

PDQ
Pretty Darn Quick: An Agile,
All-Purpose Methodology

Jeff Franz-Lien

This book is for sale at http://leanpub.com/PDQ

This version was published on 2013-03-30

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean
Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader
feedback, pivot until you have the right book and build
traction once you do.

©2013 Jeff Franz-Lien

http://leanpub.com/PDQ
http://leanpub.com
http://leanpub.com/manifesto
http://leanpub.com/manifesto

Tweet This Book!
Please help Jeff Franz-Lien by spreading the word about
this book on Twitter!

The suggested hashtag for this book is #WickedSmartIT.

Find out what other people are saying about the book by
clicking on this link to search for this hashtag on Twitter:

https://twitter.com/search/#WickedSmartIT

http://twitter.com
https://twitter.com/search/#WickedSmartIT
https://twitter.com/search/#WickedSmartIT

Contents

Chapter One: The Genesis of PDQ 1

Project Description 1

First Application of PDQ 2

PDQ Results 3

The Invention of PDQ 4

Goals for PDQ 5

Research Design 6

Project Evaluation 7

Chapter One: The
Genesis of PDQ

Project Description

In the field of Information Technology, agile methodologies
abound (Larman, 2004), though all of these were developed
for software development and none for IT infrastructure
projects. Unfortunately, the activities in the software
development life cycle and the infrastructure development
life cycle are very different. While I discovered some
techniques from agile software development methodolo-
gies could be adapted to infrastructure projects, there were
many gaps requiring input from other sources. To ad-
dress the absence of an IT infrastructure methodology,
I developed PDQ (Pretty Darn Quick) specifically for an
ERP platform migration project. PDQ was quickly cobbled
together from a handful of accelerated project management
techniques, put into practice immediately, and until now
was mostly in my head. The methodology was very
successful, helping us deliver in less time than anyone
expected.

As the developer of PDQ, I was heavily involved in its first
use, though my overall responsibility for the infrastructure
department and its portfolio, prevent me from getting
this involved in the execution of every project. I have a
technical project manager on my team, but the size of our

1

Chapter One: The Genesis of PDQ 2

portfolio also precludes him from heavy involvement in
every project. Therefore, the project lead role must often
be delegated to a senior technical analyst while the PM
coaches and steers as required. My own ongoing role is
sponsorship of infrastructure projects, providing resources,
periodic steering, and removing roadblocks as required. I
believe that PDQ, in a refined, documented form could help
project teams learn to independently seek agile solutions
and implement them in an agile manner. This Project will
be such a document, first outlining and critiquing PDQ in
its current state, then reviewing the available literature for
possible improvements, and finally reintroducing PDQ in
a refined state suitable for any IT infrastructure project.

First Application of PDQ

In the eight months from August 2009 to March, 2010, my
IT technical team undertook a project to select, procure,
and prepare the infrastructure for an upgrade to our ERP
application. In determining the path we would take, the
major alternatives were:

• keep ERP on our existing minicomputer systems
which had reached end-of-sales and would be end-
of-support within a few years,

• procure Itanium servers, a hybrid architecture which
would allow us to keep running ERP on familiar
UNIX and gradually migrate to Linux or Windows,
OR

Chapter One: The Genesis of PDQ 3

• retire our minicomputer systems and migrate ERP
to our existing virtualization architecture including
Intel blade servers, Linux O/S and VMWare.

Given its mission-critical status, any proposed change to
ERP is taken very seriously. As I was to discover, everyone
involved including consultants, our ERP vendor, other
IT management, managers of other departments, and my
own technical staff had very strong opinions about how
we should or should not proceed. Some feared there
was insufficient time to change the architecture and some
feared that Linux and virtualization were too immature
for mission-critical applications. Over the eight month
project, we explored the three options and selected option
C, developed a proof-of-concept installation, completed a
detailed design, purchased software and hardware, and
completed the final installation.

PDQ Results

On April 1st, 2010, right on time, my technical team de-
livered a working, upgraded ERP environment on the new
platform to our Systems Analysts to begin data conversions
and interface configuration. Between April 1, 2010 and
go-live on January 4, 2011, the business and IT teams
conducted a great number of tests and fixed the anticipated
number of issues. The upgraded ERP system went live
over New Year’s weekend, followed by the quietest post-
implementation period we have ever experienced. The ERP

Chapter One: The Genesis of PDQ 4

platformmigration was deemed a great success. Onlookers
were impressed by the speed of our delivery. Moving from
UNIX minicomputers to virtualized blade servers resulted
in large savings ($600,000 per year), improved performance,
and achieved remarkably greater flexibility.

The Invention of PDQ

As we began work back in August 2009, I recognized that
to deliver an ERP platform by April 1st would require
accelerated project management techniques. Waterfall
methodology with its cautious “do one step at a time, do it
very well, thenmove on” approachwould easily have taken
twice as long as the time available. I was taking a series
of project management courses in the Master of Science in
Information Management (MSIM) program at Aspen Uni-
versity. From my studies, I pieced together various project
management concepts relating to speed and efficiency and
assembled them into a cohesive methodology that I im-
mediately applied to the project. These concepts included
time-boxing, progressive elaboration, rolling-wave plan-
ning, daily scrum meetings, parallel development, and
prototyping. I called the resulting methodology PDQ
Project Management. In trying to validate PDQ, I exam-
ined Agile and other accelerated methodologies but found
these purpose-built for software development. Given the
urgency and importance of my ERP project, I had no time
to study or adapt these methodologies.

Chapter One: The Genesis of PDQ 5

Goals for PDQ

One challenge with inventing a methodology was commu-
nicating its workings to the team and making it take root
while the project was in flight. Many of PDQ’s principles
ran counter to the established organizational culture and
often met with resistance. While senior management has
been promoting innovation and agility for some time,
transformation of the organizational culture takes time and
coaching. Documenting PDQ as part of the Project will
certainly help my teams understand agile concepts and
run their future projects more efficiently and with less
support. However, while PDQ methodology was effective,
it was tailor-made for one particular project. As such, the
methodology may not transfer well in its current form to
other projects. This Project will address these two needs by
a) documenting PDQ so it is accessible and reusable, and b)
broadening the applicability of PDQ to include all manner
of IT infrastructure projects through study, assimilation,
and adaptation of other agility perspectives and techniques.

An agile methodology specifically for IT infrastructure
projects fills a definite need within my organization. In
documented, academically reviewed form, PDQ is more
likely to take root and flourish. Project leaders will be
able to read about PDQ and apply it themselves. The IT
management team, auditors, and other stakeholders will
also have an opportunity to review and better understand
this strange newmethodology used by the IT infrastructure
unit.

Chapter One: The Genesis of PDQ 6

The detailed objectives for this project are as follows.

1. To review and improve PDQ methodology so it is
reusable on other IT infrastructure projects of vari-
ous shapes and sizes.

2. To make PDQ accessible to project teams in my de-
partment so they can learn and apply the techniques.

3. To incorporate knowledge areas in PDQ that are
integral to IT infrastructure projects but poorly cov-
ered by other agile methodologies which were nar-
rowly developed for the needs of software develop-
ment projects. An example is software and hardware
procurement which is not a prominent part of soft-
ware development projects.

4. To declare possible future research extensions of this
project. These could include further development of
PDQ, case studies of PDQ use on individual projects
or particular project types, or in-depth studies of
PDQ methodology elements.

Research Design

To achieve these goals, I will first present a case study
describing what PDQ is, why it is needed, and how it
was used on the ERP platform migration project. Next, I
will review the literature and document any concepts or
paradigms that could either enhance PDQ or help illustrate

Chapter One: The Genesis of PDQ 7

its principles to others. I will then restate PDQ, assimilat-
ing any enhancements arising from the literature review.
Finally I will articulate possible research extensions of this
Project. To help ensure suitability and buy-in, the project
was developed in consultation with the CIO.

Project Evaluation

The new PDQ methodology has already been tested suc-
cessfully on onemajor project, the ERP platformmigration.
In reviewing project results, the CIO remarked that not
only did the platform switch save millions of dollars and
increase agility, but was delivered on time and within
a remarkably short timeframe. Had we stayed with the
status quo platform instead, these very compelling benefits
would have been pushed several years down the road.
Therefore, the chief success of PDQ was allowing us to
seize a compelling opportunity before the available win-
dow closed. Further testing and refinement of PDQ on
upcoming projects would be interesting and valuable but
does not fit the timeframe available for the Project. There-
fore, scope of the Project will be limited to documenting
and refining PDQ to facilitate its use on subsequent IT
infrastructure projects.

	Contents
	Chapter One: The Genesis of PDQ
	Project Description
	First Application of PDQ
	PDQ Results
	The Invention of PDQ
	Goals for PDQ
	Research Design
	Project Evaluation

