™

&
i

0,

PrimeFaces : OmniFaces

powers combined

I 1| I

T

= - :é-f:_.,
L == ;\-_-j:lj.'.,- |

Anghel Leonard

f T
it 1) s

1

PrimeFaces & OmniFaces - Powers Combined

Anghel Leonard

This book is for sale at http://leanpub.com/PrimeFaces-OmniFaces-Powers-Combined

This version was published on 2016-08-22

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2015 - 2016 Anghel Leonard

http://leanpub.com/PrimeFaces-OmniFaces-Powers-Combined
http://leanpub.com/
http://leanpub.com/manifesto

This book is dedicated to my wife 100%

Contents

Working with faces messages (DRAFT) 1
Faces messages with multiple client IDs in the for attribute 1
Working with links and request parameters (DRAFT) 8
Use <p:link/> and <o:param/> to pass objects into generated link 8
Create complex labels 11
Using <h:outputFormat/> output as input parameter 13
Working with JavaScript resources (DRAFT) 15
Executing a JavaScript snippet after each AJAX/non-AJAX request 15
Initializing PrimeFaces components via view parameters (DRAFT) 20
Suppressing the invocation of the setter/converter/validator at each postback 20
Supply alabel formessages L 30
Supply adefaultvalue L 30
Suppressing invocation of the converter regardless the null values 31

Support bean validation and triggering validate events onnull value 31

Working with faces messages (DRAFT)

In this chapter, you will see several approaches for combining the rich looking PrimeFaces messages
with OmniFaces techniques for obtaining more flexible faces messages and less verbose code. Among
others, we will discuss about specifying multiple client ID in the for attribute and about generating
a global single message whenever validation fails. Basically, we will exemplify on ERROR type
messages.

Faces messages with multiple client IDs in the for
attribute

In order to display faces messages, PrimeFaces comes with <p:messages/>' and <p:message/>.
Typically, when you want to display all messages, you use <p:messages/>, as below (display all
error messages):

<h: form>
<h:panelCGrid id="gridId" columns="1" cellpadding="2">

<{p:messages/>

<p:outputLabel for="nameId" value="Name:" />
<p:inputText id="nameld" required="true" />

<p:outputLabel for="emailld" value="E-mail:" />
<p:inputText id="emailld" required="true" />

<p:outputLabel for="phoneld" value="Phone:" />
<p:inputText id="phoneld" required="true" />

</h:panelGrid>

<p:commandButton id="submitButtonId" value="Register" update="gridId" />
</h: form>

In the below figure, you can see the error messages caused by the fact that we didn’t fill any of the
above inputs (this is the effect of the built-in required validator):

'http://www.primefaces.org/showcase/ui/message/messages.xhtml

http://www.primefaces.org/showcase/ui/message/messages.xhtml
http://www.primefaces.org/showcase/ui/message/messages.xhtml

Working with faces messages (DRAFT) 2

Register:

m Name: Validation Error: Value is required.
E-mail: Validation Error: Value is required.

Phone: Validation Error: Value is required.

Name: *

| l

E-mail: *

| l

Phone: *

| |

But, if you want to display messages for a certain component or a certain group of components, you
use <p:message/> with for attribute, as below (display error messages only for nameId and emailld,
but not for phoneId):

<h: form>
<h:panelGrid id="gridId" columns="1" cellpadding="2">

<{p:message for="nameId" />
<p:message for="emailld" />

<p:outputLabel for="nameld" value="Name:" />
<p:inputText id="nameld" required="true" />

<p:outputLabel for="emailld" value="E-mail:" />
<p:inputText id="emailld" required="true" />

<p:outputLabel for="phoneld" value="Phone:" />
<p:inputText id="phoneld" required="true" />

</h:panelCrid>

<p:commandButton id="submitButtonId" value="Register" update="gridId" />
</h: form>

Working with faces messages (DRAFT) 3

Register:
£ Name: Validation Error: Value is required.
83 E-mail: Validation Error: Value is required.
Name: *

| I

E-mail: *

| I

Phone: *

| |

A Multiple inputs issue

The above example doesn’t represent a real problem. But, let’s suppose a form with ten
inputs, and we want to display the error messages for only eight of these. If we use
<p:messages/>, we will see the error messages for all ten inputs. On the other hand, we
can use eight <p:message/> with for attribute - not very elegant!

In such a case, we can use OmniFaces, <o:messages/>* Among other features, this component
allows multiple client IDs space separated in the for attribute. For example, the above code can be
re-written as below (notice that we tried to keep as much as possible from PrimeFaces error messages
styles):

<h: form>

<h:panelCGrid id="gridId" columns="1" cellpadding="2">

<o:messages for="nameld emailld"
errorClass="ui-message ui-message-error ui-widget ui-corner-all"
errorStyle="margin:5px;" />

<p:outputLabel for="nameld" value="Name:" />
<p:inputText id="nameld" required="true" />

<p:outputLabel for="emailld" value="E-mail:" />
<p:inputText id="emailld" required="true" />

<p:outputLabel for="phoneld" value="Phone:" />
<p:inputText id="phoneld" required="true" />

*http://showcase.omnifaces.org/components/messages

http://showcase.omnifaces.org/components/messages
http://showcase.omnifaces.org/components/messages

Working with faces messages (DRAFT) 4

</h:panelGrid>

<p:commandButton id="submitButtonId" value="Register" update="gridId" />
</h: form>
Register:
+ Name: Validation Error: Value is required.

+ E-mail: Validation Error: Value is required.

Name: *

| I

E-mail: *

| I

Phone: *

| I

| Register |

o More messages types

For INFO messages use: ui-message ui-message-info ui-widget ui-corner-all. For
FATAL messages use: ui-message ui-message-fatal ui-widget ui-corner-all.ForWARN

messages use: ui-message ui-message-warn ui-widget ui-corner-all

But, if we want to obtain the same look as in PrimeFaces, we need to exploit another feature of
<o:messages/>. This component supports the var attribute which sets the current FacesMessage
in the request scope and disables the default table/list rendering. This practically allows us to loop
through the faces messages list in a completely stateless fashion (the faces messages list is accessible
in the page via, facesContext.messagelist) and output them as we want. For example, after we
inspect the HTML code of an a PrimeFaces error message, we can do this:

Working with faces messages (DRAFT)

<h: form>
<h:panelGrid id="gridId" columns="1" cellpadding="2">

<o:messages for="nameld emailld" var="msgs">

<div class="ui-message ui-message-error ui-widget ui-corner-all"
aria-live="polite"
style="margin:5px; ">

<span class="ui-messages-error-icon" style="height:16px; width:16px;
margin-top:@; background-position:@ -96px;" />

#{msgs.detail}
</div>

</o:messages>

<p:outputLabel for="nameld" value="Name:" />
<p:inputText id="nameld" required="true" />

<p:outputLabel for="emailld" value="E-mail:" />
<p:inputText id="emailld" required="true" />

<p:outputLabel for="phoneld" value="Phone:" />
<p:inputText id="phoneld" required="true" />

</h:panelGrid>
<p:commandButton id="submitButtonId" value="Register" update="gridId" />
</h:form>

Register:
83 Name: Validation Exxor: Value is required.
B3 E-mail: Validation Error: Value is required.
Name: *

| |

E-mail: *

Phone: *

Working with faces messages (DRAFT) 6

The complete application is named, MultipleForComponents®.

So, in our hypothetical case with eight inputs, we have:

<o:messages for="inputl input2 input3 input4 inputb5 input6 input7 input8"
errorClass="ui-message ui-message-error ui-widget ui-corner-all"
errorStyle="margin: 5px;">

</o:messages>

or

<o:messages for="inputl input2 input3 input4 inputb input6 input7 input8"
var="msgs">

<div class="ui-message ui-message-error ui-widget ui-corner-all"
aria-live="polite"
style="margin:5px; ">

<span class="ui-messages-error-icon" style="height:16px; width:16px;
margin-top:0@; background-position:@ -96px;"/>

#{msgs.detail}
</div>

</o0:messages>

You can use <o:messages/> to refer to non-input components, which in turn contain input
components. For example:

<h: form>

<h:panelCGrid id="gridId" columns="1" cellpadding="2">

<o:messages for="inputs"
errorClass="ui-message ui-message-error ui-widget ui-corner-all"
errorStyle="margin:5px;"/>

<p:outputLabel for="nameId" value="Name:" />
<p:inputText id="nameld" required="true" />

<h:panelGroup id="inputs">
<h:panelGrid id="subgridId" columns="1">

*https://github.com/AnghelLeonard/PrimeFaces-OmniFaces/tree/master/MultipleForComponents

https://github.com/AnghelLeonard/PrimeFaces-OmniFaces/tree/master/MultipleForComponents
https://github.com/AnghelLeonard/PrimeFaces-OmniFaces/tree/master/MultipleForComponents

Working with faces messages (DRAFT)

<p:outputLabel for="emailld" value="E-mail:" />
<p:inputText id="emailld" required="true" />

<p:outputLabel for="phoneld" value="Phone:" />
<p:inputText id="phoneld" required="true" />
</h:panelCGrid>

</h:panelGroup>

</h:panelGrid>

<p:commandButton id="submitButtonId" value="Register" update="gridId" />
</h:form>

You can also combine non-input components that contain inputs with other input components:

<h: form>
<h:panelCGrid id="gridId" columns="1" cellpadding="2">

<o:messages for=" nameld inputs"
errorClass="ui-message ui-message-error ui-widget ui-corner-all"

errorStyle="margin:5px;"/>

<p:outputLabel for="nameld" value="Name:" />
<p:inputText id="nameld" required="true" />

<h:panelGroup id="inputs">

<h:panelGrid id="subgridId" columns="1">
<p:outputLabel for="emailld" value="E-mail:" />
<p:inputText id="emailld" required="true" />

<p:outputLabel for="phoneld" value="Phone:" />
<p:inputText id="phoneld" required="true" />
</h:panelCGrid>
</h:panelGroup>
</h:panelCGrid>

<p:commandButton id="submitButtonId" value="Register" update="gridId" />
</h: form>

Working with links and request
parameters (DRAFT)

In this chapter, we will discuss about several gaps of UIParameter. This component is ex-
posed to JSF page authors via the <f:param/> tag, and it is usually used for attaching extra
request parameters to links (<p:1link/>*), external URLs (<h:outputLink/>), command button-
s/links (<p: commandButton/>’ and <p:commandLink/>¢) and formatted output (<h:outputFormat/>).
Among others, we will focus on passing object into generated links and creating complex labels.

Use <p:1ink/> and <o:param/> to pass objects into
generated link

In order to generate a link (HTML <a href>), PrimeFaces comes with <p:1ink/>. If you check the
PrimeFaces Showcase, you can see a simple example (listed below):

<p:link outcome="productDetail" value="Bookmark">
<f:param name="productId" value="10" />
</p:link>

As you can see, the generated link contains a request parameter also. The productld request
parameter is “attached” to the generated link via the <f:param> tag.

A Passing objects to links issue

The value of this parameter is a simple string. But, what if we need to pass an object as a
request parameter instead of a simple string? By default, JSF will pass the result of calling
the toString() method.

For example, let’s suppose that we collect from the end user a 10 digit phone number, as below:

“http://www.primefaces.org/showcase/ui/button/link.xhtml
*http://www.primefaces.org/showcase/ui/button/commandButton.xhtml
®http://www.primefaces.org/showcase/ui/button/commandLink.xhtml

http://www.primefaces.org/showcase/ui/button/link.xhtml
http://www.primefaces.org/showcase/ui/button/commandButton.xhtml
http://www.primefaces.org/showcase/ui/button/commandLink.xhtml
http://www.primefaces.org/showcase/ui/button/link.xhtml
http://www.primefaces.org/showcase/ui/button/commandButton.xhtml
http://www.primefaces.org/showcase/ui/button/commandLink.xhtml

Working with links and request parameters (DRAFT) 9

<p:outputLabel for="phone" value="Phone Number: " />
<p:inputText id="phone" required="true" value="#{dataBean.number}" />

Let’s assume that a 10 digit phone number is composed as follows:

« the first three numbers are the area code, called the national destination code (NDC)
« the following three numbers known as the exchange
« the last four numbers at the end of a 10 digits number are the subscriber number

Knowing this, we will now create a POJO class to represent these phone number parts (notice the
toString()):

public class PhoneNumber implements Serializable {
private static final long serialVersionUID = 1L;

private String areacode;
private String exchange;
private String subscriber;

public PhoneNumber (String areacode, String exchange, String subscriber) {
this.areacode = areacode;
this.exchange = exchange;

this.subscriber = subscriber;

}

// getters and setters
// equals() and hashCode()

@0verride
public String toString() {
return "PhoneNumber{" + "areacode=" + areacode + ", exchange="

+ exchange + ", subscriber=" + subscriber + "}";

Instances of this POJO are used via a simple bean named, DataBean (for brevity, we skip its source
code). The property that stores the instance is named, number (e.g. #{dataBean.number}).

In order to split the provided phone number and represent it as an instance of the PhoneNumber class,
we need to attach a converter (for brevity, we skip the converter source code):

Working with links and request parameters (DRAFT) 10

<p:inputText id="phone" required="true"
value="#{dataBean.number}"
converter="phoneNumberConverter" />

After the user submits the 10 digits phone number, we want to display a link of type: Dial Phone
Number. The HTML behind this link is an <a> tag (of course, the number request parameter should
reflect the provided phone number):

Dial Phone Number

In the browser address bar it will appear as:
http://.../dial.xhtml ?number=0727890877
So, this link should be created like below:

<p:link value="Dial Phone Number" outcome="dial">
<f:param name="number" value="#{dataBean.number}"/>
</p:link>

But, this will generate the following link (notice the effect of invoking toString()):

http://.../dial.xhtml ?number=PhoneNumber%7Bareacode%3DQ72%2C+
exchange%3D789%2C+subscriber%3DO877%7D

Well, this link is definitely not the desired one! In order to obtain the desired link, we can write a
proper toString() implementation or to break down the DRY principle. But, even better is to use
the OmniFaces <o:param/>". This component allows us to pass an object as a request parameter into
a link. Practically, <o:param> allows us to indicate the needed converter via the converter attribute,
as below:

<p:link value="Dial Phone Number" outcome="dial">
<o:param name="number" value="#{dataBean.number}"

converter="phoneNumberConverter"/>
</p:link>

"http://showcase.omnifaces.org/components/param

http://showcase.omnifaces.org/components/param
http://showcase.omnifaces.org/components/param

Working with links and request parameters (DRAFT) 11

You can see the result in the below figure:

= C A | [localhost:8080/PassingObjectsInLinkWithoParam/

Please, enter vour 10 digits phone number:

Phone Number: * | (0727890877

Send

Dial Phone Number l

&« C' A | [localhost:8080/PassingObjectsinLinkWithoParam/faces/dial.xhtml?
Calling ...[0727890877

number=0727890877

The complete application is named, PassingOb jectsInLinkWithoParam®.

Create complex labels

The <f:param/> cannot supply JSE/HTML in parameterized messages (<h:outputFormat/>). Let’s
suppose that we want to use a link as a parameter of an un—escaped <h:outputFormat/>, which is
nested in a <p:outputlLabel/>, as below:

<h: form>
<h:panelGrid columns="4">
<p:outputLabel for="zipCodelId">
<h:outputFormat value="#{msg['ZIPCODE']} ({Q}):" escape="false">
<f:param>
<p:link value="see samples"

outcome="#{view.locale eq 'en' ? 'sample_en':'sample_fr'}">
<f:param name="locale" value="#{view.locale}" />
</p:link>
</f:param>
</h:outputFormat>
</p:outputLabel>
<p:inputText id="zipCodeld" required="true" />
<p:message for="zipCodeld" />
<p:commandButton value="Dial"/>
</h:panelGrid>

</h:form>

®https://github.com/AnghelLeonard/PrimeFaces-OmniFaces/tree/master/PassingObjectsInLinkWithoParam

https://github.com/AnghelLeonard/PrimeFaces-OmniFaces/tree/master/PassingObjectsInLinkWithoParam
https://github.com/AnghelLeonard/PrimeFaces-OmniFaces/tree/master/PassingObjectsInLinkWithoParam

Working with links and request parameters (DRAFT) 12

So we have a label that contains a simple text and a link. The link gets modified (points different
outcomes) depending on the selected language (English or French). The above code will produce the
following output (left side - English, right side - French):

[P N
iiEE iiEE
see samplesZip Code (null): * see samplesCode Postal (null): *
Dial Dial

A The <f:param/> value issue

Obviously, the result doesn’t look as expected. The problem is that <f:param/> is not
capable of using its children as a values.

The problem can be solved by replacing the <f: param/> with OmniFaces’ <o:param>°. The <o:param/>
allows the use of JSF and HTML as parameter values.

<h: form>
<h:panelCGrid columns="4">
<p:outputLabel for="zipCodelId">
<h:outputFormat value="#{msg['ZIPCODE']} ({@}):" escape="false">
<o:param>
<p:link value="see samples"
outcome="#{view.locale eq 'en' ? 'sample_en':'sample_fr'}">
<o:param name="locale" value="#{view.locale}" />
</p:link>
</o:param>
</h:outputFormat>
</p:outputLabel>
<p:inputText id="zipCodeld" required="true" />
<p:message for="zipCodeld" />
<p:commandButton value="Dial"/>
</h:panelGrid>
</h: form>

This time the result will be like this (everything looks fine for both, English and French):

*http://showcase.omnifaces.org/components/param

http://showcase.omnifaces.org/components/param
http://showcase.omnifaces.org/components/param

Working with links and request parameters (DRAFT) 13

L] nIl]
iiEE iiEE
Zip Code (see samples): ¥ Code Postal (see samples): *
Dial Dial

The complete application is named, ComplexLabelsWithOutputFormat'’.

Using <h:outputFormat/> output as input parameter

Let’s suppose that we want to use the output of <h:outputFormat/> as a tooltip for multiple
commands (command links and buttons).

A The <h:outputFormat/> output issue

A significant drawback of <h:outputFormat/> is that we cannot use its output/result as an
input (or parameter) for other components.

In other words, you cannot write something like this:

<p:commandLink ... title="<h:outputFormat value="...">
<f:param value="..."/>
</h:outputFormat>"
/>

It is practically pretty hard to obtain the desired result. However, OmniFaces provides an extension
to <h:outputFormat/> that is capable of accomplishing such tasks. This component is exposed to JSF
page authors via <o:outputFormat/> tag. More precisely, this component has the ability to capture
the <h:outputFormat> output and expose it in the request scope under a variable specified as the
value of the var attribute. Let’s see how to use <h:outputFormat/> output as an input/parameter:

<h: form>

<o:outputFormat value="#{msg['ZIPCODE']}, {@}" var="_zip">
<f:param value="#{view.locale eq 'en' ? 'UK':'France'}" />
</o:outputFormat>

<p:commandLink value="#{msg['ZIPCODE']}" title="#{_zip}" />
<p:commandButton value="#{msg['ZIPCODE']}" title="#{_zip}" />

</h: form>

®https://github.com/AnghelLeonard/PrimeFaces-OmniFaces/tree/master/ComplexLabelsWithOutputFormat

https://github.com/AnghelLeonard/PrimeFaces-OmniFaces/tree/master/ComplexLabelsWithOutputFormat
https://github.com/AnghelLeonard/PrimeFaces-OmniFaces/tree/master/ComplexLabelsWithOutputFormat

Working with links and request parameters (DRAFT) 14

Notice that the variable name is prefixed with underscore character (_). This is an OmniFaces

recommendation for avoiding possible conflicts with other variables in the page. Below you can
see the output of this case:

w1 [
=G 1 iEG
Zip Code | Zip Code Zip Code | ZipCode
Zip Code, UK Zip Code, UK
= L
TBS (b
Code Postal | Code Postal Code Postal | Code Postal
Code Postal, France Code Postal, France

The complete application is named, OutputFormatAsInputParameter.

Working with JavaScript resources
(DRAFT)

Working in JSF with JavaScript resources seems to be a pretty simple task. Starting with JSF 2.0, all
the web resources, such as CSS, JavaScript, and images are loaded from a folder named resources,
present under the root of your web application or from /META-INF/resources in JAR files. A folder
under the resources folder is known as a library or theme, which is like a collection of client
artifacts (e.g. your company name). After we build the resources folder structure and add the
JavaScript resources, we simply plug in the <h:outputScript/> tag into the XHTML page.

In this chapter we will “dissect” this topic a little bit more. Among other things, we will discuss how
to execute a snippet of JavaScript after each request (AJAX/non-AJAX), how to load resources from
CDN URLs, how to combine JavaScript resources for achieving optimal performance and how to
deffer JavaScript resources loading after the page has been completely loaded.

Executing a JavaScript snippet after each
AJAX/non-AJAX request

Let’s suppose that we want to execute a piece of JavaScript code after each request in a page (AJAX,
non-AJAX). Requests are typically fired via command buttons (<p: commandButton/>) and command
links (<p:commandLink/>). By default, these commands fire AJAX requests (the default value of the
ajax attribute is true), so let’s take a look at this first case:

Executing a JavaScript snippet after each AJAX request

PrimeFaces commands provide an attribute named, oncomplete. The value of this attribute repre-
sents the client side callback to be executed when the AJAX request is completed. We can practically
do this:

Working with JavaScript resources (DRAFT) 16

<h:body>
<h: form>
<p:commandButton value="Generate Random"
oncomplete="document.getElementById('panelld"').innerHTML=Math.random();"/>
</h: form>

<h:panelGroup id="panelld"/>
</h:body>

Or, we can wrap the JavaScript code into a function, as below:

<h:head>
<script type='text/javascript'>
function generateRandom()({
document .getElementById('panelld').innerHTML=Math.random();
}
</script>
</h:head>

<h:body>

<h: form>
<p:commandButton value="Generate Random" oncomplete="generateRandom();"/>
</h: form>

<h:panelGroup id="panelld"/>
</h:body>

Notice that in both cases the execution of the JavaScript code is tied up in the command button.
For example, if we have more command buttons/links in this page and each of them causes the
execution of this snippet of JavaScript code then we would need to duplicate the JavaScript code
or the JavaScript method invocation in the oncomplete attribute. We can however, provide other
custom approaches such as using the update attribute to point to a component that contains the
JavaScript code. On a separate note we could also exploit the jsf.ajax.addOnEvent but this is
another subject. The following example causes the execution of the JavaScript only at initial request
(at POST—AJAX, the JavaScript code will not be executed!):

Working with JavaScript resources (DRAFT) 17

<h:body>

<h: form>
<p:commandButton value="Generate Random"/>
</h: form>

<h:panelGroup id="panelld"/>

<script type='text/javascript'>

document .getElementById('panelld').innerHTML = Math.random();
</script>
</h:body>

Executing a JavaScript snippet after each non-AJAX request

In the case of a non-AJAX requests, the view is re-rendered, so the JavaScript code is executed after
each non-AJAX request. The only thing we have to keep in mind is to place the JavaScript code at
the end of the <body/>. This is needed to ensure that the entire DOM tree of the page is populated
and safe to be referenced from the JavaScript code. For example, the case below will not work (upon
the firing of each request, it will cause an error like: TypeError: document.getElementById(...)
is null; this occurs because when the JavaScript code is executed the DOM tree doesn’t contain
the HTML code corresponding to the panelId ID):

<head>
<script type='text/javascript'>
document .getElementById('panelld"').innerHTML = Math.random();
</script>
</h:head>

<h:body>

<h: form>

<p:commandButton value="Generate Random" ajax="false"/>
</h: form>

<h:panelGroup id="panelld"/>
</h:body>

But, this will have the desired effect:

Working with JavaScript resources (DRAFT) 18

<h:body>

<h: form>
<p:commandButton value="Generate Random" ajax="false"/>
</h: form>

<h:panelCGroup id="panelld"/>

<script type='text/javascript'>

document .getElementById('panelld').innerHTML = Math.random();
</script>
</h:body>

A Execute a snippet of JavaScript after each
AJAX/non-AJAX request issue

Well, this case complicates the problem. Depending on your scenario, the complexity
of finding an elegant approach will significantly increase. Basically, you should avoid
verbose/boilerplate code which will lead to code that is hard to maintain and modify.

Using the OmniFaces OnloadScript component

A quick and general approach consists of using the OmniFaces OnloadScript'' component. This
component is exposed to JSF page authors via <o:onloadScript/> tag. Basically, you nest the
JavaScript code that should be executed in the <o:onloadScript/> tag and OmniFaces will take care
of the rest. It doesn’t matter where in page you place the <o:onloadScript/>, because OmniFaces
will take care of rendering and executing it at the end of the <body/> after each AJAX/non-AJAX
request. For example, both commands below (AJAX and non-AJAX) will cause the execution of
the JavaScript code nested in <o:onloadScript/>, while the JavaScript placed in the oncomplete
attribute of the AJAX based command is executed only at the end of such request:

<h:head>
<o:onloadScript>
document .getElementById('panelld').innerHTML = Math.random();
</o:onloadScript>
</h:head>

<h:body>

<h: form>

<p:commandButton value="Generate Random (non-AJAX)" ajax="false"/>
</h: form>

"http://showcase.omnifaces.org/components/onloadScript

http://showcase.omnifaces.org/components/onloadScript
http://showcase.omnifaces.org/components/onloadScript

Working with JavaScript resources (DRAFT)

<h: form>
<p:commandButton value="Generate Random (AJAX)"
oncomplete="alert('AJAX request complete!');"/>
</h:form>

<h:panelGroup id="panelld"/>
</h:body>

The complete application is named, ExecuteScriptAfterEachRequest'®

2https://github.com/AnghelLeonard/PrimeFaces-OmniFaces/tree/master/ExecuteScriptAfterEachRequest

19

https://github.com/AnghelLeonard/PrimeFaces-OmniFaces/tree/master/ExecuteScriptAfterEachRequest
https://github.com/AnghelLeonard/PrimeFaces-OmniFaces/tree/master/ExecuteScriptAfterEachRequest

Initializing PrimeFaces components
via view parameters (DRAFT)

View parameters (UIViewParameter) were introduced in JSF 2.0. They appear nested in the metadata
section (<f:metadata>) and their main goal is to allow the developer to provide bookmarkable URLs.
Although it is not mandatory, they are initialized via request parameters. As you will see in this
chapter, view parameters can be used to transform a query string (the part after ? in an URL) into
managed bean properties used to initialize PrimeFaces components. A quick code sketch will look

like this:

// page A.xhtml

<h:1link outcome="B.xhtml"...>

<f:param name="myParamName" value="myParamValue"/>
</h:1link>

// page B.xhtml

<f:metadata>

// myProperty is initialized via myParamValue and it will further initialize
// PrimeFaces component property

<f:viewParam name=" myParamName " value="#{myBean.myProperty}"/>
</f:metadata>

View parameters are stateful and this raises several issues, of which will be the discussion of this
chapter.

q& Postbacks and statefulness

A quick interlude into the definition of postbacks and statefulness from view parameters
perspective. A postback is when an HTTP POST request is fired to the same page/view.
The values of view parameters are saved in the view (state) and are available on postback.
That is what is meant by view parameters are stateful and available over postbacks; they
preside and are saved in the view (state).

Suppressing the invocation of the
setter/converter/validator at each postback

Again to reiterate, view parameters are stateful and hence they need to be initialized only once. This
is a good thing from the perspective of availability. A stateful component is available in the current

Initializing PrimeFaces components via view parameters (DRAFT) 21

view over postbacks, and in the case of view parameters, this is true even if they no longer appear in
the URL (they may appear only at initial request). But, there are a few drawbacks of this behavior:

A Setter

Invoke the setter method (if any) at each postback

Converter/Validator

Invoke the converter/validator methods (if any) at each postback

Invoke the converter regardless null values

Bean validation and triggering validate
events on null value

For null submitted values, bypassing the standard Ul Input validation, including any bean
validation annotations and even the PrevValidateEvent and PostValidateEvent events.

A
A null values
A

A stateless view parameters

Stateless view parameters breaking the stateful character leads to problems with the
required built-in validator

In order to highlight these issues, let’s have the following scenario: we want to initialize the
PrimeFaces Mindmap'> component via a query string of type: . . . ?nodes=root |node_A|node_B. This
should produce the below figure (for simplicity we use a mindmap with a single level):

We have multiple approaches for accomplishing this, but obviously, we will choose to use view
parameters for transforming the request parameters into mindmap nodes. The root, node_A, and
node_B are strings, whereas mindmap relies on MindmapNode class. In order to transform the query
string into a MindmapNode instance, we will use a custom converter (NodesConverter) and in order
to ensure that we do it right, we will use a custom validator (NodesValidator). But, let’s see some
code lines (notice that the request parameter and the view parameter have the same name nodes):

Phttp://www.primefaces.org/showcase/ui/data/mindmap.xhtml

http://www.primefaces.org/showcase/ui/data/mindmap.xhtml
http://www.primefaces.org/showcase/ui/data/mindmap.xhtml

Initializing PrimeFaces components via view parameters (DRAFT) 22

<f:metadata>
<f:viewParam name="nodes" value="#{mindmapViewBean.root}" required="true"
converter="nodesConverter" validator="nodesValidator"/>
</f:metadata>

<h:body>
<h:panelGrid columns="2">
<{p:messages/>
<h:form>
<p:commandButton value="Reset Mindmap"
action="#{mindmapViewBean.resetMindMap()}" ajax="false"/>
</h:form>
</h:panelGrid>
<p:mindmap value="#{mindmapViewBean.root}"
style="width: 450px; height: 400px; border: 1px solid black;">
<p:ajax event="select" listener="#{mindmapViewBean.onNodeSelect}" />
</p:mindmap>
<h: form>
<p:commandButton value="Unrelated to Mindmap" ajax="false"/>
</h:form>
</h:body>

The MindmapViewBean is responsible of storing the mindmap (nodes).Keeping up with simplicity and
in order to highlight the issues at hand we implement a few logs:

@Named
@ViewScoped
public class MindmapViewBean implements Serializable {

private static final Logger LOG =
Logger .getlLogger (MindmapViewBean.class.getName());

private MindmapNode root;

public MindmapViewBean() {
LOG. info("MindmapViewBean#constructor ...");

}

public MindmapNode getRoot() {
return root;

}

Initializing PrimeFaces components via view parameters (DRAFT) 23

public void setRoot(MindmapNode root) {
LOG.info("MindmapViewBean#setter ...");
this.root = root;

}

public String resetMindMap(){
LOG. info("MindmapViewBean#resetMindMap() ...");
return "index?faces-redirect=true&includeViewParams=true";

}

public void onNodeSelect(SelectEvent event) {
LOG. info("MindmapViewBean#onNodeSelect() ...");
}

}

The root is populated from a custom converter. This is responsible of splitting the root|node_-
Alnode_B string and creating the mindmap (getAsObject()) and viceversa (getAsString()). The
code is pretty simple:

@FacesConverter("nodesConverter")
public class NodesConverter implements Converter

private static final Logger LOG =
Logger . getlLogger (NodesConverter.class.getName());

@0Override
public Object getAsObject(FacesContext context,
UIComponent component, String value) {
LOG. info("NodesConverter#getAsObject() ...");
if ((value != null) && (!value.isEmpty())) {
String[] nodes = value.split("\\I|");
// create mindmap root
MindmapNode root = new
DefaultMindmapNode(nodes[@], nodes[Q], "FFCCOQ", false);
// add children to root

if (nodes.length » 1) {
for (int i = 1; i < nodes.length; i++) {

Initializing PrimeFaces components via view parameters (DRAFT)

root.addNode(new DefaultMindmapNode(nodes[i],
nodes[i], "6e9ebf", true));

}

return root;

return null;

}

@0verride
public String getAsString(FacesContext context,
UIComponent component, Object value) {

LOG. info("NodesConverter#getAsString() ...");

if (value != null) {
String queryString = ((DefaultMindmapNode) value).getlabel() + "[|";
List<MindmapNode> nodes = ((DefaultMindmapNode) value).getChildren();
for (MindmapNode node : nodes) {

n

queryString = queryString + node.getlLabel() + "|";

}
return queryString;
}
return "";
}
}

Besides the built-in required validator, you might in some cases need a validator. We can add a
custom validator that would ensure that our mindmap has children. Furthermore, we will not accept
a mindmap that contains only the root. Obviously, you could accomplish this check by using the
above converter. But remember that we need to expose all the issues of view parameters, including
calling valdiators at each postback. Moreover, the application is “shaped” for revealing what may

24

happen if we don’t correctly understand how view parameters works. So the custom validator looks

like this:

Initializing PrimeFaces components via view parameters (DRAFT) 25

@FacesValidator("nodesValidator")
public class NodesValidator implements Validator {

private static final Logger LOG =
Logger .getlLogger (NodesValidator.class.getName());

@0Override
public void validate(FacesContext context, UIComponent component,
Object value) throws ValidatorException {
LOG.info("NodesValidator#validate() ...");
if (((MindmapNode)value).getChildren().isEmpty()) {

throw new ValidatorException(new FacesMessage(FacesMessage.SEVERITY ERROR,
"You cannot have a mindmap only with a root !", null));

Assuming we have some hypothetical cases where the URLs are bookmarked:

« URL without query string (http://localhost:8080/SuppressViewParamInvocations/). In
this case, we see the error message caused by the built-in required validator, j_idt1:
Validation Error: Value is required.. This is the expected behavior:

C' A | [) localhost:8080/SuppressViewParamInvocations/

E‘i j_idtl: Validation Error: Value is required. Reset Mindmap

Now, let’s focus on what happens if we press the Reset Mindmap button. When this button is pressed,
we simply call a managed bean method that performs some tasks (not relevant) and redirect to
the same view by including the view parameters. At postback, you see the same error message
caused by the required built-in validator. This is normal since we never provided a query string.
But the thing that may look strange (even if it shouldn’t) is the fact that this is not a redirect (the
resetMindMap() method is not called). Since the required view parameter is not provided, each
postback will “stop” in the Process Validation phase, and “jump” to the Render Response phase. The
fact that the validators/converters are invoked at each postback (even if there is no query string) is
also suggested by the logs:

Initializing PrimeFaces components via view parameters (DRAFT) 26

// initial request - validation fails via 'required' built-in validator
[beans.MindmapViewBean] (default task-93) MindmapViewBean#constructor ...
[beans.NodesConverter] (default task-93) NodesConverter#getAsString() ...

// postback 1 - validation fails via 'required' built-in validator
[beans.NodesConverter] (default task-112) NodesConverter#getAsObject() ...
[beans.NodesConverter] (default task-112) NodesConverter#getAsString() ...

So, instead of being redirected and seeing the required built-in validator error message again,
we just see this message without redirection. The resetMindMap() method is not called. This is
happening for the Unrelated to Mindmap button also (dummy button to fire POST via forward
mechanism). Let’s examine the second use case.

« URL with wrong query string (http://.../SuppressViewParamInvocations/?nodes=root).
In this case, we see the error message caused by the custom validator, You cannot have a
mindmap only with a root !. This is the expected behavior:

€« C A [localhost:8080/SuppressViewParamlInvocations/?nodes=root

EB You cannot have a mindmap only with a root ! Reset Mindmap

Since we provide a value for the view parameter, the built-in required validator is successfully
passed at initial request. But, the validation fails in our custom validator, which doesn’t accept
a mindmap that contains only the root. This means that the flow “jumps” in Render Response
phase, and the view parameter is not set in state. At postback (fired via Reset Mindmap button)
we will receive the built-in required validator error message, j_idt1: Validation Error: Value
is required.. This in normal since at initial request the view parameter was not set in state, and
at postback the query string is not available, so there is no view parameter. The fact that the
validators/converters are invoked at each postback (even if there is no query string) is suggested
by the logs also:

Initializing PrimeFaces components via view parameters (DRAFT) 27

// initial request - no setter is called because validation fails

// in the custom validator

[beans.NodesConverter] (default task-54) NodesConverter#getAsObject()
[beans.NodesValidator] (default task-54) NodesValidator#validate()
[beans.MindmapViewBean] (default task-54) MindmapViewBean#constructor ...
[beans.NodesConverter] (default task-54) NodesConverter#getAsString()

// postback 1 - validation fails via 'required' built-in validator
[beans.NodesConverter] (default task-T76) NodesConverter#getAsObject()
[beans.NodesConverter] (default task-T76) NodesConverter#getAsString()

Again instead of being redirected, we keep seeing the required built-in validator error message
without redirection. The resetMindMap() method is not called. This is happening to the Unrelated
to Mindmap button also (dummy button to fire POST via forward mechanism). Let’s examine the
third use case.

« URL with valid query string (http://.../?nodes=root |node_A|node_B). This query string
will successfully pass through conversion and validation and the mindmap will be displayed
on to screen. This is the expected behavior:

If we press the Reset Mindmap button, then everything will act as expected. The mindmap will
be reset to the initial status via the query string attached due to the effect of the includeView-
Params=true (see resetMindMap() method). But, if we click on one of the nodes (which fires an
AJAX select event) and continue by pressing the Reset Mindmap button, then we will see the error
message from the built-in required validator, j_idt1: Validation Error: Value is required..
This is an unexpected behavior. Click again on Reset Mindmap button and everything works fine.

Moreover, let’s press the Unrelated Mindmap button and check the logs. Even if this is a postback,
there is no query string and this action is not even related to mindmap, the converters, validators
and setters are still invoked at each request:

Initializing PrimeFaces components via view parameters (DRAFT) 28

// initial request

[beans.NodesConverter] (default task-61) NodesConverter#getAsObject() ...
[beans.NodesValidator] (default task-61) NodesValidator#validate()
[beans.MindmapViewBean] (default task-61) MindmapViewBean*constructor ...
[beans.MindmapViewBean] (default task-61) MindmapViewBean#setter ...
[beans.NodesConverter] (default task-61) NodesConverter#getAsString() ...

// postback 1 - press the 'Unrelated Mindmap' button
[beans.NodesConverter] (default task-119) NodesConverter#getAsObject() ...
[beans.NodesValidator] (default task-119) NodesValidator#validate()
[beans.MindmapViewBean] (default task-119) MindmapViewBean#setter ...
[beans.NodesConverter] (default task-119) NodesConverter#getAsString() ...

So, in the above three cases we have identified several issues that disqualify view parameters for
this job. But, if we add the OmniFaces namespace (xmlns:o="http://omnifaces.org/ui") in the
XHTML page and replace the stateful <f:viewParam/> with the stateless <o:viewParam/>'* then
all the issues will disappear like magic:

<f:metadata>

<o:viewParam name="nodes" value="#{mindmapViewBean.root}" required="true"
converter="nodesConverter" validator="nodesValidator"/>

</f:metadata>

Now, let’s see what happens in our three use cases:

« URL without the query string (http://.../SuppressViewParamInvocations/). In this case,
we see the error message caused by the built-in required validator nodes: Validation
Error: Value is required.. This is the expected behavior. This time, when you press
the Reset Mindmap button, the logs reveal that the redirect take place; the constructor of
MindmapViewBean is invoked after each press and the built-in required validator fails each
time at initial request. The resetMindMap() method is called as expected:

"http://showcase.omnifaces.org/components/viewParam

http://showcase.omnifaces.org/components/viewParam
http://showcase.omnifaces.org/components/viewParam

Initializing PrimeFaces components via view parameters (DRAFT) 29

// initial request
[beans.NodesConverter] (default task-77) NodesConverter#getAsObject() ...
[beans.MindmapViewBean] (default task-77) MindmapViewBean*constructor ...

// postback 1 - press the 'Reset Mindmap' button

[beans.MindmapViewBean] (default task-97) MindmapViewBean#resetMindMap() ...
[beans.NodesConverter] (default task-95) NodesConverter#getAsObject() ...
[beans.MindmapViewBean] (default task-95) MindmapViewBean#constructor ...

« URL with the wrong query string (http://. . ./SuppressViewParamInvocations/?nodes=root).
In this case, at the initial request, we see the error message caused by our custom validator, You
cannot only have a mindmap with a root !. This is the expected behavior. Since the view
parameter doesn’t pass the validation process it will not be set in state. At postbacks when
you press the Reset Mindmap button, you will see the effect of the built-in required validator.
But, the resetMindMap() method is called as expected and the redirection takes place:

// intial request

[beans.NodesConverter] (default task-38) NodesConverter#getAsObject() ...
[beans.NodesValidator] (default task-38) NodesValidator#validate()
[beans.MindmapViewBean] (default task-38) MindmapViewBean#constructor ...

// postback 1 - press the 'Reset Mindmap' button

[beans.MindmapViewBean] (default task-3) MindmapViewBean#resetMindMap() ...
[beans.NodesConverter] (default task-19) NodesConverter#getAsObject() ...
[beans.MindmapViewBean] (default task-19) MindmapViewBean#constructor ...

This is confirmed by the Unrelated Mindmap button also. This button fires a POST requests via
forward mechanism, but the required validator is not invoked!

0~¢ Suppressing required=true on postback

The above behavior shows that the OmniFaces <o:viewParam/> suppresses (skips) on
postbacks the effect of required=true, but it works on the initial request (on GET) as
expected. This is normal since the <o:viewParam/> represents stateless view parameters.
This allows view parameters to not exist on postbacks. Obviously, the weight of keeping
track of a view parameter value beyond a postback now has to be carried by the developer.
This can however be done easily by binding this value to a view scoped bean, which will
automatically remember all its values between postbacks. If you are using a scope with a
shorter lifespan (e.g. request scope) then you should expect to have some null values at
postbacks, since the data “pushed” initially through view parameters into the data model
will be lost from the data model at postbacks. This happens because at postback, the view
parameter does “push” anything into the data model.

Initializing PrimeFaces components via view parameters (DRAFT) 30

« URL with valid query string (http://.../?nodes=root|node_A|node_B). This query string
will successfully pass through conversion and validation and the mindmap will be displayed
on screen. This is the expected behavior.

This time pressing the Reset Mindmap button works as expected. Remember previously, the issue
caused by clicking a node (firing an AJAX select event) and afterwards clicking the Reset
Mindmap button ? Well, this issue is now solved. The POSTs via forward mechanism (e.g. pressing
Unrelated Minmap button) will skip the invocation of converters/validators and setters attached to
view parameters. This is a big win! Stateless mode avoids unnecessary conversions, validations and
models updating on postbacks.

Supply a label for messages

Moreover, pay attention to the error messages label! OmniFaces provides a default value for the
label attribute. When the label attribute is omitted, the name attribute will be used as the label.
For example, when the 1abel attribute is not set on <o:viewParam/> and a validation error occurs
when using the required built-in validator, the following message will be generated:

nodes: Validation Error: Value is required.

0\e Generating label for messages

When <o:viewParam/> doesn’t have the 1abel set, OmniFaces will automatically supply
the parameter name as the label to be used. When using <f:viewParam> without an explicit
label attribute, you’ll see the client ID appearing in the generated message.

Supply a default value

Note that, starting with OmniFaces 2.2, the ViewParam component also supports the optional default
attribute. This attribute allows us to indicate a default value, and OmniFaces will in turn rely on this
value in the case where the actual request parameter is null or empty. For example, you may want
to initialize the mind map, as below:

Initializing PrimeFaces components via view parameters (DRAFT) 31

<f:metadata>

<o:viewParam name="nodes" value="#{mindmapViewBean.root}" default="root| foo"
required="true" converter="nodesConverter"
validator="nodesValidator"/>

</f:metadata>

Now, if you don’t supply a query string (e.g.http: //localhost:8080/SuppressViewParamInvocations)
the mindmap will look like below (this way you don’t need the required built-in validator):

Suppressing invocation of the converter regardless
the nu11 values

OmniFaces doesn’t allow null view parameters to become empty strings nor does it allow null
parameters from participating in query string. This is done automatically by the OmniFaces
implementation, so you don’t have to configure anything. OmniFaces analyzes each view parameter
value and takes care of preventing any such occurrence and it does this by not calling the attached
converters. By default, when you are using the includeViewParams, the null view parameters
with attached converters are still null when the query string is prepared. For example, if we use
<f:viewParam/>, remove validators from our view parameter, omit the nodes request parameter and
click on the Reset Mindmap button, you will see this:

http://localhost:8080/SuppressViewParamInvocations/faces/index.xhtml ?nodes=

Notice that nodes was attached with an empty string value. If we switch to <o:viewParam/> then
we will obtain the expected result:

http://localhost:8080/SuppressViewParamInvocations/faces/index.xhtml

Support bean validation and triggering validate events
on null value

The standard UIViewParameter implementation uses in JSF 2.0-2.2 an internal “is required” check
when the submitted value is null, hereby completely bypassing the standard UIInput validation,
including any bean validation annotations and even the PrevalidateEvent and PostValidateEvent
events. For example, in Mojarra, the UIViewParameter implementation is adjusted to deal with nul1
values in presence of the built-in required validator. Well, UTInput assumes that anull value means
don’t check, but UIViewParameter doesn’t accept null values and the built-in required validator:

Initializing PrimeFaces components via view parameters (DRAFT) 32

// Mojarra 2.2.9, UIViewParameter source code

if (getSubmittedValue() == null && myIsRequired()) {
String requiredMessageStr = getRequiredMessage();
FacesMessage message;
if (null != requiredMessageStr) ({
message = new FacesMessage(FacesMessage.SEVERITY ERROR,
requiredMessageStr,
requiredMessageStr) ;
} else {
message = MessageFactory.getMessage(context, REQUIRED_MESSAGE_ID,
MessageFactory.getlabel(context, this));
}
context.addMessage(getClientId(context), message);
setValid(false);
context.validationFailed();
context .renderResponse();
} else {
super.processValidators(context);

The myIsRequired() method is a private method that checks the well-known isRequired() and
another private method, named isRequiredvViaNestedRequiredValidator() - its name is self
explanatory:

// Mojarra 2.2.9, UIViewParameter source code
private boolean myIsRequired() {
return super.isRequired() || isRequiredViaNestedRequiredValidator();

}

The workaround was added in OmniFaces 2.0. In JSF 2.3, this has been fixed and effectuated when
javax. faces.INTERPRET_EMPTY_STRING_SUBMITTED_VALUES_AS_NULL contextparanlisseth)true.

The complete application is named, SuppressViewParamInvocations®.

Well, I hope you enjoyed this chapter and learned a bunch of interesting stuff. Not only are view
parameters used to initialize PrimeFaces components but coupled with, OmniFaces’ stateless view
parameters, you can create bookmarkable URLs that provide initial state of components.

Related articles:

Phttps://github.com/AnghelLeonard/PrimeFaces-OmniFaces/tree/master/SuppressViewParamInvocations

https://github.com/AnghelLeonard/PrimeFaces-OmniFaces/tree/master/SuppressViewParamInvocations
https://github.com/AnghelLeonard/PrimeFaces-OmniFaces/tree/master/SuppressViewParamInvocations

Initializing PrimeFaces components via view parameters (DRAFT)

« JSF view metadata facet demystified"
« How JSF support the URL bookmarking 7’
« How view parameters are obtained/attached from/to the URL query string (examples) ?*®

"http://www.omnifaces-fans.org/2015/11/jsf-view-metadata-facet-demystified. html
Yhttp://www.omnifaces-fans.org/2015/11/how-jsf-support-url-bookmarking html
"®http://www.omnifaces-fans.org/2015/11/how-view-parameters-work-examples.html

33

http://www.omnifaces-fans.org/2015/11/jsf-view-metadata-facet-demystified.html
http://www.omnifaces-fans.org/2015/11/how-jsf-support-url-bookmarking.html
http://www.omnifaces-fans.org/2015/11/how-view-parameters-work-examples.html
http://www.omnifaces-fans.org/2015/11/jsf-view-metadata-facet-demystified.html
http://www.omnifaces-fans.org/2015/11/how-jsf-support-url-bookmarking.html
http://www.omnifaces-fans.org/2015/11/how-view-parameters-work-examples.html

	Table of Contents
	Working with faces messages (DRAFT)
	Faces messages with multiple client IDs in the for attribute

	Working with links and request parameters (DRAFT)
	Use <p:link/> and <o:param/> to pass objects into generated link
	Create complex labels
	Using <h:outputFormat/> output as input parameter

	Working with JavaScript resources (DRAFT)
	Executing a JavaScript snippet after each AJAX/non-AJAX request

	Initializing PrimeFaces components via view parameters (DRAFT)
	Suppressing the invocation of the setter/converter/validator at each postback
	Supply a label for messages
	Supply a default value
	Suppressing invocation of the converter regardless the null values
	Support bean validation and triggering validate events on null value

