

テストコードの注入から始めるレガ
シーコードのリファクタリング（サ

ンプル版）

風間裕也　著

2020-12-08版 crabink 発行

はじめに

本書籍を手にとっていただきありがとうございます。

本書籍では、レガシーコードに対しての最初の一歩を踏み出したいと考えている人に向

けて書いた本になります。

想定読者

本書籍では下記のような人を想定読者としています。

• テスト駆動開発（以下、TDD）を知っている
• レガシーコードやリファクタリングとは何か知っている

• 実際の現場でレガシーコードと出会っている

• レガシーコードに対してリファクタリングを行う時に、まず何から手を付ければ良

いのか分からない

• 今後、自分がレガシーコードを作らないように心がけたい

TDDについてよく分からないという方は、書籍『テスト駆動開発』 *1 を読むことをお

すすめします。また、和田卓人さんによるテスト駆動開発の動画 *2 や、TDDBC *3 への

参加もおすすめです。

「レガシーコード」や「リファクタリング」という言葉が分からないという方は、書籍

『レガシーコード改善ガイド』 *4 や書籍『新装版　リファクタリング　既存のコードを安

全に改善する』 *5 *6 を読むことをおすすめします。

*1 書籍『テスト駆動開発』 https://www.amazon.co.jp/dp/B077D2L69C/
*2 TDD Boot Camp 2020 Online #1 基 調 講 演/ラ イ ブ コ ー デ ィ ン グ

https://www.youtube.com/watch?v=Q-FJ3XmFlT8
*3 TDD Boot Camp(TDDBC) http://devtesting.jp/tddbc/
*4 書籍『レガシーコード改善ガイド』 https://www.amazon.co.jp/dp/B01AN97W08
*5 書 籍『 リ フ ァ ク タ リ ン グ 既 存 の コ ー ド を 安 全 に 改 善 す る 』

https://www.amazon.co.jp/dp/B01IGW5MG0/
*6 書 籍『 リ フ ァ ク タ リ ン グ 既 存 の コ ー ド を 安 全 に 改 善 す る（ 第 2 版 ）』

2

本書籍によって身につく内容

本書籍を読み、写経することで、下記の 2点が身につきます。

• 少しずつテストケースを追加して改善していく方法を実感する

• 苦しくないリファクタリングの方法を学ぶ

少しずつテストケースを追加して改善していく方法を実感する

書籍『新装版　リファクタリング　既存のコードを安全に改善する』 *7 の第 1章「リ
ファクタリング-最初の例」の中の節「リファクタリングの第一歩」には下記のように書か
れています。

� �
リファクタリングを開始するとき、最初にすることは常に同じです。対象となるコー

ドについてきちんとしたテスト群を作り上げることです。リファクタリングは非常

に秩序だっていて、新たなバグを生み出しにくくなっていますが、人間が作業する以

上、間違いを犯す可能性があります。このためテストは大切で、きちっとした一連の

テストを用意するべきなのです。� �
このようにリファクタリングにはテストが大切と書いている一方で、実はこの書籍の第

1 章で扱っている題材については、テストコードが一切記載されていません。そのため、
引用した文章内の「きちんとしたテスト群」というのはどんなものなのか想像しづらいと

感じています。特に、レガシーコードに対して「きちんとしたテスト群」を書くというの

はどういうことなのでしょうか。

自分が最近書いたコードに対してのテストであれば、ある程度考えがまとまっているた

め、「きちんとしたテスト群」は書けるでしょう。しかし、別の人や数年前の自分が書い

たレガシーコードに対してのテストの場合、そもそもどんな振る舞いをしている実装コー

ドなのか把握するところから大変になり、「きちんとしたテスト群」を書く難易度が格段

に上がります。

そこで本書籍では、そのようなレガシーコードに対して、「徐々にテストコードを追加

https://www.amazon.co.jp/dp/B0827R4BDW/
*7 書 籍『 リ フ ァ ク タ リ ン グ 既 存 の コ ー ド を 安 全 に 改 善 す る 』

https://www.amazon.co.jp/dp/B01IGW5MG0/

3

する」ことで「少しずつ振る舞いを理解していく」ことによりリファクタリングを行う方

法を紹介していきます。

苦しくないリファクタリングの方法を学ぶ

書籍『Clean Code』*8の執筆にも関わった Tim Ottingerのブログ記事*9*10では、TDD
およびリファクタリングの誤解を色々と書いています。文章のどの部分も示唆に富む素晴

らしい内容ですが、その中から抜粋して引用します。

� �
・TDDループを使い始めたからといって自動的にリファクタリングの使い手になる
わけではありませんが、TDDプロセスは、これらのスキルを学ぶ機会を提供します。
・悪いテストはリファクタリングを妨げます。（中略）悪いテストがあることは、テ

ストがないことよりも悪い場合があります。� �
TDDを行うにはテストが必要であり、リファクタリングを行うときも前提としてテス

トが必要です。しかし、引用した文章にも書いている通り、悪いテストは逆にリファクタ

リングをしづらくしてしまいます。

たまに、「すごい大掛かりな実装コードだったけど、すべてを通るようなテストがあって

良かった。」という話を聞いたりします。ですがこの場合は、そもそも「リファクタリング

しづらいような悪いテストになっていないか」ということを確認した方が良いでしょう。

本書籍では、論理的かつ構造的にテストを組み上げていくことにより、今後、そのコード

を保守するときにも苦しまないようなリファクタリングを行う方法を紹介していきます。

そもそもレガシーコードは作らないようにした方が良いのでは？

本書籍を見つけた人の中には、「そもそもレガシーコードは作らないことが大事」と主

張する人がいるかもしれません。この意見ついては私も賛成です。

ただし、レガシーコードは気付かないうちに増えていくものだと考えています。先ほど

も紹介した Tim Ottingerのブログ記事*11*12から再度抜粋して引用します。

・TDDの目標は、迅速なリファクタリングの環境を作り出すこと。

*8 書籍『Clean Code』 https://www.amazon.co.jp/dp/B078HYWY5X/
*9 Tim Ottingerのブログ記事 https://www.industriallogic.com/blog/tdd-purposes-and-practices/

*10 Tim Ottingerのブログ記事日本語版 https://nihonbuson.hatenadiary.jp/entry/2020/11/20/213000
*11 Tim Ottingerのブログ記事 https://www.industriallogic.com/blog/tdd-purposes-and-practices/
*12 Tim Ottingerのブログ記事日本語版 https://nihonbuson.hatenadiary.jp/entry/2020/11/20/213000

4

・TDDでアサーションが進むことについては納得しますが、優れた設計を強要す
ることは TDDの目的ではありません。
・TDDでは設計を行いませんが、設計を改善するための多くの機会を提供します。

この引用からは、TDDによって自然と綺麗なコードや設計になるわけではなく、あく
までもリファクタリングの機会を提供しているだけであることが示唆されています。

そのため意識しないと、大小の差はあれどレガシーコードは増えていきます。本書籍で

学ぶことによって、増え始めのレガシーコードにも対処することができます。

本書籍で扱うレガシーコードの変更方法

書籍『レガシーコード改善ガイド』では、レガシーコードの変更方法として下記のよう

に書かれています。

1. 変更点を洗い出す
2. テストを書く場所を見つける
3. 依存関係を排除する
4. テストを書く
5. 変更とリファクタリングを行う

本書籍では、この 5つの方法を具体的な例を用いて紹介していきます。

本書籍の読み方

本書籍の構成

本書籍では、下記の 3つの具体的なコードをリファクタリングしていきます。

• 第 1章…テストしづらい部分を分割する
• 第 2章…ロジックを分解して整理する
• 第 3章…要件を元に責務ごとにロジックを分割して整理する

コードの複雑性が単純なものから順番に書かれていますので、第 1章から順番に読み進
めることをオススメします。

5

本書籍の記述方式

本書籍では Javaおよび JUnit5を用いて解説していきますが、基本的な考え方はどの
言語でも似ていると考えていますので、読者の皆さんの言語に置き換えて読んでいただけ

れば幸いです。

また、コードについては変更部分を中心に記載しています。例えば、下記のように記載

します。

リスト 1: 記載の仕方

....
public void sampleMethod(){

hoge();
fuga();

}
....

「....」は省略を表します。....の前、もしくは....の後にはそれまでに出てきたロジック
が変更されずに残っていることを示しています。

取り消し線の行は今回の変更によって消去された行を示しています。太字の行は今回の

変更によって追加された行を示しています。

つまり今回の例の場合、「hoge();」メソッドから「fuga();」メソッドに変更されたこと
を示しています。

このように変更箇所を中心に記載しているため、本書籍は写経しながら読みすすめるこ

とを強くオススメします。

IDEのショートカット紹介について

本書籍では、書籍『新装版　リファクタリング　既存のコードを安全に改善する』*13 で

記載されているようなリファクタリング方法をいくつか実践しています。

しかし昨今では、それらリファクタリング方法を手作業で行わず、IDEによる入力補助
を使うことで、手早く安全にコードを変更することができます。

そこで、付録では IDEのショートカットによるコードの変更について画像付きで紹介
します。今回は IntelliJの操作でご紹介していますが、他の IDE でも同様の入力補助が

*13 書 籍『 リ フ ァ ク タ リ ン グ 既 存 の コ ー ド を 安 全 に 改 善 す る 』
https://www.amazon.co.jp/dp/B01IGW5MG0/

6

できる場合がありますので、適宜読み替えてください。

本文中に出てくるリファクタリング内容の一部には、付録への参照が付いていますの

で、写経する際は付録の内容を参考にして IDEの入力補助を用いながらリファクタリン
グを試してみてください。

表紙について

本書籍の表紙は、雲により多くは隠れていて一部だけ建造物が見えている画像*14です。

これは、最初はテストコードが不足してほとんど動作が確認できていない（建造物が見え

ていない）ところから、少しずつテストコードを追加していくことを表現しているように

感じたため、表紙に採用しました。

*14 https://www.pexels.com/photo/view-of-cityscape-325185/ より引用

7

目次

はじめに 2
想定読者 . 2
本書籍によって身につく内容 . 3

少しずつテストケースを追加して改善していく方法を実感する 3
苦しくないリファクタリングの方法を学ぶ 4

本書籍で扱うレガシーコードの変更方法 . 5
本書籍の読み方 . 5

本書籍の構成 . 5
本書籍の記述方式 . 6

IDEのショートカット紹介について . 6
表紙について . 7

第 1章 テストしづらい部分を分割する 11
1.1 題材 . 11
1.2 最初のテストコード . 12
1.3 仕様を理解してテストを作る . 14
1.4 別のテストケースを作る . 14
1.5 依存関係を見つける . 15
1.6 依存関係を削除する . 16

第 2章 ロジックを分解して整理する 17
2.1 題材 . 17

2.1.1 題材元 . 17
2.1.2 初期コード . 17

2.2 とりあえずテストを実行する . 19

8

2.2.1 最初のテストケースを作り、実行時エラーにならないことを確認

する . 19
2.2.2 期待値を入れてテスト実行する 20

第 3章 要件を元に責務ごとにロジックを分割して整理する 21
3.1 題材 . 21

3.1.1 題材元 . 21
3.1.2 要件 . 21
Gilded Rose 要件仕様書 . 21
3.1.3 初期コード . 23

3.2 とりあえずテストを実行する . 26
3.2.1 最初のテストコード . 26

3.3 最初のメソッド切り出し . 26

付録 A IDEの入力補助の画像解説 27

付録 B 参考文献 28

9

第 1章

テストしづらい部分を分割する

1.1 題材

レガシーコードになりがちなコードの 1つとして、現在時刻に依存しているなど、テス
トしづらい状況であるコードがあります。

例えば、以下のようなコードです。*1

リスト 1.1: DeliveryDate.java

1: import java.time.LocalDate;
2: import java.time.Month;
3:
4: public class DeliveryDate {
5: public LocalDate getDeliveryDate(){
6: LocalDate localDate = LocalDate.now();
7: int day = localDate.getDayOfMonth();
8: Month month = localDate.getMonth();
9: int year = localDate.getYear();
10:
11: if(day >= 25){
12: month.plus(1L);
13: } else if (month.equals(Month.DECEMBER) && day >= 20) {
14: month.plus(1L);
15: }
16:
17: int lastDay;

*1 このコードを見て「なんだよ！ 全然複雑じゃないじゃん！ 現場のコードはもっと複雑だから、こんな内
容を見ても意味がないや」と感じた人もいるかもしれません。しかし、このお題で伝えたいことは「複雑
なコードに対処すること」ではなく、「テストコードがないものに対処すること」です。テストコードが
ない状態に対して、一歩でも先に進む方法を今回は紹介します。

11

第 1章テストしづらい部分を分割する

18: if(month.equals(Month.APRIL)) {
19: lastDay = 30;
20: } else if(month.equals(Month.JUNE)){
21: lastDay = 30;
22: } else if(month.equals(Month.SEPTEMBER)){
23: lastDay = 30;
24: } else if(month.equals(Month.NOVEMBER)){
25: lastDay = 30;
26: } else if(month.equals(Month.FEBRUARY)){
27: if(year%4 == 0){
28: lastDay = 29;
29: } else {
30: lastDay = 28;
31: }
32: } else {
33: lastDay = 31;
34: }
35: return LocalDate.of(localDate.getYear(),
36: localDate.getMonth(), lastDay);
37: }
38: }

このコードは、配送日を指定するコードです。6行目で現在日時を挿入し、その日時の
月末を配送日として設定します。しかし、現在日時が下旬や年末の場合は、配送日が次月

に設定されます。

本章ではこのコードに対してリファクタリングを行っていきます。

1.2 最初のテストコード

さて、このようなコードに対して、どのようにテストケースを追加していけば良いで

しょうか。

最初に作るべきテストコードでは「とりあえず動くテスト」を目指します。

今回の場合は以下のようなコードをとりあえず作ってみましょう。

リスト 1.2: DeliveryDateTest.java

import org.junit.jupiter.api.Test;
import static org.junit.jupiter.api.Assertions.*;

class DeliveryDateTest {

12

1.2 最初のテストコード

@Test
void _配送日のテスト() {

new DeliveryDate();
assertEquals(1,1);

}
}

ただ、DeliveryDateクラスを呼び出しただけです。
この状態でテスト実行をしてみましょう。もしもテスト実行して Redになった*2場合、

以下の 2つのどちらかが原因でしょう。

• テストフレームワークの設定自体が間違っている

• DeliveryDateクラスの呼び出しの際に必要な設定が足りない

このうち、他のクラスで同じテストフレームワークを用いて動いていた場合は、1つ目
の原因の可能性は限りなく低いでしょう。つまり、今回のテストコードを実行すること

で、そもそも実装コードを実行できるのか確認することができます。*3

テスト実行して Greenになった場合、次はメソッドを呼び出します。

リスト 1.3: DeliveryDateTest.java

....
@Test
void _配送日のテスト() {

new DeliveryDate();
new DeliveryDate().getDeliveryDate();
assertEquals(1,1);

}
}

最初に書いたテストコードと同様、これも getDeliveryDate()メソッドを実行できるの
か確認することができます。

このようにテストコードを書くことで、実装コードを手軽に試すことができます。しか

*2 テスト実行した結果、成功を「Green」、失敗を「Red」と言います。本書籍では以降「Green」「Red」と
表記します。詳しくは書籍『テスト駆動開発』(https://www.amazon.co.jp/dp/B077D2L69C/)を
参考にしてください。

*3 Redになったとしても、悲観する必要はありません。「設定が足りないことを教えてくれた」と、テスト
コードを書くことによって新情報を得られたことを喜ぶべきです。

13

第 1章テストしづらい部分を分割する

も一度書くと、自動で何度も実行することができます。

JaSST’18 Tokyo 招待講演 *4 で、柴田芳樹さんは下記の発言をしていますが、今回の

過程を写経すると実感ができると思います。

� �
Unitテスト作成は自動でデバッグしている感覚
TDDは常に実装する感覚� �

1.3 仕様を理解してテストを作る

次は実装コードを見ながら期待値を当てはめていきます。

リスト 1.4: DeliveryDateTest.java

....
@Test
void _配送日のテスト() {

new DeliveryDate().getDeliveryDate();
LocalDate actualDate = new DeliveryDate().getDeliveryDate();
assertEquals(1,1);
assertEquals(LocalDate.of(2020,9,30),actualDate);

}
}

今回の場合、getDeliveryDateメソッドを呼び出すと、今日の日付を元に月末の日付な
どが返ってきます。今回実行した日付が 2020 年 9 月 13 日だったため、2020 年 9 月 30
日を期待値として設定しました。

1.4 別のテストケースを作る

続いて、実装コードを見て、別のテストケースを作ってみましょう。

*4 JaSST’18 Tokyo 招 待 講 演「 私 が 経 験 し た ソ フ ト ウ ェ ア テ ス ト の 変 遷 」
http://www.jasst.jp/symposium/jasst18tokyo/pdf/A7.pdf

14

1.5 依存関係を見つける

リスト 1.5: DeliveryDateTest.java

....
@Test
void _配送日のテスト() {
void _小の月の月末になる場合のテスト() {

LocalDate actualDate = new DeliveryDate().getDeliveryDate();
assertEquals(LocalDate.of(2020,9,30),actualDate);

}

@Test
void _大の月の月末になる場合のテスト() {
LocalDate actualDate = new DeliveryDate().getDeliveryDate();
assertEquals(LocalDate.of(2020,10,31),actualDate);
}

}

小の月の月末のテストケースを元々作っていたので、大の月の月末の場合のテストケー

スも作成しようと考えました。

しかし、両方のテストケースにおける DeliveryDate クラスの呼び出し及び getDeliv-
eryDate メソッドの呼び出しに違いがない（パラメータの設定などを行っていない）た
め、これら 2つのテストケースを実行しようとすると、必ずどちらかのテストが Redに
なります。

つまり、この方法だとうまくいかないことが分かります。このような場合、どうすれば

良いのでしょうか。

1.5 依存関係を見つける

今回のテストがうまく行かない理由を考えてみましょう。

リスト 1.6: DeliveryDate.java

1: import java.time.LocalDate;
2: import java.time.Month;
3:
4: public class DeliveryDate {
5: public LocalDate getDeliveryDate(){
6: LocalDate localDate = LocalDate.now();
7: int day = localDate.getDayOfMonth();
8: Month month = localDate.getMonth();

15

第 1章テストしづらい部分を分割する

9: int year = localDate.getYear();
10:
11: if(day >= 25){
12: month.plus(1L);
13: } else if (month.equals(Month.DECEMBER) && day >= 20) {
14: month.plus(1L);
15: }
16:
17: int lastDay;
18: if(month.equals(Month.APRIL)) {
19: lastDay = 30;
20: } else if(month.equals(Month.JUNE)){
21: lastDay = 30;
22: } else if(month.equals(Month.SEPTEMBER)){
23: lastDay = 30;
24: } else if(month.equals(Month.NOVEMBER)){
25: lastDay = 30;
26: } else if(month.equals(Month.FEBRUARY)){
27: if(year%4 == 0){
28: lastDay = 29;
29: } else {
30: lastDay = 28;
31: }
32: } else {
33: lastDay = 31;
34: }
35: return LocalDate.of(localDate.getYear(),
36: localDate.getMonth(), lastDay);
37: }
38: }

今回、テストケースがうまく行かない最大の理由は 6行目です。LocalDate.now()で現
在の時刻を入れているため、テスト実行日時に依存してしまうのです。

この依存関係を削除する方法を考えましょう。

1.6 依存関係を削除する

（以降をご覧になりたい方はご購入をお願いします。）

16

第 2章

ロジックを分解して整理する

2.1 題材

本章では、無造作にロジックが書かれているものに対してリファクタリングを行ってい

きます。以下のような題材です。

2.1.1 題材元

https://github.com/emilybache/Tennis-Refactoring-Kata
なお、この題材はMITライセンスとなっています。
https://github.com/emilybache/Tennis-Refactoring-Kata/blob/master/license.txt

2.1.2 初期コード

最初に存在しているコードは以下のようなものです。

リスト 2.1: 既存の TennisGame1.java

1: public class TennisGame1 implements TennisGame {
2:
3: private int m_score1 = 0;
4: private int m_score2 = 0;
5: private String player1Name;
6: private String player2Name;
7:
8: public TennisGame1(String player1Name, String player2Name) {
9: this.player1Name = player1Name;
10: this.player2Name = player2Name;
11: }

17

第 2章ロジックを分解して整理する

12:
13: public void wonPoint(String playerName) {
14: if (playerName == "player1")
15: m_score1 += 1;
16: else
17: m_score2 += 1;
18: }
19:
20: public String getScore() {
21: String score = "";
22: int tempScore=0;
23: if (m_score1==m_score2)
24: {
25: switch (m_score1)
26: {
27: case 0:
28: score = "Love-All";
29: break;
30: case 1:
31: score = "Fifteen-All";
32: break;
33: case 2:
34: score = "Thirty-All";
35: break;
36: default:
37: score = "Deuce";
38: break;
39:
40: }
41: }
42: else if (m_score1>=4 || m_score2>=4)
43: {
44: int minusResult = m_score1-m_score2;
45: if (minusResult==1) score ="Advantage player1";
46: else if (minusResult ==-1) score ="Advantage player2";
47: else if (minusResult>=2) score = "Win for player1";
48: else score ="Win for player2";
49: }
50: else
51: {
52: for (int i=1; i<3; i++)
53: {
54: if (i==1) tempScore = m_score1;
55: else { score+="-"; tempScore = m_score2;}
56: switch(tempScore)
57: {
58: case 0:

18

2.2 とりあえずテストを実行する

59: score+="Love";
60: break;
61: case 1:
62: score+="Fifteen";
63: break;
64: case 2:
65: score+="Thirty";
66: break;
67: case 3:
68: score+="Forty";
69: break;
70: }
71: }
72: }
73: return score;
74: }
75: }

2.2 とりあえずテストを実行する

2.2.1 最初のテストケースを作り、実行時エラーにならないことを確認

する

まずはテストコードを作ります*1。これは実装コードが正しいことを担保するためでは

なく、とりあえず実装コードが動くかどうかの確認です。

リスト 2.2: TennisGame1Test.java

import org.junit.jupiter.api.Test;

import static org.junit.jupiter.api.Assertions.assertEquals;

public class TennisGame1Test {
@Test
public void _とりあえずテスト実行() {

new TennisGame1("P1","P2").getScore();
assertEquals(1,1);

*1 題材元には既にテストコードが存在していました。ただし「テストコードが無い状態から着手した例を示
したい」「用意されているテストコードは構造的に表現されていない」という 2 つの理由により、本書籍
ではテストコードが存在しないものとして進めています。

19

第 2章ロジックを分解して整理する

}
}

この時点でテスト実行することで、TennisGame("P1", "P2") というクラス生成や
getScore()メソッドの呼び出しの部分で実行時エラーが起きないことが確認できます。

2.2.2 期待値を入れてテスト実行する

（以降をご覧になりたい方はご購入をお願いします。）

20

第 3章

要件を元に責務ごとにロジックを分
割して整理する

3.1 題材

本章では、複数のやりたい処理が 1つのロジック内に記載されている例に対してリファ
クタリングを行っていきます。

以下のような題材です。

3.1.1 題材元

https://github.com/emilybache/GildedRose-Refactoring-Kata
なお、この題材はMITライセンスとなっています。
https://github.com/emilybache/GildedRose-Refactoring-Kata/blob/master/license.txt

3.1.2 要件

要件として次のように書かれています。（ https://github.com/emilybache/GildedRose-
Refactoring-Kata/blob/master/GildedRoseRequirements.txt に載っている内容を日本
語訳したものになります。）

■コラム: Gilded Rose 要件仕様書
こんにちは、チーム・ギルドローズへようこそ。

我々はアリソンという気さくな宿屋さんが経営する、都会の一等地にある小さな宿

21

第 3章要件を元に責務ごとにロジックを分割して整理する

です。また、最高級の商品のみを仕入れて販売もしています。

残念なことに、商品は賞味期限が近づくにつれ、品質が低下していきます。

在庫を更新するシステムがあります。これは、新たな冒険へと旅立ったリーロイと

いう無神経な性格の人物によって開発されました。

あなたの仕事は、システムに新しい機能を追加して、新しいカテゴリーのアイテム

を販売できるようにすることです。

最初にシステムの紹介をします。

• すべてのアイテムには、アイテムを販売するための残り日数を示す SellIn 値
があります。

• すべてのアイテムには、そのアイテムの価値を示す Quality値があります。
• 毎日の終わりには、私たちのシステムは、すべての項目の両方の値を変更し

ます。

簡単でしょ？ ここからが面白いところです。

• 販売するための残り日数が無くなると、Quality値は 2劣化します。
• Quality値は決してマイナスにはなりません。
• "Aged Brie"は、日が経つほど Quality値が上がっていきます。
• Quality値は 50以上にはなりません。
• "Sulfuras"は伝説のアイテムなので、販売されたり、Quality 値が低下したり
することはありません。

• "Backstage passes"は、"Aged Brie"と同様、SellIn値が近づくにつれてQuality
値が上昇し、10日以内になると毎日 2上がり、5日以内になると毎日 3上がり
ますが、コンサート終了後には 0になります。

最近、"Conjured"アイテムのサプライヤーと契約しました。そのため、システムの
更新が必要です。

• "Conjured"アイテムは、通常のアイテムの 2倍の速さで品質が劣化します。

すべてが正常に動作する限り、update-qualityメソッドに変更を加えたり、新しい
コードを追加したりすることは自由に行ってください。

ただし、Itemクラスや Itemsプロパティは変更しないでください。隅にいるゴブ
リンのものなので、コードの共有所有権を信じていないので、怒り狂ってあなたを一

発で撃ってきます（UpdateQualityメソッドと Itemsプロパティを静的にしても構

22

3.1 題材

いません。）

ただし、"Sulfuras "は伝説のアイテムであるため、Quality値は 80であり、Quality
値が変わることはありません。

3.1.3 初期コード

最初に存在しているコードは以下のようなものです。

リスト 3.1: Item.javaの初期コード

1: package com.gildedrose;
2:
3: public class Item {
4:
5: public String name;
6:
7: public int sellIn;
8:
9: public int quality;
10:
11: public Item(String name, int sellIn, int quality) {
12: this.name = name;
13: this.sellIn = sellIn;
14: this.quality = quality;
15: }
16:
17: @Override
18: public String toString() {
19: return this.name + ", " + this.sellIn + ", " + this.quality;
20: }
21: }

リスト 3.2: GildedRose.javaの初期コード

1: package com.gildedrose;
2:
3: class GildedRose {
4: Item[] items;

23

第 3章要件を元に責務ごとにロジックを分割して整理する

5:
6: public GildedRose(Item[] items) {
7: this.items = items;
8: }
9:
10: public void updateQuality() {
11: for (int i = 0; i < items.length; i++) {
12: if (!items[i].name.equals("Aged Brie")
13: && !items[i].name.equals
14: ("Backstage passes to a TAFKAL80ETC concert")) {
15: if (items[i].quality > 0) {
16: if (!items[i].name.equals(
17: "Sulfuras, Hand of Ragnaros")) {
18: items[i].quality = items[i].quality - 1;
19: }
20: }
21: } else {
22: if (items[i].quality < 50) {
23: items[i].quality = items[i].quality + 1;
24:
25: if (items[i].name.equals
26: ("Backstage passes to a TAFKAL80ETC concert")) {
27: if (items[i].sellIn < 11) {
28: if (items[i].quality < 50) {
29: items[i].quality = items[i].quality + 1;
30: }
31: }
32:
33: if (items[i].sellIn < 6) {
34: if (items[i].quality < 50) {
35: items[i].quality = items[i].quality + 1;
36: }
37: }
38: }
39: }
40: }
41:
42: if (!items[i].name.equals("Sulfuras, Hand of Ragnaros")) {
43: items[i].sellIn = items[i].sellIn - 1;
44: }
45:
46: if (items[i].sellIn < 0) {
47: if (!items[i].name.equals("Aged Brie")) {
48: if (!items[i].name.equals
49: ("Backstage passes to a TAFKAL80ETC concert")) {
50: if (items[i].quality > 0) {
51: if (!items[i].name.equals

24

3.1 題材

52: ("Sulfuras, Hand of Ragnaros")) {
53: items[i].quality = items[i].quality - 1;
54: }
55: }
56: } else {
57: items[i].quality =
58: items[i].quality - items[i].quality;
59: }
60: } else {
61: if (items[i].quality < 50) {
62: items[i].quality = items[i].quality + 1;
63: }
64: }
65: }
66: }
67: }
68: }

なかなかのレガシーコードっぷりです。

また、やりかけのテストコードも存在していました。

リスト 3.3: GildedRoseTest.javaの初期コード

1: package com.gildedrose;
2:
3: import org.junit.jupiter.api.Test;
4:
5: import static org.junit.jupiter.api.Assertions.assertEquals;
6:
7: class GildedRoseTest {
8:
9: @Test
10: void foo() {
11: Item[] items = new Item[] { new Item("foo", 0, 0) };
12: GildedRose app = new GildedRose(items);
13: app.updateQuality();
14: assertEquals("fixme", app.items[0].name);
15: }
16:
17: }

この状態から手を加えていく方法を考えていきます。

25

第 3章要件を元に責務ごとにロジックを分割して整理する

3.2 とりあえずテストを実行する

3.2.1 最初のテストコード

まずは、テスト実行が Greenになるようにテストコードを修正します。

リスト 3.4: GildedRoseTest.javaにある最初のテストコードを Green にする

package com.gildedrose;

import org.junit.jupiter.api.Test;

import static org.junit.jupiter.api.Assertions.assertEquals;

class GildedRoseTest {

@Test
void foo() {

Item[] items = new Item[] { new Item("foo", 0, 0) };
GildedRose app = new GildedRose(items);
app.updateQuality();
assertEquals("fixme", app.items[0].name);
assertEquals("foo", app.items[0].name);

}

}

期待値を"fixme"から"foo"に書き換えただけです。
今回はたまたまテストクラスがありましたが、テストクラスが無い場合でも同様のテス

トを作ることになったでしょう。以前書いたように、ポイントは「まずはテストクラスを

作成して、とりあえずテスト実行をしてみる」です。

3.3 最初のメソッド切り出し

（以降をご覧になりたい方はご購入をお願いします。）

26

付録 A

IDEの入力補助の画像解説

ここでは、本書籍内で出てきたリファクタリング内容について IntelliJを用いた入力補
助の方法を画像つきで解説します。

脚注には、Macの場合のデフォルトのショートカットキーを記載しています。
（以降をご覧になりたい方はご購入をお願いします。）

27

付録 B

参考文献

（以降をご覧になりたい方はご購入をお願いします。）

28

テストコードの注入から始めるレガシーコードのリファクタ
リング（サンプル版）

2020年 12月 8日　 v1.0.0
著　者 風間 裕也

編　集 風間 裕也

発行所 crabink
　

	はじめに
	想定読者
	本書籍によって身につく内容
	本書籍で扱うレガシーコードの変更方法
	本書籍の読み方
	IDEのショートカット紹介について
	表紙について

	第1章 テストしづらい部分を分割する
	1.1 題材
	1.2 最初のテストコード
	1.3 仕様を理解してテストを作る
	1.4 別のテストケースを作る
	1.5 依存関係を見つける
	1.6 依存関係を削除する

	第2章 ロジックを分解して整理する
	2.1 題材
	2.1.1 題材元
	2.1.2 初期コード

	2.2 とりあえずテストを実行する
	2.2.1 最初のテストケースを作り、実行時エラーにならないことを確認する
	2.2.2 期待値を入れてテスト実行する

	第3章 要件を元に責務ごとにロジックを分割して整理する
	3.1 題材
	3.1.1 題材元
	3.1.2 要件
	Gilded Rose 要件仕様書
	3.1.3 初期コード

	3.2 とりあえずテストを実行する
	3.2.1 最初のテストコード

	3.3 最初のメソッド切り出し

	付録A IDEの入力補助の画像解説
	付録B 参考文献

