

Hacker’s Guide to Machine Learning with
Python
Hands-on guide to solving real-world Machine Learning
problems with Scikit-Learn, TensorFlow 2, and Keras

Venelin Valkov

This book is for sale at http://leanpub.com/Hackers-Guide-to-Machine-Learning-with-Python

This version was published on 2020-07-13

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2019 - 2020 Venelin Valkov

http://leanpub.com/Hackers-Guide-to-Machine-Learning-with-Python
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!
Please help Venelin Valkov by spreading the word about this book on Twitter!

The suggested hashtag for this book is #mlhackers.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

#mlhackers

http://twitter.com
https://twitter.com/search?q=%23mlhackers
https://twitter.com/search?q=%23mlhackers

Also By Venelin Valkov
Hands-On Machine Learning from Scratch

Hacker’s Guide to Neural Networks in JavaScript

Be a Beast

Get SH*T Done with PyTorch

http://leanpub.com/u/curiousily
http://leanpub.com/hmls
http://leanpub.com/deep-learning-for-javascript-hackers
http://leanpub.com/be-a-beast
http://leanpub.com/getting-things-done-with-pytorch

CONTENTS

Contents

End to End Machine Learning Project . 1
Define objective/goal . 1
Load data . 2
Data exploration . 3
Prepare the data . 9
Build your model . 12
Save the model . 16
Build REST API . 17
Deploy to production . 18
Conclusion . 19
References . 20

Object Detection . 21
Object Detection . 21
RetinaNet . 23
Preparing the Dataset . 24
Detecting Vehicle Plates . 29
Conclusion . 35
References . 36

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

End to End Machine Learning Project
TL;DR Step-by-step guide to build a Deep Neural Network model with Keras to predict
Airbnb prices in NYC and deploy it as REST API using Flask

This guide will let you deploy a Machine Learning model starting from zero. Here are the steps
you’re going to cover:

• Define your goal
• Load data
• Data exploration
• Data preparation
• Build and evalute your model
• Save the model
• Build REST API
• Deploy to production

There is a lot to cover, but every step of the way will get you closer to deploying your model to the
real-world. Let’s begin!

Run the modeling code in your browser¹

The complete project on GitHub²

Define objective/goal

Obviously, you need to know why you need a Machine Learning (ML) model in the first place.
Knowing the objective gives you insights about:

• Is ML the right approach?
• What data do I need?
• What a “good model” will look like? What metrics can I use?
• How do I solve the problem right now? How accurate is the solution?
• How much is it going to cost to keep this model running?

In our example, we’re trying to predict Airbnb³ listing price per night in NYC. Our objective is clear
- given some data, we want our model to predict how much will it cost to rent a certain property
per night.

¹https://colab.research.google.com/drive/1YxCmQb2YKh7VuQ_XgPXhEeIM3LpjV-mS
²https://github.com/curiousily/Deploy-Keras-Deep-Learning-Model-with-Flask
³https://www.airbnb.com/

https://colab.research.google.com/drive/1YxCmQb2YKh7VuQ_XgPXhEeIM3LpjV-mS
https://github.com/curiousily/Deploy-Keras-Deep-Learning-Model-with-Flask
https://www.airbnb.com/
https://colab.research.google.com/drive/1YxCmQb2YKh7VuQ_XgPXhEeIM3LpjV-mS
https://github.com/curiousily/Deploy-Keras-Deep-Learning-Model-with-Flask
https://www.airbnb.com/

End to End Machine Learning Project 2

Load data

The data comes from Airbnb Open Data and it is hosted on Kaggle⁴

Since 2008, guests and hosts have used Airbnb to expand on traveling possibilities and
present more unique, personalized way of experiencing the world. This dataset describes
the listing activity and metrics in NYC, NY for 2019.

Setup

We’ll start with a bunch of imports and setting a random seed for reproducibility:

1 import numpy as np

2 import tensorflow as tf

3 from tensorflow import keras

4 import pandas as pd

5 import seaborn as sns

6 from pylab import rcParams

7 import matplotlib.pyplot as plt

8 from matplotlib import rc

9 from sklearn.model_selection import train_test_split

10 import joblib

11

12 %matplotlib inline

13 %config InlineBackend.figure_format='retina'

14

15 sns.set(style='whitegrid', palette='muted', font_scale=1.5)

16

17 rcParams['figure.figsize'] = 16, 10

18

19 RANDOM_SEED = 42

20

21 np.random.seed(RANDOM_SEED)

22 tf.random.set_seed(RANDOM_SEED)

Download the data from Google Drive with gdown:

1 !gdown --id 1aRXGcJlIkuC6uj1iLqzi9DQQS-3GPwM_ --output airbnb_nyc.csv

And load it into a Pandas DataFrame:
⁴https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data
https://www.kaggle.com/dgomonov/new-york-city-airbnb-open-data

End to End Machine Learning Project 3

1 df = pd.read_csv('airbnb_nyc.csv')

How can we understand what our data is all about?

Data exploration

This step is crucial. The goal is to get a better understanding of the data. You might be tempted
to jumpstart the modeling process, but that would be suboptimal. Looking at large amounts of
examples, looking for patterns and visualizing distributions will build your intuition about the data.
That intuition will be helpful when modeling, imputing missing data and looking at outliers.

One easy way to start is to count the number of rows and columns in your dataset:

1 df.shape

1 (48895, 16)

We have 48,895 rows and 16 columns. Enough data to do something interesting.

Let’s start with the variable we’re trying to predict price. To plot the distribution, we’ll use
distplot():

1 sns.distplot(df.price)

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

End to End Machine Learning Project 4

We have a highly skewed distribution with some values in the 10,000 range (you might want to
explore those). We’ll use a trick - log transformation:

1 sns.distplot(np.log1p(df.price))

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

End to End Machine Learning Project 5

This looks more like a normal distribution. Turns out this might help your model better learn the
data⁵. You’ll have to remember to preprocess the data before training and predicting.

The type of room seems like another interesting point. Let’s have a look:

1 sns.countplot(x='room_type', data=df)

⁵https://datascience.stackexchange.com/questions/40089/what-is-the-reason-behind-taking-log-transformation-of-few-continuous-
variables

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://datascience.stackexchange.com/questions/40089/what-is-the-reason-behind-taking-log-transformation-of-few-continuous-variables
https://datascience.stackexchange.com/questions/40089/what-is-the-reason-behind-taking-log-transformation-of-few-continuous-variables
https://datascience.stackexchange.com/questions/40089/what-is-the-reason-behind-taking-log-transformation-of-few-continuous-variables
https://datascience.stackexchange.com/questions/40089/what-is-the-reason-behind-taking-log-transformation-of-few-continuous-variables

End to End Machine Learning Project 6

Most listings are offering entire places or private rooms. What about the location? What neighbor-
hood groups are most represented?

1 sns.countplot(x='neighbourhood_group', data=df)

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

End to End Machine Learning Project 7

As expected, Manhattan leads the way. Obviously, Brooklyn is very well represented, too. You can
thank Mos Def, Nas, Masta Ace, and Fabolous for that.

Another interesting feature is the number of reviews. Let’s have a look at it:

1 sns.distplot(df.number_of_reviews)

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

End to End Machine Learning Project 8

This one seems to follow a Power law⁶ (it has a fat tail). This one seems to follow a Power law⁷ (it has
a fat tail). There seem to be some outliers (on the right) that might be of interest for investigation.

Finding Correlations

The correlation analysis might give you hints at what features might have predictive power when
training your model.

Remember, Correlation does not imply causation⁸

Computing Pearson correlation coefficient⁹ between a pair of features is easy:

1 corr_matrix = df.corr()

Let’s look at the correlation of the price with the other attributes:

⁶https://en.wikipedia.org/wiki/Power_law
⁷https://en.wikipedia.org/wiki/Power_law
⁸https://en.wikipedia.org/wiki/Correlation_does_not_imply_causation
⁹https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Power_law
https://en.wikipedia.org/wiki/Power_law
https://en.wikipedia.org/wiki/Correlation_does_not_imply_causation
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Power_law
https://en.wikipedia.org/wiki/Power_law
https://en.wikipedia.org/wiki/Correlation_does_not_imply_causation
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

End to End Machine Learning Project 9

1 price_corr = corr_matrix['price']

2 price_corr.iloc[price_corr.abs().argsort()]

1 latitude 0.033939

2 minimum_nights 0.042799

3 number_of_reviews -0.047954

4 calculated_host_listings_count 0.057472

5 availability_365 0.081829

6 longitude -0.150019

7 price 1.000000

The correlation coefficient is defined in the -1 to 1 range. A value close to 0 means there is no
correlation. Value of 1 suggests a perfect positive correlation (e.g. as the price of Bitcoin increases,
your dreams of owning more are going up, too!). Value of -1 suggests perfect negative correlation
(e.g. high number of bad reviews should correlate with lower prices).

The correlation in our dataset looks really bad. Luckily, categorical features are not included here.
They might have some predictive power too! How can we use them?

Prepare the data

The goal here is to transform the data into a form that is suitable for your model. There are several
things you want to do when handling (think CSV, Database) structured data:

• Handle missing data
• Remove unnecessary columns
• Transform any categorical features to numbers/vectors
• Scale numerical features

Missing data

Let’s start with a check for missing data:

1 missing = df.isnull().sum()

2 missing[missing > 0].sort_values(ascending=False)

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

End to End Machine Learning Project 10

1 reviews_per_month 10052

2 last_review 10052

3 host_name 21

4 name 16

We’ll just go ahead and remove those features for this example. In real-world applications, you
should consider other approaches.

1 df = df.drop([

2 'id', 'name', 'host_id', 'host_name',

3 'reviews_per_month', 'last_review', 'neighbourhood'

4], axis=1)

We’re also dropping the neighbourhood, host id (too many unique values), and the id of the listing.

Next, we’re splitting the data into features we’re going to use for the prediction and a target variable
y (the price):

1 X = df.drop('price', axis=1)

2 y = np.log1p(df.price.values)

Note that we’re applying the log transformation to the price.

Feature scaling and categorical data

Let’s start with feature scaling¹⁰. Specifically, we’ll do min-max normalization and scale the features
in the 0-1 range. Luckily, the MinMaxScaler¹¹ from scikit-learn does just that.

But why do feature scaling at all? Largely because of the algorithm we’re going to use to train our
model¹² will do better with it.

Next, we need to preprocess the categorical data. Why?

Some Machine Learning algorithms can operate on categorical data without any preprocessing (like
Decision trees, Naive Bayes). But most can’t.

Unfortunately, you can’t replace the category names with a number. Converting Brooklyn to 1 and
Manhattan to 2 suggests that Manhattan is greater (2 times) than Brooklyn. That doesn’t make sense.
How can we solve this?

We can use One-hot encoding¹³. To get a feel of what it does, we’ll use OneHotEncoder¹⁴ from
scikit-learn:

¹⁰https://en.wikipedia.org/wiki/Feature_scaling
¹¹https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
¹²https://arxiv.org/abs/1502.03167
¹³https://en.wikipedia.org/wiki/One-hot
¹⁴https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Feature_scaling
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://en.wikipedia.org/wiki/One-hot
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://en.wikipedia.org/wiki/Feature_scaling
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://arxiv.org/abs/1502.03167
https://en.wikipedia.org/wiki/One-hot
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html

End to End Machine Learning Project 11

1 from sklearn.preprocessing import OneHotEncoder

2

3 data = [['Manhattan'], ['Brooklyn']]

4

5 OneHotEncoder(sparse=False).fit_transform(data)

1 array([[0., 1.],

2 [1., 0.]])

Essentially, you get a vector for each value that contains 1 at the index of the category and 0 for
every other value. This encoding solves the comparison issue. The negative part is that your data
now might take much more memory.

All data preprocessing steps are to be performed on the training data and data we’re going to receive
via the REST API for prediction. We can unite the steps using make_column_transformer()¹⁵:

1 from sklearn.preprocessing import MinMaxScaler, OneHotEncoder

2 from sklearn.compose import make_column_transformer

3

4 transformer = make_column_transformer(

5 (MinMaxScaler(), [

6 'latitude', 'longitude', 'minimum_nights',

7 'number_of_reviews', 'calculated_host_listings_count', 'availability_365'

8]),

9 (OneHotEncoder(handle_unknown="ignore"), [

10 'neighbourhood_group', 'room_type'

11])

12)

We enumerate all columns that need feature scaling and one-hot encoding. Those columns will be
replaced with the ones from the preprocessing steps. Next, we’ll learn the ranges and categorical
mapping using our transformer:

1 transformer.fit(X)

Finally, we’ll transform our data:

1 transformer.transform(X)

The last thing is to separate the data into training and test sets:

¹⁵https://scikit-learn.org/stable/modules/generated/sklearn.compose.make_column_transformer.html

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://scikit-learn.org/stable/modules/generated/sklearn.compose.make_column_transformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.compose.make_column_transformer.html

End to End Machine Learning Project 12

1 X_train, X_test, y_train, y_test =\

2 train_test_split(X, y, test_size=0.2, random_state=RANDOM_SEED)

You’re going to use only the training set while developing and evaluating your model. The test set
will be used later.

That’s it! You are now ready to build a model. How can you do that?

Build your model

Finally, it is time to do some modeling. Recall the goal we set for ourselves at the beginning:

We’re trying to predict Airbnb¹⁶ listing price per night in NYC

We have a price prediction problem on our hands.More generally, we’re trying to predict a numerical
value defined in a very large range. This fits nicely in the Regression Analysis¹⁷ framework.

Training a model boils down to minimizing some predefined error. What error should we measure?

Error measurement

We’ll use Mean Squared Error¹⁸ which measures the difference between average squared predicted
and true values:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2

where n is the number of samples, Y is a vector containing the real values and \hat{Y} is a
vector containing the predictions from our model.

Now that you have a measurement of how well your model is performing is time to build the model
itself. How can you build a Deep Neural Network with Keras?

Build a Deep Neural Network with Keras

Keras¹⁹ is the official high-level API for TensorFlow²⁰. In short, it allows you to build complexmodels
using a sweet interface. Let’s build a model with it:

¹⁶https://www.airbnb.com/
¹⁷https://en.wikipedia.org/wiki/Regression_analysis
¹⁸https://en.wikipedia.org/wiki/Mean_squared_error
¹⁹https://keras.io/
²⁰https://www.tensorflow.org/

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://www.airbnb.com/
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Mean_squared_error
https://keras.io/
https://www.tensorflow.org/
https://www.airbnb.com/
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Mean_squared_error
https://keras.io/
https://www.tensorflow.org/

End to End Machine Learning Project 13

1 model = keras.Sequential()

2 model.add(keras.layers.Dense(

3 units=64,

4 activation="relu",

5 input_shape=[X_train.shape[1]]

6))

7 model.add(keras.layers.Dropout(rate=0.3))

8 model.add(keras.layers.Dense(units=32, activation="relu"))

9 model.add(keras.layers.Dropout(rate=0.5))

10

11 model.add(keras.layers.Dense(1))

The sequential API allows you to add various layers to your model, easily. Note that we specify
the input_size in the first layer using the training data. We also do regularization using Dropout
layers²¹.

How can we specify the error metric?

1 model.compile(

2 optimizer=keras.optimizers.Adam(0.0001),

3 loss = 'mae',

4 metrics = ['mae'])

The compile()²² method lets you specify the optimizer and the error metric you need to reduce.

Your model is ready for training. Let’s go!

Training

Training a Keras model involves calling a single method - fit()²³:

1 BATCH_SIZE = 32

2

3 early_stop = keras.callbacks.EarlyStopping(

4 monitor='val_mae',

5 mode="min",

6 patience=10

7)

8

9 history = model.fit(

²¹https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dropout
²²https://www.tensorflow.org/api_docs/python/tf/keras/Model#compile
²³https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dropout
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dropout
https://www.tensorflow.org/api_docs/python/tf/keras/Model#compile
https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dropout
https://www.tensorflow.org/api_docs/python/tf/keras/Model#compile
https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit

End to End Machine Learning Project 14

10 x=X_train,

11 y=y_train,

12 shuffle=True,

13 epochs=100,

14 validation_split=0.2,

15 batch_size=BATCH_SIZE,

16 callbacks=[early_stop]

17)

We feed the training method with the training data and specify the following parameters:

• shuffle - random sort the data
• epochs - number of training cycles
• validation_split - use some percent of the data for measuring the error and not during training
• batch_size - the number of training examples that are fed at a time to our model
• callbacks - we use EarlyStopping²⁴ to prevent our model from overfitting when the training
and validation error start to diverge

After the long training process is complete, you need to answer one question. Can your model make
good predictions?

Evaluation

One simple way to understand the training process is to look at the training and validation loss:

²⁴https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping

End to End Machine Learning Project 15

We can see a large improvement in the training error, but not much on the validation error. What
else can we use to test our model?

Using the test data

Recall that we have some additional data. Now it is time to use it and test how good our model.Note
that we don’t use that data during the training, only once at the end of the process.

Let’s get the predictions from the model:

1 y_pred = model.predict(X_test)

And we’ll use a couple of metrics for the evaluation:

1 from sklearn.metrics import mean_squared_error

2 from math import sqrt

3 from sklearn.metrics import r2_score

4

5 print(f'MSE {mean_squared_error(y_test, y_pred)}')

6 print(f'RMSE {np.sqrt(mean_squared_error(y_test, y_pred))}')

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

End to End Machine Learning Project 16

1 MSE 0.2139184014903989

2 RMSE 0.4625131365598159

We’ve already discussed MSE. You can probably guess what Root Mean Squared Error (RMSE)²⁵
means. RMSE allows us to penalize points further from the mean.

Another statistic we can use to measure how well our predictions fit with the real data is the R^2
score²⁶. A value close to 1 indicates a perfect fit. Let’s check ours:

1 print(f'R2 {r2_score(y_test, y_pred)}')

1 R2 0.5478250409482018

There is definitely room for improvement here. You might try to tune the model better and get better
results.

Now you have a model and a rough idea of how well will it do in production. How can you save
your work?

Save the model

Now that you have a trained model, you need to store it and be able to reuse it later. Recall that we
have a data transformer that needs to be stored, too! Let’s save both:

1 import joblib

2

3 joblib.dump(transformer, "data_transformer.joblib")

4 model.save("price_prediction_model.h5")

The recommended approach of storing scikit-learn models²⁷ is to use joblib²⁸. Saving the model
architecture and weights of a Keras model is done with the save()²⁹ method.

You can download the files from the notebook using the following:

²⁵https://en.wikipedia.org/wiki/Root-mean-square_deviation
²⁶https://en.wikipedia.org/wiki/Coefficient_of_determination
²⁷https://scikit-learn.org/stable/modules/model_persistence.html#persistence-example
²⁸https://joblib.readthedocs.io/en/latest/
²⁹https://www.tensorflow.org/api_docs/python/tf/keras/Sequential#save

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Root-mean-square_deviation
https://en.wikipedia.org/wiki/Coefficient_of_determination
https://en.wikipedia.org/wiki/Coefficient_of_determination
https://scikit-learn.org/stable/modules/model_persistence.html#persistence-example
https://joblib.readthedocs.io/en/latest/
https://www.tensorflow.org/api_docs/python/tf/keras/Sequential#save
https://en.wikipedia.org/wiki/Root-mean-square_deviation
https://en.wikipedia.org/wiki/Coefficient_of_determination
https://scikit-learn.org/stable/modules/model_persistence.html#persistence-example
https://joblib.readthedocs.io/en/latest/
https://www.tensorflow.org/api_docs/python/tf/keras/Sequential#save

End to End Machine Learning Project 17

1 from google.colab import files

2

3 files.download("data_transformer.joblib")

4 files.download("price_prediction_model.h5")

Build REST API

Building a REST API³⁰ allows you to use your model to make predictions for different clients. Almost
any device can speak REST - Android, iOS, Web browsers, and many others.

Flask³¹ allows you to build a REST API in just a couple of lines. Of course, we’re talking about a
quick-and-dirty prototype. Let’s have a look at the complete code:

1 from math import expm1

2

3 import joblib

4 import pandas as pd

5 from flask import Flask, jsonify, request

6 from tensorflow import keras

7

8 app = Flask(__name__)

9 model = keras.models.load_model("assets/price_prediction_model.h5")

10 transformer = joblib.load("assets/data_transformer.joblib")

11

12

13 @app.route("/", methods=["POST"])

14 def index():

15 data = request.json

16 df = pd.DataFrame(data, index=[0])

17 prediction = model.predict(transformer.transform(df))

18 predicted_price = expm1(prediction.flatten()[0])

19 return jsonify({"price": str(predicted_price)})

The complete project (including the data transformer and model) is on GitHub: Deploy Keras Deep
Learning Model with Flask³²

The API has a single route (index) that accepts only POST requests. Note that we pre-load the data
transformer and the model.

³⁰https://en.wikipedia.org/wiki/Representational_state_transfer
³¹https://www.fullstackpython.com/flask.html
³²https://github.com/curiousily/Deploy-Keras-Deep-Learning-Model-with-Flask

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://en.wikipedia.org/wiki/Representational_state_transfer
https://www.fullstackpython.com/flask.html
https://github.com/curiousily/Deploy-Keras-Deep-Learning-Model-with-Flask
https://github.com/curiousily/Deploy-Keras-Deep-Learning-Model-with-Flask
https://en.wikipedia.org/wiki/Representational_state_transfer
https://www.fullstackpython.com/flask.html
https://github.com/curiousily/Deploy-Keras-Deep-Learning-Model-with-Flask

End to End Machine Learning Project 18

The request handler obtains the JSON data and converts it into a Pandas DataFrame. Next, we use
the transformer to pre-process the data and get a prediction from our model. We invert the log
operation we did in the pre-processing step and return the predicted price as JSON.

Your REST API is ready to go. Run the following command in the project directory:

1 flask run

Open a new tab to test the API:

1 curl -d '{"neighbourhood_group": "Brooklyn", "latitude": 40.64749, "longitude": -73.\

2 97237, "room_type": "Private room", "minimum_nights": 1, "number_of_reviews": 9, "ca\

3 lculated_host_listings_count": 6, "availability_365": 365}' -H "Content-Type: applic\

4 ation/json" -X POST http://localhost:5000

You should see something like the following:

1 {"price":"72.70381414559431"}

Great. How can you deploy your project and allow others to consume your model predictions?

Deploy to production

We’ll deploy the project to Google App Engine³³:

App Engine enables developers to stay more productive and agile by supporting popular
development languages and a wide range of developer tools.

App Engine allows us to use Python and easily deploy a Flask app.

You need to:

• Register for Google Cloud Engine account³⁴
• Google Cloud SDK installed³⁵

Here is the complete app.yaml config:

³³https://cloud.google.com/appengine/
³⁴https://cloud.google.com/compute/
³⁵https://cloud.google.com/sdk/install

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://cloud.google.com/appengine/
https://cloud.google.com/compute/
https://cloud.google.com/sdk/install
https://cloud.google.com/appengine/
https://cloud.google.com/compute/
https://cloud.google.com/sdk/install

End to End Machine Learning Project 19

1 entrypoint: "gunicorn -b :$PORT app:app --timeout 500"

2 runtime: python

3 env: flex

4 service: nyc-price-prediction

5 runtime_config:

6 python_version: 3.7

7 instance_class: B1

8 manual_scaling:

9 instances: 1

10 liveness_check:

11 path: "/liveness_check"

Execute the following command to deploy the project:

1 gcloud app deploy

Wait for the process to complete and test the API running on production. You did it!

Conclusion

Your model should now be running, making predictions, and accessible to everyone. Of course, you
have a quick-and-dirty prototype. You will need a way to protect and monitor your API. Maybe you
need a better (automated) deployment strategy too!

Still, you have a model deployed in production and did all of the following:

• Define your goal
• Load data
• Data exploration
• Data preparation
• Build and evalute your model
• Save the model
• Build REST API
• Deploy to production

How do you deploy your models? Comment down below :)

Run the modeling code in your browser³⁶

The complete project on GitHub³⁷

³⁶https://colab.research.google.com/drive/1YxCmQb2YKh7VuQ_XgPXhEeIM3LpjV-mS
³⁷https://github.com/curiousily/Deploy-Keras-Deep-Learning-Model-with-Flask

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://colab.research.google.com/drive/1YxCmQb2YKh7VuQ_XgPXhEeIM3LpjV-mS
https://github.com/curiousily/Deploy-Keras-Deep-Learning-Model-with-Flask
https://colab.research.google.com/drive/1YxCmQb2YKh7VuQ_XgPXhEeIM3LpjV-mS
https://github.com/curiousily/Deploy-Keras-Deep-Learning-Model-with-Flask

End to End Machine Learning Project 20

References

• Joblib - running Python functions as pipeline jobs³⁸
• Flask - lightweight web application framework³⁹
• Building a simple Keras + deep learning REST API⁴⁰

³⁸https://joblib.readthedocs.io/en/latest/
³⁹https://palletsprojects.com/p/flask/
⁴⁰https://blog.keras.io/building-a-simple-keras-deep-learning-rest-api.html

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://joblib.readthedocs.io/en/latest/
https://palletsprojects.com/p/flask/
https://blog.keras.io/building-a-simple-keras-deep-learning-rest-api.html
https://joblib.readthedocs.io/en/latest/
https://palletsprojects.com/p/flask/
https://blog.keras.io/building-a-simple-keras-deep-learning-rest-api.html

Object Detection
TL;DR Learn how to prepare a custom dataset for object detection and detect vehicle
plates. Use transfer learning to finetune the model and make predictions on test images.

Detecting objects in images and video is a hot research topic and really useful in practice. The
advancement in Computer Vision (CV) and Deep Learning (DL) made training and running object
detectors possible for practitioners of all scale. Modern object detectors are both fast and much more
accurate (actually, usefully accurate).

This guide shows you how to fine-tune a pre-trained Neural Network on a large Object Detection
dataset. We’ll learn how to detect vehicle plates from raw pixels. Spoiler alert, the results are not
bad at all!

You’ll learn how to prepare a custom dataset and use a library for object detection based on
TensorFlow and Keras. Along the way, we’ll have a deeper look at what Object Detection is and
what models are used for it.

Here’s what will do:

• Understand Object Detection
• RetinaNet
• Prepare the Dataset
• Train a Model to Detect Vehicle Plates

Run the complete notebook in your browser⁴¹

The complete project on GitHub⁴²

Object Detection

Object detection⁴³ methods try to find the best bounding boxes around objects in images and videos.
It has a wide array of practical applications - face recognition, surveillance, tracking objects, and
more.

⁴¹https://colab.research.google.com/drive/1ldnii3sGJaUHPV6TWImykbeE_O-8VIIN
⁴²https://github.com/curiousily/Deep-Learning-For-Hackers
⁴³https://en.wikipedia.org/wiki/Object_detection

https://colab.research.google.com/drive/1ldnii3sGJaUHPV6TWImykbeE_O-8VIIN
https://github.com/curiousily/Deep-Learning-For-Hackers
https://en.wikipedia.org/wiki/Object_detection
https://colab.research.google.com/drive/1ldnii3sGJaUHPV6TWImykbeE_O-8VIIN
https://github.com/curiousily/Deep-Learning-For-Hackers
https://en.wikipedia.org/wiki/Object_detection

Object Detection 22

A lot of classical approaches have tried to find fast and accurate solutions to the problem. Sliding
windows for object localization and image pyramids for detection at different scales are one of the
most used ones. Those methods were slow, error-prone, and not able to handle object scales very
well.

Deep Learning changed the field so much that it is now relatively easy for the practitioner to train
models on small-ish datasets and achieve high accuracy and speed.

Usually, the result of object detection contains three elements:

• list of bounding boxes with coordinates
• the category/label for each bounding box
• the confidence score (0 to 1) for each bounding box and label

How can you evaluate the performance of object detection models?

Evaluating Object Detection

The most common measurement you’ll come around when looking at object detection performance
is Intersection over Union (IoU). This metric can be evaluated independently of the algorithm/model

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Object Detection 23

used.

The IoU is a ratio given by the following equation:

IoU =
Area of Overlap
Area of Union

IoU allows you to evaluate how well two bounding boxes overlap. In practice, you would use the
annotated (true) bounding box, and the detected/predicted one. A value close to 1 indicates a very
good overlap while getting closer to 0 gives you almost no overlap.

Getting IoU of 1 is very unlikely in practice, so don’t be too harsh on your model.

Mean Average Precision (mAP)

Reading papers and leaderboards on Object Detection will inevitably lead you to an mAP value
report. Typically, you’ll see something likemAP@0.5 indicating that object detection is considered
correct only when this value is greater than 0.5.

The value is derived by averaging the precision of each class in the dataset. We can get the average
precision for a single class by computing the IoU for every example in the class and divide by the
number of class examples. Finally, we can get mAP by dividing by the number of classes.

RetinaNet

RetinaNet, presented by Facebook AI Research in Focal Loss for Dense Object Detection (2017)⁴⁴,
is an object detector architecture that became very popular and widely used in practice. Why is
RetinaNet so special?

RetinaNet is a one-stage detector. Themost successful object detectors up to this point were operating
on two stages (R-CNNs). The first stage involves selecting a set of regions (candidates) that might
contain objects of interest. The second stage applies a classifier to the proposals.

One stage detectors (like RetinaNet) skip the region selection steps and runs detection over a lot of
possible locations. This is faster and simpler but might reduce the overall prediction performance of
the model.

RetinaNet is built on top of two crucial concepts - Focal Loss and Featurized Image Pyramid:

• Focal Loss is designed to mitigate the issue of extreme imbalance between background
and foreground with objects of interest. It assigns more weight on hard, easily misclassified
examples and small weight to easier ones.

• The Featurized Image Pyramid is the vision component of RetinaNet. It allows for object
detection at different scales by stacking multiple convolutional layers.

⁴⁴https://arxiv.org/pdf/1708.02002v2.pdf

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://arxiv.org/pdf/1708.02002v2.pdf
https://arxiv.org/pdf/1708.02002v2.pdf

Object Detection 24

Keras Implementation

Let’s get real. RetinaNet is not a SOTA model for object detection. Not by a long shot⁴⁵. However,
well maintained, bug-free, and easy to use implementation of a good-enough model can give you
a good estimate of how well you can solve your problem. In practice, you want a good-enough
solution to your problem, and you (or your manager) wants it yesterday.

Keras RetinaNet⁴⁶ is a well maintained and documented implementation of RetinaNet. Go and have
a look at the Readme to get a feel of what is capable of. It comes with a lot of pre-trained models
and an easy way to train on custom datasets.

Preparing the Dataset

The task we’re going to work on is vehicle number plate detection from raw images. Our data
is hosted on Kaggle⁴⁷ and contains an annotation file with links to the images. Here’s a sample
annotation:

1 {

2 "content": "http://com.dataturks.a96-i23.open.s3.amazonaws.com/2c9fafb0646e9cf9016\

3 473f1a561002a/77d1f81a-bee6-487c-aff2-0efa31a9925c____bd7f7862-d727-11e7-ad30-e18a56\

4 154311.jpg",

5 "annotation": [

6 {

7 "label": [

8 "number_plate"

9],

10 "notes": null,

11 "points": [

12 {

13 "x": 0.7220843672456576,

14 "y": 0.5879828326180258

15 },

16 {

17 "x": 0.8684863523573201,

18 "y": 0.6888412017167382

19 }

20],

21 "imageWidth": 806,

22 "imageHeight": 466

23 }

⁴⁵https://paperswithcode.com/sota/object-detection-on-coco
⁴⁶https://github.com/fizyr/keras-retinanet
⁴⁷https://www.kaggle.com/dataturks/vehicle-number-plate-detection

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://paperswithcode.com/sota/object-detection-on-coco
https://github.com/fizyr/keras-retinanet
https://www.kaggle.com/dataturks/vehicle-number-plate-detection
https://paperswithcode.com/sota/object-detection-on-coco
https://github.com/fizyr/keras-retinanet
https://www.kaggle.com/dataturks/vehicle-number-plate-detection

Object Detection 25

24],

25 "extras": null

26 }

This will require some processing to turn those xs and ys into proper image positions. Let’s start
with downloading the JSON file:

1 !gdown --id 1mTtB8GTWs74Yeqm0KMExGJZh1eDbzUlT --output indian_number_plates.json

We can use Pandas to read the JSON into a DataFrame:

1 plates_df = pd.read_json('indian_number_plates.json', lines=True)

Next, we’ll download the images in a directory and create an annotation file for our training data
in the format (expected by Keras RetinaNet):

1 path/to/image.jpg,x1,y1,x2,y2,class_name

Let’s start by creating the directory:

1 os.makedirs("number_plates", exist_ok=True)

We can unify the download and the creation of annotation file like so:

1 dataset = dict()

2 dataset["image_name"] = list()

3 dataset["top_x"] = list()

4 dataset["top_y"] = list()

5 dataset["bottom_x"] = list()

6 dataset["bottom_y"] = list()

7 dataset["class_name"] = list()

8

9 counter = 0

10 for index, row in plates_df.iterrows():

11 img = urllib.request.urlopen(row["content"])

12 img = Image.open(img)

13 img = img.convert('RGB')

14 img.save(f'number_plates/licensed_car_{counter}.jpeg', "JPEG")

15

16 dataset["image_name"].append(

17 f'number_plates/licensed_car_{counter}.jpeg'

18)

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Object Detection 26

19

20 data = row["annotation"]

21

22 width = data[0]["imageWidth"]

23 height = data[0]["imageHeight"]

24

25 dataset["top_x"].append(

26 int(round(data[0]["points"][0]["x"] * width))

27)

28 dataset["top_y"].append(

29 int(round(data[0]["points"][0]["y"] * height))

30)

31 dataset["bottom_x"].append(

32 int(round(data[0]["points"][1]["x"] * width))

33)

34 dataset["bottom_y"].append(

35 int(round(data[0]["points"][1]["y"] * height))

36)

37 dataset["class_name"].append("license_plate")

38

39 counter += 1

40 print("Downloaded {} car images.".format(counter))

We can use the dict to create a Pandas DataFrame:

1 df = pd.DataFrame(dataset)

Let’s get a look at some images of vehicle plates:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Object Detection 27

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Object Detection 28

Preprocessing

We’ve already done a fair bit of preprocessing. A bit more is needed to convert the data into the
format that Keras Retina understands:

1 path/to/image.jpg,x1,y1,x2,y2,class_name

First, let’s split the data into training and test datasets:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Object Detection 29

1 train_df, test_df = train_test_split(

2 df,

3 test_size=0.2,

4 random_state=RANDOM_SEED

5)

We need to write/create two CSV files for the annotations and classes:

1 ANNOTATIONS_FILE = 'annotations.csv'

2 CLASSES_FILE = 'classes.csv'

We’ll use Pandas to write the annotations file, excluding the index and header:

1 train_df.to_csv(ANNOTATIONS_FILE, index=False, header=None)

We’ll use regular old file writer for the classes:

1 classes = set(['license_plate'])

2

3 with open(CLASSES_FILE, 'w') as f:

4 for i, line in enumerate(sorted(classes)):

5 f.write('{},{}\n'.format(line,i))

Detecting Vehicle Plates

You’re ready to finetune the model on the dataset. Let’s create a folder where we’re going to store
the model checkpoints:

1 os.makedirs("snapshots", exist_ok=True)

You have two options at this point. Download the pre-trained model:

1 !gdown --id 1wPgOBoSks6bTIs9RzNvZf6HWROkciS8R --output snapshots/resnet50_csv_10.h5

Or train the model on your own:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Object Detection 30

1 PRETRAINED_MODEL = './snapshots/_pretrained_model.h5'

2

3 URL_MODEL = 'https://github.com/fizyr/keras-retinanet/releases/download/0.5.1/resnet\

4 50_coco_best_v2.1.0.h5'

5 urllib.request.urlretrieve(URL_MODEL, PRETRAINED_MODEL)

6

7 print('Downloaded pretrained model to ' + PRETRAINED_MODEL)

Here, we save the weights of the pre-trained model on the Coco⁴⁸ dataset.

The training script requires paths to the annotation, classes files, and the downloaded weights (along
with other options):

1 !keras_retinanet/bin/train.py \

2 --freeze-backbone \

3 --random-transform \

4 --weights {PRETRAINED_MODEL} \

5 --batch-size 8 \

6 --steps 500 \

7 --epochs 10 \

8 csv annotations.csv classes.csv

Make sure to choose an appropriate batch size, depending on your GPU. Also, the training might
take a lot of time. Go get a hot cup of rakia, while waiting.

Loading the model

You should have a directory with some snapshots at this point. Let’s take the most recent one and
convert it into a format that Keras RetinaNet understands:

1 model_path = os.path.join(

2 'snapshots',

3 sorted(os.listdir('snapshots'), reverse=True)[0]

4)

5

6 model = models.load_model(model_path, backbone_name='resnet50')

7 model = models.convert_model(model)

Your object detector is almost ready. The final step is to convert the classes into a format that will
be useful later:

⁴⁸http://cocodataset.org/

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

http://cocodataset.org/
http://cocodataset.org/

Object Detection 31

1 labels_to_names = pd.read_csv(

2 CLASSES_FILE,

3 header=None

4).T.loc[0].to_dict()

Detecting objects

How good is your trained model? Let’s find out by drawing some detected boxes along with the
true/annotated ones. The first step is to get predictions from our model:

1 def predict(image):

2 image = preprocess_image(image.copy())

3 image, scale = resize_image(image)

4

5 boxes, scores, labels = model.predict_on_batch(

6 np.expand_dims(image, axis=0)

7)

8

9 boxes /= scale

10

11 return boxes, scores, labels

We’re resizing and preprocessing the image using the tools provided by the library. Next, we need to
add an additional dimension to the image tensor, since the model works onmultiple/batch of images.
We rescale the detected boxes based on the resized image scale. The function returns all predictions.

The next helper function will draw the detected boxes on top of the vehicle image:

1 THRES_SCORE = 0.6

2

3 def draw_detections(image, boxes, scores, labels):

4 for box, score, label in zip(boxes[0], scores[0], labels[0]):

5 if score < THRES_SCORE:

6 break

7

8 color = label_color(label)

9

10 b = box.astype(int)

11 draw_box(image, b, color=color)

12

13 caption = "{} {:.3f}".format(labels_to_names[label], score)

14 draw_caption(image, b, caption)

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Object Detection 32

We’ll draw detections with a confidence score above 0.6. Note that the scores are sorted high to low,
so breaking from the loop is fine.

Let’s put everything together:

1 def show_detected_objects(image_row):

2 img_path = image_row.image_name

3

4 image = read_image_bgr(img_path)

5

6 boxes, scores, labels = predict(image)

7

8 draw = image.copy()

9 draw = cv2.cvtColor(draw, cv2.COLOR_BGR2RGB)

10

11 true_box = [

12 image_row.x_min, image_row.y_min, image_row.x_max, image_row.y_max

13]

14 draw_box(draw, true_box, color=(255, 255, 0))

15

16 draw_detections(draw, boxes, scores, labels)

17

18 plt.axis('off')

19 plt.imshow(draw)

20 plt.show()

Here are the results of calling this function on two examples from the test set:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Object Detection 33

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Object Detection 34

Things look pretty good. Our detected boxes are colored in blue, while the annotations are in yellow.
Before jumping to conclusions, let’s have a look at another example:

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Object Detection 35

Our model didn’t detect the plate on this vehicle. Maybe it wasn’t confident enough? You can try to
run the detection with a lower threshold.

Conclusion

Well done! You’ve built an Object Detector that can (somewhat) find vehicle number plates in
images. You used a pre-trained model and fine tuned it on a small dataset to adapt it to the task
at hand.

Here’s what you did:

• Understand Object Detection
• RetinaNet
• Prepare the Dataset
• Train a Model to Detect Vehicle Plates

Can you use the concepts you learned here and apply it to a problem/dataset you have?

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

Object Detection 36

Run the complete notebook in your browser⁴⁹

The complete project on GitHub⁵⁰

References

• Keras RetinaNet⁵¹
• Vehicle Number Plate Detection⁵²
• Object detection: speed and accuracy comparison⁵³
• Focal Loss for Dense Object Detection⁵⁴
• Plate Detection –> Preparing the data⁵⁵
• Object Detection in Colab with Fizyr Retinanet⁵⁶

⁴⁹https://colab.research.google.com/drive/1ldnii3sGJaUHPV6TWImykbeE_O-8VIIN
⁵⁰https://github.com/curiousily/Deep-Learning-For-Hackers
⁵¹https://github.com/fizyr/keras-retinanet
⁵²https://www.kaggle.com/dataturks/vehicle-number-plate-detection
⁵³https://medium.com/@jonathan_hui/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
⁵⁴https://arxiv.org/abs/1708.02002
⁵⁵https://www.kaggle.com/dsousa/plate-detection-preparing-the-data
⁵⁶https://www.freecodecamp.org/news/object-detection-in-colab-with-fizyr-retinanet-efed36ac4af3/

You are totally awesome! Find me at https://www.curiousily.com/ if you have questions.

https://colab.research.google.com/drive/1ldnii3sGJaUHPV6TWImykbeE_O-8VIIN
https://github.com/curiousily/Deep-Learning-For-Hackers
https://github.com/fizyr/keras-retinanet
https://www.kaggle.com/dataturks/vehicle-number-plate-detection
https://medium.com/@jonathan_hui/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
https://arxiv.org/abs/1708.02002
https://www.kaggle.com/dsousa/plate-detection-preparing-the-data
https://www.freecodecamp.org/news/object-detection-in-colab-with-fizyr-retinanet-efed36ac4af3/
https://colab.research.google.com/drive/1ldnii3sGJaUHPV6TWImykbeE_O-8VIIN
https://github.com/curiousily/Deep-Learning-For-Hackers
https://github.com/fizyr/keras-retinanet
https://www.kaggle.com/dataturks/vehicle-number-plate-detection
https://medium.com/@jonathan_hui/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
https://arxiv.org/abs/1708.02002
https://www.kaggle.com/dsousa/plate-detection-preparing-the-data
https://www.freecodecamp.org/news/object-detection-in-colab-with-fizyr-retinanet-efed36ac4af3/

	Table of Contents
	End to End Machine Learning Project
	Define objective/goal
	Load data
	Data exploration
	Prepare the data
	Build your model
	Save the model
	Build REST API
	Deploy to production
	Conclusion
	References

	Object Detection
	Object Detection
	RetinaNet
	Preparing the Dataset
	Detecting Vehicle Plates
	Conclusion
	References

