

A Go Developer’s Notebook
or, What I Do During My Holidays

Eleanor McHugh

This book is for sale at http://leanpub.com/GoNotebook

This version was published on 2019-11-11

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process.
Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many
iterations to get reader feedback, pivot until you have the right book and build traction once you do.

© 2018 Word & Deed Ltd

http://leanpub.com/GoNotebook
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!
Please help Eleanor McHugh by spreading the word about this book on Twitter!

The suggested hashtag for this book is #GoNotebook.

Find out what other people are saying about the book by clicking on this link to search for this hashtag
on Twitter:

#GoNotebook

http://twitter.com
https://twitter.com/search?q=%23GoNotebook
https://twitter.com/search?q=%23GoNotebook

For Uriel

Fearless pioneer and homesteader of the electronic frontier.

[1982 - 2012]

Contents

Preface . 1

Introducing Go . 5
Getting Started . 5
So what is Go? . 5

Open source . 5
Efficient compilation . 6
Efficient execution . 6
Ease of programming . 6

And where did it come from? . 7
Into the wild . 7
Where next? . 8

Hello World . 10
Packages . 11
Constants . 12
Variables . 13
Functions . 15
Encapsulation . 18
Generalisation . 22
Startup . 26
HTTP . 27
The Environment . 37
Handling Signals . 39
TCP/IP . 43
UDP . 49
RSA obfuscated UDP . 51
Error Handling . 55
Exceptions . 62

Echo . 72
Arguments . 72
Flags . 72
Command-line Boilerplate and Standard I/O . 72

Conditional Flags . 72
Errors . 72

Going Loopy . 73
Adventures in Iteration . 73

CONTENTS

Linear Sequences . 74
The for {} construct . 74
User Defined Slices . 74
Iterating Through Arrays . 74
Arrays and Slices Exposed . 74
Iteration and structured types . 74

mappings . 75
Iteration and maps . 75

Software Machines . 76

Software Machines . 77
array stacks . 77
cactus stacks . 77
hash maps . 77
heaps . 77
switch dispatchers . 77
direct threaded dispatchers . 77
indirect threaded dispatchers . 77
assembler . 78
tail calls . 78
architectures . 78
fun with types . 78
timers . 78
Instruction Set . 78
processor core . 78
accumulator machine . 78
stack machine . 79
register machine . 79
vector machine . 79

Software Machines . 80
memory . 80

Functional Programming . 81
Metaprogramming and First-Class Functions . 81
Pure Functions, Expressions, and Recursion . 81
Partial Application and Currying . 81
Lazy Evaluation and Memoization . 81
Infinite Series and Data Structures . 81
Immutability . 81
Category Theory . 82

Functions . 83
The Machine View . 83

Adding Human Readability . 83
Procedures and Functions in Go . 83

CONTENTS

The Mathematical View . 83
Simple Factorials . 83

First-Class and Higher-Order Functions . 83
Closures . 83
Currying . 84

Recursion . 84
funcs() Which Call Themselves . 84
Mathematical Functions Which Call Themselves . 84
Error Handling the Go Way . 84
Changing Types . 84

Memoization . 85
A Shallow Introduction to Big-O Notation . 85
In-Memory Caching . 85

Private Caches . 85
Caches in Hashes . 85
Once Upon A Flat File . 85
Let’s Talk About Type . 85

utility.go . 85
cache.go . 85
main.go . 86

A Generalised Cache . 86
cache.go . 86
utility.go . 86
factorial.go . 86
diskcache.go . 86
main.go . 86

Explicitly Layered Caching . 86
A Dedicated Memory Cache . 86
Writing Files in a Functional Manner . 86
Preventing Concurrent Writes . 87
Sharing Locks Between Processes . 87

Odds & Sods . 88

Maps and Hashes . 89
Go maps . 89
A simple Map implementation . 89

Types . 90
Interfaces . 90

Interfaces, pt 1 . 90
package adder . 90

Pretty Pictures . 91
Basic Mandelbrot . 91

Phong Shading . 92

Communication by Sharing . 93

CONTENTS

Concurrency . 94
synchronous . 94
asynchronous . 94
map/reduce . 94
map/reduce . 94

Errors, Exceptions & Flow Control . 95
Catch & Throw . 95
Stack Traces . 95
Exceptions . 95

Duck Typing, Reflection and Type Manipulation . 96
package generalise . 96
raw . 96

Beyond Go . 97
Interfacing with Dynamic Libraries . 97

SQLite 3 . 97
Ruby? . 97

Preface
It was a cold, dark night at the tail-end of 1980 and I was attending an open evening for the Grammar
School I’d later spend seven long, slow years attendingwhen I first met a programmable computer, one of a
series of steel-framed rack-mount monstrosities with trailing ribbon cables and large clunky floppy drives
that would have looked equally at home in a Soviet space capsule or a Quatermass-era germ warfare lab.
These were clustered in a long, narrow, beige room, its styrofoam tiles lit by anaemic fluorescent tubes
and dominated by an ageing teletype machine, in the midst of one of those asbestos prefab 1960s science
blocks so popular with the British educational establishment. The white heat of technology aged much
faster than the aviation industry it was meant to replace.

This certainly wasn’t the first time I’d seen a computer. That honour probably belongs to Tomorrow’s
World, the BBC’s flagship futurology show. My first clear memory though is from a couple of years
earlier when I found a book on technology in my local library with photos of the LEO 1, describing how
these electronic machines could ‘think’ and ‘solve problems’. This was a common theme of the 1970s with
sentient computers in TV shows like Blake’s 7 and movies such as Futureworld and Logan’s Run.

Experience has made me all too painfully aware that it’s actually programmers who do the thinking and
problem solving, not the machines, but to the yet unsullied mind of an eight year old proto-boffin the
idea that a machine could ‘think’ was fascinating - and as inscrutable as the collection of disassembled
transister radios and alarm clocks cluttering my bedroom draws. A few months later a family friend with
an interest in technology gave me a current issue of Personal Computer World which made me realise
that computers were something real people might one day play with at home, and not just the heroes
of my favourite sci-fi shows. From then on anything I could find which mentioned computers was read
cover to cover until the pages were dog-eared and yellowed.

However it was that night in 1980 which looms large in my memory. That night which set the course of
my life.

The following year I passed my 11+ - the only time incidentally that I’ve ever aced an exam - and joined
the first year intake. When two years later I received my first computer as a Christmas present I’d already
taught myself rudimentary spaghetti-code programming in out-of-hours sessions on Research Machines
380Zs, typing in program listings from home micro magazines and hobbyist-oriented books in one of the
plethora of semi-compatible BASIC dialects, then hacking them mostly into working shape.

When I was dependent on the school machines I was lucky if I’d get two hours of keyboard time in a week,
and that competed with my growing interest in polydice and pen-and-paper RPGs. Having a computer of
my own changed all that, the slim off-whiteOric-1 plugged into an old disused black-and-white television
in our spare room, and my relationship with code became much more… nuanced; programming emerging
as the steady back-beat to my teenage life, something to do when not buried in homework, hanging out
with friends or working on my Elite rating.

By the time I moved on to polytechnic I’d become a reasonably competent hacker, skilled in BASIC and
latterly obsessed with FORTH. I’d even dabbled a little in Z80 assembler which back then was seen as a
fairly natural thing for a teen into computers to mess with.

You’d probably expect me to have gone on to a Comp Sci degree with my love for coding but from what
I could see that didn’t seem to be a big part of the curriculum, and anyway Comp Sci already had a
reputation for social death. Really, who doesn’t want to be invited to parties?

Preface 2

Me apparently! Instead I spent the next four years blagging my way through an Applied Physics degree
during daylight hours and sitting up half the night with hacker friends, writing stupid little programs in
odd languages and hanging out on machines in distant places - much to the despair of my long-suffering
tutors who thought I should be putting the same effort into numeric methods, FORTRAN and Modula-2.
This was the pre-Web era when words like spam and worm were first being coined and most of the fun
to be had online involved MUDs, telnet, X.25 pads, pdsoft archives, sneaker-net warez, and my good old
friend JANET.

Of course I owned the obligatory mirror shades, a walkman, a clutch of goth and post-punk albums,
an increasingly battered copy of Neuromancer, and a “super-slim” laptop with lead-acid battery. As a
regular nethead I ran under a clutch of pseudonyms on alt.cyberpunk and alt.gothic, had an enviable
arsenal of 1337 VMS hacks and various issues of 2600 and Mondo 2000. As I imagined a career building
railguns for the Strategic Defence Initiative and autonomous robots with itchy little instinct-driven digital
limbic systems I styled myself the heroine of Timbuk3’s ironic paean to misplaced scientific ambition
The Future’s So Bright, I Gotta Wear Shades, a poster-girl surfer of The Third Wave. Kelly le Brock would
obviously play me in the movie or maybe Terri Garber if it were made for television…

Don’t judge me or my generation too harshly: the late 80s were a strangely naive time as the looming
shadows of the ColdWar receded and our friends electric had yet to acquire the more sinister overtones of
the mass surveillance society we live in today. It was still possible to dream of building artificial humans
without immediately assuming their purpose would be violence and oppression, and Michael J Fox could
rescue a multinational armed with nothing more than a winning smile, an MBA and an IBM PC. We had
C dammit. C! And soon we’d have Java - at least until The Enterprise got their hands on it.

This book is my homage to those hacker years when PCs were still exciting just for being PCs and to the
anarchic culture which throve in computer labs at certain campuses across the UK and US, the Trans-
Atlantic distance already dissolving under the addictive social influence of USENET and MUDs. As such
it’s not a professional book in any usual sense of the term, although I certainly hope the material within
will be of interest to professionals and useful to them in solving real world problems using Go.

We won’t be concerning ourselves much with idiomatic style or community standards, both of which are
already treated much better in other publications than I could hope to do. Nor will we spend much time
on syntax save as an incidental.

However to reassure the more sober amongst you that this book does indeed have some intrinsic technical
merit, I should probably mention that much of the material is drawn from a series of presentations
and workshops I’ve delivered at well-respected software development conferences starting in 2009 and
continuing to the present day as I’ve sought to share my passion for Go with a wider community.

The main advantage of reworking this material in book format is that I get to explore things at a more
leisurely pace than with a live audience, and I hope in doing so to also recapture some of the anarchic
can-do feel of those early books and magazine articles which first inspired me as a teenager. So what
I’m really looking to create here is the kind of book about programming in Go that if my untutored
younger self had found a copy, it would have kept her enthralled for months or even years. In some sense
it’s therefore an attempt at a “write your own adventure” programming course - inspired perhaps by that
marvellous book inNeal Stephenson’s The Diamond Age¹ - which takes it for granted that even the casual
reader can learn the full measure of Go without any other help.

I mention this because there are many clever, talented people in this world who’d really enjoy program-
ming if only they thought they were capable. But somehow they’ve been convinced that programming is
difficult. Well yes, it often is in the same way that writing a story or building with LEGO bricks or baking

¹https://en.wikipedia.org/wiki/The_Diamond_Age

https://en.wikipedia.org/wiki/The_Diamond_Age
https://en.wikipedia.org/wiki/The_Diamond_Age

Preface 3

a cake can be difficult. But not for the bogus reasons propagated in media depictions of allegedly typical
programmers!

You don’t need to be good at maths (I flunked calculus repeatedly), a straight-A student (my report card
perennially read “could do better!”) or look anything like a stereotypical nerd (I’m an ex-goth turned
yummy mummy). What matters is being interested in making things, and having the perseverance to
keep going when things aren’t quite working how you imagine. Just like any other creative endeavour -
whether that’s fixing up your house, icing a cake, repairing an engine, or writing a novel.

There will be some math and some theory along the way and I don’t apologise for this. Not only is
programming a fun pastime in its own right it also provides a window on maths, science, engineering
and social interactions. I can’t say in advance how deeply we’ll delve into any of these subjects and I
reserve the right to follow wherever inspiration leads when it offers the chance to explore interesting
programs.

So even if you’re looking at this book somewhat nervously after thumbing through the sample chapter,
and worrying that perhaps you’re not the kind of person it’s aimed at, please do yourself the favour of
setting aside all your preconceptions and at least playing with Go for a few days. It may feel tough at first
but trust me, you’re most decidedly who I’m writing for, even if I’ve been too close to the machine for
so many years that I haven’t much clue how to write for you. I guarantee that if you’re willing to invest
some time in playing with my code and reading around the various topics I introduce that you’ll get at
least as much from this book as those with CS degrees - indeed possible even as much as you’d get from
studying a CS degree in the first place as they’re woefully light on practical application.

Why have I decided to focus this book on Go, and not one of the conventionally recognised beginner-
friendly languages? That’s a good question. To start with I refute the proposition that Go is a difficult
language. It’s one of the smallest languages I know of for general-purpose programming and definitely the
smallest in the C-like family of systems languages. Despite that it features a number of powerful concepts
like first-class functions, concurrency, and type inference which make coding a pleasure. So using Go to
teach programming seems like a pretty reasonable choice.

But I’ve also made this decision for personal reasons.

For years I was best known for my avant garde talks² on Ruby, a dynamic language which is both a great
joy to work with and also commercially much in demand. If I were writing a conventional programming
book to address an established audience then that’s where I’d be most comfortable claiming expertise,
but frankly there are enough good books about Ruby already (and a pretty large catalogue of bad ones
for that matter) so I’ve nothing to add to that genre.

And whilst I love Ruby to bits, that affection is tempered by the culture which has grown up in response
to its commercial success: design patterns; test-driven development; SCRUM; Kanban; continuous
deployment; best practices. These are all useful things to know if you’re working in a large team at a
major enterprise with all that entails, but that’s a different passion to the one I feel. And frankly that’s
not how I believe new programmers get the bug for coding, any more than mechanics get it from reading
service manuals and measuring tolerances. Passion starts with play and play is the aim of this book. It’s
a hacker’s book not an engineer’s book.

Go has been an immense source of untarnished joy for me since I first encountered it, fresh off a flight
from a Polish tech conference in November 2009. At the time it was still a little ropey around the edges
with makefiles and all kinds of odd limitations, but it was already the easiest way to write efficient
concurrent programs in a C-like language and I admit I fell immediately in love.

It’s that love that’s sustained me through almost a decade of Go adventures and that’s led me to talk

²https://www.slideshare.net/feyeleanor

https://www.slideshare.net/feyeleanor
https://www.slideshare.net/feyeleanor

Preface 4

about it publicly at every opportunity, ligging³ my way onto the bill of some of the most highly regarded
software development conferences in Europe and the United States, and ultimately leading me to write
this book.

For this reason I’ve started with a large body of example code drawn from those conference sessions
and very little text beyond this preface. In the coming months and years I’ll be adding additional code
organically as the opportunity arises or in response to readers’ queries, and shaping a narrative to fit.
There isn’t a publication schedule, and I do my own editing.

This Dear Reader is where you come in. I want this book to be interesting and quirky and packed with
useful content so please let me know if there’s anything which doesn’t make sense to you, or offer any
ideas you have for new directions. I can’t promise that every new idea will be used in quite the way
you envisage but I’ll do my best to turn each into interesting code examples so we can all learn more
about Go. And trust me, I’ll be learning just as much as you will because programming isn’t one of those
disciplines where we ingest a fixed set of facts and then we’re done. This is the knowledge economy we’re
messing with here which means millions of creative minds are busily rewriting everything all the time,
sometimes for good reason but often just because it amuses them to do so.

Sadly there’ll be long gaps where very little gets added to the text because I’ve had to take on a commercial
project to pay my bills with all that entails: like most people in their mid-40s I have a family to feed, a
mortgage to pay, and a never-ending hardware habit to fund. I hope you’ll bear with me when these stalls
happen. The longest to date was a little over two years and I felt a little guilty the entire time.

To make up for my somewhat peripatetic approach I intend this to be the only book I ever write on Go and
that you need only purchase the electronic edition once to be covered for all time. This doesn’t include
any print editions which I may agree to publish but that’s not an ambition at the time of writing.

For those on tight budgets or who fancy an ironman challenge, I’ve designed the free tutorial chapter
Hello World so that it should be sufficient to learn Go without any outside assistance beyond the online
documentation and some experimentation. There probably isn’t a better free resource on networking and
cryptography in Go for the simple reason that there’s good money to be made teaching that stuff. If you’re
coming from a C or Java background that should literally be all you need to bootstrap yourself into the
language.

All source code will eventually be available online⁴ though I highly recommend manually typing it in
as you work your way through the book. It’s easy to forget in an age of source control and GUI tools
that coding is first and foremost a text-based process and there’s value in developing muscle memory
whenever we get the chance. Code is also literature of a sort - a strange amalgam of poetry and contract
negotiation like something from the dawn of writing - so there’s also great practical benefit in learning
to read code. There are no short cuts to the insight that provides.

Now give me your hand and together let’s enjoy some amazing adventures in the land of Go.

Ellie

London, 2018

³https://www.urbandictionary.com/define.php?term=ligger
⁴http://github.com/feyeleanor/GoNotebook

https://www.urbandictionary.com/define.php?term=ligger
http://github.com/feyeleanor/GoNotebook
https://www.urbandictionary.com/define.php?term=ligger
http://github.com/feyeleanor/GoNotebook

Introducing Go

In this section we’re going to explore Go through a series of increasingly complex programs which we
can interact with either through the command line or across a network.

Getting Started

If you’re of an impatient nature (my teenage self certainly was) temper that enthusiasm for a second and
read Google’s install docs⁵ to get your Go install up-and-running. You might also like to install LiteIDE⁶
which is an excellent cross-platform development environment for Go which also happens to be written
in Go.

This book is laid out as a series of parts focused on different topics I’m interested in and the order you read
it in is up to you with one clear exception: Hello World is designed as a quick tutorial introduction to Go
so if you don’t know the language that’s the place to start. Even if you do know Go you’ll probably find
other stuff in Hello World which will be useful as it covers network communications and cryptography.

Now Go have fun messing with my code.

So what is Go?

Well obviously it’s a programming language, which means an artificial language intended for humans to
read and write but which can be usefully translated into the 1s and 0s understood by digital computers.

But is it a good programming language?

Opinion on the internet has been bitterly divided on this question (which is hardly unusual) since Go
was released in November 2009 and the language has many detractors who either see it as deficient in
some crucial feature without which efficient programs can’t possibly be productively developed, or else
as a wholehearted nostalgia trip back into the 1980s by a team who’ve failed to move with the times.

So let’s look at the reality and see if these criticisms are justified.

Open source

Go’s developed as an open source project so anyone with an interest can read through its source code,
make modifications for their own purposes, or get involved in its future development. However it’s
also a carefully curated project and unlike many popular languages there’s a tightly defined language
specification⁷ which is intended to be read and understood by anyone working with Go.

These are pragmatic choices. Not only do many eyes make light work of code quality, a clear and readable
language specification makes it very clear what Go is and isn’t trying to achieve.

⁵https://golang.org/doc/install
⁶https://github.com/visualfc/liteide/releases
⁷https://golang.org/ref/spec

https://golang.org/doc/install
https://github.com/visualfc/liteide/releases
https://golang.org/ref/spec
https://golang.org/ref/spec
https://golang.org/doc/install
https://github.com/visualfc/liteide/releases
https://golang.org/ref/spec

6

Efficient compilation

Work started on the language at Google in 2007 as a way to address three key problems in systems
programming.

First there’s efficient compilation, the process of taking the source code for a program and turning it
into an executable form with a minimum of fuss. As increasingly complex programs are developed in
traditional systems languages like C and C++ they become dependent on equally complex build tools and
compilation times can stretch into minutes or hours.

This isn’t a particularly new phenomenon. The systems I was working on in the 90s often had compile
times in the order of 10 to 30 minutes so builds were a great excuse to make a cup of tea whilst waiting
to see if things compiled successfully. Still there’s only so many cups of tea you can make in a day and
maintain any semblance of productivity.

Sadly one of the main reasons for the popularity of interpreted languages like Ruby and Python (both
of which have other much more compelling reasons to explore) is the interactive nature of developing
with them. This basically allows devs to embrace the same smugness the Lisp crowd exude without
the intellectual snobbery or taste the pioneering spirit of Forth without the serious WTF? factor when
rereading old code.

In interpreted languages small chunks of code can be developed independently of each other and tested
immediately. This fast feedback cycle makes it much easier to explore a problem domain and figure
out how to work with it effectively (or if we’re lucky elegantly). However interpreted languages have a
reputation for being memory hungry and slow.

Efficient execution

This leads us to the second problem Go addresses: efficient execution. Systems programming is all about
programswhich other programs are going to rely on for key services so it’s highly desirable that languages
addressing these problems produce programs which run in a timely fashion and with predictable memory
overhead.

Compilation provides a huge boost to runtime performance compared to interpretation and the standard
Go compiler features a range of optimisations which make it roughly competitive with C++ or Java. And
because Go was developed with multi-core processors in mind it uses their resources effectively.

One area which raised concerns when Go was first released is its use of garbage collection rather than
traditional programmer-controlled memory allocation. Garbage collection used to be a significant cost
with 10ms set aside from every 50ms of program execution but in recent years there have been huge
improvements by switching to a concurrent design and tailoring this to other features of Go’s design.

Ease of programming

The majority of systems languages were designed at a time when memory was limited and processors
could generally only execute one instruction at a time (and that glacially slowly by modern standards).
As a result these languages provide programmers with very primitive abstractions which no longer even
vaguely resemble what’s really going on in most general purpose computers, and to make matters worse
they often entail a lot of careful book-keeping just to track memory allocations and prevent leaks which
will otherwise cause systems to become unstable.

Go was developed after these changes took place by a team with a long history of working on
systems software and embraces programmer-friendly conveniences such as garbage collection and CSP

7

concurrency which ease much of this burden. Its design also includes other features which aid ease of
programming such as first-class functions, slices, hash maps and structural typing which can greatly
simplify code analysis and reuse.

We’re going to have a lot of fun with all these features throughout this book.

And where did it come from?

Originally Go was developed in-house at Google, a company which thanks to its position in web search
and online advertising is heavily tech driven. Google’s systems operate at ROFLscale - a scale which most
of us can only dream of messing with - and its codebases measure multiple BLOC (that’s billion lines of
code). The aspirations at the heart of Go’s design are essentially attempts to reign in the complexity of
numerous codebases scattered throughout Google’s data-centres and written in C++, Python, and Java.

The initial development team comprised three industry veterans with a record of both innovation and
successful commercial implementation: Ken Thompson, Rob Pike, and Robert Griesemer.

Ken Thompson is a legendary hacker, the original creator of UNIX whose B programming language was
a strong influence on the design of hacker favourite C. Rob Pike meanwhile was deeply involved with
the development of the UNIX, Plan 9 (along with Ken) and Inferno operating systems as well as the Dis
virtual machine and a number of programming languages focused on concurrency. Robert Greisemer cut
his teeth working on Java’s HotSpot VM and Google’s V8 JavaScript runtime, so between the three of
them there’s a wealth of experience in systems software design and performance engineering.

At first glance Go is similar to another of Rob’s languages Limbo which he created for the Inferno
operating system and it features the CSP approach to concurrency he and Ken had been playing with
since their UNIX days. CSP (or Communicating Sequential Processes) was formally defined by British
computer scientist Tony Hoare⁸ in the late 70s and was key to the technical success of the multi-processor
InMos Transputer machines of the 1980s (though it’s programming language Occam was pretty nasty to
work with).

However Go is a much smaller language than Limbo thanks to a key decision made at the start of the
project: no suggested feature would be included in Go unless all three of the core team agreed it should be
included. This makes for a highly conservative language design focused onmust have features to achieve
its stated design goals rather than nice to have features which might be at odds with them. This is quite
a departure from the usual feature creep and special pleading seen in other languages.

Into the wild

When Go was first announced to the world on November 10th 2009 it was already a robust language
but with a few rough edges like the use of make files for project builds, a weekly source release cycle
which often saw package library APIs changing, and some fairly fiddly configuration via environment
variables.

However key features like the language specification, structural typing, garbage collection, and goroutines
were already fixed and a community of passionate users started to grow up around the language. Some of
these came from the bifurcating Python scene in search of stability and static typing, others like me had
need for a systems language but wanted to keep many of the free-wheeling conveniences we enjoyed in
higher-level languages. Then there were the C/C++ and Java devs initially attracted by the reputations of
Go’s designers who then stuck around for the fun they could have.

⁸https://en.wikipedia.org/wiki/Communicating_sequential_processes

https://en.wikipedia.org/wiki/Communicating_sequential_processes
https://en.wikipedia.org/wiki/Communicating_sequential_processes

8

Looking back I think all three groups were pulling not only in different directions to each other, but also
in different directions to the core team and it’s a testament to the flexibility of Go that a dedicated Rubyist
like me can be as comfortable working with it as the most static-typing obsessed escapee from Python or
generics-missing Java head.

The early buzz around Go wasn’t nearly as loud as TIOBE⁹ ratings suggested and the language would
probably have remained a curiosity even with Google’s backing if it hadn’t been for the widespread
adoption of Docker by the DevOps community.

Docker popularised containers, a standardised way of installing and running one or more lightweight
virtual machines on a server. These virtual machines aren’t to be confused with the kind used by
languages like Java or Erlang (and which form the meat of the software machines section of this book)
but are better understood as an outgrowth of UNIX chroot jails based on the resource isolation features
present in the Linux kernel. This allows one server to run multiple independent environments each with
well-defined privileges and managed resources without requiring the overhead associated with more
traditional virtualisation hypervisors like Xen or VMWare.

Google themselves are no strangers to containerisation and in 2015 released Kubernetes, an orchestration
system for deploying and managing containers across large-scale clusters inspired by a previous in-house
tool named Borg. Kubernetes is written in Go and in combination with Docker has helped simplify the
once black art of microservice design. Not only are these powerful tools, their use of Go makes them great
advertisements for the language.

Where next?

At the time of writing Go has been in the public eye for nine years. The release of version 1 in March 2012
came with the promise that there’d be no breaking language changes until a version 2 release and since
version 1.1 development has followed a tight release schedule focused primarily on improving runtime
performance and the standard library. Good software engineering practices aren’t particularly glamorous
but the end results are impressive as the garbage collector and goroutine scheduler demonstrate.

It’s still far from clear when version 2 of Go will materialise or the extent of any changes to the language
which will accompany it. One much-anticipated addition is some kind of support for generic types, the
absence of which has been controversial since Go was first released. Generics are one of a number of
different ways to enable compile-timemetaprogramming and are popular in a number of languages such
as C++ and Java, however they generally make the compilation process more complex and trade compile-
time cost for runtime efficiency.

Go already allows metaprogramming at runtime via its reflection and unsafe APIs with minimal impact
on compilation speeds but there is a runtime performance hit for any significant use of reflection which
starts to make higher-level interpreted languages look competitive. And thanks to structural typing via
interfaces it’s possible to write reasonably generic code based upon capability, though yet again there are
runtime costs associated with this approach.

Personally I’d like Go version 2 to introduce runtime optimisations for both reflection and structural
typing - maybe with some form of JIT compilation. This might well be possible for type switches by using
call-site caching and making changes to the reflection API inspired by virtual machine designs.

There are also a number of active projects focused on richer compile-timemetaprogramming using every-
thing from code templating (the C++ approach) to Lisp-inspired macros. These all involve code generation

⁹https://www.tiobe.com/tiobe-index/

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/

9

and subsequent compilation and it would be interesting to see direct compile-time metaprogramming
integrated into the language specification.

Then there’s enumeration via range statements which could be opened up to a wider selection of user-
defined types. Conceptually this could be simple enough: add an interface to the standard library which
yields successive elements and allow the compiler to spot this is implemented for a given type. But it’s
hard to see how this approach wouldn’t get pretty ugly pretty fast.

A possible first step might be to add nodes and lists to the core types defined in the language specification
as a analogous abstraction arrays & slices so that at least singly-linked and doubly-linked lists could be
used in range statements.

Another area where Go could be improved is for mobile development. There’s quite a bit of work that’s
gone on in this area over the past few years but Go still isn’t a first-class language on Android or iOS so
it would be good to see something official in this direction.

Things are much further along with desktop applications such as LiteIDE which uses Qt5 bindings for its
cross-platform GUI whilst TinyGo is bringing a decent subset of the language to minimalist embedded
devices like the BBC micro:bit. Likewise GopherJS has pioneered Go in the web browser whilst Go
version 1.11 now includes experimental support forWebAssembly. There are even bindings for the Vulkan
graphics API.

So hopefully the version 2 release will make Go a credible language to use all the way from deep embedded
systems right the way through to web browser front-ends. Who knows, perhaps we’ll even see some
graphically intensive games being developed in Go.

Hello World
It’s a tradition in programming books to start with a canonical “Hello World” example and whilst I’ve
never felt the usual presentation is particularly enlightening, I know we can spice things up a little to
provide useful insights into how we write Go programs.

Let’s begin with the simplest Go program that will output text to the console.

Example 1.1.1

1 package main

2

3 func main() {

4 println("hello world")

5 }

The first thing to note is that every Go source file belongs to a package, with themain package defining
an executable program whilst all other packages represent libraries.

1 package main

For themain package to be executable it needs to include amain() function, whichwill be called following
program initialisation.

3 func main() {

Notice that unlike C/C++ themain() function neither takes parameters nor has a return value. Whenever
a program should interact with command-line parameters or return a value on termination these tasks
are handled using functions in the standard package library. We’ll examine command-line parameters
when developing Echo in the next chapter.

Finally let’s look at our payload.

4 println("hello world")

The println() function is one of a small set of builtin generic functions defined in the language
specification and which in this case is usually used to assist debugging, whilst “hello world” is a value
comprising an immutable string of characters in utf-8 format.

We can now run our program from the command-line (Terminal on MacOS X or Command Prompt on
Windows) with the command

$ go run 01.go

hello world

Hello World 11

Packages

Nowwe’re going to apply a technique which I plan to use throughout this book by taking this simple task
and developing increasingly complex ways of expressing it in Go. This runs counter to how experienced
programmers usually develop code but I feel this makes for a very effective way to introduce features of
Go in rapid succession and have used it with some success during presentations and workshops.

There are a number of ways we can artificially complicate our hello world example and by the time
we’ve finished I hope to have demonstrated all the features you can expect to see in the global scope of
a Go package. Our first change is to remove the builtin println() function and replace it with something
intended for production code.

Example 1.1.2

1 package main

2 import "fmt"

3

4 func main() {

5 fmt.Println("hello world")

6 }

The structure of our program remains essentially the same, but we’ve introduced two new features.

2 import "fmt"

The import statement is a reference to the fmt package, one of many packages defined in Go’s standard
runtime library. A package is a library which provides a group of related functions and data types we
can use in our programs. In this case fmt provides functions and types associated with formatting text
for printing and displaying it on a console or in the command shell.

5 fmt.Println("hello world")

One of the functions provided by fmt is Println()which takes one or more parameters and prints them to
the console with a carriage return appended. Go assumes that any identifier starting with a capital letter
is part of the public interface of a package whilst identifiers starting with any other letter or symbol are
private to the package.

In production code we might choose to simplify matters a little by importing the fmt namespace into the
namespace of the current source file, which requires we change our import statement.

2 import . "fmt"

And this consequently allows the explicit package reference to be removed from the Println() function
call.

5 Println("hello world")

In this case we notice little gain however in later examples we’ll use this feature extensively to keep our
code legible.

Hello World 12

Example 1.1.3

1 package main

2 import . "fmt"

3

4 func main() {

5 Println("hello world")

6 }

One aspect of imports that we’ve not yet looked at is Go’s builtin support for code hosted on a variety of
popular social code-sharing sites such as GitHub and Google Code. Don’t worry, we’ll get to this in later
chapters.

Constants

A significant proportion of Go codebases feature identifiers whose values will not change during the
runtime execution of a program and our hello world example is no different, so we’re going to factor
these out.

Example 1.1.4

1 package main

2 import . "fmt"

3

4 const Hello = "hello"

5 const world = "world"

6

7 func main() {

8 Println(Hello, world)

9 }

Here we’ve introduced two constants: Hello and world. Each identifier is assigned its value during
compilation, and that value cannot be changed at runtime. As the identifier Hello starts with a capital
letter the associated constant is visible to other packages - though this isn’t relevant in the context of a
main package - whilst the identifierworld starts with a lowercase letter and is only accessible within the
main package.

We don’t need to specify the type of these constants as the Go compiler identifies them both as strings.

Another neat trick in Go’s armoury is multiple assignment so let’s see how this looks.

Example 1.1.5

1 package main

2 import . "fmt"

3

4 const Hello, world = "hello", "world"

5

6 func main() {

7 Println(Hello, world)

8 }

This is compact, but I personally find it too cluttered and prefer the more general form.

Hello World 13

Example 1.1.6

1 package main

2 import . "fmt"

3

4 const (

5 Hello = "hello"

6 world = "world"

7)

8

9 func main() {

10 Println(Hello, world)

11 }

Because the Println() function is variadic (i.e. can take a varible number of parameters) we can pass
it both constants and it will print them on the same line, separate by whitespace. fmt also provides
the Printf() function which gives precise control over how its parameters are displayed using a format
specifier which will be familiar to seasoned C/C++ programmers.

10 Printf("%v %v\n", Hello, world)

fmt defines a number of % replacement terms which can be used to determine how a particular parameter
will be displayed. Of these %v is the most generally used as it allows the formatting to be specified by the
type of the parameter. We’ll discuss this in depth when we look at user-defined types, but in this case it
will simply replace a %v with the corresponding string.

When parsing strings the Go compiler recognises a number of escape sequences which are available to
mark tabs, new lines and specific unicode characters. In this case we use \n to mark a new line.

Example 1.1.7

1 package main

2 import . "fmt"

3

4 const (

5 Hello = "hello"

6 world = "world"

7)

8

9 func main() {

10 Printf("%v %v\n", Hello, world)

11 }

Variables

Constants are useful for referring to values which shouldn’t change at runtime, however most of the time
when we’re referencing values in an imperative language like Go we need the freedom to change these
values. We associate values which will change with variables. What follows is a simple variation of our
HelloWorld program which allows the value of world to be changed at runtime by creating a new value
and assigning it to the world variable.

Hello World 14

Example 1.1.8

1 package main

2 import . "fmt"

3

4 const Hello = "hello"

5 var world = "world"

6

7 func main() {

8 world += "!"

9 Println(Hello, world)

10 }

There are two important changes here. Firstly we’ve introduced syntax for declaring a variable and
assigning a value to it. Once more Go’s ability to infer type allows us assign a string value to the variable
world without explicitly specifying the type.

5 var world = "world"

However if we wish to be more explicit we can be.

5 var world string = "world"

Having defined world as a variable in the global scope we can modify its value in main(), and in this
case we choose to append an exclamation mark. Strings in Go are immutable values so following the
assignment world will reference a new value.

8 world += "!"

To add some extra interest I’ve chosen to use an augmented assignment operator. These are a syntactic
convenience popular in many languages which allow the value contained in a variable to be modified
and the resulting value then assigned to the same variable.

I don’t intend to expend much effort discussing scope in Go. The point of this book is to experiment
and learn by playing with code, referring to the comprehensive language specification¹⁰ available from
Google when you need to know the technicalities of a given point. However to illustrate the difference
between global and local scope we’ll modify this program further.

Example 1.1.9

1 package main

2 import . "fmt"

3

4 const Hello = "hello"

5 var world = "world"

6

7 func main() {

8 world := world + "!"

9 Println(Hello, world)

10 }

¹⁰http://http://golang.org/ref/spec

http://http//golang.org/ref/spec
http://http//golang.org/ref/spec

Hello World 15

Here we’ve introduced a new local variableworldwithinmain()which takes its value from an operation
concatenating the value of the global world variable with an exclamation mark. Within main() any
subsequent reference to world will always access the local version of the variable without affecting the
global world variable. The is known as shadowing.

The := operator marks an assignment declaration in which the type of the expression is inferred from the
type of the value being assigned. If we chose to declare the local variable separately from the assignment
we’d have to give it a different name to avoid a compilation error.

Example 1.1.10

1 package main

2 import . "fmt"

3

4 const Hello = "hello"

5 var world = "world"

6

7 func main() {

8 var w string

9 w = world + "!"

10 Println(Hello, w)

11 }

Another thing to note in this example is that when w is declared it’s also initialised to the zero value,
which in the case of string happens to be ”“. This is a string containing no characters.

In fact all variables in Go are initialised to the zero value for their type when they’re declared and this
eliminates an entire category of initialisation bugs which could otherwise be difficult to identify.

Functions

Having looked at how to reference values in Go and how to use the Println() function to display them, it’s
only natural to wonder howwe can implement our own functions. Obviously we’ve already implemented
main() which hints at what’s involved, butmain() is something of a special case as it exist to allow a Go
program to execute and it neither requires any parameters nor produces any values to be used elsewhere
in the program.

Example 1.1.11

1 package main

2 import . "fmt"

3

4 const Hello = "hello"

5

6 func main() {

7 Println(Hello, world())

8 }

9

10 func world() string {

11 return "world"

12 }

In this example we’ve introducedworld(), a function which to the outside world has the same operational
purpose as the variable of the same name that we used in the previous section.

Hello World 16

The empty brackets () indicate that there are no parameters passed into the function when it’s called,
whilst string tells us that a single value is returned and it’s of type string. Anywhere that a valid Go
program would expect a string value we can instead place a call to world() and the value returned
will satisfy the compiler. The use of return is required by the language specification whenever a function
specifies return values, and in this case it tells the compiler that the value of world() is the string “world”.

Go is unusual in that its syntax allows a function to return more than one value and as such each function
takes two sets of (), the first for parameters and the second for results. We could therefore write our
function in long form as

10 func world() (string) {

11 return "world"

12 }

In this next example we use a somewhat richer function signature, passing the parameter name which is
a string value into the function message(), and assigning the function’s return value to message which
is a variable declared and available throughout the function.

Example 1.1.12

1 package main

2 import "fmt"

3

4 func main() {

5 fmt.Println(message("world"))

6 }

7

8 func message(name string) (message string) {

9 message = fmt.Sprintf("hello %v", name)

10 return message

11 }

As with world() the message() function can be used anywhere that the Go compiler expects to find
a string value. However where world() simply returned a predetermined value, message() performs a
calculation using the Sprintf() function and returns its result.

Sprintf() is similar to Printf() which we met when discussing constants, only rather than create a string
according to a format and displaying it in the terminal it instead returns this string as a value which we
can assign to a variable or use as a parameter in another function call such as Println().

Because we’ve explicitly named the return value we don’t need to reference it in the return statement as
each of the named return values is implied.

Example 1.1.13

1 package main

2 import . "fmt"

3

4 func main() {

5 Println(message("world"))

6 }

7

8 func message(name string) (message string) {

9 message = Sprintf("hello %v", name)

10 return

11 }

Hello World 17

If we compare the main() and message() functions, we notice that main() doesn’t have a return
statement. Likewise if we define our own functions without return values we can omit the return
statement though later we’ll meet examples where we’d still use a return statement to prematurely exit
a function.

Example 1.1.14

1 package main

2 import . "fmt"

3

4 func main() {

5 greet("world")

6 }

7

8 func greet(name string) {

9 Println("hello", name)

10 }

In the next example we’ll see what a function which uses multiple return values looks like.

Example 1.1.15

1 package main

2 import . "fmt"

3

4 func main() {

5 Println(message())

6 }

7

8 func message() (string, string) {

9 return "hello", "world"

10 }

Becausemessage() returns two values we can use it in any context where at least two parameters can be
consumed. Println() happens to be a variadic function, which we’ll explain in a moment, and takes zero
or more parameters so it happily consumes both of the valuesmessage() returns.

For our final example we’re going to implement our own variadic function.

Example 1.1.16

1 package main

2 import . "fmt"

3

4 func main() {

5 print("Hello", "world")

6 }

7

8 func print(v ...interface{}) {

9 Println(v...)

10 }

We have three interesting things going on here which need explaining. Firstly I’ve introduced a new type,
interface is accepted we can provide a string.

Hello World 18

In the function signature we use v …interface{} to declare a parameter v which takes any number of
values. These are received by print() as a sequence of values and the subsequent call to Println(v…) uses
this same sequence as this is the sequence expected by Println().

So why did we use …interface) so to provide a sequence of values en masse we likewise need to use
…interface (a slice of interface{} values, a concept we’ll cover in detail in a later chanpter) and copy
each individual element into it before passing it into Println().

Encapsulation

In this chapter we’ll for the most part be usingGo’s primitive types and types defined in various standard
packages without any comment on their structure, however a key aspect of modern programming
languages is the encapsulation of related data into structured types and Go supports this via the struct
type. A struct describes an area of allocated memory which is subdivided into slots for holding named
values, where each named value has its own type. A typical example of a struct in action would be

Example 1.1.17

1 package main

2

3 import "fmt"

4

5 type Message struct {

6 X string

7 y *string

8 }

9

10 func (v Message) Print() {

11 if v.y != nil {

12 fmt.Println(v.X, *v.y)

13 } else {

14 fmt.Println(v.X)

15 }

16 }

17

18 func (v *Message) Store(x, y string) {

19 v.X = x

20 v.y = &y

21 }

22

23 func main() {

24 m := &Message{}

25 m.Print()

26 m.Store("Hello", "world")

27 m.Print()

28 }

$ go run 17.go

Hello world

Here we’ve defined a struct Message which contains two values: X and y. Go uses a very simple rule
for deciding if an identifier is visible outside of the package in which it’s defined which applies to both

Hello World 19

package-level constants and variables, and type names, methods and fields. If the identifier starts with a
capital letter it’s visible outside the package otherwise its private to the package.

The Go language spec guarantees that all variables will be initialised to the zero value for their type. For
a struct type this means that every field will be initialised to an appropriate zero value. Therefore when
we declare a value of typeMessage theGo runtime will initialise all of its elements to their zero value (in
this case a zero-length string and a nil pointer respectively), and likewise if we create a Message value
using a literal

24 m := &Message{}

Having declared a struct type we can declare any number of method functions which will operate on this
type. In this case we’ve introduced Print()which is called on aMessage value to display it in the terminal,
and Store() which is called on a pointer to a Message value to change its contents. The reason Store()
applies to a pointer is that we want to be able to change the contents of the Message and have these
changes persist. If we define the method to work directly on the value these changes won’t be propagated
outside the method’s scope. To test this for yourself, make the following change to the program

Example 1.1.18

18 func (v Message) Store(x, y string) {

If you’re familiar with functional programming then the ability to use values immutably this way will
doubtless spark all kinds of interesting ideas.

There’s another struct trick I want to show off before we move on and that’s type embedding using
an anonymous field. Go’s design has upset quite a few people with an inheritance-based view of object
orientation because it lacks inheritance, however thanks to type embeddingwe’re able to compose types
which act as proxies to the methods provided by anonymous fields. As with most things, an example
will make this much clearer

Example 1.1.19 Type Embedding

1 package main

2

3 import "fmt"

4

5 type HelloWorld struct {}

6

7 func (h HelloWorld) String() string {

8 return "Hello world"

9 }

10

11 type Message struct {

12 HelloWorld

13 }

14

15 func main() {

16 m := &Message{}

17 fmt.Println(m.HelloWorld.String())

18 fmt.Println(m.String())

19 fmt.Println(m)

20 }

Hello World 20

$ go run 19.go

Hello world

Hello world

Hello world

Here we’re declaring a type HelloWorld which in this case is just an empty struct, but which in
reality could be any declared type. HelloWorld defines a String() method which can be called on any
HelloWorld value. We then declare a typeMessage which embeds the HelloWorld type by defining an
anonymous field of the HelloWorld type. Wherever we encounter a value of typeMessage and wish to
call String() on its embedded HelloWorld value we can do so by calling String() directly on the value,
calling String() on the Message value, or in this case by allowing fmt.Println() to match it with the
fmt.Stringer interface.

Any declared type can be embedded, so in our next example we’re going to base HelloWorld on the
primitive bool boolean type to prove the point

Example 1.1.20 Type Embedding

1 package main

2 import "fmt"

3

4 type HelloWorld bool

5

6 func (h HelloWorld) String() (r string) {

7 if h {

8 r = "Hello world"

9 }

10 return

11 }

12

13 type Message struct {

14 HelloWorld

15 }

16

17 func main() {

18 m := &Message{ HelloWorld: true }

19 fmt.Println(m)

20 m.HelloWorld = false

21 fmt.Println(m)

22 m.HelloWorld = true

23 fmt.Println(m)

24 }

In our final example we’ve declared theHello type and embedded it inMessage, then we’ve implemented
a new String() method which allows aMessage value more control over how it’s printed

Hello World 21

Example 1.1.21 Type Embedding

1 package main

2 import "fmt"

3

4 type Hello struct {}

5

6 func (h Hello) String() string {

7 return "Hello"

8 }

9

10 type Message struct {

11 *Hello

12 World string

13 }

14

15 func (v Message) String() (r string) {

16 if v.Hello == nil {

17 r = v.World

18 } else {

19 r = fmt.Sprintf("%v %v", v.Hello, v.World)

20 }

21 return

22 }

23

24 func main() {

25 m := &Message{}

26 fmt.Println(m)

27 m.Hello = new(Hello)

28 fmt.Println(m)

29 m.World = "world"

30 fmt.Println(m)

31 }

$ go run 21.go

Hello

Hello world

Hello World 22

In all these examples we’ve made liberal use of the * and& operators. An explanation is in order.

Go is a systems programming language, and this means that a Go program has direct access to
the memory of the platform it’s running on. This requires that Go has a means of refering to
specific addresses in memory and of accessing their contents indirectly.

The & operator is prepended to the name of a variable or to a value literal when we wish to
discover its address in memory, which we refer to as a pointer. To do anything with the pointer
returned by the & operator we need to be able to declare a pointer variable which we do by
prepending a type name with the * operator. An example will probably make this description
somewhat clearer

$ go run aside_01.go

name = Ellie stored at 0x208178170

pointer_to_name references Ellie

Go allows user-defined types to declare methods on either a value type or a pointer to a value
type. When methods operate on a value type the value manipulated remains immutable to
the rest of the program (essentially the method operates on a copy of the value) whilst with a
pointer to a value type any changes to the value are apparent throughout the program.

This has far-reaching implications which we’ll explore in later chapters.

Generalisation

Encapsulation is of huge benefit when writing complex programs and it also enables one of the more
powerful features of Go’s type system, the interface. An interface is similar to a struct in that it combines
one or more elements but rather than defining a type in terms of the data items it contains, an interface
defines it in terms of a set of method signatures which it must implement.

As none of the primitive types (int, string, etc.) have methods they match the empty interface
(interface{}) as do all other types, a property used frequently in Go programs to create generic
containers.

Once declared an interface can be used just like any other declared type, allowing functions and variables
to operate with unknown types based solely on their required behaviour. Go’s type inference system will
then recognise compliant values as instances of the interface, allowing us to write generalised code with
little fuss.

In the next example we’re going to introduce a simple interface (by far the most common kind) which
matches any type with a func String() string method signature.

Hello World 23

Example 1.1.22

1 package main

2 import "fmt"

3

4 type Stringer interface {

5 String() string

6 }

7

8 type Hello struct {}

9

10 func (h Hello) String() string {

11 return "Hello"

12 }

13

14 type World struct {}

15

16 func (w *World) String() string {

17 return "world"

18 }

19

20 type Message struct {

21 X Stringer

22 Y Stringer

23 }

24

25 func (v Message) String() (r string) {

26 switch {

27 case v.X == nil && v.Y == nil:

28 case v.X == nil:

29 r = v.Y.String()

30 case v.Y == nil:

31 r = v.X.String()

32 default:

33 r = fmt.Sprintf("%v %v", v.X, v.Y)

34 }

35 return

36 }

37

38 func main() {

39 m := &Message{}

40 fmt.Println(m)

41 m.X = new(Hello)

42 fmt.Println(m)

43 m.Y = new(World)

44 fmt.Println(m)

45 m.Y = m.X

46 fmt.Println(m)

47 m = &Message{ X: new(World), Y: new(Hello) }

48 fmt.Println(m)

49 m.X, m.Y = m.Y, m.X

50 fmt.Println(m)

51 }

Hello World 24

$ go run 22.go

Hello

Hello world

Hello Hello

world Hello

Hello world

This interface is copied directly from fmt.Stringer, so we can simplify our code a little by using that
interface instead

Example 1.1.23

17 type Message struct {

18 X fmt.Stringer

19 Y fmt.Stringer

20 }

As Go is strongly typed interface values contain both a pointer to the value contained in the interface,
and the concrete type of the stored value. This allows us to perform type assertions to confirm that the
value inside an interface matches a particular concrete type

Example 1.1.24

1 package main

2 import "fmt"

3

4 type Hello struct {}

5

6 func (h Hello) String() string {

7 return "Hello"

8 }

9

10 type World struct {}

11

12 func (w *World) String() string {

13 return "world"

14 }

15

16 type Message struct {

17 X fmt.Stringer

18 Y fmt.Stringer

19 }

20

21 func (v Message) IsGreeting() (ok bool) {

22 if _, ok = v.X.(*Hello); !ok {

23 _, ok = v.Y.(*Hello)

24 }

25 return

26 }

27

28 func main() {

29 m := &Message{}

30 fmt.Println(m.IsGreeting())

31 m.X = new(Hello)

32 fmt.Println(m.IsGreeting())

Hello World 25

33 m.Y = new(World)

34 fmt.Println(m.IsGreeting())

35 m.Y = m.X

36 fmt.Println(m.IsGreeting())

37 m = &Message{ X: new(World), Y: new(Hello) }

38 fmt.Println(m.IsGreeting())

39 m.X, m.Y = m.Y, m.X

40 fmt.Println(m.IsGreeting())

41 }

go run 24.go

false

true

true

true

true

true

Here we’ve replacedMessage’s String()method with IsGreeting(), a predicate which uses a pair of type
assertions to tell us whether or not one of Message’s data fields contains a value of concrete typeHello.

So far in these examples we’ve been using pointers to Hello and World so the interface variables
are storing pointers to pointers to these values (i.e. **Hello and **World) rather than pointers to the
values themselves (i.e. *Hello and *World). In the case of World we have to do this to comply with the
fmt.Stringer interface because String() is defined for *World and if we modify main to assign aWorld
value to either field we’ll get a compile-time error

Example 1.1.25

29 func main() {

30 m := &Message{}

31 fmt.Println(m.IsGreeting())

32 m.X = Hello{}

33 fmt.Println(m.IsGreeting())

34 m.X = new(Hello)

35 fmt.Println(m.IsGreeting())

36 m.X = World{}

37 }

$ go run 25.go

command-line-arguments

./25.go:36: cannot use World literal (type World) as type fmt.Stringer in assignment:

World does not implement fmt.Stringer (String method has pointer receiver)

The final thing to mention about interfaces is that they support embedding of other interfaces. This
allows us to compose a new, more restrictive interface based on one or more existing interfaces. Rather
than demonstrate this with an example we’re going to look at code lifted directly from the standard io
package which does this

Hello World 26

67 type Reader interface {

68 Read(p []byte) (n int, err error)

69 }

78 type Writer interface {

79 Write(p []byte) (n int, err error)

80 }

106 type ReadWriter interface {

107 Reader

108 Writer

109 }

Here io is declaring three interfaces, the Reader and Writer which are independent of each other, and
the ReadWriter which combines both. Any time we declare a variable, field or function parameter in
terms of a ReaderWriter we know we can use both the Read() andWrite() methods to manipulate it.

Startup

One of the less-discussed aspects of computer programs is the need to initialise many of them to a pre-
determined state before they begin executing. Whilst this is probably the worst place to start discussing
what to many people may appear to be advanced topics, one of my goals in this chapter is to cover all of
the structural elements that we’ll meet when we examine more complex programs.

Every Go packagemay contain one or more init() functions specifying actions that should be taken during
program initialisation. This is the one case I’m aware of where multiple declarations of the same identifier
can occur without either resulting in a compilation error or the shadowing of a variable. In the following
example we use the init() function to assign a value to our world variable

Example 1.1.26

1 package main

2 import . "fmt"

3

4 const Hello = "hello"

5 var world string

6

7 func init() {

8 world = "world"

9 }

10

11 func main() {

12 Println(Hello, world)

13 }

However the init() function can contain any valid Go code, allowing us to place the whole of our program
in init() and leaving main() as a stub to convince the compiler that this is indeed a valid Go program.

Hello World 27

Example 1.1.27

1 package main

2 import . "fmt"

3

4 const Hello = "hello"

5 var world string

6

7 func init() {

8 world = "world"

9 Println(Hello, world)

10 }

11

12 func main() {}

When there aremultiple init() functions the order in which they’re executed is indeterminate so in general
it’s best not to do this unless you can be certain the init() functions don’t interact in any way. The
following happens to work as expected on my development computer but an implementation of Go could
just as easily arrange it to run in reverse order or even leave deciding the order of execution until runtime.

Example 1.1.28

1 package main

2 import . "fmt"

3

4 const Hello = "hello"

5 var world string

6

7 func init() {

8 Print(Hello, " ")

9 world = "world"

10 }

11

12 func init() {

13 Printf("%v\n", world)

14 }

15

16 func main() {}

HTTP

So far our treatment of Hello World has followed the traditional route of printing a preset message to
the console. Anyone would think we were living in the fuddy-duddy mainframe era of the 1970s instead
of the shiny 21st Century, when web and mobile applications rule the world.

Turning Hello World into a web application is surprisingly simple, as the following example demon-
strates.

Hello World 28

Example 1.1.29

1 package main

2 import . "fmt"

3 import "net/http"

4

5 const MESSAGE = "hello world"

6 const ADDRESS = ":1024"

7

8 func main() {

9 http.HandleFunc("/hello", Hello)

10 if e := http.ListenAndServe(ADDRESS, nil); e != nil {

11 Println(e)

12 }

13 }

14

15 func Hello(w http.ResponseWriter, r *http.Request) {

16 w.Header().Set("Content-Type", "text/plain")

17 Fprintf(w, MESSAGE)

18 }

$ go run 29.go

Our web server is now listening on localhost port 1024 (usually the first non-privileged port on most
Unix-like operating systems) and if we visit the url http://localhost:1024/hello with a web browser our
server will return Hello World in the response body.

Image 1.29 http://localhost:1024/hello

The first thing to note is that the net/http package provides a fully-functional web server which requires
very little configuration. All we have to do to get our content to the browser is define a handler, which
in this case is a function to call whenever an http.Request is received, and then launch a server to listen
on the desired address with http.ListenAndServe(). http.ListenAndServe returns an error if it’s unable
to launch the server for some reason, which in this case we print to the console.

We’re going to import the net/http package into the current namespace and assume our code won’t
encounter any runtime errors to make the simplicity even more apparent. If you run into any problems
whilst trying the examples which follow, reinserting the if statement will allow you to figure out what’s
going on.

Hello World 29

Example 1.1.30

1 package main

2 import . "fmt"

3 import . "net/http"

4

5 const MESSAGE = "hello world"

6 const ADDRESS = ":1024"

7

8 func main() {

9 HandleFunc("/hello", Hello)

10 ListenAndServe(ADDRESS, nil)

11 }

12

13 func Hello(w ResponseWriter, r *Request) {

14 w.Header().Set("Content-Type", "text/plain")

15 Fprintf(w, MESSAGE)

16 }

HandleFunc() registers a URL in theweb server as the trigger for a function, sowhen aweb request targets
the URL the associated function will be executed to generate the result. The specified handler function is
passed both a ResponseWriter to send output to the web client and the Request which is being replied
to. The ResponseWriter is a file handle so we can use the fmt.Fprint() family of file-writing functions
to create the response body.

Finally we launch the server using ListenAndServe() which will block for as long as the server is active,
returning an error if there is one to report.

In this example I’ve declared a function Hello and by referring to this in the call to HandleFunc() this
becomes the function which is registered. However Go also allows us to define functions anonymously
where we wish to use a function value, as demonstrated in the following variation on our theme.

Example 1.1.31

1 package main

2 import . "fmt"

3 import . "net/http"

4

5 const MESSAGE = "hello world"

6 const ADDRESS = ":1024"

7

8 func main() {

9 HandleFunc("/hello", func(w ResponseWriter, r *Request) {

10 w.Header().Set("Content-Type", "text/plain")

11 Fprintf(w, MESSAGE)

12 })

13 ListenAndServe(ADDRESS, nil)

14 }

Functions are first-class values in Go and here HandleFunc() is passed an anonymous function value
which is created at runtime. This value is a closure so it can also access variables in the lexical scope in
which it’s defined. We’ll treat closures in greater depth later in the book, but for now here’s an example
which demonstrates their basic premise by defining a variablemessages inmain() and then accessing it
from within the anonymous function.

Hello World 30

Example 1.1.32

1 package main

2 import . "fmt"

3 import . "net/http"

4

5 const ADDRESS = ":1024"

6

7 func main() {

8 message := "hello world"

9 HandleFunc("/hello", func(w ResponseWriter, r *Request) {

10 w.Header().Set("Content-Type", "text/plain")

11 Fprintf(w, message)

12 })

13 ListenAndServe(ADDRESS, nil)

14 }

This is only a very brief taster of what’s possible using net/http so we’ll conclude by serving our hello
world web application over an SSL connection.

Example 1.1.33

1 package main

2 import . "fmt"

3 import . "net/http"

4

5 const SECURE_ADDRESS = ":1025"

6

7 func main() {

8 message := "hello world"

9 HandleFunc("/hello", func(w ResponseWriter, r *Request) {

10 w.Header().Set("Content-Type", "text/plain")

11 Fprintf(w, message)

12 })

13 ListenAndServeTLS(SECURE_ADDRESS, "cert.pem", "key.pem", nil)

14 }

Before we run this program we first need to generate a certificate and a public key, which we can do
using crypto/tls/generate_cert.go in the standard package library.

$ go run $GOROOT/src/pkg/crypto/tls/generate_cert.go -ca=true -host="localhost"

2014/05/16 20:41:53 written cert.pem

2014/05/16 20:41:53 written key.pem

$ go run 33.go

Image 1.33 https://localhost:1025/hello

Hello World 31

This is a self-signed certificate, and not all modern web browsers like these. Firefox will refuse
to connect on the grounds the certificate is inadequate and not being a Firefox user I’ve not
devoted much effort to solving this. Meanwhile both Chrome and Safari will prompt the user to
confirm the certificate is trusted. I have no idea how Internet Explorer behaves.

For production applications you’ll need a certificate from a recognised Certificate Authority.
Traditionally this would be purchased from a company such as Thawte¹¹ for a fixed period but
with the increasing emphasis on securing the web a number of major networking companies
have banded together to launch Let’s Encrypt¹². It’s a free CA issuing short-duration certificates
for SSL/TLS with support for automated renewal.

If you’re anything like me (and you have my sympathy if you are) then the next thought to idle through
your mind will be a fairly obvious question: given that we can serve our content over both HTTP and
HTTPS connections, how do we do both from the same program?

To answer this we have to know a little - but not a lot - about how to model concurrency in a Go program.
The go keyword marks a goroutinewhich is a lightweight thread scheduled by the Go runtime. How this
is implemented under the hood doesn’t matter, all we need to know is that when a goroutine is launched
it takes a function call and creates a separate thread of execution for it. Here we’re going to launch a
goroutine to run the HTTP server then run the HTTPS server in the main flow of execution.

Example 1.1.34

1 package main

2 import . "fmt"

3 import . "net/http"

4

5 const ADDRESS = ":1024"

6 const SECURE_ADDRESS = ":1025"

7

8 func main() {

9 message := "hello world"

10 HandleFunc("/hello", func(w ResponseWriter, r *Request) {

11 w.Header().Set("Content-Type", "text/plain")

12 Fprintf(w, message)

13 })

14

15 go func() {

16 ListenAndServe(ADDRESS, nil)

17 }()

18

19 ListenAndServeTLS(SECURE_ADDRESS, "cert.pem", "key.pem", nil)

20 }

When I first wrote this code it actually used two goroutines, one for each server. Unfortunately no matter
how busy any particular goroutine is, when the main() function returns our program will exit and our
web servers will terminate. So I tried the primitive approach we all know and love from C

¹¹https://www.thawte.com
¹²https://letsencrypt.org

https://www.thawte.com/
https://letsencrypt.org/
https://www.thawte.com/
https://letsencrypt.org/

Hello World 32

10 func main() {

11 message := "hello world"

12 HandleFunc("/hello", func(w ResponseWriter, r *Request) {

13 w.Header().Set("Content-Type", "text/plain")

14 Fprintf(w, message)

15 })

16

17 go func() {

18 ListenAndServe(ADDRESS, nil)

19 }()

20

21 go func() {

22 ListenAndServeTLS(SECURE_ADDRESS, "cert.pem", "key.pem", nil)

23 }()

24

25 for {}

26 }

Here we’re using an infinite for loop to prevent program termination: it’s inelegant, but this is a small
program and dirty hacks have their appeal. Whilst semantically correct this unfortunately doesn’t work
either because of the way goroutines are scheduled: the infinite loop can potentially starve the thread
scheduler and prevent the other goroutines from running.

$ go version

go version go1.3 darwin/amd64

In any event an infinite loop is a nasty, unnecessary hack as Go allows concurrent elements of a program
to communicate with each other via channels, allowing us to rewrite our code as

Example 1.1.35

1 package main

2 import . "fmt"

3 import . "net/http"

4

5 const ADDRESS = ":1024"

6 const SECURE_ADDRESS = ":1025"

7

8 func main() {

9 message := "hello world"

10 HandleFunc("/hello", func(w ResponseWriter, r *Request) {

11 w.Header().Set("Content-Type", "text/plain")

12 Fprintf(w, message)

13 })

14

15 done := make(chan bool)

16 go func() {

17 ListenAndServe(ADDRESS, nil)

18 done <- true

19 }()

20

21 ListenAndServeTLS(SECURE_ADDRESS, "cert.pem", "key.pem", nil)

22 <- done

23 }

Hello World 33

For the next pair of examples we’re going to use two separate goroutines to run our HTTP and HTTPS
servers, yet again coordinating program termination with a shared channel. In the first example we’ll
launch both of the goroutines from the main() function, which is a fairly typical code pattern

Example 1.1.36

1 package main

2 import . "fmt"

3 import . "net/http"

4

5 const ADDRESS = ":1024"

6 const SECURE_ADDRESS = ":1025"

7

8 func main() {

9 message := "hello world"

10 HandleFunc("/hello", func(w ResponseWriter, r *Request) {

11 w.Header().Set("Content-Type", "text/plain")

12 Fprintf(w, message)

13 })

14

15 done := make(chan bool)

16 go func() {

17 ListenAndServe(ADDRESS, nil)

18 done <- true

19 }()

20

21 go func () {

22 ListenAndServeTLS(SECURE_ADDRESS, "cert.pem", "key.pem", nil)

23 done <- true

24 }()

25 <- done

26 <- done

27 }

For our second deviation we’re going to launch a goroutine from main() which will run our HTTPS
server and this will launch the second goroutine which manages our HTTP server

Example 1.1.37

1 package main

2 import . "fmt"

3 import . "net/http"

4

5 const ADDRESS = ":1024"

6 const SECURE_ADDRESS = ":1025"

7

8 func main() {

9 message := "hello world"

10 HandleFunc("/hello", func(w ResponseWriter, r *Request) {

11 w.Header().Set("Content-Type", "text/plain")

12 Fprintf(w, message)

13 })

14

15 done := make(chan bool)

16 go func () {

17 go func() {

Hello World 34

18 ListenAndServe(ADDRESS, nil)

19 done <- true

20 }()

21

22 ListenAndServeTLS(SECURE_ADDRESS, "cert.pem", "key.pem", nil)

23 done <- true

24 }()

25 <- done

26 <- done

27 }

There’s a certain amount of fragile repetition in this code as we have to remember to explicitly create a
channel, and then to send and receive on it multiple times to coordinate execution. As Go provides first-
order functions (i.e. allows us to refer to functions the same way we refer to data, assigning instances of
them to variables and passing them around as parameters to other functions) we can refactor the server
launch code as follows

However this doesn’t work as expected, so let’s see if we can get any further insight

$ go vet 38.go

38.go:28: range variable s captured by func literal

exit status 1

Running go with the vet command runs a set of heuristics against our source code to check for common
errors which wouldn’t be caught during compilation. In this case we’re being warned about this code

26 for _, s := range f {

27 go func() {

28 s()

29 done <- true

30 }()

31 }

Here we’re using a closure so it refers to the variable s in the for..range statement, and as the value of s
changes on each successive iteration, so this is reflected in the call s().

To demonstrate this we’ll try a variant where we introduce a delay on each loop iteration much greater
than the time taken to launch the goroutine.

Example 1.1.39

1 package main

2 import . "fmt"

3 import . "net/http"

4 import "time"

5

6 const ADDRESS = ":1024"

7 const SECURE_ADDRESS = ":1025"

8

9 func main() {

10 message := "hello world"

11 HandleFunc("/hello", func(w ResponseWriter, r *Request) {

12 w.Header().Set("Content-Type", "text/plain")

13 Fprintf(w, message)

Hello World 35

14 })

15

16 Spawn(

17 func() { ListenAndServeTLS(SECURE_ADDRESS, "cert.pem", "key.pem", nil) },

18 func() { ListenAndServe(ADDRESS, nil) },

19)

20 }

21

22 func Spawn(f ...func()) {

23 done := make(chan bool)

24

25 for _, s := range f {

26 go func() {

27 s()

28 done <- true

29 }()

30 time.Sleep(time.Second)

31 }

32

33 for l := len(f); l > 0; l-- {

34 <- done

35 }

36 }

When we run this we get the behaviour we expect with bothHTTP and HTTPS servers running on their
respective ports and responding to browser traffic. However this is hardly an elegant or practical solution
and there’s a much better way of achieving the same effect.

Example 1.1.40format: go

26 for _, s := range f {

27 go func(server func()) {

28 server()

29 done <- true

30 }(s)

31 }

By accepting the parameter server to the goroutine’s closure we can pass in the value of s and capture
it so that on successive iterations of the range our goroutines use the correct value.

Spawn() is an example of how powerful Go’s support for first-class functions can be, allowing us to run
any arbitrary piece of code and wait for it to signal completion. It’s also a variadic function, taking as
many or as few functions as desired and setting each of them up correctly.

If we now reach for the standard library we discover that another alternative is to use a sync.WaitGroup
to keep track of how many active goroutines we have in our program and only terminate the program
when they’ve all completed their work. Yet again this allows us to run both servers in separate goroutines
and manage termination correctly.

Hello World 36

Example 1.1.41

1 package main

2 import . "fmt"

3 import . "net/http"

4 import "sync"

5

6 const ADDRESS = ":1024"

7 const SECURE_ADDRESS = ":1025"

8

9 func main() {

10 message := "hello world"

11 HandleFunc("/hello", func(w ResponseWriter, r *Request) {

12 w.Header().Set("Content-Type", "text/plain")

13 Fprintf(w, message)

14 })

15

16 var servers sync.WaitGroup

17 servers.Add(1)

18 go func() {

19 defer servers.Done()

20 ListenAndServe(ADDRESS, nil)

21 }()

22

23 servers.Add(1)

24 go func() {

25 defer servers.Done()

26 ListenAndServeTLS(SECURE_ADDRESS, "cert.pem", "key.pem", nil)

27 }()

28 servers.Wait()

29 }

As there’s a certain amount of redundancy in this, let’s refactor a little by packaging server initiation
into a new Launch() function. Launch() takes a parameter-less function and wraps this in a closure
which will be launched as a goroutine in a separate thread of execution. Our sync.WaitGroup variable
servers has been turned into a global variable to simplify the function signature of Launch(). When we
call Launch() we’re freed from the need to manually increment servers prior to goroutine startup, and
we use a defer statement to automatically call servers.Done() when the goroutine terminates even in
the event that the goroutine crashes.

Example 1.1.42

1 package main

2 import . "fmt"

3 import . "net/http"

4 import "sync"

5

6 const ADDRESS = ":1024"

7 const SECURE_ADDRESS = ":1025"

8

9 var servers sync.WaitGroup

10

11 func main() {

12 message := "hello world"

13 HandleFunc("/hello", func(w ResponseWriter, r *Request) {

14 w.Header().Set("Content-Type", "text/plain")

Hello World 37

15 Fprintf(w, message)

16 })

17

18 Launch(func() {

19 ListenAndServe(ADDRESS, nil)

20 })

21

22 Launch(func() {

23 ListenAndServeTLS(SECURE_ADDRESS, "cert.pem", "key.pem", nil)

24 })

25 servers.Wait()

26 }

27

28 func Launch(f func()) {

29 servers.Add(1)

30 go func() {

31 defer servers.Done()

32 f()

33 }()

34 }

The Environment

The main shells used with modern operating systems (Linux, OSX, FreeBSD, Windows, etc.) provide a
persistent environment which can be queried by running programs, allowing a user to store configuration
values in named variables. Go supports reading andwriting these variables using the os package functions
Getenv() and Setenv().

In our next example we’re going to query the environment for the variable SERVE_HTTP which we’ll
assume contains the default address on which to serve unencrypted web content.

Example 1.1.43

1 package main

2 import . "fmt"

3 import . "net/http"

4 import "os"

5 import "sync"

6

7 const SECURE_ADDRESS = ":1025"

8

9 var address string

10 var servers sync.WaitGroup

11

12 func init() {

13 if address = os.Getenv("SERVE_HTTP"); address == "" {

14 address = ":1024"

15 }

16 }

17

18 func main() {

19 message := "hello world"

20 HandleFunc("/hello", func(w ResponseWriter, r *Request) {

21 w.Header().Set("Content-Type", "text/plain")

22 Fprintf(w, message)

Hello World 38

23 })

24

25 Launch(func() {

26 ListenAndServe(address, nil)

27 })

28

29 Launch(func() {

30 ListenAndServeTLS(SECURE_ADDRESS, "cert.pem", "key.pem", nil)

31 })

32 servers.Wait()

33 }

34

35 func Launch(f func()) {

36 servers.Add(1)

37 go func() {

38 defer servers.Done()

39 f()

40 }()

41 }

Here we’ve defined a global variable address which we set in init() to either the value provided in
SERVE_HTTP or a default value “:1024”.

$ go run 43.go

Image 1.43a http://localhost:1024/hello

$ SERVE_HTTP=":3030" go run 43.go

Hello World 39

Image 1.43b http://localhost:3030/hello

If we now extend this further to make the program fully configurable from the environment we arrive at

$ SERVE_HTTP=":3030" SERVE_HTTPS=":4040" go run 44.go

Handling Signals

If you’ve been running our example in the terminal and wondering how to terminate it without exiting
the shell then you probably come from a GUI background and haven’t met control-C and its relatives (or
rather you have, but most likely as cut’n’paste shortcuts).

BothWindows and Unix-style operating systems have the concept of a signalwhich can be sent from one
process to another, and for historic reasons many of these can be manually entered using a control-key
combination. This is a useful convenience but shutting down a production server this way can result in
data loss or corruption. However that’s not the case with ourHelloWorld server, so we have an excellent
excuse to examine how to catch a termination signal and do something of our own choosing.

To listen for signals in Go we use the os/signal package in the standard library, which allows us to
register a channel (an atomic queue for transferring messages between goroutines at runtime) on which
notifications are to be received using the signal.Notify() function. Which signals will be made available
depends largely on which operating system you’re working with and Go provides only two as standard
across Windows and Unix: os.Interrupt and os.Kill. Of these os.Interrupt can be sent with control-C
whilst os.Kill equates to SIGKILL on *nixen and is usually a non-maskable interrupt, meaning that it
terminates execution and will never be received by Notify().

In the following example we’re initialising a signal handler at program startup. This consists of a
goroutine containing an infinite loop and blocking on a channel of fixed size (in this case able to hold
only one element at a time). The signal handler should be trapping the Interrupt and Kill signals. In
both cases if we catch the signal we print a message to the console before exiting, however as previously
mentioned the Kill signal (which can be sent from another shell session using the kill command) will
never be received by our Go code.

Hello World 40

Example 1.1.45

1 package main

2 import . "fmt"

3 import . "net/http"

4 import "os"

5 import "os/signal"

6 import . "sync"

7

8 const ADDRESS = ":1024"

9 const SECURE_ADDRESS = ":1025"

10

11 var servers WaitGroup

12

13 func init() {

14 go SignalHandler(make(chan os.Signal, 1))

15 }

16

17 func main() {

18 message := "hello world"

19 HandleFunc("/hello", func(w ResponseWriter, r *Request) {

20 w.Header().Set("Content-Type", "text/plain")

21 Fprintf(w, message)

22 })

23

24 Launch(func() {

25 ListenAndServe(ADDRESS, nil)

26 })

27

28 Launch(func() {

29 ListenAndServeTLS(SECURE_ADDRESS, "cert.pem", "key.pem", nil)

30 })

31 servers.Wait()

32 }

33

34 func Launch(f func()) {

35 servers.Add(1)

36 go func() {

37 defer servers.Done()

38 f()

39 }()

40 }

41

42 func SignalHandler(c chan os.Signal) {

43 signal.Notify(c, os.Interrupt)

44 for s := <- c; ; s = <- c {

45 switch s {

46 case os.Interrupt:

47 Println("^C received")

48 os.Exit(0)

49 case os.Kill:

50 Println("SIGKILL received")

51 os.Exit(1)

52 }

53 }

54 }

Hello World 41

When we run this in the terminal on a Mac and press control-C we’ll see something like

$ go run 45.go

^C^C received

The key point of signals is that they allow our program to apply its own logic to events. In the following
example we’re going to override the Interrupt signal sent by control-C so that the program continues
execution. We’re then going to scan for other signals and use these to terminate the program. The syscall
package defines a number of os.Signal values which can be detected byNotify() and of these I’ve chosen
SIGABRT, SIGTERM and SIGQUIT as plausible termination signals. We’ll treat SIGABRT as an error
condition and the other two as clean terminations.

Something else to note is that our signal handler is using a standard for loop statement to poll for input
from the signal channel and then compare it to the cases of a switch statement. As the signal handler
is designed to run for as long as Notify() is receiving signals we can simplify this a little

Example 1.1.46

45 func SignalHandler(c chan os.Signal) {

46 signal.Notify(c, os.Interrupt, syscall.SIGABRT, syscall.SIGTERM, syscall.SIGQUIT)

47 for s := <- c; ; s = <- c {

48 switch s {

49 case os.Interrupt:

50 Println("interrupt - continue running")

51 case syscall.SIGABRT:

52 Println("abnormal exit")

53 os.Exit(1)

54 case syscall.SIGTERM, syscall.SIGQUIT:

55 Println("clean shutdown")

56 os.Exit(0)

57 }

58 }

59 }

$ go build 46.go

$./46

^Cinterrupt - continue running

^Cinterrupt - continue running

^\clean shutdown

We can send a SIGABRT signal using the kill command in a subshell and force our program to terminate
abnormally

Hello World 42

$ go build 46.go

$./46

^Z

[1]+ Stopped go run 46.go

$ ps

PID TTY TIME CMD

41097 ttys016 0:00.48 -bash

58713 ttys016 0:00.10 go run 46.go

58716 ttys016 0:00.01 /var/folders/25/ybgksr451vxf78xk1svymm5c0000gn/T/go-build543807549/command-li\

ne-arguments/_obj/exe/46

57608 ttys017 0:00.08 -bash

$ kill -SIGABRT 58716

$ fg

go run 46.go

abnormal exit

exit status 1

So far we’ve looked at how our program receives signals, however it’s also possible to send signals. For
now we’re going to focus on sending a SIGABRT signal from our program to itself when there’s an error
launching one of the servers, in this case by setting ADDRESS and SECURE_ADDRESS to the same value.

Example 1.1.47

1 package main

2 import . "fmt"

3 import . "net/http"

4 import "os"

5 import "os/signal"

6 import . "sync"

7 import "syscall"

8

9 const ADDRESS = ":1024"

10 const SECURE_ADDRESS = ":1024"

11

12 var servers WaitGroup

13

14 func init() {

15 go SignalHandler(make(chan os.Signal, 1))

16 }

17

18 func main() {

19 message := "hello world"

20 HandleFunc("/hello", func(w ResponseWriter, r *Request) {

21 w.Header().Set("Content-Type", "text/plain")

22 Fprintf(w, message)

23 })

24

25 Launch("HTTP", func() error {

26 return ListenAndServe(ADDRESS, nil)

27 })

28

29 Launch("HTTPS", func() error {

30 return ListenAndServeTLS(SECURE_ADDRESS, "cert.pem", "key.pem", nil)

31 })

32 servers.Wait()

33 }

Hello World 43

34

35 func Launch(name string, f func() error) {

36 servers.Add(1)

37 go func() {

38 defer servers.Done()

39 if e := f(); e != nil {

40 Println(name, "->", e)

41 syscall.Kill(syscall.Getpid(), syscall.SIGABRT)

42 }

43 }()

44 }

45

46 func SignalHandler(c chan os.Signal) {

47 signal.Notify(c, os.Interrupt, syscall.SIGABRT, syscall.SIGTERM, syscall.SIGQUIT)

48 for s := <- c; ; s = <- c {

49 switch s {

50 case syscall.SIGABRT:

51 Println("abnormal exit")

52 os.Exit(1)

53 case os.Interrupt, syscall.SIGTERM, syscall.SIGQUIT:

54 Println("clean shutdown")

55 os.Exit(0)

56 }

57 }

58 }

We’ve modified our Launch() function to take a name which can be displayed as part of an error message,
and its function parameter now has the signature func() errorwhich specifies that it must return an error
value, which is what’s returned by both ListenAndServe() and ListenAndServeTLS(). In the event the
error (which is a predeclared interface) contains a value then we know an error condition’s occurred and
can send a SIGABRT signal with syscall.Kill(). As Kill() is able to send signals to any running process
we need to specify the ID of the current process, which we find using syscall.Getpid().

$ go run 47.go

2014/06/25 14:42:25 HTTPS -> listen tcp :1024: bind: address already in use

abnormal exit

exit status 1

TCP/IP

Printing text in a web browser is a cool trick, but what of real network programming? You know, the
kind that bearded sandle-wearing *nix hackers go in for? It turns out this is surprisingly simple

Hello World 44

Example 1.1.48 TCP/IP server

1 package main

2 import . "fmt"

3 import "net"

4

5 func main() {

6 if listener, e := net.Listen("tcp", ":1024"); e == nil {

7 for {

8 if connection, e := listener.Accept(); e == nil {

9 go func(c net.Conn) {

10 defer c.Close()

11 Fprintln(c, "hello world")

12 }(connection)

13 }

14 }

15 }

16 }

The net package revolves around server the Listener and client Connection types. A Listener is an
interface which allows any type implementing its specified methods - Accept(), Close() and Addr() - to
be used interchangeably and is a key tool in Go for generalising program design. Writing a server then
becomes a simple process of

• Listen() on a specified protocol and port number
• Accept() incoming connections
• for each net.Conn, run a handler in a separate goroutine
• read from and write to the connection whilst performing work
• close each connection when it finishes its work

Here we start to see some of the power of interfaces as a net.Conn implements the Writer interface
defined in the io package, and fmt.Fprintf() takes any type which integrates io.Writer as its target.

Moving away from HTTP means abandoning the browser for testing but both *nix andWindows have
a handy command-line utility called telnet which allows us to connect directly to a TCP/IP server and
interact with it. We’ll get into the interaction side of things later in the book, for now here’s an example
run of our program.

$ go run 48.go &

[1] 17415

$ telnet localhost 1024

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

hello world

Connection closed by foreign host.

Telnet’s a useful tool, but it’d be nice if we could connect our own client to the server as this could then
be built for any platform supported by Go. For stream-oriented protocols like TCP/IP we do this using
the net.Dial() function to open a net.Conn connection to a server and we can then interact with this
using the io.Reader and io.Writer interfaces. These interfaces are supported throughout theGo standard
package library, allowing files and streaming connections to be used interchangeably.

Hello World 45

Example 1.1.49 TCP/IP client

1 package main

2 import "bufio"

3 import . "fmt"

4 import "net"

5

6 func main() {

7 if connection, e := net.Dial("tcp", ":1024"); e == nil {

8 defer connection.Close()

9 if text, e := bufio.NewReader(connection).ReadString('\n'); e == nil {

10 Printf(text)

11 }

12 }

13 }

Because a net.Conn represents streams of data flowing between client and server we’ve introduced the
bufio package to our client so that the data it’s receiving is buffered. This avoids our having to write our
own code for buffering incoming data and is another example of the flexibility Go’s interfaces provide.

$ go run 48.go &

[1] 6102

$ go run 49.go

hello world

$ go run 49.go

hello world

Most books on network programming tend to stop at vanilla TCP/IP and leave figuring out how to
establish a secure connection between client and server as an exercise for the reader. However we’re
not likely to get another chance to look at this problem with the same lack of clutter that Hello World
provides, and anyway we know how to generate a key and a certificate from our HTTPS adventure so
we might as well reuse the knowledge. This time we’re going to need two sets of keys so let’s take care
of that first

$ cp cert.pem server.cert.pem

$ cp key.pem server.key.pem

$ go run $GOROOT/src/pkg/crypto/tls/generate_cert.go -ca=true -host="localhost"

2014/05/16 20:41:53 written cert.pem

2014/05/16 20:41:53 written key.pem

$ cp cert.pem client.cert.pem

$ cp key.pem client.key.pem

Now we have our keys sorted, let’s take a look at what a TCP/IP server looks like in Go

Hello World 46

Example 1.1.50 TCP/IP server with tls

1 package main

2 import "crypto/rand"

3 import "crypto/tls"

4 import . "fmt"

5

6 func main() {

7 if certificate, e := tls.LoadX509KeyPair("server.cert.pem", "server.key.pem"); e == nil {

8 config := tls.Config{

9 Certificates: []tls.Certificate{ certificate },

10 Rand: rand.Reader,

11 }

12

13 if listener, e := tls.Listen("tcp", ":1025", &config); e == nil {

14 for {

15 if connection, e := listener.Accept(); e == nil {

16 go func(c *tls.Conn) {

17 defer c.Close()

18 Fprintln(c, "hello world")

19 }(connection.(*tls.Conn))

20 }

21 }

22 }

23 }

24 }

Importing crypto/tls provides us with an equivalent API to that defined in net and this means that as
tls.Listen() fulfils the net.Listener interface our connections will be of type net.Conn. As a result if we
want to pass the connection around inside our code we either have to import net so we can use net.Conn
or perform a type assertion to use the connection as a *tls.Conn. We’ve made the latter choice here.

18 if connection, e := listener.Accept(); e == nil {

19 go func(c *tls.Conn) {

20 defer c.Close()

21 Fprintln(c, "hello world")

22 }(connection.(*tls.Conn))

23 }

For a server we import crypto/rand to access rand.Reader, a cryptographically secure pseudo-random
number generator which we’ll be using as a source of randomness in the TLS connection. We then create
a certificate using tls.LoadX509KeyPair() to load the server key pair and if this is successful then we set
up a listener to accept incoming connections and write “Hello World” to a client.

As we’re using TLS we can’t test this version of Hello World using telnet so instead we need to write
a client. Yet again this requires a keypair and where in our previous client we called net.Dial() we now
use tls.Dial(), resulting in a very similar program.

Hello World 47

Example 1.1.51 TCP/IP client with tls

1 package main

2 import "bufio"

3 import "crypto/tls"

4 import . "fmt"

5

6 func main() {

7 if certificate, e := tls.LoadX509KeyPair("client.cert.pem", "client.key.pem"); e == nil {

8 config := tls.Config{

9 Certificates: []tls.Certificate{ certificate },

10 InsecureSkipVerify: true,

11 }

12

13 if connection, e := tls.Dial("tcp", ":1025", &config); e == nil {

14 defer connection.Close()

15 if text, e := bufio.NewReader(connection).ReadString('\n'); e == nil {

16 Printf(text)

17 }

18 }

19 }

20 }

$ go run 50.go &

[1] 6107

$ go run 51.go

hello world

$ go run 51.go

hello world

Looking back at our HTTP experiments, we were able to write a program which served over bothHTTP
and HTTPS connections. It’d be nice to do something similar with TCP/IP, if only to compare the two
code-paths.

Example 1.1.52 TCP/IP dual-mode server

1 package main

2 import "crypto/rand"

3 import "crypto/tls"

4 import . "fmt"

5 import "net"

6 import "sync"

7

8 var servers sync.WaitGroup

9

10 func main() {

11 if listener, e := net.Listen("tcp", ":1024"); e == nil {

12 Serve(listener)

13 }

14

15 Serve(TLSListener("server.cert.pem", "server.key.pem", ":1025"))

16 servers.Wait()

17 }

18

19 func TLSListener(cert, key, address string) (r net.Listener) {

Hello World 48

20 if certificate, e := tls.LoadX509KeyPair(cert, key); e == nil {

21 config := tls.Config{

22 Certificates: []tls.Certificate{ certificate },

23 Rand: rand.Reader,

24 }

25 if listener, e := tls.Listen("tcp", address, &config); e == nil {

26 r = listener

27 }

28 }

29 return

30 }

31

32 func Serve(listener net.Listener) {

33 if listener != nil {

34 Launch(func() {

35 for {

36 if connection, e := listener.Accept(); e == nil {

37 go func(c net.Conn) {

38 defer c.Close()

39 Fprintln(c, "hello world")

40 }(connection)

41 }

42 }

43 })

44 }

45 }

46

47 func Launch(f func()) {

48 servers.Add(1)

49 go func() {

50 defer servers.Done()

51 f()

52 }()

53 }

We’ve reused Launch() from Example 1.33 to manage the lifecycle of our two server goroutines and
introduced Serve() to phrase the server behaviour in terms of the net.Listener interface. We then move
all the setup code for creating a tls.Listener into a separate function TLSListener() which returns a
net.Listener value as tls.Listener complies with its interface, or a nil value if tls.Listen() returns an
error.

If we now run this server we can connect to it with both of our client programs.

$ go run 52.go &

[1] 6278

$ go run 49.go

hello world

$ go run 51.go

hello world

$ go run 51.go

hello world

$ go run 49.go

hello world

Hello World 49

UDP

Both TCP/IP and HTTP communications are connection-oriented and this involves a reasonable amount
of handshaking and error-correction to assemble data packets in the correct order. For most applications
this is exactly how we want to organise our network communications but sometimes the size of our
messages is sufficiently small that we can fit them into individual packets, and when this is the case the
UDP protocol is an ideal candidate.

As with our previous examples we still need both server and client applications.

Example 1.1.53 UDP server

1 package main

2 import . "fmt"

3 import "net"

4

5 var HELLO_WORLD = ([]byte)("Hello World\n")

6

7 func main() {

8 if address, e := net.ResolveUDPAddr("udp", ":1024"); e == nil {

9 if server, e := net.ListenUDP("udp", address); e == nil {

10 for buffer := MakeBuffer(); ; buffer = MakeBuffer() {

11 if n, client, e := server.ReadFromUDP(buffer); e == nil {

12 go func(c *net.UDPAddr, packet []byte) {

13 if n, e := server.WriteToUDP(HELLO_WORLD, c); e == nil {

14 Printf("%v bytes written to: %v\n", n, c)

15 }

16 }(client, buffer[:n])

17 }

18 }

19 }

20 }

21 }

22

23 func MakeBuffer() (r []byte) {

24 return make([]byte, 1024)

25 }

We have a somewhat more complex code pattern here than with TCP/IP to take account of the difference
in underlying semantics: UDP is an unreliable transport dealing in individual packets (datagrams) which
are independent of each other, therefore a server doesn’t maintain streams to any of its clients and
these are responsible for any error-correction or packet ordering which may be necessary to coordinate
successive signals. Because of these differences from TCP/IP we end up with the following generic
workflow

• net.ResolveUDPAddr() to resolve the address
• net.ListenUDP() opens a UDP port and listens for traffic
• net.ReadFromUDP() copies incoming data into a buffer and provides the remote client’s address
• net.WriteToUDP() writes data back to the remote client’s address

For trivial uses of UDP we could probably forego the use of a separate goroutine to process each received
packet, and indeed we may also have an application architecture where instead of processing the packet

Hello World 50

we’d hand it off to a message queue elsewhere. However many real-world examples such as serving DNS
requests may introduce appreciable delays for processing and by using goroutines we ensure the server
itself isn’t stalled.

Here our main overhead is the cost of buffer allocation as we use a different data buffer for each request.
In a real-world example we’d very likely introduce a buffer pool which would expand and contract with
demand, and reuse individual buffers once their associated request has completed. This is surprisingly
simple to implement in Go and we’ll look at this in detail in a later chapter.

Our client has the same basic boilerplate as the server, only we use net.DialUDP() to set up a connection.
We could use net.ReadFromUDP() and net.WriteToUDP() however as a net.UDPConn connection
implements the io.ReadWriter interface we can use bufio.Reader to manage reading, and for writes the
connection already knows the server address. As the server only knows about clients by receiving data
from them we start our interaction with aUDPConn.Write() and then perform the buffered ReadString()
to get a response.

Example 1.1.54 UDP client

1 package main

2 import "bufio"

3 import . "fmt"

4 import "net"

5

6 var CRLF = ([]byte)("\n")

7

8 func main() {

9 if address, e := net.ResolveUDPAddr("udp", ":1024"); e == nil {

10 if server, e := net.DialUDP("udp", nil, address); e == nil {

11 defer server.Close()

12 if _, e = server.Write(CRLF); e == nil {

13 if text, e := bufio.NewReader(server).ReadString('\n'); e == nil {

14 Printf("%v", text)

15 }

16 }

17 }

18 }

19 }

Let’s give this a test run in the shell.

$ go run 53.go &

[2] 12777

$ go run 54.go

12 bytes written to: 127.0.0.1:58015

Hello World

$ go run 54.go

12 bytes written to: 127.0.0.1:50159

Hello World

$ go run 54.go

12 bytes written to: 127.0.0.1:51813

Hello World

Note how each time we run the client program it’s assigned a different network port by the operating
system each time net.DialUDP is called.

Hello World 51

In the case of OSX this port will usually be at the upper end of the non-privileged port range.

We can make this apparent by performing multiple sequences of Write() and Read() operations

Example 1.1.55 UDP client

1 package main

2 import "bufio"

3 import . "fmt"

4 import "net"

5

6 var CRLF = ([]byte)("\n")

7

8 func main() {

9 if address, e := net.ResolveUDPAddr("udp", ":1024"); e == nil {

10 if server, e := net.DialUDP("udp", nil, address); e == nil {

11 defer server.Close()

12 for i := 0; i < 3; i++ {

13 if _, e = server.Write(CRLF); e == nil {

14 if text, e := bufio.NewReader(server).ReadString('\n'); e == nil {

15 Printf("%v: %v", i, text)

16 }

17 }

18 }

19 }

20 }

21 }

$ go run 53.go &

[1] 12883

$ go run 55.go

12 bytes written to: 127.0.0.1:51732

0: Hello World

12 bytes written to: 127.0.0.1:51732

1: Hello World

12 bytes written to: 127.0.0.1:51732

2: Hello World

$ go run 55.go

12 bytes written to: 127.0.0.1:55504

0: Hello World

12 bytes written to: 127.0.0.1:55504

1: Hello World

12 bytes written to: 127.0.0.1:55504

2: Hello World

RSA obfuscated UDP

With all of our network examples to date we’ve included a secure transport option, but UDP doesn’t have
a secured mode so we appear stuck with sending our message unencrypted for all the world to see. This
is fine for a message such as Hello World which we’re happy for intervening network nodes to observe,
but what if we want to send confidential data in our UDP packet?

Hello World 52

In the following example we’re going to use our existing client RSA key-pair by sending the public key
to our server which will then encrypt the message with this key and send it back to the client. The client
already possesses the RSA private key so it’s a simple task to decrypt the message and display it. When
we send the public key we could do so in a number of different formats: as an RSA pem file; as a raw
binary buffer; or, serialised in some form. As both client and server are written in Go we’ll opt for the
serialisation format provided in package gob. This is a pragmatic choice as if we were to send a pem file
then that’d make it obvious that we’re using an encrypted format, and if we use a raw binary buffer we’d
have to include a discussion of Go’s unsafe and reflection packages which are covered later in this book.

Example 1.1.56 RSA-enabled UDP server

1 package main

2 import "bytes"

3 import "crypto/rand"

4 import "crypto/rsa"

5 import "crypto/sha1"

6 import "encoding/gob"

7 import . "fmt"

8 import . "net"

9

10 var HELLO_WORLD = []byte("Hello World")

11 var RSA_LABEL = []byte("served")

12

13 func main() {

14 Serve(":1025", func(connection *UDPConn, c *UDPAddr, packet *bytes.Buffer) (n int) {

15 var key rsa.PublicKey

16 if e := gob.NewDecoder(packet).Decode(&key); e == nil {

17 if response, e := rsa.EncryptOAEP(sha1.New(), rand.Reader, &key, HELLO_WORLD, RSA_LABEL); e == n\

18 il {

19 n, _ = connection.WriteToUDP(response, c)

20 }

21 }

22 return

23 })

24 }

25

26 func Serve(address string, f func(*UDPConn, *UDPAddr, *bytes.Buffer) int) {

27 Launch(address, func(connection *UDPConn) {

28 for {

29 buffer := make([]byte, 1024)

30 if n, client, e := connection.ReadFromUDP(buffer); e == nil {

31 go func(c *UDPAddr, b []byte) {

32 if n := f(connection, c, bytes.NewBuffer(b)); n != 0 {

33 Println(n, "bytes written to", c)

34 }

35 }(client, buffer[:n])

36 }

37 }

38 })

39 }

40

41 func Launch(address string, f func(*UDPConn)) {

42 if a, e := ResolveUDPAddr("udp", address); e == nil {

43 if server, e := ListenUDP("udp", a); e == nil {

44 f(server)

45 }

Hello World 53

46 }

47 }

So, the first thing of note is that we’ve refactored connection management into Serve() to make the server
code easier to follow, and then we’re passing a function literal into this with the tasks to be performed
each time a client connects. For now this is a quick hack so we’re not launching Serve() in its own
goroutine with all the extra boilerplate for sync.WaitGroup which we’ve seen in previous examples.
However we are spawning a separate goroutine for each packet received so that the server doesn’t block,
and as an added bonus each time data is written to a client the number of bytes transferred is logged.

For each connection we read the client’s message which we know should be a valid public key in gob
format. To decode this we create a gob.Decoder with the message as its base, then Decode() this to get a
valid rsa.PublicKeywhich we then use to encrypt our message with rsa.EncryptOAEP(). The main thing
to note here is that RSA_LABEL is a parameter which must be set the same for both rsa.EncryptOAEP()
and rsa.DecryptOAEP() for the message to be correctly read by the latter. There’s no reason why this
couldn’t be configured on a per-connection basis.

Now, let’s take a look at our client application

Example 1.1.57 RSA-enabled UDP client

1 package main

2 import "bytes"

3 import "crypto/rand"

4 import "crypto/rsa"

5 import "crypto/sha1"

6 import "crypto/x509"

7 import "encoding/gob"

8 import "encoding/pem"

9 import "io/ioutil"

10 import . "fmt"

11 import . "net"

12

13 var RSA_LABEL = []byte("served")

14

15 func main() {

16 Connect(":1025", func(server *UDPConn, private_key *rsa.PrivateKey) {

17 cipher_text := MakeBuffer()

18 if n, e := server.Read(cipher_text); e == nil {

19 if plain_text, e := rsa.DecryptOAEP(sha1.New(), rand.Reader, private_key, cipher_text[:n], RSA_L\

20 ABEL); e == nil {

21 Println((string)(plain_text))

22 }

23 }

24 })

25 }

26

27 func Connect(address string, f func(*UDPConn, *rsa.PrivateKey)) {

28 LoadPrivateKey("client.key.pem", func(private_key *rsa.PrivateKey) {

29 if address, e := ResolveUDPAddr("udp", ":1025"); e == nil {

30 if server, e := DialUDP("udp", nil, address); e == nil {

31 defer server.Close()

32 SendKey(server, private_key.PublicKey, func() {

33 f(server, private_key)

34 })

Hello World 54

35 }

36 }

37 })

38 }

39

40 func LoadPrivateKey(file string, f func(*rsa.PrivateKey)) {

41 if file, e := ioutil.ReadFile(file); e == nil {

42 if block, _ := pem.Decode(file); block != nil {

43 if block.Type == "RSA PRIVATE KEY" {

44 if key, _ := x509.ParsePKCS1PrivateKey(block.Bytes); key != nil {

45 f(key)

46 }

47 }

48 }

49 }

50 return

51 }

52

53 func SendKey(server *UDPConn, public_key rsa.PublicKey, f func()) {

54 var encoded_key bytes.Buffer

55 if e := gob.NewEncoder(&encoded_key).Encode(public_key); e == nil {

56 if _, e = server.Write(encoded_key.Bytes()); e == nil {

57 f()

58 }

59 }

60 }

61

62 func MakeBuffer() (r []byte) {

63 return make([]byte, 1024)

64 }

$ go run 56.go &

[1] 66945

$ go run 57.go

256 bytes written to 127.0.0.1:51328

Hello World

$ go run 57.go

256 bytes written to 127.0.0.1:64834

Hello World

$ go run 57.go

256 bytes written to 127.0.0.1:50982

Hello World

The most obvious thing about this code is the heavy use of function literals, giving it a clean
compositional feel. This is an aesthetic I picked up working with Ruby and which I always missed when
dipping back into C or other low-level languages, so expect to variations on this style in later chapters.

Connect() is the client version of Serve(), abstracting away the details of contacting a UDP server, and
the meat of our program’s interaction is a simpleRead() of an encrypted message from the server which is
then decrypted using rsa.DecryptOAEP() and displayed. Before our code initiates the connection though
we need it to load an RSA key-pair so we can transmit our public key to the server. We do this in
LoadPrivateKey() which uses ioutil.ReadFile() to load a PEM-encoded file into memory and ensure
it contains a private key before invoking a function passed to it as a parameter. In this case the passed

Hello World 55

function sets up the connection, sends the public key to the server and then invokes the function passed
to Connect() in SendKey().

To keep SendKey() as generic as possible it takes a parameterless function which is basically just a closure
into the caller’s environment. In the case of Connect() the closure we pass to SendKey() binds to the
server and private_key variables.

Error Handling

The examples in this chapter are for the most part designed to follow the happy path as our interest is
in seeing some simple Go code that we can later build upon. The one obvious exception was when we
explored signal handling and used the presence of an error as an excuse to send a SIGABRT to terminate
the server. However error-handling is a large part of most real-world programming - especially in a system
level language.

Go takes a typically pragmatic approach to error handling, the language specification defining the error
type as a predeclared interface

type error interface {

Error() string

}

In the following example we’re going to rewrite our encrypted UDP server from example 1.56 so that
start-up errors cause the server to terminate and signal an error to the shell whilst client errors will log
an appropriate message for later analysis using the log package. The default behaviour of the log package
is to write its output to stderr so it integrates well with traditional *nix tools and infrastructure.

Whilst our program is still trivial in purpose, we now have all the basic conveniences for running a
scalable server and integrating it with third-party monitoring and logging tools at deployment.

Example 1.1.58

1 package main

2 import "bytes"

3 import "crypto/rand"

4 import "crypto/rsa"

5 import "crypto/sha1"

6 import "encoding/gob"

7 import "log"

8 import . "net"

9

10 var HELLO_WORLD = []byte("Hello World")

11 var RSA_LABEL = []byte("served")

12

13 func main() {

14 Serve(":1025", func(connection *UDPConn, c *UDPAddr, packet *bytes.Buffer) (n int) {

15 var e error

16 var key rsa.PublicKey

17 var response []byte

18

19 if e = gob.NewDecoder(packet).Decode(&key); e != nil {

20 log.Println("unable to decode wrapper:", c)

21 }

22

Hello World 56

23 if response, e = rsa.EncryptOAEP(sha1.New(), rand.Reader, &key, HELLO_WORLD, RSA_LABEL); e != nil {

24 log.Println("unable to encrypt server response")

25 }

26

27 if n, e = connection.WriteToUDP(response, c); e != nil {

28 log.Println("unable to write response to client:", c)

29 }

30 return

31 })

32 }

33

34 func Serve(address string, f func(*UDPConn, *UDPAddr, *bytes.Buffer) int) {

35 Launch(address, func(connection *UDPConn) {

36 for {

37 buffer := make([]byte, 1024)

38 if n, client, e := connection.ReadFromUDP(buffer); e == nil {

39 go func(c *UDPAddr, b []byte) {

40 if n := f(connection, c, bytes.NewBuffer(b)); n != 0 {

41 log.Println(n, "bytes written to", c)

42 }

43 }(client, buffer[:n])

44 } else {

45 log.Println(address, e.Error())

46 }

47 }

48 })

49 }

50

51 func Launch(address string, f func(*UDPConn)) {

52 var e error

53 var a *UDPAddr

54 var server *UDPConn

55

56 if a, e = ResolveUDPAddr("udp", address); e != nil {

57 log.Fatalln("unable to resolve UDP address:", e.Error())

58 }

59

60 if server, e = ListenUDP("udp", a); e != nil {

61 log.Fatalln("can't open socket for listening:", e.Error())

62 }

63

64 f(server)

65 }

$ go run 58.go &

[1] 15397

$ go run 57.go

2016/07/13 09:13:11 256 bytes written to 127.0.0.1:65099

Hello World

$ go run 58.go

2016/07/13 09:13:51 can't open socket for listening: listen udp :1025: bind: address already in use

exit status 1

This is the only error condition that’s likely to occur in our shell-based test environment but if we forcibly

Hello World 57

corrupt the gob encoding of our client’s response key by modifying its SendKey function to drop the first
byte we can emulate key corruption in transit

55 func SendKey(server *UDPConn, public_key rsa.PublicKey, f func()) {

56 var encoded_key bytes.Buffer

57 if e := gob.NewEncoder(&encoded_key).Encode(public_key); e == nil {

58 if _, e = server.Write(encoded_key.Bytes()[1:]); e == nil {

59 f()

60 }

61 }

62 }

$ go run 58.go &

[1] 16289

$ go run 57_corrupt_key.go

2016/07/13 09:24:44 unable to decode wrapper: 127.0.0.1:55085

2016/07/13 09:24:44 unable to encrypt server response

One of the cool things about interfaces is that they’re reference types, something we’ll routinely use to
decide whether an error has occurred or not. If it has then the interface will contain an error value, and
if not the interface itself will be a nil value. This leads to the common code pattern

if _, e := SomeCall(); e != nil {

log.Println("some error", e)

// this is our sad path

} else {

// perform desired actions

}

Our sad path will generally either return it’s own error to the calling function or terminate the program
with a call to log.Fatalln() or os.Exit(). Because Go functions allow for multiple return values, their use
is accompanied by the convention that the last value returned will be of type error. This convention
encourages us to handle errors where they occur rather than bubbling exceptions up the call stack, as
would be the case in many languages. As there are rare occasions when exceptions might prove a useful
idiom we’ll look at how we can achieve a similar outcome in the next section.

For now though we’re going to tidy this code up a little by using the if…… construct which thanks to if ’s
ability to combine an assignment with a test leads to very succinct code.

Example 1.1.59

package main

import "bytes"

import "crypto/rand"

import "crypto/rsa"

import "crypto/sha1"

import "encoding/gob"

import "log"

import . "net"

var HELLO_WORLD = []byte("Hello World")

var RSA_LABEL = []byte("served")

Hello World 58

func main() {

Serve(":1025", func(connection *UDPConn, c *UDPAddr, packet *bytes.Buffer) (n int) {

var key rsa.PublicKey

var response []byte

if e := gob.NewDecoder(packet).Decode(&key); e != nil {

log.Println("unable to decode wrapper:", c)

} else if response, e = rsa.EncryptOAEP(sha1.New(), rand.Reader, &key, HELLO_WORLD, RSA_LABEL); e \

!= nil {

log.Println("unable to encrypt server response")

} else if n, e = connection.WriteToUDP(response, c); e != nil {

log.Println("unable to write response to client:", c)

}

return

})

}

func Serve(address string, f func(*UDPConn, *UDPAddr, *bytes.Buffer) int) {

Launch(address, func(connection *UDPConn) {

for {

buffer := make([]byte, 1024)

if n, client, e := connection.ReadFromUDP(buffer); e == nil {

go func(c *UDPAddr, b []byte) {

if n := f(connection, c, bytes.NewBuffer(b)); n != 0 {

log.Println(n, "bytes written to", c)

}

}(client, buffer[:n])

} else {

log.Println(address, e.Error())

}

}

})

}

func Launch(address string, f func(*UDPConn)) {

var connection *UDPConn

if a, e := ResolveUDPAddr("udp", address); e != nil {

log.Fatalln("unable to resolve UDP address:", e.Error())

} else if connection, e = ListenUDP("udp", a); e != nil {

log.Fatalln("can't open socket for listening:", e.Error())

}

f(connection)

}

Whilst I personally find this easier on the eye in many cases, it’s a less common idiom than successive
if statements. It’s also important to remember Go’s scoping rules when using this construction as these
allow each assignment to introduce new variables local to that if statement’s scope. As such some care
should be taken in variable naming to avoid accidental shadowing.

Because error is defined as an interface rather than a concrete type we can declare our own types for
error handling and then check for them to specialise error handling behaviour. In the next example we
introduce the LaunchError type which complies with the predeclared error interface by implementing
its own Error() method.

Hello World 59

Example 1.1.60

1 package main

2 import "bytes"

3 import "crypto/rand"

4 import "crypto/rsa"

5 import "crypto/sha1"

6 import "encoding/gob"

7 import "fmt"

8 import "log"

9 import . "net"

10

11 var HELLO_WORLD = []byte("Hello World")

12 var RSA_LABEL = []byte("served")

13

14 type LaunchError []interface{}

15

16 func (l LaunchError) Error() (r string) {

17 if len(l) > 0 {

18 r = fmt.Sprintf(l[0].(string), l[1:]...)

19 }

20 return

21 }

22

23 func NewLaunchError(format string, v ...interface{}) (l LaunchError) {

24 return LaunchError(append([]interface{}{ format }, v))

25 }

26

27 func main() {

28 Serve(":1025", func(connection *UDPConn, c *UDPAddr, packet *bytes.Buffer) (n int) {

29 var key rsa.PublicKey

30 var response []byte

31

32 if e := gob.NewDecoder(packet).Decode(&key); e != nil {

33 log.Println("unable to decode wrapper:", c)

34 } else if response, e = rsa.EncryptOAEP(sha1.New(), rand.Reader, &key, HELLO_WORLD, RSA_LABEL); e \

35 != nil {

36 log.Println("unable to encrypt server response")

37 } else if n, e = connection.WriteToUDP(response, c); e != nil {

38 log.Println("unable to write response to client:", c)

39 }

40 return

41 })

42 }

43

44 func Serve(address string, f func(*UDPConn, *UDPAddr, *bytes.Buffer) int) {

45 e := Launch(address, func(connection *UDPConn) (e error) {

46 defer func() {

47 if x := recover(); x != nil {

48 e = LaunchError{ "serve failure %v", x }

49 }

50 }()

51 for {

52 buffer := make([]byte, 1024)

53 if n, client, e := connection.ReadFromUDP(buffer); e == nil {

54 go func(c *UDPAddr, b []byte) {

55 if n := f(connection, c, bytes.NewBuffer(b)); n != 0 {

Hello World 60

56 log.Println(n, "bytes written to", c)

57 }

58 }(client, buffer[:n])

59 } else {

60 log.Println(address, e.Error())

61 }

62 }

63 return

64 })

65

66 if e, ok:= e.(LaunchError); ok {

67 log.Fatalln(e.Error())

68 }

69 }

70

71 func Launch(address string, f func(*UDPConn) error) error {

72 var connection *UDPConn

73

74 if a, e := ResolveUDPAddr("udp", address); e != nil {

75 return NewLaunchError("unable to resolve UDP address:", e.Error())

76 } else if connection, e = ListenUDP("udp", a); e != nil {

77 return LaunchError{ "can't open socket for listening:", e.Error() }

78 }

79 return f(connection)

80 }

This is quite a complicated example, so let’s take a look at the various changes we’ve made in detail.

17 type LaunchError []interface{}

18

19 func (l LaunchError) Error() (r string) {

20 if len(l) > 0 {

21 r = fmt.Sprintf(l[0].(string), l[1:]...)

22 }

23 return

24 }

25

26 func NewLaunchError(format string, v ...interface{}) (l LaunchError) {

27 return LaunchError(append([]interface{}{ format }, v))

28 }

For simplicity we’ve made LaunchError a slice of interface literal.

73 func Launch(address string, f func(*UDPConn) error) error {

74 var connection *UDPConn

75

76 if a, e := ResolveUDPAddr("udp", address); e != nil {

77 return NewLaunchError("unable to resolve UDP address:", e.Error())

78 } else if connection, e = ListenUDP("udp", a); e != nil {

79 return LaunchError{ "can't open socket for listening:", e.Error() }

80 }

81 return f(connection)

82 }

Hello World 61

We’ve made another change to Launch() related to our new approach to error handling, which is to
propogate these errors back to the caller via a return value - and just for completeness we’re allowing
errors to bubble up from the function parameter f as well. This leads to changes in Serve as well.

46 func Serve(address string, f func(*UDPConn, *UDPAddr, *bytes.Buffer) int) {

47 e := Launch(address, func(connection *UDPConn) (e error) {

48 defer func() {

49 if x := recover(); x != nil {

50 e = LaunchError{ "serve failure %v", e }

51 }

52 }()

Here we set a value for e from the error returned by Launch() as well as intercepting any panic raised by
the associated closure with defer and instead returning a LaunchError rather than crashing the program.
As defer takes a closure the e referenced inside it is the same e as that declared by the function literal
func(connection *UDPConn) (e error), a pattern encountered in many existing Go codebases. We then
use the returned error value before exiting Serve().

68 if e, ok:= e.(LaunchError); ok {

69 log.Fatalln(e.Error())

70 }

It should come as no surprise that Go provides support for creating error values without our having
to define error types, in the form of errors.New and fmt.Errorf. Using these we can remove the
LaunchError type and rewrite our program.

Example 1.1.61

1 package main

2 import "bytes"

3 import "crypto/rand"

4 import "crypto/rsa"

5 import "crypto/sha1"

6 import "encoding/gob"

7 import "errors"

8 import "fmt"

9 import "log"

10 import . "net"

11

12 var HELLO_WORLD = []byte("Hello World")

13 var RSA_LABEL = []byte("served")

14

15 func main() {

16 Serve(":1025", func(connection *UDPConn, c *UDPAddr, packet *bytes.Buffer) (n int) {

17 var key rsa.PublicKey

18 var response []byte

19

20 if e := gob.NewDecoder(packet).Decode(&key); e != nil {

21 log.Println("unable to decode wrapper:", c)

22 } else if response, e = rsa.EncryptOAEP(sha1.New(), rand.Reader, &key, HELLO_WORLD, RSA_LABEL); e \

23 != nil {

24 log.Println("unable to encrypt server response")

25 } else if n, e = connection.WriteToUDP(response, c); e != nil {

26 log.Println("unable to write response to client:", c)

Hello World 62

27 }

28 return

29 })

30 }

31

32 func Serve(address string, f func(*UDPConn, *UDPAddr, *bytes.Buffer) int) {

33 e := Launch(address, func(connection *UDPConn) (e error) {

34 defer func() {

35 if x := recover(); x != nil {

36 e = fmt.Errorf("serve failure %v", x)

37 }

38 }()

39 for {

40 buffer := make([]byte, 1024)

41 if n, client, e := connection.ReadFromUDP(buffer); e == nil {

42 go func(c *UDPAddr, b []byte) {

43 if n := f(connection, c, bytes.NewBuffer(b)); n != 0 {

44 log.Println(n, "bytes written to", c)

45 }

46 }(client, buffer[:n])

47 } else {

48 log.Println(address, e.Error())

49 }

50 }

51 return

52 })

53

54 if e != nil {

55 log.Fatalln(e.Error())

56 }

57 }

58

59 func Launch(address string, f func(*UDPConn) error) error {

60 var connection *UDPConn

61

62 if a, e := ResolveUDPAddr("udp", address); e != nil {

63 return fmt.Errorf("unable to resolve UDP address: %v", e)

64 } else if connection, e = ListenUDP("udp", a); e != nil {

65 return errors.New(fmt.Sprintf("can't open socket for listening: %v", e.Error()))

66 }

67 return f(connection)

68 }

Exceptions

If we consider these programs for a minute or two it becomes apparent that propagating our errors this
way works very well when wewish to deal with an error immediately, which is usually the case. However
there are occasions when an error will need to be propagated through several layers of function calls, and
when this is the case there’s a lot of boilerplate involved in intermediate functions in the call stack.

We can do away with much of this by rolling our own lightweight equivalent of exceptions using defer
and the panic() and recover() calls. In the next example we’ll do just this, introducing the Exception
type which is an interface with error embedded within it. This means that any error value will also be
useable as an Exception value.

Hello World 63

Why doesn’t Go have native exceptions?
A common criticism of Go is its use of inline error handling rather than the kind of exception-
handling mechanism we’re developing here. The language FAQ¹³ has a coherent explanation
which is worth quoting in full:

Why does Go not have exceptions?
We believe that coupling exceptions to a control structure, as in the try-catch-finally
idiom, results in convoluted code. It also tends to encourage programmers to label
too many ordinary errors, such as failing to open a file, as exceptional.
Go takes a different approach. For plain error handling, Go’s multi-value returns
make it easy to report an error without overloading the return value. A canonical
error type, coupled with Go’s other features, makes error handling pleasant but
quite different from that in other languages.
Go also has a couple of built-in functions to signal and recover from truly excep-
tional conditions. The recovery mechanism is executed only as part of a function’s
state being torn down after an error, which is sufficient to handle catastrophe but
requires no extra control structures and, when used well, can result in clean error-
handling code.
See the Defer, Panic, and Recover¹⁴ article for details.

Go is a conservative language with a minimal set of features chosen primarily to avoid
unnecessary magic in code, with all the maintenance problems that can bring. As you’ll
find by the end of this chapter, exception handling is most decidedly magical if it’s to be
elegant, potentially introducing several layers of source-code abstraction between the logic for
performing an operation and the error recovery code which cleans up when it goes wrong.

That’s not to say that exception-stylemechanisms aren’t useful for certain tasks, and as I hope the
following examples will demonstrate (as well as those in later chapters) it’s perfectly reasonable
to implement variants which suit your purpose when the need arises.

Example 1.1.62

1 package main

2 import "bytes"

3 import "crypto/rand"

4 import "crypto/rsa"

5 import "crypto/sha1"

6 import "encoding/gob"

7 import "fmt"

8 import "log"

9 import . "net"

10 import "os"

11

12 var HELLO_WORLD = []byte("Hello World")

13 var RSA_LABEL = []byte("served")

14

15 type Exception interface {

16 error

17 }

18

19 func Raise(message string, parameters ...interface{}) {

20 panic(fmt.Errorf(message, parameters...))

¹³https://golang.org/doc/faq#exceptions
¹⁴https://golang.org/doc/articles/defer_panic_recover.html

https://golang.org/doc/faq#exceptions
https://golang.org/doc/articles/defer_panic_recover.html
https://golang.org/doc/faq#exceptions
https://golang.org/doc/articles/defer_panic_recover.html

Hello World 64

21 }

22

23 func Rescue(f func()) {

24 defer func() {

25 if e := recover(); e != nil {

26 if e, ok := e.(Exception); ok {

27 log.Println("Exception:", e.Error())

28 os.Exit(1)

29 } else {

30 panic(e)

31 }

32 }

33 }()

34

35 f()

36 }

37

38 func main() {

39 Serve(":1025", func(connection *UDPConn, c *UDPAddr, packet *bytes.Buffer) (n int) {

40 var key rsa.PublicKey

41 var response []byte

42

43 Rescue(func() {

44 if e := gob.NewDecoder(packet).Decode(&key); e != nil {

45 Raise("unable to decode wrapper: %v", c)

46 } else if response, e = rsa.EncryptOAEP(sha1.New(), rand.Reader, &key, HELLO_WORLD, RSA_LABEL); \

47 e != nil {

48 Raise("unable to encrypt server response")

49 } else if n, e = connection.WriteToUDP(response, c); e != nil {

50 Raise("unable to write response to client: %v", c)

51 }

52 })

53 return

54 })

55 }

56

57 func Serve(address string, f func(*UDPConn, *UDPAddr, *bytes.Buffer) int) {

58 Rescue(func() {

59 e := Launch(address, func(connection *UDPConn) (e error) {

60 for {

61 buffer := make([]byte, 1024)

62 if n, client, e := connection.ReadFromUDP(buffer); e == nil {

63 go func(c *UDPAddr, b []byte) {

64 if n := f(connection, c, bytes.NewBuffer(b)); n != 0 {

65 log.Println(n, "bytes written to", c)

66 }

67 }(client, buffer[:n])

68 } else {

69 log.Println(address, e.Error())

70 }

71 }

72 return

73 })

74

75 if e != nil {

76 log.Fatalln(e.Error())

Hello World 65

77 }

78 })

79 }

80

81 func Launch(address string, f func(*UDPConn) error) error {

82 var connection *UDPConn

83

84 if a, e := ResolveUDPAddr("udp", address); e != nil {

85 Raise("unable to resolve UDP address: %v", e)

86 } else if connection, e = ListenUDP("udp", a); e != nil {

87 Raise("can't open socket for listening: %v", e.Error())

88 }

89 return f(connection)

90 }

Our updated code looks surprisingly similar to that of Example 1.60 with a set of type declarations
replacing LaunchErrorwith Exception andNewLaunchError()withRaise(), which as its name suggests
generates a panic to propagate the Exception value back up the calling stack. We’ve also introduced
Rescue()

22 func Raise(message string, parameters ...interface{}) {

23 panic(fmt.Errorf(message, parameters...))

24 }

To intercept this panic we need a defer statement somewhere up the call stack which can handle it,
otherwise it will bubble up through main() and the program will terminate with a stack trace. In our
implementation of Rescue() we set up a deferred function which will check panic values with a type
assertion and where these match the Exception interface the program will be terminated cleanly.

26 func Rescue(f func()) {

27 defer func() {

28 if e := recover(); e != nil {

29 if e, ok := e.(Exception); ok {

30 log.Println("Exception:", e.Error())

31 os.Exit(1)

32 } else {

33 panic(e)

34 }

35 }

36 }()

37

38 f()

39 }

Hello World 66

$ go run 62.go &

[1] 53769

$ go run 62.go

2016/07/13 17:39:33 Exception: can't open socket for listening: listen udp :1025: bind: address alread\

y in use

exit status 1

$ go run 57_corrupt_key.go

2016/07/13 17:39:37 Exception: unable to decode wrapper: 127.0.0.1:49325

exit status 1

^Csignal: interrupt

[1]+ Exit 1 go run 62.go

The semantics here are subtly different to our previous example and any error in the server will cause it
to terminate. Instead we want launch errors to terminate the server whilst connection errors from talking
with a particular client should log the error and return to listening for another connection. The easiest
way to do this is to parameterise Rescue() so that it receives both the function to guard and a function
with signature func(Exception) to respond according to the Exception value generated.

[Example 1.1.63a] Rescue() function definition

26 func Rescue(f func(), r func(Exception)) {

27 defer func() {

28 if e := recover(); e != nil {

29 if e, ok := e.(Exception); ok {

30 r(e)

31 } else {

32 panic(e)

33 }

34 }

35 }()

36

37 f()

38 }

[Example 1.1.63b] Rescue() function in use

67 Rescue(

68 func() {

69 buffer := make([]byte, 1024)

70 if n, client, e := connection.ReadFromUDP(buffer); e == nil {

71 go func(c *UDPAddr, b []byte) {

72 if n := f(connection, c, bytes.NewBuffer(b)); n != 0 {

73 log.Println(n, "bytes written to", c)

74 }

75 }(client, buffer[:n])

76 } else {

77 Raise("%v: %v", address, e.Error())

78 }

79 },

80 func(e Exception) {

81 log.Println(e.Error())

82 },

83)

Hello World 67

[Example 1.1.63c] Launch() rewritten to use Rescue()

67 func Launch(address string, f func(*UDPConn) error) {

68 var connection *UDPConn

69

70 Rescue(

71 func() {

72 if a, e := ResolveUDPAddr("udp", address); e != nil {

73 Raise("unable to resolve UDP address: %v", e)

74 } else if connection, e = ListenUDP("udp", a); e != nil {

75 Raise("can't open socket for listening: %v", e)

76 } else if e = f(connection); e != nil {

77 Raise("connection error: %v", e)

78 }

79 },

80 func(e Exception) {

81 log.Println(e.Error())

82 os.Exit(1)

83 },

84)

85 }

This now gives us a primitive domain specific language for exceptions using Rescue() blocks to guard
behaviour and Raise() to trigger them. Unfortunately an Exception is essentially untyped in the context
where it’s dealt with and this places all the burden for exception handling into a single closure. However
generally languages which support exception handling allow exceptions to be differentiated by subtype,
so let’s see what we can do to achieve a similar effect.

The obvious first step is to introduce a new type which implements the Exception interface and then use
a type switch in an exception handler to specialise its behaviour

[Example 1.1.64a] defining an Exception type

26 type LaunchException error

27

28 func RaiseLaunchException(message string, parameters ...interface{}) {

29 panic(LaunchException(fmt.Errorf(message, parameters...)))

30 }

[Example 1.1.64b] checking for a specific exception

94 func Launch(address string, f func(*UDPConn) error) {

95 var connection *UDPConn

96

97 Rescue(

98 func() {

99 if a, e := ResolveUDPAddr("udp", address); e != nil {

100 RaiseLaunchException("unable to resolve UDP address: %v", e)

101 } else if connection, e = ListenUDP("udp", a); e != nil {

102 RaiseLaunchException("can't open socket for listening: %v", e)

103 } else if e = f(connection); e != nil {

104 Raise("connection error: %v", e)

105 }

106 },

107 func(e Exception) {

Hello World 68

108 switch e := e.(type) {

109 case LaunchException:

110 log.Println("Launch Exception:", e.Error())

111 default:

112 log.Println(e.Error())

113 }

114 os.Exit(1)

115 },

116)

117 }

The type switch allows us to select different courses of action depending on the concrete type of the
value contained in the Exception, and we can also specify a default case to handle unknown values.

$ go run 64.go &

[1] 90620

$ go run 64.go

2016/07/16 00:03:17 Launch Exception can't open socket for listening: listen udp :1025: bind: address \

already in use

exit status 1

$ go run 57.go

2016/07/16 01:00:53 256 bytes written to 127.0.0.1:63574

Hello World

$ go run 57_corrupt_key.go

2016/07/16 01:00:58 Exception: unable to decode wrapper: 127.0.0.1:54657

^Csignal: interrupt

$ go run 57.go

2016/07/16 01:02:09 256 bytes written to 127.0.0.1:52033

Hello World

The use of type switches in this manner is a common idiom in go and I quite like this solution as the
only magic at work here is our abuse of the panic()/recover() mechanism. However I’d really prefer to
split exception handling into several different functions, each keyed to a particular exception type. This
is relatively easy to do but requires that we pop open go’s hood at runtime using type reflection.

Hello World 69

Dynamism comes at a price
Reflection in Go rests on two powerful packages: reflect and unsafe. With reflect you can find
out pretty much anything about a value at runtime and write code based on that knowledge,
whilst with unsafe you can bypass runtime type guarantees to repurpose memory. The cases
when reflect is useful are much more numerous than those for unsafe, but neither is essential
to day-to-day programming so many Go programmers will never use either in anger. However
it’s still worth knowing a little both.

The most common use for reflect is to develop generic functions as Go lacks generic types,
however there’s a substantial performance cost associated with this. Performance hits of 10x or
even 100x execution cost are not unusual with reflection, especially if dealing generically with
containers of generic values. In general if you can frame such problems in terms of interfaces
and type switches it pays to do so.

The appropriately-named unsafe package should be approached with caution. This mechanism
exists because sometimes a programmer really does know better than the compiler how a value
can be used, however bypassing type system guarantees at runtime can result in bugs which are
very difficult - or impossible - to track down.

The insights gained from playing with these packages will make you a better Go coder so don’t
be put off experimenting. I can’t guarantee you won’t destroy a computer with these kinds of
tricks but I’ve yet to brick any of mine that way.

Like many modern languages Go has an extensive reflection system which allows us to introspect any
value at runtime - including the closures which our Rescue() function accepts - and then attempt to use
that information to control the execution of our program.

[Example 1.1.65] checking for a specific exception

45 func Rescue(f func(), r ...interface{}) {

46 defer func() {

47 if e := recover(); e != nil {

48 if e, ok := e.(Exception); ok {

49 et := reflect.TypeOf(e)

50 for _, handler := range r {

51 if h := reflect.ValueOf(handler); h.Kind() == reflect.Func && h.Type().NumIn() == 1 {

52 switch hpt := h.Type().In(0); {

53 case et == hpt:

54 fallthrough

55 case hpt.Kind() == reflect.Interface && et.Implements(hpt):

56 h.Call([]reflect.Value{ reflect.ValueOf(e) })

57 return

58 }

59 }

60 }

61 }

62 panic(e)

63 }

64 }()

65

66 f()

67 }

This seems like a pretty gnarly piece of code on first inspection so let’s rephrase it in English to get a
better understanding for what’s it’s doing before looking at the details of the reflect API

Hello World 70

47 given that we've recovered from a panic()

48 if we're handling any value whose type fulfils the Exception interface

49 determine the concrete type of the Exception value

50 step through the list of handlers specified in the Rescue() call

51 if the handler is a function and accepts exactly one parameter

52 find out what the type of its parameter is

53 if the parameter is the same type as our exception's concrete type

54 or the parameter is an interface which the exception implements

55 call the handler with the exception as its parameter

56 return from the defered function, continuing execution normally

57 in all other cases

58 propagate the value received by recover() up the unwinding call stack

This essentially boils down to finding out the runtime types of the values our function encounters and
then making choices about how to proceed. To achieve this we’ve used two functions central to working
with reflection. Firstly there’s reflect.TypeOf() which takes any value and returns a reflect.Type value,
then there’s reflect.ValueOf() which also takes any concrete value and returns a reflect.Value.

Both Type and Value expose large APIs designed to operate on all runtime types and as a consequence
many of these methods are prone to generating runtime panics if used incorrectly. Both types implement
a Kind() method which can be used to provide basic safeguards

51 if h := reflect.ValueOf(handler); h.Kind() == reflect.Func && h.Type().NumIn() == 1 {

52 switch hpt := h.Type().In(0); {

53 case et == hpt:

54 fallthrough

55 case hpt.Kind() == reflect.Interface && et.Implements(hpt):

56 h.Call([]reflect.Value{ reflect.ValueOf(e) })

57 return

58 }

59 }

With type safety guarantees in place we can easily figure out whether or not we’re dealing with
a recognisable exception handler (i.e. a function taking a parameter compatible with the Exception
interface) and if we are the next question is how do we invoke this function? The reflect.Value type
defines a methodCall()which executes a function and takes as its parameter a []reflect.Value containing
the actual parameters for the function, each wrapped as a reflect.Value

56 h.Call([]reflect.Value{ reflect.ValueOf(e) })

For completeness we’re going to refactor Rescue() by separating out the code for attempting an exception
handling function call, making this easier to maintain

Hello World 71

[Example 1.1.66] calling an exception handler via reflection

33 func attemptCall(e Exception, handler interface{}) (ok bool) {

34 if h := reflect.ValueOf(handler); h.Kind() == reflect.Func {

35 et := reflect.TypeOf(e)

36 if hpt := h.Type().In(0); et == hpt || et.Implements(hpt) {

37 h.Call([]reflect.Value{reflect.ValueOf(e)})

38 return true

39 }

40 }

41 return

42 }

43

44 func Rescue(f func(), r ...interface{}) {

45 defer func() {

46 if e := recover(); e != nil {

47 if e, ok := e.(Exception); ok {

48 for _, h := range r {

49 if attemptCall(e, h) {

50 return

51 }

52 }

53 }

54 panic(e)

55 }

56 }()

57

58 f()

59 }

Echo
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Arguments

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Flags

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Command-line Boilerplate and Standard I/O

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Conditional Flags

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Errors

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook

Going Loopy

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Adventures in Iteration

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook

Linear Sequences
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

The for {} construct

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

User Defined Slices

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Iterating Through Arrays

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Arrays and Slices Exposed

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Iteration and structured types

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook

mappings
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Iteration and maps

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook

Software Machines

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook

Software Machines
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

array stacks

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

cactus stacks

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

hash maps

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

heaps

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

switch dispatchers

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

direct threaded dispatchers

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

indirect threaded dispatchers

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook

Software Machines 78

assembler

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

tail calls

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

architectures

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

fun with types

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

timers

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Instruction Set

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

processor core

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

accumulator machine

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook

Software Machines 79

stack machine

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

register machine

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

vector machine

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook

Software Machines
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

memory

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook

Functional Programming

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Metaprogramming and First-Class Functions

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Pure Functions, Expressions, and Recursion

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Partial Application and Currying

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Lazy Evaluation and Memoization

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Infinite Series and Data Structures

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Immutability

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook

82

Category Theory

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook

Functions
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

The Machine View

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Adding Human Readability

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Procedures and Functions in Go

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

The Mathematical View

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Simple Factorials

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

First-Class and Higher-Order Functions

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Closures

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook

Functions 84

Currying

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Recursion

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

funcs() Which Call Themselves

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Mathematical Functions Which Call Themselves

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Error Handling the Go Way

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Changing Types

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook

Memoization
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

A Shallow Introduction to Big-O Notation

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

In-Memory Caching

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Private Caches

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Caches in Hashes

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Once Upon A Flat File

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Let’s Talk About Type

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

utility.go

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

cache.go

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook

Memoization 86

main.go

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

A Generalised Cache

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

cache.go

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

utility.go

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

factorial.go

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

diskcache.go

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

main.go

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Explicitly Layered Caching

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

A Dedicated Memory Cache

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Writing Files in a Functional Manner

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook

Memoization 87

Preventing Concurrent Writes

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Sharing Locks Between Processes

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook

Odds & Sods

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook

Maps and Hashes
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Go maps

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

A simple Map implementation

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook

Types
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Interfaces

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Interfaces, pt 1

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

package adder

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook

Pretty Pictures
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Basic Mandelbrot

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook

Phong Shading
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook

Communication by Sharing
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook

Concurrency
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

synchronous

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

asynchronous

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

map/reduce

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

map/reduce

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook

Errors, Exceptions & Flow Control
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Catch & Throw

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Stack Traces

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Exceptions

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook

Duck Typing, Reflection and Type
Manipulation
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

package generalise

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

raw

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook

Beyond Go
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Interfacing with Dynamic Libraries

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

SQLite 3

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

Ruby?

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.
com/GoNotebook.

http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook
http://leanpub.com/GoNotebook

	Table of Contents
	Preface
	Introducing Go
	Getting Started
	So what is Go?
	Open source
	Efficient compilation
	Efficient execution
	Ease of programming

	And where did it come from?
	Into the wild
	Where next?
	Hello World
	Packages
	Constants
	Variables
	Functions
	Encapsulation
	Generalisation
	Startup
	HTTP
	The Environment
	Handling Signals
	TCP/IP
	UDP
	RSA obfuscated UDP
	Error Handling
	Exceptions

	Echo
	Arguments
	Flags
	Command-line Boilerplate and Standard I/O
	Conditional Flags

	Errors

	Going Loopy
	Adventures in Iteration
	Linear Sequences
	The for {} construct
	User Defined Slices
	Iterating Through Arrays
	Arrays and Slices Exposed
	Iteration and structured types

	mappings
	Iteration and maps

	Software Machines
	Software Machines
	array stacks
	cactus stacks
	hash maps
	heaps
	switch dispatchers
	direct threaded dispatchers
	indirect threaded dispatchers
	assembler
	tail calls
	architectures
	fun with types
	timers
	Instruction Set
	processor core
	accumulator machine
	stack machine
	register machine
	vector machine

	Software Machines
	memory

	Functional Programming
	Metaprogramming and First-Class Functions
	Pure Functions, Expressions, and Recursion
	Partial Application and Currying
	Lazy Evaluation and Memoization
	Infinite Series and Data Structures
	Immutability
	Category Theory
	Functions
	The Machine View
	Adding Human Readability
	Procedures and Functions in Go

	The Mathematical View
	Simple Factorials
	First-Class and Higher-Order Functions
	Closures
	Currying

	Recursion
	funcs() Which Call Themselves
	Mathematical Functions Which Call Themselves
	Error Handling the Go Way
	Changing Types

	Memoization
	A Shallow Introduction to Big-O Notation
	In-Memory Caching
	Private Caches
	Caches in Hashes
	Once Upon A Flat File
	Let's Talk About Type
	utility.go
	cache.go
	main.go

	A Generalised Cache
	cache.go
	utility.go
	factorial.go
	diskcache.go
	main.go

	Explicitly Layered Caching
	A Dedicated Memory Cache
	Writing Files in a Functional Manner
	Preventing Concurrent Writes
	Sharing Locks Between Processes

	Odds & Sods
	Maps and Hashes
	Go maps
	A simple Map implementation

	Types
	Interfaces
	Interfaces, pt 1
	package adder

	Pretty Pictures
	Basic Mandelbrot

	Phong Shading
	Communication by Sharing
	Concurrency
	synchronous
	asynchronous
	map/reduce
	map/reduce

	Errors, Exceptions & Flow Control
	Catch & Throw
	Stack Traces
	Exceptions

	Duck Typing, Reflection and Type Manipulation
	package generalise
	raw

	Beyond Go
	Interfacing with Dynamic Libraries
	SQLite 3
	Ruby?

