

Contents

1

Contents

Preface .. 4

Audience ... 5

What can you gain from this book .. 5

Book Features.. 6

Limitations & Conventions .. 6

Study method .. 7

Chapter 1: Basic Concepts ... 8

Oracle Logical structure of storage ... 8

Oracle Physical structure of storage .. 8

Oracle Storage objects .. 9

File Number ... 9

RDBA ... 10

Bigfile Tablespace .. 10

ROWID ... 11

SCN .. 11

XID ... 12

Chapter 2: Datafile Structure .. 13

Block Header ... 13

Block Tail .. 17

Block 0 ... 17

Block 1 ... 19

Chapter 3: Data Block Structure of Heap-Organized Tables .. 27

Buffer Header & tail .. 33

Block header ... 33

Additional Data ... 37

Data header ... 40

Table Directory .. 42

Row Directory .. 44

Row Data ... 45

Summary of data block structure .. 49

Row Update... 51

Row Delete .. 55

NULL Column ... 57

Dropped Column ... 61

Hidden Column ... 71

Chapter 4: Row Migration and Row Chaining ... 80

Row Migration ... 80

Row Chaining ... 84

Normal Row Chaining .. 84

Row chaining with the LONG column .. 88

Row Migration + Row Chaining ... 96

Chapter 5: Row Dependencies .. 103

Contents

2

SCN Storage in Row Dependencies ... 103

Row Chaining in Row Dependencies ... 109

Chapter 6: Data Block Structure of Cluster Tables .. 118

Index Cluster ... 118

Hash Cluster .. 140

Chapter 7: Summary of Row Header Structure... 148

Chapter 8: Block Structure of Segment Headers ... 150

MSSM-managed Segment Header Block .. 151

MSSM-managed Extent Map Block ... 160

ASSM-managed Segment Header Block.. 165

ASSM-managed Extent Map Block .. 176

Chapter 9: Structure of B*Tree Index Data Blocks .. 180

Index Lookup ... 181

Branch Blocks of an Index ... 182

Branch Entry .. 188

Index Leaf Blocks ... 190

Chapter 10: Data Block Structure of Index-Organized Tables (IOT)... 200

IOT with a Single-Column Primary Key .. 200

IOT with a Composite Primary Key .. 207

Chapter 11: Traditional LOB Storage Structure ... 212

LOB Concept .. 212

LOB Index .. 212

LOB Segment ... 213

LOB Locator ... 213

LOB Chunk ... 214

LOB In Row .. 214

LOB Out Row ... 215

Empty LOB ... 215

LOB Locator Structure ... 215

Inode Structure ... 219

Inrow LOB .. 221

Inserting In-row Data .. 222

Chunk Address In Row ... 224

LOB Block Structure ... 226

Using LOB Index... 228

LOB Index Entry Structure ... 231

Outrow LOB ... 233

Inserting a Small Amount of Data ... 234

Inserting More Data .. 238

The Meaning of "LOB Chunk" .. 240

Chapter 12: SecureFile LOB Storage Structure .. 246

Inrow LOB .. 246

Inserting a Small Amount of Data ... 247

Data Exceeding 4000 Bytes ... 253

Contents

3

Inserting Additional Data .. 257

Inserting High-Volume Data .. 259

Outrow LOB ... 260

Inserting a Small Amount of Data ... 261

Inserting Additional Data .. 262

LOB Block Structure ... 265

LHB Structure .. 269

DBA0 Block .. 274

DBA1 Block .. 280

DBA2 Block .. 284

DBA3 Block .. 288

itree ... 288

LOB Deduplication ... 290

Create a Deduplicated LOB Table .. 290

LOB Data Format In Row ... 292

LOB Index Entries .. 296

LOB Structure In Row .. 299

DEDUP Byte ... 301

LOB Index Entry Structure ... 301

Using LHB in LOB Index ... 303

LOB Data In Row .. 309

Compression and Encryption for LOBs .. 311

Conclusions ... 315

Preface

4

Preface

In 2005, I participated in an IT project to develop a bond business system for a bank,

using Oracle RDBMS as the database. After the project concluded and the system

went live, everything worked smoothly initially. However, a month later, a problem

emerged. Before nightly batch operations began, the system needed to back up data

from certain tables. At first, the data volume was small, and backups completed

quickly—taking just a few minutes. But after a month, the backup process started

requiring about half an hour, and as the data grew, the time kept increasing. We

urgently needed a faster backup solution. One team member suggested directly

reading data from Oracle data files for backups, as this would be the fastest method.

However, our team lacked the technical expertise to implement this, so the idea was

abandoned.

This suggestion posed a technical challenge, and from that point on, I began studying

Oracle’s internal storage structures. I soon realized how vast and complex the system

was, requiring an understanding of numerous Oracle concepts and storage

management mechanisms. I had to learn incrementally, accumulating knowledge with

the goal of writing a program to extract table data directly from storage files. Later, I

came across a tool called DUL (Data Unloader), which could extract data from Oracle

files without starting the database. This discovery boosted my confidence, proving

that developing such a tool wasn’t just a pipe dream—it was achievable.

After years of effort, the tool I developed finally matched DUL’s capabilities in

exporting data, which was incredibly encouraging. Over this period, Oracle evolved

from 10g to 11g, introducing new storage types like SecureFile LOBs, which

demanded further research.

A few years ago, I compiled my research methods and processes into a document

meant solely for myself, as a guide for building a custom data extraction tool. In recent

years, I’ve explored other aspects of Oracle and deepened my understanding of its

internal storage structures. Now, I’ve restructured that original document into a book,

making it more reader-friendly. I’ve added diagrams and expanded the content to

clarify key points, hoping to make the material accessible not just to me, but to others

who might find it useful.

Preface

5

Audience

This book is intended for readers with a foundational understanding of Oracle

databases. While basic database concepts are occasionally explained in context,

prior familiarity with core principles is assumed. To fully grasp certain concepts,

supplementary knowledge from Oracle documentation or external resources may be

necessary.

Oracle Database is implemented in the C programming language, so familiarity with C

will aid in comprehending underlying data structures. However, prior knowledge of C

is not strictly required.

If you have explored Oracle’s internal data storage mechanisms and seek deeper

insights into its data structures—or have unresolved questions—this book will prove

invaluable.

Oracle Database Administrators (DBAs) and developers will also benefit significantly.

By studying Oracle’s internal storage mechanics, you can:

 Enhance database performance.

 Design database tables with optimal column types.

 Write more efficient SQL statements in applications.

This book bridges theoretical knowledge and practical implementation, empowering

professionals to leverage Oracle’s architecture for robust, high-performance solutions.

What can you gain from this book

By reading this book, you will gain insights into how data is stored in ordinary Oracle

database tables. You'll observe how each row of data is distributed within data blocks

and understand how a single block manages these data rows. Delving deeper, you'll

explore the storage mechanisms of clustered tables and learn how data rows from

multiple tables are managed within a single data block. The book also reveals how

Oracle indexes are stored in data blocks and explains the process of locating

corresponding data rows through indexes. Additionally, you'll discover the storage

architecture of index-organized tables (IOTs).

Preface

6

A significant portion of the book is dedicated to Oracle LOB data storage, providing

detailed descriptions of storage structures from the legacy BasicFile LOB to the

modern SecureFile LOB, along with analysis of their performance implications.

Mastering this knowledge will enable you to:

1. Gain profound understanding of Oracle's internal storage mechanisms.

2. Diagnose root causes behind Oracle's external behaviors through storage-level

insights.

3. Advance your expertise to a new level in Oracle database management.

4. Enhance professional capabilities regardless of your specific role in database

administration, development, or optimization.

This comprehensive exploration of storage architecture not only demystifies Oracle's

internal operations but also serves as a critical foundation for optimizing database

performance, troubleshooting complex issues, and designing efficient storage

solutions.

Book Features

Each knowledge point begins with practical examples to provide an overview,

followed by analysis of core structures, explanations of key fields, and insights into

Oracle's operational principles, culminating in actionable conclusions and answers to

common questions.

Complex logic is clarified through visual diagrams in challenging sections to enhance

reader comprehension.

Limitations & Conventions

All examples are executed on Oracle 11.2.0.1, using an Intel x86-64 architecture and

Linux OS. Results may vary in real-world environments, and readers should prioritize

their own operational outcomes.

Foundational concepts are included for readers new to Oracle, advanced users may

skip these sections.

Preface

7

Study method

Oracle provides a method to convert the binary content of data blocks into

human-readable text information, making it easy to read. We use the dump command

to generate a trace file containing the block's decoded metadata and data layers, then

compare the textual output with the original binary block content to interpret fields like:

 Cache layer verification

 Transaction layer details

 Data layer organization

The dump command can be executed in SQL*Plus, with the command format being:

ALTER SYSTEM DUMP DATAFILE <fno> BLOCK <blkn>;

<fno>: Absolute file number

<blkn>: Block number

Both parameters can be extracted from a row's ROWID.

Another way is to use BBED to view the structure of a particular block. The Block

Browser and Editor (BBED) enables low-level block manipulation, it is an internal tool

of Oracle that can be used to view and edit data blocks directly, but it does not work

for all types of blocks.

Basic Concepts

8

Chapter 1: Basic Concepts

Before starting to analyze the structure of the data file, there are some basic concepts

that need to be clarified. Here are some of the concepts used in this book, or some of

the concepts that are not covered here, and readers can search for the meaning of

the concepts on the Internet.

Oracle Logical Structure of Storage

In Oracle's logical storage hierarchy from top to bottom, the storage is organized as

tablespaces, segments, extents, and data blocks.

A tablespace is the highest-level storage structure. Every database object that

requires data storage (such as tables, clusters, indexes, partitions, etc.) is assigned a

tablespace upon creation. A tablespace can contain multiple data files, up to a

maximum of 1023. Later, we will analyze why this limit is set to 1023 files.

A segment is the next lower-level storage structure. Each object requiring storage is

allocated a segment, which resides entirely within a single tablespace. The segment's

header location is determined by the data file number and block number. A segment

consists of multiple extents, and its header block lists information about these extents,

which may be contiguous or non-contiguous.

An extent is a lower-level storage structure composed of a set of contiguous data

blocks. An extent is defined by its starting block address and the number of blocks it

contains. Extents represent the smallest unit of space allocation in Oracle.

A data block is the smallest storage unit. Oracle data is distributed across data

blocks, which come in different types for management or data storage purposes. A

data block comprises one or more OS disk blocks. Oracle blocks are typically sized at

8K, with a maximum size of 32K.

Oracle Physical Structure of Storage

Oracle's physical storage structure consists of data files. Multiple data files form a

tablespace, and a data file can belong to only one tablespace. Data files are

composed of operating system (OS) blocks, regardless of whether the data files are

OS files or ASM (Automatic Storage Management) files. Each data file has a file name,

Basic Concepts

9

and Oracle assigns a unique file number to each data file for management purposes.

These files are managed via their assigned file numbers.

Oracle Storage Objects

In Oracle databases, the primary objects capable of storing data are tables, which can

be categorized into heap-organized tables, clustered tables, and index-organized

tables. LOBs (Large Objects) are used to store large data separately from tables, with

two subtypes: BasicFile LOB and SecureFile LOB, each featuring distinct storage

architectures and management mechanisms.

Both tables and LOBs can be subdivided into smaller units called partitions based on

specific rules. Partitions may further divide into subpartitions, with each partition or

subpartition allocated its dedicated segment for data storage.

In subsequent chapters, we will systematically analyze the storage structures of these

objects in the following order: heap-organized tables, clustered tables,

index-organized tables, and LOBs.

File Number

In Oracle, a data file is assigned two file identifiers:

Absolute File Number (AFN)

 Globally unique within the entire database.

 Assigned sequentially based on the order in which data files are added to the

database.

Relative File Number (RFN)

 Unique within its tablespace and capped at a maximum value of 1023.

 Introduced to bypass the legacy limitation of 1023 data files per database in

earlier Oracle versions.

 When the total number of database files is ≤1023, the Absolute File Number and

Relative File Number match.

 Exception for Bigfile Tablespaces:

Basic Concepts

10

The Relative File Number for a bigfile tablespace is always 1024 (or 4096 on

OS/390 platforms).

Both identifiers often appear in Oracle's data dictionaries (e.g., DBA_DATA_FILES,

V$DATAFILE) together. Understanding their meanings can help clarify the differences

between them.

RDBA

RDBA stands for Relative Data Block Address, which is a 32-bit integer composed of

a 10-bit relative file number and a 22-bit block number. For example, given an

RDBA=0x01400f87, converting it to binary yields 0000 0001 0100 0000 0000 1111

1000 0111. Here, the first 10 bits (0000 0001 01) equal 0x05, and the remaining 22

bits (00 0000 0000 1111 1000 0111) equal 0x0f87 (3975 in decimal). This indicates

that the block address is located in the file with relative file number 5, at block 3975.

The RDBA uses 10 bits to represent the relative file number, with a maximum value of

0x3ff (1023 in decimal). Since numbering starts from 1, this allows for a maximum of

1023 data files in a tablespace. Similarly, the 22 bits allocated for block numbering

limit the maximum number of blocks. For a default block size of 8K, the maximum file

size calculates to 0x3fffff * 8192 / 1024 / 1024 = 32767 MB = 32 GB. Thus, when using

the default 8K block size, a data file is limited to 32 GB in size.

Bigfile Tablespace

Generally, a tablespace contains multiple data files to distribute I/O. However, when

dealing with large datasets, the size limitations of individual files necessitate

numerous files to meet storage requirements. This complicates the creation,

management of data files, and overall administration of the tablespace. To address

this, Oracle introduced Bigfile Tablespaces starting with Oracle 10g. The concept is

straightforward: the 10 bits originally allocated for the relative file number in the RDBA

are repurposed for block numbering. This allows the full 32 bits to represent block

numbers, supporting up to 4 billion blocks (4G).

With a default block size of 8K, a single Bigfile data file can reach 32 TB (4G blocks *

8K = 32 TB). If using the maximum block size of 32K, a single data file can grow to

128 TB (4G blocks * 32K = 128 TB). Since the RDBA no longer encodes a relative file

Basic Concepts

11

number, a Bigfile Tablespace can contain only one data file, with its relative file

number fixed at 1024. Due to bit overflow, this effectively represents a file number of 0,

eliminating the need for a relative file number in the RDBA structure.

ROWID

The ROWID is the physical address of a row of data, enabling the fastest possible

access to locate the data. A ROWID is composed of three components:

1. DATA_OBJECT_ID (Segment Storage ID): Identifies the database object

(segment) to which the data belongs. The DATA_OBJECT_ID, rather than the

OBJECT_ID, is stored in the data block to validate ownership.

2. RDBA (Relative Data Block Address): Specifies the physical location of the block

containing the row. The RDBA includes the relative file number and block number,

allowing precise identification of the file and block.

3. SLOT (Row Slot Number): Indicates the row's position within the block. Combined

with the block's base address, the SLOT determines the offset where the row is

stored within the block.

This structure ensures efficient navigation and validation of row storage in Oracle

databases.

All rowids in the data file are stored in big-endian byte order.

SCN

SCN is an abbreviation for System Change Number. Whenever any change occurs in

the database, Oracle assigns an SCN to record the precise point in time of that

change. The SCN is unique within the database and monotonically increases over

time. When a transaction is committed, this SCN is referred to as the commit SCN.

SCN tracks all changes (transactions, data modifications, structural changes) in the

database and ensures data consistency, recovery, and synchronization.

Nearly all files in an Oracle database store SCN values, including data files, data

block headers, control files, redo log files, etc., each maintaining their respective

SCNs.

An SCN is a 6-byte numeric value divided into two components:

Basic Concepts

12

 SCN_BASE occupies 4 bytes

 SCN_WRAP occupies 2 bytes

When SCN_BASE reaches its maximum value (2³² - 1), SCN_WRAP increments by 1

and SCN_BASE resets to 0.

XID

XID (Transaction ID) is a unique identifier assigned by Oracle when a transaction

begins. It functions not only as an identifier but also as a logical address. The XID

comprises three components:

1. usn (Undo Segment Number): Identifies the undo segment.

2. slt (Slot Number): Specifies the transaction slot within the undo segment.

3. sqn (Sequence Number): Increments each time the transaction slot is reused.

Within data blocks, XIDs are prominently visible in the transaction layer.

Datafile Structure

13

Chapter 2: Datafile Structure

A tablespace is composed of multiple data files, and Oracle data is stored within these

files. Data files consist of data blocks, which vary in structure depending on their type.

The 0th and 1st blocks of a data file differ from other blocks, as they contain file

header information. Each data block begins with a block header, ends with a block

trailer, and contains the block’s data in between, as illustrated in Figure 2-1.

Figure 2-1 Data File Composition

Block Header

Each block header in an Oracle data file has the same structure. Within the shared

memory buffer, there is a Cache Layer component called the Buffer Header—a

fixed-size structure totaling 20 bytes. It primarily includes information such as the data

block type, the block’s address (RDBA, Relative Data Block Address), the SCN

(System Change Number) of the block modification, and a checksum, among other

metadata.

The structure named kcbh (Kernel Cache Buffer Header) observed in BBED contains

the following fields with their respective names and lengths:

struct kcbh, 20 bytes

ub1 type_kcbh; /* block type * /

ub1 frmt_kcbh;

ub1 spare1_kcbh;

Datafile Structure

14

ub1 spare2_kcbh;

ub4 rdba_kcbh; /* relative DBA /

ub4 bas_kcbh; /* base of SCN */

ub2 wrp_kcbh; /* wrap of SCN */

ub1 seq_kcbh; /* sequence # of changes at same scn */

ub1 flg_kcbh;

ub2 chkval_kcbh;

ub2 spare3_kcbh;

The offsets of each field within the structure relative to the block header are as

follows:

0x0000-0x0000 1 byte, block type

0x0001-0x0001 1 byte, format

0x0002-0x0002 1 byte, spare1_kcbh

0x0003-0x0003 1 byte, spare2_kcbh

0x0004-0x0007 4 bytes, rdba

0x0008-0x000B 4 bytes, SCN base

0x000C-0x000D 2 bytes, SCN wrap

0x000E-0x000E 1 byte, seqence number

0x000F-0x000F 1 byte, flag

0x0010-0x0011 2 bytes, check value

0x0012-0x0013 2 bytes, spare3_kcbh

Table 2-1 lists the description for each field in kcbh structure.

Table 2-1 Description for kcbh Fields

Field Description

type_kcbh Block type, the most common is 0x06 transaction data block, the full

definition is listed in Table 2-2.

frmt_kcbh Version format.

Before Oracle 8i: 0x01

From Oracle 8i onward: 0x02

Starting in Oracle 10g, the high-order nibble (first half-byte) of the

version field is used to indicate the block size:

 2KB block: 0x62

 4KB block: 0x82

 8KB block: 0xA2

16KB block: 0xC2

This encoding reflects the block size in hexadecimal notation, where

the high-order nibble (e.g., 6, 8, A, C) corresponds to the block size

Datafile Structure

15

identifier.

spare1_kcbh The spare field is compatible with previous versions and is no longer

used. It is always 0.

spare2_kcbh The spare field is compatible with previous versions and is no longer

used. It is always 0.

rdba_kcbh Relative data block address, the DBA of this block.

bas_kcbh The base part of the System Change Number(SCN). When a data

block is modified, the transaction records the current SCN in the

block header.

wrp_kcbh The wrap part of the SCN.

seq_kcbh Sequence number, when the same SCN changes the block content

many times, sequence is added to 1 each time.

flg_kcbh Flag.

#define KCBHFNEW 0x01 /* new block - zeroed data area */

#define KCBHFDLC 0x02 /* Delayed Logging Change advance SCN/seq */

#define KCBHFCKV 0x04 /* ChecK Value saved-block xor's to zero */

#define KCBHFTMP 0x08 /* Temporary block */

chkval_kcbh Checksum value.

A checksum value is calculated by treating every two-byte pair (as a

16-bit integer) from the start of the block (excluding the checksum

bytes themselves) and performing a cumulative XOR operation with

subsequent values. This computed checksum is stored in the block

and used to validate the integrity of the block.

spare3_kcbh The spare field.

The type of block (type_kcbh) is defined as shown in Table 2-2.

Table 2-2 Block Type Definition

 0x01 - KTU UNDO HEADER (undo segment header block)

 0x02 - KTU UNDO BLOCK (undo data block)

 0x03 - KTT SAVE UNDO HEADER

 0x04 - KTT SAVE UNDO BLOCK

 0x05 - DATA SEGMENT HEADER

 0x06 - trans data

 0x07 - Unknown

 0x08 - Unknown

 0x09 - Unknown

 0x0A - DATA SEGMENT FREE LIST BLOCK

 0x0B - data file header (block 1)

 0x0C - DATA SEGMENT HEADER WITH FREE LIST BLOCKS

Datafile Structure

16

 0x0D - Compatibility segment

 0x0E - KTU UNDO HEADER W/UNLIMITED EXTENTS

 0x0F - KTT SAVE UNDO HEADER W/UNLIMITED EXTENTS

 0x10 - DATA SEGMENT HEADER - UNLIMITED

 0x11 - DATA SEGMENT HEADER WITH FREE LIST BLKS - UNLIMITED

 0x12 - EXTENT MAP BLOCK

 0x13 - Unknown = rman file header block (block 1)

 0x14 - Unknown = rman file directory block (block 2)

 0x15 - Unknown = control file header block (block 1)

 0x16 - 22 DATA SEGMENT FREE LIST BLOCK WITH FREE BLOCK COUNT

 0x17 - BITMAPPED DATA SEGMENT HEADER

 0x18 - BITMAPPED DATA SEGMENT FREELIST

 0x19 - BITMAP INDEX BLOCK

 0x1A - BITMAP BLOCK

 0x1B - LOB BLOCK

 0x1C - KTU BITMAP UNDO HEADER - LIMITED EXTENTS

 0x1D - KTFB Bitmapped File Space Header

 0x1E - KTFB Bitmapped File Space Bitmap

 0x1F - TEMP INDEX BLOCK

 0x20 - FIRST LEVEL BITMAP BLOCK

 0x21 - SECOND LEVEL BITMAP BLOCK

 0x22 - THIRD LEVEL BITMAP BLOCK

 0x23 - PAGETABLE SEGMENT HEADER (BMB for ASSM)

 0x24 - PAGETABLE EXTENT MAP BLOCK

 0x25 - EXTENT MAP BLOCK OF SYSTEM MANAGED UNDO SEGMENT

 0x26 - KTU SMU HEADER BLOCK

 0x27 - Unknown

 0x28 - PAGETABLE MANAGED LOB BLOCK

 0x29 - Unknown

 0x2A - Unknown

 0x2B - Unknown

 0x2C - Unknown

 0x2D - Unknown

 0x2E - Unknown

Datafile Structure

17

 0x2F - Unknown

Block Tail

In the dump information of a block, there is always an entry called tail. A real-world

example:

Block dump from disk:

buffer tsn: 6 rdba: 0x01400f87 (5/3975)

scn: 0x0000.00313140 seq: 0x01 flg: 0x06 tail: 0x31400601

frmt: 0x02 chkval: 0x2014 type: 0x06=trans data

The block tail information consists of four bytes, which are also used to verify the

integrity of the block. By observing other details on the same line of the dumped

information, you can see the composition of the block tail: the first two bytes represent

the lower two bytes of the SCN base, followed by one byte for the flag (flg), and

another byte for the sequence number (seq). The value of the block tail is formed by

these three parts.

Block 0

Each data file's block 0 contains basic metadata, though its structure varies between

Oracle versions. Prior to Oracle 10g, block 0 did not include the Buffer Header

structure. In these older versions, the metadata starts at offset 0x04, with the first four

bytes reserved for padding. In Oracle 10g and later, the metadata begins after the

Buffer Header (at offset 0x14). Specifically, it consists of three main parts as follows:

ub4 block0_size;

ub4 blocks_in_file;

ub1 platform_id[4];

The meanings of the fields in the structure of block 0 are listed in Table 2-3.

Datafile Structure

18

Table 2-3 Meanings of the Fields in Block 0

Field Description

Block0_size The size of block 0, may differ from the size of other blocks in the

file. The actual block size used for the file is defined in block 1.

blocks_in_file The number of blocks in the data file (excluding block 0), when

multiplied by the block size specified in block 1 and added to

the size of block 0, equals the complete size of the data file.

platform_id
The platform identifier for Oracle Server, it is defined as follows:

 Prior to Oracle 10g:

o UNIX platforms used the identifier 5A5B5C5D.

o Windows platforms used 6A6B6C6D.

 From Oracle 10g onwards:

o The identifier 7A7B7C7D is used uniformly, regardless of

platform (UNIX or Windows).

This identifier is additionally used to determine the byte order:

 If the identifier is stored as 0x7A7B7C7D, it indicates big-endian

byte order.

 If the identifier is stored as 0x7D7C7B7A, it indicates

little-endian byte order.

Let’s create a new datafile to examine its structure. In SQL*Plus, execute the

following command (requires DBA privileges):

CREATE TABLESPACE study DATAFILE 'study_01.dbf' SIZE 200M AUTOEXTEND ON;

After executing the command, Oracle creates the new file study_01.dbf under

$ORACLE_HOME/dbs directory.

-rw-r----- 1 oracle oinstall 209723392 Nov 2 16:09 study_01.dbf

To query the file number and path of datafiles, use the following SQL statement:

Datafile Structure

19

SELECT file_id, relative_fno, file_name

FROM dba_data_files WHERE tablespace_name='STUDY';

 FILE_ID RELATIVE_FNO FILE_NAME

---------- ------------ ---

 8 8 /oracle11/product/11.2.0/dbs/study_01.dbf

The binary content of block 0 in the datafile is shown below:

---------- +0-+1-+2-+3-+4-+5-+6-+7-+8-+9-+A-+B-+C-+D-+E-+F- 0123456789ABCDEF

0x00000000 00 A2 00 00 00 00 C0 FF-00 00 00 00 00 00 00 00

 Buffer Header

0x00000010 66 9E 00 00 00 20 00 00-00 64 00 00 7D 7C 7B 7A f.... ...d..}|{z

 | | platform_id

 | blocks_in_file

 block0_size

0x00000020 A0 81 00 00 00 00 00 00-00 00 00 00 00 00 00 00

The hexadecimal value 0x7D7C7B7A in the platform_id field indicates that the data

storage follows the little-endian byte order format. Then

block0_size = 0x00002000 = 8192 bytes

blocks_in_file = 0x00006400 = 25600 blocks

The block size in the datafile is 8192 bytes (as observed when analyzing block 1), so

the total file size can be calculated as:

file_size = 25600 * 8192 = 209715200 = 200M bytes

The file size exactly matches the SIZE 200M specified in the command, plus the

8192-byte size of block 0, the file size in the Operating System is:

os_file_size = 209715200 + 8192 = 209723392 bytes

This is exactly the physical file size displayed by the OS.

Block 1

The first block (Block 1) of each datafile contains critical database-related

information. This block cannot be extracted as text via the dump command. However,

you can use the following statement to dump the file header information into a trace

file. By performing a binary comparison with Block 1, you can analyze its contents.

Here is the dump statement:

Datafile Structure

20

ALTER SESSION SET EVENTS 'IMMEDIATE TRACE NAME FILE_HDRS LEVEL 10';

The trace file content is shown below. Repetitive "0" data has been omitted for clarity.

DATA FILE #8:

 name #12: /oracle11/product/11.2.0/dbs/study_01.dbf

creation size=25600 block size=8192 status=0xe head=12 tail=12 dup=1

 tablespace 9, index=9 krfil=8 prev_file=0

 unrecoverable scn: 0x0000.00000000 01/01/1988 00:00:00

 Checkpoint cnt:11 scn: 0x0000.003f34a1 11/04/2024 23:15:50

 Stop scn: 0xffff.ffffffff 11/03/2024 23:49:55

 Creation Checkpointed at scn: 0x0000.003ebede 11/01/2024 22:13:24

 thread:1 rba:(0xb7.8f0.10)

 enabled threads: 01000000 00000000 00000000 00000000 00000000 00000000

 Repeat 120 times

 00000000 00000000 00000000 00000000 00000000 00000000

 Offline scn: 0x0000.00000000 prev_range: 0

 Online Checkpointed at scn: 0x0000.00000000

 thread:0 rba:(0x0.0.0)

 enabled threads: 00000000 00000000 00000000 00000000 00000000 00000000

 Repeat 120 times

 00000000 00000000 00000000 00000000 00000000 00000000

 Hot Backup end marker scn: 0x0000.00000000

 aux_file is NOT DEFINED

Plugged readony: NO

 Plugin scnscn: 0x0000.00000000

 Plugin resetlogs scn/timescn: 0x0000.00000000 01/01/1988 00:00:00

 Foreign creation scn/timescn: 0x0000.00000000 01/01/1988 00:00:00

 Foreign checkpoint scn/timescn: 0x0000.00000000 01/01/1988 00:00:00

 Online move state: 0

 V10 STYLE FILE HEADER:

 Compatibility Vsn = 186646528=0xb200000

 Db ID=139822064=0x85583f0, Db Name='ORA11G'

 Activation ID=0=0x0

 Control Seq=20370=0x4f92, File size=25600=0x6400

 File Number=8, Blksiz=8192, File Type=3 DATA

Tablespace #9 - STUDY rel_fn:8

Creation at scn: 0x0000.003ebede 11/01/2024 22:13:24

Backup taken at scn: 0x0000.00000000 01/01/1988 00:00:00 thread:0

 reset logs count:0x3de79d33 scn: 0x0000.000e6c20

 prev reset logs count:0x296b946b scn: 0x0000.00000001

 recovered at 01/01/1988 00:00:00

 status:0x4 root dba:0x00000000 chkpt cnt: 11 ctl cnt:10

begin-hot-backup file size: 0

Datafile Structure

21

Checkpointed at scn: 0x0000.003f34a1 11/04/2024 23:15:50

 thread:1 rba:(0xb9.2.10)

 enabled threads: 01000000 00000000 00000000 00000000 00000000 00000000

 Repeat 120 times

 00000000 00000000 00000000 00000000 00000000 00000000

Backup Checkpointed at scn: 0x0000.00000000

thread:0 rba:(0x0.0.0)

 enabled threads: 00000000 00000000 00000000 00000000 00000000 00000000

 Repeat 120 times

 00000000 00000000 00000000 00000000 00000000 00000000

External cache id: 0x0 0x0 0x0 0x0

Absolute fuzzy scn: 0x0000.00000000

Recovery fuzzy scn: 0x0000.00000000 01/01/1988 00:00:00

Terminal Recovery Stamp 01/01/1988 00:00:00

Platform Information: Creation Platform ID: 13

Current Platform ID: 13 Last Platform ID: 13

The information above appears disorganized. For precise analysis, you can use

BBED to inspect the file header details, enter BBED and execute the map command.

BBED> map

 File: /oracle11/product/11.2.0/dbs/study_01.dbf (8)

 Block: 1 Dba:0x02000001

--

 Data File Header

 struct kcvfh, 860 bytes @0

 ub4 tailchk @8188

Here, we observe that Block 1 begins with an 860-byte structure named kcvfh,

which holds file header information. The last 4 bytes correspond to the block tail

information. To examine the detailed structure of kcvfh, use the print command:

BBED> print kcvfh

struct kcvfh, 860 bytes @0

 struct kcvfhbfh, 20 bytes @0

 ub1 type_kcbh @0 0x0b

 ub1 frmt_kcbh @1 0xa2

 ub1 spare1_kcbh @2 0x00

 ub1 spare2_kcbh @3 0x00

Datafile Structure

22

 ub4 rdba_kcbh @4 0x02000001

 ub4 bas_kcbh @8 0x00000000

 ub2 wrp_kcbh @12 0x0000

 ub1 seq_kcbh @14 0x01

 ub1 flg_kcbh @15 0x04 (KCBHFCKV)

 ub2 chkval_kcbh @16 0xbc69

 ub2 spare3_kcbh @18 0x0000

 struct kcvfhhdr, 76 bytes @20

 ub4 kccfhswv @20 0x00000000

 ub4 kccfhcvn @24 0x0b200000

 ub4 kccfhdbi @28 0x085583f0

 text kccfhdbn[0] @32 O

 text kccfhdbn[1] @33 R

 text kccfhdbn[2] @34 A

 text kccfhdbn[3] @35 1

 text kccfhdbn[4] @36 1

 text kccfhdbn[5] @37 G

 text kccfhdbn[6] @38

 text kccfhdbn[7] @39

Let’s review the binary data of Block 1. The printed text output is as follows:

---------- +0-+1-+2-+3-+4-+5-+6-+7-+8-+9-+A-+B-+C-+D-+E-+F- 0123456789ABCDEF

0x00000000 0B A2 00 00 01 00 00 02-00 00 00 00 00 00 01 04

 Buffer Header

0x00000010 69 BC 00 00 00 00 00 00-00 00 20 0B F0 83 55 08 i......... ...U.

 cvn=11.2 db id

0x00000020 4F 52 41 31 31 47 00 00-30 4F 00 00 00 64 00 00 ORA11G..0O...d..

 db name blocks count

0x00000030 00 20 00 00 08 00 03 00-00 00 00 00 00 00 00 00

 block size file number

0x00000040 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

0x00000050 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

0x00000060 00 00 00 00 DE BE 3E 00-00 00 00 00 84 61 91 46 >......a.F

 root dba

0x00000070 33 9D E7 3D 20 6C 0E 00-00 00 00 00 00 00 00 00 3..= l..........

0x00000080 00 00 00 00 00 00 00 00-00 00 04 00 07 00 00 00

0x00000090 00 00 00 00 06 00 00 00-00 00 00 00 00 00 00 00

0x000000A0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

0x000000B0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

0x000000C0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

Datafile Structure

23

0x000000D0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

0x000000E0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

0x000000F0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

0x00000100 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

0x00000110 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

0x00000120 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

0x00000130 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

0x00000140 00 00 00 00 00 00 00 00-00 00 00 00 09 00 00 00

 tablespace number

0x00000150 05 00 53 54 55 44 59 00-00 00 00 00 00 00 00 00 ..STUDY.........

 tablespace name

0x00000160 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

0x00000170 08 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

 relative file number

0x00000180 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

0x00000190 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

0x000001A0 6B 94 6B 29 01 00 00 00-00 00 00 00 00 00 00 00 k.k)............

0x000001B0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

0x000001C0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

0x000001D0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

0x000001E0 00 00 00 00 84 F3 3E 00-00 00 00 00 54 EB 93 46 >.....T..F

0x000001F0 01 00 00 00 B8 00 00 00-6A 18 00 00 10 00 00 00 j.......

---------- +0-+1-+2-+3-+4-+5-+6-+7-+8-+9-+A-+B-+C-+D-+E-+F- 0123456789ABCDEF

0x00000200 02 00 00 00 00 00 00 00

By examining the binary data of Block 1 in detail, the specific field positions can be

precisely mapped. The field offsets for Block 1 in an Oracle 11.2.0.1 data file are

shown below:

0x0000-0x0013 Buffer Header(common structure, 20 bytes)

0x0014-0x0017 db version

0x0018-0x001B compatible version

0x001C-0x001F db id

0x0020-0x0027 db name

0x0028-0x002B control sequence

0x002C-0x002F blocks count

0x0030-0x0033 block size

0x0034-0x0035 file number

0x0036-0x0037 file type

0x0038-0x003B activation id

0x003C-0x003F cks (kccfhcks)

0x0040-0x005F tag

Datafile Structure

24

0x0060-0x0063 root dba

0x0064-0x0067 creation checkpoint SCN base

0x0068-0x0069 creation checkpoint SCN wrap

0x006A-0x006B padding bytes[2]

0x006C-0x006F creation checkpoint SCN time

0x0070-0x0073 reset logs count

0x0074-0x0077 reset logs SCN base

0x0078-0x0079 reset logs SCN wrap

0x007A-0x007B padding bytes[2]

0x007C-0x007F begin backup time

0x0080-0x0083 begin backup SCN base

0x0084-0x0085 begin backup SCN wrap

0x0086-0x0087 padding bytes[2]

0x0088-0x0089 begin backup thread#

0x008A-0x008B file status

0x008C-0x008F checkpoint count

0x0090-0x0093 recovered time

0x0094-0x0097 control count

0x0098-0x009B backup checkpoint SCN base

0x009C-0x009D backup checkpoint SCN wrap

0x009E-0x009F padding bytes[2]

0x00A0-0x00A3 backup checkpoint time

0x00A4-0x00A5 backup thread#

0x00A6-0x00A7 padding bytes[2]

0x00A8-0x00AB backup rba.sequence#

0x00AC-0x00AF backup rba.block#

0x00B0-0x00B1 backup rba.offset

0x00B2-0x00B3 padding bytes[2]

0x00B4-0x00BB enabled threads

0x00BC-0x0137 unknown

0x0138-0x013B bhz (kcvfhbhz)

0x013C-0x013F xcd[0] (space_kcvmxcd)

0x0140-0x0143 xcd[1]

0x0144-0x0147 xcd[2]

0x0148-0x014B xcd[3]

0x014C-0x014F tablespace number

0x0150-0x0151 tablespace name length

0x0152-0x016F tablespace name 30 bytes

0x0170-0x0173 relative file number

0x0174-0x0177 recovery fuzzy SCN base

0x0178-0x0179 recovery fuzzy SCN wrap

0x017A-0x017B padding bytes[2]

0x017C-0x017F recovery fuzzy time

0x0180-0x0183 absolute fuzzy SCN base

Datafile Structure

25

0x0184-0x0185 absolute fuzzy SCN wrap

0x0186-0x0187 padding bytes[2]

0x0188-0x018B bbc (kcvfhbbc)

0x018C-0x018F ncb (kcvfhncb)

0x0190-0x0193 mcb (kcvfhmcb)

0x0194-0x0197 lcb (kcvfhlcb)

0x0198-0x019B bcs (kcvfhbcs)

0x019C-0x019D ofb (kcvfhofb)

0x019E-0x019F nfb (kcvfhnfb)

0x01A0-0x01A3 prev reset logs count

0x01A4-0x01A7 prev reset logs SCN base

0x01A8-0x01A9 prev reset logs SCN wrap

0x01AA-0x01AB padding bytes[2]

0x01AC-0x01AF prfs (kcvfhprfs) SCN base

0x01B0-0x01B1 prfs (kcvfhprfs) SCN wrap

0x01B2-0x01BB unknown

0x01BC-0x01BF trt (kcvfhtrt)

0x01C0-0x01E3 unknown

0x01E4-0x01E7 checkpoint SCN base

0x01E8-0x01E9 checkpoint SCN wrap

0x01EA-0x01EB padding bytes[2]

0x01EC-0x01EF checkpoint time

0x01F0-0x01F1 checkpoint thread#

0x01F2-0x01F3 padding bytes[2]

0x01F4-0x01F7 checkpoint rba.sequence

0x01F8-0x01FB checkpoint rba.block

0x01FC-0x01FD checkpoint rba.offset

0x01FE-0x01FF padding bytes[2]

0x0200-0x0207 etb[8] (kcvcpetb) enabled threads

Block 1 contains extensive metadata (e.g., creation, backup, recovery, and resetlogs),

which are scenario-specific and can be temporarily ignored. Below, we will focus

exclusively on data storage-related fields and their meanings, as summarized in

Table 2-4.

Table 2-4 Structure kcvfhhdr Fields (storage related)

Field Description

compatible version

@（0x0018-0x001B）

Compatibility Version Number: In this example, 0x0b200000

corresponds to Oracle 11.2.

db id

@（0x001C-0x001F）

Database Identifier (DBID): A unique value assigned to a

database instance, used to verify whether a file belongs to

Datafile Structure

26

that specific database.

db name

@（0x0020-0x0027）

Database name to which the file belongs.

blocks count

@（0x002C-0x002F）

Number of blocks in the file, excluding Block 0.

blocks size

@（0x0030-0x0033）

Block size in the file, which may differ from Block 0.

file number

@（0x0034-0x0035）

Absolute file number.

file type

@（0x0036-0x0037）

File type: 3 for data file, 2 for log file.

root dba

@（0x0060-0x0063）

This field is only populated in File 1 of the SYSTEM

tablespace, all others are set to 0. Oracle uses this address

to locate the data dictionary bootstrap entry, which points to

the bootstrap$ table.

ts number

@（0x014C-0x014F）

Tablespace number, corresponding to the ts# column in the

base table TS$, identifies which tablespace this file belongs

to.

ts name length

@（0x0150-0x0151）

Tablespace name length: The tablespace name can be up to

30 characters long.

ts name

@（0x0152-0x016F）

Tablespace name.

relative fno

@（0x0170-0x0173）

Relative file number, unique within a tablespace.

Conclusions

27

Chapter 3: Data Block Structure of

Heap-Organized Tables

We create a user TOM assigned to the predefined tablespace STUDY, then create a

table TEST_TAB1 within this user schema. By inserting data into the table, we can

investigate the physical structure of Oracle data blocks.

CREATE USER tom IDENTIFIED BY tom DEFAULT TABLESPACE study;

GRANT CONNECT, RESOURCE TO tom;

The preceding commands created a database user tom (password: tom) and created

a heap-organized table within the TOM user's schema using the following SQL

statement:

CONN tom/tom;

CREATE TABLE test_tab1

(

 id number PRIMARY KEY,

 fld1 char(30),

 fld2 varchar2(2000),

 fld3 varchar2(4000),

 fld4 varchar2(4000)

);

The commands above have created a heap-organized table, and the data will be

stored in the STUDY tablespace. Since the tablespace contains only a single data file,

the data will reside in study_01.dbf.

Now insert a row of data into the table using the following SQL statement:

INSERT INTO test_tab1 VALUES

(1, '1aaaaaaa', '1bbbbbbbbb', '1ccccccccccc', '1ddddddddddddd');

COMMIT;

Execute the following command to flush the data from the buffer cache to the data

files.

Datafile Structure

28

ALTER SYSTEM checkpoint;

Use the following SQL statement to query the block number and row number of the

row data.

SELECT

 id,

 dbms_rowid.rowid_relative_fno(rowid) rfn,

 dbms_rowid.rowid_block_number(rowid) block#,

 dbms_rowid.rowid_row_number(rowid) row#

FROM test_tab1;

 ID RFN BLOCK# ROW#

---------- ---------- ---------- ----------

 1 8 135 0

Based on the query results, the row we inserted resides in block 135, row 0 of the

8th file (study_01.dbf). Since the total number of files in our database is fewer than

1023, the absolute file number and relative file number are identical. Use the

following command to dump this block for inspection:

ALTER SYSTEM DUMP datafile 8 block 135;

Below is the complete dump information of the data block.

Start dump data blocks tsn: 9 file#:8 minblk 135 maxblk 135

Block dump from cache:

Dump of buffer cache at level 4 for tsn=9, rdba=33554567

BH (0x9efe2d78) file#: 8 rdba: 0x02000087 (8/135) class: 1 ba: 0x9ed26000

 set: 3 pool 3 bsz: 8192 bsi: 0 sflg: 2 pwc: 140,28

 dbwrid: 0 obj: 78733 objn: 78733 tsn: 9 afn: 8 hint: f

 hash: [0xc0305210,0xc0305210] lru: [0x9efe2f90,0x9eff7fa0]

 ckptq: [NULL] fileq: [NULL] objq: [0x9efe2fb8,0xb918e150]

 st: XCURRENT md: NULL tch: 2

 flags: block_written_once redo_since_read

 LRBA: [0x0.0.0] LSCN: [0x0.0] HSCN: [0xffff.ffffffff] HSUB: [1]

 cr pin refcnt: 0 sh pin refcnt: 0

Block dump from disk:

buffer tsn: 9 rdba: 0x02000087 (8/135)

scn: 0x0000.003f2481 seq: 0x01 flg: 0x06 tail: 0x24810601

frmt: 0x02 chkval: 0x70f9 type: 0x06=trans data

Hex dump of block: st=0, typ_found=1

Datafile Structure

29

Dump of memory from 0x00002B57AACE6A00 to 0x00002B57AACE8A00

2B57AACE6A00 0000A206 02000087 003F2481 06010000 [.........$?.....]

2B57AACE6A10 000070F9 00000001 0001338D 003F2480 [.p.......3...$?.]

2B57AACE6A20 00000000 00320002 02000080 001C0009 [......2.........]

2B57AACE6A30 00000D6B 00C010D0 002C0309 00002001 [k.........,.. ..]

2B57AACE6A40 003F2481 00000000 00000000 00000000 [.$?.............]

2B57AACE6A50 00000000 00000000 00000000 00000000 [................]

2B57AACE6A60 00000000 00010100 0014FFFF 1F381F4C [............L.8.]

2B57AACE6A70 00001F38 1F4C0001 00000000 00000000 [8.....L.........]

2B57AACE6A80 00000000 00000000 00000000 00000000 [................]

 Repeat 498 times

2B57AACE89B0 0205012C 311E02C1 61616161 20616161 [,......1aaaaaaa]

2B57AACE89C0 20202020 20202020 20202020 20202020 []

2B57AACE89D0 20202020 62310A20 62626262 62626262 [.1bbbbbbbbb]

2B57AACE89E0 6363310C 63636363 63636363 64310E63 [.1ccccccccccc.1d]

2B57AACE89F0 64646464 64646464 64646464 24810601 [dddddddddddd...$]

Block header dump: 0x02000087

 Object id on Block? Y

 seg/obj: 0x1338d csc: 0x00.3f2480 itc: 2 flg: E typ: 1 - DATA

 brn: 0 bdba: 0x2000080 ver: 0x01 opc: 0

 inc: 0 exflg: 0

 Itl Xid Uba Flag Lck Scn/Fsc

0x01 0x0009.01c.00000d6b 0x00c010d0.0309.2c --U- 1 fsc 0x0000.003f2481

0x02 0x0000.000.00000000 0x00000000.0000.00 ---- 0 fsc 0x0000.00000000

bdba: 0x02000087

data_block_dump,data header at 0x2b57aace6a64

===============

tsiz: 0x1f98

hsiz: 0x14

pbl: 0x2b57aace6a64

 76543210

flag=--------

ntab=1

nrow=1

frre=-1

fsbo=0x14

fseo=0x1f4c

avsp=0x1f38

tosp=0x1f38

0xe:pti[0] nrow=1 offs=0

0x12:pri[0] offs=0x1f4c

block_row_dump:

tab 0, row 0, @0x1f4c

Datafile Structure

30

tl: 76 fb: --H-FL-- lb: 0x1 cc: 5

col 0: [2] c1 02

col 1: [30]

 31 61 61 61 61 61 61 61 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

 20 20 20 20 20

col 2: [10] 31 62 62 62 62 62 62 62 62 62

col 3: [12] 31 63 63 63 63 63 63 63 63 63 63 63

col 4: [14] 31 64 64 64 64 64 64 64 64 64 64 64 64 64

end_of_block_dump

End dump data blocks tsn: 9 file#: 8 minblk 135 maxblk 135

Before studying the data block structure, let's first understand its layers. Oracle's

official documentation provides a general structural diagram, as shown in Figure 3-1.

Figure 3-1 Database Block Layers

From the diagram above, we observe that the data block begins with a header

structure, composed of fixed-length and variable-length layers. This is followed by

the table directory and row directory structures. The actual row data resides at the

end of the block, while free space occupies the middle. Notably, Oracle stores row

data from the bottom of the block upward (toward the header), while the row

directory grows from the top downward. When the remaining free space reaches the

threshold defined by PCTFREE, the block is no longer eligible for new inserts.

The text dump above still appears insufficiently clear. Let’s use BBED (Block Browser

Datafile Structure

31

and Editor) to examine the block structure in detail.

BBED> map

 File: /oracle11/product/11.2.0/dbs/study_01.dbf (8)

 Block: 135 Dba:0x02000087

--

 KTB Data Block (Table/Cluster)

 struct kcbh, 20 bytes @0

 struct ktbbh, 72 bytes @20

 struct kdbh, 14 bytes @100

 struct kdbt[1], 4 bytes @114

 sb2 kdbr[1] @118

 ub1 freespace[7992] @120

 ub1 rowdata[76] @8112

 ub4 tailchk @8188

From the above description, we observe the block structure as follows:

1. Buffer Header (kcbh)

 20-byte structure.

 k = Kernel (core structure), c = Cache, b = Buffer, h = Header.

2. Transaction Header (ktbbh)

 72-byte section storing transactional metadata (e.g., undo information,

locks).

3. Data Header (kdbh)

 14-byte structure containing data block-specific metadata (e.g., row count,

free space pointers).

4. Table Directory (kdbt[])

 A struct array mapping tables to rows within the block.

5. Row Directory (kdbr[])

Datafile Structure

32

 A 16-bit integer array where each element represents a row offset.

 The array length equals the number of rows in the block.

6. Free Space (freespace)

 Unallocated region reserved for future inserts/updates.

7. Row Data (rowdata)

 Actual storage area for row contents.

8. Block Trailer

 4-byte checksum or validation marker at the block’s end.

Let’s examine the hexadecimal dump of the block to explicitly observe its structural

layout.

---------- +0-+1-+2-+3-+4-+5-+6-+7-+8-+9-+A-+B-+C-+D-+E-+F- 0123456789ABCDEF

0x00000000 06 A2 00 00 87 00 00 02-81 24 3F 00 00 00 01 06 $?.....

 kcbh

0x00000010 F9 70 00 00 01 00 00 00-8D 33 01 00 80 24 3F 00 .p.......3...$?.

 ktbbh

0x00000020 00 00 00 00 02 00 32 00-80 00 00 02 09 00 1C 00 2.........

0x00000030 6B 0D 00 00 D0 10 C0 00-09 03 2C 00 01 20 00 00 k.........,.. ..

0x00000040 81 24 3F 00 00 00 00 00-00 00 00 00 00 00 00 00 .$?.............

0x00000050 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

 additional data

0x00000060 00 00 00 00 00 01 01 00-FF FF 14 00 4C 1F 38 1F L.8.

 kdbh

0x00000070 38 1F 00 00 01 00 4C 1F-00 00 00 00 00 00 00 00 8.....L.........

 kdbt kdbr freespace

………………………… omitted zero data …………………………

0x00001FA0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

0x00001FB0 2C 01 05 02 C1 02 1E 31-61 61 61 61 61 61 61 20 ,......1aaaaaaa

 rowdata

0x00001FC0 20 20 20 20 20 20 20 20-20 20 20 20 20 20 20 20

0x00001FD0 20 20 20 20 20 0A 31 62-62 62 62 62 62 62 62 62 .1bbbbbbbbb

0x00001FE0 0C 31 63 63 63 63 63 63-63 63 63 63 63 0E 31 64 .1ccccccccccc.1d

0x00001FF0 64 64 64 64 64 64 64 64-64 64 64 64 01 06 81 24 dddddddddddd...$

 tailchk

In the following subsections, we will dissect the data block from top to bottom,

Datafile Structure

33

exploring the specifics of each structural component.

Buffer Header & tail

The first component is the Buffer Header (kcbh), a 20-byte structure present in every

data block, whose layout we have previously analyzed. Examining its hex dump, the

block type is identified as "trans data" (transactional data).

buffer tsn: 9 rdba: 0x02000087 (8/135)

scn: 0x0000.003f2481 seq: 0x01 flg: 0x06 tail: 0x24810601

frmt: 0x02 chkval: 0x70f9 type: 0x06=trans data

The block also includes 4 bytes at its tail (end), which we previously dissected: these

comprise the lower 2 bytes of the SCN base, followed by the FLG (flags) byte, and

the SEQ (sequence) byte.

Block header

Following the KCBH is the block header structure from the hex dump, with the

content listed below:

Block header dump: 0x02000087

 Object id on Block? Y

 seg/obj: 0x1338d csc: 0x00.3f2480 itc: 2 flg: E typ: 1 - DATA

 brn: 0 bdba: 0x2000080 ver: 0x01 opc: 0

 inc: 0 exflg: 0

 Itl Xid Uba Flag Lck Scn/Fsc

0x01 0x0009.01c.00000d6b 0x00c010d0.0309.2c --U- 1 fsc 0x0000.003f2481

0x02 0x0000.000.00000000 0x00000000.0000.00 ---- 0 fsc 0x0000.00000000

The block header structure corresponds to the common and variable header shown

in Figure 3-1. It contains transactional information and is subdivided into a fixed-size

portion and a variable portion. Tools like BBED (Block Browser and Editor) can

reveal detailed insights into these structural variations.

struct ktbbh, 72 bytes @20

 ub1 ktbbhtyp @20

 union ktbbhsid, 4 bytes @24

Datafile Structure

34

 struct ktbbhcsc, 8 bytes @28

 sb2 ktbbhict @36

 ub1 ktbbhflg @38

 ub1 ktbbhfsl @39

 ub4 ktbbhfnx @40

struct ktbbhitl[2], 48 bytes @44

Let’s first examine the fixed portion, which spans 24 bytes:

0x0000-0x0000 1 byte, type

0x0001-0x0003 3 bytes, padding bytes[3]

0x0004-0x0007 4 bytes, dataobj#

0x0008-0x000B 4 bytes, csc_base

0x000C-0x000D 2 bytes, csc_wrap

0x000E-0x000F 2 bytes, padding

0x0010-0x0011 2 bytes, itc

0x0012-0x0012 1 byte, flg

0x0013-0x0013 1 byte, fsl

0x0014-0x0017 4 bytes, fnx

This section describes the common header, which occupies 24 bytes. The

meanings of each field are detailed in Table 3-1 below.

Table 3-1 Common Header Field Meanings

Field Description

type Data Type: 01-data, 02-index, 05-local lobs.

dataobj# seg/obj, object number in segment.

csc_base Cleanout SCN base.

csc_wrap Cleanout SCN wrap.

itc The number of ITL entries and the size of the ITL structure

are fixed. The ITC (Transaction Slot Count) determines the

size of the variable portion of the transaction layer. Since ITC ≤

255, the high-order bits should be masked off (ITC & 0xFF)

after retrieving the value.

flg Flags. The meanings of the flag bits will be explained in

Datafile Structure

35

detail later, as shown in Table 3-3.

fsl Free space lock.

fnx A pointer to the next block on the free list chain.

The subsequent section is the variable portion of the transaction layer, known as

the ITL (Interested Transaction List). The number of ITL slots is determined by the

ITC (Transaction Slot Count) mentioned earlier. By default, there are 2 ITL slots.

The ITL is an integral component of Oracle data blocks, recording transactions

affecting the block. Each ITL slot (also called an ITL entry) acts as a transaction

record. In BBED, ITL slots are explicitly named ktbbhitl and occupy 24 bytes each.

struct ktbbhitl, 24 bytes @44

 struct ktbitxid, 8 bytes @44

 ub2 kxidusn @44

 ub2 kxidslt @46

 ub4 kxidsqn @48

 struct ktbituba, 8 bytes @52

 ub4 kubadba @52

 ub2 kubaseq @56

 ub1 kubarec @58

 ub2 ktbitflg @60

 union _ktbitun, 2 bytes @62

 sb2 _ktbitfsc @62

 ub2 _ktbitwrp @62

 ub4 ktbitbas @64

The ITL structure is as follows:

0x0000-0x0001 2 bytes, xid.usn

0x0002-0x0003 2 bytes, xid.slt

0x0004-0x0007 4 bytes, xid.sqn

0x0008-0x000B 4 bytes, uba.dba

0x000C-0x000D 2 bytes, uba.seq

0x000E-0x000E 1 byte, uba.rec

0x000F-0x000F 1 byte, padding

0x0010-0x0011 2 bytes, flag

0x0012-0x0013 2 bytes, fsc/scn wrap

0x0014-0x0017 4 bytes, fsc/scn base

Datafile Structure

36

Table 3-2 below explains the fields of the ITL (Interested Transaction List), with

each ITL slot occupying 24 bytes.

Table 3-2 ITL Fields Description

Field Description

xid Transaction ID, unique identifier for the transaction.

It is composed of undo segment number (usn), slot number (slt), and

sequence number (sqn).

uba The block address of an Undo segment (referred to as the UBA or

Undo Block Address) is assigned to each transaction upon initiation.

A UBA consists of three components:

1. Block Number (DBA): The physical address of the Undo block.

2. Sequence Number (SEQ): A unique identifier for the Undo record

version.

3. Record Number (REC): The specific slot within the Undo block.

flag In the ITL structure, the Flags field shares 2 bytes with lock

information:

 Flags occupy the upper 4 bits (high-order nibble).

 Lock occupies the lower 12 bits (low-order 3 nibbles).

Flags(4 bits):

---- = transaction is active or committed pending cleanout

C--- = transaction has been committed and locks cleaned out

-B-- = this undo record contains the undo for this ITL entry

--U- = transaction committed (maybe long ago); SCN is an upper bound

---T = transaction was still active at block cleanout SCN

Lock(12 bites):

The lock field specifies the number of row-level locks held by the

transaction in this block.

In this example, flag=0x2001:

 High-order nibble (4 bits): 0x2 (hex 0x2, binary 0010), represented as

U.

Remaining 3 nibbles (12 bits): 0x001 (hex 0x001, binary 0000 0000

0001), representing Lck=1 (1 row locked).

fsc/scn For deferred block cleanout，this is commit SCN.

Datafile Structure

37

For fast commit block cleanout，this is FSC.

The subsequent ITL entries follow the same structure, and their quantity is

controlled by the ITC (Interested Transaction List Count).

Additional Data

After the ITL entries, the block header ends, and the data layer begins. However,

when the tablespace uses ASSM (Automatic Segment Space Management), there

are additional 8 bytes between the block header and the data layer. These bytes

consist of two fields:

 inc (4 bytes): Used for space management in ASSM.

 exflg (4 bytes): Extended flags for block metadata.

In the DUMP output, these fields are highlighted in yellow. When calculating

addresses for subsequent structures (e.g., row directories), you must account for

these 8 bytes; otherwise, offsets will be misaligned.

When inspecting ASSM (Automatic Segment Space Management) and MSSM

(Manual Segment Space Management) blocks using BBED, it was observed that

BBED automatically determines whether to account for the additional 8 bytes (inc

+ exflg). This suggests that BBED does not rely on the segment header type but

instead uses block-level metadata to decide whether to include these bytes.

Upon analyzing the data fields preceding ktbbh (the transaction layer structure), it

was discovered that the ktbbhflg (transaction layer flag) in the block header controls

this behavior. This flag (referred to as ktbbhflg in BBED) contains critical bits that

dictate block-specific attributes.

Through experimentation, key flag bits were identified and mapped to their

functionalities. The definitions of these flag bits are summarized in Table 3-3 below:

Table 3-3 ktbbhflg Bits Definitions

Ktbbhflg definition：

0x01 KTBFONFL, indicates block is placed on the Free List.

0x02 This flag indicates the Segment’s Object ID associated with the block.

0x10 This flag indicates that the block is managed by ASSM.

0x20 The flag (flg: E as shown in dump information) indicates the presence of

Datafile Structure

38

 additional data. This flag controls whether 8 additional bytes are

 appended to the block's header. If the flag is set (1), 8 bytes are added.

 The lower two bytes of the exflg field act as an offset to adjust the starting

 address of the data layer, as shown in bellowing example.

(flg>>1)&0x03 The value calculated through this process corresponds to the ver.

In this sample, both fields in the Additional Data are 0, what happens when their

values change? Let’s modify the exflg value in the Additional Data and observe how

the kdbh (Kernel Data Block Header) position shifts.

BBED> p ktbbh

...

 ub1 ktbbhflg @38 0x32 (NONE)

...

With the flag set to 0x32, the expression (0x32 & 0x20) is true, requiring an

additional 8 bytes of data to added to the block header.

BBED> map

 File: /oracle11/product/11.2.0/dbs/study_01.dbf (8)

 Block: 135 Dba:0x02000087

--

 KTB Data Block (Table/Cluster)

 struct kcbh, 20 bytes @0

 struct ktbbh, 72 bytes @20

 struct kdbh, 14 bytes @100

 struct kdbt[1], 4 bytes @114

 sb2 kdbr[1] @118

 ub1 freespace[7992] @120

 ub1 rowdata[76] @8112

 ub4 tailchk @8188

As shown above，kdbh offset is 20+72+8=100

BBED> set offset 96

 OFFSET 96

BBED> modify /x 0x02

Warning: contents of previous BIFILE will be lost. Proceed? (Y/N) y

Datafile Structure

39

 File: /oracle11/product/11.2.0/dbs/study_01.dbf (8)

 Block: 135 Offsets: 96 to 607 Dba:0x02000087

--

 02000000 00010100 ffff1400 4c1f381f 381f0000 01004c1f 00000000 00000000

...

The offset corresponding to exflg is 96. If we modify the first two bytes to 2, then

exflg = 0x00000002. Assuming the above analysis is correct, the offset of kdbh

would be 20 + 72 + 8 + 2 = 102

BBED> map

 File: /oracle11/product/11.2.0/dbs/study_01.dbf (8)

 Block: 135 Dba:0x02000087

--

 KTB Data Block (Table/Cluster)

 struct kcbh, 20 bytes @0

 struct ktbbh, 72 bytes @20

 struct kdbh, 14 bytes @102

 struct kdbt[0], 0 bytes @116

 sb2 kdbr[9223372036854775807] @116

 ub1 freespace[18446744073709551596] @114

 ub1 rowdata[94] @94

 ub4 tailchk @8188

As we analyzed, after the modifications, the offset of each structure observed using

the map command show that kdbh has changed to 102

BBED> modify /x 0x020001

 File: /oracle11/product/11.2.0/dbs/study_01.dbf (8)

 Block: 135 Offsets: 96 to 607 Dba:0x02000087

--

 02000100 00010100 ffff1400 4c1f381f 381f0000 01004c1f 00000000 00000000

BBED> map

 File: /oracle11/product/11.2.0/dbs/study_01.dbf (8)

 Block: 135 Dba:0x02000087

--

 KTB Data Block (Table/Cluster)

 struct kcbh, 20 bytes @0

 struct ktbbh, 72 bytes @20

 struct kdbh, 14 bytes @102

 struct kdbt[0], 0 bytes @116

 sb2 kdbr[9223372036854775807] @116

Datafile Structure

40

 ub1 freespace[18446744073709551596] @114

 ub1 rowdata[94] @94

 ub4 tailchk @8188

When exflg was modified to 0x00010002, it was observed that the offset of kdbh

remained 102. This indicates that the increment in the offset is only determined by

the value of the lower 2 bytes of exflg.

Similarly, it can be verified that modifying the value of the inc field does not alter

the offsets of other structures.

To read the full version of this book, please visit:

https://payhip.com/OracleeBookSoftwareShop

https://payhip.com/OracleeBookSoftwareShop

