In Control

Object-Oriented Programming in C#

Andrea Pierini

Object-Oriented Programming in C#

In Control

Andrea Pierini

This book is available at
https:/ /leanpub.com /Object-Oriented _Programming_ CSharp

This version was published on 2025-04-25

N

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the
Lean Publishing process. Lean Publishing is the act of publishing an

in-progress ebook using lightweight tools and many iterations to get reader
feedback, pivot until you have the right book and build traction once you do.

© 2025 Andrea Pierini

https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com
https://leanpub.com
https://leanpub.com/manifesto

To Sara, the love of my life, and to my family.

Contents

Object-Oriented ProgramminginC# 1
Bookintroduction L oo 1
Introduction to Object-Oriented Programming 2
Core OOPConcepts. o v vttt e e e 3
OOPIn-Depth 18
Practical Applications and Examples 30

Conclusion 30

Object-Oriented Programming in C#

This content is not available in the sample book. The book can be purchased on
Leanpub at https:/ /leanpub.com /Object-Oriented_Programming_ CSharp.

Book introduction

This book provides a thorough introduction to Object-Oriented Programming
(OOP) concepts using C#.

OOP is crucial in modern software development because it provides a
powerful way to organize and structure code. By using objects that bundle
data together with the code that operates on that data, OOP allows developers
to create more modular, flexible, and reusable code. It enables easier mainte-
nance, promotes code reuse through inheritance, and helps manage complex-
ity in large software systems by breaking down complex problems into smaller,
more manageable pieces. Key concepts like encapsulation, inheritance, and
polymorphism make code more intuitive, allowing developers to model real-
world entities and relationships more naturally in their software designs.

‘In Control’ Philosopy

This book is part of the ‘In Control’ series, a collection founded on a key
principle for modern software development: In an era where artificial intelli-
gence significantly assists in writing code, the emphasis shifts from mastering
every syntactical detail to deeply understanding fundamental concepts and
learning how to effectively collaborate with Al. The name ‘In Control reflects
this philosophy - empowering you to guide the tools and the development
process.

Therefore, across this series, we concentrate on mastering core program-
ming concepts. This specific volume provides essential prompts designed to
help you practice and apply these ideas. A key focus is learning how to leverage
Al assistants effectively when needed. Specifically, you will find prompts
formatted like this throughout the book:

https://leanpub.com/Object-Oriented_Programming_CSharp

Object-Oriented Programming in C# 2

. Ask your Chat BOT: [A suggested question related to the current
topic]

These are designed to encourage you to dive deeper, explore alternatives,
or clarify concepts using your preferred Al assistant. Engaging with these
prompts actively reinforces the material and helps you practice the crucial skill
of asking the right questions to leverage Al effectively in your learning.

‘Core’ vs ‘In-depth’

The first part of this text, titled ‘Core OOP Concepts, will serve as a quick
reference, providing a fast and easy way to grasp the main concepts—ideal
for a general overview and quick consultations. The second part, titled ‘OOP
In-Depth’ will explore each concept in much greater detail, offering thorough
explanations and additional perspectives.

Target Audience

This guide is not intended for complete programming beginners but rather
for developers who want to deepen their understanding of Object-Oriented
Programming (OOP) and fully leverage its potential once mastered. A solid
grasp of C# is recommended. Moreover, the concepts presented here are not
only valuable in C# but also applicable to any OOP language.

Introduction to Object-Oriented Programming

Object-Oriented Programming represents a paradigm shift in how we ap-
proach software development. Unlike procedural programming, which focuses
on functions and procedures, OOP centers around objects and their interac-
tions. This approach allows developers to create more maintainable, reusable,
and scalable code.

The core idea behind OOP is modeling software components after real-
world entities. For instance, if you're building a car dealership application, you
might create classes for Car, Customer, and Sale, each with its own properties
and behaviors. This mapping between real-world concepts and programming
constructs makes code more intuitive and easier to reason about.

Object-Oriented Programming in C# 3

C# stands as an ideal language for learning OOP principles. As a modern,
strongly-typed language developed by Microsoft, C# provides robust support
for all key OOP concepts while offering a clean syntax and powerful develop-
ment environment through the .NET framework.

’ Ask your Chat BOT: Can you provide 3 more examples of real-world
scenarios (like the car dealership) and suggest the primary classes,
properties, and behaviors that would model them in OOP?

What Makes OOP Different?

Object-Oriented Programming differs from other paradigms through its em-
phasis on:

Modeling real-world objects and their relationships

Encapsulating related data and functionality

Creating reusable components through inheritance and interfaces
Promoting code organization through clear separation of concerns
Enabling extensibility through polymorphic behavior

Ol W N =

Before diving deeper, it’s essential to understand that OOP isn't just about
syntax or language features—it's a way of thinking about software design that
emphasizes structure, relationships, and behavior. Let’s begin exploring these
core ideas, starting with the fundamental building blocks.

Core OOP Concepts

Classes and Objects

In OOP, a class serves as a blueprint that defines the structure and behavior for
a type of object. An object, by contrast, is a concrete instance of a class. Think
of a class as a template, while objects are the actual entities created from that

template.

For example, consider a simple Car class:

© 00 N O U B W N =

e e
A W N =R o

Object-Oriented Programming in C# 4

class Car

{
// Properties (data)
public string Brand { get; set; }
public string Color { get; set; }
public int Year { get; set; }

// Methods (behavior)
public void StartEngine()

{

Console.WritelLine("Engine started!");
}
public void Drive()
{

Console.WritelLine(

$"Driving the {Color} {Brand}");

}

Creating objects (instances) from this class:

// Creating two different Car objects
Car myCar = new Car();

myCar.Brand = "Mustang";

myCar.Color = "Black";

myCar.Year = 2023;

Car friendsCar = new Car();
friendsCar.Brand = "Ferrari";
friendsCar.Color = "Red";
friendsCar.Year = 2022;

// Using the objects
myCar.StartEngine();
myCar.Drive();

This example demonstrates how multiple objects can be created from the
same class blueprint, each with its own state (property values) but sharing the
same behavior (methods).

Encapsulation

Encapsulation represents the practice of bundling data (properties) and the
methods that operate on that data within a single unit (class). More importantly,
it involves controlling access to that data through access modifiers.

==
H © W 00 N O Ul A W N =

W W WwWwwwwwwwNnNNNNNNNNNRRBR /B B 3 @93 @3
© 0O N O U WNRLROWOO®NOUSWNIROGWOO®NOOUUNMWN

Object-Oriented Programming in C# 5

The primary benefit of encapsulation is information hiding—protecting the
internal state of an object from inappropriate external access. This creates
a clear boundary between the internal implementation and how the class is
interacted with externally.

class BankAccount

{
// Private field:
// hidden from outside the class
private decimal balance;
// Public property:
// controlled access to the private field
public decimal Balance
{
get { return balance; }
// Can only be set within the class
private set { balance = value; }
)
// Public methods to interact with the balance
public void Deposit(decimal amount)
{
if (amount <= 0)
throw new ArgumentException(
"Deposit amount must be positive");
balance += amount;
}
public void Withdraw(decimal amount)
{
if (amount <= 0)
throw new ArgumentException(
"Withdrawal amount must be positive");
if (amount > balance)
throw new InvalidOperationException(
"Insufficient funds");
balance -= amount;
}
}

In this example, the balance field is completely hidden from external code.
Users of the BankAccount class must use the provided methods to deposit or

Object-Oriented Programming in C# 6

withdraw money, ensuring that the account balance can never reach an invalid
state.

’ Ask your Chat BOT: Why is information hiding, achieved through

v‘ encapsulation using private fields and controlled access via prop-
erties/methods (like in the BankAccount example), considered a
fundamental principle for building robust and maintainable software?
What problems does it help prevent?

Abstraction

Abstraction involves simplifying complex reality by modeling classes based on
the essential properties and behaviors while ignoring non-essential details. It
focuses on what an object does rather than how it does it.

In practice, abstraction means exposing only the necessary features of an
object while hiding the complexity of how those features are implemented.

Abstraction by mean of Interfaces

While classes define a blueprint including both data (state) and behavior
(methods), sometimes we only want to define a contract - a specific set of
capabilities or behaviors that a class must provide, without dictating how it
should implement them or what data it should hold. This is the role of an
interface in C#.

An interface defines a collection of public method signatures, properties,
events, or indexers. Any class or struct that implements an interface guaran-
tees that it will provide concrete implementations for all members defined in
that interface.

Interfaces are fundamental for:

1. Achieving Polymorphism: Allowing different classes to be treated uni-
formly based on the capabilities they offer.

2. Enabling Loose Coupling: Designing components that depend on con-
tracts (interfaces) rather than specific concrete classes, making systems
more flexible and testable (crucial for Dependency Injection, as we well
see later in this book).

==
H © W 00 N O Ul A W N =

N N NNRERERRRRRER 2 B
W N H © O 00 N O U b WN

24
25
26
27
28
29
30

Object-Oriented Programming in C# 7

3. Simulating Multiple Inheritance (of type): A class can inherit from only
one base class, but it can implement multiple interfaces.

Syntax:

// Defining an interface

// (conventionally starts with 'I')

public interface ILogger

{
// Method signature - no implementation
void Log(string message);

// A class implementing the interface
// Use ':' for implementation
public class ConsoleLogger : ILogger
{
// Must provide implementation
// for all interface members
public void Log(string message)
{

Console.WriteLine($"LOG: {message}");

// Another implementation
public class FilelLogger : ILogger

{
public void Log(string message)
{
// Logic to write the message to a file...
Console.WriteLine(
$"Writing to file: {messagel}");
}
}

Using an interface:

Object-Oriented Programming in C# 8

1 // We can treat both ConsoleLogger and

2 // FileLogger as ILogger

3 ILogger loggerl = new Consolelogger();

4 ILogger logger2 = new FilelLogger();

5

6 // Calls ConsoleLogger's implementation
7 loggerl.Log("System startup.");

8

9 // Calls FilelLogger's implementation

10 logger2.Log("Data processed.");

Think of an interface as specifying the “What” (what methods must be
available), leaving the “How” (the actual implementation) to the classes that
implement it. We will explore interfaces in much greater detail in the ‘OOP
In-Depth’ section.

. Ask your Chat BOT: What is the key difference between inheriting
from a base class (like Animal in the Inheritance example) and im-
plementing an interface (like ILogger here)? Why can a C# class
implement multiple interfaces but only inherit from one base class?
Abstraction by mean of Abstract Classes

1 // Abstract class

2 public abstract class Vehicle

3 A

4 public string RegistrationNumber { get; set; }

5

6 // Abstract method:

7 // must be implemented by derived classes

8 public abstract void Move();

9

10 // Concrete method - shared implementation

11 public void RegisterVehicle(string regNumber)

12 {

13 RegistrationNumber = regNumber;

14 Console.WriteLine(

15 $"Vehicle registered with number: {regNumber}");

16 }

17}

18

19 // Concrete implementations

20 public class Car : Vehicle

21 {

22 public override void Move()

23
24
25
26
27
28
29
30
31
32
33
34

Object-Oriented Programming in C# 9

{
Console.WriteLine("Car is driving on the road");
}
}
public class Airplane : Vehicle
{
public override void Move()
{
Console.WriteLine("Airplane is flying in the sky");
}
}

This example shows how abstraction allows us to define common charac-
teristics (registration) and behaviors (moving) for vehicles, while letting specific
vehicle types implement their movement behavior differently.

In the context of Al-assisted development, abstractions like inter-
P faces and abstract classes become powerful tools for maintaining
control of your software. By defining clear contracts and partial
blueprints, you establish the non-negotiable structure and required
behaviors - the “what” a component must do or be. You can then
leverage Al to generate the specific concrete implementations - the
“how” - ensuring adherence to the framework you've mandated. This
perfectly aligns with the “In Control” philosophy: you define the
essential architecture through abstraction, guiding Al to fill in the

details according to your specifications.

Inheritance

Inheritance enables a class to inherit properties and methods from another
class. This creates a parent-child relationship between classes (also called a
“base class” and a “derived class” relationship).

Inheritance promotes code reuse by allowing common functionality to be
defined in a base class and specialized behavior to be implemented in derived
classes.

= o
= © W 00 N o U B W N B

W W INNNNNNNNNNRRRRRR R &
H ® © 0O N O U S WNROWOWO®O-NOOUA_WN

32
33
34
35
36

Object-Oriented Programming in C# 10

// Base class
public class Animal

{
public string Name
{
get; set;
)
public void Eat()
{
Console.WriteLine($"{Name} is eating...");
}
public void Sleep()
{
Console.WriteLine($"{Name} is sleeping...");
}
}

// Derived class
public class Dog : Animal

{
public void Bark()
{
Console.WriteLine($"{Name} says: Woof!");
}
}

// Derived class
public class Cat : Animal

{
public void Meow()
{
Console.WriteLine($"{Name} says: Meow!");
}
}

Using inheritance:

O© 00 NN O U A W N -

A W N e

Object-Oriented Programming in C# 1

Dog dog = new Dog();

dog.Name = "Rex";

dog.Eat(); // Inherited from Animal
dog.Bark(); // Specific to Dog

Cat cat = new Cat();

cat.Name = "Whiskers";

cat.Sleep(); // Inherited from Animal
cat.Meow(); // Specific to Cat

We get as output:

Rex is eating...

Rex says: Woof!
Whiskers is sleeping...
Whiskers says: Meow!

This demonstrates how derived classes inherit general behaviors while
adding their specialized behaviors.

. Ask your Chat BOT: Explain the “is-a” relationship concept in inheri-

-‘ tance using the Animal, Dog, and Cat example. Can you also mention
one potential drawback or complexity that might arise from using
inheritance extensively (e.g., deep inheritance hierarchies)?

Inheritance creates these ‘is-a’ relationships, and polymorphism leverages
them, allowing objects of different derived classes to be treated uniformly
through their common base class or interface.

Polymorphism

Polymorphism, which literally means “many forms,” is the principle that allows
objects of different classes to respond to the same method call in their own
specific way, allowing for flexible and extensible code

There are two main types of polymorphism in C#:

1. Compile-time polymorphism (Method overloading): Multiple methods
with the same name but different parameters.

2. Runtime polymorphism (Method overriding): Base class methods being
overridden in derived classes.

O 00 N O Ul & W N -

N NNNRRRRERRR R 2 2
W N H © O 00 N O U A WN = O

O 00 N O U1 B W N =

= o= e
N = ©

Object-Oriented Programming in C#

public class Shape

{
public virtual void Draw()
{
Console.WritelLine("Drawing a shape");
}
b
public class Circle : Shape
{
public override void Draw()
{
Console.WriteLine("Drawing a circle");
b
}
public class Rectangle : Shape
{
public override void Draw()
{
Console.WriteLine("Drawing a rectangle");
}
}

Demonstrating polymorphism:

// Array of different shapes

Shape[] shapes = new Shape[3];

shapes[0] = new Shape(); // Base class
shapes[1] = new Circle(); // Derived class
shapes[2] = new Rectangle(); // Derived class

// Polymorphic behavior

foreach (Shape shape in shapes)

{
// Each shape draws differently
shape.Draw();

We get as output:

Drawing a shape
Drawing a circle
Drawing a rectangle

12

Object-Oriented Programming in C# 13

. Ask your Chat BOT: Using the Shape example, explain why polymor-

‘ phism is useful here. What benefit does treating Circle and Rectangle
objects simply as Shape objects provide in the foreach loop? Could
you achieve the same result without polymorphism, and if so, how
would the code differ?

Visualizing OOP: An Introduction to UML Class Diagrams

While writing C# code allows us to define the precise implementation of our
object-oriented designs, sometimes we need a higher-level view. We need a
way to visualize the structure of our classes, their attributes, their methods,
and especially the relationships between them, without getting lost in the
specific lines of code. This is where the Unified Modeling Language (UML)
comes in, specifically UML Class Diagrams.

UML is a standardized graphical language used in software engineering
to visualize, specify, construct, and document the artifacts of a software
system. For OOP developers, class diagrams are arguably the most important
part of UML. They provide a static, structural view of a system, perfectly
complementing the OOP concepts we've discussed.

In line with our ‘In Control’ philosophy, you don’t need to become a UML
guru mastering every intricate detail. The goal is to understand the core
elements of class diagrams so you can read them, sketch your own simple
diagrams to clarify designs, and effectively communicate structures to others
(including AI assistants, which are often capable of generating or interpreting
UML).

. Ask your Chat BOT: “What are the main benefits of using UML
class diagrams in the software design process, especially for object-
oriented systems?”

Why UML Class Diagrams for OOP?

* Visualization: They turn abstract concepts like classes, inheritance, and
composition into clear visual diagrams.

* Communication: Provide a standard, language-agnostic way to discuss
system design with team members, stakeholders, or Al

N o U AW N -

Object-Oriented Programming in C# 14

* Design Aid: Sketching diagrams helps in thinking through relationships
and responsibilities before coding, potentially catching design flaws early.

* Documentation: Serve as valuable documentation for understanding the
structure of existing code.

Core Elements of a Class Diagram

A class diagram primarily consists of classes and the relationships between
them.

Each class is represented by a rectangle, usually divided into three com-
partments:

1. Top: Class Name (often bold)
2. Middle: Attributes (fields, properties)
3. Bottom: Operations (methods)

classDiagram
class BankAccount {
-decimal balance
+decimal Balance
+Deposit(decimal amount)
+Withdraw(decimal amount)

UML uses symbols to indicate the visibility (access modifiers) of attributes
and operations:

* +: public (Accessible from anywhere)

» -: private (Accessible only within the class)

* # : protected (Accessible within the class and derived classes)

* ~: internal (Package/assembly visibility - sometimes omitted or noted
separately)

Look again at the BankAccount diagram above: balance is private (-), while
Balance, BankAccount, Deposit, and Withdraw are public (+).

Lines connecting class boxes represent relationships. The most important
ones for OOP are:

1. Association: A general relationship indicating that two classes know
about each other. Represented by a solid line. You can specify multiplicity
(how many instances are related, e.g., 1, * for many, 0..1 for zero or one).

Object-Oriented Programming in C# 15

O 00 N O Ul B W N -

=
(=)

2.

O 0 N O U & W N =

=
o

w

~N o o AW N R

classDiagram
class Order {
+int OrderId
}
class Customer {
+string Name
}
Order "1" -- "*" Customer : places
// An Order is placed by 1 Customer,
// a Customer can place many (*) Orders

Aggregation: A special type of association representing a “has-a” rela-
tionship, where one class contains or is composed of other classes, but
the contained classes can exist independently. Represented by a solid
line with an open diamond on the owner’s side.

classDiagram
class Department {
+string Name
}
class Employee {
+string Employeeld
}
Department o-- "*" Employee : contains
// Department 'has' Employees,
// but Employees can exist without a Department

. Composition: A stronger form of aggregation (“owns-a”). The contained

class’s lifetime is tied to the container class. If the container is destroyed,
the contained parts usually are too. Represented by a solid line with a
filled diamond on the owner’s side.

classDiagram
class Building {
}
class Room {
}
Building *-- "1..*" Room : consists of
// Building 'owns' Rooms; destroy Building, destroy its Rooms

. Inheritance (Generalization): Represents an “is-a” relationship between

a base class (superclass) and a derived class (subclass). Represented by
a solid line with a closed, unfilled arrowhead pointing from the derived
class to the base class.

Object-Oriented Programming in C# 16

1 classDiagram

2 class Animal {
3 +string Name
4 +Eat ()

5 +Sleep()

6 }

7 class Dog {

8 +Bark()

9 }

10 class Cat {

11 +Meow ()

12 }

13 Animal <|-- Dog
14 Animal <|-- Cat

5. Interface Implementation (Realization): Shows that a class implements
the operations specified by an interface. Represented by a dashed line
with a closed, unfilled arrowhead pointing from the implementing class
to the interface. Interfaces themselves are often marked with <>.

1 classDiagram

2 class IShape <<interface>> {
3 +CalculateArea()

4 +CalculatePerimeter()
5 }

6 class Circle {

7 +double Radius

8 +CalculateArea()

9 +CalculatePerimeter()
10 }

11 class Rectangle {

12 +double Width

13 +double Height

14 +CalculateArea()

15 +CalculatePerimeter()
16 }

17 IShape <|.. Circle

18 IShape <|.. Rectangle

* Abstract Classes/Methods: Often shown with their names in italics.
(Mermaid syntax: class Animal { abstract Eat() } or mark class <>)

* Static Attributes/Methods: Often shown with their names underlined.
(Mermaid syntax: class MathHelper { {static} PI: double })

Mapping Our C# Examples

Let’s visualize some classes we've already discussed:

Object-Oriented Programming in C# 17

» Simple Car Class:

classDiagram
class Car {
+string Brand
+string Color
+int Year
+StartEngine()
+Drive()

0 N O U W N

}
* BankAccount with Encapsulation:

classDiagram
class BankAccount {
-decimal balance
+decimal Balance { get; private set; }
+Deposit(decimal amount)
+Withdraw(decimal amount)

N o o AW N

}

(Note: Representing property accessors like private set precisely can vary
in UML tools, but showing the intent via + for the property and - for
the field is common. Mermaid doesn’t have a standard way to show
getter/setter visibility separately).

* Animal Inheritance Hierarchy: (Diagram shown in the Inheritance rela-
tionship example above)

* IShape Interface Implementation: (Diagram shown in the Interface Im-
plementation relationship example above)

Using UML in Your Workflow

You don’t need complex tools to start. Sketching simple class diagrams on
paper or a whiteboard during design discussions can be incredibly effective.
For documentation or sharing, tools that support UML (including some Mark-
down flavors with Mermaid support, like shown here, or dedicated software)
are useful.

Consider using UML when:

* Designing a new system or feature involving multiple interacting classes.
* Trying to understand a complex part of an existing codebase.
* Communicating a design structure to your team or an Al assistant.

Object-Oriented Programming in C# 18

. Ask your Chat BOT: “Can you generate a UML class diagram (using
Mermaid syntax) for the ReportGenerator and ReportSaver classes
shown in the Single Responsibility Principle example?”

Conclusions

UML Class Diagrams are a valuable visual companion to object-oriented pro-
gramming in C#. They provide a standardized way to represent the static
structure of your system, focusing on classes, their members, and their rela-
tionships. Understanding the basics allows you to better design, communicate,
and document your OOP applications, bridging the gap between abstract
concepts and concrete code structure.

OOP In-Depth

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented_Programming_ CSharp.

Encapsulation In Depth: Protecting State and Controlling Access

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented _Programming_ CSharp.

The Class: Blueprint for Objects

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented _Programming_ CSharp.

Abstraction In Depth: Simplifying Complexity and Defining
Contracts

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented _Programming_ CSharp.

Interfaces: Defining Pure Contracts

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented _Programming_ CSharp.

https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp

Object-Oriented Programming in C# 19

Abstract Classes: Providing Partial Blueprints

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented_Programming_ CSharp.

Inheritance In Depth: Establishing Hierarchies and Reusing Code

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented_Programming_ CSharp.

Polymorphism In Depth: One Interface, Many Behaviors

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented _Programming_ CSharp.

Benefits of Runtime Polymorphism:

This content is not available in the sample book. The book can be purchased on
Leanpub at https:/ /leanpub.com /Object-Oriented_Programming_ CSharp.

Understanding Composition: Building with Blocks

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented_Programming_ CSharp.

The Principle: Favor Composition Over Inheritance

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented_Programming_ CSharp.

SOLID Principles

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented _Programming_ CSharp.

1. Single Responsibility Principle (SRP)

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented _Programming_ CSharp.

https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp

Object-Oriented Programming in C# 20

2. Open/Closed Principle (OCP)

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented _Programming_ CSharp.

3. Liskov Substitution Principle (LSP)

This content is not available in the sample book. The book can be purchased on
Leanpub at https:/ /leanpub.com /Object-Oriented_Programming_ CSharp.

4. Interface Segregation Principle (ISP)

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented_Programming_ CSharp.

5. Dependency Inversion Principle (DIP)

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented _Programming_ CSharp.

Design Patterns, SOLID Principles, and Dependency Management

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented_Programming_ CSharp.

Foundation: Dependency Inversion, Inversion of Control (loC), and Dependency
Injection (DI)

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented__Programming_ CSharp.

Simple Factory Pattern (or Static Factory)

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented_Programming_ CSharp.

Simple Factory and SOLID Principles:

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented _Programming_ CSharp.

https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp

Object-Oriented Programming in C# 21

Benefits & Drawbacks:

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented__Programming_ CSharp.

Factory Method Pattern

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented _Programming_ CSharp.

Singleton Design Pattern

This content is not available in the sample book. The book can be purchased on
Leanpub at https:/ /leanpub.com /Object-Oriented_Programming_ CSharp.

Singleton and SOLID Principles:

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented__Programming_ CSharp.

Benefits & Drawbacks:

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented_Programming_ CSharp.

Alternative: Dependency Injection with Singleton Lifetime

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented_Programming_ CSharp.

Conclusions

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented _Programming_ CSharp.

https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp

Object-Oriented Programming in C# 22

OOP Principles in Practice: Structuring .NET Applications

Having grasped the fundamentals of Object-Oriented Programming (OOP), the
SOLID principles, and foundational design patterns, it’s time to see how these
concepts come alive in the real world of .NET development. Theory provides
the blueprint, but frameworks and architectural patterns provide the structure
where these blueprints are actively used to build functional, maintainable
software.

This chapter explores how core OOP principles directly influence the
design and usage of major .NET frameworks and common architectural
patterns like Model-View-Controller (MVC) and Model-View-ViewModel
(MVVM). We'll examine:

1. How architectural patterns like MVC and MVVM leverage OOP for sepa-
ration of concerns.

2. How ASP.NET Core deeply integrates Dependency Injection (DI), a direct
application of the Dependency Inversion Principle (DIP).

By understanding these practical applications, you'll not only reinforce your
grasp of OOP theory but also become more proficient in using these essential
.NET tools. You'll see why certain framework conventions exist and how they
guide you towards better object-oriented design. As always, leverage the “In
Control” prompts to explore further with your Al assistant.

’ Ask your Chat BOT: “Beyond MVC and MVVM, what are one or two
other architectural patterns commonly used in software develop-
ment, and how do they relate to OOP principles?”

1. Architectural Patterns: Organizing Code with OOP

Large applications require structure. Architectural patterns provide proven
templates for organizing code into distinct parts with specific responsibilities,
leveraging OOP principles extensively.

Object-Oriented Programming in C# 23

a) Model-View-Controller (MVC)

MVC is a classic pattern, particularly prevalent in web application frameworks
like ASP.NET Core MVC. It divides an application into three main roles:

* Model: Represents the application’s data, business logic, and validation
rules. It's the core of the application’s domain. It knows nothing about
the View or Controller.

- OOP Connection: Encapsulates data and behavior related to the
domain. Often uses classes for entities and services. Abstraction is
used to hide data storage details (e.g., via Repositories).

* View: Responsible for presenting the Model’s data to the user and captur-
ing user input. In web applications, this is typically the HTML rendered in
the browser. It should contain minimal logic.

- OOP Connection: Focuses on the presentation aspect, abstracting
the underlying data structure provided by the Controller (often via a
specific View Model object).

* Controller: Acts as the intermediary. It receives input (e.g., HTTP
requests), interacts with the Model to process data or trigger actions, and
selects the appropriate View to display, passing necessary data to it.

- OOP Connection: Encapsulates request handling and workflow logic.
Crucially, it depends on abstractions of the Model (interfaces like
[UserService, IProductRepository) rather than concrete implemen-
tations, adhering to DIP.

How MVC Uses OOP: The core benefit of MVC is Separation of Concerns,
a direct outcome of applying principles like SRP and Encapsulation. Each part
handles its specific area, making the application easier to understand, test, and
maintain. DIP is vital for decoupling the Controller from the concrete Model
implementation.

Object-Oriented Programming in C# 24

b) Model-View-ViewModel (MVVM)

MVVM is commonly used in modern Ul frameworks (like WPF, MAUI, and
sometimes in frontend JavaScript frameworks). It also separates concerns but
with slightly different roles, particularly suited for stateful Uls with rich data
binding capabilities:

* Model: Same role as in MVC - data, business logic, domain entities, and
services.

* View: Represents the Ul elements. It binds directly to properties and
commands exposed by the ViewModel. It ideally contains no code-behind
logic.

* ViewModel: The intermediary that prepares data from the Model for
display in the View and handles user actions via Commands. It exposes
state (data) via properties (often implementing INotifyPropertyChanged)
and behavior via Command objects (often implementing ICommand). It
knows about the Model but not the View.

- OOP Connection: Encapsulates Ul state and presentation logic. Uses
Commands (an application of the Command pattern, relying on inter-
faces/polymorphism). Exposes data via properties (Encapsulation).
Depends on Model abstractions (DIP).

How MVVM Uses OOP: Like MVC, MVVM achieves Separation of Con-
cerns. It heavily relies on Data Binding (an abstraction mechanism) and the
Command Pattern (Abstraction, Polymorphism) to decouple the View from the
ViewModel. DIP is key for injecting Model dependencies into the ViewModel.

Common Goal: Both MVC and MVVM use OOP principles (Encapsulation,
Abstraction, DIP, SRP) to break down complex applications into manageable,
loosely coupled, and more testable parts.

’ Ask your Chat BOT: “What are the key differences in responsibility
between a Controller in MVC and a ViewModel in MVVM? How does
this affect testability?”

Object-Oriented Programming in C# 25

2. Dependency Injection in ASP.NET Core: DIP in Practice

Regardless of whether you use MVC, Razor Pages, or Minimal APIs, ASP.NET
Core is built from the ground up around Dependency Injection (DI). This isn't
just a feature; it's a core design philosophy deeply rooted in OOP.

* The Mechanism: ASP.NET Core provides a built-in Inversion of Control
(IoC) container.

1. Registration: You tell the container which concrete classes imple-
ment which interfaces (e.g., “When someone asks for IUserReposi-
tory, give them an instance of SqlUserRepository”). You also specify
the lifetime (how long the instance should live: Singleton, Scoped,

Transient).
2. Resolution/Injection: When a class needs a dependency (e.g., a

Controller needing IUserRepository), it declares it as an interface
parameter in its constructor. The DI container automatically creates
(or retrieves) an instance of the registered concrete type and passes
(“injects”) it into the constructor.

* Direct Links to OOP/SOLID:

- Dependency Inversion Principle (DIP): This is the primary principle
DI implements. High-level modules (Controllers, Services) depend
on abstractions (interfaces), not low-level concrete implementations.

The IoC container manages the “inversion” of dependency creation.
- Single Responsibility Principle (SRP): DI encourages creating small,

focused services that do one thing well (e.g., EmailSender, Order-
Processor, UserDataValidator). These can then be easily injected
wherever needed.

- Open/Closed Principle (OCP): Applications become open for ex-
tension. Need to change how users are stored? Implement a new
MongoUserRepository and change only the registration line in your

Program.cs. Classes using IUserRepository don't need modification.
- Liskov Substitution Principle (LSP): The container assumes that

any registered implementation of an interface correctly fulfills the
interface’s contract, making implementations substitutable.

» Example (Conceptual Program.cs / Startup):

Object-Oriented Programming in C#

1 // Program.cs in .NET 6+
2 var builder = WebApplication.CreateBuilder(args);
3
4 // Register services with the container
5 // Map interface to implementation
6 builder
7 .Services
8 .AddScoped<IUserRepository, SqlUserRepository>();
9 builder
10 .Services
11 .AddTransient<INotificationService, EmailNotificationService>();
12
13 // ... other registrations
14
15 // Framework services often use DI too
16
17 // For MVC
18 builder.Services.AddControllersWithViews();
19
20 var app = builder.Build();
21 // ... configure middleware ...
22
23 // MVC routing
24 app.MapControllerRoute(name: "default",
25 pattern: "{controller=Home}/{action=Index}/{id?}");
26 app.Run();
Example (Constructor Injection in an MVC Controller):
1 public class UsersController : Controller
2 {
3 private readonly IUserRepository userRepository;
4 private readonly INotificationService
5 _notificationService;
6
7 // Request dependencies via
8 // constructor interfaces
9 public UsersController(
10 IUserRepository userRepository,
11 INotificationService notificationService)
12 {
13 // DI container provides concrete instances
14 _userRepository = userRepository;
15 _notificationService = notificationService;
16 }
17
18 public IActionResult Index()
19 {
20 var users = userRepository.GetAll();

21 ~notificationService.NotifyAdmin(

Object-Oriented Programming in C# 27

22 "User list viewed");
23 // Pass data to the View
24 return View(users);

25 }

26 // ... other actions

27 }

’ Ask your Chat BOT: “Explain the practical differences between Sin-
gleton, Scoped, and Transient service lifetimes in ASP.NET Core DI.
Give an example scenario where choosing the wrong lifetime could
cause problems related to object state (Encapsulation)”

Conclusions

The principles of OOP are not just theoretical constructs; they are the practical
building blocks of modern software development in the .NET world. Indeed, the
emphasis on abstractions and separation of concerns within these frameworks
directly enables better testability. Verifying that our carefully designed classes
and components function correctly in isolation is the crucial next step, leading
us to the practice of unit testing.

Unit Testing and OOP: Verifying Behavior

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented _Programming_ CSharp.

Why Unit Test?

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented _Programming_ CSharp.

Testing in Isolation

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented _Programming_ CSharp.

The Arrange-Act-Assert (AAA) Pattern

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented _Programming_ CSharp.

https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp

Object-Oriented Programming in C# 28

.NET Testing Frameworks

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented_Programming_ CSharp.

Test-Driven Development (TDD): Guiding Design with Tests

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented_Programming_ CSharp.

Example: Testing with Dependency Injection and a Manual Stub

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented_Programming_ CSharp.

Conclusions

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented_Programming_ CSharp.

Error Handling in C# and .NET Framework: OOP Aspects

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented_Programming_ CSharp.

Exception Handling Structure

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented_Programming_ CSharp.

Object-Oriented Aspects of Exception Handling

This content is not available in the sample book. The book can be purchased on
Leanpub at https:/ /leanpub.com /Object-Oriented_Programming_ CSharp.

Inheritance Hierarchy

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented _Programming_ CSharp.

https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp

Object-Oriented Programming in C# 29

Encapsulation of Error Information

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented_Programming_ CSharp.

Exception Type Specialization

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented_Programming_ CSharp.

Conclusions

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented_Programming_ CSharp.

Leveraging Modern C# Features for Enhanced OOP

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented _Programming_ CSharp.

1. Records (C# 9 and later)

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented_Programming_ CSharp.

2. Init-Only Setters (C# 9)

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented_Programming_ CSharp.

3. Pattern Matching Enhancements (C# 8 onwards)

This content is not available in the sample book. The book can be purchased on
Leanpub at https:/ /leanpub.com /Object-Oriented_Programming_ CSharp.

4. Default Interface Methods (C# 8)

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented _Programming_ CSharp.

https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp

Object-Oriented Programming in C# 30

5. Required Members (C# 11)

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented__Programming_ CSharp.

Practical Applications and Examples

This content is not available in the sample book. The book can be purchased on
Leanpub at https:/ /leanpub.com /Object-Oriented__Programming_ CSharp.

Order Processing System

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented _Programming_ CSharp.

How this Example Demonstrates Key Concepts:

This content is not available in the sample book. The book can be purchased on
Leanpub at https:/ /leanpub.com /Object-Oriented_Programming_ CSharp.

Conclusion

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com /Object-Oriented_Programming_ CSharp.

https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp
https://leanpub.com/Object-Oriented_Programming_CSharp

	Table of Contents
	Object-Oriented Programming in C#
	Book introduction
	Introduction to Object-Oriented Programming
	Core OOP Concepts
	OOP In-Depth
	Practical Applications and Examples
	Conclusion

