

New Data: a Field Guide
A Primer on No and New SQL

J Patrick Davenport

This book is for sale at http://leanpub.com/NewDataAFieldGuide

This version was published on 2015-07-14

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have
the right book and build traction once you do.

©2014 - 2015 J Patrick Davenport

http://leanpub.com/NewDataAFieldGuide
http://leanpub.com
http://leanpub.com/manifesto

Contents

Welcome to the Technology Jungle 1
Why Did You Write This? 2
General Outline of the Book 3

So Many Terms, So Little Time 4
Point Zero - Cluster? . 4
I Don’t Care Who Made It as Long as It Works 5
Where’s My Data . 5
Failover Beethoven Tell the Client the News 7
When the Shard Hits the Fan, We Might Replicate That . 8
Election - I’m the President! No! I AM! 9
Dropping ACID to Free-BASE 9
And to CAP It All Off a Node Died! 11

Key-Value Stores . 14
Architecture . 14
Getting to Know the Players 16
So How Would We Use This? 19
Sizing and Cost Considerations 21
Further Resources . 23

Welcome to the Technology
Jungle

Historically, picking a data store for a new application was a non-
event. The paradigm was predetermined: relational database man-
agement system (RDBMS). The provider of the RDBMS was prede-
termined: startups used PostgreSQL or MySQL while many mid-to-
large companies went with one of the Big 3 (Oracle, Microsoft or
IBM). In fact, even the data modeling process was predetermined by
years of experience within the RDBMS paradigm and the associated
provider’s preference (like stored procs for many MS SQL Server
jobs). No one had reason to question this. Few alternatives existed,
and those weren’t cheap. Why choose something that is both exotic
and expensive?

Times have changed. SQL has competitors (or companions) in the
NoSQL space. Stressors like high data volumes, rapid change and
developer preferences caused a flood of new paradigms. In the
wake of these new paradigms, many are left confused as to the
proper application of the technologies. New tech brings new terms.
Sometimes the industry equivocates on terms (we prefer to call it
“overloading”). Added to this, each camp and, even more granular,
each vendor within a camp swears that its product is the best thing
since set theory. It becomes hard to tease out fact from marketing.
This book proposes to do just that.

This book will provide concise descriptions and applications of
three major technologies related to data storage: NoSQL, New SQL
and Big Data. You will learn the relative terms and theories from a
30,000 ft perspective. The goal is to give readers enough information
to better focus their research.

Welcome to the Technology Jungle 2

Why Did You Write This?

There are three reasons I undertook this project. First, I’ve always
wanted to explore the world of the hipster. These trendsetters dis-
cussed the benefits of adopting some NoSQL tools long before they
were cool. They extolled the virtues of a schema-less model. They
reveled in the labor of not having traditional ACID transactions.
They seldom talked about how their new toys were a bad fit. The
sheer fandom made these new ideas interesting.

Second, I was able to see what a non-RDBMS paradigm could do
first hand. A few years back, I was honored with the responsibility
of extending the Medicare Fraud Detection System for the United
States. The challenge was simple: create a system that allowed the
execution of an arbitrary number of fraud models that read an
arbitrary number of years worth of Medicare claims data. A given
fraud model might look at just today’s data or possibly at 3 years
worth of data. The models would also have to calculate an arbitrary
number of statics to determine if fraud existed. Finally, all of these
calculations had to run within a 24 hr cycle.

All of the traditional, rubber stamped data stores failed to meet
these requirements. So we looked elsewhere. We found Hadoop.
Hadoop is a product available from Apache labeled under Big
Data. In fact it is the pedagogic Big Data solution. We didn’t know
Hadoop, but we dove in. Within 3 months (I know: blindingly quick
for a government job) we had a working fraud detection system.
One component of the new system replaced one of the old. The
old took 8 hours to execute. The new took just 45 minutes. We
eventually reduced that time to 30 minutes.

My third reason is simple. A lot of hype and confusion surrounds
the topics of NoSQL, New SQL and Big Data, from hundreds of
blog and counter blog posts to numerous books on specific topics.
However, few general survey books are written on the paradigms.
Of those (I found only a couple), none are constructed as a survey

Welcome to the Technology Jungle 3

for semi-technical people or technical people who want to get the
gist of the technologies. I wanted a book I could give my team or
management so we’d all be conversant in general ideas. If and when
we decided to use a specific implementation of a tool, it would
only be after we had discussed the other options. To have a proper
discussion, we all need a common reference.

General Outline of the Book

The book is divided into three major sections.

The first section provides an introduction to the terms. Here, we’ll
discuss topics like ACID, BASE, Master->Master, etc. Most of these
terms apply to more than one of the paradigms. Rather than
explaining themwithin a context of a particular paradigm, and thus
forcing a reading order, they are all front-loaded.

The second section looks at NoSQL families. By my estimation,
NoSQL has five major families in addition to some hybridized
versions. Those families are: Key-Value, Columnar, Document,
Graph and Object databases. For each member we’ll discuss:

• The architecture
• Common use-case applications
• Products in the family
• Resources for future reading

The third section looks at New SQL and Big Data. These two are
grouped together because of the push to make Big Data more SQL
friendly by both Apache and the folks at Concurrent and because
NewSQL gives up some traditional SQL features in order to get the
systems to scale.

There isn’t a recommended order of reading. If you already feel
comfortable with the general terms, skip it. Most people, however,
will want to at least skim the terms section.

So Many Terms, So Little
Time

One of the fun parts about researching all of these technologies
is learning their underlying theory. Authors go on and on about
“MyOther Cap is Theorem.” They talk about the difference between
ACID and BASE. Everything is about being distributed. It’s enough
to make one’s head spin. Even series of Master level courses discuss
these topics. Some might want to skip the terms and just see
the ROI. However, you’ll benefit by examining these terms first.
Understanding the ideas is both part of the fun and part of the
foundation of larger concepts. It is hard for a manager or developer
to fully grok a tool or paradigm without first obtaining at least a
basic understanding of that paradigm’s terminology. Fortunately,
the terms are often shared across paradigms.

Point Zero - Cluster?

This is probably readily known, but should be stated for complete-
ness, if nothing else. A cluster is a logical set of computers. You
will probably call each computer a node. Normally you need two.
However many of the NoSQL systems work just fine as a cluster
with one node. You can add to it as time goes by. Depending on the
implementation of the data store, you don’t even have to do much
to get your data balanced and the whole system running smoothly
across the nodes.

So Many Terms, So Little Time 5

I Don’t Care Who Made It as Long as It
Works

A common refrain you’ll hear across the new data providers is
“commodity hardware”. These are server class computers. You
should buy ECC RAM. The difference is that these boxes are a)
inexpensive and b) interchangeable. They run standard linux. They
don’t carry special configurations like you’d see when using Oracle.
Presently you can buy them in the 2k-5k range. It is certainly
possible to run most of these systems on POS boxes sitting in a
cubical (great for testing or boot strapping a startup). Just keep in
mind that cheaper components break quicker.

One of the goals on these distributed designs is to allow a node to
fail without an OPs representative having to scramble to fix it. For
example, at Yahoo! if a normal nodes goes down in one of their
Hadoop clusters, it gets fixed during a normal repair cycle. As a
result, if your cluster is large enough, quality is less of a factor. You
want to aim for mid-quality. Too high brings little value; too low
brings major headaches.

Where’s My Data

The first thing that you’ll probably see in any discussion on most
of these data stores is that these stores are distributed. You might
have also seen it referred to as being horizontally scalable. During
these conversations, you will have probably also seen a contrast to
vertically scalable. Because of this, a reasonable place to start is with
definitions for these terms.

A vertically scalable (VS) data store is one that’s improved by
shovingmore components in the box. This could mean addingmore
cores, more RAM, more storage or any combination thereof. This is
the traditional model of database design. It’s worked well in the

So Many Terms, So Little Time 6

past. Moore’s Law¹ pretty much doubled computer performance
every 18 months. This model gets to be fairly expensive given
enough time. The effect will plateau. Soon you run out of RAM
slots, drive bays and CPU sockets. You might end up with a really
beefy box. Regardless, you end up with a beefy box. One network
issue or motherboard issue and you’re dead in the water.

Horizontal scaling (HS) looks to bring the cost down and extend the
time till plateau. In a horizontally scalable data store, you don’t add
RAM, drives or CPUs to get better performance, although doing so
will still yield improvements. Instead you add commodity servers
as you need to expand. By doubling the number of computers in
your cluster (group of computers), you should see a near doubling
of performance.

Let’s compare the two designs. In HS, your data is spread across
(striped) the computers (nodes) in the cluster. Depending on how
the particular data store does this, it’s possible to know exactly
where the data is based on the distribution algorithm. This canmake
lookups really quick. In a VS, all of the data is in one place. Every
RDMBS worth its salt has indexes. So like HS, if your query is for
an index item, the lookup is really quick. If the data is not indexed,
a HS system might have to query multiple systems at once. This
makes the query take as long as the slowest node in the cluster. A
VS will scan local files.

In a HS system if you lose a node, you lose, at worst, the information
on that node². Depending on how your data store works, you might
not have even lost that. Most HS have the ability to fail over to a
hot copy of the data on the master node. In a VS, if you lose the
database server, you’re out of luck.

Quick note: HS is not only in NoSQL/New SQL/Big Data. You can
get the same ability in Oracle, SQL Server and DB2. The difference

¹http://en.wikipedia.org/wiki/Moore’s_law
²Free as in Beer, of course.

So Many Terms, So Little Time 7

between the two is that NoSQL provides the benefits of HS out of
the box and for low cost.

Failover Beethoven Tell the Client the
News

Let’s take a deeper look at failover. Failover is a way for the system
to automatically switch to a different data source in the case of
a failure. As stated most VS servers lack fail over. If you lose the
server, you’re dead in the water until you revive it or get a new
one.

HS systems provide some form of failover, but you really have to
look to see what form this takes. Some allow you to lose a master
and still read data. All writes get rejected until the master is back
up, but you’ve got partial availability. In another form, there is a
“passive master”. This server is copying all the data in the master
with each transaction. In the event of a master failure, the passive
master steps in to service both reads and writes. Because the passive
master was involved in all of the transactions, it is fairly consistent
with the state of the master. You will also see some systems as
being multi-master or master-master. In this instance there is no
one system that is “true”. Each master can take writes. The writes
are coordinated between the masters to synchronize the data. The
benefit of such a system is higher throughput. It does bring issues
when trying to understand which record is the “truth”.

Another point of failover is how the clients are updated. Many of
the HA solutions have a client that knows about each node or at
least a majority of the nodes in the cluster. If a node goes down, the
client black lists the node. When the node returns to good health,
the client corrects its list.

So Many Terms, So Little Time 8

When the Shard Hits the Fan, We Might
Replicate That

Two terms that everyone must know is shard or sharding and
replication. Often they are treated as if equivalent. They are not.
They are orthogonal to each other. Sometimes you need one or both.

Sharding is when you split a large dataset across multiple nodes.
Each data entry has a shard key. Often this is the Primary Key (PKs)
to borrow from the RDBMS terms. The shard key identifies which
of the nodes owns the data. As with PKs, shard keys provide the
fastest lookup mechanism for a particular document. Like PKs from
their relational brothers, the key may be generated automatically or
derived from the data itself.

A natural example of sharding is signing into some large event like
school registration day or a conference. The reception tables are
split into groups like last names A-F, G-O, P-Z. We’ve got three
shards. Ideally this grouping handles about the same number of
people per group to get the best throughput into the event.

Replication is the process of copying data to more than one place. Its
the same data. Each copy is called a replica. Normally you want to
have replicas in different nodes. While there is added cost in nodes
and their respective storage, there are at least two benefits. The first
is you’ve got a backup of the data. At fail over, one of the replicas
can set in for the failed node without much interruption. The other
benefit is throughput on reads. If the client and data store support
it, the client can read from a replica either directly or via a proxy
off of a main node. If a particular replica is busy serving a prior
request, another server can happily respond to a new request. If
your application is read heavy, replication like this might provide a
good performance boost.

How the system replicates is a function of the data store. Some
stores have all writes go to a single master. The master might

So Many Terms, So Little Time 9

concurrently write to replicas. It might write to itself and then to
the replicas. It might concurrently write to itself and the replicas.
The exact whys and wherefores impact data consistency. We’ll
cover consistency later in the chapter. Just keep an eye out the
particulars when evaluating your needs and what the specific data
stores provide.

Election - I’m the President! No! I AM!

If something happens to the President of the United States, there is a
law that defines who gets the job next. Presently (2014) there are 16
possible slots with 2 slots unfilled. As per the law, vacant spots are
skipped. This law is rather algorithmic. Each case is defined with a
codified response. How much more important is your data?

In the case of a master-slave system (even master-master where a
master has slaves), a new master must be elected in the case of, say,
a master dying from a blue tail fly. Each distributed system has its
own means for doing this. Their documentation will describe the
specific algorithm for election. Once a new master is elected, the
clients to the system should redirect to the new master for all of the
writes, if not all of the reads.

Dropping ACID to Free³-BASE

There are two terms here. The first is ACID. The second is BASE.

ACID stands for Atomicity, Consistency, Isolation, and Durability.
Atomicity means that all of the database parts involved in a
transaction are changed or none are. Consistency means that the
database cannot get into an illegal state. Isolation means that the
partial effects of a transaction can be visible or hidden depending

³This presumes that the data store doesn’t have a single management node. If it does,
then you’re in as much trouble as in a Vertically Scalable system.

So Many Terms, So Little Time 10

on what they user specifies. Finally Durability means that once the
database said a change occurred, it sticks.

Most RDBMS’ are thought to be ACID compliant ⁴. For most people
ACID is thought to be a requirement. Interestingly, most of the
RDBMS do not actually provide ACID and the world still spins.

BASE stands for Basically Available, Soft-State, Eventually Con-
sistent. Basically Available means that some version of the data is
available when requested. It’s not necessarily the true data, but it a
version. Soft-State means that the data is not (necessarily) persisted
to a permanent medium like a disk⁵. Eventually consistent means
that the whole system will get into a good state given enough time
(this could be a few milliseconds, vendor specific).

Let’s say you’ve got a person adding a item to their shopping cart.
When they pay, the system has to decrement the number of items
in your system’s inventory, create a purchase order, and possibly
update the user’s financial information like adding a new credit card
to their list of cards.

In an ACIDworld, the number of available items is locked when the
user added the item to his or her cart. The lock holds until the user
checkouts or removes the item from the cart. Assuming that the
purchase order goes through, isolation means presumes that only
the whole order (header and lines) are visible to the larger system.
Durable means that once you charge the credit card, the purchase
is written to disk so you’re legally on the hook to provide the buyer
with the items. Consistent means that any rules in the system are
not violated (for example causing the available inventory of an item
to go below zero). Atomicmeans that all of the above occurs or none
of it does. You cannot partially fulfill an order.

In a BASE-ic world you don’t have these guarantees. For example,
there is no item lock. So a person adds an item to their cart.

⁴http://www.bailis.org/blog/when-is-acid-acid-rarely/
⁵http://www.cs.berkeley.edu/∼brewer/cs262b/TACC.pdf

So Many Terms, So Little Time 11

You might decrement the number of items right then. That’s fine
but you’re not consistent. It could be that the user abandons the
cart. This means that you actually have one item available in the
warehouse. The user may check out. You could have the purchase
order visible to the system with only some of the lines added.

Now some people freak out about BASE. Truth is that it might
not be that big of a deal. Many enterprise applications don’t really
leverage ACID because A) web servers make it hard to hold a
transaction across page renders and B) developers are told to get and
drop a database connection/transaction ASAP. So your applications
in the field bringing in your monies might not really be locking and
holding values as youmight think. Another example is that banking
systems aren’t ACID even though they are the pedagogic example
of ACID. If a banking system truly checked values in both accounts
during a transaction, we’d never have overdrafts.

Picture what every database student first learns as the example of
ACID. A person withdrawsmoney from one account and deposits it
into another. This is said to occur atomically, isolated, consistently
and durably. In reality the account can go into an inconsistent state.
This is called overdrawn.

When you and your team look at systems that implement BASE
over ACID, ask yourself do you really need ACID. It seems com-
forting at first. It seems natural because we’re all taught that it is
right way. But then again, it’s a tool. Do you need this tool?

And to CAP It All Off a Node Died!

Failure happens everyday. A powerful Oracle box suddenly goes
offline due to a bad motherboard. Your web server, that faithful,
old, beige box sitting in the closet, ground its last hard drive. Then
there’s the always humorous accident where a guy accidentally
sends a picture of himself dressed as a White Castle Slider to

So Many Terms, So Little Time 12

everyone in your multinational insurance company thereby bring-
ing email down for all the agents and other company personnel
including the VPs, VIPs and CEO because the picture was 2.58 MB
and Exchange just couldn’t handle that load. Yep, failure happens.

Failure happens even more when you’re working in a shared/dis-
tributed system. Let’s say you’ve got a great system that has a slim
chance of failing which means that it’s got a 99.9% chance of not
failing. If you’ve got 40 nodes in a cluster you’ll have 3.9% chance
that something will fail⁶. Now you’ve got to figure out how you’re
going to react to failure.

Fortunately the Failure Reaction Triangle exists just like the Project
Management Triangle⁷. This triangle is CAP. C stands for Consis-
tency. A is Availability. P is Partition tolerance (T is not capitalized
because it would be the CAPT theory and NoSQL folks tend to
be pacifists; I’m making this obscure part up). Like the Project
Management Triangle, you get to pick two. Unlike the Project
Management Triangle, CA is not possible⁸.

Consistency means that to an outside observer, like a database
client, change events happen at single, logical point. This means
that once a change is made to a record, all of the subsequent calls
about that record reflect the change.

Availability means that every request to a working node must be
satisfied. If a client asks a node for a record on patient A, it has to
return the record. If a working node tosses some sort of error from
its side, the record is not considered available. Note: if a client sends
an invalid request and the server simple returns a bad request error,
the system is still actually available. The proper response to getting
garbage is to say, “That was crap.”

Partition Tolerance deals with how the system works if one or
more parts of the system can’t talk to each other. Specifically it’s

⁶http://codahale.com/you-cant-sacrifice-partition-tolerance/
⁷http://en.wikipedia.org/wiki/Project_management_triangle
⁸http://codahale.com/you-cant-sacrifice-partition-tolerance/

So Many Terms, So Little Time 13

concerned about how the system handles losing messages. If you’re
looking at a system that says it doesn’t have to work with Partition
Tolerance, you’ve got a system that doesn’t understand CAP or is
one where there is no network. Anything else means the designers
have bought one or more of the fallacies of distributed computing⁹.
You should really look at another vendor.

Consistent systems react to partitioning different ways. Somemight
declare a snow day for the whole distributed system. It will reject
all reads and writes just as if it were a VS system. It might allow
only reads. Finally, it might allow updates based on the master data
available in the currently “healthy” pool of nodes.

You’ll need to have your team pay close attention to how the system
figures out which are healthy and which are not. Let’s say you’ve
got 4 nodes in a cluster. Two nodes are in one rack. Two nodes in the
other. The network connection between them dies, but both subsets
are accessible to some of the clients. How does the logical system
determine which nodes to consider healthy?

You might also hear the phrase “eventual consistency”. In this
model, a system will allow copies of a record to become outdated.
A client might not get the latest update because the change may
not have percolated out to all the copied nodes. Often times such
systems have quorum settings in their drivers. If they do, the client
to the datastore will poll multiple nodes (this is the quorum). If X
nodes come back with the same answer, the client will take that.

⁹http://www.rgoarchitects.com/Files/fallacies.pdf

Key-Value Stores
Key-Value stores (K-V) are perhaps the simplest of the NoSQL so-
lutions, at least logically. Most developers use maps or dictionaries
in their everyday coding. Key-Value stores are an expansion of this
idea. Another term for Key-Value is a Distributed Hash Table. As
we’ll see, a K-V is a lot like an old Rolodex. The key is the person’s
last name. The value is their contact information. Knowing the last
name allows you to quickly jump to the proper location in the
Rolodex.

K-Vs are everywhere. You can get them for mobile, for the server
side and even in HTML5. What they lack in complexity, K-Vs make
up for it with their ubiquity. Depending on your application or
system needs using K-Vs through the stack can lead to less mental
overhead since developers won’t have to jump between different
persistence models.

Architecture

At the core is an incredibly simple, yet powerful abstraction: keys
and their values. A key is a set of bits that uniquely identifies
a thing. That thing is called the value. It too is simply a set of
bits. The most rudimentary key-value stores don’t attempt to know
what’s in the key or in the value. Both are opaque to the storage
mechanism. A key might be the string “name” with a value of
“Patrick”. Another key might be the hex number 0xBEEF with the
value of “It’s what’s for dinner”. The data store doesn’t force any
representational semantics on the developer.

The key’s content is hashed. This means that it’s turned into a new,
fixed size data used to pick a slot in a table for the value. Production

Key-Value Stores 15

hash functions are fast. Looking up a value via the hash is fast. Two
fasts equal a fast system.

Given the logical simplicity of the paradigm, the simple K-V pro-
vides the operations of GET, PUT, and DELETE. GET retrieves a value
from the store. PUT inserts a value at a key if it doesn’t exists or
overwrites the value if does. DELETE removes the value from the
data store.

As stated earlier, most programming languages have the concept of
a K-V as a map or dictionary. For example, Java looks like this.

1 HashMap<String, Integer> cache = new HashMap<String\

2 , Integer>();

3 cache.put("user.age", 21);

4 System.out.println("User age is " + cache.get("user\

5 .age")); // Prints User age is 21

6 cache.remove("user.age"); // Removes the value 21, \

7 and returns it.

From the example above one thing should be obvious, key unique-
ness matters. If we used “user.age” for all of our users, we would
overwrite the values and get it wrong. Instead we could model
it with “<username>.user.age” where <username> is the id for the
present user.

While basic CRUD could be enough, some implementations NoSQL
variants farther.Many remove the opacity of the values. Rather than
treating them as blobs, the K-V knows they are a set of items or a list
of items or a counter. As a result the developer/modeler can safely
add to a list in a concurrent environment. They can universally and
atomically get the next value of an ever increasing integer.

So far we’ve really just talked about a single node system. In
the early days, K-Vs largely were a single node system. Time has
marched forward. Many K-Vs support clustering.

Key-Value Stores 16

Even in a clustered environment, the development team is still using
a logical hash table. That table is spread across multiple nodes. The
hash function often performs double duty in a distributed system.
Not only does it pick the slot for a record, but it also picks the node.
All of this occurs quietly in the background. The mental model
remains simple.

As we’ll see in the Product Overviews section, a K-V can store its
information in memory or persistently to a disk. There are tradeoffs
and design considerations with either mechanism. Pure memory
options are useful for pure speed. They are also purely transient. If
the box suffers a power outage, everything inmemorywill probably
be lost. This might not be a bad thingTM. When the K-V persists it
must slow down some in order write. How much of a slow down
is product specific. The benefit is that while slower, you’re system
can survive a reboot.

K-Vs are transactional at the key level. This means that when you
put a value for a key, you either put the whole value or you won’t.
It is not possible for a partial write to occur. The same is true for a
read. You cannot read a partially added value. For example, say you
wanted to put the value Bob in the key “<usersession>.firstname”.
It is not possible even during failure to write Bo or B. When a client
of a K-V requests “<usersession>.firstname” the system will either
return an empty response (if it hasn’t got a value or if the value is
removed) or it will return Bob. It can’t return B.

Getting to Know the Players

Berkeley DB

The home page is http://www.oracle.com/technetwork/database/database-
technologies/berkeleydb

This is the granddaddy of the NoSQL systems. It is so old as to
not even qualify as NoSQL according to some members of the

Key-Value Stores 17

community ¹⁰. To others it is a NoSQL database ¹¹. I think it is too,
so I included it.

It is an embeddable K-V. It runs as part of the memory space of
the host applications. The host application accesses it via a C-
lang binding. The C-lang binding allows many languages to use
it outside of just C.

It is an impressive little system. Each release brings a new feature
built on the previous layers. As a result there is a SQLite facade.
This allows developers used to working with SQL to continue using
SQL over BDB. Behind the scenes the SQL concepts are mapped to
simple K-V entries.

Recent improvements allow Berkeley DB to scale beyond a single
host. Know as the Berkely DB HA, you get all of the distributed
goodness on top of a simple programming API. It is a master-slave
setup with automatic master selection.

Depending on how you use it, Berkeley DB is immediately consis-
tent since it is not, by default distributed. When running in HA, you
can flip many switches to adjust consistency and read throughput.

Oracle provides many white papers and blog posts on BDB. Here a
just a few.

• SQLite API - A Technical Evalutaiton http://www.oracle.com/technetwork/database/berkeleydb/learnmore/bdbvssqlite-
wp-186779.pdf

• Using Oracle Berkeley DB Java Edition as a Persistence Man-
ager for theGoogleWeb Toolkit http://www.oracle.com/technetwork/articles/audet-
bdb-gwt-096313.html

• BerkeleyDB Java Edition onAndroid http://www.oracle.com/technetwork/database/berkeleydb/bdb-
je-android-160932.pdf

¹⁰http://www.oracle.com/technetwork/database/database-technologies/berkeleyd-
b/overview/index.html

¹¹http://www.oracle.com/technetwork/articles/cloudcomp/berkeleydb-nosql-
323570.html

Key-Value Stores 18

Amazon DynamoDB

The home page is http://aws.amazon.com/dynamodb/

This is the fount of all modern NoSQL K-Vs. When the paper de-
scribing it came out in late 2007, it was not available to public. Since
then it was promoted to public service, but it is still proprietary.

What’s special about Dynamo is its management. Since it is tightly
coupled with the AWS infrastructure, a database owner can auto-
mate processes like adding a new node to the cluster on demand
through a nice web interface. It is also inexpensive to spin up a
cluster to kick the tires then kill it off.

The API is more complex than the logical K-Vs we’ve discussed.
Developers can query by id. They can also scan over ids for searches.

There are multiple implementations of the Amazon’s paper that
provide similar features, but within your data center like Riak and
Voldemort.

Redis

The home page is http://redis.io/.

Redis is a K-V in the traditional sense. It is also horizontally scales
with failover. What makes Redis stand out is its speed and advanced
features.

Values are not just transparent bits. They can be strings, hashes,
lists, sets, sorted sets, bitmaps and hyperloglogs. Changes to any of
the data structures are atomic. If you add an item to a list, it either
commits or it doesn’t. Such types allow for a more expressive data
model than in traditional K-Vs. Some indie developers use Redis for
all of their data needs.

Redis takes types to the extreme by providing a fast pub/sub fire
hose message queueing system. Clients can listen on a channel.

Key-Value Stores 19

Publishers can publish on the channel. It even provides simple
routing on channel names.

Other Players

• Riak - http://basho.com/riak/ A replicated K-Vwith aMapRe-
duce chaser.

• Memcached - http://www.memcached.org/ Old standby for
caching services. Large knowledge base and community sup-
port.

• Project Voldemort - http://www.project-voldemort.com/voldemort/
Apache implementation of the DynamoDB concepts.

So How Would We Use This?

Generally Anything Transient Looked Up By Key

This is something that can get lost in the simplicity of it all. If you
have information, text, pictures, serialized objects, that has a unique
key and doesn’t require complex queries, a K-V is probably a good
bet. A RDBMS is a great tool, but heavy when it comes to simple
queries like SELECT VALUE FROM TABLE WHERE ID= ?. Using a K-
V in the stack will reduce database load which frees it up for more
complex service elsewhere. This can include saving database results
into a K-V. Your application would check the K-V for an answer.
Only if it doesn’t exist will it go to the database.

Session Management

Perhaps the most quintessential application of K-Vs is session
management. User session information is a natural fit here. There is
a session id. That is the key or part of the key. The value is whatever

Key-Value Stores 20

is needed. For example, a Java developer could use the session id as
the key and store a complex Java object in the value.

The lifecycle of a session starts when a user logs in (or perhaps when
they simply connect to your site). This creates an initial value or set
of values on the application server. The value is pushed to the K-
V. Whenever the session information is accessed, the K-V is read.
User actions cause various changes to the session, like updating
a shopping cart or increasing analytical values. When the session
ends on the app server, it is possible to trigger an auto delete or
session ETL into another data store like MySQL or MongoDB and
then delete the session from the K-V cache.

Multiple open-source projects provide a means of integrating web
session storage into Riak or Memcached near the beginning of the
request pipeline. As a result, most developers will not have to worry
about where their session is stored. This frees them up to focus on
the important things: business problems.

Fast Paced Data Landing

Some applications generate high volumes of data. It could be user
clicks. It could be requests for ads. K-Vs provide fast lookups
and inserts. Distributed solutions provide the ability to grow your
memory space to whatever size you require. Once the data is in the
cluster a background service can ETL it into a permanent storage if
necessary.

Some of the K-Vs support MapReduce to perform (relatively simple)
analytics in the K-V itself. As a result it’s possible track real-time or
near real-time information like leader boards and dashboards.

Oddly, Messaging

Since Redis is a super K-V, we’ll look at one of its standout features:
fast messaging between components using the Pub/Sub paradigm.

Key-Value Stores 21

Normally when one thinks messaging they think RabbitMQ, IBM
MQ or MSMQ. Most of these are a complex protocol, often times
binary. Redis’ protocol is fairly straight forward and text based.

Clients register to a channel to publish. Other clients register on that
channel to listen. The system is a firehose. If a client disconnects
from the channel, it loses all of its messages. It doesn’t guarantee
delivery either. If you’re willing to live within these parameters, you
can create chat clients for your customer facing web sites with ease.
Internally you can communicate anything with any component.

Sizing and Cost Considerations

When considering sizing and cost one must, now a days, look to
Cloud vs Local. We’ll first look at sizing locally within a company.
Then we’ll look at what major companies provide by way of cloud
hosting.

On Premises

Many companies find that a single K-V or K-V cluster can provide
caching value to multiple applications. Sharing the K-V can reduce
cost per application.

K-Vs are memory centric. The more memory you give them, the
better they run. They are rarely CPU or local IO centric. As a result,
you should put your money into RAM.

After that, sizing varies by need. Essentially, you should get a server
with 8 GB of RAM and a 100BASE-T network card. Depending on
your level of failure response, you might consider adding a second
NIC. Fortunately RAM is fairly cheap. Getting a single server with
16 GB should be cost effective.

If the K-V you’re looking at supports sharding or replication, you
might want to use it. You’ll get better read throughput and possibly

Key-Value Stores 22

redundancy for fail over. Both are a good thing to have. If you go
down the replication path, multiply your base server cost by the
number of nodes.

In the Cloud

Presently memory on AWS and Google hosts is rather expensive. If
you want to standup your own Redis, Memcached, etc, you’ll want
to pick a configuration that supports high RAM, but doesn’t cost
you too much. An AWS r3.large presently offers 15 GB of RAM
at $0.175 per hour used. Assuming your instance is on 24/7 with
30 average days per month, you’ll spend $126/month to host the
server. Costs go up as with storage fees. Fortunately most of the
IO will be within AWS so you probably won’t have to pay transfer
fees. Google’s n1-highmem-2 offers 13 GB of RAM at $0.164/hr. So
the average monthly cost is $118.08 with a bit less head room. Keep
in mind these numbers are per instance.

Now the question is should you stand up your K-V? On AWS you
can use DynamoDB. Their pricing model shows that a small to
mid-size site should probably cost around $7.50 ¹²/month. Since
DynamoDB is persistent with more advanced modeling features,
it could be your only datastore. Google offers a similar service
partially for free using Memcache in the AppEngine space. The free
version gives you unlimited storage in a Memcache pool. Sadly,
nothing is ever free-free. Your items in the Memcache pool may be
evicted at anytime depending on Google’s needs. Might not sound
useful, but every cache hit is a performance gain. You can also pay
$0.06 per GB per hour for a dedicated Memcache pool. So a 24/7 30
days/month instance runs about $43.20.

¹²http://aws.amazon.com/dynamodb/pricing/

Key-Value Stores 23

Further Resources

• The Architecture of Open Source Applications has a chapter
on the BerkeleyDB found at http://aosabook.org/en/bdb.html.

• Data Modeling with Key Value NoSQL Data Stores - Inter-
viewwith Casey Rosenthal found at http://www.infoq.com/articles/data-
modeling-with-key-value-nosql-data-stores

• Dynamo: Amazon’s Highly Available Key-value Store found
at http://www.allthingsdistributed.com/files/amazon-dynamo-
sosp2007.pdf

• Comparison of ZeroMQ and Redis by Stephen McDonald
http://blog.jupo.org/2013/02/23/a-tale-of-two-queues/

	Table of Contents
	Welcome to the Technology Jungle
	Why Did You Write This?
	General Outline of the Book

	So Many Terms, So Little Time
	Point Zero - Cluster?
	I Don't Care Who Made It as Long as It Works
	Where’s My Data
	Failover Beethoven Tell the Client the News
	When the Shard Hits the Fan, We Might Replicate That
	Election - I’m the President! No! I AM!
	Dropping ACID to Free-BASE
	And to CAP It All Off a Node Died!

	Key-Value Stores
	Architecture
	Getting to Know the Players
	So How Would We Use This?
	Sizing and Cost Considerations
	Further Resources

