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Prompt Engineering

Welcome to Prompt Engineering with Large Language Models (LLMs)! In recent years,
advances in natural language processing (NLP) have led to the development of powerful
language models like ChatGPT and GPT-4, which are capable of generating human-like text
based on input prompts. However, the effectiveness of these models depends heavily on
the quality of the prompts provided.

This is where Prompt Engineering comes in. By carefully crafting and optimizing prompts,
we can use LLMs to generate text that is more accurate, relevant, and engaging. Whether
you're a data scientist, a content creator, or just someone interested in exploring the
capabilities of NLP, learning how to use Prompt Engineering can help you achieve your
goals.

In this tutorial, we'll start by getting you set up with the tools and environment you need
to use GPT-4 and the OpenAl API. Then, we'll dive into the theory and practice of Prompt
Engineering, covering topics like how prompts work, how to craft effective prompts, and
common mistakes to avoid.

Throughout the tutorial, I'll use easy-to-understand language and provide plenty of exam-
ples and analogies to help you understand the concepts and techniques involved. I'll also be
direct and blunt in pointing out common mistakes and potential pitfalls, to help you avoid
them and get the most out of your use of GPT-4 with Prompt Engineering.

So, let’s get started and explore the exciting world of Prompt Engineering!



Why is it important?

Without Prompt Engineering, the output of LLMs can be unpredictable and often irrelevant.
For example, without carefully crafted prompts, an LLM might generate text that is
grammatically correct but semantically nonsensical, or it might fail to capture the nuances
of a specific topic or domain. This can lead to wasted time and resources as users are forced
to sift through irrelevant or inaccurate output.

Effective Prompt Engineering can also help us to optimize the performance of LLMs. By
understanding how LLMs work and how to craft effective prompts, we can minimize
common errors and pitfalls that can impact the accuracy and efficiency of LLM-generated
text. This can help us achieve faster turnaround times and higher quality output, while
minimizing the need for manual review and correction.

Investing in Prompt Engineering is a key step for anyone looking to use LLMs effectively,
whether for content creation, conversational Al, or other applications. By understanding
the principles and techniques of Prompt Engineering, we can unlock the full potential of
these powerful tools and achieve better results in less time.



Whatis a Prompt?

A prompt is a specific instruction or request given to a computer program or language model
to perform a particular task or generate a specific output. In the context of natural language
processing and machine learning, prompts are often used to guide language models like
ChatGPT and GPT-4 in generating text.

Here's a very simple prompt:
Write a short paragraph about the top 3 attractions to visit in Paris.

In this example, the prompt provides a clear task for the language model to generate text.
Can we improve on that?

Yes! We will utilize the following elements to enhance our prompt creation process:

e ChatGPT's conversational training: The model was trained to provide responses in a
conversational format and then evaluated based on the quality of those responses. By
utilizing this information, we can create a comprehensive, repeatable framework for
our prompts.

¢ Role and context-specific API: The ChatGPT API can be tailored to meet specific needs
by providing it with a specific role and context. This allows for even more precise
language generation that aligns with your objectives.

Next, we'll look at how to structure an effective prompt!



Prompt Structure

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/Get-Shit-Done-with-Prompt-Engineering-and-LangChain

Components of an Effective Prompt

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/Get-Shit-Done-with-Prompt-Engineering-and-LangChain

Template for an Effective Prompt

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/Get-Shit-Done-with-Prompt-Engineering-and-LangChain

Example Prompt

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/Get-Shit-Done-with-Prompt-Engineering-and-LangChain


http://leanpub.com/Get-Shit-Done-with-Prompt-Engineering-and-LangChain
http://leanpub.com/Get-Shit-Done-with-Prompt-Engineering-and-LangChain
http://leanpub.com/Get-Shit-Done-with-Prompt-Engineering-and-LangChain
http://leanpub.com/Get-Shit-Done-with-Prompt-Engineering-and-LangChain

Example Prompts

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/Get-Shit-Done-with-Prompt-Engineering-and-LangChain

Travel Blog Post

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/Get-Shit-Done-with-Prompt-Engineering-and-LangChain

Data Science Report

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/Get-Shit-Done-with-Prompt-Engineering-and-LangChain

Biology Lesson

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/Get-Shit-Done-with-Prompt-Engineering-and-LangChain

Copywrting for SaaS Product

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/Get-Shit-Done-with-Prompt-Engineering-and-LangChain

Climate Change Article

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/Get-Shit-Done-with-Prompt-Engineering-and-LangChain


http://leanpub.com/Get-Shit-Done-with-Prompt-Engineering-and-LangChain
http://leanpub.com/Get-Shit-Done-with-Prompt-Engineering-and-LangChain
http://leanpub.com/Get-Shit-Done-with-Prompt-Engineering-and-LangChain
http://leanpub.com/Get-Shit-Done-with-Prompt-Engineering-and-LangChain
http://leanpub.com/Get-Shit-Done-with-Prompt-Engineering-and-LangChain
http://leanpub.com/Get-Shit-Done-with-Prompt-Engineering-and-LangChain

0o N o Ul LN =

—_
u b W N -2 O O

Input and Output Format

LLMs excel at processing various data formats beyond just plain text. They can effectively
handle lists, markdown tables, and JSON structures. In this tutorial, we'll delve into the
process of incorporating data in these formats into LLMs and specifying the desired
response formats accordingly.

Plain Text

The easiest method to provide information for your LLM is by using plain text. Simply
enclose the supplied text within triple backticks to indicate its inclusion:

Write a 2-3 sentence summary of the text:

The Office is an American mockumentary sitcom television series that depicts
the everyday work lives of office employees at the Scranton, Pennsylvania,
branch of the fictional Dunder Mifflin Paper Company. It aired on NBC from
March 24, 2005, to May 16, 2013, spanning a total of nine seasons.[1] Based on
the 2001-2003 BBC series of the same name created by Ricky Gervais and Stephen
Merchant, it was adapted for American television by Greg Daniels, a veteran
writer for Saturday Night Live, King of the Hill, and The Simpsons. It was
co-produced by Daniels' Deedle-Dee Productions and Reveille Productions (later
Shine America), in association with Universal Television. The original
executive producers were Daniels, Gervais, Merchant, Howard Klein, and Ben
Silverman, with numerous others being promoted in later seasons.

ChatGPT response:

“The Office” is a popular American sitcom that aired on NBC from 2005 to
2013, depicting the humorous and often mundane lives of office employees at
the Scranton branch of the fictional Dunder Mifflin Paper Company. Based on a
British series, the show was adapted for American television by Greg Daniels and
gained a dedicated fanbase over its nine-season run.
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Input and Output Format 7

Lists

Another straightforward approach is to input a list of data:

I have the following ingredients in my fridge:

- cheese

- eggs

- milk

- peanuts

- salami

- lavash bread

- chicken breasts
- tomatoes

Suggest 3 different dishes I can make adding only 1-2 more ingredients not on the li\
st

ChatGPT response:

1. Cheesy Scrambled Eggs: Make a delicious and creamy scrambled eggs dish
by adding the cheese and eggs from your fridge. You can enhance the flavors

by adding some chopped tomatoes or diced salami.
2. Chicken Wrap: Utilize the chicken breasts and lavash bread to create a tasty

chicken wrap. Grill or sauté the chicken, and then wrap it in the lavash bread
along with some fresh tomatoes, lettuce, and a sauce of your choice (such as

mayonnaise or yogurt-based dressing).
3. Peanut Noodle Stir-Fry: Prepare a flavorful peanut noodle stir-fry by cooking

the chicken breasts and combining them with boiled noodles, sliced tomatoes,
and peanuts from your fridge. Add some soy sauce, garlic, and ginger for
additional seasoning.

JSON

Public resources often utilize structured data, and it is likely that ChatGPT and other LLMs
have been trained on extensive JSON data (considering the abundance of JSON data on
GitHub). These models handle this type of data effectively:

Prepare for the Machine Learning interview with MLExpert.io



Input and Output Format 8

Use the JSON list to find the hex value of the color cyan:

llredll ,
"#f00"

"cyan",
"#Off"

"green",
"#0fO"

nbluen,
"#00f"

The hex value of the color cyan in the given JSON list is “#0ff".

[
{
"color":
"value":
}
{
"color":
"value":
I
{
"color™:
"value":
I
{
"color":
"value":
I
]
ChatGPT response:
Markdown

My preferred format for feeding large amounts of structured data to an LLM is using a
Markdown table. LLMs have token limitations®, and their processing time depends on the
input size. Markdown tables with a high number of rows are more compact compared to
JSON files. Additionally, the markdown format is widely used in the public domain.

Let’s look into an example:

'Space efficiency in Prompt Engineering®
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Input and Output Format

Which Large Language Model has the
own table:

| Language Model |

| Open Assistant (Pythia family) |

| Dolly |
labs/dolly#dolly)

| GPT-J-6B
/mesh-transformer-jax/#gpt-j-6b)

| GPT-NeoX-20B |
erAl/gpt-neox-20b)

| StablelLM-Alpha
AI/StablelLM#stablelm-alpha)

| MPT-7B |

/mosaicml/mpt-7b#how-is-this-model-

| OpenLLaMA

ChatGPT response:

longest context length? Extract it from the markd\

Params (B) | Context Length \
|

—————————— | mmmm e

---------- |

12 | 2048 \
|

3, 7, 12 | [2048](https://github.com/databricks\
|

6 | [2048](https://github.com/kingoflolz\
|

20 | [2048](https://huggingface.co/Eleuth\
|

3 - 65 | [4096](https://github.com/Stability-\
|

7 | [84k (ALiBi)](https://huggingface.co\

different) |

3, 7 | [2048](https://huggingface.co/h20ai)\
|

The language model with the longest context length is MPT-7B, which has a

context length of 84k (ALiBi).

Request Output Format

You caninstruct the model to generate output in a format other than plain text. For instance,
you can request a JSON response. However, it's important to provide at least one example
of the expected response to guide the model’s output:

Prepare for the Machine Learning interview with MLExpert.io
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Input and Output Format

Which Large Language Model has the

own table:

| Language Model

| Open Assistant (

| Dolly
labs/dolly#dolly)
| GPT-J-6B
/mesh-transformer -
| GPT-NeoX-20B
erAl/gpt-neox-20b)
| StablelLM-Alpha

AI/StablelLM#stablelm-alpha)

| MPT-7B

/mosaicml/mpt-7b#how-is-this-model-different)

| OpenLLaMA

| Params (B) |

___________________________ |
Pythia family) | 12

| 3, 7, 12

| 6
jax/#gpt-j-6b)

| 3 - 65

| 7

|
|
|
|
|
|
|
|
|
|
|
|
| 3,7 |
|

10

longest context length? Extract it from the markd\

Context Length \
____________________________________ \
2048 \

[2048] (https://github.com/databricks\
[2048] (https://github.com/kingoflolz\
[2048] (https://huggingface.co/Eleuth\
[4096] (https://github.com/Stability-\
[84k (ALiBi)](https://huggingface.co\

[2048] (https://huggingface.co/h20ai)\

Return your output as JSON. The format should be:

model: "The name of the model",

parameters: 4,
maximumTokens:

ChatGPT response:

918

"model": "MPT-7B",

"parameters": 7,
"maximumTokens":

84000
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Large Language Models

Large Language Models (LLMs) are a type of artificial intelligence that have the ability to
process and generate human-like responses to natural language queries. These models are
typically based on deep learning algorithms, which means that they are trained on large
amounts of text data to identify patterns and relationships between words, phrases, and
concepts.

At their core, LLMs work by breaking down a query or prompt into smaller components,
such as individual words or phrases, and then using statistical models to predict the most
likely response based on the patterns and relationships it has learned during training. This
process involves feeding massive amounts of text data into the model, which allows it to
learn to recognize patterns and relationships between words, phrases, and concepts.

Once trained, LLMs can be used to perform a wide range of natural language processing
tasks, including language translation, sentiment analysis, question answering, and more.
They are particularly useful for tasks that require a high level of language understanding
and context, such as text summarization or generating coherent and natural-sounding
responses to user queries.

Overall, LLMs are a powerful tool for natural language processing that have the potential to
transform the way we interact with computers and machines. As research and development
in this area continues, we can expect to see even more advanced and sophisticated
LLMs that are capable of understanding and responding to natural language queries with
increasing accuracy and relevance.



Tokens

Large Language Models (LLMs) don't truly comprehend raw text. Instead, text is trans-
formed into numerical representations known as tokens. These tokens are then fed into
the model for processing.

Here’s an example of tokenizing the text “Dec 31, 1993. Things are getting weird.” using
the OpenAl playground®:

Tokens Characters

10 39

Dec 31, 1993. Things are getting weird.

Tokenization Example

The same words converted to tokens using GPT-3 tokenizer:

Tokens Characters

10 39

[16707, 3261, 11, 9656, 13, 11597, 389, 1972, 7650, 13]

Tokenization Ids Example

Tokens are the fundamental units of text in large language models (LLMs) such as GPT-3 or
ChatGPT. In simple terms, a token can be thought of as a single word, character, or subword
unit. LLMs process text by breaking it down into tokens and then analyzing and generating
responses based on these tokens.

However, working with tokens in LLMs comes with some common gotchas. One important
consideration is the maximum token limit imposed by the model. LLMs have a maximum
token capacity, and if the input exceeds this limit, it needs to be truncated or shortened.
This can lead to the loss of important context or information from the text.

Here's a table of the maximum token limits for some popular LLMs:

'Space efficiency in Prompt Engineering?
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Tokens 13

Language Model Token Limit
T5 512
Open Assistant (Pythia family) 2048
Dolly 2048
GPT-J-6B 2048
GPT-NeoX-20B 2048
ChatGPT (GPT-3.5-Turbo) 4096
StableLM-Alpha 4096
OpenLLaMA 2048
GPT4 32K
MPT-7B 84k
Claude 100k

Another potential issue is that tokens can have different sizes and meanings depending on
the model’s vocabulary and tokenization scheme. For example, words like “running” and
“ran” may be represented by different tokens, which can affect the model’s understanding
of tense or verb forms.

Furthermore, certain characters or symbols may be treated as separate tokens, impacting
the overall token count. This can be relevant when dealing with limited token budgets or
when calculating costs based on token usage. One example of this is the space character,
which is treated as a separate token in ChatGPT.

One way to better understand how tokens are processed is to use the OpenAl playground®
for models like GPT-3 or ChatGPT. You can also calculate the number of tokens in a text
using the tiktoken® library.

A helpful rule of thumb is that one token generally corresponds to ~4 characters
of text for common English text. This translates to roughly % of a word (so 100
tokens ~= 75 words).

Being mindful of these token-related considerations is crucial when working with LLMs to
ensure effective text processing and generate accurate and meaningful responses.

®Space efficiency in Prompt Engineering®
*tiktoken library®

Prepare for the Machine Learning interview with MLExpert.io
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Techniques for optimizing LLM
performance

Optimizing the performance of Large Language Models (LLMs) is a critical step in leveraging
their full potential for natural language processing tasks. There are two popular techniques
that can be used to optimize the performance of LLMs and ensure that they are generating
accurate and relevant responses.

One effective technique for optimizing LLM performance is to fine-tune the model on a
specific dataset or task. This involves taking a pre-trained LLM and further training it on a
specific set of data to improve its performance on that task. By fine-tuning the model on a
specific dataset or task, developers can improve the accuracy and relevance of the model’s
responses for that particular use case.

Another technique for optimizing LLM performance is to use prompt engineering (what
we'll mostly focus on here). This involves crafting high-quality prompts or questions that
are tailored to the specific task at hand. By providing the model with clear and relevant
prompts, it can more easily generate accurate and relevant responses. Prompt engineering
can involve techniques such as adding context to the prompt, using multiple prompts
to provide more diverse input to the model, and incorporating additional constraints or
requirements into the prompt.

Overall, optimizing LLM performance requires a combination of techniques and approaches
that are tailored to the specific task and use case. By leveraging the power of these
techniques, developers and data scientists can ensure that their LLMs are generating
accurate and relevant responses that meet the needs of their users and stakeholders.
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LangChain Quickstart

Time to start with LangChain quickly! In this part, you'll learn the basics of LangChain and
how to get started with building powerful apps using OpenAl and ChatGPT. We'll start by
setting up a Google Colab notebook and running a simple OpenAl model. Then, we'll dive
deeper by loading an external webpage and using LangChain to ask questions using OpenAl
embeddings and ChatGPT.

Finally, we'll explore prompt templates and chains, and combine all the components we've
learned to create a powerful retrieval-based question answering system. By the end of this
part, you'll have a solid understanding of LangChain and how to use it to build your own
language models. So let’s get started!

Setup

To begin using LangChain, let’s include some necessary imports:

import os
import textwrap

import chromadb

import langchain

import openai

from langchain.chains import RetrievalQA

from langchain.chat_models import ChatOpenAl

from langchain.document_loaders import WebBaseloader
from langchain.embeddings import OpenAIEmbeddings
from langchain.indexes import VectorstoreIndexCreator
from langchain.llms import OpenAl

from langchain.prompts import PromptTemplate

from langchain.vectorstores import Chroma

Before we dive into LangChain, let’s create a simple function that formats text outputs:

def print_response(response: str):
print("\n".join(textwrap.wrap(response, width=100)))
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LangChain Quickstart 23

The function uses the textwrap module to wrap the text in response so that each line is
no more than 100 characters wide. Finally, the wrapped text is printed with the "\n" . join
method to concatenate the wrapped lines with newlines between them.

Next, we will set up your OpenAl API key:
os.environ["OPENAI_API_KEY"] = "YOUR OPENAI KEY"

You can get yours from OpenAl website'.

Using the OpenAl Model

We will now use the basic model and pass in your first prompt:

model = OpenAI(temperature=0)

print(
model(
You're Dwight K. Schrute from the Office.
Suggest 5 places to visit in Scranton that are connected to the TV show.
)
)
)

1. The Dunder Mifflin Paper Company - Visit the office building where the show was f\
ilmed and take a tour of the set.

2. Poor Richard's Pub - Enjoy a drink at the bar where the cast often hung out.

3. Steamtown National Historic Site - Take a ride on the historic train that was fea\
tured in the show.

4. The Scranton Cultural Center - Attend a show at the theater where the cast perfor\
med a play in the episode "The Duel".

5. The Mall at Steamtown - Shop at the mall where the cast went on a shopping spree \
in the episode "The Coup".

'https://platform.openai.com/account/api-keys
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We start by initializing an instance of the OpenAI class (which uses text-davinci-003 by
default) with a temperature value of 0. The temperature controls the “creativity” of the
generated text, with higher values leading to more varied and surprising output. In this
case, a temperature of O will result in the most “safe” and predictable output.

Q&A Over Webpage

LangChain’s coolest feature is its ability to integrate external sources with ChatGPT (and
similar models) to incorporate knowledge from them.

Thankfully, the process is remarkably straightforward. All we need to do is load the data
with a loader, create an index, and query it.

Let’s load the blog post about the recommendation algorithm used by Twitter?:

loader = WebBaselLoader(
"https://blog.twitter.com/engineering/en_us/topics/open-source/2023/twitter-reco\
mmendation-algorithm"

)

The WebBaselLoader® enables the loading of all text data from a specified webpage.

Let’s load the specified documents:

documents = loader.load()
len(documents)

Let’s take a look at the loaded document:

document = documents[0]
document._ dict__ .keys()

dict_keys(['page_content', 'metadata'])

The properties are easy to understand, so let’s dive into both of them:

*https://blog.twitter.com/engineering/en_us/topics/open-source/2023/twitter-recommendation-algorithm
®https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/web_base.html
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document.page_content[:100]

Twitter's Recommendation Algorithm
Engineering
Bac

The page_content field contains the webpage’s main content with the HTML tags removed.

document.metadata

'source': 'https://blog.twitter.com/engineering/en_us/topics/open-source/2023/tw\

itter-recommendation-algorithm'

}

Our specific metadata in this case contains the URL of the webpage.

Now that we have loaded the document, let’s convert into a format that LangChain can
understand:

index = VectorstoreIndexCreator().from_loaders([loader])

VectorstoreIndexCreator is a component used to create an index that enables querying
text documents. It splits the documents into smaller chunks, generates embeddings (i.e.,
numerical representations) for each document, and stores the documents and their embed-
dings in a vectorstore, which can then be queried to retrieve relevant documents.

With the webpage data indexed, we can now utilize the query method with a prompt that
can operate on:

query =
You're Dwight K. Schrute from the Office.

Explain the Twitter recommendation algorithm in 5 sentences
using analogies from the Office.

print_response(index.query(query))
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The Twitter recommendation algorithm is like Dwight K. Schrute's job at Dunder Miffl\
in.

It takes the 500 million Tweets posted daily and distills them down to a handful of \
top Tweets that show up on your timeline, just like Dwight distills the vast amount
of paper at Dunder Mifflin into a few

important documents.

The algorithm uses a set of core models and features to extract latent

information from Tweet, user, and engagement data, just like Dwight uses his keen ey\
e to spot the

important details in the documents. It then uses a logistic regression model to rank\
the Tweets,

similar to how Dwight ranks the documents in order of importance. Finally, it traver\
ses the graph of

engagements and follows to answer questions about what Tweets and Users are similar \
to your

interests, just like Dwight uses his knowledge of the office to answer questions abo\
ut the people

and documents in the office.

Prompt Templates

Using f-strings to write prompts can sometimes be frustrating. Fortunately, LangChain
offers a solution in the form of prompt templates:

template = """You're Dwight K. Schrute from the Office.
{context}
Answer with analogies from the Office to the question and the way Dwight speaks.

Question: {question}
Answer ;"""

prompt = PromptTemplate(template=template, input_variables=["context", "question"])
print(
prompt.format(
context="Paper sells are declining 10% year over year.",
question="How to sell paper?",

Prepare for the Machine Learning interview with MLExpert.io



00 N O U WN -

N oo o AN -

LangChain Quickstart 27

You're Dwight K. Schrute from the Office.
Paper sells are declining 10% year over year.
Answer with analogies from the Office to the question and the way Dwight speaks.

Question: How to sell paper?
Answer:

The format() method of the prompt template is called with the context and question
values provided as arguments to replace the variables in the template string.

Next, we will utilize openAI embeddings along with a local vector database (Chroma) to store
them. This is a crucial aspect of the VectorstoreIndexCreator, it enables the creation of a
local database that can be queried to retrieve relevant documents:

embeddings = OpenAIlEmbeddings()
db = Chroma.from_documents(documents, embeddings)

We can combine all components in a RetrievalQA chain:

chain_type_kwargs = {"prompt": prompt}

chain = RetrievalQA.from_chain_type(
11m=ChatOpenAI(temperature=0),
chain_type="stuff",
retriever=db.as_retriever(search_kwargs={"k": 1}),
chain_type_kwargs=chain_type_kwargs,

This chain allows us to query the index using the model and the prompt template, making
it easier to retrieve the relevant information from a custom dataset.

Now it’s time to put our RetrievalQA chain to the test by running a query:

query = "Explain the Twitter recommendation algorithm in 5 sentences™
response = chain.run(query)
print_response(response)
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Well, Twitter's got this fancy algorithm that picks out the best tweets
from the millions of tweets posted every day.

It's like Michael Scott trying to pick the best Dundie award winners
from all the employees.

They use a bunch of models and features to figure out what you might like,
like how Dwight uses his knowledge of his coworkers to predict their behavior.

Then they rank the tweets using a big neural network,
kind of like how Jim ranks his pranks on Dwight.

Finally, they filter out any tweets you don't want to see,
like how Angela filters out any fun from the office.

And voila, you've got your personalized Twitter timeline.

Conclusion

You now know the basics of the LangChain library and its capabilities in working with
custom data and ChatGPT/GPT-4 models. With the knowledge gained, you can now
explore the various features and applications of LangChain to create powerful language-
based Al apps. Next, we'll dive a bit deeper into LangChain!
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Loaders
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Embeddings
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Vectorstores

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/Get-Shit-Done-with-Prompt-Engineering-and-LangChain

Storing Embeddings

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/Get-Shit-Done-with-Prompt-Engineering-and-LangChain

Loading Embeddings

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/Get-Shit-Done-with-Prompt-Engineering-and-LangChain

Question a PDF File

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/Get-Shit-Done-with-Prompt-Engineering-and-LangChain

Conclusion

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/Get-Shit-Done-with-Prompt-Engineering-and-LangChain
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Use Prompt Templates

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/Get-Shit-Done-with-Prompt-Engineering-and-LangChain

Streaming

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/Get-Shit-Done-with-Prompt-Engineering-and-LangChain

Conclusion

This content is not available in the sample book. The book can be purchased on Leanpub
at http://leanpub.com/Get-Shit-Done-with-Prompt-Engineering-and-LangChain
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Bash Chain
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Conclusion
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Conclusion
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Private GPT4All: Chat with PDF Files
Using Free LLM

Have concerns about data privacy while using ChatGPT? Want an alternative to cloud-
based language models that is both powerful and free? Look no further than GPT4AlII.

While ChatGPT offers impressive text generation capabilities, it operates on the cloud,
meaning your data is sent to external servers. This raises privacy concerns for individuals
and organizations who prefer to keep their data local and under their control. Moreover,
using ChatGPT can get pretty expensive.

In this part, we will be using Jupyter Notebook to run the code. If you prefer to
follow along, you can find the notebook on GitHub: GitHub Repository*

GPT4All

Enter GPT4AIl, an ecosystem that provides customizable language models running locally
on consumer-grade CPUs. With GPT4All, you can leverage the power of language models
while maintaining data privacy. By running models locally, you retain full control over
your data and ensure sensitive information stays secure within your own infrastructure.
Additionally, GPT4AIll models are freely available, eliminating the need to worry about
additional costs.

Currently, GPT4AIl supports three different model architectures: GPTJ, LLAMA, and MPT.
Each architecture has its own unique features and examples that can be explored. With
GPTA4AIl, you have access to a range of models to suit your specific needs and leverage
their capabilities in various applications.

Data

The PDF file we'll be using is from the Microsoft 2022 Annual Report®. I've selected just
two pages from it. Let’s download the file:

*https://github.com/curiousily/Get-Things- Done-with- Prompt- Engineering-and-LangChain
%tiktoken library®


https://github.com/curiousily/Get-Things-Done-with-Prompt-Engineering-and-LangChain
https://github.com/curiousily/Get-Things-Done-with-Prompt-Engineering-and-LangChain
https://github.com/openai/tiktoken

1

Private GPT4AIll: Chat with PDF Files Using Free LLM
!gdown 1DpFisoGXsQbpQJvijuvxkLW_pg-FUUMF

Here are the pages:
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Private GPT4AIll: Chat with PDF Files Using Free LLM

Our Board of Directors declared the following dividends:

Drividemnd

Declaration Date Record Date Payment Date Per Share Amount
Fiscal Year 2022 (In millians)
September 14, 2021 Movember 18, 2021 December 9, 2021 $ 0.62 $ 4,652
December 7, 2021 February 17, 2022 March 10, 2022 0.62 4,645
March 14, 2022 May 19, 2022 June 9, 2022 0.62 4,632
June 14, 2022 August 18, 2022 September 8, 2022 0.62 4,627

Total § 248 % 18,556
Fiscal Year 2021
September 15, 2020 Movember 19, 2020 December 10, 2020 $ 056 % 4,230
December 2, 2020 February 18, 2021 March 11, 2021 0.56 4,221
March 16, 2021 May 20, 2021 June 10, 2021 0.56 4,214
June 16, 2021 August 19, 2021 September 9, 2021 0.56 4,206

Total 5 2.24 % 16871
The dividend declared on June 14, 2022 was included in other current liabilities as of June 30, 2022,

9

(Partial) Microsoft Financial Statement Page 1
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STOCK PERFORMANCE

COMPARISON OF 5 YEAR CUMULATIVE TOTAL RETURN*
Among Microsoft Corporation, the S&P 500 Index
and the NASDAQ Computer Index

—{—Microsoft Corporation

o ——S&P 500 "—_—\\\1 |
—O— NASDAQ Computer
£350

£300

- /
$200

130
$100
§50
50
617 618 619 620 621 622
a7 6ia G619 620 621 G2z
Microsoft Corporation 100.00 145.84 201.36 309.69 416.25 397.90
S&P 500 100.00 114.37 126.29 135.77 191.15 170.86
MASDAQ Computer 100.00 131.27 139.29 196.40 288.13 228.71

* E100 invested on 6/20/17 in stock or index, including reinvestment of dividends. Fiscal year ending June 30.

10

(Partial) Microsoft Financial Statement Page 2
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The next file we need is the GPT4All checkpoint:
lwget https://gpt4all.io/models/ggml-gptd4all-j-v1.3-groovy.bin

Yes, it's massive, weighing in at over 3.5 GB! The ggml-gpt4all-j-v1.3-groovy checkpoint
is the (current) best commercially licensable model, built on the GPT-J architecture, and
trained by Nomic Al using the latest curated GPT4All dataset.

Setup

Let’s add all the imports we'll need:

from langchain.chains import RetrievalQA

from langchain.document_loaders import PyPDFLoader

from langchain.embeddings import HuggingFaceEmbeddings

from langchain.llms import GPT4All

from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma

from pdf2image import convert_from_path

Load PDF

Let’s load the PDF file and split it into pages:

loader = PyPDFLoader("ms-financial-statement.pdf")
documents = loader.load_and_split()
len(documents)

The PyPDFLoader” from LanChain uses the pypdf library to load and split the PDF file into
pages. The load_and_split method returns a list of Document objects. Let’s take a look at
the first page:

print(documents[0].page_content)

*Unstructured library®
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9
Dividends
Our Board of Directors declared the following dividends:

Declaration Date Record Date Payment Date Dividend
Per Share Amount

Fiscal Year 2022 (In millions)

September 14, 2021 November 18, 2021 December 9, 2021 $
December 7, 2021 February 17, 2022 March 10, 2022 0.62
March 14, 2022 May 19, 2022 June 9, 2022 0.62 4,632
June 14, 2022  August 18, 2022 September 8, 2022 0.62
Total $ 2.48 $ 18,556

Fiscal Year 2021

September 15, 2020 November 19, 2020 December 10, 2020
December 2, 2020 February 18, 2021 March 11, 2021 0.56
March 16, 2021 May 20, 2021 June 10, 2021 0.56 4,214
June 16, 2021 August 19, 2021 September 9, 2021 0.56

Total $ 2.24 $ 16,871

The dividend declared on June 14, 2022 was included in other current liabilities as\

of June 30, 2022.
The extracted text flow is fine. Let’s chunk it into smaller parts:

text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1024,
chunk_overlap=64

)

texts = text_splitter.split_documents(documents)
len(texts)

3
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0.62 $ 4,652
4,645

4,627

$ 0.56 $ 4,230

4,221

4,206

The RecursiveCharacterTextSplitter chunks the text in 1024 characters and adds an

overlap of 64 characters. The result is a list of Document objects.
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Create Embeddings

We'll utilize the HuggingFaceEmbeddings functionality from the sentence transformers
library to generate embeddings for each text chunk. Although OpenAl embeddings are
available, for the sake of keeping this tutorial cost-free, we'll stick with the HuggingFace
embeddings.

embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2"

)
We'll save the generated embeddings into a Chroma database for storage and easy retrieval:

db = Chroma.from_documents(texts, embeddings, persist_directory="db")

Create Chain

Loading the model is straightforward as LangChain leverages the GPT4AIll bindings inter-
nally:

1lm = GPT4A11(
model="./ggml-gpt4all-j-v1.3-groovy.bin",
n_ctx=1000,
backend="gptj",
verbose=False

We specify the backend as gptj and set the maximum number of tokens to 1000. The
verbose flag is set to False to avoid printing the model’s output.

Next, we'll make use of a standard application of Language Models (LLMs) on texts using
LangChain. We'll pass our GPT4AIll model to a RetrievalQA chain:
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ga = RetrievalQA.from_chain_type(
11m=11m,
chain_type="stuff",
retriever=db.as_retriever(search_kwargs={"k": 3}),
return_source_documents=True,
verbose=False,

)

We're using our ChromaDB storage as the retriever for the chain. It's important to note
that I've set the maximum number of documents to 3, which corresponds to the number of
text chunks we have. The return_source_documents flag is set to True to return the source
documents along with the answer. This is useful for debugging purposes.

Ask Questions

Finally, we're ready to ask questions to our PDF file. Let’s start with a simple one:

res = qa(fllllll
How much is the dividend per share during during 20227
Extract it from the text.

")
print(res["result"])

The dividend per share during 2022 is $0.62.

That's correct! However, the not-so-good news is that it took around 6 minutes for the
generation process to complete. Hopefully, in the future, when GPT4All supports GPU
inference, it will perform better and be faster.

Let’s try somewhat harder question:

res = qa(fllllll
How much is the investment amount in Microsoft on 6/22?
Extract the answer from the text.

")
print(res["result"])

The investment amount in Microsoft on 6/22 is $309.69.

Unfortunately, this time the model failed to provide the correct answer. The expected value
is $397.90, but the provided response does not match the information in the table. Can you
improve the prompt to get a better result?

Prepare for the Machine Learning interview with MLExpert.io



Private GPT4AIl: Chat with PDF Files Using Free LLM 46

Conclusion

In conclusion, we have explored the fascinating capabilities of GPT4AIll in the context
of interacting with a PDF file. Through this tutorial, we have seen how GPT4All can
be leveraged to extract text from a PDF. While the results were not always perfect, it
showcased the potential of using GPT4All for document-based conversations.

We learned how to preprocess the PDF, split it into chunks, and store the embeddings
in a Chroma database for efficient retrieval. By employing the RetrievalQA chain with the
GPT4All model as the backbone, we were able to pose questions and receive answers based
on the document content.

It’s worth noting that the performance of GPT4AIl can vary depending on the complexity of
the PDF and the quality of the prompt. Experimenting with different prompts and refining
the input can lead to more accurate and relevant responses.
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CryptoGPT: Crypto Twitter Sentiment Analysis

Add Twitter Accounts

Twitter Handie

Add Tweets

Twitter Handles
Michael Saylor # (s )
Bob Loukas ( )

CZ 4@ Binance

Tweets

s 2030516 e 2023051600003240000

s 2030515 20230515 20165540000

CryptGPT Preview

Welcome to the CryptoGPT! In this tutorial, we'll dive into a fascinating project that
combines Streamlit, ChatGPT, and LangChain to analyze the sentiment of tweets related
to cryptocurrencies. By utilizing Streamlit, we'll create a user-friendly interface that allows
us to interact with our sentiment analysis application effortlessly.

By constructing a well-crafted prompt and utilizing ChatGPT's capabilities, we'll be able to
generate a sentiment score for each tweet. Each sentiment score will be between O (bearish)
and 100 (bullish). Let’s start building!

The project is hosted on Streamlit Cloud. Try it out: CryptoGPT*

Project Setup

WEe'll use Python 3.11.3 for this project, and the directory structure will be as follows:

1https://cryptogpt—crypto—twitter—sentiment.streamlit.app/


https://cryptogpt-crypto-twitter-sentiment.streamlit.app/
https://cryptogpt-crypto-twitter-sentiment.streamlit.app/

—_
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- .flake8
- .gitignore
- .python-version
- .vscode
- settings.json
- main.py
- requirements.txt
- sentiment_analyzer.py

O 00 N O U1 h W N =

Libraries
Let’s install all of the libraries we'll need for this project:

1 pip install -U pip
2 pip install black isort langchain openai pandas plotly tweety-ns

Config

WEe'll use black and isort for formatting and import sorting. Additionally, we'll configure
VSCode for the project:

"python.formatting.provider": "black",
"[python]": {
"editor.formatOnSave": true,
"editor.codeActionsOnSave": {
"source.organizeImports": true
}
}

"isort.args": ["--profile", "black"]

O W 00 N o U1 A W N =

1 [flake8]
2 max-line-length = 120

Streamlit

Streamlit® is an open-source Python library designed for building custom web applications
with ease. It allows us to create interactive and visually appealing data-driven applications

%Space efficiency in Prompt Engineering®
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using Python. With Streamlit, we can quickly transform our data analysis code into
shareable web applications, making it ideal for our sentiment analysis project. Let’s leverage
the power of Streamlit to create a seamless and user-friendly interface for analyzing the
sentiment of cryptocurrency tweets.

Get Tweets

To fetch tweets for our analysis, we'll make use of the tweety” library. This library interacts
with Twitter’s frontend API to retrieve the desired tweets:

from tweety.bot import Twitter

twitter_client = Twitter()
Now, let’s fetch some tweets from Elon Musk’s Twitter account:

tweets = twitter_client.get_tweets("elonmusk")
for tweet in tweets:

print(tweet.text)

print()

Spaces interview with starting now

Tesla shareholder meeting underway

As more satellites &amp; ground stations are added, latency &amp; jitter will improv\
e. Goal is &I1t;20ms latency.

Soros reminds me of Magneto
Tesla Powerwall does the seem for individual homes (if you have the backup switch in\

stalled)
https://t.co/mY2WHe1KE1

We can remove unnecessary elements like URLs, new lines, and multiple spaces from the
tweets, as they are not relevant for our sentiment analysis and will save tokens for ChatGPT:

*tiktoken library®
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import re

def clean_tweet(text: str) -> str:

text = re.sub(r"http\S+", "", text)
text = re.sub(r"www.\S+", "", text)
return re.sub(r"\s+", " ", text)

The first two lines use re.sub() to remove any URLs starting with “http:/” or “www” from
the text. The third line replaces consecutive whitespace characters (such as spaces, tabs,
and new lines) with a single space.

WEe'll use a dataframe to organize and easily visualize the tweets:

from datetime import datetime
from typing import Dict, List

import pandas as pd
from tweety.types import Tweet

def create_dataframe_from_tweets(tweets: List[Tweet]) -> pd.DataFrame:
rows = []
for tweet in tweets:
clean_text = clean_tweet(tweet.text)
if len(clean_text) == 0:
continue
rows .append(
{
"id": tweet.id,
"text": clean_text,
"author": tweet.author.username,
"date": str(tweet.date.date()),
"created_at": tweet.date,
"views": tweet.views,

}

)
df = pd.DataFrame(

rows,

columns=["id", "text", "author", "date", "views", "created_at"]
)
df.set_index("id", inplace=True)
if df.empty:

return df
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today = datetime.now().date()
df = df[

df.created_at.dt.date > today - pd.to_timedelta("7day")
]

return df.sort_values(by="created_at", ascending=False)

This create_dataframe_from_tweets function iterates over each tweet, cleans the text
using the clean_tweet function, and adds relevant information such as tweet ID, text,
author, date, views, and creation timestamp to a dictionary. These dictionaries are used
to create a DataFrame with tweets from the past 7 days.

Let’s try it out:

df = create_dataframe_from_tweets(tweets)

df.head()
text author date views created_at
Tesla elonmusk 2023-05-16 8244078 2023-05-16
shareholder 20:06:31+00:00
meeting
underway
As more elonmusk 2023-05-16 8907366  2023-05-16
satellites & 17:32:32+00:00
ground stations
are added,
latency & jitter
will improve.
Goal is <20ms
latency.
Soros reminds elonmusk 2023-05-16 39937506 2023-05-16
me of Magneto 02:02:31+00:00
Tesla Powerwall elonmusk 2023-05-16 17370816 2023-05-16
does the seem 01:31:51+00:00
for individual

homes (if you
have the backup
switch installed)
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Tweet Data Ul

Our Ul will have a straightforward design, with a split-screen layout consisting of two
columns. The left column will be dedicated to loading the data:

coll, col2 = st.columns(2)

We require two pieces of information from the user - the OpenAl API key and the Twitter
handles:

with col?:
st.text_input(
"OpenAI API Key",
type="password",
key="api_key",
placeholder="sk-...4242",
help="Get your API key: https://platform.openai.com/account/api-keys",

with st.form(key="twitter_handle_form", clear_on_submit=True):
st.subheader ("Add Twitter Accounts", anchor=False)
st.text_input(
"Twitter Handle", value="", key="twitter_handle", placeholder="@saylor"

)

submit = st.form_submit_button(label="Add Tweets", on_click=on_add_author)

if st.session_state.twitter_handles:
st.subheader ("Twitter Handles", anchor=False)
for handle, name in st.session_state.twitter_handles.items():
handle = "@" + handle
st.markdown(f"{name} ([{handle}](https://twitter.com/{handle}))")

st.subheader ("Tweets", anchor=False)
st.dataframe(

create_dataframe_from_tweets(st.session_state.tweets),
use_container_width=True

We have a password input field for the user to enter their OpenAl API key, and a form
to add Twitter handles. The form has an input field where the user can enter a Twitter
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handle, and a button to add the handle and retrieve tweets. We also display tweet authors
in a list. Finally, there is a section displaying the tweets in a dataframe format using the
create_dataframe_from_tweets function (defined previously).

Let’s take a look at how we add tweets:

def on_add_author():
twitter_handle = st.session_state.twitter_handle
if twitter_handle.startswith("@"):
twitter_handle = twitter_handle[1:]
if twitter_handle in st.session_state.twitter_handles:
return
all_tweets = twitter_client.get_tweets(twitter_handle)
if len(all_tweets) == 0:
return
st.session_state.twitter_handles[twitter_handle] = all_tweets[0].author.name
st.session_state.tweets.extend(all_tweets)
st.session_state.author_sentiment[twitter_handle] = analyze_sentiment(
twitter_handle, st.session_state.tweets

The on_add_author function is triggered when the user clicks the “Add Tweets” button after
entering a Twitter handle. It removes the “@” symbol from the handle if present, checks if
the handle is already added, fetches all the tweets for that handle, and adds the data to the
session state.

Finally, analyzes the sentiment of the tweets using the analyze_sentiment function and
stores it in the session state.

Sentiment Analysis with ChatGPT

To analyze crypto sentiment using ChatGPT, we will provide it with the following prompt:

PROMPT_TEMPLATE = """

You're a cryptocurrency trader with 10+ years of experience. You always follow
the trend and follow and deeply understand crypto experts on Twitter. You
always consider the historical predictions for each expert on Twitter.

You're given tweets and their view count from @{twitter_handle} for specific dates:

{tweets}
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Tell how bullish or bearish the tweets for each date are. Use numbers between 0
and 100, where 0 is extremely bearish and 100 is extremely bullish.

Use a JSON using the format:
date: sentiment

Each record of the JSON should give the aggregate sentiment for that date.
Return just the JSON. Do not explain.

The prompt sets the context of ChatGPT as an experienced cryptocurrency trader who re-
lies on Twitter experts and considers historical predictions. It provides a variable {twitter_-
handle} for the Twitter handle and {tweets} for the tweet data with view counts.

The task is to analyze the sentiment of the tweets for each date and provide a JSON output
containing the aggregate sentiment for each date. The sentiment values should range from
O (extremely bearish) to 100 (extremely bullish). We require that the model doesn’t provide
any other output.

Let’s use the prompt:

def analyze_sentiment(twitter_handle: str, tweets: List[Tweet]) -> Dict[str, int]:

chat_gpt = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo")
prompt = PromptTemplate(
input_variables=["twitter_handle", "tweets"], template=PROMPT_TEMPLATE

sentiment_chain = LLMChain(llm=chat_gpt, prompt=prompt)
response = sentiment_chain(
{
"twitter_handle": twitter_handle,
"tweets": create_tweet_list_for_prompt(tweets, twitter_handle),

)

return json.loads(response["text"])

The function analyze_sentiment takes a Twitter handle and a list of tweets as inputs. It
creates an instance of the ChatOpenAl class, specifying the model as ChatGPT. It also
creates a prompt and provides the variables twitter_handle and tweets.

We send a request to ChatGPT (via the LLMChain from LangChain) by passing the Twitter
handle and the processed tweet list as input variables. Finally, the function returns the
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parsed JSON object representing the sentiment analysis of the tweets, with each date
mapped to an integer sentiment value.

The final part is this helper function:

def create_tweet_list_for_prompt(tweets: List[Tweet], twitter_handle: str) -> str:
df = create_dataframe_from_tweets(tweets)
user_tweets = df[df.author == twitter_handle]
if user_tweets.empty:
return ""
if len(user_tweets) > 100:
user_tweets = user_tweets.sample(n=100)

text = ""

for tweets_date, tweets in user_tweets.groupby("date"):
text += f"{tweets_date}:"
for tweet in tweets.itertuples():
text += f"\n{tweet.views} - {tweet.text}"
return text

The function creates a dataframe from the tweets using the create_dataframe_from_-
tweets function. It then keeps only the tweets authored by the given Twitter handle and
limits them to 100.

The function then appends tweet texts and view counts grouped by date to a text variable.

Visualize Sentiment

WEe'll utilize Plotly to visualize the sentiment. We can generate a line chart to visualize the
sentiment trends. Additionally, we'll display a dataframe that contains the sentiment data:

with col2:
sentiment_df = create_sentiment_dataframe(st.session_state.author_sentiment)
if not sentiment_df.empty:
fig = px.line(

sentiment_df,
x=sentiment_df.index,
y=sentiment_df.columns,
labels={"date": "Date", "value": "Sentiment"},

)
fig.update_layout(yaxis_range=[0, 100])
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st.plotly_chart(fig, theme="streamlit", use_container_width=True)

st.dataframe(sentiment_df, use_container_width=True)

Note that we specify the y axis range as [0, 100] to ensure that the sentiment values are
scaled properly.

Let’s create the data frame for the sentiment chart:

def create_sentiment_dataframe(sentiment_data: Dict[str, int]) -> pd.DataFrame:
date_list = pd.date_range(
datetime.now().date() - timedelta(days=6), periods=7, freq="D"
)
dates = [str(date) for date in date_list.date]
chart_data = {"date": dates}

for author, sentiment_data in sentiment_data.items():
author_sentiment = []
for date in dates:
if date in sentiment_data:
author_sentiment.append(sentiment_data[date])
else:
author_sentiment.append(None)
chart_data[author] = author_sentiment

sentiment_df = pd.DataFrame(chart_data)
sentiment_df.set_index("date", inplace=True)

if not sentiment_df.empty:
sentiment_df["Overall"] = sentiment_df.mean(skipna=True, axis=1)
return sentiment_df

Our function generates a list of dates for the past 7 days and initializes the DataFrame with
the dates as the index. Then, it populates it with sentiment values for each author, filling in
missing values with None. Finally, it calculates the overall sentiment by taking the mean of
the sentiment values for each date (row) as a new column.

Conclusion

In this tutorial, we covered the process of sentiment analysis on cryptocurrency tweets
using LangChain and ChatGPT. We learned how to download and preprocess tweets,
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visualize sentiment data using Plotly, and create a Streamlit application to interact with
the sentiment analysis pipeline.

The integration of Streamlit allows us to create an interactive and intuitive interface for
users to input Twitter handles, view sentiment analysis results, and visualize the sentiment
trends over time.

Complete Code

import json

import re

from datetime import datetime
from typing import Dict, List

import pandas as pd

import streamlit as st

from langchain.chains import LLMChain

from langchain.chat_models import ChatOpenAl
from langchain.prompts import PromptTemplate
from tweety.types import Tweet

PROMPT_TEMPLATE = """

You're a cryptocurrency trader with 10+ years of experience. You always follow the t\
rend

and follow and deeply understand crypto experts on Twitter. You always consider the \
historical predictions for each expert on Twitter.

You're given tweets and their view count from @{twitter_handle} for specific dates:
{tweets}

Tell how bullish or bearish the tweets for each date are. Use numbers between 0 and \
100, where 0 is extremely bearish and 100 is extremely bullish.

Use a JSON using the format:

date: sentiment

Each record of the JSON should give the aggregate sentiment for that date. Return ju\
st the JSON. Do not explain.
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def

def

def

clean_tweet(text: str) -> str:

text = re.sub(r"http\S+", "", text)
text = re.sub(r"www.\S+", "", text)
return re.sub(r"\s+", " ", text)

create_dataframe_from_tweets(tweets: List[Tweet]) -> pd.DataFrame:
rows = []
for tweet in tweets:
clean_text = clean_tweet(tweet.text)
if len(clean_text) == 0:
continue
rows .append(
{
"id": tweet.id,
"text": clean_text,
"author": tweet.author.username,
"date": str(tweet.date.date()),
"created_at": tweet.date,
"views": tweet.views,

}

)
df = pd.DataFrame(

rows, columns=["id", "text", "author", "date", "views", "created_at"]
)
df.set_index("id", inplace=True)
if df.empty:

return df

df = df[df.created_at.dt.date > datetime.now().date() - pd.to_timedelta("7day")]
return df.sort_values(by="created_at", ascending=False)

create_tweet_list_for_prompt(tweets: List[Tweet], twitter_handle: str) -> str:
df = create_dataframe_from_ tweets(tweets)
user_tweets = df[df.author == twitter_handle]
if user_tweets.empty:
return ""
if len(user_tweets) > 100:
user_tweets = user_tweets.sample(n=100)

text = ""
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for tweets_date, tweets in user_tweets.groupby("date"):
text += f"{tweets_date}:"
for tweet in tweets.itertuples():
text += f"\n{tweet.views} - {tweet.text}"
return text

def analyze_sentiment(twitter_handle: str, tweets: List[Tweet]) -> Dict[str, int]:

chat_gpt = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo")
prompt = PromptTemplate(
input_variables=["twitter_handle", "tweets"], template=PROMPT_TEMPLATE

sentiment_chain = LLMChain(llm=chat_gpt, prompt=prompt)
response = sentiment_chain(
{
"twitter_handle": twitter_handle,
"tweets": create_tweet_list_for_prompt(tweets, twitter_handle),

)

return json.loads(response["text"])

import os
from datetime import datetime, timedelta
from typing import Dict

import pandas as pd

import plotly.express as px
import streamlit as st

from tweety.bot import Twitter

from sentiment_analyzer import analyze_sentiment, create_dataframe_from_tweets

twitter_client = Twitter()

def on_add_author():
twitter_handle = st.session_state.twitter_handle
if twitter_handle.startswith("@"):
twitter_handle = twitter_handle[1:]
if twitter_handle in st.session_state.twitter_handles:
return
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def

all_tweets = twitter_client.get_tweets(twitter_handle)
if len(all_tweets) ==
return
st.session_state.twitter_handles[twitter_handle] = all_tweets[0].author.name
st.session_state.tweets.extend(all_tweets)
st.session_state.author_sentiment[twitter_handle] = analyze_sentiment(
twitter_handle, st.session_state.tweets

Create_sentiment_dataframe(sentiment_data: Dict[str, int]) -> pd.DataFrame:
date_list = pd.date_range(
datetime.now().date() - timedelta(days=6), periods=7, freq="D"
)
dates = [str(date) for date in date_list.date]
chart_data = {"date": dates}

for author, sentiment_data in sentiment_data.items():
author_sentiment = []
for date in dates:
if date in sentiment_data:
author_sentiment.append(sentiment_data[date])
else:
author_sentiment.append(None)
chart_data[author] = author_sentiment

sentiment_df = pd.DataFrame(chart_data)
sentiment_df.set_index("date", inplace=True)

if not sentiment_df.empty:
sentiment_df["Overall"] = sentiment_df.mean(skipna=True, axis=1)
return sentiment_df

st.set_page_config(

layout="wide",
page_title="CryptoGPT: Crypto Twitter Sentiment Analysis",

page_icon="https://cdn.jsdelivr.net/gh/twitter/twemoji@14.0.2/assets/72x72/1f4c8\

.png",

)

st.markdown(
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"<h1 style='text-align: center'>CryptoGPT: Crypto Twitter Sentiment Analysis</h1\

unsafe_allow_html=True,

>Il,

)

if not
st
st
st

st

"tweets" in st.session_state:

.session_state.tweets = []
.session_state.twitter_handles = {}
.session_state.api_key = ""
.session_state.author_sentiment = {}

os.environ["OPENAI_API_KEY"] = st.session_state.api_key

coll, col2 = st.columns(2)

with col1l:

st.

text_input(

"OpenAI API Key",

type="password",

key="api_key",

placeholder="sk-...4242",

help="Get your API key: https://platform.openai.com/account/api-keys",

with st.form(key="twitter_handle_form", clear_on_submit=True):

st.subheader ("Add Twitter Accounts", anchor=False)
st.text_input(

"Twitter Handle", value="", key="twitter_handle", placeholder="@saylor"
)

submit = st.form_submit_button(label="Add Tweets", on_click=on_add_author)

if st.session_state.twitter_handles:

st.

st.

rue

st.subheader("Twitter Handles", anchor=False)
for handle, name in st.session_state.twitter_handles.items():
handle = "@" + handle
st.markdown(f"{name} ([{handle}](https://twitter.com/{handle}))")

subheader ("Tweets", anchor=False)
dataframe(
create_dataframe_from_tweets(st.session_state.tweets), use_container_width=T\
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107 )

108

109 with col2:

110 sentiment_df = create_sentiment_dataframe(st.session_state.author_sentiment)
111 if not sentiment_df.empty:

112 fig = px.line(

113 sentiment_df,

114 x=sentiment_df.index,

115 y=sentiment_df.columns,

116 labels={"date": "Date", "value": "Sentiment"},

117 )

118 fig.update_layout(yaxis_range=[0, 100])

119 st.plotly_chart(fig, theme="streamlit", use_container_width=True)
120

121 st.dataframe(sentiment_df, use_container_width=True)
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