
Page of 1 292

SEA

Systems Enterprise

Architecture (SEA) :
or
Systems Engineering
Architecture

The Next Generation,

based on Digitization : quantified engineering,
values, digital alignment, AI, Net 3.0, Digital
Ontologies, Trinities, ValPlan, Value Agile.

By Tom Gilb
Started 30Aug2020, work in progress, Draft done 12Sep2020
https://LeanPub.com/SysEntArchBook

https://LeanPub.com/SysEntArchBook

Page of 2 292

Systems Enterprise Architecture (SEA) : The Next Generation, based on Digitization: quantified engineering, values,
digital alignment, AI, Net 3.0, Digital Ontologies, Trinities, ValPlan.

Book Outline:
Introduction.
Bringing in Planguage, CE, Engineering, Systems Thinking (not IT), ValPlan, Graphmetrix. Ontology, AI, Digitizaton

1. Value-Driven Architecture
2. Architecture E!ciency (AE, ArchEff)
3. Constraint Respect Architecture
4. Architecture Decomposition , and the secret of project success.
5. Architecture Prioritization
6. Architecture Value-Stream Delivery

7. Architecture Risk Management

8. Architecture Enterprise Alignment

9. Architecture Organization and
Responsibility.
—————————————— end of Main Presentation. Now Details———-

10. Detailed Value Requirement SEA Language
10.1 The Scale: Detailed Resources Requirements SEA Language
10.2 Points on the Scale. Detailed Resources Requirements SEA Language
1o.3 . Do I do the constraints like Design constraint here. HAVE TO SAID SO 1.4.
11. Detailed Architecture Specs SEA Language
12. Detailed Impact Estimation SEA Language.
13 Background Specification (Architecture Linkages)
 ? Examples and Case Studies ?????
References

Glossary subset

Page of 3 292

Selling the certifications, for such poorly crafted architecture
methods, is a shame, shared by the agile certification game.
These methods are an insult to common sense that says we
must take qualities and costs far more seriously in real and
large systems. Why are so many people fooled?

The core problem as I see it is that the methods taught and
used are no longer good enough for the large scale, complex,
changing technology. The central idea that is missing is
quantification [Q] (of all values, qualities and costs).

Without this tool, too many bad decisions, and costly ones
will be made. Quantification is the distinction between arts
and crafts on the one hand, and engineering, science, good
management, logic, traceability, responsibility on the other
hand.

The problem is not new. There comes a threshold of
complexity in all disciplines where quantification becomes a
necessary tool. The time has come for IT Enterprise

Architecture to really make use of quantification, and not just
talk about doing it.

I have written many books about this subject, and they are in
the references. But they have not influenced EA so it is time
to write a book aimed directly at EA culture, so they have no
excuses, that this is some other discipline.

This is probably a hopeless case. The only time things will
change is when management will only hire and employ
people who can serve their organizations interests better, by
being more like engineers. Anyway this is my contribution.

Let me be clear that my objective is to change poor practices.
So I would be pleased if anybody would like to copy the ideas
in this book in whole or part. The ideas are free. But if any
reader wants to commercialize the ideas, in methods
packages, training, consulting, apps, so that they are spread
effectively. That is welcome. I provide a recipe, you can bake
the cakes. Nice if you credit sources, I do, but I won’t sue you
for forgetting.

0.0 Introduction Why am I writing this book at all.
I have long been unhappy with the Enterprise Architecture

methods used by IT people internationally [VR]. I have

taught my ‘Architecture Engineering’ classes for several years

Page of 4 292

IT Failure rates

Research by The Standish Group already indicates
that only 5% of the Grand projects are successful

[R2]

“Is enterprise architecture then, a panacea for IT
projects? Using the CHAOS database allows us to

put the value of EA in perspective of other
‘variables’, like the project size, agile vs waterfall
process, effectiveness and maturity of the project

sponsor, among others.

While not conclusive yet, our research indicates it
to be of ‘moderate’ influence, less than having a
good sponsor, a small project size, or an agile
process, but more than project management

frameworks, like PRINCE2.

This is not that unexpected, in our view, as EA
predominantly has influence on design, not on

the execution of the project.”
[R2]

Figure 0.0 B [R2]

My remark. If the ‘design’ were clearly related to quantified
values (which it is NOT in traditional EA), then the design

process is a sharper process, and would be expected to deliver
values better (my corporate case study experience).

We also need some continuation interface from EA, into the
projects, which ‘quantified value requirements’ provide.

In addition if the ‘agile’ processes were equally ‘numeric’ about
value delivery, that will also influence the results. [VA]

EA is not very influential

Figure 0.0 A [R2] ‘IT’ is a huge (95% for Grand projects) failure.
‘EA’ does not make results better.

0.0 Introduction Why am I writing this book at all.

Does Enterprise Architecture have significant influence on IT Project Success?

Page of 5 292

Here are the technical ideas, that make
SEA different, and better.

10.1. The architecture planning language, ‘Planguage’ [CE] is the
systematic framework for SEA. I can also call it SEAL, SEA Language.
Make no mistake we are moving to an ‘engineering’ paradigm. This
includes standard practices, with years of practical application such as:

10.1.1 A Glossary of about 700 Concepts related to architecture [P4].

10.1.2 About 100 Principles of Architecture [CE}.

10.1.3 A large number of specification Rules, for good practice in
specification of architecture. [P7, CE]

10.1.4 A number of well-defined architecture processes [CE]

10.1.5 A defined set of graphical icons to express architecture ideas. [P12]

10.1.5 Systems: We can manage anything here, not just IT, but all
other related system components such as databases, people, contracts,
laws, policies, interfaces, motivation, organization, and non-IT
operational systems.

2. The app ‘ValPlan’ (Value Planning): this app (which we have designed
and built, and used on our architecture courses [R.ValPlan]. I will use this
tool throughout the book. I believe that the digitization of these architecture
ideas is one essential step. The basic methods can be practiced without any
app, or with spreadsheets. You are welcome to make your own apps. But we
will assume the use of this app. I believe that such automation of the
architecture process is necessary.

3. SEA is designed, and the ValPlan app using ‘itself’ so there is an
architectural model (actually several) of it all.

4. SEA is complete in great detail. But it is also extendible by any user for
any purpose.

5. Trinity Tools: https://graphmetrix.com, R.GraphMetrix. There is a set of
very-advanced data management and AI tools, being built and released as I
write (30 Aug 2020). We are heavily involved in investment and
management. It has these [CE] methods as inspiration and framework.
When we have more increments released, we can add to the SEA method in
significant ways. In short we will be able to integrate the enterprise IT
architecture, with all other detailed real-time information, about the
organization. ‘Property’ and ‘Logistics' are the first products, along with
existing property construction apps.

There are several exciting technical capabilities, already working, for
intelligent alignment of all corporate data. The capability of intelligently
using very-old data sources, and almost any interfaces, and programs, is
itself interesting for IT architecture.

This is so near-future availability, and so exciting, that it is the next
generation IT Architecture, so we are going to include it as an assumption,
and will detail it, as it rolls out to the public.

Some key words, Artificial Intelligence, Automated Ontologies (Trinity
Relations), Owning your own data, but sharing it safely, Object-oriented
data (data finds relationships automatically). Rapid real-time adaptation to
major and minor changes, to data and program components.

0.1 Technical Introduction: The advanced technical components.

https://graphmetrix.com

Page of 6 292
Page 6 of 27 https://tinyurl.com/SysEntArchBook

Figure 0.1 The Trinity Enterprise vision. Enterprise Architecture Engineering of Systems, aligned with all other organizational data.[R.GraphMetrix].

A bigger vision than Enterprise Architecture alone

https://tinyurl.com/SysEntArchBook

Page of 7 292

These subjects are the first part, the first 3 Chapters of
this book. They lay the basis for the next part of the SEA
architecture process: how we evaluate, decompose, and
deliver the architecture.

Every detail is connected to every other detail, somehow.
But for purposes of learning, we are dividing and
sequencing the explanation of the ideas. Forgive me if
some ideas pop up a little bit earlier than formally
planned.

1.0 Value-Driven Architecture Here
are our core SEA principles:
1. Stakeholders determine values, and

requirements

2. Value requirements determine necessary
architecture

3. Costs and constraints determine possible
architecture, and priority

2.
Value Requirement

2. & 12.3.
Architecture

Function

3. Resource Budget

Figure 1.0 The interface between Stakeholders and
Architecture are their values and resource constraints.

Stakeholders set the conditions for architecture.
Architecture must satisfy stakeholder needs and resources.

10.1.

Necessary
Possible

Page of 8 292
Page 8 of 27 https://tinyurl.com/SysEntArchBook

for us.

They determine the content, the level,
and timing of a wide array of their non-
financial values, and of course some of
their financial values.

Stakeholders determine the resources of
many kinds, in the short and longer term
which we can access, to deliver the values
they desire,

Stakeholders are the source of
constraints, or limits on our architecture.

In the large systems we need to manage
there are many stakeholders, let us say 50
to 500. And these are just general types,
like nurse, or contract. In addition to
which each specific instance of real
stakeholders has different requirements
from the general stakeholder instance.

The task of mapping stakeholders, their
needs, not to mention future, yet
unknown, stakeholders and needs, is

impossibly large if we seek perfection. So
we need to find a balance, in stakeholder
analysis, to suit the architecture task, and
a balance which pays off.

Stakeholders-and-their-needs is not a
one time, up-front architecture analysis
concern. It is continuous for the lifetime
of the architecture. That is the reason
stakeholders need to be specified
digitally, and connected to their values,
and then to the architecture. All digitally.
Not by ‘static paper diagrams’.

Existing stakeholders, and their needs,
will also continuously change. We need
to keep updated, ahead of the game,
digitally, and to sense the consequences
of change, digitally, so we can adjust our
architecture correspondingly.

As you see I am staring to make the
argument for the digital tools, ValPlan
and GraphMetrix. Non-automated
methods will not work accurately, cost-
effectively and quickly enough.

1.1 Stakeholders

Stakeholders are the entities that
determine our architecture requirements

Figure 1.1 B. A Template Stakeholder Hierarchy

Stakeholders are far more than users and customers.
Some are inhuman, some are downtrodden.

But they influence our architecture.

https://tinyurl.com/SysEntArchBook
https://tinyurl.com/SysEntArchBook

Page of 9 292

Figure 1.1 B ValPlan diagram, mapping from digital object relationship data, the relations between stakeholders, values, and architecture (Knowledge Project
Poland, Masterclass 2018). Planguage and ValPlan are strong on continuous real-time tracking, of critical relationships.

Page 9 of 27 https://tinyurl.com/SysEntArchBook

Requirements

A stakeholder can have many value requirements, a value requirement can have many stakeholders. A stakeholder without a value requirement is not a real
stakeholder, or we are missing a requirement for them. All Values must have some supporting architecture. Charts like this are possible as a consequence of Planguage

digitization (ValPlan app). Things are a little messy at this early stage (2-3 days work) of drafting architecture.

Architecture

Stakeholders

https://tinyurl.com/SysEntArchBook

Page of 10 292

start is the United Nations 17 Sustainable Goals [SP], like
about poverty, hunger, education. Very important stuff, and
it costs money. But money is not the main point.

There is no simple fixed quantity of possible value
statements (Value Objectives, Value Requirements) from
stakeholders. Value specifications are, as we shall see (see
section 10) , infinite in their detail. They are whatever the
stakeholder needs, and the stakeholder circumstances, are
both changing, and infinitely complex.

We do not give up, at this infinite value definition task. It is
the basis for our architecture. We do the best we can, early.

We need to do a pretty good job at capturing and prioritizing
stakeholder requirements. Then we modify requirements, as
needed, in the future. But this ongoing complexity, demands

Page 10 of 27 https://tinyurl.com/SysEntArchBook

1.2 Values (of stakeholders)

‘Values’, as a concept is easily misunderstood. But it is a very
useful concept. So, let us deal with it clearly.

The major derailment is that people think of money value,
when they hear the term value. But, we are using it in a much
wider sense. We mean everything, that stakeholders value.

We mean a very broad range of human values, where money
is in the picture, but is not the main idea. Perhaps a simple

Values

Figure 1.2 A:
Sometimes the value (how good)

is a particular system quality
(like Security, Usability). i . e . How well.

Some other values are not qualities,
Like ‘Performance’, ‘throughput’ (i. e. how much)

The architect task is to ‘find a means to deliver the values’

smart digital systems, which can track changes, keep the
complete overall picture, and all relations intact, and help us
see the need for architectural change, in good time.

Qualities

For detail on how to specify
quantified Values see this book

Part 10.1

https://tinyurl.com/SysEntArchBook
https://tinyurl.com/SysEntArchBook

Page of 11 292

Value Planguage Glossary Concept: *269

Value is perceived benefit:
that is, the bene fit we think we will get from something.

Glossary Concept Notes:

1. Value is the potential consequence of system attributes, for one or more
stakeholders.

2. Value is not linearly related to a system improvement: for example, a
small change in an attribute level could add immense perceived value
for one group of stakeholders for relatively low cost.

3. Value is the perceived usefulness, worth, utility or importance of a defined system
component or system state, for defined stakeholders,
under specified conditions.
‘‘One man’s meat is another man’s poison.’’ Old proverb

4. ‘Benefit’ is when some perceived value is actually produced by, a defined system.

5. Value is relative to a stakeholder: it is not absolute. Quality, for example, is stated
in terms of the objective level of ‘how well’ a system performs, irrespective of
how this level is appreciated by any stakeholders. Some defined levels of quality
only have a value to some stakeholders. The same is true for all attributes. There
are many Planguage ways of indicating that a stakeholder values an attribute.
These include using Value, Stakeholder, Authority, Impacts, and Source parameters.

‘‘Nowadays, people know the cost of everything and the value of nothing.’’

Oscar Wilde.

Synonyms: Worth *269.
Related Concepts: Benefit *009; Impacts *334; Values *592.

Page 11 of 27 https://tinyurl.com/SysEntArchBook

1.2 Values (of stakeholders): Defined as Planguage Concept. ‘*269’
As a stakeholder I

Value Usability,
because I believe I

can save my time.

Then I expect to save 100
hours per year of my own

time

My ‘Benefit’ is saving my time

If the ‘Usability quality
‘reduces time for task

by 50%
this year

System Attribute: Usability
Defined as % reduction in time

to do a task

Stakeholder Level

End

System level

Means to Stakeholder
End

For detail on how to specify
quantified Values see this book

Part 10.1

https://tinyurl.com/SysEntArchBook
https://tinyurl.com/SysEntArchBook

Page of 12 292
Page 12 of 27 https://tinyurl.com/SysEntArchBook=

I have been surprised to see that older architecture methods,
allow the architect to specify architecture, with no mention or
consideration of its numeric real- impact on these budgeted,
limited, resources.

This ‘resources’ omission is no way to manage large-scale
architecture. It is only OK when the system is small, and the
costs obvious, and are tolerable, ‘no matter what’. Otherwise,
lack of resource impact estimation of architecture ideas, is
intolerable, and a sure way, to get ‘hit’ by resource problems,
and even by total system failure.

One important job of the architect, is to keep control of
resource consequences of architecture decisions.

This is known as ‘design to cost’ by engineers (‘architect-to-
cost’ ?). And I am going to suggest an ‘agile’ version of this
which I call Dynamic Design-to-Cost, and it is built into my
Planguage method [S5, S6]

Serious cost-of-limited-resources estimations, is absolutely
mandatory for serious enterprise architecture work. What are
you practicing in this cost area, today?

If your architecture staff cannot, or will not, do this costing,
they are incompetent and dangerous. As a CTO for example,
you need to take ‘responsibility for costs of architecture
proposals’.

1.3 Costs and Resources

Stakeholder-held Values, translated into specified ‘value
requirements’, define for the architect, the expected level that
a proposed architecture must deliver. For all architecture
options, which meet this level of performance, there are still
some considerations before we can accept, choose, or
prioritize an architecture option.

1. Can we afford it?

2. Are the side-effects ok?

3. Does it violate any specific constraints?

The ‘can we afford it’ architecture qualification, is what we
are going to discuss now.

In simplistic terms, if the budget is 1 million, and the
architecture cost is 5 million. You cannot afford it.

We cannot accept an architecture component, or a complete
architecture, just because ‘it will deliver a value-level on-
time’.

A second consideration, is that there probably is more than
one resource-constraint (budget limitation). There can be
resource budgets for people, money, and time (cap ex). There
can be budgets for operational or recurring costs (op ex).

https://tinyurl.com/SysEntArchBook=

Page of 13 292

Figure 1.3 B. Four different resource budgets (left) and estimates of costs for 5 architecture options (middle 5 columns)
This is the resources section, of an Impact Estimation Table, in the ValPlan app. More later, but the point is we can digitize

keeping track of 4 resources, and 5 different architecture options.
Page 13 of 27 https://tinyurl.com/SysEntArchBook=

Evaluating Multiple Costs of a set of architecture options .

Arch 1 —————Arch 2 ———- Arch 3 -—-— Arch 4————— Arch 5

Figure 1.3 Another example of a set of costs for Knowledge systems
(ValPlan app, [KEN]).

This level-of-detail might be
overwhelming, for people who never give
costs a thought. See section 12 here for
details.

This is an engineering approach, so lots of
numbers, and some of them

are about the credibility and
uncertainty of the cost estimates.

For now, focus on the 20 rectangular bars,
with % of Budget, as estimated cost.
Start with the upper left bar, 14%

The ???? Is a ‘known unknown’ cost for the architecture.

1.3 Costs and Resources: of architecture options.
This is a set of cost budgets for the ‘resources

needed’, to deliver the Knowledge
Values set above.

Sorry if this level of detail disturbs some
people. We are trying to model only the
critical-few values, and the critical-few

resources. Critical = ‘can kill your project’.

For detail on how to specify
quantified Cost and Resources

 see this book Part 10.1

https://tinyurl.com/SysEntArchBook=

Page of 14 292
Page 14 of 27 https://tinyurl.com/SysEntArchBook

Annotation, Justification, Issues notation, Assumptions specification,
Connection to specific Stakeholders, and more. We have not discussed
all these Planguage tools yet in this book (see Section 10.), but they are
all in other books, such as Competitive Engineering [B1] and Value
Planning [B2].

The Scalar Constraint, as with most all other Scalar Points, not only
applies to stakeholder Values (performance, qualities, benefits, good
stuff). They also apply to a subject we have not treated yet, Resource
Planning. For example, there may be a Deadline of ‘1 year from
project start’. But there can be a Constraint of 2 months over the
deadline, which triggers automatic Fines or contract cancellation.

Scalar constraints are the first consideration (priority) in any strategy
planning or architecture. We need to choose and evaluate strategies, so
that it is unlikely we will violate a Constraint. Later, we will manage the
strategy design process, to reach all Goals, using a minimum of
resources. But step one is: do not violate the constraints. There is no
point in ‘optimizing’ an illegal, unavailable system.

Obviously, Scalar Constraints are good tools to use in contracting,
safety, operations, handover, delivery, and other such critical areas.

I am constantly surprised by how often I see planning methods, that
focus all attention on the planned target level (Goal) but have no
discussion, practice, teaching, or understanding of a Scalar Constraint
of any type.

That includes methods like for example Balanced Scorecard, Quality
Function Deployment [B5], and the like, which at least try to quantify
the main Goal ‘sometimes’. Not always! Other methods of thought, that
do not even try to quantify critical values at all, we need not discuss
here. Total Failure of such methods. [B5, B3, B12].

1.4 Constraints, Binary and variable
There are two main types of planning specification ‘constraints’.

Binary Constraints (see [B1] for more detail on non-quantifiable
back- white requirements) which are are of the do-or-die type. You
either do them, or you do not. You can test-or-ascertain, whether they are
planned, or implemented, or not. They are important for architecture
validation, and architecture choice. Architectures should not violate
binary constraints, without conscious valid permission.

Examples: ‘legal requirements’ (must conform to EU Laws), and ‘Design
Constraints’, ‘You must use Sustainable Products’. Of course in both
cases there may be some leeway, wiggle room. But that depends how you
define ‘Legal’ and ‘Sustainable’. There are black and white areas, even
though the white might be a bit grayish or dirty. See detail here in 10.3.

Scalar Constraints: are ‘potentially’ (always possible actually)
quantifiable. Meaning ‘you can define a useful Scale’, and define a
‘constraint point’ on that Scale. ‘Tolerable level is 50%’.

Simple examples are: ‘you cannot withdraw more than €400 from the
cash machine at once.’, or ‘no actual usage, or payment is due if ,or
whenever, the mobile cellphone network is unavailable less than 50% of
an hour’.

Scalar Constraints are not the target requirements we want to achieve,
for ‘Success’ (see `Goal’) . They define the border minimum and/or
maximum level, permitted for defined purposes (safety, payment,
operation, etc.).

Of course all the tools that apply to all other Planguage ‘Performance
Levels’ apply. Such as: Use of Scales. Use of Tags. Multiple instances.
Use of specified Conditions, Dates, Ranges of Numbers, Source

https://tinyurl.com/SysEntArchBook

Page of 15 292

1.4 Constraints, Binary and variable

Figure 1.4 C. [Source CE]
Scalar constraints (too hot and too cold, or too little finding, unprofitable funding, for example,

serve as one of several tools, to help us determine priorities, for architecture choices.
Page 15 of 27 https://tinyurl.com/SysEntArchBook

Figure 1.4 A [Source CE

All constraints, by definition, limit the possible architecture choices Figure 1.4 B [Source CE]

There are many different types of constraints [P4, CE] and as said,
they consciously restrict architecture choices.

Keep in mind that constraints are set by stakeholders,
with limited priority and power.

So, there is always the possibility that
a constraint can be modified, or ignored

if some higher priority requirements conflict with it.

So constraints are not static or absolute.

But once specified, they need to be systematically dealt with.

If constraints are lower priority, changed, or deleted,
the reasons need to be specified in writing

on the written specification,
so people understand,

see the reasoning,
can argue against decisions,

and can review the current decision.

https://tinyurl.com/SysEntArchBook
https://tinyurl.com/SysEntArchBook

Page of 16 292
Page 16 of 27 https://tinyurl.com/SysEntArchBook

I have noticed that conventional EA methods have no real
systematic approach to this. They hardly bother with any clear
requirements, for a start. I could not find anything about EA
and side-effects doing internet searches. Yet we all know how
important side-effects are in medicines! Side effects can be
very unpleasant and even kill you.

There are two different processes the architect can deal with
for handling side effects.

10.1. ESTIMATION: During the design phase, by
estimating side effects on quantified values and costs
[Figure 1.5 B]. The estimations are rough, order of
magnitude, and preferably based on some sort of
experience, somewhere. See Part 12 for detail.

1.5 Side Effects, a constraint, and opportunity
When an architect is focussing on ‘one quantified value’, or

quality, let us say ‘Security’, and trying to think about
possible security architecture ideas; they can pick some ideas
which seem to satisfy the Security requirements. Good start!

But, then we have to ask 2 basic questions:

1. Can we afford the Security architecture?

2. What are the ‘side-effects’ on all other ‘critical stakeholder
requirements’. For example, does the architecture idea
threaten ‘Usability’, or ‘Performance Speed’?

architecture action; when unforeseen
side effects occur. [P3.3]

Same principle applies to building
architects!

This is theoretical, but better than ignoring side effect
possibilities, and then making bad architecture choices,
with perhaps costly changes; too late.

2. MEASUREMENT : when a small, trial-size, chunk of an
architecture idea, is delivered and integrated into a real
system, maybe at a small scale, then it is possible to
measure, and observe side-effects and unusual costs.
Successful project methods (100% on time, under budget),
like Cleanroom, charge the architect with fixing deviations
from needs-and-expectations. [p3.3].

A practical side-effect measurement
cycle.

Figure 1.5 A. Learning about side-
effects, as a result of an Evo [CE] agile
cycle, with measurement feedback, on
potential side-effect values and costs.

It is the job of an architect to follow up
incremental measures, and take

https://tinyurl.com/SysEntArchBook

Page of 17 292
Page 17 of 27 https://tinyurl.com/SysEntArchBook

Main
effect

Side

effects

Costs

1.5 Side Effects, a constraint and opportunity

Figure 1.5 B. ‘Value Side-effect’s and costs. This is your first peek at a major architectural tool, an Impact Estimation Table
(IET). In this case, 4 architectures (strategies) are rated (estimated), for potential impact on the ‘9 UN Sustainability Goals’. More
later about this method (Part 12). But, I pulled it out, to show the idea of ‘side effects', and ‘costs’. Your architecture impacts all these,
and you had better keep track. And ‘watch your back’.

For detail on how to Quantify
the impacts of architecture on

thew stakeholder requirements

see this book Part 12.

https://tinyurl.com/SysEntArchBook

Page of 18 292

The Efficiency of an architecture is the values it gives, in relation to the
costs it incurs. The Architecture Efficiency can be stated, using a ‘given
set of values’, and a ‘given set of costs’.

The Architecture Efficiency is independent of targets, constraints. But
AE (Architecture Efficiency): (but it can be related to them, by
comparison, if we wish)

1. PROFITABILITY: AE is a way of thinking about the profitability
of the architecture

2. GOOD: AE is a way of defining a ‘good’ architecture.

3. SKILL: AE is a reflection of the skill of the architect.

4. COMPARISON: AE is a way of comparing architectures, and
selecting alternatives.

5. PRIORITY: AE is a way of prioritizing sub-architectures, in terms
of early delivery to a project, or system, so as the conserve
resources; by selecting low resource options first.

6. RESOURCE EVALUATION: AE, forces architects to consider
and document, the various resources, money.time, people and

more; in the short-term (up front) and longer-term (annual,
maintenance, repair, recovery, backup, recurrent lifetime costs).

7. VALUE AND COST SCALES AS %: The Architecture Efficiency
can be calculated using an Impact Estimation Table [B1], and by
also expressing the Value ideas as a percentage of distance from
some status level, to some constraint or target level. See more detail
in the IET details in this book (Part 12).

8. RISK QUANTIFICATION: The Architecture Efficiency
(ArchEff ?) can and shoud be modified with the risk factors for the
estimates, or the measures taken. Built-in to IET (Figure 2.2), are
two Risk factors: the ± uncertainty, and the Credibility (0.0
to 1.0) of the estimate, or measure. ValPlan automatically makes
use of these to modify the Values/Costs ratio to something nearer
the truth [Figure 2.2 A and B].

9. BALANCE TOOL: This V/C efficiency ratio is also a tool to
keep a reasonable architecture balance. There is no point in
maximizing architecture choices, in order to improve values, if the
costs increase disproportionately. And, there is no point
architecting to maximize a single value, if there are disproportionate
side-effects on the other critical values (side effects).

10. SEQUENCE DEPENDENCY: the incremental effects of inserting
a sub-architecture, in a value-delivery step, is dependent on the
system state, and on previous increments. The effects can change
and be corrupted by subsequent increments of sub-architectures.
Tricky nature.

2. Architecture. E!ciency. ∑V/∑C x Risk Some uses.

2. Architecture
E!ciency

Sub-architecture : is any architecture component, which has
been decomposed from any larger architecture specification. Sub-
architectures are particularly useful in agile architecture, where we

need small frequent deliveries, and feedback from architectures.
We can also prioritize the most ‘efficient’ architectures.

Page of 19 292

2. Architecture E!ciency. ∑V/∑C x Risk. Picture of AE

Risks and Uncertainties

Multiple Values

Money Costs

Time Costs People Costs

Weighed Against

Figure 2.1 Multiple Value attributes of an architecture / Multiple cost attributes x Risks
= Architecture Efficiency

X = Arch Eff

Page of 20 292

2. Architecture E!ciency. ∑V/∑C x Risk. Table of AE

Figure 2.2 A ValPlan Impact Estimation Table (IET) adding up the values for each 4 sub-architectures, and adding up the costs, and then modifying the
V/C by 3 different types of risk and uncertainty (see Part 12 for details).

The actual risk numbers are not visible here (quite noisy) , but if we choose to display them, or drip down into cell, they are there to analyze or audit.

Ratios

Efficiency
Ratios
x Risk

Page of 21 292

2. Architecture E!ciency. ∑V/∑C x Risk. AE Bar chart

 Figure 2.3 The table data on previous page (Fig 2.2) Summarized as a Bar Chart. Without any adjustment for Risks.
It is a tight competition for 3 of the architecture options. The risk factors, and using numbers, will finally decide for the 4th on (Workplace Architecture) at a

big difference 3x better(292) than the other 3 (113, 22, 2.8) see bottom line of table above)..

Constraints [Part 1.4] were initially presented as a type of
requirements, coming from stakeholders..

We can also see that constraints are of several different types:
in particular binary constraints, and scalar constraints.

The question here is how the constraints impact our
architecture process, and decision making.

3. ‘ Constraint Respect’ in Architecture

Copied from Figure 1.4 A and B, Source [CE]

Figure 1.4C From [VP Chapter 3]

Constraints eliminate architecture options

1. RESTRICTION INTENDED: Constraints are stakeholder
requirements which intend to restrict your architecture choices
options, for stakeholder reasons.

2. CONSTRAINT PRIORITY: Stakeholders are not all powerful,
they have different levels of power, and consequent priority to
impose constraint requirements; so constraints might be
dropped, waived or modified to satisfy higher-priority
stakeholders, and to satisfy higher-priority requirements (values
and resources).

3. QUESTION THEM: Stakeholders may have ‘changed their
minds’ or ‘never really intended to require a constraint’, so when
constraints are blocking better architecture, the architect needs
to question the constraints, never blindly accept them.

4. REAL CONSTRAINT: The architect can probe to find the
underlying justification or reason for constraints, from the
stakeholder point of view: and can potentially find an
architecture-specification way, to satisfy the stakeholder’s real
needs, while ignoring or modifying the constraint.

5. NARROWER CONSTRAINTS: Constraints may have been
formulated too widely in scope and time, inadvertently. The
architect can suggest narrower constraint formations, which still
fully-satisfy the stakeholders, but which then allow the architect
greater ability to find better architecture, to satisfy the other
requirements.

6. ADJUST LEVELS: Scalar constraints might have arbitrary but
useful levels, which nobody thought would stop good
architecture, at the time they were stated: so the architect should
feel free to question them, and to respecify levels, and
conditions; and get approval for the requirement-change, from
appropriate stakeholders.

7. FUZZY CONSTRAINTS: the terms used in the constraint
specification are very likely ambiguous. They should ideally be
unambiguous of course, but people are undisciplined. So, if an
unfavorable interpretation, is stopping better architecture, then
you can try to make, and get-approved, a clearer interpretation.

8. ARCH TEST: In theory, the architecture process requires all
specified, and all changed architecture specifications to be
subjected to a constraints test: does the architecture spec violate
or threaten to violate any constraint. You will need a clear
requirements checklist of all constraints to do this, and it is a
clear responsibility for the responsible architect to check. The
check should be noted, with results, directly in the architecture
specification object. The ‘Test’ parameter is suitable.

9. REVIEW: the same process of checking architecture against
constraints should be done by independent (of the architect)
reviewers. Using the rule-based Spec QC process [CE, P5].

10. UPDATES: all changes, however seemingly slight, need to be
checked by the responsible-change-owner architect against all
current constraints. And such checks should be noted in the
architecture specification object (Test: Parameter)

3. Constraint Respect in Architecture
3. Architecture Constraint Principles © Gilb 2020

These ‘Arch Constraint’ Principles were originated by Tom Gilb 030920 for SEA book

Scalar Constraints Testing

Let us use a simple example:

———— Here are the Scalar Constraint Requirements——

Constraint Cold: Tolerable: 14 Deg C

Constraint Hot: Tolerable 39.9 Deg C

——- Here is an Architecture Specification, and Notation—

Heater: a thermostatically controlled app and lower C limits electric heater.

 Condition: the limits are set at the constraint levels, for now Turn On
Heater under 14C, and Turn Off at 40C.

 Issue: if the outside temperature itself causes room temperature to exceed
39,9 Constraint, the Heater has no help, alone.

 Mitigation: Include some kind of Cooling device to kick in, or insulation.

 Responsible: Building Environment Architect.

3. Constraint Respect in Architecture
3. Specific methods for Constraint testing against

A design constraint is interesting, because it is explicit about
architecture itself.

Design Constraint: A requirement specification, that demands, or
forbids, something regarding a design. (from Glossary at end of this
book)

Examples:

Focus Constraint: Architecture Constraint: The architecture must all
be clearly focussed on delivering the critical stakeholder value levels
as early as possible.

Exclusion of Architecture: Architecture Constraint: no architecture
component shall originate from, or be in any way dependent on, or
controlled by Nations on our list of Aggressor Nations, or Dictator
Nations. The first priority will be sourcing from Friendly Nations List or
our own Nation and close trade and military allies.

All Constraints shoud be annotated with sources and justifications,
to help us deal with them.

The same architecture processes as listed above apply (Principles
8, 9, 10).

1. The Design Constraints must be clearly labeled with correct type
(Design Constraint, or Architecture Constraint).

2. The architect is responsible in the first instance for being aware of
the current Constraint lists, checking them when any new
architecture component is suggested, and specifying, in direct
connection with the Architecture Component specification.

3. The Architect is responsible for:

1. Noting negative vetting (no known constraints
violated), or

2. doubt (Possible violation of Architecture Constraint XYZ, if xxx) ,
and

3. Positive Vetting (unacceptable at the moment because of the
following Architecture Constraint:XXX.

4. The Architect is at liberty to take constructive action to ignore, or
change the Constraint, with reasons or permissions given.

5. A Specification QC (review using Rules for Architecture Specs [B1,
P7]. Can quantify the defect (Rule Violation) Density, and allow
Exit of the Architecture from the process, or refuse Exit.

6. When review is exited, this fact needs to be annotated on the
version of the Architecture spec, or Arch. Spec. Object
concerned.

3. Constraint Respect in Architecture
3. Specific methods for Constraint testing against architecture:Design Constraint

Decomposition:(+030920) refers to a process of decomposing into
more-detailed sub-components, such as Sub-architectures, and Sub-
Values, any architecture specification objects (including functions,
values, resources, architecture, constraints, time) so as to obtain
smaller specification-objects, for any purpose; such as early delivery,
optimization, separation of concerns (like suppliers), & managing risks.
See Part 4 here, and [B2.Decomposition: https://tinyurl.com/
VPDecomposition].

mid 18th century (in the sense ‘separate into simpler constituents’): from French
décomposer, from de- (expressing reversal) + composer.

MATHEMATICS

express (a number or function) as a combination of simpler components.

"in how many ways can one decompose a number as a sum of squares?"

Note: I am aware of the dictionary definition referring to rotting etc. but I will stick to
the De-compose in the dictionary sense of breaking into separate parts or
components. rather than using terms like ‘break down”, “split up” . I am of the 18th
Century French opinion, Cartesian Decomposition.

4.0 Architecture Decomposition

4. Architecture
Decomposition
From our Glossary

Figure 4.0 A. http://hakobsandbox.openetext.utoronto.ca/part/chapter-8/

Cartesian mosaic.

Figure 4.0 B. http://hakobsandbox.openetext.utoronto.ca/part/chapter-8/

I love this! Qualitative is Quantitative. This is my hero Rene Descartes.

https://tinyurl.com/VPDecomposition
https://tinyurl.com/VPDecomposition

Figure 4.0 C Nice to see the original French wording. “décomposition”

la règle de décomposition : « Le second, de
diviser chacune des difficultés que

j’examinerais en autant de parcelles qu’il se
pourrait et qu’il serait requis pour les mieux

résoudre. » ;

Source: https://1000-idees-de-culture-generale.fr/discours-de-la-methode/

4.0 Architecture Decomposition

4.1 Architecture Decomposition : These Decomposition Principles,

Figure 4.1A. Source tiny url.com/KENGilb. The Knowledge book.

Title

http://url.com/KENGilb

1. System Specification Decomposition can be done at many
levels, for many different purposes.

2. Decomposition is a basic tactic, to describe a complex
system, so as to allow you to focus on critical things early, to
separate cause and effect of your actions better, to allow
incremental progress towards long-term larger changes, and
to limit damage from bad decisions, to small reversible
losses.

3. Most everything can be usefully decomposed when planning
for education and knowledge. One central idea is to get to a
detailed level, which is simple to act on, and to understand.

4. There are many different methods of decomposition, some
more useful that others. My favorite decomposition rules are
that the decompositions are 1. Independent of the others (can
be delivered in any sequence), and 2. That when they are
delivered, they will give a measurable result, in the direction
of our value objectives.

5. You can decompose almost any idea, Objectives, Time
Sequences, Budgets, Strategies, Stakeholders, Actions,
Constraints, Functions.

6. You really do not have to worry much about sub-
optimalizing, of ‘painting yourself in a corner’, with early
small steps. But there are methods for avoiding such
problems, such as having an open-ended architecture: an
environment where change is easy. For example, by not
making irrevocable large payment or contracts.

7. You do not have to decompose the entire system you are
dealing with, up front. You can decompose it gradually, and
focus on critical things you want to prioritize early.

8. Ready-Made decomposition templates can be useful guides
for many kinds of decomposition, for example Stakeholder
hierarchies for an Educational Domain.

9. It is possible to store decomposition templates in apps and
use them to start and then tailor to your current
circumstances (example ValPlan.net)

10. Decomposition of ideas, designs and specifications is a
precursor to physical real world decomposition,
prioritization and sequencing.

3.2 Decomposition Principles: for
education and knowledge.

Figure 3.2.5 Stakeholder hierarchy. Knowledge `consumers.

http://valPlan.net

For 51 pages of detail on my decomposition principles I
recommend the Decomposition Chapter of ‘Value
Planning’ [free, B2.Decomposition: https://tinyurl.com/
VPDecomposition]

Figure 4.1 B
Source Kai Gilb Evo Cycle slides + ValPlan Decomposition Example BCS Workshop London Congestion

Decomposition of architecture, and of value requirements; is a regular agile incremental activity

4.1 Architecture Decomposition : These Decomposition Principles,cin

https://tinyurl.com/VPDecomposition
https://tinyurl.com/VPDecomposition

Here are some basic
decomposition tactics the
architect can apply.

1. Decomposition of Value
Requirements

2. Decomposition of Function

3. Decomposition of
Architecture

4. Decomposition of Delivery
Time

5. Decomposition of
Conditions or Scope

6. Decomposition by
Stakeholder

4.1 Architecture Decomposition : Some basic decomposition Tactics:

Figure 4.1 C Source BCS Workshop, London Congestion Planning

Two levels of Architecture Decomposition, captured digitally in ValPlan as a diagram display.
I instructed the ‘Advanced Congestion Charges’ team to divide up into D1 to D8
And make sure each on delivered value, and was independently implementable.

Here
are some basic decomposition tactics the architect can apply.

1. Decomposition of Value Requirements, By Value and By level, then Cost
Optimization

a. If you have 10 Critical Stakeholder Values for a project, then your Values are
already ‘decomposed’ into 10 different value-agendas.

b. You can choose any one value requirement to start improving, towards their
constraint levels (Tolerable). First priority is survival.

c. When all 10 in turn, have reached Constraint levels, you can turn your attention to
selecting one, and delivering the Target levels (Goal), until all 10 Goal levels (or all
Target levels) are reached. You now have a formal ‘project Success’ (all Targets
reached).

d. You can now turn your attention towards any specified Stretch levels, if you have
enough resources to do so. If you have resources remaining, to do the work of
resource optimization, or if you can ‘rgue for getting such resources’ in addition.

e. You can also attempt resource optimization: which means - reducing costs of
having reached the Target Value levels. Example reducing future Technical Debt.

2. Decomposition of Function

a. You can decompose major function areas into sub-functions

b. And then prioritize some functions for earlier delivery

3. Decomposition of Architecture

a. Decompose major top-level architecture-ideas into smaller (10%) sub-architectures,
which fulfill the following conditions:

b. They will, when
delivered to the real living system (being
incremented towards target value levels),
actually deliver some value increment
towards at least one, planned-value target.

c. They are independent of each other, meaning they can be implemented in any
prioritized sequence, without any of the others being in place yet. Prioritization
freedom.

d. If the ’10% decompositions’ are larger than the desired value-delivery increment,
then continue decomposition, usually until the increment is about 2% of total
resources, or a week to a month of calendar time. Get small increments.

4. Decomposition of Delivery Time.

This sort of time decomposition is often already in place, using various Value statement
deadlines, and various condition combinations. But to the degree it is not in place, we
can (the architect can) decompose, for example a one-year delivery task, into smaller
10%-or-less increments, of about a month each. Increasing the Value levels about 10%
of the way towards a Target level, each month. Roughly is OK.

5. Decomposition of Conditions or Scope

a. By selecting prioritized sets of [Scale Parameter] Conditions you can decompose
into Scope sets; and prioritize a stream of different Scopes. A Simple example:
decompose by Cities in a Nation, and perhaps also by School types..

6. Decomposition by Stakeholder

a. Decompose into sets of stakeholders, to satisfy requirements for.

b. Decompose into sets of Stakeholder to deliver Values (and other requirements) to.

4.1 Architecture Decomposition : Six basic decomposition Tactics: Some detail.

Why is architecture decomposition useful? And why should
the architect do it, rather than an agile project manager/
Product Owner ?

Decomposition Usefulness

1. VALUE STREAM: Decomposition enables us to have an early,
almost continuous value stream, of increased critical stakeholder-
value, getting better, going towards targeted value levels, on time.
This is essential agile, essentially avoiding big bang projects.

2. SIMPLIFICATION: Decomposition allows us to simplify large and
complex systems, into a prioritized stream of small trials or
experiments.

3. EARLY: Decomposition allows us to get extremely early results, this
financial cycle, this election period, before the ‘coach’ gets fired for a
losing-streak incompetence. Winning streaks are so much nicer!

4. ARCH EFFORT SPREAD: the total architecture effort can be
distributed throughout the project, not as a big-bang up front.

5. FEEDBACK: by delivering increments in small and limited
packages, we can get several kinds of feedback (value, cost, human
reactions) which if negative, gives us a fair chance, to adjust our
architecture, or maybe to adjust our false expectations

6. PARALLEL LEARNING: parallel devlopment and implementation
teams can learn from immediately-preceding implementations, and
adjust their own delivery, architecturally, or in other ways (setting
expectations, better followup staffing, etc.)

Why should the
architect do
decomposition instead of an agile ‘project manager’ or
‘product owner’ ?

1. Only the architect, with their complete architecture view, is capable of
safe decomposition, and avoiding sub-optimization

2. The architect would lose control and responsibility, over the changes,
and the whole effort. A construction foreman cannot tell plumbers to
change the plumbing from the blueprint, to save time.

3. The ‘project manager’ would, in reality, have to have architect
training and take architect responsibility for consequences.

4. The architect should not be just a front-end activity. They need to be
directly and quantitatively engaged (like Quinnan in Cleanroom,
[P3.3] at every incremental delivery, and every feedback agile-cycle,
in order to be ‘agile’ in their response.

5. The Scrum agile product owner is not trained for any of this.

4.1 Architecture Decomposition : Reasons why we decompose

4.3 Architecture Decomposition , The ‘Polish Export’ Example

Figure 4.1 E. https://images.slideplayer.com/38/10825192/slides/slide_2.jpg
This exercise was from a two-day workshop in Warsaw, which I held, for a consultancy, and for a group of start-ups,

under their care.
About 60 people attended. They worked in about 13 small groups in parallel. As you can see here, we used ValPlan to

integrate their parallel work in real time. I could track progress, and even display it on a screen for all to see.

Day One we quantified their stakeholder values. Day Two we did the architecture, and late afternoon 2nd day we did
impact estimation of the architecture, on their requirements.

This is my normal 'Architecture Engineering’ Workshop.
These people were excellent workshop students. They dived in and did it right.

It may be ‘student’ work.
But the ‘engineering’ content is far superior to the primitive Enterprise Architecture practices I see internationally.
That is why I am writing this book. To 'reach the parts’ that personal teaching cannot. Share a copy with the needy.

https://images.slideplayer.com/38/10825192/slides/slide_2.jpg

Figure 4.1 D Source Polish Export Workshop 2017 Warsaw. There were 13 parallel teams
(total about 60 people) working on the Architecture in parallel, in a single day, including

decomposition and Impact Estimation.

Decomposition into second level of architecture detail,
 independent value-delivery sub-architectures.

Figure 4.2 Architecture 2nd Level decomposition Polish Export 2017

The 3-person team suggested the ‘Expanding Qualifications Activities’
as their main architecture.

They were then asked ‘to decompose into about 10 sub-architectures’ (D1 to D9)
And later, in the afternoon, to evaluate these sub-architectures,

 on an Impact Estimation Table (see Figure 4.4B below)

Figure: 4.3 Polish Export Example, December 2017

At Top (‘Consists of:’) the
decomposition is digitized, hot
links, Tags to sub-architecture

specification objects.
Notice the 3 levels here (Top

Level, Exp Qual. Act., Consists
of D1 etc.)

<—At left was a text draft of the
decomposition, before they

digitized it

Figure: 4.4 A. Polish Export Example 2017

The Adequate Qualifications Value Requirement.
This one requirement is decomposed using [Scale Parameter] Conditions.

For example Skill Level =expert, and Skill Level = supreme

Figure: 4.4 B. Polish Export Example 2017

The decomposed ‘Sub-architectures’ (D1 to D9) are listed at the top of an Impact Estimation Table
(IET, see Part 12 here for detail on this method).

They are rated for their effect on a set of Sub Values (the Value ‘Adequate Qualifications’ is also decomposed).
The general sum of impacts on all Requirements are in ‘Sum Of Values’.

 The sub-strategies are sorted left to right for total impact. (Dynamic digital prioritization)
The ???? Means the team did not yet estimate the impact of D5. A ‘Known Unknown’. Maybe the ‘best’: Who knows?

Figure: 4.5. Polish Export Example 2017

The Sub-architecture Table (Figure 4.4 B) is here 'converted into a Bar Chart' for simplified presentation. Any spreadsheet can do this.
The Sub-architectures are not yet sorted by effect level (as they are in the Table).

The I figure at the bar top is the range of ± uncertainty, stated together with the estimate.
We can see, visually, and digitally, the best-case and worst-case levels are estimated.

The costs (right-side bar for each sub-arch) are not yet estimated. They will be used to evaluate the sub-arch efficiency.
In other words it is too early to declare a ‘most efficient’ sub-architecture. And prioritize it for delivery early.

The right-hand 5 sub-strategies have not yet been estimated at all. ????, Known Unknowns. More planning necessary.

 X

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Measure

Learn

The sub-solutions are
made ready (developed)

for delivery to real
stakeholders,

next week and every week.
Or in about 2% of budget/

deadline increments
Figure: 4.5 The Gilb Evo ‘Value Delivery’ Cycle

After ‘decomposition, and estimation, we have digital information,
 that we can use, to prioritize sub-architectures, for development and delivery.

Not all sub-architectures require ground-up development.
They may only need activation, or purchase, or permissioning.

In any case ‘Develop’ covers whatever must be done to allow ‘Deliver’, which is
integration in a live system,

so that we can get value delivered, and get feedback on side-effects, costs and
stakeholder reactions (‘Measure’),

Then we can consequently ‘Learn’ how to do things better.
It is not least the architect,

who must be prepared to begin this Measure-Learning loop.
Architects need to make adjustments to the architecture,

in order to deliver sufficient effect, at acceptable costs.
 (Dynamic Design-To-Requirements. [P3.3 Quinnan]

 X

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Measure

Learn

The sub-solutions are
delivered

 to real stakeholders,
in order to experiment,
to test, to pilot, to get

reactions,
NUMERICALLY

and to allow for potential
corrections in design, in

implementation process, and
in lower-priority requirements

Figure: 4.6. The Gilb Evo ‘Value Delivery’ Cycle

Sub-architecture ‘Delivery’ means inserting some aspect of the sub-architecture,
not necessarily all of it everywhere,

into a real system (maybe under tightly-controlled reversible conditions, if something goes wrong.

 The main point is to try to deliver measurable value.
The secondary point is to be able to learn what is real, in main ‘value’, in delivery problems, in side-effects, in

costs, and in stakeholder reactions.
And to quickly react, at architecture level, to make things better.

 X

The sub-solutions are
measured as to effect

on
all the

top
stakeholder

critical
objectives,

and
on their critical cost

increments,
with a view to improving

prediction of
final cumulative costs

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Measure

Learn

Figure: 4.7 The Gilb Evo ‘Value Delivery’ Cycle. Courtesy Kai Gilb.

Engineering (SEA Systems Enterprise Architecture is A. E.) is a quantitative set of tools, there are non-
quantitative feedbacks possible at every cycle, for example complaints, delays, media reactions, insider
competitor bickering, competitor bad-mouthing, political reactions, which are very important for the
architect to take on board, and deal with. They are not directly our values and costs, which we want to

measure. And we can count (complaints) to a degree. But the architect is in charge of the whole big
picture, and must be prepared to sense all manner of feedback, early: and consider architecture tuning,

correction, or even ‘pull the plug’, reverse and find new architecture, before we scale-up a bad
architecture. We are clearly dealing with the ‘pilot studies’ at each increment (but often quite real people

and places) that guide us, as to whether we are ready to scale up, to the ‘country,' and the ‘world’.
This is, I think, the Cartesian Scientific Method [See 4.0, 2 pages].

Real ‘Computer Science’ and ‘Software Engineering’.
A tough, but necessary, discipline to succeed, and to not fail 95% of the time [See Part 0.0 above]

 X

Stakeholders

Values

Solutions

DecomposeDevelop

Deliver

Measure

LearnFrom the measurements,
and

other feedback
from stakeholders

Learn what you need to do
to avoid failure
and to succeed

These 2 diagrams are © kai@Gilb.com

2017, as well as several other illustrations

 used in this talk

Figure: 4.8. The Gilb Evo ‘Value Delivery’ Cycle . Original diagrams Kai Gilb.

We analyze the degree of deviation of values and costs, from our estimates,
and our ± uncertainty or Landing Zone ranges.

We look at other stakeholder reactions, expected and unexpected.

From this, the architect needs to possibly modify, or replace the architecture.
Make no mistake: Systems Enterprise Architecture means (1) you have to look at all possibly useful-an- relevant deviation

signals, from all possibly-interesting sources.
That might mean you need to (2) specify as part of your architecture, the data-collection and measurement devices that

must accompany your other architecture, into implementation and operation.

These are necessarily an intimate and critical component of the architecture. The architect must be trained (to architect
architecture-sensors), and be equipped (like checklists, rules, sensing tools) to do this, as a part of their job.

I would like to explain, in a focussed way, why this ‘continuous agile architecture
method’ (aka Evo, Cleanroom) is so guaranteed to lead to success, or at least avoid failure.

1. We decompose implementation into small ‘2%’ real delivery increments. The biggest
failure we can have, is 2%. When I gamble in Las Vegas, I bet $10 on Red. Walk away
no matter whether I win or lose. Got it?

2. We measure the value results (not the ‘code or stories’ delivered) and the costs, at
each step. Not at the ‘end’, at each step.

3. The architect is in the loop, and has the power to correct the architecture, to
ensure value and costs. All real values-and-costs power, is in the design!

4. We try out the improved architecture immediately, to make sure it works.

5. We do not persist, or scale up, with things that do not work! What was Einsteins’s
definition of a fool?

6. We cumulate value success incrementally. We ratchet it in.

7. We (next Part 5 Prioritization numerically prioritize the best value/cost and risks, so
that even with disappointments, things probably deliver good values, and low costs.

8. If a series of small increments all fail, we clearly do
not know what we are doing. So we stop the
project until a new competent architect, can specify
sub-architectures that can deliver values at good
costs. You cannot fail big (see 0.0) if you stop, when
bad results persist. Albert again.

4.3 Decomposition: part of Success

Why is this Evo/Cleanroom method so good?

A common sense explanation

Robert Quinnan, The IBM Cleanroom Architect

Source: Quinnan, IBM SJ, page 471 [P3.3]

http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan

http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan

4.3 Decomposition: part of Success, the other parts are…
Let me summarize the previous page with the key points related to the Systems
Enterprise Architecture. What are the key things we do to manage success and
avoid EA failure? What are the methods that your EA methods are not doing
(you need the whole set below!)?

1. Decomposition into deliverables, that deliver value

2. Numeric Prioritization: Values, Costs, Risks (IET) [Part 5]

3. Numeric Feedback every increment: measure Value

4. Architect in the loop, with power to immediately change bad
architecture.

5. Cumulate numeric values until Goals reached

6. Power to stop the whole effort, when your incremental failure
frequency is too high.

7. Scale up, only when smaller-scale success is measurably
proven, is l’ocked in’, ratcheted in.

8. If an EA architect ‘cannot even design one simple 2% step to
deliver measurable stakeholder value’, they are not a competent
EA architect. Use this as a test of architecture value knowledge.

’A complex system
will be most successful,

if it is implemented in small
steps,

and if each step has
 a clear measure of successful achievement,

as well as a ‘retreat’ possibility
to a previous successful step,

upon failure.’

(Gilb, Software Metrics book, 1976 p. 214)
(are you listening yet?).

or do you need another 44 years to ‘get it?’

USA edition 1977.

Why have you not heard about ‘Evo’ [Part 5 here] and
Cleanroom, which are decades old,

and well-documented in public?
That is a very interesting discussion. Ask your

professors. ! Anyway, you are HERE now, and this
is the ‘most powerful single thing’ I can teach you.

This, above, is agile,
’ as it should be’.

[VA]

Figure: 4.9 The Gilb Evo ‘Value Delivery’ Cycle viewed as a series of increments delivering values, and using resources.

This diagram (Kai Gilb) is intended to hep you visualize
 the ‘cycles of incremental value improvements’,

concurrent with ‘consumption of limited, budgeted resources’.
In real life, we keep track of this digitally. Even if only in a spreadsheet, as in Figure 5.1.

Each Evolutionary Cycle

consumes a budget of Development Resources.

We need to keep our eyes on

something like 14 critical top-level value-and-resource requirements simultaneously.

So we need tools, tables and numbers to help us to keep track of it all,

both for each architect, and as dispersed teams

P14. Managing Priorities, A Key to Systematic Decision-
making. With Mark Maier, 2005 (paper, 19 pages) http://

www.gilb.com/DL60

B2: Value Planning, Chapter on Prioritization, 60 pages:
https://www.dropbox.com/sh/34llx1a7ckyagxl/

AAA0pDzSxN5WmoP9lOKR0Mpca?dl=0

See these ‘Prioritization’ references in ‘References’, below.

I am going to be brief, about prioritization, in this book, but if you want more
depth on ‘dynamic prioritization’, see these References. Free downloads.

5.0 Architecture

Deciding
what to do
now.
Dynamic Architecture Prioritization

Most people , books and processes have a ‘static’ concept of prioritization. It is usually based on some kind of fixed, subjective,
anonymous, ‘weights’ to indicate the ‘priority’, with no written justification to indicate why the weights were set, let alone who is
responsible.

I find such prioritization methods, anti-agile, weak, potentially dangerous, childish, and simplistic for large-complex systems. Maybe
weights are OK in a simple setting such as personal decisions. But complex evolving systems need a better method.

In one sense, there is a better method; we all know quite well. It is built in to all living things, and especially humans. We humans
determine priorities, not on ‘fixed weights’, but on our multiple values, and our consumption of limited of resources. We do so in
changing circumstances, in unpredictable, situations, using quite ‘multidimensional value’ thinking, combined with quite multi-
dimensional resource-thinking. Biology is pretty good at this. It is obviously in our DNA, and we can get better at it with experience.
So, that is my Dynamic Architecture Prioritization: we just need to make it operational for the architecture environment. That is
easy, because the SEA Language has tools built in to do it, formally, transparently, rigorously, for complex evolving systems.

http://www.gilb.com/DL60
http://www.gilb.com/DL60
https://www.dropbox.com/sh/34llx1a7ckyagxl/AAA0pDzSxN5WmoP9lOKR0Mpca?dl=0
https://www.dropbox.com/sh/34llx1a7ckyagxl/AAA0pDzSxN5WmoP9lOKR0Mpca?dl=0

5. Architecture Prioritization

 “Work implies not only that somebody is supposed to do
the job, but also accountability, a deadline and, finally, the
measurement of results —that is, feedback from results on
the work and on the planning process itself.”
Drucker wrote in ‘Management: Tasks, Responsibilities, Practices’.
Peter Drucker,: Business Author (1909 Vienna - 2005 Claremont,
California).

It is amazing how much of what I am suggesting in the SEA framework, is condensed into this single sentence.
Drucker is one of the most respected management writers. I met him once, and got him to sign his book.

He was delighted (in San Diego) to talk to a ‘fellow European’.

Let me rephrase him, so you cannot miss my point:

Doing work is not the central point of work.
Somebody has to take responsibility for the results.

And the results are MEASURABLE!
And there is FEEDBACK from the results.

And the FEEDBACK is to be used, to impact the planning process itself!

Wow, this man has his head screwed on straight.
Is he ‘agile’? With quantified result-feedback to help planning?

Yes. Real agile management, as it should be.

 Drucker outlines an ‘enterprise’ framework: the same one I am suggesting in this book.

http://www.brainyquote.com/quotes/authors/p/peter_drucker.html
http://www.brainyquote.com/quotes/type/type_businessman.html

1. DECISION OPTIMIZATION: You want the best
architecture choices, even if you have to work a little
harder to get them.

2. TRANSPARENCY: You want, or need, your
prioritization decisions to be transparent, because of
enterprise governance, and law.

3. VALUE SPEED: You need to speed up delivery of
values.

4. RESOURCE MINIMIZATION: You need to ‘be seen’ to
minimize resources, which are needed to 'get to your value
levels’, for your economic and ethical reasons.

5. LEARN: Complex technology or social environments
demand, that you can constantly learn how your
prioritization decisions, actually worked out, and why. So

the prioritization methods themselves need continuous
updating.

6. RESPONSIBILITY: You need clear ways to assign
responsibility to individuals, and groups, for their ‘priority
decisions’.

7. POLICY LOYALTY: You would like to be sure that
enterprise prioritization policy is actually followed, and is
not ‘someones intuition’.

8. DIGITIZATION: you would like to integrate
prioritization digitally, with all other forms of planning.

9. AUTOMATED DECISIONS: you would like to
automate the ‘selection of prioritized architecture specs’;
and you want to ‘enable a consistent stream of priority
evaluations’: where you can use a more-complicated set of
factors, than normal human decision-making. For
example, avoiding over-simplistic ‘focus on only one value
and one cost’.

10. AGILITY: Rapid response to changed situations
(Agility). You are interested ‘rapid-response decision-
making to changed circumstances’, for public-health or
economic reasons, for example.

The
assumptions

5.1 Architecture Prioritization

5.1 Architecture

“I can't change the direction of the wind,
but I can adjust my sails

to always reach my destination.”
Jimmy Dean (August 10, 1928 – June 13, 2010) was an American country
music singer, television host, actor, and businessman.

This poetic statement is a good analogy:

set clear long-term quantitative goals (“my destination”),

 and in spite of competition, negative stakeholders, and regulation (“direction of the wind”),

I can use feedback and course correction (“adjust my sails”).

This sounds like ‘Dynamic Design to Cost’ I am discussing here ([P3], Cleanroom, Evo [B1])

Agile prioritization

http://en.wikipedia.org/wiki/Country_music
http://en.wikipedia.org/wiki/Country_music

You have already, in this book, seen most everything you ‘need to
use’ in order ‘to prioritize’. Here is the dynamic agile
prioritization framework.

1. THE DECISION BASIS

a. Value requirements: quantified, structured, rich.

b. Resource limits, budgets, long term, short term, all
types of resources.

c. Constraints: knowing when a choice is invalid.

2. THE CHOICES

a. Architecture, Sub-architecture.

b. Selected stakeholders

c. Selected Values, for selected Conditions.

3. THE DECISION POLICY ELEMENTS

a. Objectivity: truth, or the truth about bad evidence

b. Multiple-Factor Consideration

c. Values, Resources, Risks

4. THE DECISION PROCESS

a. Total automation

b. Automatic suggestions. Human approval.

c. Automatic suggestion options, human responsible
choice

d. Deviant /exception choices, based on 'documented
justification’ and ‘responsibility’.

e. Artificial Intelligence, learning about best-policies.

The Mechanics

5.2 Architecture Prioritization

5.2 Architecture Prioritization: ‘Fact-Based Architecture’,
anyone?

“Facts are stubborn things;

and whatever may be our wishes, our inclinations,
or the dictates of our passions,

they cannot alter the state of facts and evidence.”

John Adams (1735-1826), 2nd President of US

PRIORITY PRINCIPLES

from Value Planning book, Chapter 6.

Principle 6.1 You might Get it all, if…

If you have infinite resources, you can have it all –
‘choices’ are not necessary

Principle 6.2 DYNAMIC PRIORITY:

‘Static initial prioritization’ is unrealistic – things
change

Principle 6.3 PRIORITIES POLICY

You need a clear prioritization policy, and it can
change and vary.

Principle 6.4 BANGS FOR BUCKS: THE EFFICIENT
PRIORITY PRINCIPLE

A good, general, prioritization policy, will deal with the critical few
objectives, the most powerful strategies, and their numeric
relationships, of values-to-resources.

Principles 6.5 Data-Driven Decisions

 An Impact Estimation Table gives you a systematic overview of the many
related facts, about your potential priorities.

Principle 6.6 LONG-TERM, AND SHORT-TERM VALUE

An Impact Estimation Table will help you prioritize, in the short-
term and long-term

Principle 6.7 Estimates are a good start, measurements
are better.

An Impact Estimation Table can help keep track of ‘real feedback’
and of your ‘incremental progress’ towards Targets..

Principle 6.8 PRIORITY LOGIC.

Priority can be ‘computed’ by an Impact Estimation Table

Principle 6.9 NATURE’S PRIORITY

First priority is survival, to get to ‘tolerable levels’. and avoid ‘constraints’.

Principle 6.10 Dreams are not enough

 You cannot commit to mere ‘stakeholder wishes’, they need to
be implementable in practice.

5.3 Architecture Prioritization: Principles From: Value Planning, Chapter 6, on
Prioritization, 60 pages: https://

www.dropbox.com/sh/34llx1a7ckyagxl/
AAA0pDzSxN5WmoP9lOKR0Mpca?dl=0

See this, for detail on these principles

https://www.dropbox.com/sh/34llx1a7ckyagxl/AAA0pDzSxN5WmoP9lOKR0Mpca?dl=0
https://www.dropbox.com/sh/34llx1a7ckyagxl/AAA0pDzSxN5WmoP9lOKR0Mpca?dl=0
https://www.dropbox.com/sh/34llx1a7ckyagxl/AAA0pDzSxN5WmoP9lOKR0Mpca?dl=0

5.3 Architecture

“I believe in evidence.

I believe in observation, measurement, and reasoning, confirmed by
independent observers.

I'll believe anything, no matter how wild and ridiculous, if there is
evidence for it.

The wilder and more ridiculous something is, however, the firmer and
more solid the evidence will have to be.”
 Isaac Asimov (2 Jan 1920 - 6 Apr 1992).

http://todayinsci.com/A/Asimov_Isaac/AsimovIsaac-Quotations.htm

There is no one ‘prioritization policy’, or ‘rules for how we
should prioritize’.

It possible to have any useful number of policies for
prioritization; and to apply them at any opportune time in
the architecture process.

You can prioritize specific stakeholders. You can prioritize
specific values. You can prioritize specific architectures.
You can prioritize finding architectures which make use of
abundantly remaining resources, as you near the end of
an incremental delivery sequence, which has depleted some
resources, but not others.

This agile fact (use of remaining resources), is very
interesting, because it means that you might be forced to
select, totally different architectures than initially
anticipated, late in the delivery process, as you approach your
Target levels, because you ‘surprisingly' have depleted some
resources, and have more than enough of other resources.

The corollary of this proposition is, that premature selection
and fixed decisions, for some ‘otherwise attractive
architectures’, might be disastrous for the resources,
towards the end of an incremental value-delivery sequence.

This is the old ‘decision-making principle’, of delaying final
decisions about anything, until the last possible moment, so
that your have a maximum of facts available, to make a smart
decision. That is why Presidents Procrastinate about using
Nuclear Weapons.

A good general policy for prioritization is to try to get
maximum value for minimum resources. Similarly, but
trickier, is maximizing a ‘set of Values’ (like the top-10
critical value-objectives for a project), in relation to a ‘set of
the top 5 resources’. Values/Costs. This is built in to the
ValPlan tool, and can be easily tracked on any spreadsheet.

Even more useful, because we have so-little credible data
about our architecture’s value attributes, and about
architecture cost attributes, in high tech, is to take into
account the riskiness of the data we use, to make a priority
decision.

We use the ± Uncertainty, and the Evidence Credibility (0.0
to 1.0), which is part of the SEA Language (B1), and built into
the ValPlan app, to take risks in consideration. [See Part 7].

Priority
Policies

5.4 Architecture Prioritization: Policies

5. Architecture Prioritization

I don't think that you can invent on behalf of
customers unless you're willing to think long-
term, because a lot of invention doesn't work.

If you're going to invent, it means you're
going to experiment, and if you're going to
experiment, you're going to fail, and if you're
going to fail, you have to think long term.
Jeff Bezos, Amazon (1964-)

What is he saying about enterprise architecture?

It sounds to me like my ‘value agile, Dynamic Design to Cost’ idea [P3] again

Suck it and see, oops, sorry ‘scientific experiment’.

Creating a highly profitable enterprise, by a man who did it.

There is a limit to usefulness of architecture models, even the
exciting Impact Estimation Table. They have a number of
advantages we will discuss below. But when you are
operating in short agile delivery cycles, anywhere from ‘today’
to a week, to 2% - it is then often much easier to actually try
out an architecture in practice, by delivering a subset of it, to
the incremental value-delivery process, and measure and
observe what happens, when that sub-architecture ‘hits the
fan’, with your real system, and your real stakeholders.

You could study an architecture idea theoretically, for six
months, to decide ‘accurately’ if you wanted to prioritize it.
But it might well be faster and cheaper, and a lot more
credible, to simply try it out, in a delivery cycle, and get
answers within a day to a week.

This is not a new idea in scientific research and engineering.
That is why they do lots of experiments and prototypes. But I
prefer to do things to the real system, not an artificial
prototype. I know how to do that safely, and I only trust real
systems, to give me the whole truth (almost).

So,
for

example, when the value-to-cost estimate numbers for
architecture options are ‘close’ to each other, or ‘not
significantly different’, you can, pretty safely, pick any one of
them, and try it out. Have fun, go with your emotions, at that
point.

The tables and numbers will increase the chances, that what
you choose, is OK, and that it will probably not be a disaster.

In even very-large projects, we will make a draft Impact
Estimation table, with 2 levels of detail (like the Polish ones
above in Figure 4.4 B) on a single day. Then we will, same
week or next week, act on the table, for prioritizing deliveries.
We will get some value, and a lot of learning: and if we are
smart, we will be able to do very little harm, and some good.

We can update our estimates, as we get practical measures,
‘from our own system’ feedback, for use in scaling up, and for
implementing similar architectures.

It is also worth noting, that if we prioritize estimated high
values, in relation to estimated low costs, we should be able
to build up a very-rapidly growing set of values, at relatively
low costs. That is the experience of my clients, and others like
IBM Cleanroom, using essentially the same methods as mine
[P2, P3].

Suck it and See
5.5 Architecture Prioritization: Reality Beats Modelling

5.5 Architecture Prioritization: a business case

Figure 5.5 Value Planning at Confirmit. Source [VP, Ch 6.7]. And case [P2]

Confirmit, Developed 25 vastly improved product qualities every quarter, and blew international competition away.

There is a lot I could explain about the detailed experiences in this real small enterprise case. But see [P2] for that. I will point out one
interesting detail here. This % Improvement column, is the 9 out of 12 weeks incremental value-measurement of delivery levels, for 12

values. 100% means ‘meeting the competitive Goals’, set by Marketing, for release to the international market, after 12 weeks. Notice that
after 75% of the time to deadline (9 of 12 weeks) most of the Goal levels are reached (100%) or surpassed 146.7%). The average is better

than 75% (ahead of the curve, not late). The remaining 25% (3 week cycles) will be used by the 4-person team to attack any value less
than 100% (dynamic prioritization). This process (‘Evo’ was credited officially on their website) was repeatable for the long term.

Confirmit quickly got such superior competitive qualities, that they wiped out, and bought up, their international competitors. A Viking
Raid indeed. This is ‘agile as it should be’. The sub-architecture designs were delegated to the implementation team themselves. We

trained these ‘genius engineer implementors’ for 1 day, in our methods, and left them with our books as supplements. No ‘certifications’.
Just measurable enterprise results, in their share price. Board members sent us to other of their personal corporate investments.

Enterprise architecture, not IT coding. But the coders were designers too. Degreed engineers most of them.

Quantified product quality
requirements

Dynamic Fact-Based Prioritization has the
following advantages:

1. You can safely launch into delivering a
value stream almost immediately, as
opposed to months and years of
analysis, design, architecture and other
bureaucracy, before results appear.

2. You have constant control over the
profitability of your project since you are
always delivering very high values, at very
low costs.

3. As you deliver and measure results in
small delivery cycles, you are building up
facts about everything (architectures,

values, costs, stakeholders). So you are
making smarter-and-smarter
prioritization decisions, based on the new
facts.

4. The use of tables and numbers, allows
you to realistically consider, multiple
values and multiple costs
simultaneously. Only 1 in a million,
genius people, can do that in their head.

5. The use of tables and numbers, and
digitization; with ability to look at the
architecture from many levels and
perspectives, makes it practical and
economic to share the decision-making
and prioritization with parallel multi-
national teams, over time. The SEA
Language model, supported by apps is
your Enterprise Memory and Conscience.

6. As discussed earlier, this dynamic
prioritization has demonstrated
remarkable ability to succeed, and to not
fail. Quite different from the failure rates
for EA generally [Part 0.0]

5.6 The
Advantages

5.6 Architecture Prioritization

5.6 Architecture Prioritization

Figure 5.6. Source [VP] Figure 6.5 E Real planning example. A ‘bottom line’ summary of the estimated impacts of a set of strategies, where the cumulative
impact on all top-level critical quantified performance objectives is calculated. Sometimes with respect to the estimated set of budgeted costs. Sometimes with
respect to risks (evidence, sources, ± uncertainty ranges) with the strategies. The bar chart is automatically generated from the IE Table information using the
Needs and Means tool made by Richard Smith, London [URL73]

Courtesy Incognito Startup Project, Oslo (Gottfried Osei) January 8 2016.

Value and cost modeling is helping a startup founder, avoid wasting months, on low-value architecture

In Systems Enterprise Architecture, we call this ‘Value Stream process’, ‘Evo’. This is a short form of Evo-lutionary Value Optimization. It
has a nice acronym too, EVO.

Evo is widely-recognized as the inspiration for agile methods, the most widely-cited is my 1988 book [G15], but I published the ideas much
earlier (1972-1976, SEA 4.3). [VA]. See tree chart at end of Part 6.

At least the concept of small increments, rather than big bang, was picked up by agile-istas. But there was a total failure to pick up my
explicit point about quantified values. The essential idea is, and was, that the ‘small cycles were incrementally driving values towards
long-term quantified value-targets’. Nothing new, not even in software [Gilb 15, free download Chapter 15].

This concept, Evo, can be used to develop the attributes of almost anything, at any scale, including the Enterprise Scale [P14], as proven for
example for 20 years, for 21,000 engineers, at Intel.

Evo can be used, both on small product-development projects, and on corporate-critical major-flagship corporate-survival product lines, as
well as giving a successful quality discipline to 21,000 engineers (you can enterprise architect the work force, not just the IT), as it was
done at Intel.. We had similar large-scale adoptions at a number of other Corporations, my favorites were HP, and Ericsson. See these, and
other Corporate Clients, named and anonymous, in many publications, for example [VP, which has detailed HP and Ericsson Case studies
in References].

The Evo concept is ancient and simple, and it is built-in to nature: ‘work towards long-term survival, and then to success-goals,
by constantly adjusting behavior, and your environment (‘architecture’), and getting feedback that you are on track’.
That’s it, pretty much.

6.0 Architecture Value-Stream Delivery

Constant prioritized flow of
measurable values to stakeholders

Basic Concepts

Figure 6.0 A. Notice the Egyptian, real, wall carving, showing comparison to a standard, as an engineering process for building the pyramids.
Evo is constantly measuring against quantitative value requirements. Value-Driven Architecture.

Evo is a cousin of Statistical Process Control, Plan Do Study Act and other smart processes

Figure 6.0 B. Failed large complex projects is not special for IT.
And better architecture itself is not the solution noted.

It is better requirements and small increment feedback!

And (this was 1994, well before Agile was popular) concluded that the new project management model had to
be more iterative. He later worked with Project Management Instituted

A page from the book

An iterative model. Spiral

Figure 6.0 C. Source: Decomposition by Value slides MASTER MAY2016

The Best-Selling Management Author and Corporation analyst Tom Peters has long observed that rapid practical iterations is the way to success in the
enterprise. See also Steve Blank for same emphasis https://steveblank.com

https://steveblank.com

Figure 6.0 D. Source: [G15]. And Evo Tutorial Master, slide 59

The Evo ideas are not new.

 ‘work towards long-term
survival,

and then to success-goals,
by constantly adjusting

behavior,
and your environment

(‘architecture’),
and getting feedback that

you are on track’.

Figure 6.0.1 E. Re Quote the basic idea of Evo from SEA 6.0, here above.

The evo basic idea, as simply put as I can.

Figure 6.0. E. From [CE, p. 309]

Design Components increment to the larger architecture

1. frequent delivery of system changes
(steps)

2. steps delivered to stakeholders for real
use

3. feedback obtained from stakeholders to
determine next step(s)

4. the existing system is used as the initial
system base (never build a new system!).
See next 6.1 pages for detail.

5. small steps (ideally between 2%-5% of
total project financial cost and time)

7. steps with highest value and benefit-to-
cost ratios, given highest priority for
delivery

8. feedback used ‘immediately’ to modify
long-term plans and requirements and, also

9. ..to decide on the next-step total-
systems approach (‘change anything that
helps’) -

10. results-orientation (‘delivering the
results’ is prime concern)

The detailed
tactics of Evo

6.1 Architecture Value-Stream Delivery: Evo

Figure 6.1 source [CE, p. 306]

6.1.1 Architecture Value-Stream Delivery: Evo, from existing system base

4.the existing system is used as the initial
system base (never build a new system!)

The above Evo tactic, 4., is worth a separate page of
explanation and justification.

It seems to rarely be asserted or discussed, in the agile,
architecture, or project-management literature.

Make no mistake, this is a major Enterprise Architecture option
(‘build from current system’, or ‘build new from scratch’).

I have practiced this since 1960 in all my projects, and in all
my client advice, happily. No exceptions. Just common sense.

But if I look at practice around me, such as large government
projects, they are always building big-bang new systems, and
never ‘architecting to deliver incremental (like monthly) value’
measurably to the existing system. Then they always put
considerable pride in being ‘agile’ by building the new code
using Scrum or SAFe. They are also failing catastrophically in
public, and they do not seem to understand why. This is why,
the architect did not adopt the Evolutionary Value Delivery
architecture at the top-level of architecture, and then architect
to find, and deliver, increments of sub-architecture, moving us
towards the Critical Stakeholder Value Targets.

Here are the advantages of real ‘Evo’: delivering to the
‘old system’

1. The old system, whatever its flaws and problems and age,

exists now, and is operating now. It cannot suddenly be
recreated on new platforms.

2. The ‘old system’ has a great deal of practical knowledge in it,
and surrounding it, for users. This is near impossible to
analyze and re-create correctly.

3. If you focus efforts on improvements, stakeholder values,
that are critical: and build these into the existing system,
you are far more likely to get the desperately needed
improvements this year, instead of a public shame failed big
bang project in 5 to 8 years.

4. Incremental changes can be inserted now, in such a way that
they are relatively portable, to any later new underlying
technology architecture we might insert later. This is not
least an architecture planning concern, to make sure this is
so.

5. If your architects claim they cannot do this, I claim they are
incompetent, uninformed, and unimaginative: and you need
better architects.

6. A good analogy is cities, and buildings. We do not wipe out
or abandon London, with all its strange attributes: and build
a new London elsewhere. Even single buildings, think
Buckingham Palace, Houses of Parliament; are improved, but
not wiped out, and replaced.

7. If your architects cannot even succeed in delivering
incremental architecture, and consequent incremental value in
the short term, on a small scale; then they are surely
incompetent to rebuild the system anew big bang.

6.1.1 Architecture Value-Stream Delivery: Evo, from existing system base

Jobs [- 5%,+10%]Week [-10%,+20%]

6 wk 8

[-15%,+30%] out of range

1 5

11 wk 9 1 7

19 wk 10

25

25

wk 11

wk 13

wk 12

42

55

55

55

55

3

6 3 7 3

6 4 6 9

wk 14

wk 15

wk 16

wk 17

17 3 5

31 3 2 6

37

39

37 48

50

11

9

4

4

1

1

1

1

6

6

2

Figure 6.1.1 A. Source Evo Tutorial MASTER 1 day

The GxxLine PXX Optimizer EVO team proudly presents the success of the Timing Prediction Improvement EVO steps.
Shown are the results of the test set used to monitor the improvement process.
The size of the test set has grown, as can be seen in the first column. (In the second column the week number is shown.)
We measured the quality of the timing prediction in percentages, in which –5% means that the prediction by the optimizer is
5% too optimistic.
Excellent quality (–5% to +10%) is given the color green, very good quality quality is yellow, good quality is orange, & the rest
is red.
The results are for the ToXXXz X(i) and EXXX X(i), and are accomplished by thorough analysis of the machines, and
appropriate adaptation of the software.
The GXXline Optimiser Team presented the word document below to the Business Creation Process review team.

The results were received with great applause. The graphics are based on the timing accuracy
scale of measure that was defined with Jan Verbakel.

Value Delivery Increments in practice, to an existing system

Frank van Latum,
The Manager

Here are the false understandings that inhibit people from
delivering to the old systems.

1. They are afraid of disturbing a fragile old system with lots of
technical debt. (think every change creates 3 bugs).

• If your system is really precarious, you, by definition, have ‘a

critical value-set related to safe changes’ like ‘Stability’ and you
are not managing them with architecture.

• You can set quantified quality objectives for maintainability, and
availability, for example; and systematically evolve the system.
(Confirmit [S14] did exactly this, see [CE] for ‘how generally’,
Chapter 5)

2. They do not have qualified staff who understand the older
technology, or indeed who even want to continue using the older
technology (think COBOL).

• There are lots of people, who for the right pay and conditions

will be happy to learn and master old systems.

3. Architects have no competence in analyzing and specifying
quantified stakeholder-value requirements. So they are not
‘culturally enabled’ to think in terms of, for example, increments
of security, or increments of stability.

• Retrain or remove! See Parts 1, and 10 of this book).

• Architects who cannot do this are ‘seriously incompetent’ to deal

with the old system, and worse they will not be able to design in
qualities of this kind, to future systems. Future systems will be
fragile, unstable and full of technical debt. Bad architecture last
time, is the main reason for your fragile systems today.

• See [S14] for Confirmit and other experiences, and how to
quantify technical debt in practice.

4. The architects are not trained and do not know, and do not
‘know that they do not know’ how to usefully decompose big
architecture ideas, into a value-stream of sub-architectures
(see Part 4)

• You are hold the training manual in your hands. Train them to
decompose into bite-sized value-delivery steps. Do not 'let loose’ on
your enterprise, megalomanic architects.

• Ignorance with Architecture Certification is still ignorance, and it is
no excuse. It is ‘certifiably’ insane.

5. Management (think CTO level) is no wiser, and has the illusion
that the certified architects know what they are doing. They
don’t, in my opinion. But the boss feels they have to believe the
counterarguments for ‘why we have to build a new system from
scratch’.

• Ask your architects some simple questions [12?] like. ‘Show me how

fast and how well-proven, your last architecture assignment,
actually delivered stakeholder value to the system. Or come back
when you have some useful experience’.

6. The ‘digitalization’ workforce and suppliers (think, large
consultancy bodyshops) are delighted to take your money for
billions, and for years, without ever having to make real
improvements at all. In Norway, Parliament has had to intervene,
and the Press (Akson 2020) to stop the corrupt madness. And
corruption is what they call it. Are you corrupt, or just ignorant?

• Stop using these techie terms. (Digitization, Agile) Start calling it

the Critical Rapid Value-Improvement Program, and have the
results quantified at all times. Report to the government or Board
what your results are ! [S12, ICL Case]. Managers and architects
should do this.

Ignorance about value agile

6.1.1 Architecture Value-Stream Delivery: Evo, from existing system base

Faith:

I did not know anything about his system, at that point. But I expressed confidence that there is always

a solution, and bet that we could find one during the lunch hour.

The Case:

He started our lunch by explaining that his weapons research team made a radar-like device that had

two antennas instead of the usual one, which had their signals analyzed by a computer before
presenting their data. It was for ship-and-air traffic, surrounding the ship it was on.

The Shift of attention:

 I made a stab at the “value results" he was delivering, and

who his “stakeholder” was, two vital pieces of insight for
making Evolutionary delivery plans.

“May I assume that the main value you provide is “increased accuracy of perception”, and that your
“stakeholder” is Her Majesty's Navy?”

"Correct." He replied.

"Does your 'box' work more or less, now, in your labs?", I ventured. (Because if it did, that opened for

immediate use of some kind)

"Yes", he replied.

"Then what is to prevent you from putting it aboard one of Her Majesty's current ships, and ironing out

any problems in practice, enhancing it, and possibly giving that ship increased capability in a real
war?" I tried, innocently.

(The sub-architectures are to put profile data aircraft-by-aircraft, in priority sequence into the system)

"Nothing!", he replied. And at that point I had won my bet, 20 minutes into the lunch.

Notice the “method” emerging from this example:

1. Identify the real stakeholder,

and plan to deliver results to them.

2. Identify the real improvement results

and focus on delivering those results to the real stakeholder.

in other words:

1. Do not get distracted by intermediaries (the new ship)

 think (other stakeholders) “The Royal Navy” or even “The Western Alliance”.

2. Do not get distracted by the perceived project product (the new radar device for the new ship):

 think “increased accuracy of perception”.

6.1.1 Architecture Value-Stream Delivery: Evo, from existing system base

Figure 6.1.1 B. Source: Gilb slides, The craft perception value increases as we add
craft templates in priority sequence.

Once, when holding a public course
on the EVO method in London,
a participant came to me in the first break (He was head of a Naval
Research Lab)

and said he did not think he could use my ‘Evolutionary method’.

Why?

"Because my system is to be mounted on a new ship not destined to be
launched for three years.”

The Barrier:
"It cannot be done until the new {thing, building, organization, system}.... is
ready in some years time”.

A real story about Evo

Did you notice I applied the
Backroom/Frontrrom concept, to

solve the problem? [6.1.4]

The ‘Evo’ (Evolutionary) Method for Project Management.
 Process Description
1. Gather from all the key stakeholders the top few (5 to 20) most critical goals that
the project needs to deliver.
Give each goal a reference name (a tag).

2. For each goal, define a scale of measure and a ‘final’ goal level.
For example: Reliable: Scale: Mean Time Before Failure, Goal: 1 month.

3. Define approximately 4 budgets for your most limited resources
(for example, time, people, money, and equipment).

4. Write up these plans for the goals and budgets
(Try to ensure this is kept to only one page).

5. Negotiate with the key stakeholders to formally agree the goals and budgets.

6. Plan to deliver some benefit
(that is, progress towards the goals)
in weekly (or shorter) increments (Evo steps).

7. Implement the project in Evo steps.
Report to project sponsors after each Evo step (weekly, or shorter) with your best
available estimates or measures, for each performance goal and each resource budget.

On a single page, summarize the progress to date towards achieving the goals and the
costs incurred.

8. When all Goals are reached: ‘Claim success and move on’
a. Free remaining resources for more profitable ventures.

Figure 6.1.2 A. Source and more detail http://www.gilb.com/DL487 also from [CE] Ch.10

The Evo process standard

Figure 6.1.2 B. Source [CE, 1.3]
Note the rectangle with arrow is the Planguage icon for a ‘process’

The Competitive Engineering book formal definition of Evo, with the Front
End, Strategic Management Cycle. See Later the essentially same front end as

the Evo Project Startup Week, which is a practice we evolved.

Figure 6.1.2 C. The Gilb Evo Cycle

6.1.2 Architecture Value-Stream Delivery: The Evo Process

http://www.gilb.com/DL487

Figure 6.1.2 D. Source: Evo Tutorial Slides MASTER 1 Day 2011

If you evolve in small steps, you can work out the bad interactions, one by one.
If you do too much at once, you get far too many bad interations, and cannot understand or deal with

them, which leads to failure.

The ‘design sprint’ [VR] has become a popular idea for
starting small projects, like product website. I am sure it is
good for simpler projects, and simpler people. But I could
never like it or do it, because it knows nothing about
quantifying critical values and costs. Quantification is
absolutely essential for serious large-scale and complex
systems.

I have for a long time (since at least 1990 or earlier) had
something similar, in the sense of ‘a week to start up a
project’. But my startup week is suitable for very large and
complex enterprise architecture efforts.

It starts on the first day, with quantifying the top-10 critical
stakeholder objectives, as requirements. We do the best we
can on day one. Often several parallel teams work on a few

requirements. But at end of day one, we deliver a one-page
summary of the quantified objectives.

And we do our architecture, the top-10 architecture ideas, to
meet those targets, on the second day. A one-page summary
of the architecture is the output of day 2.

The third day, we evaluate the architecture, as best we can,
against the objectives and costs.

 The fourth day, we decompose, and primarily try to find a
next-week practical delivery-step, and try to deliver a real
improvement, to a real system.

The last day, we present the ideas to management for
approval, to try to deliver value, next week.

At McDonnell Douglas Aircraft (Now Boeing) we did this for
25 aircraft projects, 5 each week in parallel [S8]. Nothing to
do with IT. The US DoD Project was an Army Personnel IT
system.[http://www.gilb.com/DL451].

 All this succeeded, as far as I can track them. Never heard a
problem, and got plenty of written praise from top
management {See references].

How much
planning up
front?

6.1.3 EVO STARTUP PROCESS: The 1st Week

http://www.gilb.com/DL451

Figure 6.1.3 A. Compare this to Fig. 6.1 B

You can think of this as a smart front-end to Scrum. But Scrum itself has to add it to the Scrum framework.
Add quantified value-and-cost management.

It is not there in the Scrum framework. Jeff Sutherland has publicly recommended these ideas [VA].

We quantify, structure, and are very clear about the most critical requirements, stakeholders and architecture, for a week, using Evo.
Then we dive in and ‘just do it’ in cycles, until we reach requirements targets, or run out of resources.

6.1.3 EVO STARTUP PROCESS: The 1st Week

6.1.3 EVO STARTUP PROCESS: The 1st Week

Figure 6.1.3 B. Source: An Agile Project Startup Week slides.
Also: 111111 Unity Method of Decomposition into weekly increments of value delivery.

Case Study US Dept. of Defence. (10 min slides). http://www.gilb.com/DL451

The Startup Week as practiced at US Dept of Defense, to save 8 year old system, which failed in Iraq War I

http://www.gilb.com/DL451

6.1.3 EVO STARTUP PROCESS: The 1st Week

Figure 6.1.3 C. Source: An Agile Project Startup Week MASTER.
Also 111111 Unity Method of Decomposition into weekly increments of value delivery.

Case Study US Dept. of Defence. (10 min slides). http://www.gilb.com/DL451

Real 3rd Day evaluation of the Architecture impacts on the targets and costs.
The commanding General said it was the best planning method he had ever seen, and he “went to West Point”.

http://www.gilb.com/DL451

I am a great believer in the potential to decompose almost any architecture
suggestion into usefully-small value-delivery sub-architectures, as
presented earlier in Part 4, Decomposition.

But I have to reluctantly admit that there are situations where this cannot
be done, for example because there is a long delivery-time of a component
(think military helicopters), or ‘the new vaccine has not been scientifically
approved yet’.

So, we long ago, found a useful solution (a major user was Philips
Corporation of Holland [VP, and Figure 6.1.1 A]). I call it Backroom/
Frontroom.

Architectures which cannot immediately be decomposed into small, say
2%, increments, are placed in a Backroom, analogous to a Kitchen, until
they are, in fact ready for deployment, as an increment (‘Vaccine approved’,
for example).

In the meantime, in the Frontroom, the stakeholder-facing part of the
organization, we deploy value-delivery increments, which are ready for
deployment, and also deploy previous ‘Backroom architecture’ which has
become ready for deployment.

There is in fact, usually more than enough, awaiting for small-cycle
deployment, that we are not worried, just because something is ‘brewing’ in
the Backroom. We have our hands full, for enjoying the value increases,
and feedback, from the deployable increments.

The main point is, that in spite of some holdups, outside
of our control, we can invariably deliver a value stream to the
stakeholders, and ‘feed the hungry lion’ as I say.

Ultimately, all realistic architecture is released from the Backroom, for real
implementation.

Let me summarize, or re-phrase this: you can always create an early (2nd
week usually) frequent (weekly, 2%) real measurable value stream, even
though some architecture elements, cannot be delivered initially.

I find it quite amazing how, for example, large government projects, like
health and military systems [G: Governeering:Government Systems
Engineering Planning. https://tinyurl.com/Governeering] totally fail to
understand this simple idea. They drag on for years, at great expense, and
fail scandalously.

The politicians do not understand that they can demand evolutionary value
delivery on all such systems. The technologists and suppliers are quite
happy to waste time and money. They all seem to get paid well for failure,
and never get sued or jailed, as they should be, for at least professional
incompetence, and then for ‘theft’ of public funds (waste). Not to mention
‘killing citizens’, indirectly, for lack of better systems.

We are experiencing such a scandal, right now as I write (Akson E-Health
project, Norway), and recently NAV (Social Security) system, same
problems. They are ‘coding agile’, and have no concept of incrementally
delivering value.

This makes me angry and sad as a citizen, and technologist. But of course
there are even much worse nasty things governments do to their citizens on
a daily basis, so ‘don’t complain’. Norway is a wonderful place to live, and
with Oil money, has plenty to waste on large IT projects.

How to get a regular value stream, even
when an architecture cannot be decomposed

into small 2% value delivery cycles

6.1.4 EVO Backroom Frontroom

https://tinyurl.com/Governeering

Figure 6.1.4 A. Source Gilb Slides Backroom Frontroom concepts subset

A simple model of the backroom and frontroom relationships

6.1.4 EVO Backroom Frontroom

Figure 6.1.4 B. Source Gilb Slides Backroom Frontroom concepts subset

Another simple model, from Kai Gilb

6.1.3 EVO Backroom Frontroom

Figure 6.1.4 C

•Management control of value

•Management control of costs

•Enforcing business thinking

–Instead of technical thinking

•Flexibility for management to re-
prioritize projects and expenditure

•Improves system maintenance
culture

–Because you ‘maintain’ at each step

–Very low risk to do it and see if it
works

Evo Attributes
and Costs

6.2 Architecture Value-Stream Delivery: Evo

Figure 6.2

The incremental nature of the Evo process, means that it is a
good tool for organizational process improvement.

1. The Principle of ‘Capablanca’s next move’

There is only one move that really counts, the next one.

2. The Principle of ‘Do the juicy bits first’

Do whatever gives the biggest gains. Don’t let the other stuff

distract you!

3. The Principle of ‘Better the devil you know’

Successful visionaries start from where they are, what they have

and what their customers have.

4. The Principle of ‘You eat an elephant one bite at a time’

System stakeholders need to digest new systems in small

increments.

5. The Principle of ‘Cause and Effect’

If you change in small stages, the causes of effects are clearer

and easier to correct.

6. . The Principle of

‘The early bird catches the worm’

Your stakeholders will be happier with an early long-term stream
of their priority improvements, than years of promises,
culminating in late disaster.

7. The Principle of ‘Strike early, while the iron is still hot’

Install small steps quickly with stakeholders who are most

interested and motivated.

8. The Principle of ‘A bird in the hand is worth two in the bush’

Your next step should give the best result you can get now.

9. The Principle of ‘No plan survives first contact with the enemy’

A little practical experience beats a lot of committee meetings.

10. The Principle of ‘Adaptive Architecture’

Since you cannot be sure where or when you are going, your first

priority is to equip yourself to go almost anywhere, anytime.

Evo Principles
6.3 Architecture Value-Stream Delivery:

Figure 6.3 B. Tom at Da Vinci birthplace 2007

Curiosità

Insatiably curious, unrelenting quest for continuous
learning

Dimostrazione

Commitment to test knowledge through experience,
willingness to learn from mistakes. Learning for ones
self, through practical experience

Sensazione

Continual refinement of senses. As means to enliven experience

Sfumato

Willingness to embrace ambiguity, paradox, uncertainty

Arte/Scienza

Balance science/art, logic & imagination,

whole-brain thinking

Corporalità

Cultivation of grace, ambidexterity, fitness, poise

Connessione

Recognition & appreciation for interconnectedness of all things and
phenomena, Systems thinking

Figure 6.3 A. 7 Da Vinci Principles: (Evo!) , Source: Michael Gelb,

How To Think Like Leonardo Da Vinci

7 Da Vinci Principles: (Evo!)
<-Gelb, p.9

Leonardo, proudly described
himself as:

Uomo senza lettre
(man without letters)

Discepolo delle esperienza
(disciple of experience)

“To me it seems that those sciences are
in vain and full of error which are not
born of experience, mother of all
certainty, first hand experience which in
its origins, or means, or end has passed
through one of the five senses.”

Figure 6.3 C. Source: Gelb page 78

Da Vinci on Practical Feedback Principle

“Although generally recognized as the
greatest genius of all time, Leonardo
made many colossal mistakes and
staggering blunders.”

“Despite mistakes, disasters, failures,
and disappointments, Leonardo never
stopped learning, exploring, and
experimenting.

He demonstrated Herculean persistence
in his quest for knowledge.”

Leonardo wrote:

“I do not depart from my furrow.

“Obstacles do not bend me”

“Every obstacle is destroyed through rigor”

Figure 6.3. D
Source: Gelb

Leonardo’s persistence principle

Figure 6.4 Source. Gartner Group 2018

6.4 Historical Roots

 6.5 Architecture Value-Stream Delivery: Evo not needed when…

The ISO Risk standard [P15: ISO 31000:2018] defines risk
as

risk
“effect of uncertainty on
objectives”
This same standard is used in academic papers
discussing EA and Risk [R16]

The Committee of Sponsoring Organizations of
the Treadway Commission (COSO) view of ERM (Enterprise
Risk Management) is

that
"Every entity exists to provide
value for its stakeholders”

So, with these key words, ‘effect, uncertainty,
objectives’, and then ‘value, stakeholders’.

You will recognize that these concepts are central to this
book and my SEA ideas.

7.0. Architecture Risk Management

Risk and Enterprise
Architecture

Figure 7.0. Source [R16]

I am going to use little time, complaining about the conventional EA [VR,
where I make specific complaints], and its real detailed approach to risk. I
find it ‘underwhelming’. It starts and ends with the total lack of
quantification, and clarity, for ‘stakeholder value objectives’. ‘Game
Over’. I will assume the reader sees my point, and sees in detail, in this book,
what I mean by ‘quantifying stakeholder value objectives’.

 So I will concentrate on how the System Enterprise Architecture (SEA) can
help us manage risks, better than what I have seen in the EA literature.

Should any reader care to enlighten me about equally good or better risk
practices in EA, I would be happy to learn. But my clients and students have
not done so yet, in spite of decades of provocation.

If you do not know some EA Architecture practices better or equal, would you
consider adopting SEA ? It’s free, or do you prefer to pay for mediocracy?

7.0. Architecture Risk Management

1. GOAL THREATS: All uncertainty in enterprise
architecture poses a threat to the planned objectives
outcome, or delivery deadline.

2. LEARN FAST: The best way to deal with risk is to, early,
frequently, and measurably deliver a value stream: learn
fast how architecture actually works, and correct the
architecture.

3. EA RISK: The total net risk of damage to enterprise
stakeholder valued results, is a function of the degree and
type of threats, the threat mitigation (avoidance,
detection, thwarting), the degree of actual attacks, attack
mitigation, and the damage mitigation.

4. EA MITIGATION: the Systems.Security Enterprise
Architect cannot do much but to analyze and observe the
initial threat stream, type, frequency and potentially
emerging threat; but based on this, they can architect
comprehensive cost-effective mitigation strategies.

5. WHOLE SYSTEM: The EA architect, in analyzing and
designing damage mitigation must absolutely take a full
systems perspective: including world politics, world
economy, world health, national political and economy,

psychology of stakeholders, antagonistic stakeholders,
long term costs not just to the enterprise but to all
stakeholders, ethics, corporate policy, sustainability, and
more. IT Geeks need not apply.

6. LIMITS TO MITIGATION: threats are unlimited,
unknown, unpredictable, as are their damage
consequences. You cannot possibly deal perfectly with
them all. So, you are going to have to do a cost-benefit
prioritization of the sequence you will invest in damage
reduction.

7. ENGINEERING RISK OUT: You will need to systems
engineer it. But you can deal with common and dangerous
threats. You can invest in cost-effective mitigation. You
can be responsible and transparent about the Risk
Management process.

8. RESPONSIBILITY: The Board Level, in particular the
CEO, is responsible for making Risk Architecture happen,
and charging the CTO, CIO and other C-level executives
with visibly doing the Architecture, making the
investments and being very transparent about what they
are doing, and not, and why. Empower the Architect.

9. PREVENTION: upstream prevention mitigation is the
most cost-effective line of defence.

10. SECURITY: is intimately integrated with Risk.

EA Risk Principles

7.1. Architecture Risk Management Principles

7.1. Architecture Risk Management: EA Risk Management Principles

Figure 7.1 A. Source [P18, VP Chapter 7]

Risk of unmitigated damage to any enterprise and related stakeholder values , is very much up to the security
and risk architecture

There are many areas of mitigation, designed by the architect, which can prevent, reduce, capture and
compensate

 for threats to the Enterprise
The CTO and CIO question is: have you invested in doing the architecture for mitigation properly?

It is non trivial
1. You have to set quantified objectives and risk mitigation budgets.
2. You have to ‘self-insure’ for some risks and damage
3. You have to prioritize building the mitigation architecture, in value/costs sequence.

Threats: A ‘threat’ is something that can
potentially cause some degree of project
failure, lack of success or negative
consequences. It is distinguished from an
Attack, which is a successful penetration of
the Threat into a system. The Threat has
‘materialized’ in practice. It is distinguished
from a Risk, which is a result of the combined
effect of a Threat/Attack and the
corresponding defenses (Mitigation)

7.1. Architecture Risk
Management: EA Risk
Management Principles,
Stakeholders

Figure 7.1 B
Source P19 (Stakeholder Slides)

A checklist of stakeholders for the
architect to analyze with regard to

Risk Management

Damaged
stakeholders

Mitigation
stakeholders

Damaged
stakeholders

Damaged
stakeholders

Mitigation
stakeholders

Threat Analysis
stakeholders

Threat Analysis
stakeholders

The methods in this book are absolutely all ‘risk
management’ methods. They've are all directed at
making sure the enterprise objectives, at all levels, from top
down, are delivered. That this the official definition of risk,
above. Delivering the objectives correctly.

In several of my Referenced books, like Value Planning, 100
Practical PlanningPrinciples, Technoscopes and Competitive
Engineering you will find 10 Chapters sub-divided into 10
sub-chapters. In other words 100-components each. Most of
those 100 components consist of several (5 to 10) sub-tools. I
promise you that there is an argument that every one of those
100 components will help you deal with risk, and in
particular with the defined risk for Enterprises of avoiding
‘deviating from their critical stakeholder value objectives'.

The all-is-risk argument is made in my writings directly, or
should be fairly obvious to the intelligent analyst. I have
never heard any of my students or readers, all very
intelligent, challenge me on that point, and I have been
making it for over 30 years. You can try, but make an
interesting bet with me, and be prepared to lose.

So a great deal of the detailed ideas, are right here in this
book. The stakeholder points I just made above, the
objectives with scales and points on the scale partly discussed
above, and in much greater detail below. Not to mention in
the extensive, mostly free, References. Don’t waste our
energy denying what I am claiming. Get going and get some
experience in the 100 Tools, and then make up your own
mind.

Having dispensed with the details, by claiming they are all
other written pages, case studies, and experiences here and
in References; let me try to give an overview, right here.

Risk Methods -
totally pervasive in
SEAL

7.2. Overview Architecture Risk Management: specific
risk methods

 The SEAL (Planguage) Main Tools for
Enterprise Risk Management.

1. STAKEHOLDERS: The rich stakeholder-analysis tools, far beyond
wide-spread ‘User’ and ‘Customer ideas’. (Figure 7.1B). Each missed
stakeholder is a big risk. These stakeholders are all directly aligned to
one-or-more quantified values, which can be adopted as enterprise
objectives.

2. QUANTIFIED VALUES: The rich structures and quantification of
stakeholder-value objectives (SEA 10. See this for more detail).

And see the value analysis methods (’12?', ‘Planalysis’, see
References) that come with SEA Language. These ‘stronger than
most every other’ methods are designed to make sure the Enterprise
knows exactly what their objectives really are, and the Enterprise
Architect has extremely-clear architecture targets.

3. IET: The Impact Estimation Table gives direct quantified
connections, estimated and measured, between enterprise
objectives and enterprise architecture. Goodbye EA fuzzy blah
blah [VR].

4. Evo: Evolutionary stakeholder value delivery is the ultimate real-
time guarantee that we will deliver Enterprise Objectives, largely
without fail, and experience says, exceeding expectations. The first 3
tools (Stakeholders, Quantified Objectives, Impact Estimation) lay the

groundwork for this. They make pretty sure that the architecture
matches the multiple objectives, and resource constraints. But then
the 2% value delivery steps, guarantee that we cannot get big
problems and deviations, before we get credible feedback, and an
architects opportunity to adjust the architecture in the right enterprise
target and cost directions.

Risk Methods -
the big 4

7.2.2 Architecture Risk Management: specific risk
methods areas. “Risk comes from not

knowing what you're
doing”
― Warren Buffett (1930-)

http://www.goodreads.com/author/show/756.Warren_Buffett

Figure 7.2.2. Source: Value Planning [VP] Figure 7.4 A. One aspect of dealing with value delivery early and frequently is that the value is
in place much earlier. The main point however is that you can be sure you really did get value from your strategy ideas. You do not risk that
they totally fail you, as so many projects actually do. I like Erik’s remark in his Foreword to my ‘Competitive Engineering’ [1] book: ‘This stuff
works!’. Erik Simmons and his staff have trained over 20,000 Intel Engineers to use Planguage in their daily work. They volunteer to learn it, it
is not a required enterprise ‘standard’.

Value for costs is more or less guaranteed: No Risk.

7.2.2 Architecture Risk Management: specific risk methods areas.

Let me introduce Harlan Mills. The ‘Leonardo da Vinci’ of Software
Engineering. He was given a very difficult ‘Enterprise’ problem to solve, by
his IBM Federal Systems Division management.

 “ Every time we win a government contract, as lowest bidder, with
fixed prices, fixed high quality and fixed deadlines, we lose money.
Can you fix that? “

His ‘Cleanroom’ team cracked the problem, over a ten year period. Proving
on real projects, that they could deliver the most-advanced technology,
military and space, ‘on time and under budget’ – every time, years in a
row. This is not a’project success, alone. It is an Enterprise success!

Not bad. In fact, ‘perfect project management’!

Why can’t we all do as well? We can if we follow their recipe! The key ideas
are the same as this book is preaching (Same as Evo). His world was
software, but the principles we are offering for consideration here are
universal.

IBM was not in the marketplace ‘selling’ this ‘Cleanroom’ method (as they
do ‘Watson’, ‘Rational’ and other method products, which are more widely
adopted).

IBM was not in the ‘methods’ market at the time. So most managers never
heard of it, and its remarkable results. Sometimes the best things in life
are free!

Let Mills speak for himself [IBM Systems Journal 4/1980, P3]

“Software Engineering began to emerge in FSD” (IBM Federal
Systems Division, later a part of Lockheed Martin Marietta, and other
mergers later) “some ten years ago, in a continuing evolution that is
still underway:

Ten years ago general management expected the worst from
software projects – cost overruns, late deliveries, unreliable and
incomplete software

Today management has learned to expect on-time, within budget,
deliveries of high-quality software.

A Navy helicopter ship system, called LAMPS, provides a recent
example. LAMPS software was a four-year project of over 200
person-years of effort, developing over three million, and
integrating over seven million words of program and data for eight
different processors distributed between a helicopter and a ship in
45 incremental deliveries.” (Note, that is about 2% of time to deadline
for each delivery step).

“Every one of those deliveries was on time and under budget.

A more extended example can be found in the NASA space
program” (Space Shuttle Ground Software).”

- “Where in the past ten years, FSD has managed some 7,000
person-years of software development, developing and integrating
over a hundred million bytes of program and data for ground and
space processors in over a dozen projects.

- There were few late or overrun deliveries in that decade, and
none at all in the past four years.”

Wow!

Perfect Large-scale long-term high-tech project management. Are you that
good? Go back to the failure rates, persisting today, cited in 0.0 above.

It is worth noting, that everybody else in the FSD Enterprise Domain,
space and military at that time, was doing ‘big bang’ (aka Waterfall)
projects, and failing; at taxpayer expense, as IBM also did previously. MIlls
is using ‘agile as it should be’, with quantified values, like for ‘availability’
driving them. [S6. IBM FSD MIlls and Quinnan Slides. http://concepts.gilb.com/
dl896 (see also P3.1 to P3.3)]

No Risk. No damage to objectives. Profit. Reputation.

7.2.3. Architecture Risk Management: Space and Military Experience

http://concepts.gilb.com/dl896
http://concepts.gilb.com/dl896
http://concepts.gilb.com/dl896

The Enterprise Architecture (EA) is
expected to

1. ‘be aligned’ (itself, EA), at all times with
changing Enterprise Objectives, stakeholders,
constraints, and strategies.

2. EA should help the Enterprise become
internally aligned with internal management
Objectives, stakeholders, constraints, and
strategies. At all levels and sections of the
enterprise.

3. Aligned: means

1. not in unnecessary and destructive conflict
with each other,

2. and is supporting synergy with each other.

8.0 Architecture Enterprise
Alignment: Basic ideas

Figure 8.o
Source https://integrispa.com/blog/the-four-dimensions-of-lean-culture-enterprise-alignment/

For Vision people see

[B3:VE.Vision Engineering]. .(free download, 60 pages)

Alignment of Values and Visions

Aligned: Enterprise Architecture is synchronized with all
significant external and internal Enterprise forces, and plans:
updated, precise, supporting, relevant, non-conflicting,
transparent, and future oriented.

Source TSG draft definition 100920

https://integrispa.com/blog/the-four-dimensions-of-lean-culture-enterprise-alignment/

Rules and Policies of

Enterprise Architecture Alignment.

1. PRECISE OBJECTIVES: All objectives, visions, and value
requirements must be unambiguously clear, structured
and quantified; so that correct alignment is
possible at all.

2. DIGITAL OBJECTIVES: All objectives, will be
digitally intelligible, so that automatic alignment,
and precise alignment is technically possible, in
large dispersed enterprises.

3. ALL KNOWN RELATIONS: All objectives, in their
specification object, will contain all necessary
specification about relationships to everything
currently known, like stakeholders, strategies,
and responsibilities. Links will be digital.

4. ALIGNMENT RESPONSIBILITY: The specific ‘position
or organizational unit’ which is responsible for making
alignment, keeping alignment, and quality controlling
alignment; will be explicitly named in relevant
specification objects, with a digital link to them, and to
their specific updating responsibilities, for specific sets
of specifications.

5. TABLES SHOW ALIGNMENT DEGREE: The degree of
alignment of any supporting ‘means’ to our

‘ends’ (strategies, architecture), or ‘means objectives’, to
any next level, or scattered related objectives, will be
accounted for on an Impact Estimation Table for clarity.

6. MULTIDIMENSIONAL ANALYSIS: The alignment will
never be a narrow, one-to-one relationship alone, but
will always be multiple-objectives and costs; impacted

by multiple-supporting means-objectives or strategies.
Side-effects will be clearly accounted for.

7. THEORETICAL AND REAL ALIGNMENT: There
will be two major temporal concepts of IE Table
alignment: 1. Planned and Estimated Alignment, and
2. Actual current alignment, as measured.

8.INTERNAL AND EXTERNAL ALIGNMENT: There
will be two major scope concepts of alignment: (1)
Internal in the enterprise, and (2) from Enterprise to
the external world of stakeholders, and all forces we
must contend with. May the force….

9. ALIGNMENT EXECUTIVES: The CEO is ultimately
responsible for the mechanisms and their quality, for
alignment. Supported by all C level executives. F:
Financial, M: Marketing, I:IT, etc.

10. ALIGNMENT EFFICIENCY: The strategies to track
alignment, and promote alignment, will always have a
clearly enumerated value-for-costs, or ROI. The whole
purpose is meeting Enterprise objectives better

© Tom Gilb 100920

8.1 Architecture Enterprise Alignment: Rules

OK we can quantify our ‘soft’ values. We can then quantify
our designs’ impact on those values. What can we do with
such tools? They are very general tools, like the Swiss Army
knife.

They can be used for any systems, in any domain, large or
small. Even the largest [S13, P14]. As to the smallest, they can
run on intuition, and do little damage.

The range of applications is without any known limit,
according to my experience. I can hardly think about any
challenging new problem,(and I seem to find them weekly)
before I must bring out these tools to think about it.

I suppose Planguage is a tool similar to language and
mathematics, a systems engineering language, a planning
language.

The origin of Planguage was about 1960-1 when I worked at
an insurance company (Storebrand, Oslo) which wanted my
help selecting their first electronic computer. I realized that
there was far more to acquiring a computer than its speed,
which was the dominant talking point then. There were
things like the degree of long-term service, and maintenance,
that could be expected, and whether the supplier would at all
be in Business in 5-years time. So I realized that the
evaluation of computers, would be the evaluation of many

soft values, not all about the hardware. I also knew my client,
the Actuaries were both interested in numbers, and
interested in the long term. So I drafted something looking
very much like an Impact Estimation table, minus many of
the developments I have shared with you in this book. I was
not yet an expert on turning values into numeric scales. But I
treated it as a multi-value multi-cost problem. We made a
good choice (IBM 1401) and IBM did indeed stay in business
to this day. None the others did. That was 60 years ago. And I
used the time since, to improve the methods. And to try them
out in a wide variety of applications. It made life quite
amusing.

So, this first application of multi-dimensional evaluation was
for comparing alternative options.

Other applications followed, a list on the next page. Here is a
list of the basic applications.

1. Comparing complex options.

2. Building and evaluating a total architecture.

3. Managing a project.

4. Presenting complex systems, selling them.

12.3.1.15 Estimating Future Levels of Value Quantities. IET

Oh yes, 'Planning Brexit’, too
(true!)

Or at least making it clear that it was
no simple matter.

Figure 12.3.1.12 A

1. THINK: Impact Estimation (IE) makes us think, research,
and present; much more objectively and clearly, about any
type of means (strategies, options, designs, architecture,
solutions).

2. QUANTIFY-V X QUANTIFY-S: IE combines two major
quantification ideas: the quantification of all critical
stakeholder values, and the quantification the impact of
solution attributes, on those stakeholder values.

3. OVERVIEW: IE being completely numeric, means that we
can compute a number of interesting ‘overview numbers’,
such as the overall values for costs with regard to risks,
and the safety margins for the overall set of ideas.

4. RISKS: The IE Table allows us to specify risks, see risks,
cumulate overall risks, and to prioritize based on risks.

5. CREDIBILITY: the detailed collection of Evidence for an
estimate, and the source of the evidence, can be turned into
a Credibility number. This makes us able to see how risky it
is to believe the evaluations of the IE model. We can even
look at the average credibility rating for 100 or more cells
on a 10x10 table.

6. AUDIT: any type of audit, review, or Quality Control, of
any plan, is structurally made much-easier, by organizing
the plan into an Impact Estimation Table (IET).

7. PRIORITY: The IET gives us a systematic set of data for
initially, and then iteratively, prioritizing the agile
implementation of sub-solutions, based on their cost-
effectiveness, and risks. No fixed subjective weights!

8. LEVELS: You can model ‘any size of complexity of system’,
using a hierarchical set of IE Tables. Usually starting at the
top with about 10x10, or a page, then decomposing values,
and strategies, as needed, for detail.

9. ACCOUNTING: An IT Table can be used as a project
budget, and then measurement of values and costs
delivered incrementally can be used as the ‘accounting
system’ for progress of the project.

10. AI: the structure, defined concepts, and quantification in
an IE Table, and in Planguage, is a basis for artificial
intelligence of many sorts, for example automated design
or architecture; and automated Quality Control.

This was conceptually pioneered, with still-working apps,
by Lech Krzanik, Aspect Engine, on an Apple II in Forth,
for his PhD, in late 1970’s [B15, 1988]. We think we are
ready to move forward on this, with the advent of AI, Big
Data, Internet, ValPlan and GraphMetrix tools.

12.3.1.16 Estimating Future Levels of Value Quantities. Principles of IET.

12.3.1.16
The Impact Estimation Principle:

Any solution’s effectiveness can be quantified
for any critical stakeholder-value quantified-

requirements.

We do not need opinions.
We do not need soft undefined values.

We do not need assertions without evidence
We do not need suggested solutions without responsible

people.
We can think like engineers about large complex systems,

which must use engineering thinking to avoid failure.

13.
Background
Specifications

Chapter 13.0 Background Specifications.

‘Background’ Planguage specifications are added to the
core requirement (the ‘really required’ stuff), and intermixed
with those ‘core’ requirements (Scale, Tolerable, Goal).

Background specs are part of a SEA Language (Planguage)
culture which believes that rich ‘written specs’ beat ‘human
memory’. Digital written information persists better, and
allows ‘smarter’ apps.

This is true, as projects scale up, and become
geographically decentralized. Simple ‘local group’ methods
(yellow stickies, standup retrospectives) do not work any
more.

People have to find project information, and share their
own project-information wherever they are, and whenever
they are ready to do so.

Using written info, and especially digital info is the right
direction.

Specifications are not simply drafted once, they accumulate,
over time, from many sources, and much feedback and
learning. We need to deal with the dynamics of this,
digitally.

At the same time, even in the largest of projects, there is a
right time for video face-to-face meetings, to build trust,
motivate, and ferret out project info, that itself needs writing
down, to share with everybody, sooner or later, if useful.

 One data-detail can be the difference between project or
value failure and success.

 Capturing digitally is cheap, compared to forgetting a
critical detail.

I think it is important to distinguish between old-
fashioned written cultures (paper, copies, issued
infrequently, available to few), and a digital written
culture (internet, app based, continuously updated,
from anywhere on the planet, structured for
automated analysis, connected to intelligible data
sets).

 Some of the prejudices against written bureaucratic
cultures (and quite right these negative reactions
were) were based on the 1990s pre-internet
experiences. ‘Written’ is not now, what it was then.

Our Planguage/SEAL requirements ideas grew up,
using word processors and spreadsheets, but before
the internet.

By looking at the capability and potential of the
ValPlan.net app, we can see a powerful current capability,
and also a potential, for well-structured, well-defined
requirements (and other architecture project specifications).

We detest unnecessary bureaucracy! But some degree of
‘bureaucracies’ payoff, and we have to know the difference.

Figure 13.0 Source [VP] Fig. 3.1

Background specs help
 manage Stakeholder Relationships

http://ValPlan.net

Figure 13.0.1. A Comparison of Written and Oral Communication Attributes. https://
thebusinesscommunication.com/difference-between-oral-and-written-communication/

I excuse the poor grammar and spelling!

It is a full set of ideas.

And it makes the point that the written/oral
comparison has many factors to consider.

Even before we look at digitization.

Most of the ‘Basis’ attributes could do with a
Scale definition.

And then we could numerically evaluate the
modes of communication (after they too were
better-defined and technologically updated).

https://thebusinesscommunication.com/difference-between-oral-and-written-communication/
https://thebusinesscommunication.com/difference-between-oral-and-written-communication/

13.1 The General Purposes of Background
Specifications.

The ‘Background Spec’ purpose is to enrich the
requirement spec with information, that

• Might never otherwise get specified in writing

• Might be ‘lost’ in earlier or later documents, like slide
presentations and Business Analysis

• Might not get used seriously unless they are ‘in your face’
in the spec.

• Might be difficult to retrieve from other documents, or
from human memory

• Might be well-known to some, but unknown to others

• Might be correct and updated for some people, but
incorrectly remembered and not updated for others.

• Is needed for ongoing, real time, incremental steps, of
value delivery decision-making

• Is needed for risk management, prioritization, taking
responsibility, motivation, reviewing efficiently: and any

other purposes on the path to successful value delivery,
without being delayed by poor decisions, based on lack
of correct information.

• Is needed to enable automation of certain aspects of
requirements, such as Quality Control, prioritization,
presentation, and risk detection. Yes AI. A complete
Specification ‘Object’. A ‘mini’ spec object database.

• Background specs help to manage the updating and
changes to the spec.

• Help us to follow our adopted defined Rules (specification
standards for requirements).

We have already encountered some Background
Planguage specs earlier in this book. For example
Ambition, Type, Tag, Stakeholders, Status, Level, Past.

User Stories have two kinds of background, built in to their
structure: who is the stakeholder, and why do we need this
requirement (Justification, or Rationale).

Good, but not nearly enough

Simple, but ‘too simple’ for serious purposes in large
Enterprise Architecture systems.

Background
Value Spec

Core
 Value
spec

The majority of useful architecture planning
objects specifications, are not the core specs,

they are the Background Specs

Figure13.1.1 : Core Value specification,
surrounded by supporting requirement
information (background).

13.2 Risk Management with Background
Specs

Risk management means, reducing the losses in your scope
of work, due to any causes which might somehow be dealt
with by better planning, and by better plan specification.

Ericsson of Sweden had a deep insight when in their
Quality Policy (see quote in VP Book) they declared that risk
management is the job of every engineer, at all times.

I also believe that in the area of requirements, every little
detail of specification has a potential of unleashing, or
ignoring, risks.

Risks are usually very much larger in consequence, than any
cost associated with reducing the risks. We do risk
management by having more-solid requirements craft-
capability. Attention to detail.

Let me be more direct. I believe that every detail in this
book, are potential tools for reducing risks, systematically.

This is not a co-incidence. I am by nature a very risk-adverse
person, so I designed these methods to deal with
requirements-and-systems risks.

Let me use as an example: a major idea in this book.

Quantification of the Value requirements.

• If a Value Requirement is not quantified,

• you immediately incur a huge and unnecessary risk,
because

• Nobody can understand the requirement, in the same
way.

• People will waste time and money working towards their
private interpretation of the requirement (‘better
security’).

• At worst, the entire project can fail for this one thing
alone (plenty of projects fail now) [0.0]

Some other scattered examples of Background spec
details, related to Risks

• If the requirement is not tagged, giving it clear-long term
identification, then it might be missed in test planning,
and be delivered in failed condition.

• Too many value requirements are just bullet points on a
slide

• Tagging a spec, means we can reuse it, and avoid the
risk of different non-identical-copies, or versions, of the
same spec.

• If we do not give the Source of a requirement, which
stakeholders want it (and why), then quality control of its
current validity, is less likely, and bad requirements might
get implemented.

• If we do not capture the Ambition Level (the blah blah)
and its source, then we risk losing alignment with higher-
priority objectives, and their possible changes, like from
new management.

• If we do not assign a Specification Owner to each single
requirement, there is a high risk that no one will be

qualified and motivated, to keep the spec properly
updated, and to keep it high quality.

• An ‘orphan’ specification, without an Owner.

http://www.apple.com

Figure 13.2. some Background Specifications have been added to the Security specification. Owner, Assumption, Issue, Dependencies, Risk, Rationale

Hopefully you can guess how such specs help us to see and manage risks

13.3 Prioritization using background specs

In my ‘Evolutionary Value Delivery’ culture, all Value
requirements are not equal. We are going to start a stream
of value-improvement deliveries. So we have to figure out
which Value deliveries are smartest to deliver, early.

There is no simple method to help us decide what to do
first or next, which will be realistic, and to give the most
satisfactory results. There are far too many different
dynamically-changing factors, which influence a
prioritization decision.

So, our best suggested approach today is to collect
prioritization-information, directly in the requirement
specification. This background information can be used to
help you decide which Value levels to prioritize.

A simple example might be that Value X has 3 Stakeholders
interested, one of whom is the Government, and Value Y
has has 2 stakeholders interested, one of whom is your
boss.

You cannot deliver both, in the coming time period, you
must choose one. What would your boss advise?

Wait, it is never so simple! Value X delivery has an
estimated return of 300% annually, and Value Y has only
120%.

The bad news is that there are many more factors to
consider in this case.

 You can always simplify, and ignore those factors. But
sooner or later, somebody is going to ask why Factor XYZ
was not considered (‘Sales with Potentially large new
customers’, for example).

Prioritization
data

Risk Data
Admin Data

Relation Data

Core
 Value
spec

The majority of useful architecture planning
objects specifications, are not the core specs,

they are the Background Specs

Figure13.3 : Core Value specification, surrounded
by supporting requirement information
(background).

Figure 13.3 : Source: Masterclass, Katowice, exercise on spreading knowledge nationally. 2018. This chart uses data in the Value
Specification, along with a lot of other factors to optimize the flow of value for money.

An automated sort, best option at left, for delivering the greatest set of
values, at the lowest set of costs, with regard to risks and uncertainty.

Figure 13.4 : we added 4 examples of background Parameters to the User Error Frequency Value spec. Hopefully you can see that each one might contribute
to a prioritization decision.

See: Stakeholders, Cost Impact, Value Impact, and Rationale

Adding prioritization parameters, to the ‘objective’ specification object.

13.4 Responsibility
and Motivation with
Background specs

We now can see some
more information about
the roles and power of
the stakeholders involved
for this one value.

That information is even
more useful than just
knowing the names of the
stakeholders.

There is already enough
digital information in the
‘Roles’ categories to help
us prioritize this value
better automatically.

Would you prioritize
Funders over Authorities?

Here, below, is a set of
Planguage parameters
added to the User Error
Frequency value
requirements spec.
[Figure 13.5] These

Background Value Spec
Parameters clarify and
assign formal
responsibility for different
aspects of the value
requirement.

It is worth pointing out
that we now have a
practical tool for
decentralizing authority,
for delegating authority,
to people and groups
who are interested in
having it, who have or will
make the time to do
things properly, and are
specialist in this area.

Figure 13.5 : This is a detailed window for the Stakeholders spec, for the ‘User Error Frequency’
value spec, summarized above.

Figure 13.6 : the relationship between stakeholders and values is digital, so we can display it
graphically (automatic thick lines to show relationships). Useful when things get voluminous and
complicated.

I have observed that
the moment you put
someone’s name on a
responsibility
voluntarily, it gets
taken quite seriously. It
is their baby and their
honor! (See the
Owner spec. Here
Figure 13.7)

Figure 13.7 : adding specific responsibilities, as Background statements, to a Value requirement.

Title

This Chapter 13 , on
Background Specifications, was
largely borrowed from my book

Value Requirements ([VR]
2019)

Page 18 of 27 URL= https://tinyurl.com/SysEntArchBook

References

https://tinyurl.com/SysEntArchBook

R. Marcin Ros, Enterprise Architecture as a System
Engineering Discipline, https://medium.com/
@mikolunar/enterprise-architecture-as-a-system-
engineering-discipline-4d1ffff3fb08

R2. Kurek, Johnsen, Mulder, Measuring the value of
Enterprise Architecture on IT projects with CHAOS
Research, Jul 10, 2017, https://pdfs.semanticscholar.org/
96a5/2c679cd1dc2c9691ec8e92f9d3066089888e.pdf

R3.Michael Keeling, Dealing with Constraints in Software Architecture Design, - October 22, 2014,
https://www.neverletdown.net/2014/10/dealing-with-constraints-in-software-architecture.html

R4. Bass, Clements, Kazman, Software Architecture in Practice, 2014 Sample
Chapter on Quality Requirements., http://ptgmedia.pearsoncmg.com/images/9780321815736/
samplepages/0321815734.pdf
Note on R4. I would differ with the ideas expressed here. But the reader can compare
for themselves, this book and this trio’s ideas on function, qualities, constraints and
matching to architecture. I’d be happy to detail my dissension if someone thinks it has
a use. TG Hint: they do not understand quantified qualities at all, + more.

R. Architecture References Others

https://medium.com/@mikolunar/enterprise-architecture-as-a-system-engineering-discipline-4d1ffff3fb08
https://medium.com/@mikolunar/enterprise-architecture-as-a-system-engineering-discipline-4d1ffff3fb08
https://medium.com/@mikolunar/enterprise-architecture-as-a-system-engineering-discipline-4d1ffff3fb08
https://pdfs.semanticscholar.org/
https://pdfs.semanticscholar.org/
https://www.neverletdown.net/2014/10/dealing-with-constraints-in-software-architecture.html
https://www.neverletdown.net/2014/10/dealing-with-constraints-in-software-architecture.html
http://ptgmedia.pearsoncmg.com/images/9780321815736/samplepages/0321815734.pdf
http://ptgmedia.pearsoncmg.com/images/9780321815736/samplepages/0321815734.pdf

VP: “Value Planning. Practical Tools for Clearer Management Communication”
Digital Only Book. 2016-2019, 893 pages, €10
https://www.gilb.com/store/2W2zCX6z
This book is aimed at management planning. It is based on the Planguage standards in
‘Competitive Engineering’ (2005). It contains detailed practical case studies and
examples, as well as over 100 basic planning principles.

Summer 2019 Free Digital Books https://www.dropbox.com/sh/
adcrki52xo5zb36/AABMD_2GOX4rT6c-HRCmT-
Qua?dl=0
SP: Sustainability Planning: https://tinyurl.com/UNGoalsGilb
VR: Value Requirements: https://tinyurl.com/ValueRequirementsBook
VM: Value Management: https://tinyurl.com/ValueManagementBook
VA: Value Agile: https://tinyurl.com/ValueAgileBook
VD: Value Design: https://tinyurl.com/ValueDesignBook

Slides: http://concepts.gilb.com/dl972
VIDEOS (5 BOOKS): https://www.gilb.com/blog/Agile-Tools-for-Value-Delivery-by-

Tom-Gilb (these are short courses, 2-3 hours each)

Summer 2020 Free Digital Books, https://www.dropbox.com/sh/tj1p6a3omlg9hx3/
AABXuj_YnUmAFeRWOpGVvQtIa?dl=0
Q: QUANTeer: The Art of quantifying your value ideas., https://tinyurl.com/Quanteer
P: Planalysis: Analyzing Garbage Specs. https://tinyurl.com/PLanalysisFree
G: Governeering:Government Systems Engineering Planning.
https://tinyurl.com/Governeering
KEN: Knowledge Edu-Neering, https://tinyurl.com/KENGilb

12?: This Book
'12?: Twelve Tough Questions for Better Management'
https://tinyurl.com/12TOUGH

Summer 2018 Books, for Sale at gilb.com
https://www.gilb.com/store?tag=books
T: Technoscopes

IC: Innovative Creativity
100: 100 Planning Principles
L: Life Design
C: Clear Communication

CE: Gilb, Tom, “Competitive Engineering’, 2005, Elsevier
https://www.gilb.com/p/competitive-engineering (free pdf)
Or paper edition: https://www.amazon.com/dp/0750665076/
ref=rdr_ext_sb_ti_sims_2
The ’12 Tough Questions’ were printed in this book. Page 7-8. And based on a years earlier paper.

PoSEM: Gilb: Principles of Software Engineering Management,
Addison Wesley Longman, 1988
Chapt 15 Deeper Perspectives on Evolutionary Delivery
www.gilb.com/dl561 (free, agile history)
https://www.amazon.com/Principles-Software-Engineering-Management-Gilb/dp/0201192462

R.ValPlan: VALPLAN INFO
https://www.gilb.com/valplan, actual app is at ValPlan.net

I should declare a personal interest in this company.
10.1. Based on my ideas [B1]. 2. Our company is marketing it.
Richard Smith, UK, is our developer/designer hero building it.

Gilb Books Overview Page with Mnemonic code
VE: Vision Engineering.
(“Value Planning: Top Level Vision Engineering”)
How to communicate critical visions and values quantitatively. Using The Planning
Language.
http://concepts.gilb.com/dl926
A 64 Page pdf book. Aimed at demonstrating with examples how top management can
communicate their ‘visions’ far more clearly.

http://gilb.com
http://gilb.com
https://www.gilb.com/store?tag=books
https://www.gilb.com/p/competitive-engineering
https://www.gilb.com/p/competitive-engineering
https://www.amazon.com/dp/0750665076/ref=rdr_ext_sb_ti_sims_2
https://www.amazon.com/dp/0750665076/ref=rdr_ext_sb_ti_sims_2
http://www.gilb.com/dl561
http://www.gilb.com/dl561
https://www.amazon.com/Principles-Software-Engineering-Management-Gilb/dp/0201192462
https://www.gilb.com/valplan
http://ValPlan.net
http://ValPlan.net
http://concepts.gilb.com/dl926
https://tinyurl.com/12TOUGH
https://www.gilb.com/store/2W2zCX6z
https://www.dropbox.com/sh/adcrki52xo5zb36/AABMD_2GOX4rT6c-HRCmT-Qua?dl=0
https://www.dropbox.com/sh/adcrki52xo5zb36/AABMD_2GOX4rT6c-HRCmT-Qua?dl=0
https://www.dropbox.com/sh/adcrki52xo5zb36/AABMD_2GOX4rT6c-HRCmT-Qua?dl=0
https://www.dropbox.com/sh/adcrki52xo5zb36/AABMD_2GOX4rT6c-HRCmT-Qua?dl=0
https://tinyurl.com/UNGoalsGilb
https://tinyurl.com/ValueRequirementsBook
https://tinyurl.com/ValueManagementBook
https://tinyurl.com/ValueAgileBook
https://tinyurl.com/ValueDesignBook
http://concepts.gilb.com/dl972
https://www.gilb.com/blog/Agile-Tools-for-Value-Delivery-by-Tom-Gilb
https://www.gilb.com/blog/Agile-Tools-for-Value-Delivery-by-Tom-Gilb
https://www.gilb.com/blog/Agile-Tools-for-Value-Delivery-by-Tom-Gilb
https://www.gilb.com/blog/Agile-Tools-for-Value-Delivery-by-Tom-Gilb
https://www.dropbox.com/sh/tj1p6a3omlg9hx3/AABXuj_YnUmAFeRWOpGVvQtIa?dl=0
https://www.dropbox.com/sh/tj1p6a3omlg9hx3/AABXuj_YnUmAFeRWOpGVvQtIa?dl=0
https://www.dropbox.com/sh/tj1p6a3omlg9hx3/AABXuj_YnUmAFeRWOpGVvQtIa?dl=0
https://tinyurl.com/Quanteer
https://tinyurl.com/Quanteer
https://tinyurl.com/PLanalysisFree
https://tinyurl.com/Governeering
https://tinyurl.com/KENGilb

B Gilb Books. Page 1A

B1.CE: Competitive Engineering (paper or digital
2005).

The definition of the Planguage. A Handbook and a
Planguage standard.
https://www.gilb.com/p/competitive-engineering (free pdf)

and paper via Amazon (Kindle and paper)

https://www.amazon.com/dp/0750665076/ref=rdr_ext_sb_ti_sims_2

B2:VP: Value Planning

“Value Planning. Practical Tools for Clearer Management Communication”

Digital Only Book. 2016-2019, 893 pages, €10

https://www.gilb.com/store/2W2zCX6z

This book is aimed at management planning. It is based on the Planguage
standards in ‘Competitive Engineering’ (2005). It contains detailed practical case
studies and examples, as well as over 100 basic planning principles.

The ‘Technoscopes’ book (2018) is a condenses version of this with the 100
principles and some examples o quotes related to the principles.

The ‘Vision Engineering’ book [B3, VE] is. Short (60 pages) top manager oriented
overview of the ideas in Value Planning, and it is the front end (the real book) of
the Value Planning book.

B2.Decomposition: https://tinyurl.com/VPDecomposition

B2: Prioritization: https://www.dropbox.com/sh/34llx1a7ckyagxl/
AAA0pDzSxN5WmoP9lOKR0Mpca?dl=0

P18: Risk Management Chapter 7, (70 pages) VP Value Planning Book. https://
tinyurl.com/RiskMgtVP

B2: Chapter 3 Levels of interest, https://www.dropbox.com/sh/
xbzn5s8imf9vla0/AAB8h-OFvQmJ_w3wNhrDxa9_a?dl=0

B2: Chapter 8 Delegation Outsourcing Contracting, https://
www.dropbox.com/sh/eubo1zkvybl2q8k/AAD6cUUIOqco0aTPK2OZx6gua?dl=0

B3:VE.Vision Engineering.

“Value Planning: Top Level Vision Engineering”

How to communicate critical visions and values quantitatively. Using The Planning
Language.

http://concepts.gilb.com/dl926

 A 64 Page pdf book. Aimed at demonstrating with examples how top
management can communicate their ‘visions’ far more clearly.

Main Current Books Written by Tom Gilb. Supports this book with detail.

https://www.gilb.com/p/competitive-engineering
https://tinyurl.com/VPDecomposition
https://www.dropbox.com/sh/34llx1a7ckyagxl/AAA0pDzSxN5WmoP9lOKR0Mpca?dl=0
https://www.dropbox.com/sh/34llx1a7ckyagxl/AAA0pDzSxN5WmoP9lOKR0Mpca?dl=0
https://www.dropbox.com/sh/34llx1a7ckyagxl/AAA0pDzSxN5WmoP9lOKR0Mpca?dl=0
https://tinyurl.com/RiskMgtVP
https://tinyurl.com/RiskMgtVP
https://www.dropbox.com/sh/xbzn5s8imf9vla0/AAB8h-OFvQmJ_w3wNhrDxa9_a?dl=0
https://www.dropbox.com/sh/xbzn5s8imf9vla0/AAB8h-OFvQmJ_w3wNhrDxa9_a?dl=0
https://www.dropbox.com/sh/xbzn5s8imf9vla0/AAB8h-OFvQmJ_w3wNhrDxa9_a?dl=0
https://www.dropbox.com/sh/eubo1zkvybl2q8k/AAD6cUUIOqco0aTPK2OZx6gua?dl=0
https://www.dropbox.com/sh/eubo1zkvybl2q8k/AAD6cUUIOqco0aTPK2OZx6gua?dl=0
http://concepts.gilb.com/dl926

B Gilb Books. Page 1B

B4. LINK TO 5 NEW DIGITAL BOOKS (B5 to B9) WRITTEN SUMMER 2019, see
also Videos and Slides, same title

 See leanpub.com

https://leanpub.com/u/tomgilb

B5:VR. Value Requirements book

B6:VD. Value Design, Book. July 2019

B7:VM. Value Management, book August 2019

B8:VA. Value Agile , 2019

B9SP. Sustainability Planning, https://tinyurl.com/UNGoalsGilb, 2019

BOOK, See slides [P2.2] http://concepts.gilb.com/dl977

B10. Books written Summer 2020.

https://leanpub.com/u/tomgilb

B11 KEN: Knowledge Edu-Neering booklet

Leanpub.com/KEN 2020, CC.

B12. Governeering: Government Systems Engineering Planning:
Leanpub.com/Governeering 2020

B13. PLanalysis: A booklet with advice on how to analyze plans, and make
them better, 2020, Leanpub.com/Planalysis

B14. QUANTeer: The Art of quantifying your value ideas Leanpub.com/
Quanteer

B15: 12?: 12 Tough Questions for Better Management leanpub.com/
12ToughQuestions

B16. SEA: Systems Enterprise Architecture (SEA) BOOK 2020,.

Leanpub.com/SysEntArchBook

Main Current Books Written by Tom Gilb. Supports this book with detail.

http://leanpub.com
https://tinyurl.com/UNGoalsGilb
http://concepts.gilb.com/dl977
http://leanpub.com

Books by Gilb, Page 2G

G16. Software Inspection, 1993, https://www.amazon.com/
Software-Inspection-Tom-Gilb/dp/
0201631814

G17. CLEAR COMMUNICATION Booklet

“Principles of Clear Communication ”

By Tom Gilb
DIGITAL BOOKLET €14
Published 31 August 2018
https://www.gilb.com/store/oJCCxtsM

G18: Software Metrics , 1976-7,
Gilb Tom. Software metrics. Studentlitteratur AB Sweden, 1976., Tom Gilb. Software metrics. Winthrop,
1977. (USA Hardcover). The term Software Metrics was coined by me here.

G19. Life Design, 2018
LIFE DESIGN Booklet €14
https://www.gilb.com/store/kCBGcG6L

The 2018 5 Books, & Older Gilb Books
G10. Technoscopes, 2018

Technoscopes:

Tools for understanding complex projects
https://www.gilb.com/store/Pd4tqL8s

Price €14B12. Clear Communication , 2018

G13. Innovative Creativity, 2018
‘INNOVATIVE CREATIVITY’ 124 pages €14
https://www.gilb.com/store/QMMQhn2g

G14. 100 Practical Planning Principles , 2018
Based on the same 100 Value Planning sub-sections and
principles.
100 Practical Planning Principles. Booklet €14
https://www.gilb.com/store/4vRbzX6X

G15. PoSEM 1988, Principles of Software Engineering
Management, 1988, Pearson.

Chapter 15 Deeper Perspectives on Evolutionary Delivery,
www.gilb.com/dl561,

Whole Book (Paper) https://www.amazon.com/Principles-

Software-Engineering-Management-Gilb/dp/0201192462

https://www.gilb.com/store/Pd4tqL8s
https://www.gilb.com/store/QMMQhn2g
https://www.gilb.com/store/4vRbzX6X
https://www.gilb.com/store/4vRbzX6X
http://www.gilb.com/dl561
https://www.amazon.com/Principles-Software-Engineering-Management-Gilb/dp/0201192462
https://www.amazon.com/Principles-Software-Engineering-Management-Gilb/dp/0201192462
https://www.amazon.com/Principles-Software-Engineering-Management-Gilb/dp/0201192462
https://www.amazon.com/Software-Inspection-Tom-Gilb/dp/0201631814
https://www.amazon.com/Software-Inspection-Tom-Gilb/dp/0201631814
https://www.amazon.com/Software-Inspection-Tom-Gilb/dp/0201631814
https://www.amazon.com/Software-Inspection-Tom-Gilb/dp/0201631814
https://www.gilb.com/store/oJCCxtsM
https://www.gilb.com/store/kCBGcG6L

Other Gilb References

Papers by Gilb and othersP

P7. Planguage Rules Collection from CE Boo k.docx,, http://www.gilb.com/dl829, 23 pages.,
See similar set S3

P8. by Tom Gilb & Kai Gilb, 2018
“All critical outcome value objectives can be quantified and must be.”https://
medium.com/@kaigilb/principle-quantify-objectives-319a0b9a1f59

P9. Quantifying Security: How to specify security requirements in a quantified way.
by Tom Gilb, http://www.gilb.com/dl40

P10. Basic Principles of Security Engineering., http://concepts.gilb.com/dl948, 2019, 2
Pages 10 principles.

P110.1. How problems with Quality Function Deployment’s (QFD's) House of Quality
(HoQ) can be addressed by applying some concepts of Impact Estimation (IE), http://
www.gilb.com/DL119

P12. Plicons: A Graphic Planning Language for Systems Engineering, (Plicons Paper),
http://www.gilb.com/DL37

P13. “A Critical Review of Definition of Goals” , in (Norway, in English), Prosjektledelse
1/2020, http://concepts.gilb.com/dl973, and Widmans Paper I criticize, https://
view.joomag.com/prosjektledelse-prosjektledelse-nr-4-2019/0266287001573038589?short

P14. Gilb “Beyond Scaling: Scale-free Principles for Agile Value Delivery - Agile
Engineering”, http://www.gilb.com/dl865 (Paper), (Jan 8 2016). This paper contains
considerable detailed systemic explanation as to why the Planguage methods are ‘Scale Free’.

P14. Managing Priorities, A Key to Systematic Decision-making. With Mark Maier,
2005 (paper), http://www.gilb.com/DL60

Free Downloadable Papers

P1. ‘Agile Project Startup Week’, gilb.com/dl568

P2. Confirmit Case .http://www.gilb.com/DL32 , ‘FROM WATERFALL TO… BY TROND AND
TOM GILB

P3.1 Walston, C.E. and Felix, C.P. (1977) A Method of Programming Measurement and
Estimation. IBM Systems Journal, 16, 54-73. http://dx.doi.org/10.1147/sj.1610.1.0054, $33
Paywall or IEEE., I have a paper copy of this. Tom Gilb, and some of their original data
collection schemes they gave me.

P3.2 ‘Cleanroom Method’, developed by IBM’s Harlan Mills (IBM SJ No. 4/1980)http://
trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan . See here 7.2.3

P3.3 Robert E. Quinnan, 'Software Engineering Management Practices’ (Part V), IBM
Systems Journal, Vol. 19, No. 4, 1980, pp. 466~77, https://trace.tennessee.edu/cgi/
viewcontent.cgi?article=1004&context=utk_harlan (Quinnan is at end Part 5)

See also [S7] Technoscopes: Meet the Challenge of Engineering Complexity, http://
concepts.gilb.com/dl968 for Quinnan slides as used in Fig 12.3.2.4

P4:CG: Full Planguage Concept Glossary, http://www.gilb.com/dl830

See also [B1] Glossary, and GILB.COM SITE GLOSSARY, http://concepts.gilb.com/A?
structure=Glossary&page_ref_id=126

the digital glossary by Kai and company, and ValPlan.net, or other variations of glossary info.

P5. Agile Specification QC, in Testing Experience 2009, by Tom Gilb, http://www.gilb.com/

DL264

P6. Estimation: A Paradigm Shift Toward Dynamic Design-to Cost and Radical
Management

Volume 13 Issue 2 of SQP journal - the March 2011 version. http://www.gilb.com/DL460

http://www.gilb.com/dl829
https://medium.com/@kaigilb/principle-quantify-objectives-319a0b9a1f59
https://medium.com/@kaigilb/principle-quantify-objectives-319a0b9a1f59
https://medium.com/@kaigilb/principle-quantify-objectives-319a0b9a1f59
http://www.gilb.com/dl40
http://concepts.gilb.com/dl948
http://www.gilb.com/DL119
http://www.gilb.com/DL119
http://www.gilb.com/DL119
http://www.gilb.com/DL37
http://concepts.gilb.com/dl973
https://view.joomag.com/prosjektledelse-prosjektledelse-nr-4-2019/0266287001573038589?short
https://view.joomag.com/prosjektledelse-prosjektledelse-nr-4-2019/0266287001573038589?short
https://view.joomag.com/prosjektledelse-prosjektledelse-nr-4-2019/0266287001573038589?short
http://www.gilb.com/dl865
http://www.gilb.com/dl865
http://www.gilb.com/DL60
http://gilb.com/dl568
http://www.gilb.com/DL32
http://www.gilb.com/DL32
http://www.gilb.com/DL32
http://dx.doi.org/10.1147/sj.161.0054
http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan
http://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan
https://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan
https://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan
https://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan
https://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utk_harlan
http://concepts.gilb.com/dl968
http://concepts.gilb.com/dl968
http://concepts.gilb.com/dl968
http://concepts.gilb.com/dl968
http://www.gilb.com/dl830
http://concepts.gilb.com/A?structure=Glossary&page_ref_id=126
http://concepts.gilb.com/A?structure=Glossary&page_ref_id=126
http://concepts.gilb.com/A?structure=Glossary&page_ref_id=126
http://ValPlan.net
http://www.gilb.com/DL264
http://www.gilb.com/DL264
http://www.gilb.com/DL264
http://www.gilb.com/DL460

Other Gilb References

Papers by Gilb and others page 2P

Free Downloadable Papers

P15: ISO 31000:2018 (en), Risk management — Guidelines, https://www.iso.org/
obp/ui/#iso:std:iso:31000:en

P16: !!!!!! !!!!! !!!!!!!José Barateiro et al, Manage
Risks through the Enterprise Architecture, https://www.researchgate.net/
publication/254051828_Manage_Risks_through_the_Enterprise_Architecture.
Uses ISO 31000

P17: Risk Management: A practical toolkit for identifying, analyzing and
coping with project risks. http://www.gilb.com/dl=20

P18: Risk Management Chapter 7, (70 pages) VP Value Planning Book.
https://tinyurl.com/RiskMgtVP

P19:ST: Some Stakeholder Slides 2009-2020, A rough cumulative set as sources.
From Gilb and other stakeholder sources, http://www.gilb.com/dl318, Updated last
* Sept. 2020

https://www.iso.org/obp/ui/#iso:std:iso:31000:en
https://www.iso.org/obp/ui/#iso:std:iso:31000:en
https://www.researchgate.net/publication/254051828_Manage_Risks_through_the_Enterprise_Architecture
https://www.researchgate.net/publication/254051828_Manage_Risks_through_the_Enterprise_Architecture
https://www.researchgate.net/publication/254051828_Manage_Risks_through_the_Enterprise_Architecture
http://www.gilb.com/dl=20
https://tinyurl.com/RiskMgtVP
http://www.gilb.com/dl318

Slides by Gilb, Free Downloadable S

(the slides in DL253 are derived from this paper)

S8.3 “Real Case Aircraft Company Top Level Decision Making for CAD CAM Support
Systems ”

FOR McDonnell Douglas Aircraft

Gilb Experience SLIDES (14)

NICE SET WITH ILLUSTRATIONS

http://www.gilb.com/DL255

A good example of analysis of management BS

into Planguage. Reference from Harris for Productivity of Gilb methods .

S8.4 Boeing Slides, ‘787’

March 2008 from Tom and Kai presentation, not sure if on gilb.com, can be supplied by author..
Boeing, Renton studied application of my Inspection methods deeply, and adopted them.

S9. SERIOUS VALUES CANNOT BE B**S**** , Quantifying AI Transparency,

and UN Sustainability:

http://concepts.gilb.com/dl962, Aim2North Conf. 7Nov2019, Slides

Podcast video 24 minutes before the lecture, https://www.youtube.com/watch?v=J70zf1gF2b8

S10. What is Wrong with Balanced Scorecard, slides, http://concepts.gilb.com/dl135, See
https://bscdesigner.com/

S110.1. 10 Suggested Principles for Human Factors

Systems Engineering, http://concepts.gilb.com/dl911, [V14]

Keynote at WUD (Worldwide Usability Day), Silesia, Katowice Poland, 9 Dec. 2017

S12. ICL CASE Study from (International Computers Limited), BCS June 12 Lecture 2015,
Slides, http://www.gilb.com/dl846

S13. Gilb. “SCALE-FREE: Practical Scaling Methods for Industrial Systems Engineering ”,
lecture slides, http://concepts.gilb.com/dl892, 2016, Considerable citation of Intel experience with
Planguage method, by Erik Simmons. Scalability Metrics: and An Engineering Structure, and
Principles, for an Agile World for June 5 2018 DND/SINTEF Conference, http:// concepts.gilb.com/
dl930. See Scaling paper P14.

S14.1 8. Green Week, The Green Week: Reducing Technical Debt by Engineering, http://
www.gilb.com/dl575, May 2013, In agilerecord.com
S14.2 The Green Week Slides http://www.gilb.com/dl660, Smidig/Agile 2013 Oslo

Free Downloadable Slides

S1: PPPP: Proper Public Planning Principles: 'Engineering Society’, Responsibly

SLIDES = http://concepts.gilb.com/dl980 (pdf) https://tinyurl.com/PPPPslides

Video = https://youtu.be/mIaVLHvQOp0

S2: ‘An Agile Project Startup Week’. http://www.gilb.com/dl812

S3. QC for Design Design Rules from Competitive Engineering MASTER.key.pdf GilbFest
Slides 2015,

http://concepts.gilb.com/dl84 , See similar set P7

S4. Most of videos (see below) have a link to their slide set on slide 10.1.

S5. “Estimation: A Paradigm Shift Toward Dynamic Design-to Cost and Radical
Management ”

Slides made for BCS SPA June 1 20110.1. http://www.gilb.com/DL470

S6. IBM FSD MIlls and Quinnan Slides. http://concepts.gilb.com/dl896 (see also P3.1 to .3)

S7. Technoscopes: Meet the Challenge of Engineering Complexity

SLIDES= http://concepts.gilb.com/dl968. (Several IBM Cleanroom and Quinnan slides here)

VIDEO = https://www.youtube.com/watch?
v=920rCFYW3ZQ&list=PLKBhokJ0qd3_wlvr0j85YhmNfNj8ZJ8M-&index=2&t=0s

S8.1 Using ‘Evo ’ to Rapidly deliver measurable improvements to Aircraft Design
Engineering Drawing QC”

Douglas Aircraft 16 Slides (illustrations missing) Based on cut from paper DL254

http://www.gilb.com/DL253

S8.2 DAC Case Paper

“Using ‘Evo’ to Rapidly deliver measurable improvements to Aircraft Design Engineering
Drawing QC”

McDonnell Douglas Aircraft

Gilb Experience Paper for INCOSE 2002

http://www.gilb.com/DL254

Boeing data is also here and in slides.

http://concepts.gilb.com/dl980
http://concepts.gilb.com/dl980
https://tinyurl.com/PPPPslides
https://tinyurl.com/PPPPslides
https://youtu.be/mIaVLHvQOp0
http://www.gilb.com/dl812
http://concepts.gilb.com/dl84
http://concepts.gilb.com/dl84
http://www.gilb.com/DL470
http://concepts.gilb.com/dl896
http://concepts.gilb.com/dl896
http://concepts.gilb.com/dl968
https://www.youtube.com/watch?v=920rCFYW3ZQ&list=PLKBhokJ0qd3_wlvr0j85YhmNfNj8ZJ8M-&index=2&t=0s
https://www.youtube.com/watch?v=920rCFYW3ZQ&list=PLKBhokJ0qd3_wlvr0j85YhmNfNj8ZJ8M-&index=2&t=0s
https://www.youtube.com/watch?v=920rCFYW3ZQ&list=PLKBhokJ0qd3_wlvr0j85YhmNfNj8ZJ8M-&index=2&t=0s
http://www.gilb.com/DL253
http://www.gilb.com/DL254
http://www.gilb.com/DL255
http://gilb.com
http://concepts.gilb.com/dl962
https://www.youtube.com/watch?v=J70zf1gF2b8
https://www.youtube.com/watch?v=J70zf1gF2b8
http://concepts.gilb.com/dl135
https://bscdesigner.com/
https://bscdesigner.com/
http://concepts.gilb.com/dl911
http://www.gilb.com/dl846
http://concepts.gilb.com/dl892
http://concepts.gilb.com/dl930
http://concepts.gilb.com/dl930
http://concepts.gilb.com/dl930
http://concepts.gilb.com/dl930
http://www.gilb.com/dl575
http://www.gilb.com/dl575
http://agilerecord.com
http://www.gilb.com/dl660

Video Talks or Courses by GilbV

https://www.youtube.com/watch?
v=y_FaiH5jt6E&list=PLKBhokJ0qd3_wlvr0j85YhmNfNj8ZJ8

M-&index=4&t=0s
V8. VM. Value Management 2.5 hours, 13 May 2020, BCS
https://www.youtube.com/watch?v=mr9gUFWj4Jg

V9. QQ. Quantify the un-quanti fiable: Tom Gilb at
TEDxTrondheim 17 minutes.

V10. Generic Gilb Videos. Search browser for ‘Tom Gilb
Videos ’, and hit the ‘Videos ’ selection too.
V110.1. gilb.com has a large selection of videos, free and
paid courses. https://www.gilb.com/blog?tag=video

V12. In Projects, why do Managers Bullshit about their
Critical Values? , https://youtu.be/fFWpxrwvPw8 , 42 mins

V13. 2019 WUD Keynote, “DOOMSDAY: Is the world
doomed because we cannot express our Sustainability
and AI Goals clearly?”, slides: http://concepts.gilb.com/
dl964, 23Nov 2019, #WUDSilesia, VIDEO= https://youtu.be/
BUXVJgWJSMI

V14. Tom Gilb: 10 Suggested Principles for Human
Factors Systems Engineering, lecture from WUD Silesia
conference 42 m, https://youtu.be/TlDCwmVgDJQ , [S11]

Videos with Free Links

V1. PPPP. Proper Public Planning Principles: 'Engineering
Society’, Responsibly

SLIDES = http://concepts.gilb.com/dl980 (pdf, 230620
VERSION). Origin of much of this book.
Video (90 min.BCS Lecture, 23 June 2020) = https://
youtu.be/mIaVLHvQOp0

V2. SP. Sustainability Planning
https://tinyurl.com/UNGoalsGilbVideo
V3. SA. Sustainability and AI. Video Podcast 24 mins., Oslo
2019 Aim
https://www.youtube.com/watch?v=J70zf1gF2b8

V4. Technoscopes BCS SPA 2020
https://www.youtube.com/watch?
v=920rCFYW3ZQ&list=PLKBhokJ0qd3_wlvr0j85YhmNfNj8Z

J8M-&index=2&t=0s

V5. VA. Value Agile Video. https://lnkd.in/dkyJpMZ

V6. VR. Value Requirements video 22 April 2020, 3 hours.
https://www.youtube.com/watch?
v=ZHrwQtG6IMw&list=PLKBhokJ0qd3_wlvr0j85YhmNfNj8Z
J8M-

V7. VD. Video Value Design, May 2020,

https://www.youtube.com/watch?v=y_FaiH5jt6E&list=PLKBhokJ0qd3_wlvr0j85YhmNfNj8ZJ8M-&index=4&t=0s
https://www.youtube.com/watch?v=y_FaiH5jt6E&list=PLKBhokJ0qd3_wlvr0j85YhmNfNj8ZJ8M-&index=4&t=0s
https://www.youtube.com/watch?v=y_FaiH5jt6E&list=PLKBhokJ0qd3_wlvr0j85YhmNfNj8ZJ8M-&index=4&t=0s
https://www.youtube.com/watch?v=y_FaiH5jt6E&list=PLKBhokJ0qd3_wlvr0j85YhmNfNj8ZJ8M-&index=4&t=0s
https://www.youtube.com/watch?v=mr9gUFWj4Jg
https://www.youtube.com/watch?v=mr9gUFWj4Jg
https://www.youtube.com/watch?v=kOfK6rSLVTA
https://www.youtube.com/watch?v=kOfK6rSLVTA
https://www.youtube.com/watch?v=kOfK6rSLVTA
https://www.youtube.com/watch?v=kOfK6rSLVTA
http://gilb.com
http://gilb.com
https://www.gilb.com/blog?tag=video
https://youtu.be/fFWpxrwvPw8
https://youtu.be/fFWpxrwvPw8
http://concepts.gilb.com/dl964
http://concepts.gilb.com/dl964
http://concepts.gilb.com/dl964
http://concepts.gilb.com/dl964
https://youtu.be/
https://youtu.be/
https://youtu.be/TlDCwmVgDJQ
https://youtu.be/TlDCwmVgDJQ
http://concepts.gilb.com/dl980
http://concepts.gilb.com/dl980
https://youtu.be/mIaVLHvQOp0
https://youtu.be/mIaVLHvQOp0
https://youtu.be/mIaVLHvQOp0
https://youtu.be/mIaVLHvQOp0
https://tinyurl.com/UNGoalsGilbVideo
https://www.youtube.com/watch?v=J70zf1gF2b8
https://www.youtube.com/watch?v=J70zf1gF2b8
https://www.youtube.com/watch?v=920rCFYW3ZQ&list=PLKBhokJ0qd3_wlvr0j85YhmNfNj8ZJ8M-&index=2&t=0s
https://www.youtube.com/watch?v=920rCFYW3ZQ&list=PLKBhokJ0qd3_wlvr0j85YhmNfNj8ZJ8M-&index=2&t=0s
https://www.youtube.com/watch?v=920rCFYW3ZQ&list=PLKBhokJ0qd3_wlvr0j85YhmNfNj8ZJ8M-&index=2&t=0s
https://www.youtube.com/watch?v=920rCFYW3ZQ&list=PLKBhokJ0qd3_wlvr0j85YhmNfNj8ZJ8M-&index=2&t=0s
https://lnkd.in/dkyJpMZ
https://lnkd.in/dkyJpMZ
https://www.youtube.com/watch?v=ZHrwQtG6IMw&list=PLKBhokJ0qd3_wlvr0j85YhmNfNj8ZJ8M-
https://www.youtube.com/watch?v=ZHrwQtG6IMw&list=PLKBhokJ0qd3_wlvr0j85YhmNfNj8ZJ8M-
https://www.youtube.com/watch?v=ZHrwQtG6IMw&list=PLKBhokJ0qd3_wlvr0j85YhmNfNj8ZJ8M-

R Other References

R.Intel: R1 . INTEL 2011 AND 2013. Practical industrial cases. SQC and
Planguage

https://selab.fbk.eu/re11_download/industry/Terzakis.pdf (Slides and experiences)

R.ValPlan: R2. VALPLAN INFO
https://www.gilb.com/valplan, actual app is at ValPlan.net

I should declare a personal interest in this company.
1. Based on my ideas [B1]. 2. Our company is marketing it.
Richard Smith, UK, is our developer/designer hero building it.

R.GraphMetrix: R3. GraphMetrix.com
I should declare a personal interest in this company.
(Advisory Board, Investor, Using my Ideas [B1].)

R.Eggplant: David Chapman, https://meaningness.com/eggplant/rationality
I know there is something here related to my ideas, but I am just figuring it out.
150820. #problemsolving #metarationality. In any case deep mind-blowing ideas.

R.LandingZones: Erik Simmons, BEST PRACTICES WHITE PAPER , Landing Zones,
Available by email request from Construx. CONSTRUX.COM 2020, Version 10.1.3,
August 2020, See also: http://wirfs-brock.com/blog/2011/07/20/introducing-landing-
zones/

https://selab.fbk.eu/re11_download/industry/Terzakis.pdf
https://selab.fbk.eu/re11_download/industry/Terzakis.pdf
https://www.gilb.com/valplan
http://ValPlan.net
http://ValPlan.net
http://GraphMetrix.com
https://meaningness.com/eggplant/rationality
http://wirfs-brock.com/blog/2011/07/20/introducing-landing-zones/
http://wirfs-brock.com/blog/2011/07/20/introducing-landing-zones/

End of Book
References

 Concept Glossary

Aligned: Enterprise Architecture is synchronized with all significant external and internal Enterprise forces, and plans: updated,
precise, supporting, relevant, non-conflicting, transparent, and future oriented.

Ambition Level: an initial informal statement, from a stakeholder about the degree of a value improvement. Needs to be
translated into clear and structured Value Requirement specifications.

Architecture: a design process, producing a specification (The Architecture Spec) which is the top-level design process from a
defined point of view, and which co-ordinates, or balances, all subsidary considerations of value, resources and constraints.

Attribute: a characteristic of something. A quality, a cost, a function, anything which can describe and distinguish one artifact
from another.

Attack, which is a successful penetration of a Threat into a system. The Threat has ‘materialized’ in practice

Background: planning specification which is not the core set of ideas, but is intended to give additional context for the
ultimate purpose of prioritization, risk management, quality control, and presentation.

Backroom: the place where design ideas are readied for implementation.

Benchmark: a class of reference level on a Scale of measure. It includes Past, Status, Ideal, Trend. It is used as Background
specification to allow us to compare with Targets and Constraints.

Budget: a constraint level for a resource requirement.

Constraint: a requirement intended to restrict, to stop, to hinder us with regard to other requirements, possible designs, and
any actions.

Damage:Damage is the negative consequences of successful Attacks to a system

Decomposition:(+030920) refers to a process of decomposing into more-detailed sub-components, such as Sub-
architectures, and Sub-Values, any architecture specification objects (including functions, values, resources, architecture,
constraints, time) so as to obtain smaller specification-objects, for any purpose; such as early delivery, optimization, separation
of concerns (like suppliers), & managing risks. See Part 4 here, and [B2.Decomposition: https://tinyurl.com/VPDecomposition].

Defect: a Specification Defect is a violation of official specification Rules. It is poor practice and can lead to problems of using
the specification correctly, and timely.

Design Idea: (noun): any specification which is intended to help satisfy a higher level of Value, Cost and constraints.

 Idea: (noun): any specification which is intended to help satisfy a higher level of Value, Cost and constraints.

Design (verb): the process of identifying and evaluating Design Ideas, for the purpose of satisfying stakeholder values within
constraints imposed.

Design Component: any part of a larger design set, or architecture, which has some notion of independence. For example
that it can be implemented incrementally. It can be removed or replaced.

Design Constraint: A requirement specification, that demands or forbids something regarding a design.

 Design To Cost (D->C): a well-established engineering concept. You can find designs to meet a given cost requirement.

Design To Requirements (D->R): the combination, perhaps simultaneously in a single delivery cycle, of attempting to design to any set of both Value Requirement Levels,
and Cost Requirement Levels. (+050819 tg)

https://tinyurl.com/VPDecomposition

Design To Value (D->V): the same concept as Design to Cost, except the design process is directed towards meeting a
Value (including any quality) Requirement Level of Performance.

Downstream, Upstream: downstream refers to a process to be carried out at a later stage. Upstream, a previous process.

Dynamic Design to Requirements (DD->R): A Cyclical Design process, to meet any set of Value and or Cost
requirements, but using measurement, after incremental design-implementation, comparing with requirements, predicting
future cost and value levels, and re-designing, if necessary, to better reach the requirements. Note The Planguage Evo
method (CE, PoSEM), and the IBM Cleanroom(2) Method both do DD>R. A term coined by Tom Gilb

Efficiency Architecture: This is the ratio of a set of architecture values over a set of architecture costs. (added 020920 TG,
see paper 2.)

Entry Process: a simple short QC process proceeding any main process, where Entry Conditions, of any useful kind, are
checked as a prerequisite for proceeding to the main process. The intent is to make sure we do not waste time or
encounter failure in the main process. The cost of the Entry Process should be very small compared to the average results if
we did not use it. Above all we use to to motivate people to take the Entry Conditions seriously.

Environment: implicit, the critical design requirement stakeholder environment. An areas or scope where can can and
must expect to find critical design requirements, if we study the stakeholders there and their needs.

Exit Process: a Quality Control (QC) process after any Main Process to try to make sure that it is well done and the outputs are
good enough for downstream use. A number of tailored-for-process Exit Conditions are checked and if all are satisfied, Exit is
permitted. If any one Condition fails, no exit is permitted.

Frontroom: the place where design ideas are actually incrementally integrated into real systems.

Function: an action, do something, a description of what any system does. It contains no hint of information about the other
attributes of that function, or its container system. Nor any hint of the designs used to create those attributes for the function,
or the system.

Icon (Plicon): a graphic symbol which is assigned a Planguage concept. There are two topics, a drawn icon, and a keyed icon.
The purpose of icons is to create a human-language independent symbol like music notation, or electrical notation.

Ideal: a perfect level on a Scale, such as 100% availability. Usually not attainable in practice, or without infinite costs.

Implementation Responsible: a person (or group) which has taken named specified in the spec object, responsibility for
actual practical implementation of a design object. This can be for a requirement level (reach the requirement Goal), or for a
design (deliver the design and try to get the maximum value from it).

Meter: a parameter which sketches major elements of a measurement process, for a particular Scalar Value or Cost.

Mitigation: Mitigation, is any Strategy which is intended to deal with a Threat (potential Attack), or an actual Attack, within
the system, or by being added on after the Threat has successfully penetrated the system (Attack has occurred). Classes are
Built-In Mitigation, Post-Damage Mitigation, Planned Mitigation, Threat Mitigation, Attack Mitigation, Post-Attack Mitigation.
[P18, and P4:CG]

Open-Ended Architecture: any architecture devices which make it easier to change the system through time.

Owner: a Specification Owner, parameter name shortened to Owner, has the exclusive right and responsibility for updating
a given Specification Object, such as a requirement.

Parameter: a Planguage-defined Term, which announces the specification of its defined type of information, about a
Specification Object, such as a Value Requirement.

Past: a Scale level which is historic. We can usually document in the Past statement, when, where, who etc. Any useful set of
Scale Parameter attributes.

Performance: a systems engineering classification for the set of Value attributes. They include all qualities, speeds, work
capacity, savings and any other positive attributes valued by stakeholders.

Planguage: a Planning Language invented, developed over decades, published in many books (from 1976 Software
Metrics, Data Engineering, perhaps earlier books), and papers, by Tom Gilb, with feedback, maintenance, and creative
improvements from Kai Gilb and many other professional collaborators. It is a systems engineering language, with focus on
Values and Costs as primary drivers.

Policy: A policy is a set of principles for decision-making, which permit delegation of decision-making to other people, at
other times, under ‘unknown conditions at the time of writing the policy’. However, policy may be ignored for higher
priority considerations. For example, because of a law or contract in conflict with the policy.

Principle: A principle is a short basic statement, which summarizes and teaches basic philosophy or the pragmatics of a
method.

Prioritize: to decide sequence of activation.

Procedure: a specified sequence of activities for a defined purpose.

Process: a continuous, repetitive procedure with a possible ending when complete.

Quality: How Well a function functions. Often ending in ‘-ility’

Requirement: a stakeholder-desired future system state, which can be tested for presence, or measured for degree: but
which might be impossible to deliver in practice.

Resource: any attribute which might be consumed, might be limited, and might be needed to build or maintain a system.
Money, time, people, dominate, but many other resource concepts are potentially useful, such as image, qualities,
functionality, space.

Risk: a risk is something that can go wrong. An ‘opportunity’ is by contrast, something that can ‘go right’, get better. Risk is
the possibility of Damage occurring. The degree of Risk is determined as a combination of an Attack and a Mitigation.The
higher the probability (frequency) of Attack, the higher the Damage. The higher the probability that Mitigation succeeds
against the Attack, the lower the total Damage.

Rules: a standard in Planguage which specified the recommended way to do, or not do, a specification of any kind. Failure to
follow a rules is classified as a specification defect.

Scale (of Measure): a Parameter which defines a Value or Cost scale of measure, for reuse and reference when specifying
Benchmarks, Scalar Constraints, and Targets. It does NOT specify a measurement process, that is for the Meter or Test
parameter

Scale Parameter: a dimension, announced in [Square Brackets] in the middle of a Scale specification. It is defined using a
{set of Conditions}. This device permits quite detailed Modelling of a system, and allows decomposition of problems so that
ctitical Conditions can be prioritized. Example: [Sex]

Scale Parameter Conditions: a set of named conditions which belong to a defined Scale Parameter. Example [Sex] = {Male,
Female, Other, Unspecified, Unknown, Multiple}.

Source: the named origin: a person, group, stakeholder, document, or URL of some immediately-previous specifications in a
Parameter Specification. The purpose is to enable QC, give credibility, lend authority.

Spec, Specification: a written planning item in Planguage: Requirements, Designs, Analysis, Project Plans, presentations.

Specification Object: a set of Planguage Parameter statements, comprising a meaningful unit of informations, typically a
requirement, a design, or sets of these.

Specification Owner: a person (or group) which has undertaken responsibility, by name, for the update and maintenance of a
specification object, such as a requirement, a design, or a table.

Stakeholder: an entity; human, organizational, or document, from which we can derive needs, demands, resource limits, constraints,
and any form of information, which can be acknowledged as our potential project requirements, and specified formally and clearly as
a requirement. A ‘requirement source’.

Status: a numeric update of the incremental progress of a Scale Level as we incremental deliver a system design components and
measure progress towards our requirement levels.

Standards: best accepted practices for developing and maintaining systems. These include, Rules, Procedures, Exit Levels, Concept
Definitions, Templates, Scales of measures, and even App conventions.

Sub-architecture: (+030920 SEA) is any architecture component, which has been decomposed from any larger architecture
specification. Sub-architectures are particularly useful in agile architecture, where we need small frequent deliveries, and feedback
from architectures. We can also prioritize the most efficient architectures (Part 2 Architecture Efficiency)

Target: a level of Value that we are aiming to reach. It includes Wish, Goal, Stretch.

Threats: A ‘threat’ is something that can potentially cause some degree of project failure, lack of success or negative consequences. It
is distinguished from an Attack, which is a successful penetration of the Threat into a system. The Threat has ‘materialized’ in practice. It
is distinguished from a Risk, which is a result of the combined effect of a Threat/Attack and the corresponding defenses (Mitigation)

Trend: a Background Benchmark level, which estimates the future of that level. Useful for pointing our Value degradation, or potential
competitor future levels of Performance.

Use Case: a written graphic description of how a system element might be used in practice. In Planguage it can be covered by using
an appropriate Scale Parameter. Example: [Uses] : {Register, Delete, Update}.

User: a person who personally and physically interacts with a system.

User Story: a requirement statement in the format: Stakeholder + Requirement + Justification. This is roughly at the level of
an Ambition Level, and can replace Ambition Level as a starting point for formulating a more detailed Planguage
requirement.

ValPlan: ValPlan.net is the URL of an App released for sale May 2019 by Gilb International AS. It is based on Planguage and
the Competitive Engineering book.

Value: value is perceived stakeholder

Value Analyst: analyzes stakeholder needs, and priorities, and selects critical, or possibly critical, needs and specified them
as requirements, at least at the ‘Wish’ level (potential Goal requirement).

Value Architect: A person or team, who sits at the Apex of the system, and synchronizes all ongoing efforts in order to get
maximum necessary value for available resources. Manages to top critical values, and the top level design architecture.

Value Contracting: this contracting can be done at both internal levels and external suppliers, and basically motivate
suppliers to deliver value and get rewarded for it.

http://ValPlan.net

Value Design Builders: people and organizations who build, physically, logically or organizationally, any design
component or related activity.

Value Designer: a generic (all possible design areas) designer (or team) who undertakes to identify possible design
components to reach a Value Requirement level, on time. To research them as to all side-effects and costs, documenting
such facts in the design object and corresponding Value Tables. The Value Designer might hand over exploration of a
design idea to a Specialist.

Value Director: the person, or group, responsible for focusing on the Value Delivery, and reporting to a steering
committee or Board about the plans and accomplishments to date in Value Delivery.

Value Engineering Specialist: a designer with a narrow speciality (usability, security, performance, organizational
improvement, AI) who is updated on the state of the art, and has a good international network of people and sources to
find good specialist designs.

Value Policy: this is the written policy that gives clear guidance to the Value process, from organizational management.
Perhaps Chief Technical Officer level.

Value Process Manager: a person or team responsible for getting a best possible value stream flowing from the other
people involved. Sort of like old project manager, except they are focussed on the Values/Costs numbers, not building
stuff. They allocate resources (money, time), and assign people to specialist tasks.

Value Quality Control: these people carry out Specification Quality Control of specifications, to make sure the Defects
Per Page is economically low enough before Exit to any other process. They are also responsible for measuring value
levels and costs after incremental implementation. They will check that designs are in fact implemented as specified by
suppliers for Exiting to integration delivery.

Value Suppliers/Sub-contractors: internal and external to the organization people or organizations who undertake a
specific responsibility, for construction, implementation, organizing, designing, or any other activity needed to deliver
value.

End of Glossary

P4. Full Planguage Concept Glossary, http://www.gilb.com/dl830

See also [B1] Glossary, and GILB.COM SITE GLOSSARY, http://
concepts.gilb.com/A? structure=Glossary&page_ref_id=126

the digital glossary by Kai and company, and ValPlan.net, or other variations of

glossary info.

http://www.gilb.com/dl830
http://concepts.gilb.com/A?structure=Glossary&page_ref_id=126
http://concepts.gilb.com/A?structure=Glossary&page_ref_id=126
http://concepts.gilb.com/A?structure=Glossary&page_ref_id=126
http://concepts.gilb.com/A?structure=Glossary&page_ref_id=126
http://ValPlan.net

Figure 42: Source Drawing Tyra Gilb (Sister, California), and Quote: Gilda Radner (SNL, -1989)

