136 223

63. Source Specs: a smart way to find defects in Spec QC.

• Simply reading a specification, might help you find out if it is unintelligible

• But it will not tell you if it is complete or aligned with earlier, or higher level, specs

• So in order to check for alignment and completeness, we need to bring in one or more ‘source specs’, and analyze the

correlation between them.

• A simple example: a design must have a requirement, and all requirements must have a design

• Another example: the top-level project requirements need to be consistent with any contracts

• And planned tests need to be consistent with the requirements

• If you do not consciously bring in all necessary source documents, and give people sufficient time to study the correla-
tions, then your quality control is worthless, and your project is in serious danger of doing wrong things, and not doing
right things.

• This may seem obvious when stated. It is a logical truth. But I constantly see otherwise smart organizations who do
not systematically practice this idea. How about your organization?

• You will have noted how fanatic I am about ‘noting sources’ everywhere?

• that is our ‘list of source specifications' (these sources are ‘Technoscopes’) that need to be checked, in order to

evaluate consistency with higher powers

• It is not just a matter of ‘getting out a few key source documents’. You need systematic cross-checking.

• It may be a matter of digging up cited sources, and checking against dozens or more, source references, like inter-

net links, to ask

• Is the source being quoted correctly?

• Have things changed with uses or updates of the source, since then?

• Source Specs increase the power of your Technoscopes. You can ‘see the otherwise ‘invisible’ problem early.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes137 223

 

64. VIOLATION OF OFFICIAL STANDARDS SHOULD NORMALLY INDICATE MAJOR DEFECTS
WE SHOULD NOT BE WRITING STANDARDS FOR TRIVIALITIES

&2AH6'J$R2BF'1.1.7'$S0/.0''H.0/T$W./$Y(*"

	 	 March 9-10 2019 Edit

 of 	 Technoscopes138 223

64. Major Defects.

• &2B'$-F'6.G.6@1.20$I'G'61-$6@0$F21'01.@??C$E@7'$much more serious consequences than others.

• If we can reasonably well, classify defects, as Major, or not (‘minor’) then we have a tool, a Technoscope for prioritizing
the Major Defects, and perhaps ignoring the minor defects.

• I find that experienced people are pretty good at doing this Major classification well enough, when asked.

• In addition, by designing Rules to help us find Majors, we get some guidance

• In addition, we can make specialized checklists, to help us distinguish and identify major defects.

• An example of a major defect, would be a contract violation, or a policy violation

• A minor defect would be a misspelling in a footnote

	 	 March 9-10 2019 Edit

 of 	 Technoscopes139 223

65. A REAL INTEL CASE OF USING MY METHODS (PLANGUAGE AND SQC)
INITIAL PLANGUAGE REQUIREMENTS (REV 0.3) HAVE 10 DEFECTS/PAGE BUT THIS IS REJECTED AS 50X WORSE THAN AN

ECONOMIC RELEASE STANDARD (REV 1.0)
THIS MOTIVATED ENGINEERS TO IMPROVE BY 5OX BEFORE RELEASE

Source: Terzakis, Intel, Rio 2013 Paper 65 Defects Per Page (DPP), jterzakis@verizon.net (2019)
6 7

 "The impact of requirements on software quality across three product generations,"
6

2013 21st IEEE International Requirements Engineering Conference (RE), Rio de Janeiro, 2013, pp. 284-289.

https://www.thinkmind.org/download.php?articleid=iccgi_2013_3_10_10012

 not the same ‘DPP’ as Defect Prevention Process, discussed below! Intel used this one, IBM the other. Sorry7

	 	 March 9-10 2019 Edit

mailto:jterzakis@verizon.net

 of 	 Technoscopes140 223

65. Defect Density: Major Defects Per Page.

• A useful measure of ‘trouble’ in your specifications is ‘Major defects per page’.

• I usually define a ‘Page', as a virtual page of 300 words.

• That works, but some clients (Intel, Los Alamos National Labs) chose 600 words. It does not matter at all, as long as
it is defined.

• DPP is a good predictor of future problems ,
8

• for example, ‘released bugs in software’, aircraft completion delays, or ‘logic defects in silicon chips’

• By analyzing the costs of dealing with the defects early, or waiting until the defect-caused errors, actually cause losses
downstream, you can work out, what level of defects, pays off to tolerate (the ‘Exit Level’), and move on.

• And worse than that exit level, you know it does not pay off to ‘move on’ (to release the specs for other purposes) so
you can use that level as one possible ‘Exit Condition’ (see below) from the work process.

 Software Inspections a Case Study by Ronald A. Radice http://www.gilb.com/DL240 a prediction example at IBM8

	 	 March 9-10 2019 Edit

http://www.gilb.com/DL240

 of 	 Technoscopes141 223

66. Entry Conditions. Source [CE] SQC Chapter "

	 	 March 9-10 2019 Edit

 of 	 Technoscopes142 223

66. Entry Conditions: A Technoscope to see if you are ready for the
next process.

• ‘Entry Conditions' is a device to help us decide whether we are wasting our time, by proceeding to a next process.

• Entry Conditions can consist of any number of questions, or tests, or measurements, that we need to check (that pay
off to check) before allowing the next stage of work (a defined process) to proceed.

• The idea is not unlike airport body security, baggage checks, and passport checks before you board the aircraft.

• Painful, but the alternative is worse.

• Entry Conditions are, in principle, different for each different process.

• Entry Conditions are a formal cumulation of wisdom, based on experience. They are standards, and best practices.

• Entry Conditions help you resist deadline pressure, when in fact, if you violated the Conditions, you would fail; and lose
even more time on the project.

• In simple terms that’s the idea: a 5 minute check, and avoid wasting next week’s work, for 4 people.

• It is the organization that demands, as their necessary standard, that an Entry Process (Checking the Entry Conditions)
determine if the Entry Conditions, are clearly met; before proceeding.

• Failing to do a valid Entry Process, carries a clear responsibility for people involved. It would be like ‘cheating’.

• One smart entry condition is to double check that the defect density of all specifications entering the process is low
enough to avoid wasting our time with Garbage In, in this process.

• Other people’s Exit level might not be the same as your Entry Level, and in addition: don’t trust other processes to
measure correctly: double check.

• Entry Conditions are a valuable Technoscope for helping teams avoid failed work, wasted time, bad situations.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes143 223

67. STANDARDS TYPES, INCLUDING ‘EXIT CONDITIONS’

Source Value Planning book (diagram) and Competitive Engineering book (text)"

	 	 March 9-10 2019 Edit

 of 	 Technoscopes144 223

67. Exit Conditions.
• Exit Conditions, is the same principle as Entry Conditions. Just the other end of a process.

• The main idea is that we should not consider ourselves finished, and certainly not hand over any specifications we have developed

in a process, if we fail any of the Exit Conditions.

• One analogy is ‘airport exit’, with Passport Control and check you got your own baggage.

• As with Entry Conditions, an organization can develop any number of useful Exit Conditions, and improve them, when they learn

that other Exit conditions are ‘even smarter’.

• Exit Conditions is a kind of quality control device, QC usually for any specifications produced, but also can include other things

including any type of approval, clearance, declarations sign-offs. Anything that makes sure we are REALLY REALLY DONE, and
will not have to return and re-do or fix the process soon.

• Or worse than quickly discovering we screwed up! We want to avoid learning, after a lot more time and effort has gone by, that we
screwed up this process now, and have lost far too much time, money and credibility.

• The consistently dominant Exit Condition is that any documentation or specifications produced by the process, has achieved an
economic and stipulated, economically low enough, Major Defect Density Exit Level. No Garbage out!

• This powerful Technoscope motivates much better quality of work processes: it helps you see if you are ‘really done’, and not just
‘moving on’ due to un-smart deadline pressure (which in fact threatens the deadline, even more, in the longer term).

• I have witnessed this powerful device installed at serious organizations like Boeing, Intel and Ericsson driving quality improve-
ments at least 100 to 1 (serious independent measures) within weeks of installation. For thousands of engineers (and thousands of
engineers per year, increments).

• So it is perhaps my favorite Technoscope Tool, and is one of those things that:

• You can experiment with see how well it works

• You can install quickly in a large organization, and get big overall benefits which are very measurable (quick win)

• The ‘Lean’ way to use this is upstream, early (bids, contracts, requirements).

• A note. If you are doing very-short-cycle agile value-deliveries (weekly?) then, for certain purposes, they can measure

the results far more realistically, than trying to find problems via Major Defects in specs. Even Contracts can be
checked this way through, incremental no cure no pay delivery, with contract adjustment at each cycle. (see below)

	 	 March 9-10 2019 Edit

 of 	 Technoscopes145 223

68. THE STRUCTURE OF A SET OF STANDARDS AS DEFINED BY THE PLANGUAGE CONCEPT GLOSSARY
EXIT CONDITIONS, SUCH AS THE EXIT LEVEL, ARE PART OF THE PROCESS DEFINITION

Source: Competitive Engineering, Glossary

	 	 March 9-10 2019 Edit

 of 	 Technoscopes146 223

68. Exit Level: A Technoscope on future problems and delays.

• As mentioned above, one possible, and probable Exit Condition, from a work process, is that the Major Defect Density
Per Page (DPP) has to be so low, that it ‘pays off’ to suffer the remaining defects, catch them later, and move on now.

• You might wonder why we do not simply wait for ‘zero defects’ ?

• Nobody knows when we are really there. Absence of finding defects, does not prove there are none.

• It might take forever, and cost infinity.

• If there are few enough defects, and consequent problems, it will pay off better, to tackle them downstream (tests,

even customer use, well ‘Beta Test’ then!)

• A larger organization will be able to compute the right Exit levels for each process, based on costs of development and

customer economics.

• A smaller organization can simply approximate a level, which is ‘much better than they are doing presently’, and see

how that works in practice. That will at least drive down defects by 10x initially, and 100x later.

• A crude minimum, is a level of 10 Majors remaining/ Page (300 words)

• That is good because you probably have 100 to 200 Majors per page now (trust me, or measure properly yourself)

• Most organizations would improve considerably if they used Max. 1.0 majors per Page: that takes hard work

• Exceptional organizations like NASA and Intel have found they need to be at about max 0.1 Majors per 300 words.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes147 223

69. THIS CLIENT BROUGHT ME IN, WHEN THEY REALIZED THEY WERE AT LEAST 3 YEARS LATE.
USING SAMPLING, THE SAME DAY, WE FOUND THE TRUE SIZE OF THE PROBLEM.

IT WAS MUCH WORSE THAN THEY THOUGHT. SEE MORE IN ’78’.
IF THEY HAD USED SAMPLING INITIALLY, THEY COULD HAVE AVOIDED THE PROBLEM.

THE DIRECTOR LOST HIS JOB, THE PROJECT WAS SOLD OFF TO ANOTHER SUPPLIER TO AVOID LOSSES AND SHAME !

Source: slides Inspection Economics for Lean QA "
	 	 March 9-10 2019 Edit

 of 	 Technoscopes148 223

69. Sample: a very cost-effective Technoscope.

• Early specification Quality Control was focussed on checking every detail, in all pages of all professional work pro9 -
duced. The objective was to find as many defects as we could, early, thus reducing the final cost of those defects by
10x. This worked pretty well in many situations. But the cost of doing the ‘inspections’ properly, maximum effective-
ness, was about 4 Engineering Hours per Page. Not everybody found this profitable.

	 And when we understood ‘Sampling’, nobody found that cost, for all pages, justified.

• At one point, about 10 years later, we 'bumped into’ the concept of just sampling, large amounts of documentation

• That turned out to be a winner. Here is why.

• Sampling, as is well known in statistics, can measure accurately enough, for many purposes

• Especially if the sample is ‘representative’

• If you can get a quick fix on the defect density, accurately enough, early in a large work process, then

• You can refuse exit, and motivate staff, to seriously upgrade their performance (by 10x, 100x)

• You effectively motivate people to do it right the first time, thereafter

• The consequent 'defect insertion reduction’, is far greater than any ability to find and fix defects, with the older meth-
ods (which were 100% ‘samples’, aimed at fixing bad work). We are now, with Spec QC, and sampling, very ’Lean’.

• We are very measurably motivating people to substantially higher quality level work. Sloppiness is no longer tolerated.

• The costs are arbitrarily low, but are something like 1% to 5% of pervious QC costs. Cost-effectiveness skyrockets.

• The method can be used early, frequently, and continuously, for a large piece of work (you are early: also ‘Lean')

• This Technoscope can change large organizations, at very low cost, as pointed out above (Exit Level)

 Gilb and Graham, Software Inspection, 19939

	 	 March 9-10 2019 Edit

 of 	 Technoscopes149 223

Source: Value Planning, 7.7. From Real Case at our client Boeing (McDonnell-Douglas)

70. GARY, A REAL EXPERIENCED, CLIENT AIRCRAFT ENGINEER, SHARED HIS EXPERIENCE OF MY ‘INSPECTION’ METHODS WITH US
JUST LIKE THE INTEL EXAMPLE ABOVE, HIS ENGINEERING DRAWING WAS REJECTED, NO EXIT, UNTIL HE LEARNED TO PRODUCE IT

WITH ABOUT 80X FEWER DEFECTS.
SHORTLY, THOUSANDS OF BOEING (MCDONNELL-DOUGLAS THEN) ENGINEERS JOINED IN

SHORTLY THEREAFTER BOEING IN WASHINGTON STATE IMPLEMENTED THE PROCESS WITH MY HELP

	 	 March 9-10 2019 Edit

 of 	 Technoscopes150 223

70. Individual Learning Process: A Technoscope into your own capa-
bility.

• You may have noticed: people do not learn much detail in a classroom setting, before practicing it.

• They do not learn from thick user manuals

• They learn best by doing, on the job

• But, we don’t learn it all at once.

• We learn gradually. Something like about 50% better after each iteration, of getting good feedback.

• Think ‘coaching an athlete’, or a musician

• The interesting problem is ‘giving professionals really good feedback', which they take seriously

• We found that Specification Quality Control, coupled with setting serious Exit levels, does that trick effectively.

• People reduce their defect insertion level (their bad practices) by about 50% every time they get measured (by their
peers, trying to help them be effective team members)

	 	 March 9-10 2019 Edit

 of 	 Technoscopes151 223

71.CHECKLISTS HELP A ‘SPECIFICATION CHECKER’ TO EXTEND THEIR UNDERSTANDING OF
THE ‘RULES’, WHICH ADVISE SPEC AUTHORS, ON ‘SMART THINGS TO DO’,

AND ‘DUMB THINGS TO AVOID’

&2AH6'J$Z0-F'61.20$N'6E@0.6-T$D-Y$-?.I'-$

	 	 March 9-10 2019 Edit

 of 	 Technoscopes152 223

71. Checklists: a Technoscope for understanding specification rules.
• A ‘checklist’ is a set of questions, which can be asked, about a specification’s contents, by a checker, with a view to improving the effective-

ness of that checker, in identifying major defects (i.e. Rule violations, of potentially Major consequence).

• Checklist questions are always directly derived from individual official rules. A specific source Rule Tag is annotated. Like ‘…<- Rule 42. ‘

• They are not allowed to be the rules, or to change the rules, just to interpret them.

• Checklists are ‘stored wisdom’ (Technoscopes) aimed at helping to interpret the rules, and to explain their specialist application).

• Checklists are used, to increase a checkers effectiveness, at finding major defects, in a specification. To teach, more deeply.

• Specification Authors have no direct responsibility, or use, for Checklists. They are bound by the Rules.

• But, spec authors who have participated in Spec QC, using checklists, will become more aware of the Rule intents.

• Checklists are like law court interpretations of the law. They are not the official ‘law’ itself, but they do help us understand the proper interpreta-

tion of the law.

• Anyone can write checklists, at any time, to give advice on how to check. They are intentionally less formal to create, and to change, than mak-

ing specification rules. They do not necessarily have formal ‘owners.’ They could even be made ‘for a day’, for one group’.

• Checklists should not be used instead of a proper set of rules. Rules, which are maintained by a responsible engineering process owner.

• They are only intended as a supplement for checkers. Issues found in checking, can only be classified as real defects, if they can be shown to

violate the official agreed rules for a specification.

• When a checker finds a Checking Issue (possible Defect), they should ‘note the Tag’ of the Checklist Question, which also contains the Rule

tag.

• Less formal ‘de facto checklists’ also exist. These include any documents that can be used to check a document with a view to identification of

defects.

• These documents can have other names, and even other purposes, than a ‘pure’ checklist.

• Examples of ‘de facto checklists’ include ‘sources,’ ‘standards,’ ‘guidelines,’ ‘templates with <hints>’ and ‘model documents, and app

logic.’ If they help check, they must be ‘some sort of checklist’, irrespective of what people call them, or intended them to be used for.

• The effectiveness of Checklists, in improving our ability to detect Rule violations, is easily measurable.

Example:
 Rule
R42: All Quality requirements must be quantified, with a Scale definition.

Corresponding Checklist: (helps people understand the concept of ’Quality’).

C73: Does a word end in ‘-ility’,? Does a phrase imply ‘how well’ things will be <-R42

C88: Are the concepts on this list? Security, Privacy, User Friendly, Robustness, Flexible,.. <-R42

C42: Are implied qualities, mentioned in a strategy, or solution, description? <-R42

	 (example) ’The Architecture is expected to be robust, and effective.’

	 	 March 9-10 2019 Edit

 of 	 Technoscopes153 223

 

72. A REAL EXPERIENCE PLOT OF 'SPEED OF CHECKING’ VERSUS ‘DEFECTS FOUND’.
90% OF REAL PEOPLE ARE ‘GOING TOO FAST’, AND FINDING TOO LITTLE.

GOING 10 TO 100 TIMES TOO FAST. THESE GUYS MAKE WEAPONS!"
	 	 March 9-10 2019 Edit

 of 	 Technoscopes154 223

72. Checking Rate: a Technoscope for understanding your under-
standing ‘capability’.

• The ‘Checking Rate’ is the speed that checkers run at, while looking for major defects.

• If we know the checking rate, we can determine our ability to find defects, as a % of all defects that are there now.

• The reason this is interesting is that people, especially under deadline pressure, check specs far too quickly.

• This results in finding less than 5% of the real defect content.

• But people have an illusion. They think: ‘I did not find any more, so there cannot be so many more, therefore it is

clean enough to release’. VERY WRONG!

• The result is that organizations release very polluted specifications (100+ majors per page is minimum)

• With the knowledge of actual measured correlation, between checking rate, and % defects found: you can decide how
much time you should give people to check, based on the volume of specifications.

• In general you would not want to go to extremes. Too much checking time is a loser: too little you find far too few de-
fects.

• There is a visible optimum checking rate.

• People have illusions, about their own expert capability, to ‘spot defects’: illusions which are easily disproved when

checkers are slowed down.

• One reason for slowing down, is that people need time to read, and apply all the rules, all the checklists, and all the

source documents.

• If you, for example, have 40 Rules, then you need to check each rule on every sentence and word.

• That’s just for starters. It takes time to do it properly.

• It might be useful to automate a lot of the checking, and we are doing it.

• So, people, under pressure, will go too fast: the organization will pay the penalty later, downstream.

• Smart management needs to be aware of this.

And to decide to enforce optimum rates, for the benefit of the larger project picture."

	 	 March 9-10 2019 Edit

 of 	 Technoscopes155 223

73: CHECKING TEAMS ARE AT LEAST A NICE SOCIAL ACTIVITY."

	 	 March 9-10 2019 Edit

 of 	 Technoscopes156 223

73. Checking Teams: 4 eyes see more than 2 eyes.
• One person, when checking spec quality, has their limitations.

• They will, alone, at best, find about half of the ‘available defects’, that a larger ‘team’, with them onboard, will find.

• In earlier times, with ‘inspections', we wanted to maximize defects found. We could then fix them early.

• Today, with the focus on sampling, measurement, and motivation to learn (not finding and fixing), Lean, prevention,

early, are keywords: it is not critical to maximize % available defects actually found. This needs 3 to 6 people eye-
balling the pages. We have plenty of Inspection studies to conclude that.
10

• So, about 2 people is a good option. Not so much because the second person helps you find more defects.

• I think the mutual support, and motivation, is a good idea, compared to one lonesome cowboy. My opinion.

• One reason is that we always want the spec author to join the checking team, (no outsiders judging me).

• The author is surprisingly the best ‘defect finder’ of all on their own specifications.

• The second person brings an ‘outside view’. And keeps the author ‘on their toes’, before checking, and during it.
(my opinion)

• I think the second person gives us a double check, because if one checker finds 30 defects in a page, and another
finds 2 (it really happens). You know something is wrong, and can analyze root cause, and fix the process.

• In current Spec QC, the important concern is to get a ‘good enough’ measure of defect density, to decide, most of the
time correctly, that a specification, will not pay off to release, downstream.

• One to two people, checking a small sample, is good enough, to do that job, quite well enough, most of the time.

• One other reason, for having more people on the team, is that they learn Rules (for their own later authoring work) ,
and they ‘get familiar’ with the specifications.

• At the level of effort, for a small - few page - sample, that effort costs little, and seems like a good idea.

• You can experiment, and see how it works for you.

 Gilb and Graham, Software Inspection, 1993.10

	 	 March 9-10 2019 Edit

 of 	 Technoscopes157 223

.

74. THIS SAMPLE OF REAL REQUIREMENTS, LED TO A CORRECT PREDICTION OF A 2 YEAR DELAY,

OF WHICH 1 YEAR WAS ALREADY EXPERIENCED.

Source: Real Client Case Study, Cincinnati Ohio

	 	 March 9-10 2019 Edit

 of 	 Technoscopes158 223

74. Spec QC Measurement: calculation of defects.

• We don’t ‘count’ defects any more. There are uncountable un-findable numbers of defects.

• We do not fix defects any more: there is no end to that. We will never get to zero.

• We have a new game in Spec QC. We help people learn to avoid defects, we motivate people to avoid defects, we help

teams to help themselves. To learn, and to get better. (That’s the ‘Lean’ paradigm)

• And you know what? That is FAR more cost-effective than the: ‘lets clean up our mess’ tactics, at test or in the field.

We do need to make a reasonably credible estimate, of our defect density (Major Defects Per Page).

And we need to make that good-enough estimate as quickly, as early, and as cheaply as possible.

So that we can quickly, and early, return those bad specs, to their struggling authors, and motivate them to learn more,
quickly.

To do this we extrapolate the defects and their consequences, from the sample taken.

In very simple terms we do this:

1. The largest number of defects found by one person, is about [of the total in that page.

2. So, if that is ’10 defects maximum found,’ there are probably 60 in the page (±20, who cares! Limit is 1)

3. If you have 100 pages, you have 100 x 60 = 6,000 Major defects

4. Of which only 1/3 will cause about 10 work-hours delay, extra effort, to your project (20,000 hours delay)

5. No exit, by FAR.

6. Cheaper to ‘burn’ the document (delete button), and get some sober people, to write according to the Rules.

This was brief, and I did not tell you where I got my numbers from (Capers Jones is a good source). Trust me. This is 11

absolutely real. We have decades of research and experience to prove it. It is in my books (SI, CE, VP) in detail, but you
want to read a short booklet now, so there we are. "

 www.NamCook.com11

	 	 March 9-10 2019 Edit

http://www.NamCook.com

 of 	 Technoscopes159 223

$

75. A PROCESS DIAGRAM OVER THE DEFECT DETECTION AND CORRECTION PROCESS
THE ‘EDIT’ AND ‘EDIT AUDIT’ PROCESS IS THE CORRECTION COMPONENT

&2AH6'J$R2BF'1.1.7'$S0/.0''H.0/

	

	 	 March 9-10 2019 Edit

 of 	 Technoscopes160 223

75. Inspection Defect Removal: The Defect Detection Process (DDP).
• WH2B$@42A1$*]>T$QE'0$Z^N$FA4?.6._'I$1E'.H$&2G1Q@H'$Z0-F'61.20$FH26'--$`Z^N$&C-1'B$a2AH0@?bT$@0I$G2H$@1$?'@-1\UC'@H-TQ'FH@61.6'I$@0I$
-FH'@I$@$K,'G'61$,'1'61.20$=H26'--M+$

• DE'$'BFE@-.-$Q@-20KG.0I$@-$B@0C$B@52H$I'G'61-$@-$C2A$6@0MT$4'6@A-'$1E2-'$C2A$I2$021$G.0I$02QT$Q.??$62-1$C2A$\UP$B2H'$QE'0$G2A0I$.0$1'-1T$
@0I\UUPB2H'$QE'0$6A-12B'H-$G.0I$1E'B+

• DE.-$Q@-$@$6?'@H$Q'??;-1AI.'I$B'@-AH@4?'$-A66'--T$.0$@$?21$2G$?@H/'$/?24@?$62BF@0.'-$`Z^NT$c=T$SH.6--20T$d2e.@T$=E.?.F-$N'I.6@?T$&.'B'0-b+

• Z1$I.I$021-2BA6E$6E@0/'$1E'$LA@?.1C$?'7'?-$2G$I'?.7'H'I$FH2IA61-J$1E'$62BF@0.'-$Q'H'$LA@?.1C$620-6.2A-$KQE@1'7'H$.1$122eM+

• OE@1$.1$I.I$Q@-$12$H'IA6'$@$?21$2G$I2Q0-1H'@B$`1'-1T$G.'?I$A-'b$62-1-$@0I$I'?@C-+

When we gradually realized that there was an even-smarter option for all players, SQC (sampling, measurement, No Exit Levels, Motivation, Reduc-
ing Defect Injection Levels), then the DDP effectively died. We certainly were done teaching it. It seems so cost-ineffective by comparison. But we
were not very good at really spreading SQC. In fact the world went on a binge of testing, too late too little effectiveness, and really did not seem to
care that prevention was a much smarter idea. I have not been impressed with the process leadership, which has let the testing binge happen, and
completely ignored lean prevention methods. They have not consciously rejected Spec QC - lean prevention, they did not seem to know about it, or
seek it out. There were no market forces pushing it, and selling it. Agile was the solution to ‘everything’, and it was marketed well. Intel was one
great exception from about year 2000 . Boeing from about 1990-1992. Parts of Citigroup 2003.
12

Here are some of the economic factors that killed DDP (aka IBM Inspection)

• It cost about 100x more, to actually do the defect finding (no sampling, 100% coverage)

• The the stream of defects, was stable, un-abating, rarely improved. People were sloppy, we cleaned up their slop (we still do with test)

• Downsizing and Market changes in the large organizations, that had adopted Inspections. Culture lost, rather than brought up to date.

• Agile made people confront their bad practices much earlier. In a sense that gives small samples of reality, and a chance to improve process,

practice and peoples capabilities: But my view is that this has not been exploited well, for quality.

•
“Cease dependence on mass inspection. Require, instead, statistical evidence that quality is built in, to eliminate need for inspection on a
mass basis”. W Edwards Deming, 1 of his 14 Points.

 J. Terzakis,
12

 "The impact of requirements on software quality across three product generations,"

2013 21st IEEE International Requirements Engineering Conference (RE), Rio de Janeiro, 2013, pp. 284-289.

https://www.thinkmind.org/download.php?articleid=iccgi_2013_3_10_10012
	 	 March 9-10 2019 Edit

https://www.thinkmind.org/download.php?articleid=iccgi_2013_3_10_10012

 of 	 Technoscopes161 223

76. THE TECHNOSCOPE FOR FIXING THE PROCESS: ‘PDSA’ : SIMILAR TO OUR ‘EVO’ VALUE DELIVERY CYCLE.
 NO BLAME CULTURE: UNDERSTAND THAT ‘IT IS THE PROCESS’, NOT ‘THE PERSON’. DEMING.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes162 223

76. No Blame Culture.

“Blame the process, not the people”.

• Deming Seminar, Alexandria, Virginia, 19-22 January 1992

• People screw up. We are just ‘human’.

• It is a tempting, knee jerk reaction to blame the individual for wrong stuff.

• But, Deming was always clear that the individual is a victim, or hostage of the ‘process’.

• So, we need to blame the process, not the individual victim.

This concept, is a Technoscope for seeing ‘what to do’, when things go wrong.

The ‘process’ is anything and everything which equips people to do work:

	 Training, recruitment, motivation, tools, leadership, empowerment, and much more.

In other words, ‘management stuff’ (unless you delegate that management to the troops!)

When a human screws up, your first Technoscope is root cause analysis, preferably by the foot soldiers themselves
(empowerment). What is the ‘process fault’ that is forcing people to make errors?

Find it, change it, and improve it; then test and verify that it works.

	 	 March 9-10 2019 Edit

http://ltojconsulting.com/wp-content/uploads/2014/01/Deming-quotes.pdf

 of 	 Technoscopes163 223

77. ANONYMITY FOR MISTAKES"

	 	 March 9-10 2019 Edit

 of 	 Technoscopes164 223

77. Result Anonymity: seeing final results, not blaming individuals.

• If you publish result numbers that can be tied by managers to an individual, or a small team, YOU LOSE

• People will defend themselves, by finding ways to alter those numbers

• For example, tell who did the ‘major defects per page’ in a document that just got ‘refused exit’.

• The question should not be ‘how many major defects were found in your work?’

• It should be ‘when will you successfully reach the exit level?”

“Eliminate numerical goals, posters, And slogans for the work force, asking for new levels of productivity without providing methods.”
Dr. W. E. Deming’s 10th Point

“Drive out fear, so that everyone may work effectively for the company.”, Dr. W. E. Deming’s 8th Point.

Keep the message: ‘management will never know the numbers for your beginning of the learning curve’. ‘That is between you, your team and SQC
checkers’ (half of which is ‘you’ the author). In fact mutual blackmail helps keep it secret. Next time you are checking their specs.

What counts, is that you learn fast. We have all had to go through that same learning curve.

If there are problems, then management and the organization needs to make it easier and better for you. Maybe you would like to help in that effort,
personally?

In one UK client corporation, we made it difficult for managers to snoop. The individual SQC results had ‘cover names’ like Micky Mouse, Donald
Duck. But management should make it clear that they are not interested in such details. Only the final result, the big picture. The value to the sta-
keholders. Motivate the right things, or you get sub-optimization. People should use numbers about their personal work, for personal self develop-
ment, and team development. "

	 	 March 9-10 2019 Edit

 of 	 Technoscopes165 223

78. A SMALL (60 PEOPLE) LONDON FINANCIAL APP PRODUCER CLIENT
THEY WERE VERY GOOD AT EARLY AND CONTINUOUS SPEC QC (INSPECTIONS)

AND ALL OUR OTHER METHODS
THEY CONQUERED THEIR MARKET BY BEING SO GOOD AT IMPROVING QUALITY, MUCH BETTER THAN COMPETITORS "

	 	 March 9-10 2019 Edit

 of 	 Technoscopes166 223

78. Early and Continuous Sampling: A Lean Technoscope.
• As mentioned above, it is an outdated, and inefficient idea to try to find product or system faults (defects that became faults in the system) by

using final testing processes. Or even by extensive Beta Testing. Too LATE!

• We have methods, as mentioned above, for preventing the defects in the first place (SQC Sampling, Exit Levels, Motivation to Learn), and for

finding them early (SQC, Inspection).

• But, none these methods are very effective if you (as in the Air Traffic Control (ATC, see Illustration 69) case, above) wait until 40,000 pages of

air traffic control logic specification, by air traffic control specialists, have already been written, and ‘approved’.

• I asked one of the 7 directors, who signed off on the 40,000 pages ATC Specs, why he had signed what we had just proven, with a sample, was

a very defective specification He answered ‘because the other directors signed off on it’.

• I lost all respect for management approval signatures from that point on.

Imagine if the ATC Manufacturer had written just the first-100 pages of ATC Specs.

• and a sample of 5 pages at random, showed the same as we discovered in our 3 page sample:

• that there were with extrapolation, about 20 Major defects per page ? (scary idea flying in that airspace, right?),

• Meaning that in the projected total 80,000 pages of ATC specs we would get 20 x 80,000 major defects (160,0000)

• Of which about ⅓ (53,000) would become ‘bugs’ in the software

• Of which maybe half would be found by pre-delivery testing (27,000) and the

• Other half would be delivered to the customer (26,000)
13

• DO THE MATHS!

Crazy and dangerous, not least for the ATC Producer. Forget the ATC, and forget ‘you the airplane passengers’.

• But they never thought of any sort of ‘SQC’, and never thought of taking an early sample.

• And they were a high quality, mature engineering corporation!

The Director of it all, when he reviewed the 20 major defects we found that first afternoon, said to us:

“My boss, the CEO of the Corporation would fire me if even ONE of these 20 defects ever got to the customer.”

He did get fired too. He did too little, too late. Not ‘early’ and ‘continuously’. Don’t meet his fate. Early, often!

 if you think this is exceptional, I can tell you it is not. I have personally witnessed many large projects like this totally out of control. The simple 13

concept, this Technoscope here, of QC early and continuously, is not well known. Just common sense. Now ask yourself, what is really happening
here in your company’s projects?
	 	 March 9-10 2019 Edit

 of 	 Technoscopes167 223

…

79. DPP BOEING"
	 	 March 9-10 2019 Edit

 of 	 Technoscopes168 223

79. Defect Prevention Process (DPP): Empowering Troops Gives Best Insight.
• In 1990 Robert Mays, Linda Jones, and a team at IBM Research Triangle Park NC, proved out and published (IBM Sys-

tems Journal) their DPP made a major advance in Technoscopes, for understanding and improvement of complex 14

and large-scale projects. They got a CEO-signed, big-cash award, in recognition.

• That step was what IBM had tried to do with the original ‘Inspection’ process, 16 years earlier: to learn from the de-

fects data, and improve the organizational process.

• IBM had plenty of data in the 1980’s. They tried to learn. But it did not succeed, for reasons unknown to all of us.

• The breakthrough idea, that Mays and his team had, was to delegate power of analyzing defects, and suggesting

process changes TO THE TROOPS. The the thousands of smart IBM engineers. Mays reported 12:1 ROI !

• It worked brilliantly. For example at IBM Labs in Minnesota, with about 2,000+ engineers, they actually suggested and

installed 2,176 process changes in about 2 years. They were also rated the best Lab in IBM

• This DPP idea was built into the IBM Capability Maturity Model (later into DoD SEI CMMI, for military suppliers and

similar): as ‘Level 5 (Continuous Process Improvement) The highest defined level of a product development organi-
zation.

• Using this process (DPP + Inspection), for example Raytheon Missiles reduced rework from 43% of all effort, down to
about 4%. More than doubling productivity of 1,000 engineers.

• My first experiment with the method, at Boeing (see left page, 79) had same-quarter impact on the work of about
2,300 aircraft engineers, and brought the engineering-order defect-level down dramatically (93 or so to 3 or so, per or-
der). This was the company’s biggest-known problem, threatening their existence, the President told all employees.

• Notice, I did not solve the problem.

• But I empowered and coached 4 smart young engineers, who did solve it! Delegation works.

• And I got great support from a Director (Mac, thanks!) to make sure we were allowed to try out these new methods,

in spite of tremendous pressure to ‘stop fooling around, and get those young engineers back to the daily deadlined
grind’

This Technoscope helps us ‘see’ what is really wrong with our work processes, and how to really fix them in practice:

• Not by directors deciding what to do (there was a former NASA Director there with a big budget, who failed)

• Not by smart-Alec overpaid, Big consulting companies, to advise on it, at inflated costs, and it does not work	

 http://agileconsortium.pbworks.com/f/Mays1990ExperiencesDefectPreventionIBMSysJ.pdf 14

	 	 March 9-10 2019 Edit

http://agileconsortium.pbworks.com/f/Mays1990ExperiencesDefectPreventionIBMSysJ.pdf

 of 	 Technoscopes169 223

80. AN OVERVIEW OF SOME OF THE ARCHITECTURE AND DETAILED DESIGN OF THE APP.NEEDSANDMEANS.COM TOOL
FOR THE PURPOSE OF MORE-AUTOMATED SPEC QUALITY CONTROL.

THESE ARE SPECIFIED IN SOME DETAIL, AND REMIND US OF THE AUTOMATED QC CHECKS WE CAN DO, AND WANT TO
IMPLEMENT GRADUALLY. IT IS A PART TIME PROJECT NOW.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes170 223

80. Automated Spec QC: can we automate quality control of ideas?
• The Spec QC process described here, has until recently, and still largely, been a ‘manual’ human eyeballing process.

• People read the Rules, and Checklist, and Source Documents, and main documents, and ‘find defects’

• Now, if you are doing small, few-page samples, that works pretty well.

• But if the volume you would want to check is high, and if the change rate is high, and if you have globally dispersed teams keep-

ing things up to date…

• Then it begins to sound like a nice idea that there is some degree of automation, keeping a constant watch on the quality of the

planning specifications.

• Human systems tend to fail, and get corrupted, under deadline pressure, and profit pressure.

• I’d sleep a lot better at night if I knew that I had a ‘sort of’ AI system keeping watch over as much of the planning detail as

possible. Computers are fast, tireless, and good at checking clearly defined ideas.

• My Planguage was in fact designed with the idea in mind, that it was well-defined, and various planning-object relationships were

so well defined, that we could apply a bit of logic incrementally, to check some things, at least.

• Here are some examples:

• Completeness checks are easy: where there is supposed to be some spec, then we can signal a ‘blank’

• Safety Factors: we can highlight in Red when a safety factor is not enough (see example in 52 above)

• Rules for particular types of Specs: for Example in ‘Type: Quality Requirement: it MUST have a Scale defined, and at least

one target or constraint , defined: or it is NOT in compliance with the rules.

• Stakeholder relations: if 4 different stakeholders have an interest in one requirement, then the Rules that any change shall be

discussed with all other stakeholders, can be automated and checked, because we know which stakeholders are related to
every single requirement.

• All outstanding Issues, Assumptions, and Risks can be tracked and residual unresolved instances can be sent to the responsi-
ble Specification Owner.

There are hundreds of opportunities for QC automation, when the language you are using is structured and well-defined.

We have implemented some of these things, and planned others, which will be implemented in the near future.

What we have learned historically about this is that once the QC is automated, it ‘drops off the map’ as something people need to do
in Spec QC. It just becomes everyday automated support. You hardly notice the transition.

One day we have a vision that human QC will all be automated. We have laid the basis. We’re working on it. "

	 	 March 9-10 2019 Edit

 of 	 Technoscopes171 223

Part 5: Evo: Evolutionary Value Delivery. An Overview.
Evo, is a concatenation of Evolutionary. Of late, an afterthought, for fun we have an acronym for those who need one.

E V O, Evolutionary Value Optimization.

I first started ‘doing it’ about 1960 (at 19 years old) by delivering value in 20 value-to-customer delivery steps, on a project in Oslo
(Dobloug, Invoicing System) which used an IBM 604 Electronic Calculator, with 60 plugged-with-wires programmable steps. And with
punched card systems otherwise. I continued using this intuitively-appealing method, and it always worked well, and worked early.
While other's projects, around me, failed miserably (2 failed projects in parallel, with my successful Evo project at University of Oslo,
Publisher, IT, late 1960s).

I gradually realized that I had a ‘method’, that deserved teaching to others. So I taught, lectured, and wrote about it, in papers and
books. I was documented as the earliest writer, about Evo and Agile . Other people also intuitively used, and wrote about the 15

method, and I collected that in my 1988 Book , which, it is documented, inspired the Agile Software Movement (Bekk, Cohn, Suther16 -
land, and others explicitly credit my Evo as First).

Many early agile people used the term IID, Iterative and Incremental Development. But that just showed they did not understand
what I was talking about, and did not understand the meaning of Evo. The US DoD did understand, and officially clarified ‘Evolution-
ary ’ . The key distinction is that Evo measures iteration results, increments results, and analyzes the feedback, and learns and 17

changes what it needs to change, exactly like IBM Cleanroom did, in the Seventies (Mills, Quinnan). Evo is not simply a ‘delivery
mechanism’, it is an experimental, learning, and course-correction mechanism.

Evo is an ‘engineering’ approach, which requires a concept of ‘quantification of critical values and qualities', and incremental mea-
surement of those values, and redesign when necessary to achieve critical objectives. Good ‘engineering: but unfortunately ‘software
engineers’ were not engineers, so they simply ignored the ‘quantifying quality’ stuff, and focussed on delivering code incrementally
(Scrum). They got rapid code delivery, but no control of qualities at all.

 https://eprints.soton.ac.uk/266606/1/xp2008camera_ready.pdf cites my 1985 Evo paper, See explicit mention in Software Metics book, 197615

 Gilb: Principles of Software Engineering Management, (1988). Chapter 15 Deeper Perspectives on Evolutionary Delivery www.gilb.com/dl561 16

 MIL-STD-498 5 December 1994 Very explicit about Evolutionary, learning requirements as it evolved and got feedback. 17

	 	 March 9-10 2019 Edit

https://eprints.soton.ac.uk/266606/1/xp2008camera_ready.pdf
http://www.gilb.com/dl561

 of 	 Technoscopes172 223

Part 5. Evo: a process for value delivery and learning
81 Value Delivery Cycle

82 Value Delivery Process

83 Dynamic Design To Cost

84 Backroom

85 Frontroom

86 Agility

87 Definition of Done

88 Dynamic Reprioritization

89 Gradual Integration (not at once) Cause Effect

90 Delegation of Design Power

91 2% Delivery Steps

92 Decomposition for Evo

93 Spreadsheet Tracking Feedback

94 The Startup Week

95 Parameters in Planguage

96 Uncertainty: <fuzzy brackets>, and other expressions of imperfection.

97 Icons

98 Contracting As You Go

99 Principles of Evo

100 Attributes of Evo

	 	 March 9-10 2019 Edit

 of 	 Technoscopes173 223

81. THE VALUE DELIVERY CYCLE:

SOURCE: KAI GILB DESIGNED THE CYCLE, AND THE CONTENT IN MIDDLE.

THIS IS A REUSE OF HIS GRAPHICS FROM MY MENSURA LECTURE, 2017, CONCEPTS.GILB.COM/DL918 "

	 	 March 9-10 2019 Edit

 of 	 Technoscopes174 223

81. Value Delivery Cycle: seeing the real world, and learning.

• Evo is based on Planguage, and its ability to quantify multiple values, qualities and costs simultaneously.

• Evo is also strongly based on the notion that there are very many stakeholders, with very many values, some of which

are more critical than other stakeholders. Some values are more critical than other stakeholder values.

• The basic idea is that you can enter the cycle anywhere that strikes you as interesting. You could start at the Learning

process, then analyze stakeholders (who just gave you a hard time) and continue around until things get measurably
better. There is no fixed entry, and the cycle is rapid (a week, not a year).

• The cycle is an extension of the Deming/Shewhart Cycle (Plan Do Study Act, see Illustration 76). Our cycle is not as
simple, but Evo is more explicit, about important sub-processes. Here is a comparison and summary.

• Plan: Stakeholder Analysis, Stakeholder Value Analysis, Solution Analysis, Solution Decomposition

• Do: Develop the system based on specified and estimated-values and costs solutions. Deliver solutions to a real

world system.

• Study: Measure the effects, and costs, of the solution delivery to the real world. Learn what is really true about solu-

tion effects.

• Act: jump to any part of the cycle, that your learning tells you, needs to be improved (example, jump to Solutions

(design process), make solutions better).

	 	 March 9-10 2019 Edit

 of 	 Technoscopes175 223

82. ON LEFT ARE EXAMPLES OF STAKEHOLDERS FOR A PARTICULAR PROJECT

ON RIGHT, COSTS OF LIMITED RESOURCES, MIDDLE RIGHT ’VALUES’, BOTTOM RIGHT ‘SOLUTIONS’
&2AH6'J$N'0-AH@$&?.I'-$$(U\]T$6206'F1-+/.?4+62BfI?*\X

	 	 March 9-10 2019 Edit

 of 	 Technoscopes176 223

82. Value Delivery Process: the main point of all projects.

• It might seem obvious, that the main point of all projects, is to deliver some value to some stakeholders

• But it is surprising how many projects, and project management methods, do not deal with this fact very well

• They do not quantify and specify the values and their levels

• They can be very narrow in stakeholder analysis (just customer, client, user): not the other 50

• They focus on building a ‘solution’, and assume that the values will just happen automatically. It is not that easy!

• There are a large number of stakeholders, and each has at least one ‘stake’ (requirement) or several..

• These need to identified, acknowledged, clarified, specified, quantified, and then, and only then, PRIORITIZED

• You can’t ‘logically’ prioritize what has not been: identified, acknowledged, clarified, specified, and quantified.

• There are many stakeholders, and many values, and limited resources:

• every stakeholder, and every value, is simultaneously competing, for those limited resources.

• That is why it is important to prioritize, to get the most value for the critical stakeholders, early, before resources are
gone.

• This view of values, stakeholders, and design capabilities is itself a Technoscope.

• 	 It gives us a method for understanding complex projects and systems.

• 	 Crime TV says, ‘Follow the money’. Our Technoscope says ‘Follow the Values’

• 	 The values are ‘outside the black box’ of systems complexity: they simplify understanding the rats nest inside.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes177 223

83. DYNAMIC DESIGN TO COST: QUINNAN CLEANROOM."

	 	 March 9-10 2019 Edit

 of 	 Technoscopes178 223

83. Dynamic Design To Cost (DTC): How to see what needs to be
changed immediately, and if the change really works! : a Techno-
scope.

• The engineering culture has a powerful paradigm, ‘Design To Cost’

• Don’t ask what the cost will be…

• Ask how to design it, so that the cost will be, what you can accept

• Dynamic (design to cost) is when you do not simply do Design To Cost, once, up front

• It is when that DTC process is repeated, every value delivery cycle.

• This is very similar to how sailboat adjusts course, or most other non-trivial voyages and travel.

• You have a destination (which can itself be adjusted, any time), a deadline for arrival, and you regularly and con-

stantly ask

1. Am I on course for the destination, on time?

2. If not, ‘what can I do to get back on course?’

3. Try it out, see if it works. If not, go to step 2. Until you arrive, or give up.

• When this ‘Evo’-like method was applied at IBM FSD, they reported all projects delivered on time, under budget, with
highest contracted quality levels (Mills, IBM SJ 4/1980). This is obviously a fantastic product development method.
18

• But few have heard of it, teach it, use it: we use inferior methods:

• “Those who cannot remember the past are condemned to repeat it” .(Santayana, 1905-6)

 Mills, H. 1980. The management of software engineering: part 1: principles of software engineering. IBM Systems 18

Journal 19, issue 4 (Dec.):414-420. http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan
	 	 March 9-10 2019 Edit

http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan
https://en.wikiquote.org/wiki/Remember
https://en.wikiquote.org/wiki/Past

 of 	 Technoscopes179 223

84. THE ‘BACK-ROOM’ IS A PLACE
WHERE WE UNOBTRUSIVELY GET SO-

LUTIONS READY FOR VALUE DELIVERY,
WITHOUT BOTHERING OUR STAKE-

HOLDERS WITH THE DETAILS.
THIS IS A PURE ‘INVESTMENT’ PHASE.

THE FRONT-ROOM IS THE STAKEHOLD-
ER-FACING VALUE-DELIVERY MECHA-

NISM.

THIS IS THE ‘PAYBACK’ PHASE-

	 	 March 9-10 2019 Edit

 of 	 Technoscopes180 223

84. Backroom: a place to build systems with value, that take more
than a cycle to build.
• As discussed (Decomposition, above) it is useful to decompose your larger solutions (larger than your cycle of delivery,

like a week) into sub-solutions, which can be built and delivered, within your value-delivery cycle time.

• But sometimes that is not actually possible.

• For example when a supplier cites a long delivery time, or when a solution just takes ‘months’, and there is no iden-

tified way to decompose that into value-delivering sub-solutions.

• We know that it is not that critical that sub-solutions can be ‘built’, in as short a time as our delivery cycle.

• We are however, very interested in having something delivered, immediately, and every short cycle thereafter.

• Because: it keeps the value flowing to the stakeholders

• It gives us feedback on how things work, and are received

• It keeps the team focussed on the real world, early, and continuously.

• Our solution is that anything we cannot decompose easily, is ‘started’ (when we want to), in development, or a supplier
ordering process, and placed in what we call the ‘Backroom’.

• We simply wait until it is done (ready for value delivery implementation in the real world), however long that takes,

• When it is ‘done’, i.e. ready for deployment to the real live system, we can put it in a queue of possible deliveries

• And when it is prioritized, as the smartest thing to do now, we deliver it

• It might be finished before it is the ‘prioritized solution’, for that system. But we can wait to deploy it.

• Of course solutions can be delivered in parallel, with the advantages and disadvantages that has.

• There is a nice practical analogy, the restaurant kitchen (even home kitchen) which prepares certain things in advance,

say a dessert, and delivers it when the guests prioritize ordering it, and eating it.

This Technoscope helps you keep track of potential short-term value-delivery options, while it makes sure that the ‘de-
featist excuse’ ‘this solution cannot be decomposed into smaller deliveries’ is not a valid excuse, for trying to stop the
early, frequent, flow of value delivery to stakeholders, from going continuously. "

	 	 March 9-10 2019 Edit

 of 	 Technoscopes181 223

Source:Value Planning, Fig. 5.1

85. PHILIPS CORPORATION (IN HOLLAND) IS A CLIENT WHO USED THESE IDEAS TO ADVANTAGE, AND EVEN INVENTED
THE ‘FRONT AND BACK ROOM’ INSIDE THE BACKROOM. IT IS A COMPLEX SUPPLY CHAIN STRUCTURE

FOR ‘INTERNAL STAKEHOLDERS’ AND ‘EXTERNAL STAKEHOLDERS’ 
	 	 March 9-10 2019 Edit

 of 	 Technoscopes182 223

85. Frontroom: where we expect to see and measure progress.
• The Frontroom is the ‘stakeholder-facing’ process, primarily focussed on implementing a solution, in the real world.

• This would consist of activities like these:

• Prioritize and select, the next viable-to-integrate delivery step, based on value for money, and with regard to risks

• Make estimates (improved by previous frontroom experience) for the value increment, the side effects, and the costs

• Make, worst-case estimates (lowest value, highest costs)

• Engage stakeholders: do they need to be in place, doing certain activities, willing to be trained, agree that they want
the promised values, willing put up with some ‘teething troubles’, give feedback and give constructive suggestions.

• Final quality control, and field testing of the new increment (before bothering the value-receiving stakeholders)

• Designing a test and measurements process for the increment. How much QC effort is warranted?

• Implement, turn on the lights, and measure, test, review, and iterate if necessary, or move on to next cycle.

Note, that this is a subset of project management, but there is much more that needs managing before we can do this.

We might invent a Value Delivery Manager, for leading the effort.

This Frontroom Technoscope is a primary and simple way to understand any project. We focus on tracking the value de-
livery increments. Again, we are ‘outside the black box’ of the complexities of the project. We are focussed on the critical
value objectives, and their progress.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes183 223

86. DAVIDFRICO.COM"

	 	 March 9-10 2019 Edit

 of 	 Technoscopes184 223

86. Agility: Technoscopes for seeing that you need to ‘be agile’ and
change.

• Being agile, refers to an organization’s ability to change course, when it is needed: quickly, and to a relevant course.

• Evo offers signals for agility: real measures after a delivery cycle with unusual results, for example.

• Evo which looks for small value increments, 2%, weekly, makes sure that we have not spent too much time or mon-
ey, before we get relevant (Value increment delivered, real costs) feedback, and can act quickly.

• Planguage offers signals for agility: change in stakeholders (different people, different stakeholders), change in Value
Objectives, change in Resources.

• These signals can be tracked manually, but they can easily be automated warnings, if the plan is digital.

• What is necessary is that somebody (Plan Object Owner for example) is assigned to do something with the signals

	 	 March 9-10 2019 Edit

 of 	 Technoscopes185 223

FIGURE 87. NOTICE THE ‘IMPROVEMENT % COLUMN. 100% MEANS WE DELIVERED THE GOAL LEVEL, DUE 12 WEEKS
FROM START OF THE QUARTER. THIS IS 9 WEEKS INTO THE 12 WEEKS. HOW ‘DONE’ IS THIS PROJECT? 3 WEEKS AHEAD

OF THE DEADLINE. NOTICE THE TRAFFIC LIGHT SIGNALS: RED = NOT EVEN TOLERABLE, GREEN = DONE
&2AH6'J$DH20I$a2E@0-'0T$R20G.HB.1$=A4?.6$=H'-'01@1.20+"

	 	 March 9-10 2019 Edit

 of 	 Technoscopes186 223

87. Definition of Done: A Technoscope to know when you are really
done, and when you are not.
• There is a widespread culture, that acts as though they are finished, when the ‘solutions are built’, or ‘implemented'.

• Maybe for some of them, the builders or suppliers, their job is then done. Even if a lot of stakeholders are unhappy.

• But the project is there to deliver value, not just solutions, that we HOPE will give value, but might NOT give value, and

might even have unexpected negative side-effects. Who takes responsibility for Value Delivery?

• So we need to be quite clear about exactly what it means to ‘succeed’, to be truly done with the project assignment.

• Planguage, and the related processes (Evo, Spec QC, Value Decision-Making) have a number of specific devices to

help us objectively decide: WE SUCCEEDED, WE ARE DONE. CONGRATULATIONS.

Here are the basics of being done:
1. All Goal levels, within deadline, to now, are measured delivered. GOOD

2. All Goals Delivered, and Stakeholders asking for more value, now BETTER

3. For suppliers: All contractual conditions met, and agreed met. OK

4. Critical stakeholders are clearly happy, and want more value from you. GOOD

Here are some more-advanced ideas of being done:
1. Degrees of done: % of Goal Levels delivered to date (see example, Fig. 87, at left)

2. All Goals delivered, all resources used, are less than budgets, with some movement towards, Stretch Goals

Mixture: Somewhat Done
1. Many Goals reached, some not, some are late

2. All goals reached, but unacceptably late or over budgets

3. All Tolerable or OK levels reached, but few or no Goals reached

Really Embarrassing Level (we are done, spending someone else’s money)
1. Lots of money and time spent, no planned measurable value delivered at all

	 	 March 9-10 2019 Edit

 of 	 Technoscopes187 223

88. Constant Dynamic Reprioritization

"

	 	 March 9-10 2019 Edit

Do you want to go much deeper into prioritization? Try VP
book, Chapter 6 Prioritization, 60 pages.

https://www.dropbox.com/sh/34llx1a7ckyagxl/AAA0pDz-
SxN5WmoP9lOKR0Mpca?dl=0

 of 	 Technoscopes188 223

88. Dynamic Re-prioritization: re-calculating that you have new prior-
ities. The Priority Technoscope. Objective priority logic.

• By ‘priority’ , we mean, chosen to do first, or next.

This should not be a static, one time, subjective decision (What is your First Priority?)

• For ‘serious projects’ (yours) you should use facts and logic to determine priorities, continuously. Agility..

• People, and groups, still need to have subjective opinions on certain aspects of determining priority:

• How do you prioritize values, value objectives, and their levels.

• How do your prioritize limited resources (time, people, money)

• How do you prioritize various stakeholders, and their consequent satisfaction.

• How do you prioritize risks?

• Once we have our general priority policy

• EXAMPLE: “stakeholder X, Y AND Z FIRST, Values A, B, and C must reach Goal, Budgets cannot be exceed-

ed, Risk must be lowest and most conservative”
• We can use logic and computation to determine, which ‘Solutions’, will deliver Values A, B and C, at least cost, for

Stakeholders X, Y and Z, without exceeding any budget, with least risk.

• This is exactly what the Confirmit example does (Fig. 87) , to some degree, with a spreadsheet, and traffic Lights.

(Red has highest priority)

• The ValPlan.net (needsandmeans.com) tool does this even more automatically, as plans change, and feedback dic-

tates.

If you are doing serious projects, you should upgrade your approach to prioritization:

• Conscious use of stakeholders, values, costs, and risks

• A transparent priority policy, agreed by responsible instances

• Automatic updating of current priority, based on changes to the above factors, and to other insights (‘there is no more

time left, but plenty in the budget, so we have to buy our way to success’).

	 	 March 9-10 2019 Edit

http://ValPlan.net
http://needsandmeans.com

 of 	 Technoscopes189 223

89. SCIENTIFIC EXPERIMENT

	 	 March 9-10 2019 Edit

 of 	 Technoscopes190 223

89. Gradual Integration (not all at once) Cause and Effect.
• ‘Agile’, implies that you develop things one small step at a time.

• As we have discussed previously, there are several inherent advantages to doing one step at a time:

• The ability to get results quickly

• The ability to prioritize critical and valuable things early

• The ability to reduce risks, by not betting too much at a time.

There is another Technoscope aspect of step by step, I want to discuss here.

We can frame this as the Scientific Experiment aspect.

As you might well be aware, if you mix 10, or worse 50, food ingredients, with 5 food preparation processes, and it tastes horrible:
you really are not sure why (except that you did ‘too much at once’). But I can tell you that a lot of real projects I have seem, do ex-
actly that, if not with food. And they fail, totally, and frequently (just Google ‘Failed XXX Type Projects).

We have also seen, that for example (above) the Cleanroom projects, done in 2% steps, succeeded, every time. And they were doing
state-of-the-art Space and Military projects. Lots of cutting edge untested ‘stuff’.

There is, as you probably know, a basic rule of understanding ‘causes of effects', like ‘food and its taste’. Do one single thing at a
time, and keep all other conditions the same. Then if the taste goes sour, it was probably the last thing you added (if it was not due to
a temperature change, or congealing, or effect of light ! — but keep those constant, if you can).

This aspect of an agile process, means you can afford to take a fairly high risk, with any one sub-solution. And with a bit of luck, most
things work, and the sum of the risks that went well, is much better than if you were forced to be ultra-conservative with all compo-
nents, because they ‘all had to work ok’ when you ‘put them all together at once’.

“Shallow men believe in luck or in circumstance.

Strong men believe in cause and effect.”

Ralph Waldo Emerson (1803-1882)

	 	 March 9-10 2019 Edit

 of 	 Technoscopes191 223

90. RAYTHEON USED THE DEFECT PREVENTION PROCESS, DELEGATING POWER TO ENGINEERS
THEY REDUCED 43% REWORK BY 10X, AND DOUBLED PRODUCTIVITY

	 	 March 9-10 2019 Edit

 of 	 Technoscopes192 223

90. Delegation of Design Power: The Technoscope of seeing things
with the real workers.

• I discussed in connection with Defect Prevention Process, above [79], how powerful it is to delegate the power of
analysis and change, to the people most-directly ‘living with the problems’. Not Directors, or Consultants.

• See 75, Deming’s 14 Points (some others quoted above, 76, 77) said a lot about the ‘worker on the shop floor’ em-
powerment, too.

• Confirmit, case above [49, 87], was very good at delegating analysis and design power to the Grass Roots teams of
engineers, getting feedback from Evo cycles.

• There is a lot of experience and writings on this subject, but still far too little adoption as a widespread practice.

• There are still too many managers making bad decisions, advised by poorly-qualified overpaid consultants.

• In terms of the Evo method, I suggest we need to get really good trustworthy feedback from the real people affected
on a daily basis, like ‘nurses and patients’ affected, not just the ‘hospital administrator'. This means we need to identify
them (nurses and patients, for example) as critical stakeholders, and make sure, after a value delivery cycle, that we
design tests, measurements, and observations, to really truly find out what is going on.

• Never trust the managers, or the suppliers. They do not know, and they will hide the truth.

• Sorry, there might some exceptions, but I have seen a lot of companies and people, all over the world, for decades
(and some managers are really good, too few). Trust the workers, to know where the shoe pinches.

• Stakeholder and stakeholder value analysis are the key Technoscopes for seeing this level of a system.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes193 223

Elon Reeve Musk - Chairman & Chief Executive Officer Tesla.

“Okay, I think that's a pretty open-ended questions, but – we have a philosophy of just contin-
uous improvements, so every week there are approximately 20 engineering
changes made to the car.

So it's not nearly as discrete as you're alluding to. With other manufacturers, they tend to sort
of bundle everything together in a model year.

In our case, it's a series of rolling changes. So model year doesn't mean as much. There are
cases where that step change may be a little higher than normal as, for example, with having
the Autopilot camera, radar, and ultrasonics.

But we try to actually keep those step changes as small as possible.

And so that – I mean, essentially like the common questions that I get is from friends, they say,
"when should I buy a Model S?" and my answer's always "right now," because – and they say,
"well, aren't you going to make a better one in six months?" I'm like, yeah, of course.

But if their goal is to only buy a Model S when there aren't significant improvements happening,
then they will never buy one."

91. Musk on eternal continuous Tesla improvement.20/week x 50 weeks = 1,000 improvements per year. Source:
http://seekingalpha.com/article/3642146-tesla-motors-tsla-elon-reeve-musk-on-q3-2015-results-earnings-call-tran-
script?page=2&p=qanda&l=last

November 3 2015.

	 	 March 9-10 2019 Edit

http://seekingalpha.com/search/transcripts?term=Elon+Reeve+Musk&source=participant
http://seekingalpha.com/article/3642146-tesla-motors-tsla-elon-reeve-musk-on-q3-2015-results-earnings-call-transcript?page=2&p=qanda&l=last
http://seekingalpha.com/article/3642146-tesla-motors-tsla-elon-reeve-musk-on-q3-2015-results-earnings-call-transcript?page=2&p=qanda&l=last

 of 	 Technoscopes194 223

91. 2% Delivery Steps: A Feedback Technoscope.

• Here is a quote from earlier: [35]

• Suitable Size Effort. The ‘value delivery steps’ as we call them, need to be small enough to do, in a short time (a week or so), but large enough

to make a real difference (non-trivial result). This delivery cycle size is roughly 2% of the entire project effort, or 50 weekly increments in a year’s
project, or 48 monthly cycles in a 4 year project.

• Some good reasons for the 2% size is that it is big enough to make a difference in results, and it is short enough to keep people’s attention

focussed, and small enough to ‘lose totally’ (2% of 100%) without destroying all credibility and resources.

Lets look at this from the Technoscope point of View:
• The 2% increment is not an isolated component build, it is integrated into the real ongoing system (product, app, organization,

manufacturing system). That means that you can more reliably measure the effect it has, on the incremented quality, value, per-
formance of the entire system.

• Since the 2% increment is ‘the only change’ usually, we can, as discussed above (Cause and Effect) reliably infer that the incre-
mental value improvement is due to that particular change.

• We can use Deming’s Statistical Process Control (SPC), to make sure the system performance is stabilized, statistically: giving
added assurance that the 2% increment is really the cause of the performance effects, we measure.

• We can do our best, to estimate the multiple effects, but especially the primary ones, of the 2% change, and then compare the
actual step measures with these predictions: if they agree. Nice. If not, we can analyze, and seek root cause. We can learn either
about the components design, the implementation method, or the measurement method.

• Doing this 50 times, throughout a project, gives experience and insights: a Technoscope in itself (that gives 50x learning oppor-

tunities).

• I have clients who do this learning and feedback process, continuously for years, after initial deployment.

• And Tesla (see left quote [91]) is another excellent example of doing this ‘forever’. I am driving my second Tesla S, and experi19 -

ence the incremental quality improvement dramatically, and have for 5 years now.

• Some planners have great difficulty envisaging this 2% decomposition in practice, in their systems and environments.

• But my experience is that the problem is never that ‘it can’t be done’. It is their lack of knowledge, imagination, motivation, per-

sistence, and ambition that is the real problem. Tesla has proven that to the auto industry.

 I had to buy my second car to get, the over 1,000 hardware increments since my first Tesla S was made. I also then 19

got the corresponding new component software, like Auto Pilot. The car is near perfect!
	 	 March 9-10 2019 Edit

 of 	 Technoscopes195 223

CASE 92. IN THIS CLIENT CASE, NO PROGRESS HAD BEEN MADE FOR MONTHS.

I SUGGESTED ‘DECOMPOSITION’ AND ‘EVO’.

THE BIG BOSS DIRECTOR SAID ‘IMPOSSIBLE’

BUT FRANK (PROJECT MGR) AND I (AS COACH) WORKED THE PROBLEM PATIENTLY

AND FINALLY, WEEKS LATER, GOT A BIG ROUND OF APPLAUSE FROM THE DIRECTOR AND STAFF

WHEN WE BEGAN TO PRODUCE VALUE IMPROVEMENTS EVERY WEEK

AS SHOWN BY THIS ILLUSTRATION

THE PRODUCT WAS A TOOL FOR PREDICTING RUN-TIME, FOR A ROBOT, THAT PUT CHIPS ON BOARDS

WE FOCUSSED ON ‘INCREASING ACCURACY OF PREDICTION’ OF FABRICATION RUN TIME (MAIN VALUE)

	 	 March 9-10 2019 Edit

 of 	 Technoscopes196 223

92. Decomposition for Evo: the method of decomposition gives a bet-
ter Technoscope.

• Decomposing, discussed above, serves many useful purposes. In simple terms it gives us bite-sized real value deliver-
ables, to a real system, which allows us to get value early, continuously, and to learn fast and correct certain bad de-
signs.

• Some Decomposition Tools: A Top level overview of decomposition technology.
• Value Decision Tables decompose by about 100 to 1 value opportunities. Look at the cells.

• They decompose vertically by values and costs, then, on the horizontal axis, by strategies or solutions.

• Value Decision Tables point out the best 1% opportunities for value, costs and risks. (10x10 = 1% cells)

• The ‘111111 Decomposition Methods’ pushes you to think simple, 1 is better than 0. Do it. Get the value. 20

Learn.

• The 20 principles of decomposition give more tools to trigger constructive decomposition ideas.
21

• The Tolerable and the Goal levels of value give you 2 stages of decomposition to focus on. Go for the tolerable
levels first. Decompose solutions to satisfy the higher priority (Tolerable) alone first.

111111 Unity Method of Decomposition into weekly increments of value delivery”. (10 min. talk slides) http://www.gilb.com/DL451 20

 Decomposition of Projects - How to design small incremental result steps, 2008 Paper www.gilb.com/dl41 21

	 	 March 9-10 2019 Edit

http://www.gilb.com/dl41
http://www.gilb.com/DL451

 of 	 Technoscopes197 223

“There is no situation - even at Boeing - where you cannot concoct a sorta-real-world-micro-test of some piece of your project ..
Within a few hours to two or three days.

1. Now. Right now. Take some little - tiny! - element of your project. Corral a surrogate customer. Talk to him/her about it. That is
… test it. Now.

 2. Your immediate goal: “Chunk up” the next three weeks. I.e.: Define a set of practical micro-bits … that can be subjected to real-
world tests.”

Quick Prototyping Excellence = Project Implementation Excellence. (No kidding… it’s almost that basic!)”

Tom Peters, Reinventing Work, the project 50. Pages 138-9 (Quote 93A). He is right: I did the decomposition on 25 Boeing air-
craft projects with 25 teams in a week each.

“I think it's very important to have a feedback loop, where you're constantly thinking
about what you've done and how you could be doing it better. I think that's the single
best piece of advice: constantly think about how you could be doing things better and
questioning yourself.”

Elon Musk, Co-Founder/CEO Paypal, Tesla Motors, Inc., Space X

Quote 93B

 Photo From a TED Talk Video

	 	 March 9-10 2019 Edit

http://www.brainyquote.com/quotes/quotes/e/elonmusk567271.html
http://www.brainyquote.com/quotes/quotes/e/elonmusk567271.html
http://www.brainyquote.com/quotes/quotes/e/elonmusk567271.html
http://www.brainyquote.com/quotes/quotes/e/elonmusk567271.html
http://www.brainyquote.com/quotes/quotes/e/elonmusk567271.html

 of 	 Technoscopes198 223

93. Spreadsheet Tracking Feedback: project progress Techoscope.

• Refer back to Figure 87, the project tracking spreadsheet, on week 9 of 12 week cycle before Customer Release
Quarterly.

• This was presented there (Technoscope [87]) as a device for understanding the degree to which we were ‘done’.

• But at the same time it does other things too:

• It gives a red flag, when any one of the values is still under the minimum Tolerable level

• This give a clear priority to the project manager or the self-managing team in this case, to focus immediate future

steps (there are only 3 of the 12 steps left before release) on reaching at least the tolerable level (hopefully the
Goal too)

• Then it computes the need for a Yellow Flag, for each and every Value which has reached the Tolerable Level, but
not yet reached the Goal Level success level). This is the team’s second priority in the remaining 3 weeks.

• It also computes the Green Flag, meaning that the Goal level is reached, and that no priority, no team effort,
should be spent in the next 3 weeks, on improving beyond that Goal level. It would steal resources from the other
2 priorities.

• It is not done in this Case, but we could easily compute the average % improvement for each team. I often find my-
self doing this mentally. We know we have spent 75% (9 of 12 weeks) of time to delivery deadline, so if the average
% delivery was 60%, 75%, 85%, what would that indicate to someone trying to get feedback on the project?

• If you are less than 75%, you are ‘behind the curve’:

• If you were a lot over the 75%, you probably have enough resources to crack the remaining value gaps (distance

to 100%)

• Similarly we could compute things like ‘% of all Values not reaching Tolerable’, and ‘Not reaching Goal’.

• There is some ‘engineering effort tracking' here. It is not well exploited, but we could relate actual effort to the de-

gree of goals reached. Perhaps with conclusions like 'a team is understaffed’ (perhaps due to sickness, or wrong
priorities)

	 	 March 9-10 2019 Edit

 of 	 Technoscopes199 223

	 	 March 9-10 2019 Edit

 of 	 Technoscopes200 223

 CASE 94. THE LOOWATT IMPACT ESTIMATION TABLE, SUMMARIZING THE FIRST 3 STEPS OF A PROJECT
START-UP WEEK: OBJECTIVES, STRATEGIES, AND ESTIMATION OF HOW WELL THE STRATEGIES WILL

HELP MEET THE OBJECTIVES. SEE CURRENT ACTIVITY LOOWATT.COM.

94. The (Agile) Project Startup Week: forcing the pace, to focus priori-
ties, avoid bureaucracy, and become agile value deliverers.
• For at least 3 decades we have used a project organization process, I call the (Agile) Project Startup Week .
22

• In a time-constrained week (no overruns or excuses permitted) we do the following steps: each in max. 1 day

1. Define the top-10 critical values, quantitatively (Scale, Goal etc) (can be summarized on a page)

2. Identify the Maximum top-10 strategies for reaching those top objectives. (1 page output)

3. Estimate how effective, and costly the strategies will be, for those Goal levels, VDTable (1 page output)

4. Identify a first real delivery-step for next week. (a 1-liner, but several options are usually identified)

5. Present plan to management, and get OK to just do it next week.

• I act as coach, for small teams. They have no previous training in Planguage or Evo. (it is practical in-house training’)

• It works every time, and we always get the OK from a manager, who knows they are going to pay the team next week, in any case.

But now the manager will get to see if they can accomplish any measurable value result (that the manager can brag about to
THEIR manager) next week.

. In 1990, at McDonnell Douglas Aircraft (now Boeing) I did 25 aircraft projects, 5 parallel teams, in 5 weeks that way. They paid me a
princely sum for the rights to the method, and for approving 2 teachers

• In 2007 we were using it on large multinational bank IT projects, which had been stuck for months in ‘meetings’. We got them un-

stuck (not that the international political infighting did not try to get stuck again later!)

• In 2011 Kai Gilb and I volunteered for fun to help a startup, from Imperial College UK, working on advanced toilets.

• We did the first 3 steps in a single day. (see Case 94 at left)

• Bill and Melinda Gates promised the best startup $1 million. For Field Trail success in Madagascar (Health in Africa)

• LooWatt, as their Startup Advisor Nicholas Coutts predicted, won the $1 million, and a handful of other Best Startup prizes. We

like to think it had something to do with our method; but of course they are great learners and doers!

 ‘An Agile Project Startup Week’: Papers and slides , Talk slides pdf from ACCU Conference, Bristol UK, April 9 2014
22

90 minutes talk. Includes Startup Planning for Business Startups, Confirmit, US DoD case, 2 Bank cases, Detailed Startup week outlines and links to sources.

http://www.gilb.com/dl812
	 	 March 9-10 2019 Edit

http://loowatt.com
http://www.gilb.com/dl812

 of 	 Technoscopes201 223

• The Loowatt Team told all other 20 Imperial Startups, they should also use this method

• Because it gave Loowatt the ability to ‘see the bigger picture’, ‘focus on the ultimate results, not the toilet.

• THAT IS A GREAT TECHNOSCOPE FOR A STARTUP !

95. A SET OF SOME OF THE PARAMETERS WHICH CAN DESCRIBE CONDITIONS
ON A PERFORMANCE OR RESOURCE SCALE

Source: Competitive Engineering book, 4.6 "

	 	 March 9-10 2019 Edit

 of 	 Technoscopes202 223

95. Parameters in Planguage: well-defined and well-conceived
specification parameters are also a useful set of Technoscopes.
• Planguage has roughly 685 well-defined Concept-Glossary Concepts , of these maybe 100 are Planguage Parameters, or used 23

as subsidary specification options for the parameters.

• The parameters are things like Type, Ambition, Scale, Meter, Past, Tolerable, Goal, and Stakeholder.

• Then there are sub-parameters like for Type: ‘Requirement Specification’, ‘Architecture Spec’.

• The simple fact that all of these concepts have a published (CE book is best), stable, matured and deeply thought out definition,
which is proven out in many industrial organizations for decades, means you can trust them.

• They are not ‘invented on the fly’. They are not academic balloons. They are not compromise ‘standards’.

• The Concepts 'know about each other’, and are even defined using each other. They are integrated.

• They are powerfully deep: for example:

• When a Wish Level (a Stakeholder desire or need, without respect to practicality or costs), is converted into a project commitment level (a
Goal), the Wish Level must pass about 8 logical tests, which are good common sense, but are formally stated, in the Glossary under Goal
(feasible, affordable, prioritized, etc.). Take a look. Or see Technoscopes 16 and 17 above)

• You will find it difficult to find a Planguage level of logical depth, in any other ‘same systems domain' methods of specification. Try.

• Some people would prefer ‘simple’ (me too !), fewer Parameters and concepts. And it can be very simple!

• Methods should be ‘be as simple as possible, but no simpler’ , avoiding failure. Most methods are ‘too simple for purpose’.
24

• One thing is that anybody can choose a subset, at any time, for any purpose, and ignore the other Planguage details.

• My clients do exactly that. Choose a subset suitable for them, and expand later, add own stuff, if they decide they need it.

• I do the same thing in my papers, talks, practical consultancy, apps, templates, and booklets like this. Simple subsets.

• But, I have to somewhere, expose the complete picture of all the ‘little Technoscopes’, so that people have a choice

• I can promise that no Planguage parameter is invented ‘just for the fun of it’. They all have a use and a purpose: maybe not just

now, for just you, or for this phase of your project.

Don’t worry: Planguage Technoscopes will all be there, patiently waiting, if and when you need them! "

 Full Planguage Concept Glossary http://www.gilb.com/dl830 , http://www.gilb.com/DL387 , http://www.gilb.com/DL4623

 No, Albert did NOT, say that. But I did in Principles of Software Engineering Management book, 1988, p17. http://quoteinvestigator.com/2011/05/13/einstein-sim24 -
ple/
	 	 March 9-10 2019 Edit

http://www.gilb.com/dl830
http://www.gilb.com/DL387
http://www.gilb.com/DL46

 of 	 Technoscopes203 223

96. I WAS SO UNCERTAIN AS TO WHICH POTSHOT I SHOULD SHARE WITH YOU,
THAT I WILL LEAVE THE DECISION TO YOU"

	 	 March 9-10 2019 Edit

 of 	 Technoscopes204 223

96. Uncertainty: <fuzzy brackets>, and other expressions of imperfection.
Confucius: “True wisdom is knowing what you don't know”

• It should be clear when things are unclear !

• We presented the ‘± Uncertainty of Estimate’ Technoscope [44] earlier. Now let me enhance the idea a bit.

• Some people, when they are uncertain, are afraid of being seen to be uncertain, so they ignore it, and push on.

• I believe we need to encourage a culture, such as we find in some academic cultures, of bringing out the uncertainty

explicitly.

• It should be considered unethical to ‘know that something is uncertain', and to not document that fact, in some way.

• It should be considered threatening, to your team, that you know or suspect problems, but you do not help them to

know or suspect.

• ‘I know I don’t know’ should be considered a sign of wisdom, knowledge, ethics, and professionalism.

• The ’Policy’ of the organization, and the ethics of the professional should say:

• As a planner (designer, engineer, tester, professional) I will explicitly document all the uncertain stuff, so that

my team, and my stakeholders, will be less likely, to be hurt, in any way.
• Planguage has a great many simple, well-defined ways to help you express uncertainty. They cannot all be listed here.

In fact, at the extreme, you could say that almost every detail of Planguage, is a Technoscope for helping you deal with
uncertainty, to perceive that things are uncertain, and finally to explicitly document, or specify, a potential uncertainty.

The simplest and most popular device is the <fuzzy brackets>
This can be used anywhere, surrounding one or more terms. It announces that:
‘BEWARE’, this is FUZZY. That means you cannot trust it. Use it with caution. Or resolve the uncertainty now. I wrote the <fuzzy>
brackets as a courtesy to you the reader, because I did not have time or the ability, to specify something with certainty. I did write the
best I knew, in the time given. But I know that if you or I, have more time and insight, we can potentially specify something better, or at
least remove the <fuzzy brackets>, indicating that it is safe, and can be trusted. We recognize that every <fuzzy statement> is a risk to
all of us using the specification. So when we have time, work capacity, priority, or new sources of analysis and correction, we will get
back to it, and fix it up. In the meantime, be very careful, and if you do make use of this <fuzzy spec>, perhaps you will pass on the
warning that you did use it to others. Don’t let the virus spread, unchecked, without warning. Be as helpful to others, as I am trying to
be to you !

	 	 March 9-10 2019 Edit

 of 	 Technoscopes205 223

97. SYMBOLS WITHOUT FRONTIERS"

	 	 March 9-10 2019 Edit

 of 	 Technoscopes206 223

97. Icons: Plicons , Technoscopes for Humanity. 25

• Decades ago I saw a TV documentary about Charles Bliss, and Blissymbolics, Semantography. I corresponded with him.

• He developed a symbolic language capable of doing science, engineering and arts. It was modelled on Chinese writing, which stands above

the various spoken languages. But it was designed to be so simple, a child could learn it.

• And indeed one early successful application was helping orally disadvantaged children to communicate better with parents and teachers.

• I love the idea: a writing notation that communicates the same idea to all people, irrespective of their own native human language.

• That is sort of like music notation (not to mention music itself!), and electrical notation, and ballet! (and there is ballet notation)

• So, in parallel with my development of Planguage, I tried developing such a symbolic notation for systems engineering.

• We already use some few Plicons in our apps, and of course they are designed to be easily intelligible to computers.

• I decided there were two, related but different, types of icons: drawn icons, and keyed icons: the point being the keyed icons could be typed,

on a keyboard, so special keyboards, or special graphical capability was not necessary. And it was easy to mix text and Plicons.

• I also found that when teaching Planguage, it was useful to use some icons, on a white-board or slide, to get concepts across visually, like

Scales of Measure (——->) , design (Rectangle icon, or [Design X]). See example below.

 [Design D]
O—<—————>———> R Meaning, a Design ‘D’ impacts a value requirement ‘A’, reaching the Goal (—->—)

Another example:

X -> Y [Oslo] 60% ? <- Tom

Means

‘a Design tagged X, impacts a requirement tagged Y, in the city of Oslo , possibly, by ’60% of the way to the Goal’, according to Tom’

I have made attempts to define Planguage (or at least specific concepts) using a maximum of Plicons. It seems like a potentially new systems engi-
neering notation. But it needs work, I need help, and I consider the larger body of the Plicons work, a personal experiment. I’m sure music notation
began that way too, and Plicons might take a very long time to mature.

 Plicons: A Graphic Planning Language for Systems Engineering (Paper) http://www.gilb.com/DL37 25

	 	 March 9-10 2019 Edit

http://www.gilb.com/DL37

 of 	 Technoscopes207 223

98. SOTO SPECIFICATION 
(FROM CONTRACT TEMPLATE) 

SHORT-TERM STATEMENTS OF TARGET OUTCOMES

98. Source: www.flexiblecontracting.com Benefield, Atkins
26

 We do not have documented case studies of doing this format yet, so do report them to me if you do a variant. I have however made such contracts for decades, as a consultant.26

	 	 March 9-10 2019 Edit

http://www.flexiblecontracting.com

 of 	 Technoscopes208 223

98. Contracting As You Go : I’m from Missouri, Ya gotta show me!	
27

A ‘flexible contract’ is an adaptive, outcome-based contract, which is intended to maximize the delivery of customer value.

• It achieves this in several ways:

• The contract focuses on outcomes (that is, business objectives), which are less susceptible to change than output
(such as ‘features’). By focusing on outcomes, the contract also creates shared goals, between the customer and
supplier, which helps to align their interests and motivation.

• The supplier is given the freedom to achieve the target outcomes, in any way it deems effective, as long as it honors the
terms of the contract, and stays within any constraints, specified by the customer.

• The fees (or at least part of the fees) are payable on the achievement of target outcomes. The supplier is incentivized to
achieve the target outcomes, in the most cost-effective way, which is also of benefit to the customer.

• The contract is structured as a ‘master services agreement’ for the full version, or the ‘lite’ version using the Terms and
Conditions, under which short-term Statements Of Target Outcomes (SOTOs) are derived. SOTOs work in the same
way as a Statement of Work, but instead of ‘work’ in the form of outputs and activities, we measure outcomes achieved.
The parties can respond to acquired knowledge, and changes in the environment, in subsequent SOTOs.

• In respect of each SOTO, the supplier addresses each target outcome, by means of short feedback cycles. So the par-
ties can learn rapidly what works, and what doesn’t, by measuring outcomes achieved, progressively.

• The contract adopts lightweight contractual provisions. This is made possible because the parties only commit to one
SOTO at a time, so the financial exposure of the customer to the supplier is minimized. This in turn means that the con-
tract is easier to understand, and requires less administrative cost, both to create and to manage. The contract is de-
liberately NOT focused on the activities of the supplier or the technical processes by which this value is delivered.

• This contracting method, ‘pay for results only’, is an Evo-based and Planguage-based method, and it is a Technoscope
because it helps suppliers understand, what they will get paid for, It helps you see what you expect to pay for of value
and results. It reduces the risk of paying ‘a lot for nothing’.!

 Agile Contracting Column 8 2013 http://www.gilb.com/dl581 www.flexiblecontracts.com 27

	 	 March 9-10 2019 Edit

http://www.gilb.com/dl581
http://www.flexiblecontracts.com

 of 	 Technoscopes209 223

99. SOME PRINCIPLES OF USEFUL KNOWLEDGE. FOOTNOTE 28

!
UNIVERSALITY: 1. Knowledge is more useful when it applies to more circumstances

ETERNALITY: 2. Knowledge is more worth learning, if it can be applied for a long time, after learning it

VALUE: 3. Knowledge is more useful, if there is a high value from applying it

SHARING: 4. Knowledge is more useful, if it can easily be shared with others

PROOF: 5. Knowledge is useful, when early feedback, can prove its usefulness in practice

SYNCHRONOUS: 6. Knowledge is more useful, if it can be used together with a larger body of knowledge

MEASURABIILITY: 7. Knowledge is more useful, when the results of its application can be measured

ACCEPTANCE: 8. Knowledge is more useful, when it is widely accepted in your culture.

COST: 9. Knowledge is more useful, when the cost of applying it is low.

GENERATION: 10. Knowledge is more useful, when is can be used to generate even more useful knowl-

edge.

 Gilb, ‘Some Principles of Useful Knowledge’s (slides) INCOSE/KSSE 2015, Kongsberg http://concepts.gilb.com/dl844 28

	 	 March 9-10 2019 Edit

http://concepts.gilb.com/dl844

 of 	 Technoscopes210 223

99. Principles of Evo: principles are Technoscopes too.

• I love principles , powerful guides to smart action. Condensed wisdom.
29

• Principles can guide you in many ways, but let’s focus here, on the idea that principles 'act asTechnoscopes': they can
help you see, and analyze, complex situations.

For example:

Principle 1.1 Quantify Objectives [25]

All critical performance objectives can be quantified, and must be.

• The moment you take this principle seriously, and most people do not yet take it seriously or practice it, you move from:
‘Seriously great world-class security’ (fluff) to

• Security: Scale: % hackers caught within 5 seconds. Record 90%, Goal 99.9%.

• This is a world of difference, from ‘guaranteed to be misunderstood, and fail’; over to ‘Fair Chance of Catching a lot
more hackers’. (some level of success).

• Technoscope Principles can directly, immediately and clearly, help us understand, the complex systems and plans we
work with.

Study more principles, they are at least ‘short’. [4. PPP, and CE, and PoSEM book 1988] "

 https://www.gilb.com/store/4vRbzX6X 100 Practical Planning Principles booklet 201829

	 	 March 9-10 2019 Edit

https://www.gilb.com/store/4vRbzX6X

 of 	 Technoscopes211 223

100. COMPETITIVE ENGINEERING BOOK 10.6, PRINCIPLES: EVOLUTIONARY
PROJECT MANAGEMENT

1. The Principle of ‘Capablanca’s next move’ !
There is only one move that really counts, the next one.

2. The Principle of ‘Do the juicy bits first’ !
Do whatever gives the biggest gains. Don’t let the other stuff distract you!

3. The Principle of ‘Better the devil you know’ !
Successful visionaries start from where they are, what they have and what their customers have.

4. The Principle of ‘You eat an elephant one bite at a time’ .

System stakeholders need to digest new systems in small increments.

5. The Principle of ‘Cause and Effect’ !
If you change in small stages, the causes of effects are clearer and easier to correct.

6. The Principle of ‘The early bird catches the worm’ !
Your customers will be happier with an early long-term stream of their priority improvements, than years of promises, culminating in late
disaster.

7. The Principle of ‘Strike early, while the iron is still hot’ !
Install small steps quickly with people who are most interested and motivated.

8. The Principle of ‘A bird in the hand is worth two in the bush’

Your next step should give the best result you can get now.

9. The Principle of ‘No plan survives first contact with the enemy’

A little practical experience beats a lot of committee meetings.

10. The Principle of ‘Adaptive Architecture’ 
Since you cannot be sure where or when you are going, your first priority is to equip yourself to go almost anywhere, anytime.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes212 223

100. Attributes of Evo: the qualities and costs of the ‘Evo’ value De-
livery Process.

• Methods are ‘good for you’ (like Guinness) if their ‘attributes’ are 'better matched’ to your objectives and resources,
than other methods.

• No costs to learn Evo, or do Evo, or ‘get certified’ as a Master.: Evo is ‘free’, like geometry and philosophy.

• Totally focussed on delivering stakeholder values quantitatively

• Measurable values should flow to stakeholders, step-by-step (not just code and features, and functions)

• Evo can focus on a number of long range and short range costs and resources.

• Evo works on any class of system

• Evo is based on a learning cycle, and being agile.

• Evo is a Technoscope to see Values, Stakeholders, and Costs - better.

	 	 March 9-10 2019 Edit

 of 	 Technoscopes213 223

Last page

Did you really read this far? Or did you read a lot, and checked in at the end.

I’d be happy to hear from you, about what you think of the book.

If you have any ideas for improvement,

and if you have any suggestions for this I should read,

perhaps something you wrote?

tom@Gilb.com

September 2018

	 	 March 9-10 2019 Edit

mailto:tom@Gilb.com

 of 	 Technoscopes214 223

Editing notes

260119 Pawel Nowak edit for printing etc.

270119 Tom Added BOOK REFERENCES

29310119 spelling corrections. , clarifications

 "

	 	 March 9-10 2019 Edit

 of 	 Technoscopes215 223

 References

1. [IC] Tom Gilb: Innovative Creativity. 2018.

https://www.gilb.com/store/QMMQhn2g

2. [CC] Tom Gilb: Clear Communication. 2018. https://www.gilb.com/store/oJCCxtsM

3. [100T] Tom Gilb: Technoscopes: Power Tools to Master Complex Plans and Problems.
2018. https://www.gilb.com/store/Pd4tqL8s THIS BOOK

4. [PPP] Tom Gilb: 100 Practical Planning Principles. 2018 https://www.gilb.com/store/
4vRbzX6X

5. [LD] Tom Gilb: Life Design, 2018. https://www.gilb.com/store/kCBGcG6L

6. Tom Gilb: Vision Engineering,

(this is also a subset of the VP book above)

Value Planning: Top Level Vision Engineering

CONCEPTS.GILB.COM/DL926

	 	 March 9-10 2019 Edit

https://www.gilb.com/store/QMMQhn2g
https://www.gilb.com/store/oJCCxtsM
https://www.gilb.com/store/Pd4tqL8s
https://www.gilb.com/store/4vRbzX6X
https://www.gilb.com/store/4vRbzX6X
https://www.gilb.com/store/kCBGcG6L

 of 	 Technoscopes216 223

(pdf format). A 63 Page book. Aimed at demonstrating with examples how top management
can communicate their ‘visions’ far more clearly.

There is a German and Russian Edition of this, at beginning of full Value Planning book.

leanpub.com/valueplanningdeutsch

leanpub.com/valueplanningrussian

7. [VPB] Tom Gilb: ∆ : "Value Planning Basics"
For Advanced Management Results .
 A very short text main book’s (VP book’s 800 pages condensed into 10 text pages)

Read in an evening or on the plane. Free at the moment.

A 23-page book. (half are illustrations). Contains the 1 page book summary.

5A: PDF version

https://www.dropbox.com/sh/yjqd50rzipoxcan/AAA2vWWwHZg7M4557vysjtsya?dl=0

5B. ePub version

https://www.dropbox.com/sh/rwykqi05uux4f0u/AAADzymMhjrF6cV_NWrl18uOa?dl=0

	 	 March 9-10 2019 Edit

https://www.dropbox.com/sh/yjqd50rzipoxcan/AAA2vWWwHZg7M4557vysjtsya?dl=0
https://www.dropbox.com/sh/rwykqi05uux4f0u/AAADzymMhjrF6cV_NWrl18uOa?dl=0

 of 	 Technoscopes217 223

8. [TT] Or maybe you prefer the 18 minute Tom Gilb TEDx video? On Quantifying Love.

 https://www.youtube.com/watch?v=kOfK6rSLVTA

9. [CE] Gilb, Competitive Engineering, 2005. https://w.gilb.com/p/competitive-engineering

Paper copies available via internet, bookstores. $41.27, 480 pages. www.elsevier.com and others

https://www.gilb.com/p/competitive-engineering (digitalcopy)

https://www.amazon.com/Competitive-Engineering-Handbook-Requirements-Planguage/dp/0750665076 (paper copy)

10. [VP] Value Planning, 2014-2019

Value Planning (digital book manuscript), 893 pages.

Get 50% discount on Value Planning

Use this link: https://goo.gl/MB6kaR

Coupon Code: CONNECT

One reader paid €20 to print the book out.

11. [SI] Gilb & Graham, Software inspection, 1993

https://www.amazon.com/Software-Inspection-Tom-Gilb/dp/0201631814

	 	 March 9-10 2019 Edit

https://www.youtube.com/watch?v=kOfK6rSLVTA
http://www.gilb.com/p/competitive-engineering
http://www.elsevier.com
https://www.gilb.com/p/competitive-engineering
https://www.amazon.com/Competitive-Engineering-Handbook-Requirements-Planguage/dp/0750665076
https://www.amazon.com/Software-Inspection-Tom-Gilb/dp/0201631814

 of 	 Technoscopes218 223

	 	 March 9-10 2019 Edit

 of 	 Technoscopes219 223

Table of Contents

1. Tags: The name of any planning object.	 6

2. Scale: a definition of a variable attribute, like a quality, or a cost.	 8

3. Meter: the test or measurement process specification.	 10

4. Scale Parameters: Dimensions in time, space, activity and conditions.	12

5. ‘Type’: the class of specification, which has special or distinguishable needs and forms.	 14

6. Ambition (Level): the informal, but possibly official improvement objective.	 16

7. Benchmarks: numeric levels of ‘system performance’, past, present and future, which we can use as a basis for planning requirements.	 18

8. Past Benchmarks: are any estimated, or measured, level for us, or others, that is interesting to compare our future plans to.	 20

9. Trend: an estimation of the levels, good or bad, that will possibly be reached by us, or others, at defined times in the future, and under defined
circumstances.	 22

10. Ideal and Record: a state-of-the-art extreme, attained under defined conditions.	 24

11. Status Level	 26

12. Scalar Constraints: levels to avoid.	 28

13. Tolerable Level: we can live with this level, but are not happy bunnies.	 30

14. OK: a range just above the tolerable range.	 32

15. Targets: Performance levels we want achieve. Success.	 34

16. Wish Level: a stakeholder desire for a performance level with some value for them.	 36

17 Goal Level: one of several simultaneous (Target and Constraint) commitments to ‘deliver levels of value to stakeholders’.	 38

18. Stretch Level: additional value if we have any resources left, after reaching all Goal levels.	 40

19. Stakeholder: any entity with requirements for us to consider.	 42

20. Source <- : The written or human source of any planning statement.	 44

21. Design Constraint: Solutions you must use, or must NOT use.	 48

22. Design Specification: how we ‘plan to satisfy' requirements	 50

23. Design Components: useful subsets of your solutions.	 52

24. Independence of Implementation: we can choose any design component, before all the others, and implement it, to get a result.	 54

25. Value Delivery Design: Consciously designing for specific value levels, on time.	 56

26. Concepts: ideas and definitions, independent of actual words, or symbols, which we use, to refer to the concepts.	58

27. Local Definitions: making sure people understand your intent, on this page or screen.	 60

28. Global Definitions: Definitions with a project.	 62

29. Reusability: avoiding repetition, motivating quality definitions.	 64

30. Risks: keeping track of potential problems.	 66

	 	 March 9-10 2019 Edit

 of 	 Technoscopes220 223

31. Issues, Assumptions, Explicit Risks: Raising a flag, so that potential problems are not forgotten.	 68

32. Dependencies: Making Sure we recognize things that have to be done.	 70

33. Supports: Making sure we recognize why things are there.	 72

34. Supported By: Making sure we understand who our friends are.	 74

35. Decomposition Principles: detailing strategies so you understand them better.	 76

36. Design Principles: Technoscopes for seeing relevant design emerge.	78

37. Templates (with hints): a simple Technoscope to instruct people ‘on the spot’.	 80

38. Design Logic: Technoscopes for seeing what you have to do and when	 82

39. Design to Objectives: constant iterative refocus on Values, and changing Values, when developing designs and implementing designs	 84

40. Multiple Attributes: a more-complete picture of reality	 86

41. Impact Estimate (IE): how good is your idea, exactly?	 90

42. Impact Measurement.	 92

43. % Impact: A relative-to-goal measure.	 94

44. ± Uncertainty: a Technoscope for seeing uncertainty, and the worst case.	 96

45. Resource Estimates: how to understand the possible costs.	 98

46. Value-Estimate Sum: A Technoscope for getting the overview of all values delivered, by a design or strategy.	 100

47. Resource Sum: understanding the economic footprint, big picture.	 102

48. Values-to-Resources Ratio: a Technoscope for Cost-Effectiveness.	 104

49. Prioritization Options: Estimated Static, Next Step Measured Computed.	 106

50. Feedback: the most powerful Technoscope of all.	 108

51. Deviation Analysis: what to look for and how to analyze deviations.	110

52. Safety Factor: making sure it will work, when expectations don’t work out they way you hoped.	 112

53. App: Needs And Means = ValPlan.net	 114

54. Bar Charts: A simplified presentation of complex evaluations.	 116

55. Modelling versus Measurement.	 118

56. Time, Micro Deadlines; continuous and early deadlines.	 120

57. Long-Term Short-Term.	 122

58. Side-effect Analysis: Technoscopes for side-effects.	 124

59. Risk Prevention: you have to spot the risks, to prevent them.	 126

60. Evidence and Credibility.	 128

61. Defect: a window to future threats to your project.	132

62. Specification Rules: a formal ‘quality culture’ for any specs.	 134

63. Source Specs: a smart way to find defects in Spec QC.	 136

64. Major Defects.	 138

65. Defect Density: Major Defects Per Page.	140

	 	 March 9-10 2019 Edit

 of 	 Technoscopes221 223

66. Entry Conditions: A Technoscope to see if you are ready for the next process.	 142

67. Exit Conditions.	 144

68. Exit Level: A Technoscope on future problems and delays.	146

69. Sample: a very cost-effective Technoscope.	 148

70. Individual Learning Process: A Technoscope into your own capability.	 150

71. Checklists: a Technoscope for understanding specification rules.	 152

72. Checking Rate: a Technoscope for understanding your understanding ‘capability’.	 154

73. Checking Teams: 4 eyes see more than 2 eyes.	 156

74. Spec QC Measurement: calculation of defects.	 158

75. Inspection Defect Removal: The Defect Detection Process (DDP).	 160

76. No Blame Culture.	 162

77. Result Anonymity: seeing final results, not blaming individuals.	 164

78. Early and Continuous Sampling: A Lean Technoscope.	 166

79. Defect Prevention Process (DPP): Empowering Troops Gives Best Insight.	 168

80. Automated Spec QC: can we automate quality control of ideas?	 170

Part 5: Evo: Evolutionary Value Delivery. An Overview.	 171

81. Value Delivery Cycle: seeing the real world, and learning.	 174

82. Value Delivery Process: the main point of all projects.	 176

83. Dynamic Design To Cost (DTC): How to see what needs to be changed immediately, and if the change really works! : a Technoscope.	 178

84. Backroom: a place to build systems with value, that take more than a cycle to build.	 180

85. Frontroom: where we expect to see and measure progress.	 182

86. Agility: Technoscopes for seeing that you need to ‘be agile’ and change.	 184

87. Definition of Done: A Technoscope to know when you are really done, and when you are not.	 186

88. Constant Dynamic Reprioritization	 187

88. Dynamic Re-prioritization: re-calculating that you have new priorities. The Priority Technoscope. Objective priority logic.	 188

89. Gradual Integration (not all at once) Cause and Effect.	 190

90. Delegation of Design Power: The Technoscope of seeing things with the real workers.	192

91. 2% Delivery Steps: A Feedback Technoscope.	 194

92. Decomposition for Evo: the method of decomposition gives a better Technoscope.	 196

93. Spreadsheet Tracking Feedback: project progress Techoscope.	 198

94. The (Agile) Project Startup Week: forcing the pace, to focus priorities, avoid bureaucracy, and become agile value deliverers.	 200

95. Parameters in Planguage: well-defined and well-conceived specification parameters are also a useful set of Technoscopes.	 202

96. Uncertainty: <fuzzy brackets>, and other expressions of imperfection. Confucius: “True wisdom is knowing what you don't know”	 204

97. Icons: Plicons, Technoscopes for Humanity.	 206

98. Contracting As You Go: I’m from Missouri, Ya gotta show me!	 208

	 	 March 9-10 2019 Edit

 of 	 Technoscopes222 223

99. Principles of Evo: principles are Technoscopes too.	 210

100. Attributes of Evo: the qualities and costs of the ‘Evo’ value Delivery Process.	 212

Editing notes	 214

References	 215

Table of Contents	219

	 	 March 9-10 2019 Edit

 of 	 Technoscopes223 223

	 	 March 9-10 2019 Edit

	Tags: The name of any planning object.
	2. Scale: a definition of a variable attribute, like a quality, or a cost.
	3. Meter: the test or measurement process specification.
	4. Scale Parameters: Dimensions in time, space, activity and conditions.
	5. ‘Type’: the class of specification, which has special or distinguishable needs and forms.
	6. Ambition (Level): the informal, but possibly official improvement objective.
	7. Benchmarks: numeric levels of ‘system performance’, past, present and future, which we can use as a basis for planning requirements.
	8. Past Benchmarks: are any estimated, or measured, level for us, or others, that is interesting to compare our future plans to.
	9. Trend: an estimation of the levels, good or bad, that will possibly be reached by us, or others, at defined times in the future, and under defined circumstances.
	10. Ideal and Record: a state-of-the-art extreme, attained under defined conditions.
	11. Status Level
	12. Scalar Constraints: levels to avoid.
	13. Tolerable Level: we can live with this level, but are not happy bunnies.
	14. OK: a range just above the tolerable range.
	15. Targets: Performance levels we want achieve. Success.
	16. Wish Level: a stakeholder desire for a performance level with some value for them.
	17 Goal Level: one of several simultaneous (Target and Constraint) commitments to ‘deliver levels of value to stakeholders’.
	18. Stretch Level: additional value if we have any resources left, after reaching all Goal levels.
	19. Stakeholder: any entity with requirements for us to consider.
	20. Source <- : The written or human source of any planning statement.
	21. Design Constraint: Solutions you must use, or must NOT use.
	22. Design Specification: how we ‘plan to satisfy' requirements
	23. Design Components: useful subsets of your solutions.
	24. Independence of Implementation: we can choose any design component, before all the others, and implement it, to get a result.
	25. Value Delivery Design: Consciously designing for specific value levels, on time.
	26. Concepts: ideas and definitions, independent of actual words, or symbols, which we use, to refer to the concepts.
	27. Local Definitions: making sure people understand your intent, on this page or screen.
	28. Global Definitions: Definitions with a project.
	29. Reusability: avoiding repetition, motivating quality definitions.
	30. Risks: keeping track of potential problems.
	31. Issues, Assumptions, Explicit Risks: Raising a flag, so that potential problems are not forgotten.
	32. Dependencies: Making Sure we recognize things that have to be done.
	33. Supports: Making sure we recognize why things are there.
	34. Supported By: Making sure we understand who our friends are.
	35. Decomposition Principles: detailing strategies so you understand them better.
	36. Design Principles: Technoscopes for seeing relevant design emerge.
	37. Templates (with hints): a simple Technoscope to instruct people ‘on the spot’.
	38. Design Logic: Technoscopes for seeing what you have to do and when
	39. Design to Objectives: constant iterative refocus on Values, and changing Values, when developing designs and implementing designs
	40. Multiple Attributes: a more-complete picture of reality
	41. Impact Estimate (IE): how good is your idea, exactly?
	42. Impact Measurement.
	43. % Impact: A relative-to-goal measure.
	44. ± Uncertainty: a Technoscope for seeing uncertainty, and the worst case.
	45. Resource Estimates: how to understand the possible costs.
	46. Value-Estimate Sum: A Technoscope for getting the overview of all values delivered, by a design or strategy.
	47. Resource Sum: understanding the economic footprint, big picture.
	48. Values-to-Resources Ratio: a Technoscope for Cost-Effectiveness.
	49. Prioritization Options: Estimated Static, Next Step Measured Computed.
	50. Feedback: the most powerful Technoscope of all.
	51. Deviation Analysis: what to look for and how to analyze deviations.
	52. Safety Factor: making sure it will work, when expectations don’t work out they way you hoped.
	53. App: Needs And Means = ValPlan.net
	54. Bar Charts: A simplified presentation of complex evaluations.
	55. Modelling versus Measurement.
	56. Time, Micro Deadlines; continuous and early deadlines.
	57. Long-Term Short-Term.
	58. Side-effect Analysis: Technoscopes for side-effects.
	59. Risk Prevention: you have to spot the risks, to prevent them.
	60. Evidence and Credibility.
	61. Defect: a window to future threats to your project.
	62. Specification Rules: a formal ‘quality culture’ for any specs.
	63. Source Specs: a smart way to find defects in Spec QC.
	64. Major Defects.
	65. Defect Density: Major Defects Per Page.
	66. Entry Conditions: A Technoscope to see if you are ready for the next process.
	67. Exit Conditions.
	68. Exit Level: A Technoscope on future problems and delays.
	69. Sample: a very cost-effective Technoscope.
	70. Individual Learning Process: A Technoscope into your own capability.
	71. Checklists: a Technoscope for understanding specification rules.
	72. Checking Rate: a Technoscope for understanding your understanding ‘capability’.
	73. Checking Teams: 4 eyes see more than 2 eyes.
	74. Spec QC Measurement: calculation of defects.
	75. Inspection Defect Removal: The Defect Detection Process (DDP).
	76. No Blame Culture.
	77. Result Anonymity: seeing final results, not blaming individuals.
	78. Early and Continuous Sampling: A Lean Technoscope.
	79. Defect Prevention Process (DPP): Empowering Troops Gives Best Insight.
	80. Automated Spec QC: can we automate quality control of ideas?
	Part 5: Evo: Evolutionary Value Delivery. An Overview.
	81. Value Delivery Cycle: seeing the real world, and learning.
	82. Value Delivery Process: the main point of all projects.
	83. Dynamic Design To Cost (DTC): How to see what needs to be changed immediately, and if the change really works! : a Technoscope.
	84. Backroom: a place to build systems with value, that take more than a cycle to build.
	85. Frontroom: where we expect to see and measure progress.
	86. Agility: Technoscopes for seeing that you need to ‘be agile’ and change.
	87. Definition of Done: A Technoscope to know when you are really done, and when you are not.
	88. Constant Dynamic Reprioritization
	88. Dynamic Re-prioritization: re-calculating that you have new priorities. The Priority Technoscope. Objective priority logic.
	89. Gradual Integration (not all at once) Cause and Effect.
	90. Delegation of Design Power: The Technoscope of seeing things with the real workers.
	91. 2% Delivery Steps: A Feedback Technoscope.
	92. Decomposition for Evo: the method of decomposition gives a better Technoscope.
	93. Spreadsheet Tracking Feedback: project progress Techoscope.
	94. The (Agile) Project Startup Week: forcing the pace, to focus priorities, avoid bureaucracy, and become agile value deliverers.
	95. Parameters in Planguage: well-defined and well-conceived specification parameters are also a useful set of Technoscopes.
	96. Uncertainty: <fuzzy brackets>, and other expressions of imperfection. Confucius: “True wisdom is knowing what you don't know”
	97. Icons: Plicons, Technoscopes for Humanity.
	98. Contracting As You Go: I’m from Missouri, Ya gotta show me!
	99. Principles of Evo: principles are Technoscopes too.
	100. Attributes of Evo: the qualities and costs of the ‘Evo’ value Delivery Process.
	Editing notes
	References
	Table of Contents

