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Series Introduction 
 

In the 21st century, data science has become an integral part of the work culture at every 

manufacturing industry and process industry is no exception to this modern phenomenon. 

From predictive maintenance to process monitoring, fault diagnosis to advanced process 

control, machine learning-based solutions are being used to achieve higher process reliability 

and efficiency. However, few books are available that adequately cater to the needs of 

budding process data scientists. The scant available resources include: 1) generic data 

science books that fail to account for the specific characteristics and needs of process plants 

2) process domain-specific books with rigorous and verbose treatment of underlying 

mathematical details that become too theoretical for industrial practitioners. Understandably, 

this leaves a lot to be desired. Books are sought that have process systems in the backdrop, 

stress application aspects, and provide a guided tour of ML techniques that have proven 

useful in process industry. This series ‘Machine Learning for Process Industry’ addresses 

this gap to reduce the barrier-to-entry for those new to process data science. 

 

The first book of the series ‘Machine Learning in Python for Process Systems 

Engineering’ covers the basic foundations of machine learning and provides an overview of 

broad spectrum of ML methods primarily suited for static systems. Step-by-step guidance on 

building ML solutions for process monitoring, soft sensing, predictive maintenance, etc. are 

provided using real process datasets. Aspects relevant to process systems such as modeling 

correlated variables via PCA/PLS, handling outliers in noisy multidimensional dataset, 

controlling processes using reinforcement learning, etc. are covered. The second book of the 

series ‘Machine Learning in Python for Dynamic Process Systems’ focuses on dynamic 

systems and provides a guided tour along the wide range of available dynamic modeling 

choices. Emphasis is paid to both the classical methods (ARX, CVA, ARMAX, OE, etc.) and 

modern neural network methods. Applications on time series analysis, noise modeling, 

system identification, and process fault detection are illustrated with examples. This third 

book of the series takes a deep dive into an important application area of ML, viz, prognostics 

and health management. ML methods that are widely employed for the different aspects of 

plant health management, namely, fault detection, fault isolation, fault diagnosis, and fault 

prognosis, are covered in detail. Emphasis is placed on conceptual understanding and 

practical implementations. Future books of the series will continue to focus on other aspects 

and needs of process industry. It is hoped that these books can help process data scientists 

find innovative ML solutions to the real-world problems faced by the process industry. 

 

With the growing trend in usage of machine learning in the process industry, there is growing 

demand for process domain experts/process engineers with data science/ML skills. These 



 

books have been written to cover the existing gap in ML resources for such process data 

scientists. Specifically, books of this series will be useful to budding process data scientists, 

practicing process engineers looking to ‘pick up’ machine learning, and data scientists 

looking to understand the needs and characteristics of process systems. With the focus on 

practical guidelines and industrial-scale case studies, we hope that these books lead to wider 

spread of data science in the process industry.  

  



 

 

 

Other book(s) from the series 

(https://MLforPSE.com/books/) 

 

                      Book 1                                                                       Book 2 

  

  



 

Preface 
 

Imagine yourself in the shoes of a process engineer/analyst who has been assigned his/her 

first machine learning-based project with the objective of building a plantwide monitoring tool. 

Although an exciting task, it may easily turn into a frustrating effort due to the difficulty in 

finding the right methodology that works for the process system at hand. Building a 

successful process monitoring tool is challenging due to the different characteristics a 

process dataset may possess which precludes the possibility of a single methodology that 

works for all scenarios. Consequently, a number of powerful techniques have been devised 

over the past several decades. While it is good to be spoilt with choices, it is easy for a 

newcomer to get ‘drowned’ in the huge (and still burgeoning) literature on process monitoring 

(PM) and predictive maintenance (PdM). There are a lot of scattered resources on PM and 

PdM. However, unfortunately, no textbook exists that focusses on practical implementation 

aspects and provides comprehensive coverage of commonly used PM/PdM techniques that 

have proven useful in process industry. There is a gap in available machine learning 

resources for PM/PdM catering to industrial practitioners and this book attempts to cover this 

gap. Specifically, we wished to create a reader-friendly and easy-to-understand book that 

can help its readers become ‘experts’ on ML-based PM/PdM ‘quickly’ (disclaimer: there is no 

magic potion; hard work is still required!) with the right guidance.  

 

In this book, we cover all three main aspects of process monitoring and predictive 

maintenance, namely, fault/anomaly detection, fault diagnosis/identification, and fault 

prognostics/remaining useful life estimation (RUL). Our intent is not to give a full treatise on 

all the PM/PdM techniques that exist out there; albeit our focus is to help budding process 

data scientists (PDSs) gain a bird’s-eye view of the PM/PdM landscape, obtain working-level 

knowledge of the mainstream techniques, and have the practical know-how to make the right 

choice of models. In terms of the spectrum of methodologies covered, we place equal 

emphasis on modern deep-learning methods and classical statistical methods. While deep-

learning has provided remarkable results in recent times, the classical statistical (and 

ML/data mining) methods are not yet obsolete. Infact MSPM (multivariate statistical process 

monitoring) techniques are still widely used for process monitoring. Accordingly, this book 

covers the complete spectrum of methodologies with univariate Shewhart-/CUSUM-/EWMA-

based control charts on one end and deep-learning-based RUL estimations on the other.   

 

Guided by our own experiences from building monitoring models for varied industrial 

applications over the past several years, this book covers a curated set of ML techniques 

that have proven useful for PM/PdM. The broad objectives of the book can be summarized 

as follows: 



 

• reduce barrier-to-entry for those new to the field of PM/PdM 

• provide working-level knowledge of PM/PdM techniques to the readers 

• enable readers to make judicious selection of PM/PdM techniques appropriate for their 

problems through intuitive understanding of the advantages and drawbacks of 

different techniques 

• provide step-by-step guidance for developing industrial level solutions for PM/PdM 

• provide practical guidance on how to choose model hyperparameters judiciously 

 

This book adopts a tutorial-style approach. The focus is on guidelines and practical 

illustrations with a delicate balance between theory and conceptual insights. Hands-on-

learning is emphasized and therefore detailed code examples with industrial-scale datasets 

are provided to concretize the implementation details. A deliberate attempt is made to not 

weigh readers down with mathematical details, but rather use it as a vehicle for better 

conceptual understanding. Complete code implementations have been provided in the 

GitHub repository. 

 

We are quite confident that this text will enable its readers to build process monitoring and 

prognostics models for challenging problems with confidence. We wish them the best of luck 

in their career. 

 

Who should read this book 

The application-oriented approach in this book is meant to give a quick and comprehensive 

coverage of mainstream PM/PdM methodologies in a coherent, reader-friendly, and easy-to-

understand manner. The following categories of readers will find the book useful: 

 

1) Data scientists new to the field of process monitoring, equipment condition monitoring,  

and predictive maintenance 

2) Regular users of commercial anomaly detection software (such as Aspen Mtell) 

looking to obtain a deeper understanding of the underlying concepts 

3) Practicing process data scientists looking for guidance for developing process 

monitoring and predictive maintenance solutions 

4) Process engineers or process engineering students making their entry into the world 

of data science 

5) Industrial practitioners looking to build fault detection and diagnosis solutions for 

rotating machinery using vibration data 

 



 

Pre-requisites 

No prior experience with machine learning or Python is needed. Undergraduate-level 

knowledge of basic linear algebra and calculus is assumed.  

 

Book organization 

The book follows a holistic and hands-on approach to learning ML where readers first gain 

conceptual insight and develop intuitive understanding of a methodology, and then 

consolidate their learning by experimenting with code examples. Under the broad theme of 

ML for process systems engineering, this book is an extension of the first two book of the 

series (which dealt with fundamentals of ML, varied applications of ML in process industry, 

and ML methods for dynamic system modeling); however, it can also be used as a 

standalone text. Industrial process data could show varied characteristics such as 

multidimensionality, non-Gaussianity, multimodality, nonlinearity, dynamics, etc. Therefore, 

to give due treatment to the different modeling methodologies designed for dealing with 

systems with different data characteristics, this book has been divided into seven parts. 

 

Part 1 lays down the basic foundations of ML-assisted process and equipment condition 

monitoring, and predictive maintenance. Part 2 provides in-detail presentation of classical 

ML techniques for univariate signal monitoring. Different types of control charts and time-

series pattern matching methodologies are discussed. Part 3 is focused on the widely 

popular multivariate statistical process monitoring (MSPM) techniques. Emphasis is paid to 

both the fault detection and fault isolation/diagnosis aspects. Part 4 covers the process 

monitoring applications of classical machine learning techniques such as k-NN, isolation 

forests, support vector machines, etc. These techniques come in handy for processes that 

cannot be satisfactorily handled via MSPM techniques. Part 5 navigates the world of artificial 

neural networks (ANN) and studies the different ANN structures that are commonly employed 

for fault detection and diagnosis in process industry. Part 6 focusses on vibration-based 

monitoring of rotating machinery and Part 7 deals with prognostic techniques for predictive 

maintenance applications.  

 

This book attempts to cover a lot of concepts. Therefore, to avoid the book from getting bulky, 

we have not included contents that are not directly relevant to PM/PdM and have already 

been covered in detail in the first two books of the series.  For example, ML fundamentals 

related to cross-validation, regularization, noise removal, etc., are illustrated in great detail in 

Book 1 of the series and not in this book. 

 

 



 

Symbol notation 

The following notation has been adopted in the book for representing different types of 

variables: 

- lower-case letters refer to vectors (𝑥 ∈ ℝ𝑚×1) and upper-case letters denote 

matrices (𝑋 ∈ ℝ𝑛×𝑚) 

- individual element of a vector and a matrix are denoted as 𝑥𝑗 and 𝑥𝑖𝑗, respectively. 

- any ith vector in a dataset gets represented as subscripted lower-case letter (𝑥𝑖 ∈

ℝ𝑚×1)   
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Chapter 1 
Machine Learning, Process and Equipment 

Condition Monitoring, and Predictive 

Maintenance: An Introduction 

 

sk a plant manager about what gives him/her sleepless nights and you will invariably 

get plant equipment failures and process abnormalities causing downtimes among the 

top answers. Such concerns about plant reliability are not unfounded. Incipient 

abnormalities, if left undetected, can cause cascading damages leading to economic losses, 

plant downtimes, and even fatalities. Several major disasters in the process industry 

(Philadelphia refinery explosion in 2019, Bhopal gas tragedy in 1984, etc.) were the results of 

failures in timely detection and correction of process faults. While such disasters are 

fortunately infrequent, ‘innocuous’ process abnormalities that lead to non-optimal plant 

efficiencies and degradations in product quality occur routinely. Without exaggeration, it can 

be said that 24X7 monitoring of process performance and plant equipment health status, and 

forecast of impending failures are no longer a ‘nice to have’ but an absolute necessity! 

 

Process industry has responded to the above challenges by putting more sensors and 

collecting more real-time data. Unfortunately, this has led to data deluge and operators being 

overwhelmed with ‘too much information but little insights’. Thankfully, machine learning 

comes to the rescue with its ability to parse huge amount of data and find hidden patterns in 

real-time. ML allows smart process monitoring (PM) wherein objective is not just to detect 

process abnormalities but to catch the issues at early stages. Furthermore, ML facilitates 

predictive maintenance (PdM) through advance prediction of equipment failure times.   

 

In this chapter we will take a bird’s-eye view of the ML landscape for PM/PdM and understand 

what it takes to achieve the above objectives. Specifically, the following topics are covered 

• Introduction to process/equipment abnormalities and faults  

• Typical workflow for ML-based process monitoring and predictive maintenance  

• ML landscape for process monitoring and predictive maintenance 

• Common PM/PdM solution deployment infrastructure employed in industry  

 

Machine learning is a great tool, but it’s not magic; it still takes a lot ‘ML art’ to get the things 

right. Let’s now take the first step towards mastering this art. 

A 
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1.1 Process Industry and ML-based Plant Health 

Management 

 

Process industry is a parent term used to refer to industries like petrochemical, oil & gas, 

chemical, power, paper, cement, pharmaceutical, etc. These industries use processing plants 

to manufacture intermediate or final consumer products. As emphasized in Figure 1.1, the 

prime concerns of the management of these plants include, amongst others, optimal and safe 

operations, quality control, and high reliability through proactive process monitoring and 

predictive maintenance. All these tasks fall under the ambit of process systems engineering 

(PSE). While ML is being slowly incorporated in the PSE tasks (for example, deep learning-

based process controller1), ML has had the biggest influence on the tasks related to plant 

health management, viz, fault detection, fault diagnosis, and predictive maintenance.  

 

 
Figure 1.1: Overview of industries constituting process industry and the common PSE tasks   

 

Figure 1.2 shows a sample process flowsheet with traditional measurements of flow, 

temperature, pressure, level, composition, power, and vibration. Such complex and highly 

integrated operations, tight product specifications, and the economic compulsion to push 

processes to their limits are making industrial operations more prone to failures. Nonetheless, 

there is an increasing trend to have unmanned or lean-staffed plants with less human eyes to 

monitor the process. This is where automated plant health management comes into play to 

resolve this dichotomy. Process models combined with sensor data are used for continuous 

monitoring of processes to detect, isolate, and diagnose faults, and for predicting fault 

 
1 https://www.aspentech.com/en/products/msc/aspen-dmc3 
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progression. The obvious gains are prevention of costly downtimes through better planned 

maintenance. For developing process models, data-driven/ML models have become more 

popular due to the relative ease of implementation and model maintenance compared to first 

principle-based models. 

 

  
Figure 1.2: A typical process flowsheet2 with flow (FI), temperature (TI), pressure (PI), 

composition (Analyzers), level (LI), power (JI), vibration (VI) measurements.  

 

Let’s continue learning about the ML-based plant health management by first taking a closer 

look at the meaning of process faults and abnormalities. 

 

What are process faults and abnormalities? 

Colloquially speaking, process faults or abnormalities are unexpected and unfavorable 

deviations/patterns in process variables that defy the normal/acceptable process behavior. 

The deviations could be undesirable decreases in product yield and product purity, 

fluctuations in critical liquid levels, rise in temperatures, increase in rotating machine 

vibrations, etc. There are various causes of faults in process system including, amongst 

others, fouling, pipe blockages, leaks, catalyst poisoning, and valve stiction. The flowsheet 

below illustrates some common fault sources.  

 
2 Adapted from the original flowsheet by Gilberto Xavier (https://github.com/gmxavier/TEP-meets-LSTM) provided under Creative-Commons 

Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). 
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Figure 1.3: Some common sources of process faults in a process plant  

 

 

      Equipment monitoring vs plantwide monitoring 

A common approach for process monitoring in process industry is to monitor the 

different critical equipment of a plant separately. The ML models are built 

separately for each equipment. While this approach makes ML model 

development easier as each ML model handles only a subset of the plant 

variables, one is left with having to maintain and analyze results from multiple 

ML models. An  alternative approach is plantwide monitoring wherein the whole 

plant comprising of multiple equipment is monitored using a single ML model. 

The downside of this approach is high dimensionality of the variable-set and 

reduced fault detection performance. Same ML models can be employed for 

either of the approaches. Nonetheless, some specialized techniques have been 

devised for plantwide monitoring. We will remark upon these techniques as 

suitable in the upcoming chapters. 

 

 
Reduced catalyst activity 

due to aging resulting in 

lower product yield   

 
Compressor motor bearing 

damage due to cracks resulting 

in high vibrations 

 Sticky valve resulting in 

flow spikes 

 
Valve left in manual mode by 

operators resulting in abnormal 

reactor temperature 

 
Unusual fluctuations in colling water 

temperature leading to temperature 

fluctuations in the system 
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As remarked before, faults entail unwanted deviations in process variables. Figure below 

shows samples of data patterns that may be observed under the influence of process faults. 

 

Figure 1.4: Sample of data patterns under faulty conditions 

 

Figure 1.4 shows why automated fault detection is not a very straightforward activity. Under 

normal plant operation, process variables do not remain at fixed values but show stochastic 

fluctuations and normal variations due to changing plant load, product grade, ambient 

conditions, etc. Therefore, one can’t just compare each process variable against some fixed 

thresholds to ascertain the healthy state of the process. Modeling the multivariable 

relationships among the plant variables become indispensable in most of the scenarios.  

 

The takeaway message is that modern process plants are prone to multiple failures, and it 

takes an ‘army’ to ensure reliable operations. In the industry 4.0 era, ML is being employed 

as that ‘army’. Before we look at the different ML models available at our disposal, let’s try 

and understand what exactly an ML model is expected to do.   

Faulty variable operating at higher 

mean value 

Faulty variable experiences a drift 

Faulty variable shows a drift but remains 

within ‘normal operation range’ 
Faulty variable shows unusual spikes but 

remains within ‘normal operation range’ 

Faulty variable shows unusual 

stochastic fluctuations 

Faulty variable shows ‘dead behavior’ 

due to dead sensor 

Faulty operation period 
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1.2 Plant Health Management (PHM) Workflow 

 

In the previous section we discussed in some detail the fault detection aspect of plant health 

management. However, it is only a part of the journey towards reliable plant operation. Figure 

1.5 shows the different milestones of the journey. As shown, fault detection is followed by fault 

isolation or fault diagnosis wherein the objective is to identify the process variables that have 

been affected by the fault or determine the underlying cause of the fault, respectively. For 

example, for the valve malfunction problem illustrated in Figure 1.3, fault isolation pinpoints 

the flow from the separator to the stripper as the faulty variable and fault diagnosis pinpoints 

the valve stiction as the root cause of faulty behavior.   

 

 

                                    FDI vs FDD 

In the process monitoring literature, you will find the acronyms FDI and FDD 

very often. FDI stands for fault detection and isolation, and FDD stands for fault 

detection and diagnosis. As alluded to before, although fault diagnosis is 

different from fault isolation, it is often used (incorrectly) to refer to the task of 

finding variables showing abnormal behavior.  

 

Other terms that you may encounter are fault identification and fault 

classification. While fault identification is same as fault isolation, fault 

classification refers to categorizing/classifying a fault into one of several pre-

defined fault types. 

 

 

Following FDI/FDD, lies the task of fault prognosis which entails forecasting the progression 

of the identified fault. Fault prognosis helps to determine the amount of time left before the 

equipment affected by the fault needs to be taken out of service for maintenance or the whole 

plant needs to be shutdown for fault repair. For equipment-level monitoring, fault prognosis 

provides what is popularly known as remaining useful life (RUL). For example, for the 

compressor bearing damage problem illustrated in Figure 1.3, the vibrations will only be 

slightly higher than normal during the initial stages of crack development. However, with time 

the crack grows leading to greater and greater vibrations, and ultimately the compressor fails 

or becomes too dangerous to operate. A good fault prognostic model can accurately estimate 

the time left until the failure point of compressor is reached. 

 

The advancement in fault prognosis algorithms have popularized the concept of predictive 

maintenance, wherein the plant management can plan well-in-advance the maintenance 
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schedule based on actual equipment/process health condition. As you can imagine, this 

approach has obvious  economic benefits (compared to time-based/preventive maintenance) 

and, to nobody’s surprise, has caught fascination of process industry executives!   

 

 
Figure 1.5: Plant health management workflow   

 

 

           Prognostic and Health Management 

In industrial community, the PM/PdM workflow shown in Figure 1.5 is commonly 

called as prognostic and health management3. This includes both condition 

monitoring (fault detection, isolation, and diagnosis) and predictive maintenance 

(fault prognosis) aspects.  

 

In the upcoming chapters, we will study in detail all the shown major aspects of PHM and 

learn how to implement the end-to-end solutions. 

. 

 
3 Although the acronym ‘PHM’ is commonly used by the prognostic research community to refer to prognostic and health 
management, we will use it to denote ‘plant health management’ in this book. 



Chapter 1: Machine Learning, Process and Equipment Condition Monitoring, and Predictive Maintenance: An Introduction 

MLforPSE.com|8 
 

1.3 ML Modeling Landscape for Plant Health 

Management 

 

As process data scientists, we have to live with the harsh truth that there is no single 

universally good model for all occasions. One reason for this is that process data can show 

different characteristics (such as nonlinearity, non-Gaussianity, dynamics, multi-modality, 

etc.) which necessitates selection of different modeling methodologies. Additionally, the 

availability of historical faulty data, the user’s end goal, and the type of installed sensors can 

also influence the model selection as shown in Figure 1.6. This makes the task of correct 

selection of ML model daunting (and potentially overwhelming for beginner PDSs). 

Fortunately, the recourse is open-secret and is as simple as having a good understanding of 

your data and system, and conceptually sound knowledge of pros and cons of the available 

methods.  

 

Figure 1.6: Sample factors that influence ML model selection for PM/PdM 
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Before you embark upon modeling your process system, you would already have knowledge 

of the various factors listed in the above figure, except possibly for the data characteristics. 

We will study the techniques used to ascertain data characteristics in Chapter 3. Now that we 

understand the factors that influence model selection, we are ready to see what models are 

available at our disposal.  

 

Traditional process measurements such as flow, temperature, pressure, 

composition, etc., and vibration measurements dominate the signals recorded in 

process industry. Therefore, case studies presented in this book use only these 

signals. Computer vision-based ML solutions are not covered.  

 

Figure 1.7 below shows the modeling methodologies for process monitoring that we will cover 

in this book. Fault detection and diagnosis are precursors to fault prognosis and therefore the 

same methodologies are employed for building predictive maintenance solutions as well. As 

the category topics show, these methods cater to process data with different characteristics. 

The methods range from ‘simple’ traditional control charts to modern deep learning.  

 

 

 

 

 

 

Figure 1.7: Model tree for process monitoring 

The category of MSPM (multivariate statistical process monitoring) methods (PCA, PLS, 

GMM, etc.) deserves special attention as it has been the bedrock of health monitoring of 

complex process plants.  A large section of the book will therefore cater to these methods.  

However, irrespective of their popularity, MSPM methods have shortcomings. Therefore, 

machine learning and deep learning models like Autoencoders, LSTMs, LOFs are covered as 

well. 
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In Figure 1.7, the modeling methodologies have been broadly divided into four categories, viz, 

univariate statistical models, multivariate statistical models, classical machine learning 

models, and artificial neural networks (ANN) models. Each of these categories are dealt with 

in separate parts of the book. The statistical4 PM models extract a statistical model of the 

system using past data. Within this category lies simple control-chart models that are used for 

single variable monitoring. Though useful, these univariate models are understandably too 

restrictive to handle plantwide monitoring of complex industrial plants. On the other end of the 

model spectrum lies complex deep learning models that can theoretically handle any type of 

process systems; the downside is cumbersome model training procedure and 

hyperparameter optimization. In between these two extremes, lie the MSPM methods whose 

ease of implementation and interpretable results have led to wide popularity. However, MSPM 

methods tend to falter for highly nonlinear processes with complex data distributions. 

Therefore, classical ML and deep learning methods have been receiving considerable 

attention for process monitoring solution development for complex industrial processes.  

 

The models in Figure 1.7 cater to the different scenarios that you may encounter in practice. 

If you have abundant past faulty samples then classification models such as FDA, SVM, ANN, 

etc. can be employed. However, in process industry, most of the time you will not have the 

luxury of having past faulty data and therefore, many of the fault detection techniques covered 

in this book cater to this scenario. The figure below illustrates the different principles employed 

to detect the presence of process faults using only NOC data during model training.  

 
4 In legacy process monitoring terminology, statistical process monitoring is also called statistical process control (SPC). 
Although SPC methods do not involve any feedback to the process controllers, the word ‘control’ signifies the objective 
of keeping the process ‘in-control’ through continuous monitoring. 
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Figure 1.8: Popular fault detection methodologies using only NOC data 

Note that the models in Figure 1.7 are applicable to both equipment level monitoring and 

plantwide monitoring. Let us now move to an overview of how these models are actually 

developed. 

 

 

 

 

 

Projection-based 

 

Boundary around NOC samples 

 

Distance from neighbors or local density-based 

 

Input-output regression-based 

 

NOC training samples 

Fitted boundary 

• Training data is assumed to provide adequate representation 

of the region in the measurement space that NOC data are 

expected to lie in. 

• Methods like Hotelling’s T2 and SVDD can generate an 

implicit boundary around the NOC samples and provide a 

measure of how far a test sample lie from the NOC 

boundary. 

• Variables are categorized into predictor and response variables. 

• A regression model (ANN, PLS, SVR, Random Forest, etc.) is 

fitted to capture NOC behavior and prediction errors  (or 

residuals) are generated. 

• The residuals are monitored (using control charts, PCA, etc.) to 

detect the presence of faults. 

• High-dimensional NOC data are assumed to lie along a lower-

dimensional latent space. 

• Projection-based methods (such as PCA, ICA, KPCA, etc.) project 

original test sample in the latent space. 

• The position of test sample in latent space and its  

reconstruction error are used to detect process fault.  

Predictors 

Measured response 

Predicted response 

• Distance of a test sample from the neighboring NOC samples is 

used to infer its abnormality. KNN method can be used for this. 

• Alternatively, local density in the region where the test sample 

falls in can be used to classify the test sample as faulty or 

normal. LOF method can be used for this. 

NOC 

NOC 
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1.4 ML Model Development Workflow 

 

In Figure 1.7, we saw different types of ML models for PM applications. Fortunately, the 

workflow for model development and deployment remains similar, and is shown in Figure 1.9. 

As is typical for a ML project, the tasks can be categorized into offline computations and 

online/real-time computations. In online computations, process data are parsed through the 

model to provide real-time insights and results. The models are built offline using historical 

process data. This offline exercise is performed once or repeated at regular intervals for model 

update. Brief description of the essential steps performed are provided below: 

 

➢ Exploratory data analysis: Exploratory data analysis (EDA) involves preliminary 

investigation of data to get a ‘feel’ of the process dataset characteristics. The activities 

may include assessment of the presence of nonlinear relationships among process 

variables, non-Gaussian distribution, etc. Inferences made during EDA help make the 

right model selection. EDA is covered in detail in Chapter 3. 

 

 
Figure 1.9: Steps involved in a typical ML model development for process monitoring  
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➢ Sample and variable selection: One does not simply dump all the available historical 

data and sensor measurements into a model training module. If a model is being built 

to identify the normal process behavior, then care must be taken to include only 

samples from fault-free operations in the model training dataset. Furthermore, if your 

model does not handle dynamics then data from periods of process transitions should 

be excluded.    

 

Variable selection warrants judicious consideration as well. Inclusion of unnecessary 

variables makes data noisier and reduces effectiveness of fault detection model. A 

generic guidance is to include only those variables that can assist in early fault 

detection; a variable that does not show any change in behavior under the influence of 

process faults of interest should be excluded. 

 

➢ Data pre-processing: “Garbage in, garbage out” is an age-old principle in computer 

simulations. The same holds for ML model training for PHM. Your model will be 

practically useless if training data is not ‘clean’. Your  process monitoring model won’t 

be able to detect process abnormalities accurately if it has been trained with outlier-

infested training data. Data pre-processing includes, amongst others, identification and 

removal of outliers, noise reduction, transformation of variables, and extraction of 

features. The overall objective of this step is to increase the ‘information content’ of 

your training dataset so that the PM model’s ability to distinguish between normal and 

faulty operations is bolstered. Several aspects of data pre-processing are dealt with in 

Chapter 4.  

 

➢ Model training and validation: Model training imply estimating the parameters of the 

chosen ML model, for example, the neuron weights in an ANN model. Model validation 

is employed for finding optimal values of model hyperparameters, for example, the 

number of neurons in the ANN model. At the end of this step, the coveted process 

model is obtained. 

 

Additional activities related to computation of health indicator and subsequent RUL estimation 

involved in fault prognosis are covered in Part 7 of the book which deals specifically with 

prognostic techniques for predictive maintenance applications. 
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1.5 ML-based Plant Health Management Solution 

Deployment 

 

After you have developed a satisfactory PHM model, the real test of your solution lies in how 

well it is received by the end-users. The end-users could be reliability personnel/engineers at 

the local plant sites or the central team of experts remotely supervising the plants. Figure 1.10 

below shows a (simplified) common architecture for bringing your tool’s results to these end-

users. As shown, the ML model could be setup to run on local PCs at every site or a central 

server machine/cloud resource5. Plant operators may access the tool’s results on the local 

control-room screens or via web browsers in case of centralized deployment. The web user 

interface could be either built using third-party visualization software (Tableau, Sisense, 

Power BI, etc.) or completely custom-built using front-end web frameworks like bootstrap. 

 

 
Figure 1.10: ML solution deployment 

 

That is all it takes to deploy a ML-based PHM solution in a production environment. This 

concludes our quick attempt to impress upon you the importance of process monitoring and 

predictive maintenance in process industry. Hopefully, you also now have a good idea of what 

resources you have to achieve your PM/PdM goals and what is takes to build a PM/PdM 

solution. 

 
5 There exists a specialized branch of machine learning engineering, called MLOps (short for machine learning operations) 
that deals with reliable and scalable deployment of ML models in production. 
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 Summary 

 

In this chapter, we looked at the importance of plant health management for increasing 

process safety, reducing downtime costs, and increasing equipment life. We understood the 

meaning of process faults and abnormalities. We looked at the different stages of plant health 

management, familiarized ourselves with the factors that influence model selection, and 

looked at the different models available at our disposal to achieve the PHM goals. We also 

briefly looked at the generic workflow for process monitoring model development and 

understood how PM/PdM solutions are deployed in modern industrial settings. In the next 

chapter, we will take the first step and learn about the environment we will use to execute our 

Python scripts containing ML code for PHM.  
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Chapter 2 
The Scripting Environment 

 
n the previous chapter, we studied the various aspects of machine learning-based process 

monitoring and predictive maintenance. In this chapter, we will quickly familiarize ourselves 

with the Python language and the scripting environment that we will use to write ML codes, 

execute them, and see results. This chapter won’t make you an expert in Python but will give 

you enough understanding of the language to get you started and help understand the several 

in-chapter code implementations in the upcoming chapters. If you already know the basics of 

Python, have a preferred code editor, and know the general structure of a typical ML script, 

then you can skip to Chapter 3.  

 

The ease of using and learning Python, along with the availability of a plethora of open-access 

useful packages developed by the user-community over the years, has led to immense 

popularity of Python. In recent years, development of specialized libraries for machine and 

deep learning has made Python the default language of choice among ML community. These 

advancements have greatly lowered the entry barrier into the world of machine learning for 

new users.  

 

With this chapter, you are putting your first foot into the ML world. Specifically, the following 

topics are covered 

• Introduction to Python language  

• Introduction to Spyder and Jupyter, two popular code editors 

• Overview of Python data structures and scientific computing libraries 

 

 

 

 

I 
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2.1 Introduction to Python 

 

In simple terms, Python is a high-level general-purpose computer programming language that 

can be used, amongst others, for application development and scientific computing. If you 

have used other computer languages like Visual Basic, C#, C++, Java, Javascript, then you 

would understand the fact that Python is an interpreted and dynamic language. If not, then 

think of Python as just another name in the list of computer programming languages. What is 

more important is that Python offers several features that sets it apart from the rest of the pack 

making it the most preferred language for machine learning. Figure 2.1 lists some of these 

features. Python provides all the tools to conveniently carry out all steps of an ML-based 

PM/PdM project, namely, data collection, data pre-processing, data exploration, ML modeling, 

visualization, and solution deployment to end-users. In addition, several freely available tools 

make writing Python code very easy6. 

 

 
Figure 2.1: Features contributing to Python language’s popularity 

 

Installing Python 

One can download official and the latest version of Python from the python.com website. 

However, the most convenient way to install and use Python is to install Anaconda 

(www.anaconda.com) which is an open-source distribution of Python. Along with the core 

Python, Anaconda installs a lot of other useful packages. Anaconda comes with a GUI called 

Anaconda Navigator (Figure 2.2) from where you can launch several other tools.  

 
6 Most of the content of this chapter is like that of Chapter 2 of the book ‘Machine Learning in Python for Process Systems 
Engineering’ and have been re-produced with appropriate changes to maintain standalone nature of this book. 
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Chapter 3 
Exploratory Data Analysis: Getting to Know 

Your Data Better 

 
etting to know your enemy is a time-tested strategy for emerging victorious in any 

battle. For developing a satisfactory process monitoring model, this strategy 

translates to ‘knowing your process data well’. This task is formally termed as 

exploratory data analysis (EDA). Most of the machine learning models make some 

assumptions regarding the distribution (e.g., Gaussian vs uniform distribution) and 

characteristics (e.g., dynamic vs steady state nature) of the data they operate upon. 

Therefore, it only serves us well investing some time in EDA so that the consistency between 

our chosen model’s assumptions and the characteristics of process data at hand can be 

ascertained. Failure to do so will lead to high rate of false alerts and/or missed/delayed fault 

detection which will most likely lead to ‘death’ of your monitoring tool due to loss of user 

confidence! 

 

In this chapter, we will learn how to assess the presence of four important properties in a 

dataset, viz, nonlinearity, non-Gaussianity, dynamics, and multimodality. We will motivate the 

study of these properties by understanding their impact on process monitoring performance. 

We will especially focus on techniques that render themselves convenient for implementation 

in an automated setting. As is obvious, the concepts learnt in this chapter will help you get 

better at correct model selection. Specifically, the following topics are covered 

• Impact of non-ideal data properties on fault detection performance 

• Techniques for assessing nonlinearity, non-Gaussianity, dynamic, and multimodality 

• EDA of Tennessee Eastman Process dataset 
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3.1 Why Exploratory Data Analysis Matters? 

 

Ask any expert process data scientist about some advice to get better at ML model selection 

and you will very likely get the suggestions to understand your data better. It’s true, you cannot 

over-exaggerate the importance of gathering as many insights about the data as possible 

before getting your hands dirty. Most of the process monitoring methodologies make 

assumptions about the data characteristics and therefore, it is imperative to ascertain these 

characteristics in our process data to ensure selection of appropriate monitoring model. Let’s 

consider the classical PCA model (inarguably the most popular model for monitoring 

multivariate industrial processes): the ideal dataset is linear, Gaussian distributed, single-

clustered, and with no dynamics;  Figure 3.1 uses simple datasets to illustrate what the 

deviations from these ideal characteristics look like. 

 

 
Figure 3.1: Illustration of deviations from ideal process data characteristics 

 

To further motivate the discussions in the rest of the chapter, let’s take a quick look at the 

impacts the non-ideal data characteristics can have on PCA performance.  

 

Effect of nonlinearity 

In an ideal PCA-compatible dataset, the variables are linearly related which allows the 

standard PCA method to find the lower-dimensional manifold along which the data is 

distributed. However, as can be seen below, PCA fails to transform the original 2D dataset to 

a 1D feature space even though it is apparent that the original data points lie along a curved 

manifold. This severely limits the ability of standard PCA to detect faulty samples.  
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Chapter 4 
Machine Learning for Plant Health 

Management: Workflow and Best Practices 

 
hether you are building a ML solution for fault detection, fault classification, or fault 

prognosis, model development is the most critical task. Inarguably, obtaining a good 

ML model is not a trivial task. You cannot obtain a good model by just dumping all 

the available raw data in an off-the-shelf machine learning module. Incorrectly specify one 

hyperparameter and your model will return garbage results; provide insufficiently ‘rich’ training 

dataset and even the most carefully chosen ML model will prove incapable of providing 

meaningful insights. Unfortunately, an automated procedure for ML model development that 

works for all types of problems does not exist. Nonetheless, there is no cause for despair. The 

trick to successful model development lies in being actively involved in the several model 

development stages and making use of several useful guidelines that the ML community has 

come up with over the years. We already saw in the previous chapter the importance of 

acquiring a good understanding of data for correct model selection. In this chapter, we will 

learn several other guidelines and the best practices.     

 

We will not cover the best practices associated with generic machine learning workflow. 

Concepts like feature extraction, feature engineering, cross-validation, regularization, etc., 

have already been covered in detail in our first book of the series. Albeit we will touch upon 

topics that are specific to plant health management applications. In this chapter, our focus will 

be on aspects that you should not ignore to ensure that you are not unknowingly setting your 

model up for failure. Specifically, we will cover these topics 

• ML model development workflow 

• Data selection and pre-processing to obtain good training dataset 

• Assessment of monitoring performance 

• Best practices for model selection and tuning 
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4.1 ML Model Development Workflow 

 

The prime objective of the ML modeling task for building process modeling solutions is to 

obtain a model that provide high fault sensitivity (i.e., the model is able to detect process faults 

in incipient stages) and low false alarm rate (i.e., the model does not report a process fault 

when process is operating normally). Balancing the trade-off between these two requirements 

is not easy and requires careful attention to varied aspects during model development. It 

definitely takes more than just executing a ‘model = <some ML_model>.fit()’ command on the 

available data. In Chapter 1, we saw an overview of the typical steps involved in a ML model 

development exercise. In this chapter, we will look at the different components of the workflow 

in more details. Figure 4.1 lists the subtasks that we will touch upon. While separate books 

can be written on each of these subtasks, we will focus on the aspects that may get overlooked 

by an inexperienced process data scientist.  

 

 
Figure 4.1: ML model development workflow 
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• Nonlinearity check 
• Non-Gaussianity check 

• Multimodality check 
• Dynamics check 

• Training dataset representative of process conditions to be monitored  
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• Data balancing 
• Noise and outlier removal 
• Feature engineering and extraction 

• ANN models 
• Multivariate statistical models 
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• Clustering models 
• Machine learning models 
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• Hyper-parameter optimization via cross-validation 
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Part 2 

Univariate Signal Monitoring 
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Chapter 5 
Control Charts for Statistical Process Control  

 
efore machine learning engulfed the process industry, simple plotting of key plant 

variables with statistically chosen upper and lower thresholds used to be the norm for 

detecting process abnormalities. These plots, called control charts, formed the major 

component of statistical process control or statistical quality control. Although control charts 

have lost some of their shine due to the advent of advanced multivariate process monitoring 

tools, they are still widely employed by plant management to monitor crucial KPIs, for 

example, product quality, process efficiency, etc. Simple concept, easy interpretation, and 

quick implementation are some of the reasons for their continued popularity. 

 

Shewhart charts (which includes the popular 3-sigma charts) are the earliest, simplest, and 

most commonly used control charts. These, however, show  poor performance for detection 

of faults that cause small deviations. Therefore, alternatives such as CUSUM charts and 

EWMA charts have been devised. In this chapter, we will learn these techniques and become 

familiar with how to implement them in practice. We will conclude with some discussion on 

the ways to overcome the shortcomings of univariate control charts.  Specifically, the following 

topics are covered.  

• Introduction to Shewhart control charts 

• Introduction to CUSUM control charts 

• Introduction to EWMA control charts 

• Statistical process control of aeration tank via CUSUM chart 

• Strategies for overcoming limitations of univariate statistical process control 
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5.1 Control Charts: Simple and Time-tested Process 

Monitoring Tools 

 

Control charts are one of the seven7 pillars of statistical process control that are traditionally 

used to monitor key production or product quality metrics in order to detect unexpected 

deviations. When the process is ‘in-control’, the monitored variables are expected to exhibit 

only natural cause variations around some target or mean values. As shown in Figure 5.1, a 

control chart is simply a display of measurements of a single process variable plotted against 

time or sample number. Additionally, these charts include a centerline or the expected mean 

value, and a couple of limit lines called UCL (upper control limit) and LCL (lower control limit). 

Most industrial process variables show natural variations due to random disturbances 

affecting the process. The control limits are statistically designed in such a way that under 

natural cause variations, the monitored variable remains within the control limits with certain 

desired probability. The breach of the control limits indicates potential process fault or an ‘out-

of-control’ situation. Proper specification of the limits is therefore essential to ensure minimal 

false alarms and rapid detection of faults. 

 
Figure 5.1: Representative control chart for product purity  

The traditional control charts take three different forms, viz, Shewhart charts, CUSUM charts, 

and EWMA charts. While a Shewhart chart plots only the current measurements on the control 

chart, the other two plot some combination of current and past measurements. You will soon 

learn how usage of past measurements allow detection of incipient or low magnitude faults 

which may not get detected by Shewhart charts. Control charts are not limited to tracking 

process measurements only; any metric that is expected to exhibit only random fluctuations 

around some mean or target can be monitored via control charts. Correspondingly, control 

charts are also employed for monitoring model residuals, latent variables (for example, in 

PCA), etc. Let’s first get started with Shewhart charts.  

 
7 https://asq.org/quality-resources/statistical-process-control 

Product purity control chart 
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Chapter 6 
Process Fault Detection via Time Series 

Pattern Matching  

 
magine you are a plant operator newly put in charge of running a plant and you observe 

an interesting pattern in one of the process variable: occasional spikey fluctuations without 

the signal violating the DCS alarm limits. A natural line of investigation would be to find if 

such patterns have occurred in the past and are a leading indicators of underlying process 

faults. However, how do you quickly sift through years of historical data to find similar 

patterns? Consider another scenario where you are responsible for quality control of a batch 

process. To check if the latest batch went smoothly, you may want to compare it with known 

reference/golden batch. However, batches may show normal variations due to different batch 

durations or abnormal deviations due to process fault. How do you train an algorithm to 

smartly call out a faulty batch? One thing common in both these scenarios is that we are not 

looking at abnormality of a single measurement; instead, abnormality of a sequence of 

successive values (also called collective anomalies) is of interest. 

 

Time series pattern matching is a mature field in the area of time series classification and 

recent algorithmic advances now allow very fast sequence comparisons to find similar or 

abnormal patterns in historical data. Unsurprisingly, pattern matching is being offered as prime 

feature in commercial process data analytic software (such as Aspen’s Process Explorer, 

SEEQ, etc.).  In this chapter, we will work through some use-cases of pattern-matching-based 

process monitoring. Specifically, the following topics are covered  

• Introduction to time series anomalies 

• Pattern matching-based fault detection: use-cases in process industry 

• Fault detection via historical pattern search for steam generator process 

• Fault detection via discord discovery 

 

 

 

I 



Chapter 6: Process Fault Detection via Time-Series Pattern Matching 

MLforPSE.com|30 
 

6.1 Time Series Anomalies and Pattern Matching 

 

In anomaly detection literature, anomalies in univariate time series or dynamic signals are 

categorized into three categories: point anomalies, contextual anomalies, and collective 

anomalies. Figure 6.1 illustrates these anomalies for a valve (%) opening signal. As depicted 

in Figure 6.1b, if a single measurement deviates significantly from the rest of the sensor 

readings, then a point anomaly is said to have occurred. Contextual anomaly occurs when a 

measurement is not anomalous in an ‘overall sense’ but only in a specific context. For 

example, in Figure 6.1c, point ‘B’ is abnormal when taken in the context of operation mode 1 

only; valve opening goes close to 80% under normal operation but not when the process is in 

mode 1. The last category of collective anomaly occurs when a group/sequence of successive 

measurements jointly show abnormal behavior, although the individual measurements may 

not violate NOC range. While control charts can be built to detect point and contextual 

anomalies, more specialized approaches are needed to detect collective anomalies. 

Therefore, this chapter is devoted to study of approaches for collective anomaly detection.  

 

 
Figure 6.1: Time series anomalies: representative illustrations 

 

The need for (sub) sequence-based pattern matching for FDD show up in different forms in 

process industry; Figure 6.2 illustrates some of the use-case scenarios. Let’s work through 

some of these use-cases to understand the underlying techniques and available resources. 

 

 

 

Normal conditions 

(a) (b) 

(c) (d) 

Point anomaly A 

B 
Contextual anomaly Collective anomaly 

Mode 1 Mode 2 
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Figure 6.2: Sample use-case scenarios of time series pattern matching-based fault detection 

 

We will work through the case scenarios (a) and (c). Both of these use-cases involve finding 

similarity of a ‘query’ subsequence with several other subsequences taken from the same 

time series or another time series. In order to accomplish this in a time-efficient manner, a 

library called STUMPY8 will be utilized. Let’s learn how to utilize STUMPY for our time series 

data mining tasks.  

  

 
8 https://stumpy.readthedocs.io/en/latest/index.html.  
S.M. Law, STUMPY: A Powerful and Scalable Python Library for Time Series Data Mining. Journal of Open Source 
Software, 2019. 

(c) (d) 

➢ Pattern in last 0.5 hour 

➢ Is this pattern associated with 

any faulty condition? 

(a) 

➢ In the last 1 day of operation, 

has any pattern occurred that 

is very different compared to 

the rest of the data? 

➢ Has my plant start-up 

progressed normally? 

---- Standard start-up profile 

---- Current start-up profile 

➢ Does any adsorber bed’s 

pressure profile differs from 

those of the rest of the beds ? 

--- Adsorbed bed A   --- Adsorbed bed B  --- Adsorbed bed C 

---- Adsorbed bed D 



Chapter 6: Process Fault Detection via Time-Series Pattern Matching 

MLforPSE.com|32 
 

 
 

 
 
 

  

Rest of the Chapter 6 not shown in this preview 



 

33 
 

 

 

 

Part 3 

Multivariate Statistical Process Monitoring 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

34 
 

 

 

 

Chapter 7 
Multivariate Statistical Process Monitoring for 

Linear and Steady-State Processes: Part 1  

 
t is not uncommon to have hundreds of process relevant variables being measured at 

manufacturing facilities. However, conservation laws such as mass balances, 

thermodynamics constraints, enforced product specifications, and other operational 

restrictions induce correlations among the process variables and make it appear as if the 

measured variables are all derived from a small number of hidden (un-measured) variables. 

Several smart techniques have been derived to find these hidden latent variables. Latent 

variable-based techniques allow characterization of ‘normal’ process noise affecting the 

process during NOC. Process monitoring methods based on latent space monitor the values 

of latent variables and process noise in real-time to infer the presence of process faults. 

Sounds complicated? Don’t worry! This chapter will show you how this is accomplished while 

retaining focus on conceptual understanding and practical implementation. 

 

PCA and PLS are among the most popular latent variable-based process monitoring tools 

and have been reported in several successful industrial process monitoring applications. This 

chapter provides a comprehensive exposition of the PCA and PLS techniques and teaches 

you how to apply them for fault detection. Furthermore, we will learn how to identify the faulty 

process variable using the popular contribution analysis methodology. Specifically, the 

following topics are covered 

• Introduction to PCA and PLS  

• Process fault detection via PCA and PLS 

• Fault isolation in PCA- and PLS-based process monitoring applications 

• Process monitoring of polymer manufacturing process via PCA 

• Process monitoring of polyethylene manufacturing process via PLS 
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7.1 PCA: An Introduction  

 

 Principal component analysis (PCA), in essence, is a multivariate technique that transforms 

a high-dimensional set of correlated variables into a low-dimensional set of uncorrelated 

(latent) variables with minimum loss of information. Consider the 3-dimensional data in Figure 

7.1. It is apparent that although the data is three dimensional, the data-points mostly lie along 

a 2-D plane; and even in this plane, the spread is much higher along a particular direction.  

PCA converts the original (x,y,z) space into a 2-D principal component (PC) space where the 

1st PC (PC1) corresponds to the direction of maximum spread/variance in data and the 2nd 

PC (PC2) corresponds to the direction with highest variance among all directions orthogonal 

to 1st PC. Depending upon modeling requirements, even the 2nd PC may be discarded, 

essentially obtaining a 1-D data while losing out some information. Also, as we will see soon, 

it is straightforward to recover original data from data in PC space.  

 

 
Figure 7.1: PCA illustration 

 

In ML world, it is common to find applications of classification and clustering techniques in the 

PC space. In process industry, process modeling (via principal component regression (PCR)) 

and monitoring are common application of PCA9. PCA is also frequently utilized for process 

visualization. For many applications, two or three PCs are adequate for capturing most of the 

variability in process data and therefore, the compressed process data can be visualized 

within a single plot. Plant operators and engineers use this single plot to find past and current 

patterns in process data. PCA-based fault detection goes further and compresses all the 

information in the PC space and the process noise into a couple of control charts. You will 

soon learn how to generate and use these control charts. 

 

 
9 The popularity of latent-variable techniques for process control and monitoring arose from the pioneering work by John 
McGregor at McMaster University.   
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Chapter 8 
Multivariate Statistical Process Monitoring for 

Linear and Steady-State Processes: Part 2  

 
y now you must be very impressed with the powerful capabilities of PCA and PLS 

techniques. These methods allowed us to extract latent variables and monitor 

systematic variations in latent space and process noise separately. However, you may 

ask, “Are these the best latent variable-based techniques to use for all problems?”.  We are 

glad that you asked! Other powerful methods do exist which may be better suited in certain 

scenarios. For example, independent component analysis (ICA) is preferable over PCA when 

process data is not Gaussian distributed. It can provide latent variables with stricter property 

of statistical independence rather than only uncorrelatedness. Independent components may 

be able to characterize the process data better than principal components and thus may result 

in better monitoring performance. 

 

In another scenario, if your end goal is to classify process faults into different categories for 

fault diagnosis, then, maximal separation between data from different classes of faults would 

be your primary concern rather than maximal capture of data variance. Fisher discriminant 

analysis (FDA) is preferred for such tasks.  

 

In this chapter, we will learn in detail the properties of ICA and FDA. We will apply these 

methods for process monitoring and fault classification for a large-scale chemical plant. 

Specifically, the following topics are covered 

• Introduction to ICA 

• Process monitoring of non-Gaussian processes  

• Introduction to FDA 

• Fault classification for large scale processes. 
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8.1 ICA: An Introduction  

 

Independent Component Analysis (ICA) is a multivariate technique for transforming measured 

variables into statistically independent latent variables in a lower-dimensional space. 

Statistical independence is a stricter condition than uncorrelatedness and in some situations, 

working with independent components (ICs) can give better results than working with 

uncorrelated PCs from PCA. While ICA and PCA are related (in the sense that latent variables 

are linear projections of measured variables), they differ in the way the latent variables are 

extracted. Figure 8.1 highlights the difference between them using a simple illustration where 

two independent signals are linearly combined to generate correlated signals and then 

PCA/ICA are used to extract latent signals. It is apparent that simply decorrelating the signals 

via PCA did not recover the original signals. On the other hand, ICA reconstructs the original 

signals accurately10.  

 

 

Figure 8.1: Simple illustration of ICA vs PCA. The arrows in the x1 vs x2 plot show the direction 

vectors of corresponding components. Note that the signals t1 and t2 are not independent as 

value of one variable influences the range of values of the other variable.  

 

ICA uses higher-order statistics for latent variable extractions, instead of only second order 

statistics (mean, variance/covariance) as done by PCA. Therefore, for non-Gaussian  

 
10 If you observe closely, you will find that ICA latent signals (u1 and u2) do differ from s1 and s2 signals in terms of sign 
and magnitude; we will soon learn why this happens and why this is not a cause of worry. 
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Chapter 9 
Multivariate Statistical Process Monitoring for 

Linear and Dynamic Processes  

 
n the previous chapters, we saw how beautifully latent variable-based MSPM techniques 

can extract hidden steady-state relationships from data. However, we imposed a major 

restriction of absence of dynamics in the dataset. Unfortunately, it is common to have to 

deal with industrial datasets that exhibit significant dynamics and the standard MSPM 

techniques fail in extracting dynamic relationships among process variables. Nonetheless, the 

MSPM research community came up with a simple but ingenious modification to the standard 

MSPM techniques that made working with dynamic dataset very easy. The trick entails 

including the past measurements as additional process variables. That’s it! The standard 

techniques can then be employed on the augmented dataset. The dynamic variants of the 

standard MSPM techniques are dynamic PCA (DPCA), dynamic PLS (DPLS), dynamic ICA 

(DICA), etc. 

 

Dynamic PCA and dynamic PLS are among the most popular techniques for monitoring linear 

and dynamic processes; accordingly, these are covered in detail in this chapter. Additionally, 

this chapter also introduces another very popular and powerful technique that is specially 

designed to extract dynamic relationships from process data – canonical variate analysis 

(CVA). Using numerical and industrial-scale case studies, we will see how to use these three 

techniques to build fault detection tools.  Specifically, the following topics are covered  

• Introduction to dynamic PCA 

• Fault detection using DPCA  

• Introduction to dynamic PLS 

• Introduction to CVA  

• Fault detection using CVA for Tennessee Eastman process 
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9.1 Dynamic PCA: An Introduction  

 

Dynamic PCA is the dynamic extension of conventional PCA designed to handle process data 

that exhibit significant dynamics. DPCA simply entails application of conventional PCA to 

augmented data matrix which, as shown in Figure 9.1, is generated by using past 

measurements as additional process variables. Note that each ‘variable’ of the augmented 

matrix is normalized to zero mean and unit variance as is done in conventional PCA. It may 

seem surprising, but such a simple approach has achieved great success in process industry 

and has been readily adopted due to ease of implementation.  

 
Figure 9.1: Dynamic PCA procedure [l denotes the number of lags used] 

All the mathematical expressions for the computations of the score matrix11, residual matrix, 

Hotelling’s T2, and SPE remain the same (Eq. 1 to Eq. 8) as that shown in Chapter 7, except 

that now you will be using scaled Xaug instead of X, i.e., 𝑇 = 𝑋𝑎𝑢𝑔𝑃; 𝐸 = 𝑋𝑎𝑢𝑔 − 𝑋̂𝑎𝑢𝑔. The 

procedure for determination of number of retained latent variables also remains the same. 

You may, amongst other approaches, look for a ‘knee’ in the scree plot of the explained 

variance or use the cumulative percent variance approach. If you choose ‘l’ correctly, then 

both the static and dynamic relationships among process variables are captured and 

correspondingly, the residuals and the Q statistic will not exhibit autocorrelations12.  For test 

dataset, you would again simply perform augmentation with time-lagged measurements. 

Before we get into the nitty-gritties, let’s see a quick motivating example on why DPCA is 

superior to PCA in the presence of dynamics. 

 
11 The number of retained principal components in DPCA could be greater than m.  
12 The DPCA scores can show autocorrelations. 

Conventional PCA 

DPCA Model 
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Example 9.1:  

To illustrate how DPCA can extract dynamic relationships, let’s consider the following 

noise-free dynamic system. 

The number of zero singular (eigen) values extracted during PCA indicates the number 

of linear relationships that exist among the process variables. Let’s see if we can extract 

out the above dynamic relationship using only data (1000 samples of x1 and x2). 

𝑥1ሺ𝑘ሻ = 0.8𝑥1ሺ𝑘 − 1ሻ + 𝑥2ሺ𝑘 − 1ሻ;     k  is sampling instant 

# import required packages 

import numpy as np, matplotlib.pyplot as plt 

from sklearn.decomposition import PCA 

  

# generate data for the system: x1(k) = 0.8*x1(k-1) + x2(k-1) 

x2 = np.random.normal(loc=0, scale=1, size=(1000,1)) 

x1 = np.zeros((1000,1)) 

for k in range(1,1000): 

    x1[k] = 0.8*x1[k-1] + x2[k-1] 

X = np.hstack((x1, x2)) 

 

# function to generate augmented matrix 

def augment(X, n_lags): 

 N, m = X.shape 

     X_aug = np.zeros((N-n_lags, (n_lags+1)*m)) 

     for sample in range(n_lags, N): 

          XBlock = X[sample-n_lags:sample+1,:] 

          X_aug[sample-n_lags,:] = np.reshape(XBlock, (1,-1), order = 'F') 

     return X_aug  

 

# fit DPCA model 

X_aug = augment(X, 1) # augment data 

X_aug_centered = X_aug - np.mean(X_aug, axis=0) # center data 

dpca = PCA().fit(X_aug_centered) # fit PCA model 

print('DPCA singular values:', dpca.singular_values_) # get singular values 

 

>>> DPCA singular values: [6.664e+01 3.731e+01 3.094e+01 1.1661e-14] 

As expected, only one singular value is very close to zero. All we now need to do is fetch 

the singular vector corresponding to this singular value and check if it represents our 

dynamic system. 
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# get 4th singular vector 

print('4th singular vector: ', dpca.components_[3,:]) 

 

>>> 4th singular vector:  [ 4.923e-01 -6.154e-01  6.154e-01  1.7348e-17] 

 

The 4th singular vector represents the following relation 

0.4923𝑥1ሺ𝑘 − 1ሻ − 0.6154 𝑥1ሺ𝑘ሻ + 0.6154𝑥2ሺ𝑘ሻ = 0 

                                 ⇒ 𝑥1ሺ𝑘ሻ = 0.8𝑥1ሺ𝑘 − 1ሻ + 𝑥2ሺ𝑘 − 1ሻ  

Voila! DPCA has successfully extracted the underlying process dynamics. PCA on the 

other hand does not reveal any relationship between the variables. 
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Chapter 10 
Multivariate Statistical Process Monitoring for 

Nonlinear Processes  

 
n the previous chapters, we saw how a simple trick of using time-lagged variables enabled 

application of conventional MSPM techniques to dynamic processes. You may wonder if 

anything similar exists for nonlinear processes. Fortunately, it does! The underlying 

principle is to project the original variables onto a high-dimensional feature space where 

features are linearly related. The challenging part is the determination of the nonlinear 

mapping from the original measurement space to the feature space This is where a ‘kernel’ 

trick comes into picture wherein data gets projected without the need to explicitly define the 

nonlinear mapping. Conventional MSPM is then employed in the feature space. Sounds 

complicated? Once you are done with this chapter, you will realize that it’s much easier than 

it may seem to you right now. 

 

The main advantage of kernel-based MSPM techniques (KPCA, KPLS, KICA, KFDA, etc.) is 

that they do not require nonlinear optimization and only linear algebra is involved. 

Unsurprisingly, kernelized methods have become very attractive for dealing with nonlinear 

datasets while retaining the simplicity of their linear counterparts. Among the kernel MSPM 

techniques, kernel PCA and kernel PLS are the most widely adopted, have found 

considerable successes in process monitoring applications, and therefore will be the focus of 

our study in this chapter. Specifically, the following topics are covered  

• Introduction to kernel PCA 

• Fault detection using kernel PCA 

• Introduction to kernel PLS 

• Fault detection using kernel PLS 
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10.1 Kernel PCA: An Introduction  

 

Kernel PCA is the nonlinear extension of conventional PCA suitable for handling processes 

that exhibit significant nonlinearity. To understand the motivation behind KPCA, consider the 

simple scenarios illustrated in Figure 10.1. In Figure 10.1a, we can see that the data lie along 

a line which can be obtained from the first eigenvector of linear PCA. In Figure 10.1b, data lie 

along a curve; conventional PCA cannot help to find this nonlinear curve. Correspondingly, 

PCA fails to detect the obvious outlier. However, all is not lost for the latter scenario.  Instead 

of working in the (x1, x2) measurement space, if we work in the ሺ𝑧1, 𝑧2ሻ = ሺ𝑥1
4, 𝑥2ሻ feature 

space, then we end up with linearly related features and the abnormal data point can be 

flagged as such. Unfortunately, the task of finding such (nonlinear) mapping that maps raw 

data to feature variables is not trivial. Thankfully, there is something called ‘kernel trick’ that 

allows you to work in the feature space without having to define the nonlinear mapping. We 

will learn how this is accomplished in the next section. 

 
Figure 10.1: Nonlinearity impact on PCA-fault detection. Faulty sample shown in red. [One principal 

component chosen in all simulations]  

 

KPCA can work with arbitrary data distributions. As far as process monitoring applications are 

concerned, KPCA can help you create an abnormality boundary around your NOC data as 

shown below.  

 

To understand how KPCA works, let’s revisit the mathematical underpinnings of PCA. 

(a) (b) 

NOC sample 
NOC boundary 
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Kernel functions and kernel trick 

Usage of kernel trick is not limited to KPCA and KPLS. Other ML techniques such as 

SVM, CVA, etc., also use kernel functions to model nonlinear processes. So, what are 

these kernel functions? Let’s try to understand them.  

 

We alluded to before that a popular approach to handling nonlinearity is to map 

observation sample x to xF in feature space where conventional linear ML technique can 

be applied.  

However, the map 𝜑ሺ. ሻ is unknown. Thankfully, in the mathematical formulation of many 

ML algorithms, the inner (or dot) product of feature vectors, 𝜑ሺ𝑥ሻ𝑇𝜑ሺ𝑥ሻ, is frequently 

encountered. This inner product is denoted as  

  

 𝜑ሺ𝑥ሻ: 𝑥 → 𝑥𝐹 

 𝑘൫𝑥𝑖 , 𝑥𝑗൯ = < 𝜑ሺ𝑥𝑖ሻ, 𝜑൫𝑥𝑗൯ > = 𝜑ሺ𝑥𝑖ሻ𝑇𝜑൫𝑥𝑗൯ 

where k(.,.) is called the kernel function. Several forms of k(.,.) are available and the 

most common form is Gaussian or radial basis function defined as   

 

where, 𝛿 (a hyperparameter), is called kernel width. Usage of kernel functions allow 

application of linear ML techniques in feature space without explicitly knowing the feature 

vectors and this trick is called the ‘kernel trick’. Another term you will encounter in 

kernelized algorithms is kernel matrix (often denoted as K). The (i, j)th element of K is 

simply 𝑘൫𝑥𝑖, 𝑥𝑗൯. The table below lists the commonly used kernel functions 

 𝑘൫𝑥𝑖 , 𝑥𝑗൯ =  𝑒𝑥𝑝 ቈ−
ሺ𝑥𝑖−𝑥𝑗ሻ

𝑇
ሺ𝑥𝑖−𝑥𝑗ሻ

𝜎2 ቉ 
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Let’s use the polynomial kernel to illustrate how using kernel functions amounts to higher 

dimensional mapping. Assume that we use the following kernel  

𝑘ሺ𝑥, 𝑧ሻ  =  ሺ𝑥𝑇𝑧 + 1ሻ
2
 

where 𝑥 = [𝑥1, 𝑥2]𝑇 and 𝑧 = [𝑧1, 𝑧2]𝑇 are two vectors in the original 2D space. We 

claim that the above kernel is equivalent to the following mapping 

𝜑ሺ𝑥ሻ =  [𝑥1, 𝑥2, ξ2𝑥1, ξ2𝑥2, ξ2𝑥1𝑥2, 1]   

To see how, just compute 𝜑ሺ𝑥ሻ𝑇𝜑ሺ𝑧ሻ 

𝜑ሺ𝑥ሻ𝑇𝜑ሺ𝑧ሻ =  𝑥1
2𝑧1

2 + 𝑥2
2𝑧2

2 + 2𝑥1𝑧1 + 2𝑥2𝑧2 + 2𝑥1𝑥2𝑧1𝑧2 + 1 

                                             =  ሺ𝑥1𝑧1 + 𝑥2𝑧2 + 1ሻ2 

                                             = ሺ𝑥𝑇𝑧 + 1ሻ2 
                                             = 𝑘ሺ𝑥, 𝑧ሻ 

Therefore, if you use the above polynomial kernel, you are implicitly projecting your data 

onto a 6th dimensional feature space! If you were amazed by this illustration, you will find 

it more interesting to know that Gaussian kernels map original space into an infinite 

dimensional feature space! Luckily, we don’t need to know the form of this feature space. 
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Chapter 11 
Process Monitoring of Multi-Mode Processes  

 
n the previous chapters, we witnessed the benefits of customizing the conventional MSPM 

techniques for non-Gaussian, dynamic, and nonlinear processes. In this chapter, we will 

remove the last remaining restriction of unimodal operation. In your career, you will 

frequently encounter industrial datasets that exhibit multiple operating modes due to 

variations in production levels, feedstock compositions, ambient temperature, product grades, 

etc., and  data-points from different modes tend to group into different clusters. The mean and 

covariance of process variables may be different under different operation models and 

therefore, when you are building a monitoring tool, judicious incorporation of the knowledge 

of these data clusters into process models will lead to better performance and, alternatively, 

failure to do so will often lead to unsatisfactory monitoring performance.   

 

In absence of specific process knowledge or when the number of variables is large, it is not 

trivial to find the number of clusters or to characterize the clusters. Fortunately, several 

methodologies are available which you can choose from for your specific solution. In this 

chapter, we will learn different ways of working with multimodal data, some of the popular 

clustering algorithms, and understand their strengths and weaknesses. We will conclude by 

building a monitoring tool for a multimode semiconductor process. Specifically, the following 

topics are covered 

• Different methodologies for modeling multimodal process data 

• Introduction to clustering 

• Finding groups using classical k-means clustering 

• Probabilistic clustering via Gaussian mixture modeling 

• Process monitoring of multimode semiconductor manufacturing operation 
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11.1 Need and Methods for Specialized Handling 

of Multimode Processes 

 

In process systems, multimode operations occur naturally due to varied reasons. For 

example, in a power generation plant, production level changes according to the demand 

leading to significantly different values of plant variables with potentially different inter-variable 

correlations at different production levels. The multimode nature of data distribution causes 

problems with traditional ML techniques. To understand this, consider the illustrations in 

Figure 11.1. In  subfigure (a), data indicates 2 distinct modes of operation. From process 

monitoring perspective, it would make sense to draw separate monitoring boundaries around 

the two clusters; doing so would clearly identify the red-colored data-point as an outlier or a 

fault. The Conventional PCA-based monitoring, on the other hand, would fail to identify the 

outlier. In subfigure (b), the correlation between the variables is different in the two clusters. 

It would make sense to build separate models for the two clusters to capture the different 

correlation structure. The Conventional PLS model would give inaccurate results. 

 

 
Figure 11.1: Illustrative scenarios for which conventional ML techniques are ill-suited 

 

A few different methodologies have been adopted by the PSE community to monitor 

multimode process operations. Let’s familiarize ourselves quickly with these. 

 

Multiple model approach 

Here, separate models are built for each of the clusters corresponding to the different 

operation modes as shown in the figure below. Once the clusters have been characterized in 

the training data and cluster-wise models have been built, prediction for a new sample can be 

obtained by either only considering the cluster-model most suitable for the new sample or 

combining the predictions from all the models as shown in Figure 11.2.  The decision fusion 

module can also take various forms. For example, for a process monitoring application, a 

simple fusion strategy could be to consider a new sample as a normal sample if atleast one 

of the cluster-models predict so. A different strategy could be to combine the abnormality 

metrics from all the models and make prediction based on this fused metric. Similarly, for soft 

sensing application, response variable prediction from individual models can be weighted and 

combined to provide final prediction.  
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Figure 11.2: Multiple model approach for multimode processes 

 

Lazy or just-in-time learning 

In this approach, the model building exercise is carried out online. When new process data 

come in, relevant data are fetched from the historical dataset that are similar to the incoming 

samples based on some nearest neighborhood criterion. A local model is built using the 

fetched relevant data. The obtained model processes the incoming samples and is then 

discarded. A new local model is built when the next samples come in. 

 

 
Figure 11.3: Steps involved in a just-in-time learning methodology 

Step 1: Cluster determination using training data 

Step 2: Decision Fusion 
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External analysis 

In this strategy, the influence of process variables (called external variables) such as product 

grade, feed flow, etc., that lead to multimode operation is removed from the other ‘main’ 

process variables and then the conventional MSPM techniques are employed on the ensuing 

residuals as shown in the figure below. 

 

 
Figure 11.4: External analysis approach for multimode data 
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Part 4 

Classical Machine Learning Methods for Process 

Monitoring 
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Chapter 12 
Support Vector Machines for Fault Detection  

 
n the previous chapters, we focused on multivariate statistical process monitoring methods 

that modelled process data through extraction of latent variables. In this part of the book, 

we will cover several classical ML techniques that come in handy in building process 

monitoring applications. These techniques do not attempt to build any statistical model of the 

underlying data distribution. Rather, the measurement space itself may be segregated into 

favorable/unfavorable regions, high-density/low-density regions, or pair-wise distances 

maybe computed to generate monitoring metrics, etc. SVM (support vector machine) is one 

such algorithm which excels in dealing with high-dimensional, nonlinear, and small or 

medium-sized data.  

 

SVMs are extremely versatile and can be employed for classification and regression tasks in 

both supervised and unsupervised settings. SVMs, by design, minimize overfitting to provide 

excellent generalization performance. Infact, before ANNs became the craze in ML 

community, SVMs were the toast of the town. Even today, SVM is a must-have tool in every 

ML practitioner’s toolkit. You will find more about SVMs as you work through this chapter. In 

terms of uses in process industry, SVMs have been employed for fault classification, fault 

detection, outlier detection, soft sensing, etc.  We will focus on process monitoring-related 

usage in this chapter. 

 

To understand different aspects of SVMs, we will cover the following topics 

• Fundamentals of SVMs 

• Kernel SVMs 

• SVDD (support vector data description) for unsupervised classification 

• Fault detection via SVDD for semiconductor manufacturing process 
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12.1 SVMs: An Introduction 

 

The classical SVM is a supervised linear technique for solving binary classification problems. 

For illustration, consider Figure 12.1a. Here, in a 2D system, the training data-points belong 

to two distinct (positive and negative) classes. The task is to find a line/linear boundary that 

separates these 2 classes. Two sample candidate lines are also shown. While these lines 

clearly do the stated job, something seems amiss. Each of them passes very close to some 

of the training data-points. This can cause poor generalization: for example, the shown test 

observation ‘A’ lies closer to the positive samples but will get classified as negative class by 

boundary L2. This clearly is undesirable. 

 
Figure 12.1: (a) Training data with test sample A (b) Optimal separating boundary 

The optimal separating line/decision boundary, line L3 in Figure 12.1b, lies as far away as 

possible from either class of data. L3, as shown, lies midway of the support planes (planes 

that pass-through training points closest to the separating boundary). During model fitting, 

SVM simply finds this optimal boundary that corresponds to the maximum margin (distance 

between the support planes). In Figure 12.1, any other orientation or position of L3 will reduce 

the margin and will make L3 closer to one class than to the other. Large margins make model 

predictions robust to small perturbations in the training samples.  

 

Points that lie on the support planes are called support vectors13 and completely determine 

the optimal boundary, and hence the name, support vector machines. In Figure 12.1, if 

support vectors are moved, line L3 may change. However, if any non-support vectors are 

removed, L3 won’t get affected at all. We will see later how the sole dependency on the 

support vectors imparts computational advantage to the SVMs. 

 
13 Calling data-points as vectors may seem weird. While this terminology is commonly used in general SVM literature, 
support vectors refer to the vectors originating from origin with the data-points on support planes as their tips. 
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Chapter 13 
Decision Trees and Ensemble Learning for 

Fault Detection  

 
magine that you are in a situation where even after your best attempts your model could 

not provide satisfactory performance. What if we tell you that there exists a class of 

algorithms where you can combine several ‘versions’ of your ‘weak’ performing models 

and generate a ‘strong’ performer that can provide more accurate and robust predictions 

compared to its constituent ‘weak’ models? Sounds too good to be true? It’s true and these 

algorithms are called ensemble methods.  

 

Ensemble methods are often a crucial component of winning entries in online ML competitions 

such as those on Kaggle. Ensemble learning is based on a simple philosophy that committee 

wisdom can be better than an individual’s wisdom! In this chapter, we will look into how this 

works and what makes ensembles so powerful. We will study popular ensemble methods like 

random forests and XGBoost. 

 

The base constituent models in forests and XGBoost are decision trees which are simple yet 

versatile ML algorithms suitable for both regression and classification tasks. Decision trees 

can fit complex and nonlinear datasets, and yet enjoy the enviable quality of providing 

interpretable results. We will look at all these features in detail. Specifically, we will cover the 

following topics 

• Introduction to decision trees and random forests 

• Introduction to ensemble learning techniques (bagging, Adaboost, gradient boosting) 

• Fault detection and classification for gas boilers using decision trees and XGBoost 

 

 

 

I 



Chapter 13: Decision Trees and Ensemble Learning for Fault Detection 

MLforPSE.com|57 
 

13.1 Decision Trees: An Introduction 

 

Decision trees (DTs) are inductive learning methods which derive explicit rules from data to 

make predictions. They partition the feature space into several (hyper) rectangles and then fit 

a simple model (usually a constant) in each one. As shown in Figure 13.1 for a binary 

classification problem in 2D feature space, the partition is achieved via a series of if-else 

statements. As shown, the model is represented using branches and leaves which lead to a 

tree-like structure and hence the name decision tree model. The questions asked at each 

node make it very clear how the model predictions (class A or class B) are being generated. 

Consequently, DTs become the model of choice for applications where ease of rationalization 

of model results is very important. 

 

 
Figure 13.1: A decision tree with constant model used for binary classification in a 2D space 

 

The trick in DT model fitting lies in deciding which questions to ask in the if-else statements 

at each node of the tree. During fitting, these questions split the feature space into smaller 

and smaller subregions such that the training observations falling in a subregion are similar 

to each-other. The splitting process stops when no further gains can be made or stopping 

criteria have been met. Improper choices of splits will generate a model that does not 

generalize well. In the next subsection, we will study a popular DT training algorithm called 

CART (classification and regression trees) which judiciously determines the splits. 

 

Mathematical background 

CART algorithm creates a binary tree, i.e., at each node two branches are created that split 

the dataset in such a way that overall data ‘impurity’ reduces. To understand this, consider  
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Chapter 14 
Proximity-based Techniques for Fault 

Detection  

 
ost of the anomaly detection techniques that we have studied so far work by finding 

some structure in training dataset, such as the low-dimensional manifold in PCA, 

NOC boundary in SVDD, optimal separating hyperplane in SVM, etc. However, 

another popular class of methods exists that utilizes a very straightforward and natural notion 

of anomalies as data points that are far away or isolated from the NOC data samples; logically, 

these methods are classified as proximity-based methods.  

 

Proximity of a data point can simply be defined as its distance (as done in k-NN method) from 

its neighbors. An abnormal data point lies far away from other NOC data and therefore, its 

nearest neighbors’ distances will be large compared to those for NOC samples. Another 

related but slightly different notion of proximity is the density or number of other data points in 

a local region around a test sample. Local outlier factor (LOF) is a popular method in this 

category wherein samples not lying in dense region are classified as anomalies. The third 

technique, isolation forest (IF), that we will study in this chapter uses the similar notion that 

anomalies are ‘far and between’. Here, the data space is split until each data point gets 

‘isolated’. Anomalies can be isolated easily and require very few splits compared to NOC 

samples that lie close to each other.  

 

You may have realized that these techniques generate interpretable results and are easy to 

understand. Correspondingly, they come in pretty handy to analyze complex system whose 

characteristics may not be well-known a priori. Let’s now get down to business. We will cover 

the following topics 

• Introduction to k-NN technique  

• Introduction to LOF technique 

• Introduction to isolation forest technique 

• Applications of k-NN, LOF, and IF for fault detection in semiconductor manufacturing 

process 
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14.1 KNN: An Introduction  

 

The k-nearest neighbors (k-NN or KNN) algorithm is a versatile technique based on a simple 

intuitive idea that the label/value for a new sample can be obtained from the labels/values of 

closest neighboring samples (in the feature space) from the training dataset. The parameter 

k denotes the number of neighboring samples utilized by the algorithm. As shown in Figure 

14.1, k-NN can be used for both classification and regression. For classification, k-NN assigns 

test sample to the class that appears the most amongst the k neighbors. For regression, the 

predicted output is the average of the value of the k neighbors. Due to its simplicity, k-NN is 

widely used for pattern classification and was included in the list of top 10 algorithms in data 

mining.14 

 

 
Figure 14.1: k-NN illustration for classification (left) and regression (right). Yellow data point 

denotes unknown test sample. The grey-shaded region represents the neighborhood with 3 

nearest samples. 

 

k-NN belongs to the class of lazy learners where models are not built explicitly 

until test samples are received. At the other end of the spectrum, eager 

learners (like, SVM, decision trees, ANN) ‘learn’ explicit models from training 

samples. Unsurprisingly, training is slower, and testing is faster for eager 

learners. KNN requires computing the distance of the test sample from all the 

training samples, therefore, k-NN also falls under the classification of instance-

based learning. Instance-based learners make predictions by comparing the 

test sample with training instances stored in memory. On the other hand, 

model-based learners do not need to store the training instances for making 

predictions. 

 

 
14 Wu et al., Top 10 algorithms in data mining. Knowledge and Information systems, 2008. 
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Part 5 

Artificial Neural Networks for Process Monitoring 
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Chapter 15 
Fault Detection & Diagnosis via Supervised 

Artificial Neural Networks Modeling  

 
t won’t be an exaggeration to say that artificial neural networks (ANNs) are currently the 

most powerful modeling construct for describing generic nonlinear processes. ANNs can 

capture any kind of complex nonlinearities, don’t impose any specific process 

characteristics, and don’t demand specification of process insights prior to model fitting.  

Furthermore, several recent technical breakthroughs and computational advancements have 

enabled (deep) ANNs to provide remarkable results for a wide range of problems. 

Correspondingly, ANNs have re(caught) the fascination of data scientists and the process 

industry is witnessing a surge in successful applications of ML-based process control, 

predictive maintenance, inferential modeling, and process monitoring. 

 

ANNs can be used in both supervised and unsupervised learning settings. While we will cover 

the supervised learning-based FDD applications of ANNs in this chapter, unsupervised 

learning is covered in the next chapter. Supervised fitting of ANN models are applicable if you 

have adequate number of historical faulty samples (so that you can fit a fault classification 

model) or your signals are categorizable into predictors and response variables (so that you 

can fit a regression model and monitor residuals). Different forms of ANN architectures have 

been devised (such as FFNNs, RNNs, CNNs) to deal with datasets with different 

characteristics. CNNS are mostly used with image data and therefore, we will study FFNN 

and RNN in this chapter. 

 

There is no doubt that ANNs have proven to be monstrously powerful. However, it is not easy 

to tame this monster. If the model hyperparameters are not set judiciously, it is very easy to 

end up with disappointing results. The reader is referred to Part 3 of Book 1 of this series for 

a detailed exposition on ANN training strategies and different facets of ANN models. In this 

chapter, the focus is on exposing the user to how ANNs can be used to build process 

monitoring applications. Specifically, the following topics are covered  

• Introduction to ANNs 

• Introduction to RNNs 

• Process monitoring using ANNs via external analysis  
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15.1 ANN: An Introduction  

 

Artificial neural networks (ANNs) are nonlinear empirical models which can capture complex 

relationships between input-output variables via supervised learning or recognize data 

patterns via unsupervised learning.  Architecturally, ANNs were inspired by human brain and 

are a complex network of interconnected neurons as shown in Figure 15.1.  An ANN consists 

of an input layer, a series of hidden layers, and an output layer. The basic unit of the network, 

neuron, accepts a vector of inputs from the source input layer or the previous layer of the 

network, takes a weighted sum of the inputs, and then performs a nonlinear transformation to 

produce a single real-valued output. Each hidden layer can contain any number of neurons.  

 
Figure 15.1: Architecture of a single neuron and feedforward neural network with 2 hidden layers 

 

The network shown in Figure 15.1 is an example of a fully-connected feed-forward neural 

network (FFNN), the most common type of ANN. In FFNN, signals flow in only one direction, 

from the input layer to the output layer via hidden layers. Neurons between consecutive layers 

are connected fully pairwise and neurons within a layer are not connected.  

 

                                 What is deep learning 

In a nutshell, using an ANN with a large number of hidden layers to find 

relationship/pattern in data is deep learning (technically, ≥ 2 hidden layers 

implies a deep neural network (DNN)). Several recent algorithmic 

innovations have overcome the model training issues for DNNs which 

have resulted in the DNN-led AI revolution we are witnessing today. 

Nonlinear mapping 

f(.) 
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Chapter 16 
Fault Detection & Diagnosis via Unsupervised 

Artificial Neural Networks Modeling  

 

n the previous chapter, we looked at supervised fitting of artificial neural networks where 

either the faults labels were available for historical samples or the process variables were 

divided into predictors and response variable sets. However, you are very likely to 

encounter situations where you only have NOC samples in your training dataset without any 

predictor/response division. In Part 3 of this book, we studied a powerful technique suitable 

for such datasets, called PCA; PCA, however, is limited to linear processes. Nonetheless, the 

underlying mechanism of extracting the most representative features of training dataset and 

compressing it into a feature space with reduced dimensionality need not be limited to linear 

systems. ANNs excel at handling nonlinear systems and extracting hidden patterns in high-

dimensional datasets. Unsurprisingly, clever neural network-based architectures have been 

devised to enable unsupervised fitting of nonlinear datasets. Two popular models in this 

category are autoencoders (AEs) and self-organizing maps (SOMs) 

 

Autoencoders are ANN-based counterparts of PCA for nonlinear processes. Here, low-

dimensional latent feature space is derived via nonlinear transformation and, just like we did 

for PCA, the systematic variations in the feature space and the reconstruction errors are 

handled separately to provide the monitoring statistics. Autoencoders are very popular for 

building FDD solutions for nonlinear processes. They are also commonly used to provide 

intermediate low-dimensional features which are then used for subsequent modeling 

(clustering, fault classification, etc.). SOM is another variant of neural network-based 

architecture that project a high-dimensional dataset onto a 2D grid (yes, you read that right!). 

Here, latent variables are not derived, albeit the focus is on ensuring that the topology of the 

projected data is similar to that in the original measurement space. This feature renders SOMs 

very useful for data visualization, clustering, and fault detection applications.  

 

We will undertake in depth study of both these powerful techniques in this chapter. 

Specifically, the following topics are covered  

• Introduction to autoencoders and self-organizing maps 

• Fault detection and diagnosis using autoencoders: application to FCCU process 

• Fault detection and diagnosis using SOMs: application to semiconductor dataset 

I 
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16.1 Autoencoders: An Introduction  

 

An autoencoder (AE) in its basic form is a 3-layered ANN consisting of an input layer, a hidden 

layer, and an output layer as shown in Figure 16.1. An AE takes an input 𝑥 ∈  ℝ𝑛 and predicts 

a reconstructed 𝑥̂  ∈  ℝ𝑛 as an output. To prevent the network from trivially copying 𝑥 to 𝑥̂, the 

hidden layer is constrained to be much smaller than n (the number of neurons in the hidden 

layer, say m, gives the dimension of the latent/feature space). This forces the network to 

capture only the systematic variations in input data and learn only the most representative 

features as the latent variables. The nonlinear activation function of the neurons in the hidden 

layer enables the latent variables to be nonlinearly related to the input variables. During model 

fitting, the gap between 𝑥 and 𝑥̂ (termed reconstruction error) is minimized to find network 

parameters. The basic AE network can be made deeper by adding more hidden layers 

resulting in deep (or stacked) autoencoders.  

 

 
Figure 16.1: Autoencoder architecture 
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The symmetrical and sandwich nature of the deep AE architecture should be apparent 

wherein the sizes of the layers first decrease and then increase. Care must be taken though 

to not use too many hidden layers; otherwise, the network will overfit and may simply learn 

the identity mapping from 𝑥 to 𝑥̂! Moreover, in the previous figure, you will notice that AE 

architecture is divide into an encoder part and a decoder part. An encoder projects or codify 

an input sample x to lower dimensional feature h. The decoder maps the feature vector back 

to the input space. The encoder-decoder form  makes the AR architecture very flexible. Once 

an AE has been trained, one can use the encoder as a standalone network to obtain the latent 

variables. Moreover, you are not limited to using only FFNN in the encoders and decoders. 

RNNs and CNNs are also frequently employed. RNN-based AE is used as a nonlinear 

counterpart of dynamic PCA.  

 

 

Vanilla AE vs Denoising AE 

The form of autoencoder we saw in Figure 16.1 is the conventional or vanilla form wherein 

the network is forced to find patterns in data by constraining the size of coding/latent 

variable (m) to be less than the size of input variable (n). This is also called an 

undercomplete autoencoder. An alternative way of forcing an autoencoder to learn only 

the systematic variation in data is by corrupting input data by adding synthetic noise and 

then training the network to reconstruct the uncorrupted input. Such autoencoders are 

called denoising autoencoders and its representative architecture is shown below. Note 

that we did not explicitly represent encoder having number of neurons in hidden layer less 

than the number of input variables. Denoising AE allow having 𝑚 ≥ 𝑛.  
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Dimensionality reduction via autoencoders 

 

To see autoencoders in action, let’s apply it for the dimensionality reduction of a simulated 

dataset from a fluid catalytic cracking unit (FCCU15) shown in Figure 16.2. FCCUs are critical 

units in modern oil refineries and convert heavy hydrocarbons into lighter and valuable 

products such as LPG, gasoline, etc. As shown, the FCCU operation involves catalytic 

reaction, catalyst regeneration, and distillation. A total of 46 signals are made available as 

outputs (recorded every minute). Data has been provided in 7 CSV files. Each file contains 

data from one simulation. One of the CSV files contain NOC data over a period of 7 days with 

varying feed flow. Five faults have been simulated one at a time in 5 separate simulations. 

We will work with the 7 days of NOC data. 

 

 
Figure 16.2: Fluid catalytic cracking unit with available measurements 

 

We know that most of the variability in the data is driven from the variations in the feed flow 

and therefore, we will attempt to generate a 1D latent space (m=1).  

 

# import required packages 

import numpy as np, pandas as pd, matplotlib.pyplot as plt 

import tensorflow 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler 

 

 
15 Details on the system and datasets available are provided in detail at https://mlforpse.com/fccu-dataset/.  
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Part 6 

Vibration-based Condition Monitoring 
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Chapter 17 
Vibration-based Condition Monitoring: Signal 

Processing and Feature Extraction  

 
otating machinery, which includes motors, compressors, pumps, turbines, fans, etc., 

form the backbone of industrial operations. Unsurprisingly, a large fraction of operation 

downtime can be attributed to the failures of these machines. Over the last decade, 

the process industry has adopted predictive maintenance as the means to proactively handle 

these failures and the technique that has largely become synonymous with predictive 

maintenance is vibration-based condition monitoring (VCM). All rotating machines exhibit 

vibratory motions and different kind of faults produce characteristic vibratory signatures. This 

makes VCM a reliable and effective tool for health management of rotating equipment. 

Considering the importance of VCM in process industry, its different aspects are covered in 

this part of the book. 

 

Vibrations are usually measured at very high frequency and the large volume of data makes 

analysis of raw data difficult. Correspondingly, processing vibration data and extracting 

meaningful features that can provide early signs of failures become very crucial. Traditionally, 

these features have been analyzed by vibration experts. However, in recent times, several 

successful applications of ML-based VCM have been reported. All the techniques that we 

have studied in the previous parts of the book can be used for VCM. While we will look at ML-

based VCM in the next chapter, this chapter sets the foundations for VCM and covers vibration 

data processing and feature extraction. 

 

Over the years, VCM practitioners and researchers have fine-tuned the art of vibration 

monitoring and have come up with several specialized and advanced techniques. Arguably, 

it is easy for a beginner to feel ‘lost’ in the world of VCM. The current and the following 

chapters will help provide some order to this seemingly chaotic world. Specifically, the 

following topics are covered  

• Basics of vibrations 

• VCM workflow 

• Spectral analysis of vibration signal 

• Time domain, frequency domain, and time-frequency domain feature extraction 

 

R 
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17.1 Vibration: A Gentle Introduction  

 

Vibrations are simply back and forth motion of machines around their position of rest. All 

rotating machines (motors, blowers, chillers, compressors, turbines, etc.) exhibit vibratory 

motion under normal and faulty conditions. Figure 17.1 shows a representative setup for 

vibration sensing of an industrial machine. The sensors (transducers) convert vibratory motion 

(of displacement, velocity, or acceleration) into analogue electrical signals which are digitized 

and stored. The figure below shows how the recorded signal looks like on a time-axis for a 

machine with gradually degrading condition. The increasing vibration levels indicate 

underlying machine issues. 

 

 
Figure 17.1: Representative vibration monitoring system16 

 

The components of rotating machines (rotors, bearings, gears) undergo different types of 

failures due to well-studies causes such as mechanical looseness, misalignment, cracks, etc. 

 
16 Romanssini et al., A Review on Vibration Monitoring Techniques for Predictive Maintenance of Rotating Machinery. 
Eng, 2023. This article is an open access article distributed under the terms and conditions of the Creative Commons 
Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 

Motor 



Chapter 17: Vibration-based Condition Monitoring: Signal Processing and Feature Extraction 

MLforPSE.com|74 
 

 

 

 

 

 

 

 

 

 

 

Rest of the Chapter 17 not shown in this preview 



 

75 
 

 

 

Chapter 18 
Vibration-based Condition Monitoring: Fault 

Detection & Diagnosis  

 
ibration-based condition monitoring was already a widely adopted technique in process 

industry long before ML craze took over the manufacturing world. The International 

Organization for Standardization (ISO) has come up with alarm limits for vibration RMS 

for different classes of rotating machines. Additionally, VCM researchers have worked 

diligently to discover the characteristics signatures of failures in different components of a 

rotating machines. Correspondingly, several rules of thumb and heuristics have been devised 

to pinpoint root causes of faults using vibration features. However, these heuristics do not 

cover all possible fault scenarios and a vibration expert is still required to conduct analysis 

and interpretation of vibration signal features. Fortunately, the advent of machine learning has 

made VCM more accessible to generic process data scientists.   

 

Several different types of ML models have been reported in VCM literature for fault 

classification, fault detection, and fault diagnosis. For example, fault detection applications 

have been built by using the whole spectrum (or waveform) as input to an autoencoder or 

spectrogram image as input to a CNN (convolutional neural network) model.  ML models don 

the cap of a vibration expert to find the patterns in vibration signal, distinguish between NOC 

and abnormal vibrations, and discriminate between different fault conditions. In this chapter, 

we will look at one such implementation of ML-based VCM. Specifically, the following topics 

are covered  

• VCM workflow 

• Classical approaches for VCM 

• SVM-based fault classification of motors 
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18.1 VCM Workflow: Revisited  

 

Vibration signals contain indicators of machine faults. Previously, we saw the steps commonly 

taken to ‘amplify’ these indicators through judicious extraction of features. In this chapter, we 

will focus on how these features are used to make inferences regarding health of rotating 

machinery. Figure 18.1 shows some of the approaches commonly employed. The classical 

approaches include, amongst others, simply looking for the presence of harmonics in the 

spectrum and comparing individual features against ISO-recommended thresholds. In recent 

times, ML-based VCM is gradually becoming more popular. Any of the ML techniques that we 

have seen in the previous parts of the book can be employed. 

 

 
Figure 18.1: Vibration condition monitoring workflow - revisited 
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Part 7 

Predictive Maintenance 
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Chapter 19 
Fault Prognosis: Concepts & Methodologies  

 
ll machines eventually break and plant operators have traditionally relied upon regular 

time-based (preventive) maintenance to avoid costly downtimes due to machinery 

failures. Although economically inefficient, preventive maintenance remained the 

default approach in process industry for a long time. Only in recent times, condition-based 

maintenance approach has gained widespread acceptance wherein a machine’s real-time 

data is used to assess the machine’s health, detect failures, and trigger (on-demand) 

maintenance. However, the recent advancement in data mining has brought another step 

change in the mindset of plant reliability personnel: mere detection of machine faults is no 

longer good enough; accurate forecast of the fault’s progression leading to predictive 

maintenance (PdM) is the new vogue. The lure of PdM is obvious – it facilitates advance 

planning of maintenance, better management of spare part’s inventory, etc. Correspondingly, 

PdM is the holy grail that industrial executives are striving for to remain competitive.    

 

PdM, in essence, involves fault prognosis or the prediction of a machine’s health degradation 

over time after detection of incipient faults. Different PdM methodologies are employed 

depending on the availability of fundamental knowledge of fault’s mechanism, historical run-

to-failure data, etc. The dominant PdM approach involves computation of a health indicator 

(HI) that summarizes the state of a machine health and shows a clear degradation trend as 

an incipient fault progresses from incipience to high severity. HI allows computation of RUL 

(remaining useful life) which is the remaining time until fault severity crosses failure threshold 

necessitating the machine being taken out of service.     

 

Several different strategies have been devised for computation of HIs and the subsequent 

RUL estimation. While the RUL estimation strategies are covered in detail in the next chapter, 

this chapter focusses on the data-driven methods for HI computations. Specifically, the 

following topics are covered  

• Concepts and methodologies for PdM 

• Fault prognosis: introduction and workflow 

• Approaches for health indictor computation 

• Fault prognosis case study for wind turbines 

A 
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19.1 Fault Prognosis: Introduction & Workflow  

 

Fault prognosis simply refers to the task of estimating the progression of health degradation 

of a machine17. Fault prognosis kick in after a fault has been detected. The end objective of 

fault prognosis is to estimate the time remaining until fault severity hits failure threshold. A 

machine or an operation unit may be kept in operation (even with faults) until it reaches failure 

conditions. Therefore, estimation of the time remaining or RUL can help plant operators 

maximize an equipment lifetime and plan maintenance judiciously. Figure 19.1 presents the 

different prognostic methodologies that can be employed depending on the level of available 

information about fault mechanism and past fault data.  

 

 
Figure 19.1: Prognostics Methodologies 

 

Among the shown approaches, HI-based approach is very popular. A shown in Figure 19.2, 

a curve showing the current trend of fault severity or health condition is computed. Thereafter, 

the future progression of the curve is predicted to estimate the RUL. In this chapter, we will 

look at how such curves can be generated in  a data-driven way. The strategy for HI forecast 

is covered in detail in the next chapter. 

 
17 Fault prognosis is not limited to health prediction of machines only. It is applicable to a subprocess of a plant and the 
whole plant as well. 
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Figure 19.2: Fault severity and health condition progression with time 
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Chapter 20 
Fault Prognosis: RUL Estimation  

 
n the previous chapter, we introduced the concept of remaining useful life which is simply 

the time remaining until failure of an equipment. Three broad data-based techniques were 

mentioned that are: 1) reliability data-based approach wherein lifespan distribution of 

similar equipment is  utilized to find the expected RUL 2) direct computation of RUL via 

regression-based ML modeling 3) computation of health indicator as an intermediate step. 

The first two approaches require information about the past lifespan of equipment and 

complete run-to-failure histories. However, it is difficult to get these data in process industry 

as very often machines get repaired before they reach failure stages (remember preventive 

maintenance!). This makes HI-based approach more suitable and, unsurprisingly, more 

popular. In the previous chapter, we saw how to compute HI for a wind turbine. We will take 

this case study to completion and show how to estimate the RUL. 

 

Within the HI-based approach, two strategies are widely adopted. If decent amount of past 

run-to-failure data are available, then one can simply pick up the historical HI trend that 

matches the most with the current equipment’s HI trajectory and use the historical lifespan to 

compute the required RUL. This is called similarity-based approach. A popular alternative is 

to simply use the existing HI values of current equipment and fit a curve to it to extrapolate it 

in the future and find when the failure threshold is breached. This is called degradation-based 

approach. We will go into more details into these two strategies in this chapter. Overall, the 

following topics are covered  

• Introduction to RUL 

• Health indicator-based RUL estimation strategies 

• Health indicator degradation modeling for RUL estimation of a wind turbine 

• Deep learning-based direct RUL estimation for a gas turbine 
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20.1 RUL: Revisited  

 

In the previous chapter, we looked at some broad classes of strategies for RUL estimation. 

We also looked at how a health indicator can be calculated. Figure 20.1 reproduces Figure 

19.1 and adds more details regarding HI-based approaches for RUL computation. The figure 

also highlights the four commonly employed strategies. As alluded to earlier, the choice of 

model depends on the type and amount of information available on past failures. If large 

amount of past run-to-failure data are available, then one can build a deep learning model to 

directly predict the RUL. We will see one such application in this chapter.  

 

 
Figure 20.1: Prognostics Methodologies 
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