Venelin Valkov

Hacker’s Guide to
Machine Learning
in Python

v//\\
WS
KK

Nove

With Sklearn, TensorFlow 2 and Keras

Hacker’'s Guide to Machine Learning with
Python

Hands-on guide to solving real-world Machine Learning
problems with Scikit-Learn, TensorFlow 2, and Keras

Venelin Valkov

This book is for sale at http://leanpub.com/Hackers-Guide-to-Machine-Learning-with-Python

This version was published on 2020-07-13

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2019 - 2020 Venelin Valkov

http://leanpub.com/Hackers-Guide-to-Machine-Learning-with-Python
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!

Please help Venelin Valkov by spreading the word about this book on Twitter!
The suggested hashtag for this book is #mlhackers.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

#mlhackers

http://twitter.com
https://twitter.com/search?q=%23mlhackers
https://twitter.com/search?q=%23mlhackers

Also By Venelin Valkov

Hands-On Machine Learning from Scratch
Hacker’s Guide to Neural Networks in JavaScript
Be a Beast

Get SH*T Done with PyTorch

http://leanpub.com/u/curiousily
http://leanpub.com/hmls
http://leanpub.com/deep-learning-for-javascript-hackers
http://leanpub.com/be-a-beast
http://leanpub.com/getting-things-done-with-pytorch

CONTENTS

Contents

End to End Machine Learning Project 1
Define objective/goal 1
Loaddata. 2
Data exploration 3
Preparethedata 9
Buildyourmodel 12
Savethemodel 16
Build REST APT 17
Deploy to production 18
Conclusion 19
References 20

Object Detection 21
Object Detection 21
RetinaNet e 23
Preparing the Dataset 24
Detecting Vehicle Plates 29
Conclusion 35
References 36

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

End to End Machine Learning Project

TL;DR Step-by-step guide to build a Deep Neural Network model with Keras to predict
Airbnb prices in NYC and deploy it as REST API using Flask

This guide will let you deploy a Machine Learning model starting from zero. Here are the steps
you're going to cover:

« Define your goal

« Load data

« Data exploration

« Data preparation

+ Build and evalute your model
« Save the model

+ Build REST API

« Deploy to production

There is a lot to cover, but every step of the way will get you closer to deploying your model to the
real-world. Let’s begin!

Run the modeling code in your browser®

The complete project on GitHub?

Define objective/goal

Obviously, you need to know why you need a Machine Learning (ML) model in the first place.
Knowing the objective gives you insights about:

« Is ML the right approach?

« What data do I need?

« What a “good model” will look like? What metrics can I use?

« How do I solve the problem right now? How accurate is the solution?
« How much is it going to cost to keep this model running?

In our example, we’re trying to predict Airbnb® listing price per night in NYC. Our objective is clear
- given some data, we want our model to predict how much will it cost to rent a certain property
per night.

'https://colab.research.google.com/drive/1YxCmQb2YKh7VuQ_XgPXhEeIM3LpjV-mS
*https://github.com/curiousily/Deploy-Keras- Deep-Learning-Model-with-Flask
*https://www.airbnb.com/

https://colab.research.google.com/drive/1YxCmQb2YKh7VuQ_XgPXhEeIM3LpjV-mS
https://github.com/curiousily/Deploy-Keras-Deep-Learning-Model-with-Flask
https://www.airbnb.com/
https://colab.research.google.com/drive/1YxCmQb2YKh7VuQ_XgPXhEeIM3LpjV-mS
https://github.com/curiousily/Deploy-Keras-Deep-Learning-Model-with-Flask
https://www.airbnb.com/

© 00 N O O b W N =

[T N T N T S N - = (= G G N ¥
N » © © 00 1 O O b W N =~ O

End to End Machine Learning Project

Load data

The data comes from Airbnb Open Data and it is hosted on Kaggle*

Since 2008, guests and hosts have used Airbnb to expand on traveling possibilities and
present more unique, personalized way of experiencing the world. This dataset describes
the listing activity and metrics in NYC, NY for 2019.

Setup

We’ll start with a bunch of imports and setting a random seed for reproducibility:

import numpy as np

import tensorflow as tf

from tensorflow import keras

import pandas as pd

import seaborn as sns

from pylab import rcParams

import matplotlib.pyplot as plt

from matplotlib import rc

from sklearn.model_selection import train_test_split
import joblib

%zmatplotlib inline
%»config InlineBackend. figure_format='retina'

sns.set(style='whitegrid', palette='muted', font_scale=1.5)
rcParams|['figure.figsize'] = 16, 10
RANDOM_SEED = 42

np.random.seed(RANDOM_SEED)
tf.random.set_seed(RANDOM_SEED)

Download the data from Google Drive with gdown:
Ilgdown --id 1aRXGcJ1IkuC6uj1lilgzioDQQS-3GPwM_ --output airbnb_nyc.csv

And load it into a Pandas DataFrame:

“https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data
https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data

1

End to End Machine Learning Project 3
df = pd.read_csv('airbnb_nyc.csv')

How can we understand what our data is all about?

Data exploration

This step is crucial. The goal is to get a better understanding of the data. You might be tempted
to jumpstart the modeling process, but that would be suboptimal. Looking at large amounts of
examples, looking for patterns and visualizing distributions will build your intuition about the data.
That intuition will be helpful when modeling, imputing missing data and looking at outliers.

One easy way to start is to count the number of rows and columns in your dataset:

df.shape

(48895, 16)

We have 48,895 rows and 16 columns. Enough data to do something interesting.

Let’s start with the variable we're trying to predict price. To plot the distribution, we’ll use
distplot():

sns.distplot(df.price)

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

End to End Machine Learning Project 4

0.0040

0.0035

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000 \J
0 2000 4000 6000 8000 10000

price

We have a highly skewed distribution with some values in the 10,000 range (you might want to
explore those). We'll use a trick - log transformation:

1 sns.distplot(np.logip(df.price))

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

End to End Machine Learning Project 5

0.6

0.5

0.4

0.3

0.2

0.1

0.0

price

This looks more like a normal distribution. Turns out this might help your model better learn the
data’. You’ll have to remember to preprocess the data before training and predicting.

The type of room seems like another interesting point. Let’s have a look:

sns.countplot(x='room_type', data=df)

*https://datascience.stackexchange.com/questions/40089/what-is-the-reason-behind- taking-log-transformation- of-few- continuous-
variables

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://datascience.stackexchange.com/questions/40089/what-is-the-reason-behind-taking-log-transformation-of-few-continuous-variables
https://datascience.stackexchange.com/questions/40089/what-is-the-reason-behind-taking-log-transformation-of-few-continuous-variables
https://datascience.stackexchange.com/questions/40089/what-is-the-reason-behind-taking-log-transformation-of-few-continuous-variables
https://datascience.stackexchange.com/questions/40089/what-is-the-reason-behind-taking-log-transformation-of-few-continuous-variables

End to End Machine Learning Project 6

25000

20000

15000

count

10000

5000

Private room Entire home/apt Shared room
room_type

Most listings are offering entire places or private rooms. What about the location? What neighbor-
hood groups are most represented?

1 sns.countplot(x="'neighbourhood_group', data=df)

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

End to End Machine Learning Project 7

20000

15000

count

10000

5000

Brooklyn Manhattan Queens Staten Island Bronx
neighbourhood_group

As expected, Manhattan leads the way. Obviously, Brooklyn is very well represented, too. You can
thank Mos Def, Nas, Masta Ace, and Fabolous for that.

Another interesting feature is the number of reviews. Let’s have a look at it:

1 sns.distplot(df.number_of_reviews)

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

End to End Machine Learning Project 8

0.05

0.04

0.03

0.02

0.01

0.00 J
0 100 200 300 400 500 600

number_of_reviews

This one seems to follow a Power law?® (it has a fat tail). This one seems to follow a Power law” (it has
a fat tail). There seem to be some outliers (on the right) that might be of interest for investigation.

Finding Correlations

The correlation analysis might give you hints at what features might have predictive power when
training your model.

Remember, Correlation does not imply causation®
Computing Pearson correlation coefficient’ between a pair of features is easy:
corr_matrix = df.corr()

Let’s look at the correlation of the price with the other attributes:

“https://en.wikipedia.org/wiki/Power_law
"https://en.wikipedia.org/wiki/Power_law
®https://en.wikipedia.org/wiki/Correlation_does_not_imply_causation
*https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Power_law
https://en.wikipedia.org/wiki/Power_law
https://en.wikipedia.org/wiki/Correlation_does_not_imply_causation
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Power_law
https://en.wikipedia.org/wiki/Power_law
https://en.wikipedia.org/wiki/Correlation_does_not_imply_causation
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

End to End Machine Learning Project 9

1 price_corr = corr_matrix['price’]

2 price_corr.iloc[price_corr.abs().argsort()]

1 latitude ©.033939
2 minimum_nights 0.042799
3 number_of_reviews -0.047954
4 calculated_host_listings_count 0.057472
5 availability_365 0.081829
6 longitude -0.150019
7 price 1.000000

The correlation coefficient is defined in the -1 to 1 range. A value close to 0 means there is no
correlation. Value of 1 suggests a perfect positive correlation (e.g. as the price of Bitcoin increases,
your dreams of owning more are going up, too!). Value of -1 suggests perfect negative correlation
(e.g. high number of bad reviews should correlate with lower prices).

The correlation in our dataset looks really bad. Luckily, categorical features are not included here.
They might have some predictive power too! How can we use them?

Prepare the data

The goal here is to transform the data into a form that is suitable for your model. There are several
things you want to do when handling (think CSV, Database) structured data:

« Handle missing data

« Remove unnecessary columns

« Transform any categorical features to numbers/vectors
+ Scale numerical features

Missing data
Let’s start with a check for missing data:

1 missing = df.isnull().sum()
2 missing[missing > 0] .sort_values(ascending=False)

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Bw N

W N

End to End Machine Learning Project 10

reviews_per_month 10052
last_review 10052
host_name 21
name 16

We'll just go ahead and remove those features for this example. In real-world applications, you
should consider other approaches.

df = df.drop([
'id', 'name', 'host_id', 'host_name',
'reviews_per_month', 'last_review', 'neighbourhood'
], axis=1)

We’re also dropping the neighbourhood, host id (too many unique values), and the id of the listing.
Next, we're splitting the data into features we’re going to use for the prediction and a target variable

y (the price):

X = df.drop('price', axis=1)
y = np.logip(df.price.values)

Note that we're applying the log transformation to the price.

Feature scaling and categorical data

Let’s start with feature scaling’. Specifically, we’ll do min-max normalization and scale the features
in the 0-1 range. Luckily, the MinMaxScaler'* from scikit-learn does just that.

But why do feature scaling at all? Largely because of the algorithm we’re going to use to train our
model*” will do better with it.

Next, we need to preprocess the categorical data. Why?

Some Machine Learning algorithms can operate on categorical data without any preprocessing (like
Decision trees, Naive Bayes). But most can’t.

Unfortunately, you can’t replace the category names with a number. Converting Brooklyn to 1 and
Manbhattan to 2 suggests that Manhattan is greater (2 times) than Brooklyn. That doesn’t make sense.
How can we solve this?

We can use One-hot encoding™. To get a feel of what it does, we’ll use OneHotEncoder'* from
scikit-learn:

"%https://en.wikipedia.org/wiki/Feature_scaling
"https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing. MinMaxScaler.html
?https://arxiv.org/abs/1502.03167

https://en.wikipedia.org/wiki/One-hot
“https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Feature_scaling
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://en.wikipedia.org/wiki/One-hot
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://en.wikipedia.org/wiki/Feature_scaling
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://arxiv.org/abs/1502.03167
https://en.wikipedia.org/wiki/One-hot
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html

a b W N -

O© 00 I O O b W N =

SN
N =~ O

End to End Machine Learning Project 11

from sklearn.preprocessing import OneHotEncoder
data = [['Manhattan'], ['Brooklyn']]

OneHotEncoder (sparse=False).fit_transform(data)

array([[0., 1.],
(1., ©.1])

Essentially, you get a vector for each value that contains 1 at the index of the category and 0 for
every other value. This encoding solves the comparison issue. The negative part is that your data
now might take much more memory.

All data preprocessing steps are to be performed on the training data and data we’re going to receive
via the REST API for prediction. We can unite the steps using make_column_transformer()**:

from sklearn.preprocessing import MinMaxScaler, OneHotEncoder

from sklearn.compose import make_column_transformer

transformer = make_column_transformer (
(MinMaxScaler(), |
"latitude', 'longitude', 'minimum_nights',
'number_of_reviews', 'calculated_host_listings_count', 'availability_365'

D,

(OneHotEncoder (handle_unknown="ignore"), |
"'neighbourhood_group', 'room_type'

D)

We enumerate all columns that need feature scaling and one-hot encoding. Those columns will be
replaced with the ones from the preprocessing steps. Next, we’ll learn the ranges and categorical
mapping using our transformer:

transformer. fit(X)
Finally, we’ll transform our data:
transformer.transform(X)

The last thing is to separate the data into training and test sets:

Phttps://scikit-learn.org/stable/modules/generated/sklearn.compose.make_column_transformer.html

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://scikit-learn.org/stable/modules/generated/sklearn.compose.make_column_transformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.compose.make_column_transformer.html

End to End Machine Learning Project 12

X_train, X_test, y_train, y_test =\
train_test_split(X, y, test_size=0.2, random_state=RANDOM_SEED)

You're going to use only the training set while developing and evaluating your model. The test set

will be used later.

That’s it! You are now ready to build a model. How can you do that?

Build your model

Finally, it is time to do some modeling. Recall the goal we set for ourselves at the beginning:
We're trying to predict Airbnb® listing price per night in NYC

We have a price prediction problem on our hands. More generally, we’re trying to predict a numerical
value defined in a very large range. This fits nicely in the Regression Analysis'” framework.

Training a model boils down to minimizing some predefined error. What error should we measure?

Error measurement

We'll use Mean Squared Error'® which measures the difference between average squared predicted
and true values:

n

_ 1 J— A. 2
MSE = 30 - ¥)

where n is the number of samples, Y is a vector containing the real values and \hat{Y} is a
vector containing the predictions from our model.

Now that you have a measurement of how well your model is performing is time to build the model
itself. How can you build a Deep Neural Network with Keras?

Build a Deep Neural Network with Keras

Keras™ is the official high-level API for TensorFlow?’. In short, it allows you to build complex models
using a sweet interface. Let’s build a model with it:

*https://www.airbnb.com/
"https://en.wikipedia.org/wiki/Regression_analysis
®https://en.wikipedia.org/wiki/Mean_squared_error
https://keras.io/

**https://www.tensorflow.org/

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://www.airbnb.com/
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Mean_squared_error
https://keras.io/
https://www.tensorflow.org/
https://www.airbnb.com/
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Mean_squared_error
https://keras.io/
https://www.tensorflow.org/

O© 00 I O O b W N =

NN
= o

Bow N -

© 00 N O O b W N =

End to End Machine Learning Project 13

model = keras.Sequential()
model .add(keras. layers.Dense(
units=64,
activation="relu",
input_shape=[X_train.shape[1]]
))
model .add(keras. layers.Dropout(rate=0.3))
model .add(keras. layers.Dense(units=32, activation="relu"))
model .add(keras. layers.Dropout(rate=0.5))

model .add(keras. layers.Dense(1))

The sequential API allows you to add various layers to your model, easily. Note that we specify
the input_size in the first layer using the training data. We also do regularization using Dropout
layers®.

How can we specify the error metric?

model . compile(
optimizer=keras.optimizers.Adam(0.0001),

loss = 'mae’,

metrics = ['mae'])

The compile()? method lets you specify the optimizer and the error metric you need to reduce.

Your model is ready for training. Let’s go!

Training

Training a Keras model involves calling a single method - fit()?*:

BATCH_SIZE 32

early_stop = keras.callbacks.EarlyStopping(
monitor="'val_mae',
mode="min",

patience=10

history = model. fit(

*'https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dropout
*https://www.tensorflow.org/api_docs/python/tf/keras/Model#compile
“https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dropout
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dropout
https://www.tensorflow.org/api_docs/python/tf/keras/Model#compile
https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dropout
https://www.tensorflow.org/api_docs/python/tf/keras/Model#compile
https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit

10
11
12
13
14
15
16
17

End to End Machine Learning Project 14

x=X_train,

y=y_train,
shuffle=True,
epochs=100,
validation_split=0.2,
batch_size=BATCH_SIZE,
callbacks=[early_stop]

We feed the training method with the training data and specify the following parameters:

« shuffle - random sort the data

« epochs - number of training cycles

- validation_split - use some percent of the data for measuring the error and not during training

« batch_size - the number of training examples that are fed at a time to our model

« callbacks - we use EarlyStopping® to prevent our model from overfitting when the training
and validation error start to diverge

After the long training process is complete, you need to answer one question. Can your model make
good predictions?

Evaluation

One simple way to understand the training process is to look at the training and validation loss:

**https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping

O O B W N

End to End Machine Learning Project 15

—— Train MSE
Val MSE
8
6
[NN]
0
=
4
2
0
0 20 40 60 80 100

Epoch

We can see a large improvement in the training error, but not much on the validation error. What
else can we use to test our model?

Using the test data

Recall that we have some additional data. Now it is time to use it and test how good our model. Note
that we don’t use that data during the training, only once at the end of the process.

Let’s get the predictions from the model:
y_pred = model.predict(X_test)
And we’ll use a couple of metrics for the evaluation:

from sklearn.metrics import mean_squared_error
from math import sqrt

from sklearn.metrics import r2_score

print(f'MSE {mean_squared_error(y_test, y_pred)}')
print(f'RMSE {np.sgrt(mean_squared_error(y_test, y_pred))}")

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Bsw N

End to End Machine Learning Project 16

MSE ©0.2139184014903989
RMSE ©.4625131365598159

We've already discussed MSE. You can probably guess what Root Mean Squared Error (RMSE)*
means. RMSE allows us to penalize points further from the mean.

Another statistic we can use to measure how well our predictions fit with the real data is the $R"2$
score®. A value close to 1 indicates a perfect fit. Let’s check ours:

print(f'R2 {r2_score(y_test, y_pred)}')

R2 ©0.5478250409482018

There is definitely room for improvement here. You might try to tune the model better and get better
results.

Now you have a model and a rough idea of how well will it do in production. How can you save
your work?

Save the model

Now that you have a trained model, you need to store it and be able to reuse it later. Recall that we
have a data transformer that needs to be stored, too! Let’s save both:

import joblib

joblib.dump(transformer, "data_transformer. joblib")
model .save("price_prediction_model.h5")

The recommended approach of storing scikit-learn models* is to use joblib**. Saving the model
architecture and weights of a Keras model is done with the save()*” method.

You can download the files from the notebook using the following:

*https://en.wikipedia.org/wiki/Root-mean-square_deviation
*https://en.wikipedia.org/wiki/Coefficient_of_determination
*"https://scikit-learn.org/stable/modules/model_persistence. html#persistence-example
*https://joblib.readthedocs.io/en/latest/
*https://www.tensorflow.org/api_docs/python/tf/keras/Sequential#save

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Root-mean-square_deviation
https://en.wikipedia.org/wiki/Coefficient_of_determination
https://en.wikipedia.org/wiki/Coefficient_of_determination
https://scikit-learn.org/stable/modules/model_persistence.html#persistence-example
https://joblib.readthedocs.io/en/latest/
https://www.tensorflow.org/api_docs/python/tf/keras/Sequential#save
https://en.wikipedia.org/wiki/Root-mean-square_deviation
https://en.wikipedia.org/wiki/Coefficient_of_determination
https://scikit-learn.org/stable/modules/model_persistence.html#persistence-example
https://joblib.readthedocs.io/en/latest/
https://www.tensorflow.org/api_docs/python/tf/keras/Sequential#save

Bw N

© 00 N O O b W N =

N = =y
© 0O N O O b W N =~ O

End to End Machine Learning Project 17

from google.colab import files

files.download("data_transformer. joblib")
files.download("price_prediction_model.h5")

Build REST API

Building a REST APT** allows you to use your model to make predictions for different clients. Almost
any device can speak REST - Android, iOS, Web browsers, and many others.

Flask®* allows you to build a REST API in just a couple of lines. Of course, we’re talking about a
quick-and-dirty prototype. Let’s have a look at the complete code:

from math import expml

import joblib

import pandas as pd

from flask import Flask, jsonify, request
from tensorflow import keras

app = Flask(__name__)
model = keras.models.load_model("assets/price_prediction_model.h5")

transformer = joblib.load("assets/data_transformer. joblib")

@app.route("/", methods=["POST"])

def index():
data = request. json
df = pd.DataFrame(data, index=[0])
prediction = model.predict(transformer.transform(df))
predicted_price = expmi(prediction.flatten()[Q])
return jsonify({"price": str(predicted_price)})

The complete project (including the data transformer and model) is on GitHub: Deploy Keras Deep
Learning Model with Flask*?

The API has a single route (index) that accepts only POST requests. Note that we pre-load the data
transformer and the model.

*°https://en.wikipedia.org/wiki/Representational_state_transfer
*thttps://www.fullstackpython.com/flask.html
**https://github.com/curiousily/Deploy-Keras- Deep-Learning-Model-with-Flask

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Representational_state_transfer
https://www.fullstackpython.com/flask.html
https://github.com/curiousily/Deploy-Keras-Deep-Learning-Model-with-Flask
https://github.com/curiousily/Deploy-Keras-Deep-Learning-Model-with-Flask
https://en.wikipedia.org/wiki/Representational_state_transfer
https://www.fullstackpython.com/flask.html
https://github.com/curiousily/Deploy-Keras-Deep-Learning-Model-with-Flask

Bw N

End to End Machine Learning Project 18

The request handler obtains the JSON data and converts it into a Pandas DataFrame. Next, we use
the transformer to pre-process the data and get a prediction from our model. We invert the log
operation we did in the pre-processing step and return the predicted price as JSON.

Your REST API is ready to go. Run the following command in the project directory:
flask run
Open a new tab to test the APIL:

curl -d '{"neighbourhood_group": "Brooklyn", "latitude": 40.64749, "longitude": -73.\

n

97237, "room_type": "Private room", "minimum_nights": 1, "number_of_reviews": 9, "ca\

lculated_host_listings_count": 6, "availability_365": 365}' -H "Content-Type: applic\
ation/json" -X POST http://localhost:5000

You should see something like the following:
{"price":"72.70381414559431"}

Great. How can you deploy your project and allow others to consume your model predictions?

Deploy to production
We’ll deploy the project to Google App Engine®:

App Engine enables developers to stay more productive and agile by supporting popular
development languages and a wide range of developer tools.

App Engine allows us to use Python and easily deploy a Flask app.

You need to:

« Register for Google Cloud Engine account*
+ Google Cloud SDK installed*

Here is the complete app.yaml config:

*https://cloud.google.com/appengine/
**https://cloud.google.com/compute/
**https://cloud.google.com/sdk/install

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://cloud.google.com/appengine/
https://cloud.google.com/compute/
https://cloud.google.com/sdk/install
https://cloud.google.com/appengine/
https://cloud.google.com/compute/
https://cloud.google.com/sdk/install

O© 00 I O O b W N =

NN
= o

End to End Machine Learning Project

entrypoint: "gunicorn -b :$PORT app:app --timeout 500"
runtime: python
env: flex
service: nyc-price-prediction
runtime_config:
python_version: 3.7
instance_class: B1
manual_scaling:
instances: 1
liveness_check:

path: "/liveness_check"
Execute the following command to deploy the project:

gcloud app deploy

Wait for the process to complete and test the API running on production. You did it!

Conclusion

19

Your model should now be running, making predictions, and accessible to everyone. Of course, you
have a quick-and-dirty prototype. You will need a way to protect and monitor your API. Maybe you

need a better (automated) deployment strategy too!

Still, you have a model deployed in production and did all of the following:

« Define your goal

« Load data

« Data exploration

 Data preparation

« Build and evalute your model
« Save the model

« Build REST API

« Deploy to production

How do you deploy your models? Comment down below :)
Run the modeling code in your browser**

The complete project on GitHub*’

**https://colab.research.google.com/drive/1YxCmQb2YKh7VuQ_XgPXhEeIM3LpjV-mS

*"https://github.com/curiousily/Deploy-Keras-Deep-Learning-Model-with-Flask

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://colab.research.google.com/drive/1YxCmQb2YKh7VuQ_XgPXhEeIM3LpjV-mS
https://github.com/curiousily/Deploy-Keras-Deep-Learning-Model-with-Flask
https://colab.research.google.com/drive/1YxCmQb2YKh7VuQ_XgPXhEeIM3LpjV-mS
https://github.com/curiousily/Deploy-Keras-Deep-Learning-Model-with-Flask

End to End Machine Learning Project

References

« Joblib - running Python functions as pipeline jobs*®
« Flask - lightweight web application framework®”
« Building a simple Keras + deep learning REST APT*

**https://joblib.readthedocs.io/en/latest/
**https://palletsprojects.com/p/flask/
“*https://blog.keras.io/building-a-simple-keras-deep-learning-rest-api.html

20

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://joblib.readthedocs.io/en/latest/
https://palletsprojects.com/p/flask/
https://blog.keras.io/building-a-simple-keras-deep-learning-rest-api.html
https://joblib.readthedocs.io/en/latest/
https://palletsprojects.com/p/flask/
https://blog.keras.io/building-a-simple-keras-deep-learning-rest-api.html

Object Detection

TL;DR Learn how to prepare a custom dataset for object detection and detect vehicle
plates. Use transfer learning to finetune the model and make predictions on test images.

Detecting objects in images and video is a hot research topic and really useful in practice. The
advancement in Computer Vision (CV) and Deep Learning (DL) made training and running object
detectors possible for practitioners of all scale. Modern object detectors are both fast and much more
accurate (actually, usefully accurate).

This guide shows you how to fine-tune a pre-trained Neural Network on a large Object Detection
dataset. We'll learn how to detect vehicle plates from raw pixels. Spoiler alert, the results are not
bad at all!

You’ll learn how to prepare a custom dataset and use a library for object detection based on
TensorFlow and Keras. Along the way, we’ll have a deeper look at what Object Detection is and
what models are used for it.

Here’s what will do:

« Understand Object Detection

+ RetinaNet

« Prepare the Dataset

« Train a Model to Detect Vehicle Plates

Run the complete notebook in your browser*'

The complete project on GitHub*?

Object Detection

Object detection*® methods try to find the best bounding boxes around objects in images and videos.
It has a wide array of practical applications - face recognition, surveillance, tracking objects, and
more.

“Thttps://colab.research.google.com/drive/11dnii3sGJaUHPV6 TWImykbeE_O-8VIIN
“*https://github.com/curiousily/Deep- Learning-For-Hackers
“*https://en.wikipedia.org/wiki/Object_detection

https://colab.research.google.com/drive/1ldnii3sGJaUHPV6TWImykbeE_O-8VIIN
https://github.com/curiousily/Deep-Learning-For-Hackers
https://en.wikipedia.org/wiki/Object_detection
https://colab.research.google.com/drive/1ldnii3sGJaUHPV6TWImykbeE_O-8VIIN
https://github.com/curiousily/Deep-Learning-For-Hackers
https://en.wikipedia.org/wiki/Object_detection

Object Detection 22

A lot of classical approaches have tried to find fast and accurate solutions to the problem. Sliding
windows for object localization and image pyramids for detection at different scales are one of the
most used ones. Those methods were slow, error-prone, and not able to handle object scales very
well.

Deep Learning changed the field so much that it is now relatively easy for the practitioner to train
models on small-ish datasets and achieve high accuracy and speed.

Usually, the result of object detection contains three elements:

« list of bounding boxes with coordinates
« the category/label for each bounding box
« the confidence score (0 to 1) for each bounding box and label

How can you evaluate the performance of object detection models?
Evaluating Object Detection

The most common measurement you’ll come around when looking at object detection performance
is Intersection over Union (IoU). This metric can be evaluated independently of the algorithm/model

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Object Detection 23

used.

The IoU is a ratio given by the following equation:

Area of Overlap

loU = Area of Union

IoU allows you to evaluate how well two bounding boxes overlap. In practice, you would use the
annotated (true) bounding box, and the detected/predicted one. A value close to 1 indicates a very
good overlap while getting closer to 0 gives you almost no overlap.

Getting IoU of 1 is very unlikely in practice, so don’t be too harsh on your model.

Mean Average Precision (mAP)

Reading papers and leaderboards on Object Detection will inevitably lead you to an mAP value
report. Typically, you’ll see something like mAP@0.5 indicating that object detection is considered
correct only when this value is greater than 0.5.

The value is derived by averaging the precision of each class in the dataset. We can get the average
precision for a single class by computing the IoU for every example in the class and divide by the
number of class examples. Finally, we can get mAP by dividing by the number of classes.

RetinaNet

RetinaNet, presented by Facebook Al Research in Focal Loss for Dense Object Detection (2017)*,
is an object detector architecture that became very popular and widely used in practice. Why is
RetinaNet so special?

RetinaNet is a one-stage detector. The most successful object detectors up to this point were operating
on two stages (R-CNNs). The first stage involves selecting a set of regions (candidates) that might
contain objects of interest. The second stage applies a classifier to the proposals.

One stage detectors (like RetinaNet) skip the region selection steps and runs detection over a lot of
possible locations. This is faster and simpler but might reduce the overall prediction performance of
the model.

RetinaNet is built on top of two crucial concepts - Focal Loss and Featurized Image Pyramid:

« Focal Loss is designed to mitigate the issue of extreme imbalance between background
and foreground with objects of interest. It assigns more weight on hard, easily misclassified
examples and small weight to easier ones.

+ The Featurized Image Pyramid is the vision component of RetinaNet. It allows for object
detection at different scales by stacking multiple convolutional layers.

“*https://arxiv.org/pdf/1708.02002v2.pdf

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://arxiv.org/pdf/1708.02002v2.pdf
https://arxiv.org/pdf/1708.02002v2.pdf

© 0O N O O & W N =

NN N N P R R N N L s s
W N O O 0N 0O O b Ww N =~

Object Detection 24

Keras Implementation

Let’s get real. RetinaNet is not a SOTA model for object detection. Not by a long shot*’. However,
well maintained, bug-free, and easy to use implementation of a good-enough model can give you
a good estimate of how well you can solve your problem. In practice, you want a good-enough
solution to your problem, and you (or your manager) wants it yesterday.

Keras RetinaNet*° is a well maintained and documented implementation of RetinaNet. Go and have
a look at the Readme to get a feel of what is capable of. It comes with a lot of pre-trained models
and an easy way to train on custom datasets.

Preparing the Dataset

The task we're going to work on is vehicle number plate detection from raw images. Our data
is hosted on Kaggle*” and contains an annotation file with links to the images. Here’s a sample
annotation:

"content": "http://com.dataturks.a96-1i23.o0pen.s3.amazonaws.com/2c9fafb@646e9c o016\
473f1a561002a/77d1£81a-beeb6-48T7c-aff2-0efa31a9925c__ bd7£7862-d727-11eT7-ad30-e18a56\
154311. jpg",

"annotation": [

{
"label": [
"number_plate"
1,
"notes": null,
"points": [
{
"x": 0.7220843672456576,
"y": 0.5879828326180258

1
{
"x": 0.8684863523573201,
"y": ©.6888412017167382
}

1,

"imageWidth": 806,

"imageHeight": 466
}

“*https://paperswithcode.com/sota/object-detection-on-coco
““https://github.com/fizyr/keras-retinanet
“"https://www.kaggle.com/dataturks/vehicle-number-plate-detection

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://paperswithcode.com/sota/object-detection-on-coco
https://github.com/fizyr/keras-retinanet
https://www.kaggle.com/dataturks/vehicle-number-plate-detection
https://paperswithcode.com/sota/object-detection-on-coco
https://github.com/fizyr/keras-retinanet
https://www.kaggle.com/dataturks/vehicle-number-plate-detection

24
25
26

© 00 N O O b W N =

O = = =S
W N O O b W N =~ O

Object Detection 25

] 7

"extras": null

This will require some processing to turn those xs and ys into proper image positions. Let’s start
with downloading the JSON file:

Ilgdown --id 1mTtB8GTWsT74Yeqm@KMExGJZh1eDbzUIT --output indian_number_plates. json
We can use Pandas to read the JSON into a DataFrame:
plates_df = pd.read_json('indian_number_plates.json', lines=True)

Next, we’ll download the images in a directory and create an annotation file for our training data
in the format (expected by Keras RetinaNet):

path/to/image. jpg,x1,yl,x2,y2,class_name

Let’s start by creating the directory:

os.makedirs("number_plates", exist_ok=True)

We can unify the download and the creation of annotation file like so:

dataset = dict()
dataset["image_name"] = list()

dataset["top_x"] = list()
dataset["top_y"] = list()
dataset["bottom_x"] = list()
dataset["bottom_y"] = list()

dataset["class_name"] = list()

counter = 0
for index, row in plates_df.iterrows():

img = urllib.request.urlopen(row["content"])

img = Image.open(img)
img = img.convert('RGB"')

img.save(f'number_plates/licensed_car_{counter}. jpeg', "JPEG")

dataset["image_name"] .append(
f'number_plates/licensed_car_{counter}. jpeg'

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Object Detection

data = row["annotation"]

width = data[@]["imageWidth"]
height = data[0@]["imageHeight"]

dataset["top_x"] .append(
int(round(data[@] ["points"][0@] ["x"

*

width))
)
dataset["top_y"].append(
int(round(data[@] ["points"][@]["y"] * height))
)
dataset["bottom_x"] .append(
int(round(data[@] ["points"][1]["x"]

*

width))

)
dataset["bottom_y"] .append(

int(round(data[@] ["points"][1]["y"]

*

height))
)

dataset["class_name"] .append("license_plate")

counter += 1
print("Downloaded {} car images.".format(counter))

We can use the dict to create a Pandas DataFrame:
df = pd.DataFrame(dataset)

Let’s get a look at some images of vehicle plates:

26

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Object Detection

ARl

27

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Object Detection 28

Preprocessing

We’ve already done a fair bit of preprocessing. A bit more is needed to convert the data into the
format that Keras Retina understands:

path/to/image. jpg,x1,yl,x2,y2,class_name

First, let’s split the data into training and test datasets:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

a b W N -

a ok w N

Object Detection 29

train_df, test_df = train_test_split(
df,
test_size=0.2,
random_state=RANDOM_SEED

We need to write/create two CSV files for the annotations and classes:

ANNOTATIONS_FILE = 'annotations.csv'
CLASSES_FILE = 'classes.csv'

We’ll use Pandas to write the annotations file, excluding the index and header:
train_df.to_csv(ANNOTATIONS_FILE, index=False, header=None)
We'll use regular old file writer for the classes:

classes = set(['license_plate'])

with open(CLASSES_FILE, 'w') as f:
for i, line in enumerate(sorted(classes)):
f.write('{},{}\n'.format(line,i))

Detecting Vehicle Plates

You're ready to finetune the model on the dataset. Let’s create a folder where we’re going to store
the model checkpoints:

os.makedirs("snapshots", exist_ok=True)
You have two options at this point. Download the pre-trained model:
Igdown --id 1wPgOBoSks6bTIs9RzNvZf6HWROkciS8R --output snapshots/resnet50_csv_10.h5

Or train the model on your own:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

=~ O O b W N =

o N O O b W N =

=~ O U s W N

Object Detection 30

PRETRAINED_MODEL = './snapshots/_pretrained_model .h5'

URL_MODEL = 'https://github.com/fizyr/keras-retinanet/releases/download/@.5.1/resnet\
50_coco_best_v2.1.0.h5"
urllib.request.urlretrieve(URL_MODEL, PRETRAINED_MODEL)

print('Downloaded pretrained model to ' + PRETRAINED_MODEL)

Here, we save the weights of the pre-trained model on the Coco*® dataset.

The training script requires paths to the annotation, classes files, and the downloaded weights (along
with other options):

lkeras_retinanet/bin/train.py \
- -freeze-backbone \
--random-transform \

--weights {PRETRAINED_MODEL} \
--batch-size 8 \

--steps 500 \

--epochs 10 \

csv annotations.csv classes.csv

Make sure to choose an appropriate batch size, depending on your GPU. Also, the training might
take a lot of time. Go get a hot cup of rakia, while waiting.

Loading the model

You should have a directory with some snapshots at this point. Let’s take the most recent one and
convert it into a format that Keras RetinaNet understands:

model_path = os.path. join(
'snapshots’,
sorted(os.listdir('snapshots'), reverse=True)|[0]

model = models.load_model(model_path, backbone_name='resnet50")

model = models.convert_model (model)

Your object detector is almost ready. The final step is to convert the classes into a format that will
be useful later:

“®http://cocodataset.org/

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

http://cocodataset.org/
http://cocodataset.org/

Bw N

© 00 N O O & W N =

(RN
= O

© 0O N O O & W N =

I =V
W N s,

Object Detection 31

labels_to_names = pd.read_csv(
CLASSES_FILE,
header=None

).T.loc[@] .to_dict()

Detecting objects

How good is your trained model? Let’s find out by drawing some detected boxes along with the
true/annotated ones. The first step is to get predictions from our model:

def predict(image):
image = preprocess_image(image.copy())
image, scale = resize_image(image)

boxes, scores, labels = model.predict_on_batch(
np.expand_dims(image, axis=0)
boxes /= scale

return boxes, scores, labels

We're resizing and preprocessing the image using the tools provided by the library. Next, we need to
add an additional dimension to the image tensor, since the model works on multiple/batch of images.
We rescale the detected boxes based on the resized image scale. The function returns all predictions.

The next helper function will draw the detected boxes on top of the vehicle image:

THRES_SCORE = 0.6

def draw_detections(image, boxes, scores, labels):
for box, score, label in zip(boxes[Q], scores[Q], labels[Q]):
if score < THRES_SCORE:
break

color = label_color(label)

b = box.astype(int)

draw_box(image, b, color=color)

caption = "{} {:.3f}".format(labels_to_names|[label], score)
draw_caption(image, b, caption)

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

© 00 N O O b W N =

[T T = S G T N S U Y
S © 00 N O O b W N =~ O

Object Detection

We’ll draw detections with a confidence score above 0.6. Note that the scores are sorted high to low,

so breaking from the loop is fine.

Let’s put everything together:

def show_detected_objects(image_row):

img_path = image_row.image_name

image = read_image_bgr(img_path)

boxes, scores, labels = predict(image)

draw

draw

image.copy()
cv2.cvtColor(draw, cv2.COLOR_BGR2RGB)

true_box = [

image_row.x_min, image_row.y_min, image_row.x_max, image_row.y_max

]

draw_box(draw, true_box, color=(255, 255, 0))

draw_detections(draw, boxes, scores, labels)

plt.axis('off")
plt.imshow(draw)
plt.show()

Here are the results of calling this function on two examples from the test set:

32

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Object Detection

33

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Object Detection 34

Things look pretty good. Our detected boxes are colored in blue, while the annotations are in yellow.
Before jumping to conclusions, let’s have a look at another example:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Object Detection 35

\ ..-:ﬂ " £
CarsAccessories.in

Our model didn’t detect the plate on this vehicle. Maybe it wasn’t confident enough? You can try to
run the detection with a lower threshold.

Conclusion

Well done! You've built an Object Detector that can (somewhat) find vehicle number plates in
images. You used a pre-trained model and fine tuned it on a small dataset to adapt it to the task
at hand.

Here’s what you did:

« Understand Object Detection

» RetinaNet

« Prepare the Dataset

« Train a Model to Detect Vehicle Plates

Can you use the concepts you learned here and apply it to a problem/dataset you have?

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Object Detection 36

Run the complete notebook in your browser*

The complete project on GitHub*°

References

« Keras RetinaNet*!

« Vehicle Number Plate Detection®

« Object detection: speed and accuracy comparison®
« Focal Loss for Dense Object Detection®*

« Plate Detection —> Preparing the data®

+ Object Detection in Colab with Fizyr Retinanet®®

“https://colab.research.google.com/drive/11dnii3sGJaUHPV6 TWImykbeE_O-8VIIN

*°https://github.com/curiousily/Deep- Learning-For-Hackers

**https://github.com/fizyr/keras-retinanet

*https://www.kaggle.com/dataturks/vehicle-number-plate-detection
>*https://medium.com/@jonathan_hui/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo- 5425656ae359
*https://arxiv.org/abs/1708.02002

**hitps://www.kaggle.com/dsousa/plate-detection-preparing-the-data
>https://www.freecodecamp.org/news/object-detection-in-colab-with- fizyr-retinanet-efed36ac4af3/

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://colab.research.google.com/drive/1ldnii3sGJaUHPV6TWImykbeE_O-8VIIN
https://github.com/curiousily/Deep-Learning-For-Hackers
https://github.com/fizyr/keras-retinanet
https://www.kaggle.com/dataturks/vehicle-number-plate-detection
https://medium.com/@jonathan_hui/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
https://arxiv.org/abs/1708.02002
https://www.kaggle.com/dsousa/plate-detection-preparing-the-data
https://www.freecodecamp.org/news/object-detection-in-colab-with-fizyr-retinanet-efed36ac4af3/
https://colab.research.google.com/drive/1ldnii3sGJaUHPV6TWImykbeE_O-8VIIN
https://github.com/curiousily/Deep-Learning-For-Hackers
https://github.com/fizyr/keras-retinanet
https://www.kaggle.com/dataturks/vehicle-number-plate-detection
https://medium.com/@jonathan_hui/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
https://arxiv.org/abs/1708.02002
https://www.kaggle.com/dsousa/plate-detection-preparing-the-data
https://www.freecodecamp.org/news/object-detection-in-colab-with-fizyr-retinanet-efed36ac4af3/

	Table of Contents
	End to End Machine Learning Project
	Define objective/goal
	Load data
	Data exploration
	Prepare the data
	Build your model
	Save the model
	Build REST API
	Deploy to production
	Conclusion
	References

	Object Detection
	Object Detection
	RetinaNet
	Preparing the Dataset
	Detecting Vehicle Plates
	Conclusion
	References

