

[image: Hacker’s Guide to Machine Learning with Python]

 Hacker’s Guide to Machine Learning with Python

 Hands-on guide to solving real-world Machine Learning problems with Scikit-Learn, TensorFlow 2, and Keras

 Venelin Valkov

 This book is for sale at http://leanpub.com/Hackers-Guide-to-Machine-Learning-with-Python

 This version was published on 2020-07-13

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2019 - 2020 Venelin Valkov

 Table of Contents

 	
 End to End Machine Learning Project

 	
 Define objective/goal

 	
 Load data

 	
 Data exploration

 	
 Prepare the data

 	
 Build your model

 	
 Save the model

 	
 Build REST API

 	
 Deploy to production

 	
 Conclusion

 	
 References

 	
 Object Detection

 	
 Object Detection

 	
 RetinaNet

 	
 Preparing the Dataset

 	
 Detecting Vehicle Plates

 	
 Conclusion

 	
 References

 Guide

 	
 Begin Reading

End to End Machine Learning Project

 TL;DR Step-by-step guide to build a Deep Neural Network model with Keras to predict Airbnb prices in NYC and deploy it as REST API using Flask

This guide will let you deploy a Machine Learning model starting from zero. Here are the steps you’re going to cover:

 	Define your goal

 	Load data

 	Data exploration

 	Data preparation

 	Build and evalute your model

 	Save the model

 	Build REST API

 	Deploy to production

There is a lot to cover, but every step of the way will get you closer to deploying your model to the real-world. Let’s begin!

 Run the modeling code in your browser

 The complete project on GitHub

Define objective/goal

Obviously, you need to know why you need a Machine Learning (ML) model in the first place. Knowing the objective gives you insights about:

 	Is ML the right approach?

 	What data do I need?

 	What a “good model” will look like? What metrics can I use?

 	How do I solve the problem right now? How accurate is the solution?

 	How much is it going to cost to keep this model running?

In our example, we’re trying to predict Airbnb listing price per night in NYC. Our objective is clear - given some data, we want our model to predict how much will it cost to rent a certain property per night.

Load data

The data comes from Airbnb Open Data and it is hosted on Kaggle

 Since 2008, guests and hosts have used Airbnb to expand on traveling possibilities and present more unique, personalized way of experiencing the world. This dataset describes the listing activity and metrics in NYC, NY for 2019.

Setup

We’ll start with a bunch of imports and setting a random seed for reproducibility:

 1 import numpy as np
 2 import tensorflow as tf
 3 from tensorflow import keras
 4 import pandas as pd
 5 import seaborn as sns
 6 from pylab import rcParams
 7 import matplotlib.pyplot as plt
 8 from matplotlib import rc
 9 from sklearn.model_selection import train_test_split
10 import joblib
11
12 %matplotlib inline
13 %config InlineBackend.figure_format='retina'
14
15 sns.set(style='whitegrid', palette='muted', font_scale=1.5)
16
17 rcParams['figure.figsize'] = 16, 10
18
19 RANDOM_SEED = 42
20
21 np.random.seed(RANDOM_SEED)
22 tf.random.set_seed(RANDOM_SEED)

Download the data from Google Drive with gdown:

1 !gdown --id 1aRXGcJlIkuC6uj1iLqzi9DQQS-3GPwM_ --output airbnb_nyc.csv

And load it into a Pandas DataFrame:

1 df = pd.read_csv('airbnb_nyc.csv')

How can we understand what our data is all about?

Data exploration

This step is crucial. The goal is to get a better understanding of the data. You might be tempted to jumpstart the modeling process, but that would be suboptimal. Looking at large amounts of examples, looking for patterns and visualizing distributions will build your intuition about the data. That intuition will be helpful when modeling, imputing missing data and looking at outliers.

One easy way to start is to count the number of rows and columns in your dataset:

1 df.shape

1 (48895, 16)

We have 48,895 rows and 16 columns. Enough data to do something interesting.

Let’s start with the variable we’re trying to predict price. To plot the distribution, we’ll use distplot():

1 sns.distplot(df.price)

 [image:]

We have a highly skewed distribution with some values in the 10,000 range (you might want to explore those). We’ll use a trick - log transformation:

1 sns.distplot(np.log1p(df.price))

 [image:]

This looks more like a normal distribution. Turns out this might help your model better learn the data. You’ll have to remember to preprocess the data before training and predicting.

The type of room seems like another interesting point. Let’s have a look:

1 sns.countplot(x='room_type', data=df)

 [image:]

Most listings are offering entire places or private rooms. What about the location? What neighborhood groups are most represented?

1 sns.countplot(x='neighbourhood_group', data=df)

 [image:]

As expected, Manhattan leads the way. Obviously, Brooklyn is very well represented, too. You can thank Mos Def, Nas, Masta Ace, and Fabolous for that.

Another interesting feature is the number of reviews. Let’s have a look at it:

1 sns.distplot(df.number_of_reviews)

 [image:]

This one seems to follow a Power law (it has a fat tail). This one seems to follow a Power law (it has a fat tail). There seem to be some outliers (on the right) that might be of interest for investigation.

Finding Correlations

The correlation analysis might give you hints at what features might have predictive power when training your model.

 Remember, Correlation does not imply causation

Computing Pearson correlation coefficient between a pair of features is easy:

1 corr_matrix = df.corr()

Let’s look at the correlation of the price with the other attributes:

1 price_corr = corr_matrix['price']
2 price_corr.iloc[price_corr.abs().argsort()]

1 latitude 0.033939
2 minimum_nights 0.042799
3 number_of_reviews -0.047954
4 calculated_host_listings_count 0.057472
5 availability_365 0.081829
6 longitude -0.150019
7 price 1.000000

The correlation coefficient is defined in the -1 to 1 range. A value close to 0 means there is no correlation. Value of 1 suggests a perfect positive correlation (e.g. as the price of Bitcoin increases, your dreams of owning more are going up, too!). Value of -1 suggests perfect negative correlation (e.g. high number of bad reviews should correlate with lower prices).

The correlation in our dataset looks really bad. Luckily, categorical features are not included here. They might have some predictive power too! How can we use them?

Prepare the data

The goal here is to transform the data into a form that is suitable for your model. There are several things you want to do when handling (think CSV, Database) structured data:

 	Handle missing data

 	Remove unnecessary columns

 	Transform any categorical features to numbers/vectors

 	Scale numerical features

Missing data

Let’s start with a check for missing data:

1 missing = df.isnull().sum()
2 missing[missing > 0].sort_values(ascending=False)

1 reviews_per_month 10052
2 last_review 10052
3 host_name 21
4 name 16

We’ll just go ahead and remove those features for this example. In real-world applications, you should consider other approaches.

1 df = df.drop([
2 'id', 'name', 'host_id', 'host_name',
3 'reviews_per_month', 'last_review', 'neighbourhood'
4], axis=1)

We’re also dropping the neighbourhood, host id (too many unique values), and the id of the listing.

Next, we’re splitting the data into features we’re going to use for the prediction and a target variable y (the price):

1 X = df.drop('price', axis=1)
2 y = np.log1p(df.price.values)

Note that we’re applying the log transformation to the price.

Feature scaling and categorical data

Let’s start with feature scaling. Specifically, we’ll do min-max normalization and scale the features in the 0-1 range. Luckily, the MinMaxScaler from scikit-learn does just that.

But why do feature scaling at all? Largely because of the algorithm we’re going to use to train our model will do better with it.

Next, we need to preprocess the categorical data. Why?

Some Machine Learning algorithms can operate on categorical data without any preprocessing (like Decision trees, Naive Bayes). But most can’t.

Unfortunately, you can’t replace the category names with a number. Converting Brooklyn to 1 and Manhattan to 2 suggests that Manhattan is greater (2 times) than Brooklyn. That doesn’t make sense. How can we solve this?

We can use One-hot encoding. To get a feel of what it does, we’ll use OneHotEncoder from scikit-learn:

1 from sklearn.preprocessing import OneHotEncoder
2
3 data = [['Manhattan'], ['Brooklyn']]
4
5 OneHotEncoder(sparse=False).fit_transform(data)

1 array([[0., 1.],
2 [1., 0.]])

Essentially, you get a vector for each value that contains 1 at the index of the category and 0 for every other value. This encoding solves the comparison issue. The negative part is that your data now might take much more memory.

All data preprocessing steps are to be performed on the training data and data we’re going to receive via the REST API for prediction. We can unite the steps using make_column_transformer():

 1 from sklearn.preprocessing import MinMaxScaler, OneHotEncoder
 2 from sklearn.compose import make_column_transformer
 3
 4 transformer = make_column_transformer(
 5 (MinMaxScaler(), [
 6 'latitude', 'longitude', 'minimum_nights',
 7 'number_of_reviews', 'calculated_host_listings_count', 'availability_365'
 8]),
 9 (OneHotEncoder(handle_unknown="ignore"), [
10 'neighbourhood_group', 'room_type'
11])
12)

We enumerate all columns that need feature scaling and one-hot encoding. Those columns will be replaced with the ones from the preprocessing steps. Next, we’ll learn the ranges and categorical mapping using our transformer:

1 transformer.fit(X)

Finally, we’ll transform our data:

1 transformer.transform(X)

The last thing is to separate the data into training and test sets:

1 X_train, X_test, y_train, y_test =\
2 train_test_split(X, y, test_size=0.2, random_state=RANDOM_SEED)

You’re going to use only the training set while developing and evaluating your model. The test set will be used later.

That’s it! You are now ready to build a model. How can you do that?

Build your model

Finally, it is time to do some modeling. Recall the goal we set for ourselves at the beginning:

 We’re trying to predict Airbnb listing price per night in NYC

We have a price prediction problem on our hands. More generally, we’re trying to predict a numerical value defined in a very large range. This fits nicely in the Regression Analysis framework.

Training a model boils down to minimizing some predefined error. What error should we measure?

Error measurement

We’ll use Mean Squared Error which measures the difference between average squared predicted and true values:

[image: \text{MSE} = \frac{1}{n}\sum_{i=1}^{n}(Y_i - \hat{Y_i}) ^ 2]

where n is the number of samples, Y is a vector containing the real values and \hat{Y} is a vector containing the predictions from our model.

Now that you have a measurement of how well your model is performing is time to build the model itself. How can you build a Deep Neural Network with Keras?

Build a Deep Neural Network with Keras

Keras is the official high-level API for TensorFlow. In short, it allows you to build complex models using a sweet interface. Let’s build a model with it:

 1 model = keras.Sequential()
 2 model.add(keras.layers.Dense(
 3 units=64,
 4 activation="relu",
 5 input_shape=[X_train.shape[1]]
 6))
 7 model.add(keras.layers.Dropout(rate=0.3))
 8 model.add(keras.layers.Dense(units=32, activation="relu"))
 9 model.add(keras.layers.Dropout(rate=0.5))
10
11 model.add(keras.layers.Dense(1))

The sequential API allows you to add various layers to your model, easily. Note that we specify the input_size in the first layer using the training data. We also do regularization using Dropout layers.

How can we specify the error metric?

1 model.compile(
2 optimizer=keras.optimizers.Adam(0.0001),
3 loss = 'mae',
4 metrics = ['mae'])

The compile() method lets you specify the optimizer and the error metric you need to reduce.

Your model is ready for training. Let’s go!

Training

Training a Keras model involves calling a single method - fit():

 1 BATCH_SIZE = 32
 2
 3 early_stop = keras.callbacks.EarlyStopping(
 4 monitor='val_mae',
 5 mode="min",
 6 patience=10
 7)
 8
 9 history = model.fit(
10 x=X_train,
11 y=y_train,
12 shuffle=True,
13 epochs=100,
14 validation_split=0.2,
15 batch_size=BATCH_SIZE,
16 callbacks=[early_stop]
17)

We feed the training method with the training data and specify the following parameters:

 	shuffle - random sort the data

 	epochs - number of training cycles

 	validation_split - use some percent of the data for measuring the error and not during training

 	batch_size - the number of training examples that are fed at a time to our model

 	callbacks - we use EarlyStopping to prevent our model from overfitting when the training and validation error start to diverge

After the long training process is complete, you need to answer one question. Can your model make good predictions?

Evaluation

One simple way to understand the training process is to look at the training and validation loss:

 [image:]

We can see a large improvement in the training error, but not much on the validation error. What else can we use to test our model?

Using the test data

Recall that we have some additional data. Now it is time to use it and test how good our model. Note that we don’t use that data during the training, only once at the end of the process.

Let’s get the predictions from the model:

1 y_pred = model.predict(X_test)

And we’ll use a couple of metrics for the evaluation:

1 from sklearn.metrics import mean_squared_error
2 from math import sqrt
3 from sklearn.metrics import r2_score
4
5 print(f'MSE {mean_squared_error(y_test, y_pred)}')
6 print(f'RMSE {np.sqrt(mean_squared_error(y_test, y_pred))}')

1 MSE 0.2139184014903989
2 RMSE 0.4625131365598159

We’ve already discussed MSE. You can probably guess what Root Mean Squared Error (RMSE) means. RMSE allows us to penalize points further from the mean.

Another statistic we can use to measure how well our predictions fit with the real data is the R^2 score. A value close to 1 indicates a perfect fit. Let’s check ours:

1 print(f'R2 {r2_score(y_test, y_pred)}')

1 R2 0.5478250409482018

There is definitely room for improvement here. You might try to tune the model better and get better results.

Now you have a model and a rough idea of how well will it do in production. How can you save your work?

Save the model

Now that you have a trained model, you need to store it and be able to reuse it later. Recall that we have a data transformer that needs to be stored, too! Let’s save both:

1 import joblib
2
3 joblib.dump(transformer, "data_transformer.joblib")
4 model.save("price_prediction_model.h5")

The recommended approach of storing scikit-learn models is to use joblib. Saving the model architecture and weights of a Keras model is done with the save() method.

You can download the files from the notebook using the following:

1 from google.colab import files
2
3 files.download("data_transformer.joblib")
4 files.download("price_prediction_model.h5")

Build REST API

Building a REST API allows you to use your model to make predictions for different clients. Almost any device can speak REST - Android, iOS, Web browsers, and many others.

Flask allows you to build a REST API in just a couple of lines. Of course, we’re talking about a quick-and-dirty prototype. Let’s have a look at the complete code:

 1 from math import expm1
 2
 3 import joblib
 4 import pandas as pd
 5 from flask import Flask, jsonify, request
 6 from tensorflow import keras
 7
 8 app = Flask(__name__)
 9 model = keras.models.load_model("assets/price_prediction_model.h5")
10 transformer = joblib.load("assets/data_transformer.joblib")
11
12
13 @app.route("/", methods=["POST"])
14 def index():
15 data = request.json
16 df = pd.DataFrame(data, index=[0])
17 prediction = model.predict(transformer.transform(df))
18 predicted_price = expm1(prediction.flatten()[0])
19 return jsonify({"price": str(predicted_price)})

The complete project (including the data transformer and model) is on GitHub: Deploy Keras Deep Learning Model with Flask

The API has a single route (index) that accepts only POST requests. Note that we pre-load the data transformer and the model.

The request handler obtains the JSON data and converts it into a Pandas DataFrame. Next, we use the transformer to pre-process the data and get a prediction from our model. We invert the log operation we did in the pre-processing step and return the predicted price as JSON.

Your REST API is ready to go. Run the following command in the project directory:

1 flask run

Open a new tab to test the API:

1 curl -d '{"neighbourhood_group": "Brooklyn", "latitude": 40.64749, "longitude": -73.\
2 97237, "room_type": "Private room", "minimum_nights": 1, "number_of_reviews": 9, "ca\
3 lculated_host_listings_count": 6, "availability_365": 365}' -H "Content-Type: applic\
4 ation/json" -X POST http://localhost:5000

You should see something like the following:

1 {"price":"72.70381414559431"}

Great. How can you deploy your project and allow others to consume your model predictions?

Deploy to production

We’ll deploy the project to Google App Engine:

 App Engine enables developers to stay more productive and agile by supporting popular development languages and a wide range of developer tools.

App Engine allows us to use Python and easily deploy a Flask app.

You need to:

 	Register for Google Cloud Engine account

 	Google Cloud SDK installed

Here is the complete app.yaml config:

 1 entrypoint: "gunicorn -b :$PORT app:app --timeout 500"
 2 runtime: python
 3 env: flex
 4 service: nyc-price-prediction
 5 runtime_config:
 6 python_version: 3.7
 7 instance_class: B1
 8 manual_scaling:
 9 instances: 1
10 liveness_check:
11 path: "/liveness_check"

Execute the following command to deploy the project:

1 gcloud app deploy

Wait for the process to complete and test the API running on production. You did it!

Conclusion

Your model should now be running, making predictions, and accessible to everyone. Of course, you have a quick-and-dirty prototype. You will need a way to protect and monitor your API. Maybe you need a better (automated) deployment strategy too!

Still, you have a model deployed in production and did all of the following:

 	Define your goal

 	Load data

 	Data exploration

 	Data preparation

 	Build and evalute your model

 	Save the model

 	Build REST API

 	Deploy to production

How do you deploy your models? Comment down below :)

 Run the modeling code in your browser

 The complete project on GitHub

References

 	Joblib - running Python functions as pipeline jobs

 	Flask - lightweight web application framework

 	Building a simple Keras + deep learning REST API

Object Detection

 TL;DR Learn how to prepare a custom dataset for object detection and detect vehicle plates. Use transfer learning to finetune the model and make predictions on test images.

Detecting objects in images and video is a hot research topic and really useful in practice. The advancement in Computer Vision (CV) and Deep Learning (DL) made training and running object detectors possible for practitioners of all scale. Modern object detectors are both fast and much more accurate (actually, usefully accurate).

This guide shows you how to fine-tune a pre-trained Neural Network on a large Object Detection dataset. We’ll learn how to detect vehicle plates from raw pixels. Spoiler alert, the results are not bad at all!

You’ll learn how to prepare a custom dataset and use a library for object detection based on TensorFlow and Keras. Along the way, we’ll have a deeper look at what Object Detection is and what models are used for it.

Here’s what will do:

 	Understand Object Detection

 	RetinaNet

 	Prepare the Dataset

 	Train a Model to Detect Vehicle Plates

 Run the complete notebook in your browser

 The complete project on GitHub

Object Detection

Object detection methods try to find the best bounding boxes around objects in images and videos. It has a wide array of practical applications - face recognition, surveillance, tracking objects, and more.

 [image:]

A lot of classical approaches have tried to find fast and accurate solutions to the problem. Sliding windows for object localization and image pyramids for detection at different scales are one of the most used ones. Those methods were slow, error-prone, and not able to handle object scales very well.

Deep Learning changed the field so much that it is now relatively easy for the practitioner to train models on small-ish datasets and achieve high accuracy and speed.

Usually, the result of object detection contains three elements:

 	list of bounding boxes with coordinates

 	the category/label for each bounding box

 	the confidence score (0 to 1) for each bounding box and label

How can you evaluate the performance of object detection models?

Evaluating Object Detection

The most common measurement you’ll come around when looking at object detection performance is Intersection over Union (IoU). This metric can be evaluated independently of the algorithm/model used.

The IoU is a ratio given by the following equation:

[image: \text{IoU} = \frac{\text{Area of Overlap}}{\text{Area of Union}}]

IoU allows you to evaluate how well two bounding boxes overlap. In practice, you would use the annotated (true) bounding box, and the detected/predicted one. A value close to 1 indicates a very good overlap while getting closer to 0 gives you almost no overlap.

Getting IoU of 1 is very unlikely in practice, so don’t be too harsh on your model.

Mean Average Precision (mAP)

Reading papers and leaderboards on Object Detection will inevitably lead you to an mAP value report. Typically, you’ll see something like mAP@0.5 indicating that object detection is considered correct only when this value is greater than 0.5.

The value is derived by averaging the precision of each class in the dataset. We can get the average precision for a single class by computing the IoU for every example in the class and divide by the number of class examples. Finally, we can get mAP by dividing by the number of classes.

RetinaNet

RetinaNet, presented by Facebook AI Research in Focal Loss for Dense Object Detection (2017), is an object detector architecture that became very popular and widely used in practice. Why is RetinaNet so special?

RetinaNet is a one-stage detector. The most successful object detectors up to this point were operating on two stages (R-CNNs). The first stage involves selecting a set of regions (candidates) that might contain objects of interest. The second stage applies a classifier to the proposals.

One stage detectors (like RetinaNet) skip the region selection steps and runs detection over a lot of possible locations. This is faster and simpler but might reduce the overall prediction performance of the model.

RetinaNet is built on top of two crucial concepts - Focal Loss and Featurized Image Pyramid:

 	
Focal Loss is designed to mitigate the issue of extreme imbalance between background and foreground with objects of interest. It assigns more weight on hard, easily misclassified examples and small weight to easier ones.

 	The Featurized Image Pyramid is the vision component of RetinaNet. It allows for object detection at different scales by stacking multiple convolutional layers.

Keras Implementation

Let’s get real. RetinaNet is not a SOTA model for object detection. Not by a long shot. However, well maintained, bug-free, and easy to use implementation of a good-enough model can give you a good estimate of how well you can solve your problem. In practice, you want a good-enough solution to your problem, and you (or your manager) wants it yesterday.

Keras RetinaNet is a well maintained and documented implementation of RetinaNet. Go and have a look at the Readme to get a feel of what is capable of. It comes with a lot of pre-trained models and an easy way to train on custom datasets.

Preparing the Dataset

The task we’re going to work on is vehicle number plate detection from raw images. Our data is hosted on Kaggle and contains an annotation file with links to the images. Here’s a sample annotation:

 1 {
 2 "content": "http://com.dataturks.a96-i23.open.s3.amazonaws.com/2c9fafb0646e9cf9016\
 3 473f1a561002a/77d1f81a-bee6-487c-aff2-0efa31a9925c____bd7f7862-d727-11e7-ad30-e18a56\
 4 154311.jpg",
 5 "annotation": [
 6 {
 7 "label": [
 8 "number_plate"
 9],
10 "notes": null,
11 "points": [
12 {
13 "x": 0.7220843672456576,
14 "y": 0.5879828326180258
15 },
16 {
17 "x": 0.8684863523573201,
18 "y": 0.6888412017167382
19 }
20],
21 "imageWidth": 806,
22 "imageHeight": 466
23 }
24],
25 "extras": null
26 }

This will require some processing to turn those xs and ys into proper image positions. Let’s start with downloading the JSON file:

1 !gdown --id 1mTtB8GTWs74Yeqm0KMExGJZh1eDbzUlT --output indian_number_plates.json

We can use Pandas to read the JSON into a DataFrame:

1 plates_df = pd.read_json('indian_number_plates.json', lines=True)

Next, we’ll download the images in a directory and create an annotation file for our training data in the format (expected by Keras RetinaNet):

1 path/to/image.jpg,x1,y1,x2,y2,class_name

Let’s start by creating the directory:

1 os.makedirs("number_plates", exist_ok=True)

We can unify the download and the creation of annotation file like so:

 1 dataset = dict()
 2 dataset["image_name"] = list()
 3 dataset["top_x"] = list()
 4 dataset["top_y"] = list()
 5 dataset["bottom_x"] = list()
 6 dataset["bottom_y"] = list()
 7 dataset["class_name"] = list()
 8
 9 counter = 0
10 for index, row in plates_df.iterrows():
11 img = urllib.request.urlopen(row["content"])
12 img = Image.open(img)
13 img = img.convert('RGB')
14 img.save(f'number_plates/licensed_car_{counter}.jpeg', "JPEG")
15
16 dataset["image_name"].append(
17 f'number_plates/licensed_car_{counter}.jpeg'
18)
19
20 data = row["annotation"]
21
22 width = data[0]["imageWidth"]
23 height = data[0]["imageHeight"]
24
25 dataset["top_x"].append(
26 int(round(data[0]["points"][0]["x"] * width))
27)
28 dataset["top_y"].append(
29 int(round(data[0]["points"][0]["y"] * height))
30)
31 dataset["bottom_x"].append(
32 int(round(data[0]["points"][1]["x"] * width))
33)
34 dataset["bottom_y"].append(
35 int(round(data[0]["points"][1]["y"] * height))
36)
37 dataset["class_name"].append("license_plate")
38
39 counter += 1
40 print("Downloaded {} car images.".format(counter))

We can use the dict to create a Pandas DataFrame:

1 df = pd.DataFrame(dataset)

Let’s get a look at some images of vehicle plates:

 [image:]

 [image:]

Preprocessing

We’ve already done a fair bit of preprocessing. A bit more is needed to convert the data into the format that Keras Retina understands:

1 path/to/image.jpg,x1,y1,x2,y2,class_name

First, let’s split the data into training and test datasets:

1 train_df, test_df = train_test_split(
2 df,
3 test_size=0.2,
4 random_state=RANDOM_SEED
5)

We need to write/create two CSV files for the annotations and classes:

1 ANNOTATIONS_FILE = 'annotations.csv'
2 CLASSES_FILE = 'classes.csv'

We’ll use Pandas to write the annotations file, excluding the index and header:

1 train_df.to_csv(ANNOTATIONS_FILE, index=False, header=None)

We’ll use regular old file writer for the classes:

1 classes = set(['license_plate'])
2
3 with open(CLASSES_FILE, 'w') as f:
4 for i, line in enumerate(sorted(classes)):
5 f.write('{},{}\n'.format(line,i))

Detecting Vehicle Plates

You’re ready to finetune the model on the dataset. Let’s create a folder where we’re going to store the model checkpoints:

1 os.makedirs("snapshots", exist_ok=True)

You have two options at this point. Download the pre-trained model:

1 !gdown --id 1wPgOBoSks6bTIs9RzNvZf6HWROkciS8R --output snapshots/resnet50_csv_10.h5

Or train the model on your own:

1 PRETRAINED_MODEL = './snapshots/_pretrained_model.h5'
2
3 URL_MODEL = 'https://github.com/fizyr/keras-retinanet/releases/download/0.5.1/resnet\
4 50_coco_best_v2.1.0.h5'
5 urllib.request.urlretrieve(URL_MODEL, PRETRAINED_MODEL)
6
7 print('Downloaded pretrained model to ' + PRETRAINED_MODEL)

Here, we save the weights of the pre-trained model on the Coco dataset.

The training script requires paths to the annotation, classes files, and the downloaded weights (along with other options):

1 !keras_retinanet/bin/train.py \
2 --freeze-backbone \
3 --random-transform \
4 --weights {PRETRAINED_MODEL} \
5 --batch-size 8 \
6 --steps 500 \
7 --epochs 10 \
8 csv annotations.csv classes.csv

Make sure to choose an appropriate batch size, depending on your GPU. Also, the training might take a lot of time. Go get a hot cup of rakia, while waiting.

Loading the model

You should have a directory with some snapshots at this point. Let’s take the most recent one and convert it into a format that Keras RetinaNet understands:

1 model_path = os.path.join(
2 'snapshots',
3 sorted(os.listdir('snapshots'), reverse=True)[0]
4)
5
6 model = models.load_model(model_path, backbone_name='resnet50')
7 model = models.convert_model(model)

Your object detector is almost ready. The final step is to convert the classes into a format that will be useful later:

1 labels_to_names = pd.read_csv(
2 CLASSES_FILE,
3 header=None
4).T.loc[0].to_dict()

Detecting objects

How good is your trained model? Let’s find out by drawing some detected boxes along with the true/annotated ones. The first step is to get predictions from our model:

 1 def predict(image):
 2 image = preprocess_image(image.copy())
 3 image, scale = resize_image(image)
 4
 5 boxes, scores, labels = model.predict_on_batch(
 6 np.expand_dims(image, axis=0)
 7)
 8
 9 boxes /= scale
10
11 return boxes, scores, labels

We’re resizing and preprocessing the image using the tools provided by the library. Next, we need to add an additional dimension to the image tensor, since the model works on multiple/batch of images. We rescale the detected boxes based on the resized image scale. The function returns all predictions.

The next helper function will draw the detected boxes on top of the vehicle image:

 1 THRES_SCORE = 0.6
 2
 3 def draw_detections(image, boxes, scores, labels):
 4 for box, score, label in zip(boxes[0], scores[0], labels[0]):
 5 if score < THRES_SCORE:
 6 break
 7
 8 color = label_color(label)
 9
10 b = box.astype(int)
11 draw_box(image, b, color=color)
12
13 caption = "{} {:.3f}".format(labels_to_names[label], score)
14 draw_caption(image, b, caption)

We’ll draw detections with a confidence score above 0.6. Note that the scores are sorted high to low, so breaking from the loop is fine.

Let’s put everything together:

 1 def show_detected_objects(image_row):
 2 img_path = image_row.image_name
 3
 4 image = read_image_bgr(img_path)
 5
 6 boxes, scores, labels = predict(image)
 7
 8 draw = image.copy()
 9 draw = cv2.cvtColor(draw, cv2.COLOR_BGR2RGB)
10
11 true_box = [
12 image_row.x_min, image_row.y_min, image_row.x_max, image_row.y_max
13]
14 draw_box(draw, true_box, color=(255, 255, 0))
15
16 draw_detections(draw, boxes, scores, labels)
17
18 plt.axis('off')
19 plt.imshow(draw)
20 plt.show()

Here are the results of calling this function on two examples from the test set:

[image:]
[image:]

Things look pretty good. Our detected boxes are colored in blue, while the annotations are in yellow. Before jumping to conclusions, let’s have a look at another example:

 [image:]

Our model didn’t detect the plate on this vehicle. Maybe it wasn’t confident enough? You can try to run the detection with a lower threshold.

Conclusion

Well done! You’ve built an Object Detector that can (somewhat) find vehicle number plates in images. You used a pre-trained model and fine tuned it on a small dataset to adapt it to the task at hand.

Here’s what you did:

 	Understand Object Detection

 	RetinaNet

 	Prepare the Dataset

 	Train a Model to Detect Vehicle Plates

Can you use the concepts you learned here and apply it to a problem/dataset you have?

 Run the complete notebook in your browser

 The complete project on GitHub

References

 	Keras RetinaNet

 	Vehicle Number Plate Detection

 	Object detection: speed and accuracy comparison

 	Focal Loss for Dense Object Detection

 	Plate Detection –> Preparing the data

 	Object Detection in Colab with Fizyr Retinanet

OEBPS/images/leanpub_warning.png

OEBPS/images/tf-hackers-14----car-1.png

OEBPS/images/tf-hackers-14----car-2.png

OEBPS/images/tf-hackers-14----detection-1.png
iz mse el ate il S 5E

— o E 4

TOL7C N 5617 ‘

OEBPS/images/leanpub_equation_1.png
Area of Overlap

[oU =

Area of Union

OEBPS/images/leanpub_equation_0.png
MSE = —

> (i - V)’

1=1

OEBPS/images/tf-hackers-7----neighbourhood-group-dist.png
count

20000

15000

10000

5000

Queens Staten Island
neighbourhood_group

Brooklyn Manhattan

Bronx

OEBPS/images/tf-hackers-7----reviews-dist.png
0.05

0.04

0.03

0.02

0.01

0.00

100

200

300
number_of_reviews

400

500

600

OEBPS/images/tf-hackers-7----train-loss.png
MSE

—— Train MSE
—— Val MSE

20

40

Epoch

60

80

100

OEBPS/images/tf-hackers-14----number-plate.png

OEBPS/images/tf-hackers-14----detection-2.png
licerse_plat

RN

K

OEBPS/images/tf-hackers-7----price-dist.png
0.0040

0.0035

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

2000

4000

price

6000

8000

10000

OEBPS/images/tf-hackers-14----misdetection.png
{ CarsAccessories.in

OEBPS/images/tf-hackers-7----log-price-dist.png

OEBPS/images/tf-hackers-7----room-type-dist.png
count

25000

20000

15000

10000

5000

Private room

Entire home/apt
room_type

Shared room

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/title_page.jpg
Venelin Valkov
Hacker’s Guide to
Machine Learning
in Python

With Sklearn, TensorFlow 2 and Keras

