Oracle Storage

XIN ZENGGUO

Contents

Contents
] =T ST P PP 4
AUGIENCE ...ttt ettt e b e e a e e et e e st e e e be e e nteesmt e e s b e e aneeeanbeesabeesabeesneeennneenns 5
What can you gain from thisS DOOKccueiiiiiieiiiiiie ettt 5
BOOK FEATUIES. ...ttt et et e e st e e bt s ne e e s mbe e s b e e eabeesneesaneeenneeenns 6
Limitations & CONVENTIONSciiiiiiiieeiieeiieeet ettt ettt et e see e st e s b e sneeesneeesnreenas 6
R (0 Lo VA 3 1 =3 o Vo o [P PRURRN: 7
(0o Yo 1Y g R = T 1 Tl @0 [=T o] SRR 8
Oracle Logical StrUCTUre Of STOTAZEcccuveeeiiiiee et ettt cetree et e et e e e etbe e e e erae e e eeareeeeenreeeen 8
Oracle Physical StrUCTUIe Of STOFaZE......vueiiicuieieecreee ettt et eere e eeare e e eerae e e eenreeeeenreeeen 8
(0] = Tol [Vo =Y o{= N o] o] [=T ot £ URUR 9
FIlE NUMDEI ...t ettt ettt e st e et e e bt e e ebe e e sateesabeesabeesbeesnneeennreanns 9
RDBA ..ottt ettt ettt a ettt e bt e bt e hee e n et e et e e et e e e beeebeeeanteeebeeebeeereeennreas 10
2T T=d 1 LI =] o] [T o - ol SR 10
ROWID ...ttt ettt ettt ettt et e et e et e ettt e bt e e mteesabeeeaseeeabeeeaseeenteesmteesaseeenseeenreas 11
SN ettt et ettt et et e h et e ate e et e e et e e e bt e e bt e e abe e et eeebee e nbeeanree e teeebeeeaneeenreea 11
) {1 O PP O PP VPP PPPOTOPPTOPPPTRO 12
Chapter 2: Datafile StrUCTUIEooo e e e e e e e 13
BIOCK HEATET ...ttt ettt ettt et e b e e bt e e st e e s ateesabeeebeeeneeas 13
BIOCK Tl ettt ettt ettt et e et e b e e e be e e at e e st e e e beeereeeneeas 17
BIOCK Dttt ettt et h e e a et e et e e et e e e be e e b et e ateeebeeebeeereeenrean 17
BIOCK L.ttt ettt ettt ettt e h e e a et et e e et e e e be e e bee e nteeeabeeebeeereeenrean 19
Chapter 3: Data Block Structure of Heap-Organized Tables........cccceeevcierieicier e 27
Buffer Header & tailc.ei ittt et 33
BIOCK NEATEN ...ttt et e et e bt e s abe e s abeeebeeebeeeneean 33
AdItIoNAl DAteeieieeieeeeee ettt e st b et e ae e e nabe e s beeebeeeneean 37
DAta NEATET ... ettt ettt et ettt e bt e b et e hte e abe e e beeebeeebeeeneean 40
LS o113 B 1T =Tt o Y 2SS 42
00T D 1 =T o o ST P PSP P PPPTRPPPP 44
ROW DAt ..cceeiiieeeeeee e e e s e e e s e 45
Summary of data bloCK StrUCTUE.......coi i e e e 49
(200N YA o T -1 SR 51
ROW DIBIETE ...ttt ettt ettt e at e et e st e e st e e e bt e e bte e nbeesaseesabeeebeeeneean 55
INULL COIUMIN .ttt ettt ettt ettt e at e et e e st e e et e e e beeebee e nbeesaseesabeesnneeeneean 57
(D] geT o] oY=Te I 6o U] 4 o1 o TS 61
HIAEN COIUMIN Lt ettt ettt e et e e bt e e bt e e ate e s beesbeeeseeeneeas 71
Chapter 4: Row Migration and ROW ChainNiNgceiiiiiiiieiiiie et 80
o Y Y T4 1 o] o SR PPP R 80
2003V @ o =Y o1 o T = U 84
NOIrmMal ROW ChaiNiNg.....cciiiiiii et e e st ee e e nee e e e rae e e e ntae e eennreeens 84
Row chaining with the LONG COIUMN.......ccuiiiiiiiee e 88
Row Migration + ROW Chainingccccciieiiiiiie et ee e et e e et ae e e nrae e e nane s 96
Chapter 5: ROW DEPENUENCIESuveeeeiiieeeeiieeeectieeeertte e e ste e e e ate e e s sntaeeesnteeeesnteeeeentaeeesnnreeeesnsens 103

Contents

SCN Storage in ROW DEPENUENCIES ...ceeeeeeeiiiieee e e e ettt e e e escttree e e e e e e searare e e e e e e e snaraaaeeeeeeas 103
Row Chaining in ROW DEPENUENCIESuuveieieeiiiiieee e e eeccitre e e e escctrrre e e e e e e s earare e e e e e e e anaeeeeas 109
Chapter 6: Data Block Structure of Cluster Tablescoocverieeciveeieiieee ettt 118
INAEX CIUSTET ..ttt et et e et e ae e e e st e e st e esabe e e beeeanbeesateesabeeeneeennneenns 118
HASH CIUSTEN ..ttt et et e st e sttt e smb e e sabeesabeeeneeennneenns 140
Chapter 7: Summary of ROW HEader STrUCTUE.........covvveeiecieee ettt eearee e e e e e 148
Chapter 8: Block Structure of Segment HEAdErs..........vviiecveeieiiiiee ettt 150
MSSM-managed Segment Header BIOCKuvviieiiieiiiiieee e 151
MSSM-managed Extent Map BIOCK........uuiiieeicciiiiieeee et esrrrre e e e e e e 160
ASSM-managed Segment Header BIOCK............uuveeiiiiiiiiiiiiieee et 165
ASSM-managed Extent Map BIOCK........cuii i 176
Chapter 9: Structure of B*Tree Index Data BlOCKSeeeeeveeeeiiieeiecreee ettt 180
g L=t oo {0 o 1RSSR 181
Branch BIOCKS Of @n INEXeiiuiiiiieeiie ettt ettt 182
270 ol T =X V2RSS 188
INAEX LEAT BIOCKS ...ttt ettt et e st e e b e s neeesnneeas 190
Chapter 10: Data Block Structure of Index-Organized Tables (I0T)......ccccvveevveeeveeerieesiee e 200
10T with a Single-Column Primary KEY......ocueiieociee e estee s e e e 200

10T with @ CompPOSite Primary KeY.....c.vee oot 207
Chapter 11: Traditional LOB StOrage STrUCtUIecccuveiiiciieeeriee e cceee et e e ee e e e 212
K0 @] o Tol=T o | SO PSP P PP P PPPPSPPR 212

LOB INAEX .ttt ettt ettt ettt ettt e st e e bt e s eat e e st e st e e eabeeebeeeameeesnbeesbeesaseeeneean 212

LOB SEEMENT ...iiiiiieete e ettt e ettt e e e e e s st e e e e e e s s sabrtbeeeeeeesssabtbaeeeeeessnssbeneeeesenns 213

K02 oo | o] LSS PU ST PPPTP 213

LOB ChUNK ...ttt ettt b e e be e e sae e e s b e e s beeebeeeaneeas 214

LOB TN ROW .ttt ettt ettt ettt ettt et e et e s at e e et e e s abe e eabeeebeeesmbeesabeesabeesabeeeneean 214

LOB OUL ROW ..ttt ettt ettt ettt ettt e st e et ee e ebe e e smeeesabeeebeeeneeesnneas 215

EMPEY LOB .. s 215

LOB LOCATOFr STFUCTUNE ittt e e e s s e e e e s e nn e 215
INOTE STIUCTUIE ...ttt et ettt et e s bt e e be e e beeesabeesateeenbeeeneeesnneenns 219
INFOW LOB ...t e s e e e e s e s r e e e e s s s nnreaeeas 221
INSErting IN-FOW Data ...ciooiiiiiieeiiiecsitee e e s rre e e e e e s s abaeaeeaeeeeas 222

Chunk Address 1N ROW........ueiiiiiaiieeieeieee ettt ettt ettt e e st eebeeesaeeesneeeeas 224

LOB BIOCK SEIUCTUI®.....eeiiieeite ettt ettt ettt ettt et et e e sabe e s b e e ebeeesaeeas 226

L 1Y = O T2 [Yo = 228

LOB INA@X ENtrY StrUCTUIEeveeeeiee ettt e e rtre e et e e e re e e e nnes 231

OULIOW LOB ..ottt e e e e s e s b e e e e e e s e s nrreneeeesesannnes 233
Inserting @ Small AMount 0f Datac..eeeiiiiieiiiee e 234

INSErtiNg IMOIE Data ..cciiiieiiiiiiiee et e e e e s rr e e e e e e s s sabbeaeeaaeeeas 238

The Meaning of "LOB ChUNK"........cc e e e e et e e e neee s 240
Chapter 12: SecureFile LOB Storage StrUCtUIE........cicciieeiciie et e e e 246
INFOW LOB ...ttt e e e s e e s r e e e e s s e b ee e e e e s e e nnrraeeas 246
Inserting @ Small AMount 0f Datac.ceeeiiiiiiiiiee e 247

Data EXceeding 4000 BYLEScccccuviieeiiieeeiiieeeeitieeeerteee e s setee e e srte e s e sntneessnteeeennnaeeeennnees 253

Contents

Inserting Additional DAtaceeeeiiiiiiiiiieee e e e e e e e e e 257
Inserting High-Volume Dataccoocciiiiiiie ettt et e e e e e e e nnraae e e e e e 259
OUEFOW LOB ...ttt et e e e e s st e e s s e e e sanreeeesamnaeesannneesanne 260
Inserting a SMall AMOUNT OF DAtaccccvveiiiiiieeieiriee ettt et 261
Inserting Additional DAtaceeieeiiiiiiiieee e e e e e e rrra e e e e e 262

LOB BlOCK SErUCTUIE. ... ettt ettt st bee e enb e e st e e sbeeesnneesnneenas 265
LHB STIUCTUIE ..ttt e et e s e e e s sne e e e s amneeeesnnnes 269
DBAD BIOCK ...ttt ettt et et e et et e b e e nb e s te e e b e e e aneeeanreen 274
DBAL BIOCK ...ttt ettt ettt e e st et b e e n b e st e e e b e e e aneeennreen 280
DBAZ BIOCK ...ttt ettt ettt bt e ar e st e e b e e e aneeennreea 284
DBASB BIOCK ...ttt ettt bt e nr e st e e b e e e neeennreen 288
L0 =TSP PP PR PPPRTO 288
(@73 LYo [0] 1or=1 d o o SRS 290
Create a Deduplicated LOB Tableooiiiiiirieiiee ettt e e e 290

LOB Data FOrmat IN ROWeueiiiiiieieiiee ettt 292

LOB INAEX ENTIIES ...eeeneieeiieeeiie ettt ettt ettt et ettt e et st e e smeeesabeesbeesaneeesnneas 296

LOB STrUCEUIE 1N ROW ...ttt ettt e e e e 299
DEDUP BYEE ..ttt ettt ettt ettt sttt et e st e st eebeeeabeeeanbeesnbeeebeeeneeeaneean 301

LOB INAEX ENtry StrUCTUIE . .eeveeeeiee ettt e e e e e e e sare e e e 301
USING LHB iN LOB INAEX ..eeiiieieeeeiiieeeeciiieeeseiee s e sttee e e setee e e sntee e essae e s esntaeessnsnesennnneessnnnens 303

LOB Data IN ROWeeiiiiiieeiiiee ettt sttt e st e s e s e e e s ene e e s nnreeesannees 309
Compression and ENCryption for LOBS.......cccuiiiiiiiieecciee e see e eseee e saae e e snaee e 311
CONCIUSIONS <.ttt ettt et e et e et e e bt e e at e e st e e e abeeeabee e nbeesabeesasaeeneeeanseesaneennnes 315

Preface

Preface

In 2005, | participated in an IT project to develop a bond business system for a bank,
using Oracle RDBMS as the database. After the project concluded and the system
went live, everything worked smoothly initially. However, a month later, a problem
emerged. Before nightly batch operations began, the system needed to back up data
from certain tables. At first, the data volume was small, and backups completed
guickly—taking just a few minutes. But after a month, the backup process started
requiring about half an hour, and as the data grew, the time kept increasing. We
urgently needed a faster backup solution. One team member suggested directly
reading data from Oracle data files for backups, as this would be the fastest method.
However, our team lacked the technical expertise to implement this, so the idea was
abandoned.

This suggestion posed a technical challenge, and from that point on, | began studying
Oracle’s internal storage structures. | soon realized how vast and complex the system
was, requiring an understanding of numerous Oracle concepts and storage
management mechanisms. | had to learn incrementally, accumulating knowledge with
the goal of writing a program to extract table data directly from storage files. Later, |
came across a tool called DUL (Data Unloader), which could extract data from Oracle
files without starting the database. This discovery boosted my confidence, proving
that developing such a tool wasn’t just a pipe dream—it was achievable.

After years of effort, the tool | developed finally matched DUL'’s capabilities in
exporting data, which was incredibly encouraging. Over this period, Oracle evolved
from 10g to 119, introducing new storage types like SecureFile LOBs, which
demanded further research.

A few years ago, | compiled my research methods and processes into a document
meant solely for myself, as a guide for building a custom data extraction tool. In recent
years, I've explored other aspects of Oracle and deepened my understanding of its
internal storage structures. Now, I've restructured that original document into a book,
making it more reader-friendly. I've added diagrams and expanded the content to
clarify key points, hoping to make the material accessible not just to me, but to others

who might find it useful.

Preface

Audience

This book is intended for readers with a foundational understanding of Oracle
databases. While basic database concepts are occasionally explained in context,
prior familiarity with core principles is assumed. To fully grasp certain concepts,
supplementary knowledge from Oracle documentation or external resources may be

necessary.

Oracle Database is implemented in the C programming language, so familiarity with C
will aid in comprehending underlying data structures. However, prior knowledge of C

is not strictly required.

If you have explored Oracle’s internal data storage mechanisms and seek deeper
insights into its data structures—or have unresolved questions—this book will prove

invaluable.

Oracle Database Administrators (DBAs) and developers will also benefit significantly.

By studying Oracle’s internal storage mechanics, you can:
« Enhance database performance.

« Design database tables with optimal column types.

« Write more efficient SQL statements in applications.

This book bridges theoretical knowledge and practical implementation, empowering

professionals to leverage Oracle’s architecture for robust, high-performance solutions.
What can you gain from this book

By reading this book, you will gain insights into how data is stored in ordinary Oracle
database tables. You'll observe how each row of data is distributed within data blocks
and understand how a single block manages these data rows. Delving deeper, you'll
explore the storage mechanisms of clustered tables and learn how data rows from
multiple tables are managed within a single data block. The book also reveals how
Oracle indexes are stored in data blocks and explains the process of locating
corresponding data rows through indexes. Additionally, you'll discover the storage

architecture of index-organized tables (I0Ts).

Preface

A significant portion of the book is dedicated to Oracle LOB data storage, providing
detailed descriptions of storage structures from the legacy BasicFile LOB to the

modern SecureFile LOB, along with analysis of their performance implications.
Mastering this knowledge will enable you to:
1. Gain profound understanding of Oracle's internal storage mechanisms.

2. Diagnose root causes behind Oracle's external behaviors through storage-level

insights.
3. Advance your expertise to a new level in Oracle database management.

4. Enhance professional capabilities regardless of your specific role in database

administration, development, or optimization.

This comprehensive exploration of storage architecture not only demystifies Oracle's
internal operations but also serves as a critical foundation for optimizing database
performance, troubleshooting complex issues, and designing efficient storage

solutions.

Book Features

Each knowledge point begins with practical examples to provide an overview,
followed by analysis of core structures, explanations of key fields, and insights into
Oracle's operational principles, culminating in actionable conclusions and answers to

common questions.

Complex logic is clarified through visual diagrams in challenging sections to enhance

reader comprehension.

Limitations & Conventions

All examples are executed on Oracle 11.2.0.1, using an Intel x86-64 architecture and
Linux OS. Results may vary in real-world environments, and readers should prioritize

their own operational outcomes.

Foundational concepts are included for readers new to Oracle, advanced users may

skip these sections.

Preface

Study method

Oracle provides a method to convert the binary content of data blocks into
human-readable text information, making it easy to read. We use the dump command
to generate a trace file containing the block's decoded metadata and data layers, then

compare the textual output with the original binary block content to interpret fields like:
e Cache layer verification

e Transaction layer details

« Data layer organization

The dump command can be executed in SQL*Plus, with the command format being:

ALTER SYSTEM DUMP DATAFILE <fno> BLOCK <blkn>:
{fno>: Absolute file number
<blkn>: Block number

Both parameters can be extracted from a row s ROWID.

Another way is to use BBED to view the structure of a particular block. The Block
Browser and Editor (BBED) enables low-level block manipulation, it is an internal tool
of Oracle that can be used to view and edit data blocks directly, but it does not work

for all types of blocks.

Basic Concepts

Chapter 1: Basic Concepts

Before starting to analyze the structure of the data file, there are some basic concepts
that need to be clarified. Here are some of the concepts used in this book, or some of
the concepts that are not covered here, and readers can search for the meaning of

the concepts on the Internet.
Oracle Logical Structure of Storage

In Oracle's logical storage hierarchy from top to bottom, the storage is organized as

tablespaces, segments, extents, and data blocks.

A tablespace is the highest-level storage structure. Every database object that
requires data storage (such as tables, clusters, indexes, patrtitions, etc.) is assigned a
tablespace upon creation. A tablespace can contain multiple data files, up to a
maximum of 1023. Later, we will analyze why this limit is set to 1023 files.

A segment is the next lower-level storage structure. Each object requiring storage is
allocated a segment, which resides entirely within a single tablespace. The segment's
header location is determined by the data file number and block number. A segment
consists of multiple extents, and its header block lists information about these extents,
which may be contiguous or non-contiguous.

An extent is a lower-level storage structure composed of a set of contiguous data
blocks. An extent is defined by its starting block address and the number of blocks it
contains. Extents represent the smallest unit of space allocation in Oracle.

A data block is the smallest storage unit. Oracle data is distributed across data
blocks, which come in different types for management or data storage purposes. A
data block comprises one or more OS disk blocks. Oracle blocks are typically sized at

8K, with a maximum size of 32K.
Oracle Physical Structure of Storage

Oracle's physical storage structure consists of data files. Multiple data files form a
tablespace, and a data file can belong to only one tablespace. Data files are
composed of operating system (OS) blocks, regardless of whether the data files are

OS files or ASM (Automatic Storage Management) files. Each data file has a file name,
8

Basic Concepts

and Oracle assigns a unique file number to each data file for management purposes.

These files are managed via their assigned file numbers.
Oracle Storage Objects

In Oracle databases, the primary objects capable of storing data are tables, which can
be categorized into heap-organized tables, clustered tables, and index-organized
tables. LOBs (Large Objects) are used to store large data separately from tables, with
two subtypes: BasicFile LOB and SecureFile LOB, each featuring distinct storage

architectures and management mechanisms.

Both tables and LOBs can be subdivided into smaller units called partitions based on
specific rules. Partitions may further divide into subpatrtitions, with each partition or

subpartition allocated its dedicated segment for data storage.

In subsequent chapters, we will systematically analyze the storage structures of these
objects in the following order: heap-organized tables, clustered tables,

index-organized tables, and LOBs.
File Number

In Oracle, a data file is assigned two file identifiers:
Absolute File Number (AFN)
¢ Globally unique within the entire database.

e Assigned sequentially based on the order in which data files are added to the

database.
Relative File Number (RFN)
¢« Unigue within its tablespace and capped at a maximum value of 1023.

e Introduced to bypass the legacy limitation of 1023 data files per database in

earlier Oracle versions.

¢ When the total number of database files is <1023, the Absolute File Number and

Relative File Number match.

o Exception for Bigfile Tablespaces:

Basic Concepts

The Relative File Number for a bigfile tablespace is always 1024 (or 4096 on
0S/390 platforms).

Both identifiers often appear in Oracle's data dictionaries (e.g., DBA_DATA_FILES,
V$DATAFILE) together. Understanding their meanings can help clarify the differences

between them.

RDBA

RDBA stands for Relative Data Block Address, which is a 32-bit integer composed of
a 10-bit relative file number and a 22-bit block number. For example, given an
RDBA=0x01400f87, converting it to binary yields 0000 0001 0100 0000 0000 1111
1000 0111. Here, the first 10 bits (0000 0001 01) equal 0x05, and the remaining 22
bits (00 0000 0000 1111 1000 0111) equal 0x0f87 (3975 in decimal). This indicates

that the block address is located in the file with relative file number 5, at block 3975.

The RDBA uses 10 bits to represent the relative file number, with a maximum value of
0x3ff (1023 in decimal). Since numbering starts from 1, this allows for a maximum of
1023 data files in a tablespace. Similarly, the 22 bits allocated for block numbering
limit the maximum number of blocks. For a default block size of 8K, the maximum file
size calculates to Ox3fffff * 8192 / 1024 / 1024 = 32767 MB = 32 GB. Thus, when using

the default 8K block size, a data file is limited to 32 GB in size.
Bigfile Tablespace

Generally, a tablespace contains multiple data files to distribute 1/0. However, when
dealing with large datasets, the size limitations of individual files necessitate
numerous files to meet storage requirements. This complicates the creation,
management of data files, and overall administration of the tablespace. To address
this, Oracle introduced Bigfile Tablespaces starting with Oracle 10g. The concept is
straightforward: the 10 bits originally allocated for the relative file number in the RDBA
are repurposed for block numbering. This allows the full 32 bits to represent block
numbers, supporting up to 4 billion blocks (4G).

With a default block size of 8K, a single Bigdfile data file can reach 32 TB (4G blocks *
8K = 32 TB). If using the maximum block size of 32K, a single data file can grow to

128 TB (4G blocks * 32K = 128 TB). Since the RDBA no longer encodes a relative file

10

Basic Concepts

number, a Bigfile Tablespace can contain only one data file, with its relative file
number fixed at 1024. Due to bit overflow, this effectively represents a file number of O,

eliminating the need for a relative file number in the RDBA structure.

ROWID

The ROWID is the physical address of a row of data, enabling the fastest possible

access to locate the data. A ROWID is composed of three components:

1. DATA_OBJECT_ID (Segment Storage ID): Identifies the database object
(segment) to which the data belongs. The DATA _OBJECT _ID, rather than the
OBJECT_ID, is stored in the data block to validate ownership.

2. RDBA (Relative Data Block Address): Specifies the physical location of the block
containing the row. The RDBA includes the relative file number and block number,
allowing precise identification of the file and block.

3. SLOT (Row Slot Number): Indicates the row's position within the block. Combined
with the block's base address, the SLOT determines the offset where the row is

stored within the block.

This structure ensures efficient navigation and validation of row storage in Oracle

databases.

All rowids in the data file are stored in big-endian byte order.

SCN

SCN is an abbreviation for System Change Number. Whenever any change occurs in
the database, Oracle assigns an SCN to record the precise point in time of that
change. The SCN is unique within the database and monotonically increases over
time. When a transaction is committed, this SCN is referred to as the commit SCN.
SCN tracks all changes (transactions, data modifications, structural changes) in the
database and ensures data consistency, recovery, and synchronization.

Nearly all files in an Oracle database store SCN values, including data files, data
block headers, control files, redo log files, etc., each maintaining their respective
SCNs.

An SCN is a 6-byte numeric value divided into two components:

11

Basic Concepts

e SCN_BASE occupies 4 bytes

e SCN_WRAP occupies 2 bytes

When SCN_BASE reaches its maximum value (232 - 1), SCN_WRAP increments by 1
and SCN_BASE resets to 0.

XID

XID (Transaction ID) is a unique identifier assigned by Oracle when a transaction
begins. It functions not only as an identifier but also as a logical address. The XID
comprises three components:

1. usn (Undo Segment Number): Identifies the undo segment.

2. slt (Slot Number): Specifies the transaction slot within the undo segment.

3. sgn (Sequence Number): Increments each time the transaction slot is reused.

Within data blocks, XIDs are prominently visible in the transaction layer.

12

Datafile Structure

Chapter 2: Datafile Structure

A tablespace is composed of multiple data files, and Oracle data is stored within these
files. Data files consist of data blocks, which vary in structure depending on their type.
The 0th and 1st blocks of a data file differ from other blocks, as they contain file
header information. Each data block begins with a block header, ends with a block

trailer, and contains the block’s data in between, as illustrated in Figure 2-1.

Figure 2-1 Data File Composition

__ -
Tablespace Data File Block
BlockO Block Header
[Block1

Management Block

i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i
1 .
: Data Files Drata Block Content
1
1
1
1
1
1
1
1
1
1
1
1
L

Data Block
Data Block
Data Block Tail

Block Header

Each block header in an Oracle data file has the same structure. Within the shared
memory buffer, there is a Cache Layer component called the Buffer Header—a
fixed-size structure totaling 20 bytes. It primarily includes information such as the data
block type, the block’s address (RDBA, Relative Data Block Address), the SCN
(System Change Number) of the block modification, and a checksum, among other

metadata.

The structure named kcbh (Kernel Cache Buffer Header) observed in BBED contains

the following fields with their respective names and lengths:

struct kcbh, 20 bytes
ubl type_kcbh; /* block type * /
ubl frmt_kcbh;

ubl sparel_kcbh;
13

Datafile Structure

ubl spare2_kcbh;

ub4 rdba_kcbh; /* relative DBA /

ub4 bas_kcbh; /* base of SCN */

ub2 wrp_kcbh; /* wrap of SCN */

ubl seq kcbh; /* sequence # of changes at same scn */
ubl flg_kcbh;

ub2 chkval_kcbh;

ub2 spare3_kcbh;

The offsets of each field within the structure relative to the block header are as
follows:

0x0000-0x0000
0x0001-0x0001
0x0002 -0x0002
0x0003-0x0003
0x0004 -0x0007
0x0008 -0x000B
0x000C-0x000D
OXO00E -0x000E
OXO00F -0x000F
0x0010-0x0011
0x0012-0x0013

byte, block type
byte, format

byte, sparel_kcbh
byte, spare2_kcbh
bytes, rdba

bytes, SCN base
bytes, SCN wrap

byte, segence number
byte, flag

bytes, check value

NN P RPN DNDPR PR PR R

bytes, spare3_kcbh

Table 2-1 lists the description for each field in kcbh structure.

Table 2-1 Description for kcbh Fields

Field Description

type_kcbh Block type, the most common is 0x06 transaction data block, the full
definition is listed in Table 2-2.

frmt_kcbh Version format.

Before Oracle 8i: 0x01
From Oracle 8i onward: 0x02
Starting in Oracle 10g, the high-order nibble (first half-byte) of the
version field is used to indicate the block size:
2KB block: 0x62
4KB block: 0x82
8KB block: O0xA2
16KB block: 0xC2
This encoding reflects the block size in hexadecimal notation, where
the high-order nibble (e.g., 6, 8, A, C) corresponds to the block size

14

Datafile Structure

identifier.

sparel_kcbh | The spare field is compatible with previous versions and is no longer
used. It is always 0.

spare2_kcbh | The spare field is compatible with previous versions and is no longer
used. It is always 0.

rdba_kcbh Relative data block address, the DBA of this block.

bas_kcbh The base part of the System Change Number(SCN). When a data
block is modified, the transaction records the current SCN in the
block header.

wrp_kcbh The wrap part of the SCN.

seq_kcbh Sequence number, when the same SCN changes the block content
many times, sequence is added to 1 each time.
flg_kcbh Flag.

#tdefine KCBHFNEW 0x01 /# new block — zeroed data area */

#tdefine KCBHFDLC 0x02 /* Delayed Logging Change advance SCN/seq */
#tdefine KCBHFCKV 0x04 /* ChecK Value saved-block xor’s to zero */
#tdefine KCBHFTMP 0x08 /* Temporary block */

chkval_kcbh | Checksum value.

A checksum value is calculated by treating every two-byte pair (as a
16-bit integer) from the start of the block (excluding the checksum
bytes themselves) and performing a cumulative XOR operation with
subsequent values. This computed checksum is stored in the block
and used to validate the integrity of the block.

spare3_kcbh | The spare field.

The type of block (type_kcbh) is defined as shown in Table 2-2.

Table 2-2 Block Type Definition

0x01 - KTU UNDO HEADER (undo segment header block)
0x02 - KTU UNDO BLOCK (undo data block)

0x03 - KTT SAVE UNDO HEADER

0x04 - KTT SAVE UNDO BLOCK

0x05 - DATA SEGMENT HEADER

0x06 - trans data

0x07 - Unknown

0x08 - Unknown

0x09 - Unknown

OxOA - DATA SEGMENT FREE LIST BLOCK

0x0B - data file header (block 1)

0x0C - DATA SEGMENT HEADER WITH FREE LIST BLOCKS

15

Datafile Structure

0x0D - Compatibility segment

OxOE - KTU UNDO HEADER W/UNLIMITED EXTENTS

OXOF - KTT SAVE UNDO HEADER W/UNLIMITED EXTENTS
0x10 - DATA SEGMENT HEADER - UNLIMITED

0x11 - DATA SEGMENT HEADER WITH FREE LIST BLKS - UNLIMITED
0x12 - EXTENT MAP BLOCK

0x13 - Unknown = rman file header block (block 1)

0x14 - Unknown = rman file directory block (block 2)

0x15 - Unknown = control file header block (block 1)

0x16 - 22 DATA SEGMENT FREE LIST BLOCK WITH FREE BLOCK COUNT
0x17 - BITMAPPED DATA SEGMENT HEADER

0x18 - BITMAPPED DATA SEGMENT FREELIST

0x19 - BITMAP INDEX BLOCK

Ox1A - BITMAP BLOCK

0x1B - LOB BLOCK

0x1C - KTU BITMAP UNDO HEADER - LIMITED EXTENTS
0x1D - KTFB Bitmapped File Space Header

O0x1E - KTFB Bitmapped File Space Bitmap

Ox1F - TEMP INDEX BLOCK

0x20 - FIRST LEVEL BITMAP BLOCK

0x21 - SECOND LEVEL BITMAP BLOCK

0x22 - THIRD LEVEL BITMAP BLOCK

0x23 - PAGETABLE SEGMENT HEADER (BMB for ASSM)
0x24 - PAGETABLE EXTENT MAP BLOCK

0x25 - EXTENT MAP BLOCK OF SYSTEM MANAGED UNDO SEGMENT
0x26 - KTU SMU HEADER BLOCK

0x27 - Unknown

0x28 - PAGETABLE MANAGED LOB BLOCK

0x29 - Unknown

0x2A - Unknown

0x2B - Unknown

0x2C - Unknown

0x2D - Unknown

O0x2E - Unknown

16

Datafile Structure

Ox2F - Unknown

Block Tail

In the dump information of a block, there is always an entry called tail. A real-world

example:

Block dump from disk:

buffer tsn: 6 rdba: 0x01400f87 (5/3975)

scn: 0x0000. 00313140 seq: 0x01 flg: 0x06 tail: 0x31400601
frmt: 0x02 chkval: 0x2014 type: 0x06=trans data

The block tail information consists of four bytes, which are also used to verify the
integrity of the block. By observing other details on the same line of the dumped
information, you can see the composition of the block tail: the first two bytes represent
the lower two bytes of the SCN base, followed by one byte for the flag (flg), and
another byte for the sequence number (seq). The value of the block tail is formed by

these three parts.

Block 0

Each data file's block 0 contains basic metadata, though its structure varies between
Oracle versions. Prior to Oracle 10g, block 0 did not include the Buffer Header
structure. In these older versions, the metadata starts at offset 0x04, with the first four
bytes reserved for padding. In Oracle 10g and later, the metadata begins after the

Buffer Header (at offset 0x14). Specifically, it consists of three main parts as follows:

ub4 blocke _size;
ub4 blocks_in_file;
ubl platform_id[4];

The meanings of the fields in the structure of block O are listed in Table 2-3.

17

Datafile Structure

Table 2-3 Meanings of the Fields in Block O

Field

Description

BlockO_size

The size of block 0, may differ from the size of other blocks in the

file. The actual block size used for the file is defined in block 1.

blocks_in_file

The number of blocks in the data file (excluding block 0), when
multiplied by the block size specified in block 1 and added to

the size of block 0, equals the complete size of the data file.

platform_id

The platform identifier for Oracle Server, it is defined as follows:

Prior to Oracle 10qg:

UNIX platforms used the identifier 5A5B5C5D.

Windows platforms used 6A6B6C6D.

From Oracle 10g onwards:

The identifier 7A7B7C7D is used uniformly, regardless of
platform (UNIX or Windows).

This identifier is additionally used to determine the byte order:

If the identifier is stored as Ox7A7B7C7D, it indicates big-endian
byte order.
If the identifier is stored as Ox7D7C7B7A, it indicates

little-endian byte order.

Let’'s create a new datafile to examine its structure. In SQL*Plus, execute the

following command (requires DBA privileges):

CREATE TABLESPACE study DATAFILE ’ study O1.dbf” SIZE 200M AUTOEXTEND ON;

After executing the command, Oracle creates the new file study_01.dbf under
$ORACLE_HOME/dbs directory.

—“TW-r————— 1 oracle oinstall 209723392 Nov 2 16:09 study 01.dbf

To query the file number and path of datafiles, use the following SQL statement:

18

Datafile Structure

SELECT file id, relative fno, file name
FROM dba data files WHERE tablespace name= STUDY ;

FILE ID RELATIVE FNO FILE NAME

8 8 /oraclell/product/11.2.0/dbs/study 01. dbf

The binary content of block 0 in the datafile is shown below:

—————————— +0—+1-+2-+3-+4—+5—+6—+7-+8-+9—+A—+B—+C—+D—+E—+F— 0123456789ABCDEF
0x00000000 00 A2 00 00 00 00 CO FF-00 00 00 00 00 00 00 00
Buffer Header
0x00000010 66 9E 00 00 (ON20N00N00 DONGANG0N00 Ve d..)| {z
| | platform id
| blocks in file
block0 size
0x00000020 A0 81 00 00 00 00 00 00—-00 00 00 00 00 00 00 00

The hexadecimal value Ox7D7C7B7A in the platform_id field indicates that the data
storage follows the little-endian byte order format. Then

block0_size = 0x00002000 = 8192 bytes

blocks_in_file = 0x00006400 = 25600 blocks

The block size in the datafile is 8192 bytes (as observed when analyzing block 1), so
the total file size can be calculated as:

file_size = 25600 * 8192 = 209715200 = 200M bytes

The file size exactly matches the SIZE 200M specified in the command, plus the
8192-byte size of block 0, the file size in the Operating System is:

os_file_size = 209715200 + 8192 = 209723392 bytes

This is exactly the physical file size displayed by the OS.

Block 1

The first block (Block 1) of each datafile contains critical database-related
information. This block cannot be extracted as text via the dump command. However,
you can use the following statement to dump the file header information into a trace
file. By performing a binary comparison with Block 1, you can analyze its contents.

Here is the dump statement:

19

Datafile Structure

ALTER SESSTON SET EVENTS ’ IMMEDIATE TRACE NAME FILE HDRS LEVEL 10’ ;

The trace file content is shown below. Repetitive "0" data has been omitted for clarity.

DATA FILE #8:
name #12: /oraclell/product/11.2.0/dbs/study 01.dbf
creation size=25600 block size=8192 status=0xe head=12 tail=12 dup=1
tablespace 9, index=9 krfil=8 prev file=0
unrecoverable scn: 0x0000. 00000000 01/01/1988 00:00:00
Checkpoint cnt:11 scn: 0x0000.003f34al 11/04/2024 23:15:50
Stop scn: Oxffff. fEFfIfff 11/03/2024 23:49:55
Creation Checkpointed at scn: 0x0000.003ebede 11/01/2024 22:13:24
thread:1 rba: (0xb7. 8f0. 10)
enabled threads: 01000000 00000000 00000000 00000000 00000000 00000000
Repeat 120 times
00000000 00000000 00000000 00000000 00000000 00000000
Offline scn: 0x0000. 00000000 prev_range: 0O
Online Checkpointed at scn: 0x0000. 00000000
thread:0 rba: (0x0. 0. 0)
enabled threads: 00000000 00000000 00000000 00000000 00000000 00000000
Repeat 120 times
00000000 00000000 00000000 00000000 00000000 00000000
Hot Backup end marker scn: 0x0000. 00000000
aux_file is NOT DEFINED
Plugged readony: NO
Plugin scnscn: 0x0000. 00000000
Plugin resetlogs scn/timescn: 0x0000. 00000000 01/01/1988 00:00:00
Foreign creation scn/timescn: 0x0000. 00000000 01/01/1988 00:00:00
Foreign checkpoint scn/timescn: 0x0000. 00000000 01/01/1988 00:00:00
Online move state: 0
V10 STYLE FILE HEADER:
Compatibility Vsn = 186646528=0xb200000
Db 1D=139822064=0x85583f0, Db Name=" ORA11G’
Activation ID=0=0x0
Control Seq=20370=0x4f92, File size=25600=0x6400
File Number=8, Blksiz=8192, File Type=3 DATA
Tablespace #9 — STUDY rel fn:8
Creation at scn: 0x0000.003ebede 11/01/2024 22:13:24
Backup taken at scn: 0x0000. 00000000 01/01/1988 00:00:00 thread:0
reset logs count:0x3de79d33 scn: 0x0000. 000e6¢20
prev reset logs count:0x296b946b scn: 0x0000. 00000001
recovered at 01/01/1988 00:00:00
status:0x4 root dba:0x00000000 chkpt cnt: 11 ctl cnt:10
begin—hot-backup file size: 0

20

Datafile Structure

Checkpointed at scn: 0x0000.003f34al 11/04/2024 23:15:50
thread:1 rba: (0xb9. 2. 10)
enabled threads: 01000000 00000000 00000000 00000000 00000000 00000000
Repeat 120 times
00000000 00000000 00000000 00000000 00000000 00000000
Backup Checkpointed at scn: 0x0000. 00000000
thread:0 rba: (0x0. 0. 0)
enabled threads: 00000000 00000000 00000000 00000000 00000000 00000000
Repeat 120 times
00000000 00000000 00000000 00000000 00000000 00000000
External cache id: 0x0 0x0 0x0 0x0
Absolute fuzzy scn: 0x0000. 00000000
Recovery fuzzy scn: 0x0000. 00000000 01/01/1988 00:00:00
Terminal Recovery Stamp 01/01/1988 00:00:00
Platform Information: Creation Platform ID: 13
Current Platform ID: 13 Last Platform ID: 13

The information above appears disorganized. For precise analysis, you can use
BBED to inspect the file header details, enter BBED and execute the map command.

BBED> map
File: /oraclell/product/11.2.0/dbs/study 01.dbf (8)
Block: 1 Dba:0x02000001

Data File Header

struct kcvfh, 860 bytes @0

ub4 tailchk @8188

Here, we observe that Block 1 begins with an 860-byte structure named kcvfh,
which holds file header information. The last 4 bytes correspond to the block tail

information. To examine the detailed structure of kcvfh, use the print command:

BBED> print kcvfh

struct kcvfh, 860 bytes @0
struct kcvfhbfh, 20 bytes @0
ubl type kcbh @0 0x0b
ubl frmt kcbh @1 Oxa2
ubl sparel kcbh @2 0x00

ubl spare2 kcbh @3 0x00

21

Datafile Struct

ure

ub4
ub4
ub2
ubl
ubl
ub2
ub2
struct
ub4
ub4
ub4
text
text
text
text
text
text
text
text

rdba_kcbh
bas_kcbh
wrp_kcbh
seq_kcbh
flg kcbh
chkval kcbh
spare3_kcbh
kecvfhhdr, 76 bytes
kecfhswv
kecfhevn
kecfhdbi
kcefhdbn[0]
kcefhdbn[1]
kcefhdbn[2]
kcefhdbn[3]
kcefhdbn[4]
kcefhdbn[5]
kcefhdbn[6]
kcefhdbn[7]

@4

@8

@12
@14
@15
@16
@18
@20
@20
@24
@28
@32
@33
@34
@35
@36
@37
@38
@39

Q= = = =™ O

0x02000001
0x00000000
0x0000

0x01

0x04 (KCBHFCKV)
0xbc69

0x0000

0x00000000
0x0b200000
0x08558310

Let’s review the binary data of Block 1. The printed text output is as follows:

0x00000000

0x00000010

0x00000020

0x00000030

0x00000040
0x00000050
0x00000060

0x00000070
0x00000080
0x00000090
0x000000A0
0x000000B0
0x000000C0

+0—+1—+2—+3—+4—+5—+6-+T—+8—+9—+A—+B—+C—+D—+E—+F—

0B A2 00 00 01 00 00 02-00 00 00 00 00 00 01 04

Buffer Header

69.BC 0000 00 00 0o oo-NGONGONGH FONSEISEN0H
RSO NNG0NGG 0 +r oo oo FONGHNGONGY

db name
00 20 00 00 08 00 0
block size

00 00 00 00
00 00 00 00
00 00 00 00
root dba
33 9D E7
00 00 00
00 00 00
00 00 00
00 00 00
00 00 00

00
00
DE

00
00
BE

00
00
3E

3D
00
00
00
00
00

6C
00
00
00
00
00

OE
00
00
00
00
00

cvn=11.2

00-00

file number

00-00
00-00
00-00

00-00
00-00
00-00
00-00
00-00
00-00

00

00
00
00

00
00
00
00
00
00

00

00
00
00

00
04
00
00
00
00

00

00
00
00

00
00
00
00
00
00

db

blocks count

id

00 00 00 00

00
00
84

00
07
00
00
00
00

00 00
00 00
61 91

00
00
00
00
00
00

00
00
00
00
00
00

00
00
46

00
00
00
00
00
00

0123456789ABCDEF

22

Datafile Structure

0x000000D0 00 00
0x000000E0 00 00
0x000000F0 00 00
0x00000100 00 00
0x00000110 00 00
0x00000120 00 00
0x00000130 00 00
0x00000140 00 00

0x00000150 05

0x00000160
0x00000170

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00-00
00-00
00-00
00-00
00-00
00-00
00-00
00-00

oo FENGANGSNANGS 0o-00

tablespace name

00 00 00 00 00 00 00

OEN0GR00M00 00 00 00 00-00

relative

0x00000180 00 00
0x00000190 00 00
0x000001A0 6B 94
0x000001B0 00 00
0x000001CO 00 00
0x000001D0O 00 00
0x000001E0 00 00
0x000001F0 01 00

0x00000200

00-00

file number
00 00 00 00
00 00 00 00
29 01 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 84 F3 3E
00 B8 00 00

00-00
00-00
00-00
00-00
00-00
00-00
00-00
00-6A

00
00
00
00
00
00
00
00

00

00
00

00
00
00
00
00
00
00
18

00
00
00
00
00
00
00
00

00

00
00

00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00

00

00
00

00
00
00
00
00
00
00
00

+0—+1—+2—+3—+4—+5—+6—+T—+8—+9—+A—+B—+C—+D—+E—+F—
02 00 00 00 00 00 00 00

00 00 00 00 N
00 00 00 00 N
00 00 00 00 N
00 00 00 00 N
00 00 00 00 N
00 00 00 00 N
00 00 00 00 N

tablespace number

00 00 00 00

00 00 00 00 N
00 00 00 00 -

00 00 00 00 -
00 00 00 00 -

00 00 00 00

00 00 00 00 -
00 00 00 00 -
00 00 00 00 -
54 EB 93 46 -
10 00 00 00 -

L STUDY. .ee e

0123456789ABCDEF

By examining the binary data of Block 1 in detail, the specific field positions can be

precisely mapped. The field offsets for Block 1 in an Oracle 11.2.0.1 data file are

shown below:

0x0000-0x0013
0x0014-0x0017
0x0018-0x001B
Ox001C-0x001F
0x0020-0x0027
0x0028-0x002B
0x002C-0x002F
0x0030-0x0033
0x0034-0x0035
0x0036-0x0037
0x0038-0x003B
0x003C-0x003F
0x0040-0x005F

Buffer Header(common structure, 20 bytes)

db version

compatible version

db id
db name

control sequence

blocks count
block size
file number
file type
activation id
cks (kccfhcks)
tag

23

Datafile Structure

0Xx0060-0x0063
0x0064-0x0067
0x0068-0x0069
OXP06A-0x006B
0x006C -0x006F
0x0070-0x0073
0x0074-0x0077
0x0078-0x0079
OXx007A-0x007B
0x007C-0x007F
0x0080-0x0083
0x0084 -0x0085
0x0086-0x0087
0x0088-0x0089
OXx008A-0x008B
0x008C-0x008F
0x0090-0x0093
0x0094 -0x0097
0x0098-0x009B
0x009C-0x009D
OXOO9E -0x009F
OX00A0-0x00A3
OX00A4 -0x00OA5
OX00A6-0x00A7
OxX00A8-0x00AB
Ox0OAC-Ox00AF
Ox00BO-0x00B1
0x00B2-0x00B3
0x00B4 -0x00BB
Ox00BC-0x0137
0x0138-0x013B
0x013C-0x013F
0x0140-0x0143
0x0144-0x0147
0x0148-0x014B
0x014C-0x014F
0x0150-0x0151
0x0152-0x016F
0x0170-0x0173
0x0174-0x0177
0x0178-0x0179
Ox017A-0x017B
0x017C-0x017F
0x0180-0x0183

root dba

creation checkpoint SCN base
creation checkpoint SCN wrap

padding bytes[2]

creation checkpoint SCN time

reset logs count
reset logs SCN base
reset logs SCN wrap
padding bytes[2]
begin backup time
begin backup SCN base
begin backup SCN wrap
padding bytes[2]
begin backup thread#
file status
checkpoint count
recovered time
control count

backup checkpoint SCN base
backup checkpoint SCN wrap

padding bytes[2]

backup checkpoint time
backup thread#

padding bytes[2]

backup rba.sequence#
backup rba.block#
backup rba.offset
padding bytes[2]
enabled threads

unknown

bhz (kcvfhbhz)

xcd[@] (space_kcvmxcd)
xcd[1]

xcd[2]

xcd[3]

tablespace number
tablespace name length
tablespace name 30 bytes
relative file number
recovery fuzzy SCN base
recovery fuzzy SCN wrap
padding bytes[2]
recovery fuzzy time
absolute fuzzy SCN base

24

Datafile Structure

0x0184-0x0185
0x0186-0x0187
0x0188-0x018B
0x018C-0x018F
0x0190-0x0193
0x0194-0x0197
0x0198-0x019B
0x019C-0x019D
Ox019E-0x019F
Ox01A0-0x01A3
Ox01A4-0x01A7
OXx01A8-0x01A9
Ox01AA-0x01AB
Ox01AC-0Ox01AF
0x01B0-0x01B1
Ox01B2-0x01BB
0x01BC-0x01BF
0x01CO-0x01E3
OXx01E4-0x01E7
OXx01E8-0x01E9
OXxO1EA-OxO1EB
OXx01EC-OXO1EF
Ox01F0-0x01F1
OXx01F2-0x01F3
Ox01F4-0x01F7
Ox01F8-0x01FB
Ox01FC-0x01FD
OXO1FE-Ox01FF
0x0200-0x0207

absolute fuzzy SCN wrap
padding bytes[2]

bbc (kcvfhbbc)

ncb (kcvfhncb)

mcb (kcvfhmcb)

lcb (kcvfhlcb)

bcs (kcvfhbces)

ofb (kcvfhofb)

nfb (kcvfhnfb)

prev reset logs count
prev reset logs SCN base
prev reset logs SCN wrap
padding bytes[2]

prfs (kcvfhprfs) SCN base
prfs (kcvfhprfs) SCN wrap
unknown

trt (kcvfhtrt)

unknown

checkpoint SCN base
checkpoint SCN wrap
padding bytes[2]
checkpoint time
checkpoint thread#
padding bytes[2]
checkpoint rba.sequence
checkpoint rba.block
checkpoint rba.offset
padding bytes[2]

etb[8] (kcvcpetb) enabled threads

Block 1 contains extensive metadata (e.g., creation, backup, recovery, and resetlogs),

which are scenario-specific and can be temporarily ignored. Below, we will focus

exclusively on data storage-related fields and their meanings, as summarized in

Table 2-4.

Table 2-4 Structure kcvfhhdr Fields (storage related)

Field

Description

compatible version Compatibility Version Number: In this example, 0x0b200000

@ (0x0018-0x001B) corresponds to Oracle 11.2.

db id

Database Identifier (DBID): A unique value assigned to a

@ (0x001C-0x001F) | database instance, used to verify whether a file belongs to

25

Datafile Structure

that specific database.

db name
@ (0x0020-0x0027)

Database name to which the file belongs.

blocks count
@ (0x002C-0x002F)

Number of blocks in the file, excluding Block O.

blocks size
@ (0x0030-0x0033)>

Block size in the file, which may differ from Block 0.

file number
@ (0x0034-0x0035)

Absolute file number.

file type
@ (0x0036-0x0037)

File type: 3 for data file, 2 for log file.

root dba
@ (0x0060-0x0063)

This field is only populated in File 1 of the SYSTEM
tablespace, all others are set to 0. Oracle uses this address
to locate the data dictionary bootstrap entry, which points to

the bootstrap$ table.

ts number

@ (0x014C-0x014F)

Tablespace number, corresponding to the ts# column in the
base table TS$, identifies which tablespace this file belongs

to.

ts name length
@ (0x0150-0x0151)

Tablespace name length: The tablespace name can be up to

30 characters long.

ts name
@ (0x0152-0x016F)>

Tablespace name.

relative fno
@ (0x0170-0x0173)

Relative file number, unique within a tablespace.

26

Conclusions

Chapter 3: Data Block Structure of

Heap-Organized Tables

We create a user TOM assigned to the predefined tablespace STUDY, then create a
table TEST_TAB1 within this user schema. By inserting data into the table, we can

investigate the physical structure of Oracle data blocks.

CREATE USER tom IDENTIFIED BY tom DEFAULT TABLESPACE study;
GRANT CONNECT, RESOURCE TO tom;

The preceding commands created a database user tom (password: tom) and created
a heap-organized table within the TOM user's schema using the following SQL

statement:

CONN tom/tom;

CREATE TABLE test tabl

(
id number PRIMARY KEY,
f1dl char(30),
f1d2 varchar2(2000),
f1d3 varchar2 (4000),
f1d4 varchar2(4000)

The commands above have created a heap-organized table, and the data will be
stored in the STUDY tablespace. Since the tablespace contains only a single data file,

the data will reside in study_01.dbf.

Now insert a row of data into the table using the following SQL statement:

INSERT INTO test tabl VALUES
(1, ’laaaaaaa’, ’ 1bbbbbbbbb’, ’1lcccceccecee’, ’ 1ddddddddddddd’) ;
COMMIT;

Execute the following command to flush the data from the buffer cache to the data

files.

27

Datafile Structure

ALTER SYSTEM checkpoint;

Use the following SQL statement to query the block number and row number of the

row data.

SELECT
id,
dbms rowid. rowid relative fno(rowid) rfn,
dbms rowid. rowid block number (rowid) block#,
dbms rowid. rowid row number (rowid) row#
FROM test tabl;

1D RFN BLOCK# ROW#

1 8 135 0

Based on the query results, the row we inserted resides in block 135, row 0O of the
8th file (study_01.dbf). Since the total number of files in our database is fewer than
1023, the absolute file number and relative file number are identical. Use the

following command to dump this block for inspection:

ALTER SYSTEM DUMP datafile 8 block 135;

Below is the complete dump information of the data block.

Start dump data blocks tsn: 9 file#:8 minblk 135 maxblk 135
Block dump from cache:
Dump of buffer cache at level 4 for tsn=9, rdba=33554567
BH (0x9efe2d78) file#: 8 rdba: 0x02000087 (8/135) class: 1 ba: 0x9ed26000
set: 3 pool 3 bsz: 8192 bsi: 0 sflg: 2 pwc: 140, 28
dbwrid: 0 obj: 78733 objn: 78733 tsn: 9 afn: 8 hint: f
hash: [0xc0305210, 0xc0305210] lru: [0x9efe2f90, 0x9eff7fal]
ckptq: [NULL] fileq: [NULL] objq: [0x9efe2fb8, 0xb918e150]
st: XCURRENT md: NULL tch: 2
flags: block written once redo_since read
LRBA: [0x0.0.0] LSCN: [0x0.0] HSCN: [Oxffff. ffffffff] HSUB: [1]
cr pin refent: 0 sh pin refent: 0
Block dump from disk:

Hex dump of block: st=0, typ found=1

28

Datafile Structure

Dump of memory from 0x00002B57AACE6A00 to 0x00002B57AACES8A00

2B57AACE6A00 0000A206 02000087 003F2481 06010000 [......... $2... ..]
2B57AACE6A10 000070F9 00000001 0001338D 003F2480 [.p....... 3...$2.]
2B57AACE6A20 00000000 00320002 02000080 001C0009 [...... D/]
2B57AACE6A30 00000D6B 00C010D0 002C0309 00002001 [k......... yeo o]
2B57AACE6A40 003F2481 00000000 00000000 00000000 [.$2.............]
2B57AACE6A50 00000000 00000000 00000000 00000000 [................]
2B57AACE6A60 00000000 00010100 0014FFFF 1F381F4C [............ L.8.]
2B57AACE6A70 00001F38 1F4C0001 00000000 00000000 [8..... | N]
2B57AACE6A80 00000000 00000000 00000000 00000000 [................]
Repeat 498 times
2B57AACE89B0 0205012C 311E02C1 61616161 20616161 [,...... laaaaaaa]
2B57AACE89CO 20202020 20202020 20202020 20202020 []
2B57AACE89D0 20202020 62310A20 62626262 62626262 [. 1bbbbbbbbb]

2B57AACEB9ED 6363310C 63636363 63636363 64310E63 [. lcccccececcce. 1d]
2B5TAACE89F0 64646464 64646464 64646464 24810601 [dddddddddddd. . . $]

inc: 0 exflg: 0

o
4 o
o
: b}
. (=]
>
S
Do
o
o
o
o
o
J

nrow=1 offs=0

0x12:pri[0] offs=0x1f4c
block row dump:

29

Datafile Structure

end of block dump
End dump data blocks tsn: 9 file#: 8 minblk 135 maxblk 135

Before studying the data block structure, let's first understand its layers. Oracle's

official documentation provides a general structural diagram, as shown in Figure 3-1.

Figure 3-1 Database Block Layers
Database Block

Common and Variable Header
Table Directory

Row Directory

Free Space

Row Data

From the diagram above, we observe that the data block begins with a header
structure, composed of fixed-length and variable-length layers. This is followed by
the table directory and row directory structures. The actual row data resides at the
end of the block, while free space occupies the middle. Notably, Oracle stores row
data from the bottom of the block upward (toward the header), while the row
directory grows from the top downward. When the remaining free space reaches the
threshold defined by PCTFREE, the block is no longer eligible for new inserts.

The text dump above still appears insufficiently clear. Let’'s use BBED (Block Browser

30

Datafile Structure

and Editor) to examine the block structure in detail.

BBED> map
File: /oraclell/product/11.2.0/dbs/study 01.dbf (8)
Block: 135 Dba:0x02000087

KTB Data Block (Table/Cluster)

struct kcbh, 20 bytes @0
struct ktbbh, 72 bytes @20

struct kdbh, 14 bytes @100

struct kdbt[1], 4 bytes

sb2 kdbr[1] @118
ubl freespace[7992] @120
ub4 tailchk @8188

From the above description, we observe the block structure as follows:

1.

Buffer Header (kcbh)

e 20-byte structure.

e k =Kernel (core structure), ¢ = Cache, b = Buffer, h = Header.

Transaction Header (ktbbh)

e 72-byte section storing transactional metadata (e.g., undo information,
locks).

Data Header (kdbh)

e 14-byte structure containing data block-specific metadata (e.g., row count,
free space pointers).

Table Directory (kdbt[])

e A struct array mapping tables to rows within the block.

Row Directory (kdbr[])

31

Datafile Structure

e A 16-bit integer array where each element represents a row offset.
e The array length equals the number of rows in the block.
6. Free Space (freespace)
o Unallocated region reserved for future inserts/updates.
7. Row Data (rowdata)
e Actual storage area for row contents.

8. Block Trailer

e 4-byte checksum or validation marker at the block’s end.

Let's examine the hexadecimal dump of the block to explicitly observe its structural
layout.

—————————— HO—+ 142434~ +5—+6—+T—+8—+9—+A—+B—+C—+D—+E~+F~ 0123456789ABCDEF

0x00000000 (ENAZNGONOONSTI00N00N0Z=S IN2ANSF00N00N00N0oE $2.....
kebh
0x00000010 FSNEONO0N00 PIOCIOCIOEEREEO O Deviin. 3...$2.
ktbbh
000000020 00 00 00 00 02 00 32 00-80 00 00 02 09 00 1C 00 2
0x00000030 EEIGHISGICCIONOICONEEECOIEoee e
0x00000040 i EEONNNNNOEOoeooo. = s

0x00000050 HOEHOENOONOONOONOONOOROON00N00N08 00 00 00 00

additional data
0x00000060 00 00 00 00 (IOHONOEEEIOCEESE 3 L.8.
kdbh
0x00000070 SR I 4C 1F-00 00 00 00 00 00 00 00 8L.........
kdbt kdbr freespace
.............................. omitted 7ero data ceeeescectttccctttcccssscccnnn

0x00001FA0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

0x00001FB0 EEHOTNOENOZICHOZNIEScccIcIcIees ... laaaaaaa
rowdata

0x00001FCo EON20NI0NZ0N20N20N20N20= 200208 20N20N20020020020

0x00001FD0 BONZONZ0NZ0N20N0ANSTN62=62162162162162162162162 . Ibbbbbbbbb

0x00001FEO _ . lecceccecccce. 1d

0x00001FF0 dddddddddddd. . . $

tailchk

In the following subsections, we will dissect the data block from top to bottom,

32

Datafile Structure

exploring the specifics of each structural component.

Buffer Header & tail

The first component is the Buffer Header (kcbh), a 20-byte structure present in every
data block, whose layout we have previously analyzed. Examining its hex dump, the

block type is identified as "trans data" (transactional data).

buffer tsn: 9 rdba: 0x02000087 (8/135)
scn: 0x0000. 003£2481 seq: 0x01 flg: 0x06 tail: 0x24810601

frmt: 0x02 chkval: 0x70f9 type: _

The block also includes 4 bytes at its tail (end), which we previously dissected: these
comprise the lower 2 bytes of the SCN base, followed by the FLG (flags) byte, and
the SEQ (sequence) byte.

Block header

Following the KCBH is the block header structure from the hex dump, with the

content listed below:

inc: 0 exflg: 0

Itl Xid Uba Flag Lck Sen/Fsc
0x01 0x0009. 01c. 00000d6b 0x00c010d0. 0309.2¢ —U- 1 fsc 0x0000. 0032481
0x02 0x0000. 000. 00000000 0x00000000. 0000. 00 —- 0 fsc 0x0000. 00000000

The block header structure corresponds to the common and variable header shown
in Figure 3-1. It contains transactional information and is subdivided into a fixed-size
portion and a variable portion. Tools like BBED (Block Browser and Editor) can

reveal detailed insights into these structural variations.

struct ktbbh, 72 bytes @20

33

Datafile Structure

struct ktbbhitl[2], 48 bytes @44

Let’s first examine the fixed portion, which spans 24 bytes:
0x0000-0x0000 1 byte, type

0x0001-0x0003 bytes, padding bytes[3]
0x0004 -0x0007 bytes, dataobj#
0x0008 -0x000B bytes, csc_base
0x000C -0x000D bytes, csc_wrap
0x0010-0x0011 bytes, itc
0x0012-0x0012 byte, flg

byte, fsl

3

4

4

2
OXPOOE-0x000F 2 bytes, padding

2

1

0x0013-0x0013 1

4

0x0014-0x0017 bytes, fnx

This section describes the common header, which occupies 24 bytes. The

meanings of each field are detailed in Table 3-1 below.

Table 3-1 Common Header Field Meanings

type Data Type: 01-data, 02-index, 05-local lobs.

dataobj# seg/obj, object number in segment.

csc_base Cleanout SCN base.

csc_wrap Cleanout SCN wrap.

itc The number of ITL entries and the size of the ITL structure

are fixed. The ITC (Transaction Slot Count) determines the
size of the variable portion of the transaction layer. Since ITC <
255, the high-order bits should be masked off (ITC & OxFF)

after retrieving the value.

flg Flags. The meanings of the flag bits will be explained in

34

Datafile Structure

detail later, as shown in Table 3-3.

—h

sl

Free space lock.

—h

nx

A pointer to the next block on the free list chain.

The subsequent section is the variable portion of the transaction layer, known as

the ITL (Interested Transaction List). The number of ITL slots is determined by the

ITC (Transaction Slot Count) mentioned earlier. By default, there are 2 ITL slots.
The ITL is an integral component of Oracle data blocks, recording transactions

affecting the block. Each ITL slot (also called an ITL entry) acts as a transaction

record. In BBED, ITL slots are explicitly named ktbbhitl and occupy 24 bytes each.

The ITL structure is as follows:

0x0000-0x0001 2 bytes, xid.usn

0x0002-0x0003 2 bytes, xid.slt

0x0004 -0x0007
0x0008 -0x000B
0x000C -0x000D
OXOO0OE -0x000E
OXx000F -0x000F
0x0010-0x0011
0x0012-0x0013
0x0014-0x0017

4

AN N R R N BN

bytes, xid.sgn
bytes, uba.dba
bytes, uba.seq
byte, uba.rec
byte, padding
bytes, flag

bytes, fsc/scn wrap

bytes, fsc/scn base

35

Datafile Structure

Table 3-2 below explains the fields of the ITL (Interested Transaction List), with

each ITL slot occupying 24 bytes.

Table 3-2 ITL Fields Description

Field Description

xid Transaction ID, unique identifier for the transaction.
It is composed of undo segment number (usn), slot number (slt), and

sequence number (sqn).

uba The block address of an Undo segment (referred to as the UBA or
Undo Block Address) is assigned to each transaction upon initiation.
A UBA consists of three components:

Block Number (DBA): The physical address of the Undo block.
Sequence Number (SEQ): A unique identifier for the Undo record
version.

Record Number (REC): The specific slot within the Undo block.

flag Inthe ITL structure, the Flags field shares 2 bytes with lock
information:

Flags occupy the upper 4 bits (high-order nibble).

Lock occupies the lower 12 bits (low-order 3 nibbles).
Flags(4 bits):

---- = transaction is active or committed pending cleanout
C--- = transaction has been committed and locks cleaned out
-B-- = this undo record contains the undo for this ITL entry
--U- = transaction committed (maybe long ago); SCN is an upper bound
---T = transaction was still active at block cleanout SCN
Lock(12 bites):

The lock field specifies the number of row-level locks held by the

transaction in this block.

In this example, flag=0x2001.:

High-order nibble (4 bits): 0x2 (hex Ox2, binary 0010), represented as
u.

Remaining 3 nibbles (12 bits): 0x001 (hex 0x001, binary 0000 0000
0001), representing Lck=1 (1 row locked).

fsc/scn For deferred block cleanout, this is commit SCN.

36

Datafile Structure

For fast commit block cleanout, this is FSC.

The subsequent ITL entries follow the same structure, and their quantity is

controlled by the ITC (Interested Transaction List Count).

Additional Data

After the ITL entries, the block header ends, and the data layer begins. However,
when the tablespace uses ASSM (Automatic Segment Space Management), there
are additional 8 bytes between the block header and the data layer. These bytes
consist of two fields:

e inc (4 bytes): Used for space management in ASSM.

o exflg (4 bytes): Extended flags for block metadata.

In the DUMP output, these fields are highlighted in yellow. When calculating
addresses for subsequent structures (e.g., row directories), you must account for
these 8 bytes; otherwise, offsets will be misaligned.

When inspecting ASSM (Automatic Segment Space Management) and MSSM
(Manual Segment Space Management) blocks using BBED, it was observed that
BBED automatically determines whether to account for the additional 8 bytes (inc
+ exflg). This suggests that BBED does not rely on the segment header type but
instead uses block-level metadata to decide whether to include these bytes.

Upon analyzing the data fields preceding ktbbh (the transaction layer structure), it
was discovered that the ktbbhflg (transaction layer flag) in the block header controls
this behavior. This flag (referred to as ktbbhflg in BBED) contains critical bits that
dictate block-specific attributes.

Through experimentation, key flag bits were identified and mapped to their

functionalities. The definitions of these flag bits are summarized in Table 3-3 below:

Table 3-3 ktbbhflg Bits Definitions

Ktbbhflg definition:

0x01 KTBFONFL, indicates block is placed on the Free List.

0x02 This flag indicates the Segment’s Object ID associated with the block.
0x10 This flag indicates that the block is managed by ASSM.

0x20 The flag (flg: E as shown in dump information) indicates the presence of

37

Datafile Structure

additional data. This flag controls whether 8 additional bytes are

appended to the block's header. If the flag is set (1), 8 bytes are added.

The lower two bytes of the exflg field act as an offset to adjust the starting

address of the data layer, as shown in bellowing example.

(flg>>1)&0x03 The value calculated through this process corresponds to the ver.

In this sample, both fields in the Additional Data are 0, what happens when their
values change? Let's modify the exflg value in the Additional Data and observe how

the kdbh (Kernel Data Block Header) position shifts.

BBED> p ktbbh

ubl ktbbhflg @38 0x32 (NONE)

With the flag set to 0x32, the expression (0x32 & 0x20) is true, requiring an
additional 8 bytes of data to added to the block header.

BBED> map
File: /oraclell/product/11.2.0/dbs/study 01.dbf (8)
Block: 135 Dba:0x02000087

KTB Data Block (Table/Cluster)

struct kcbh, 20 bytes @0
struct ktbbh, 72 bytes @20
struct kdbh, 14 bytes @100
struct kdbt[1], 4 bytes @114
sb2 kdbr[1] @118
ubl freespace[7992] @120
ubl rowdatal76] @112
ub4 tailchk @8188

As shown above, kdbh offset is 20+72+8=100

BBED> set offset 96
OFFSET 96

BBED> modify /x 0x02
Warning: contents of previous BIFILE will be lost. Proceed? (Y/N) y

38

Datafile Structure

File: /oraclell/product/11.2.0/dbs/study 01.dbf (8)
Block: 135 Offsets: 96 to 607 Dba:0x02000087

02000000 00010100 ffff1400 4c1f381f 3810000 01004c1f 00000000 00000000

The offset corresponding to exflg is 96. If we modify the first two bytes to 2, then
exflg = 0x00000002. Assuming the above analysis is correct, the offset of kdbh
would be20+72 +8 +2 =102

BBED> map
File: /oraclell/product/11.2.0/dbs/study 01.dbf (8)
Block: 135 Dba:0x02000087

KTB Data Block (Table/Cluster)

struct kcbh, 20 bytes @0
struct ktbbh, 72 bytes @20
struct kdbh, 14 bytes @102
struct kdbt[0], 0 bytes @116
sb2 kdbr[9223372036854775807] @116
ubl freespace[18446744073709551596] @114
ubl rowdatal[94] @94
ub4 tailchk @8188

As we analyzed, after the modifications, the offset of each structure observed using
the map command show that kdbh has changed to 102

BBED> modify /x 0x020001
File: /oraclell/product/11.2.0/dbs/study 01.dbf (8)
Block: 135 Offsets: 96 to 607 Dba:0x02000087

02000100 00010100 ffff1400 4c1£381f 3810000 01004c1f 00000000 00000000

BBED> map
File: /oraclell/product/11.2.0/dbs/study 01.dbf (8)
Block: 135 Dba:0x02000087

KTB Data Block (Table/Cluster)

struct kcbh, 20 bytes @0

struct ktbbh, 72 bytes @20
struct kdbh, 14 bytes @102
struct kdbt[0], O bytes @116

sb2 kdbr[9223372036854775807] @116

39

Datafile Structure

ubl freespace[18446744073709551596] @114
ubl rowdatal[94] @94
ub4 tailchk @8188

When exflg was modified to 0x00010002, it was observed that the offset of kdbh
remained 102. This indicates that the increment in the offset is only determined by

the value of the lower 2 bytes of exflg.

Similarly, it can be verified that modifying the value of the inc field does not alter

the offsets of other structures.

To read the full version of this book, please visit:

https://payhip.com/OracleeBookSoftwareShop

40

https://payhip.com/OracleeBookSoftwareShop

