
İlk Dil Modelinizi Oluşturun
Dil Modelleri için Uygulamalı Rehber

Hasan Degismez

2025-12-26

İçindekiler

Önsöz 1
Ne Oluşturacaksın . 1
Bu Kitabı Nasıl Kullanmalısın . 1
Kitabın Yapısı . 1
Yaklaşımımız . 2

I Kısım I: Temeller 4

1 Dil Modelleri Nedir? 5
1.1 Filmleri Unutun . 6
1.2 Yapay Zeka Örüntü Tanımadır . 7
1.3 Yapay Zeka Aile Ağacı . 12
1.4 Büyük Dil Modellerini Özel Yapan Nedir? . 13
1.5 Uygulamalı Alıştırmalar . 16
1.6 Neden Bir Tane İnşa Etmeyi Öğrenmeli? . 18
1.7 Kontrol Noktası Alıştırması . 19
1.8 Temel Çıkarımlar . 20
1.9 İnceleme Soruları . 21
1.10 Sırada Ne Var . 21

2 Bilgisayarlar Kelimeleri Nasıl “Anlar”? 22
2.1 Bilgisayarın İkilemi . 23
2.2 Konum Olarak Kelimeler . 24
2.3 Gömmelerin Büyüsü . 27
2.4 Ünlü Denklem . 30
2.5 Gömmeler Nasıl Öğrenilir? . 32
2.6 Kelimelerden Cümlelere . 33
2.7 Uygulamalı Alıştırmalar . 34
2.8 Kontrol Noktası Alıştırması . 35
2.9 Temel Çıkarımlar . 36
2.10 Gözden Geçirme Soruları . 37
2.11 Sırada Ne Var . 37

ii

İÇİNDEKİLER iii

3 Dikkat Mekanizması 38
3.1 Eski Yapay Zekanın Sorunu . 39
3.2 Dikkat Nedir? . 40
3.3 Sorgu, Anahtar, Değer: Temel Üçlü . 42
3.4 Dikkat Hesaplaması . 46
3.5 Çok Başlı Dikkat . 50
3.6 Öz-Dikkat vs. Çapraz Dikkat . 52
3.7 2017 Devrimi . 56
3.8 Uygulamalı Alıştırmalar . 58
3.9 Kontrol Noktası Alıştırması . 59
3.10 Önemli Çıkarımlar . 60
3.11 İnceleme Soruları . 61
3.12 Sıradaki . 62

4 Transformer Mimarisi 63
4.1 Eksik Parça: Konum . 64
4.2 İleri Beslemeli Ağlar: Dikkatten Sonra İşleme . 68
4.3 Artık Bağlantılar: Otoyol Sistemi . 73
4.4 Katman Normalizasyonu: İşleri Kararlı Tutmak . 74
4.5 Hepsini Bir Araya Getirmek . 76
4.6 Kodlayıcı vs. Kod Çözücü . 80
4.7 Mimariden Uygulamaya . 83
4.8 Uygulamalı Alıştırmalar . 84
4.9 Kontrol Noktası Alıştırması . 85
4.10 Önemli Çıkarımlar . 86
4.11 İnceleme Soruları . 87
4.12 Sırada Ne Var . 87

II Kısım II: Python Temelleri 89

5 İlk Python Programın 90
5.1 Kısım 2’ye Hoş Geldin: Teoriden Koda . 91
5.2 Başlangıç: GPT-2’yi Çalıştır . 91
5.3 Neden Python? . 92
5.4 Metni Saklama ve İşleme . 92
5.5 Kelime Dağarcığı Oluşturma . 94
5.6 Uç Durumları Ele Alma . 96
5.7 Yeniden Kullanılabilir Hale Getirme . 98
5.8 Profesyoneller Gibi Paketleme . 99
5.9 Tam Döngü . 101
5.10 Uygulamalı Alıştırmalar . 103
5.11 Önemli Çıkarımlar . 103
5.12 İnceleme Soruları . 104
5.13 Sırada Ne Var . 104

6 NumPy ve PyTorch Hayatta Kalma Kılavuzu 105

İÇİNDEKİLER iv

6.1 Neden Tensörler? . 106
6.2 NumPy’dan PyTorch’a: Ne Değişiyor? . 107
6.3 Listelerden Tensörlere: Boyutları Oluşturma . 109
6.4 Tensör Oluşturma . 113
6.5 Tensör Şekilleri ve Yeniden Şekillendirme . 115
6.6 İndeksleme ve Dilimleme . 120
6.7 Broadcasting . 121
6.8 Temel İşlemler . 123
6.9 Dikkat: Transformer’ların Kalbi . 124
6.10 Autograd Özetle . 127
6.11 nn.Module ile Katman Oluşturma . 128
6.12 Token ve Konum Gömmeleri . 129
6.13 Minimal Eğitim Döngüsü . 132
6.14 Uygulamalı Alıştırmalar . 134
6.15 Anahtar Çıkarımlar . 134
6.16 İnceleme Soruları . 135
6.17 Sırada Ne Var . 135

III Kısım III: İlk Dil Modelinizi Oluşturun 137

7 Verilerini Hazırlamak 138
7.1 Veri Kalitesi Neden Her Şeyi Belirler . 138
7.2 Metin Kaynağı Bulmak (Etik ve Lisanslama) . 140
7.3 İhtiyacın Olacak Yeni Python Araçları . 140
7.4 Temizleme ve Normalize Etme . 148
7.5 Çoğaltma Kaldırma ve Filtreleme . 149
7.6 Eğitim/Doğrulama/Test Bölümleri (Sızıntı Yok) . 151
7.7 Bağlam Penceresi için Parçalama . 152
7.8 Veri Kümesini Saklama . 154
7.9 Kalite Kontrolleri ve Hızlı İstatistikler . 155
7.10 Önemli Çıkarımlar . 156
7.11 İşlenmiş Örnek: Uçtan Uca Veri Hattı . 157
7.12 Uygulamalı Alıştırmalar . 159
7.13 İnceleme Soruları . 159
7.14 Sırada Ne Var . 159

8 Tokenizer’ı Oluşturma 160
8.1 Neden Tokenize Edilir? . 161
8.2 Karakter Düzeyinde Tokenizasyon . 163
8.3 Kelime Düzeyinde Tokenizasyon . 167
8.4 Altkelime Tokenizasyonu: Goldilocks Çözümü . 174
8.5 Kendi BPE Tokenizer’ını Eğitme . 179
8.6 Üretim Tokenizer’ları: tiktoken ve Hugging Face . 187
8.7 Tokenizasyon Tuhaflıkları ve Tuzakları . 194
8.8 Bölüm 9’a Bağlanma: Token’lardan Gömmelere . 198

İÇİNDEKİLER v

8.9 Temel Çıkarımlar . 199
8.10 Gözden Geçirme Soruları . 200
8.11 Uygulamalı Alıştırmalar . 201

9 Gömme Katmanları 203
9.1 Neden Sadece Token ID’leri Kullanamıyoruz? . 204
9.2 Token Gömmeleri: Arama Tablosu . 207
9.3 Konum Gömmeleri: Konumu Öğretmek . 210
9.4 Token ve Konum Gömmelerini Birleştirme . 214
9.5 GPT-2’nin Gömmelerini Keşfetme . 219
9.6 Pratik Hususlar . 222
9.7 Bölüm 10’a Bağlanma: Dikkat . 223
9.8 Temel Çıkarımlar . 224
9.9 İnceleme Soruları . 224
9.10 Uygulamalı Alıştırmalar . 225

10 Tek İhtiyacın Dikkat 227
10.1 Statik Gömmelerin Neden Yeterli Olmadığı . 229
10.2 Dikkat NEDİR? Temel Sezgi . 231
10.3 Öz-Dikkati Adım Adım Oluşturmak . 234
10.4 Özbağlanımlı Üretim İçin Nedensel Maskeleme . 240
10.5 Bir Baştan Birden Fazla Başlığa . 244
10.6 Tam Transformer Bloklarını Oluşturmak . 249
10.7 Dikkat Örüntülerini Görselleştirme . 259
10.8 Pratik Düşünceler . 262
10.9 Temel Çıkarımlar . 263
10.10İnceleme Soruları . 265

11 Transformer’ı Oluşturmak 266
11.1 Montaj Zorluğu . 267
11.2 Model Yapılandırması . 269
11.3 MiniGPT Mimarisi . 270
11.4 Sağlık Kontrolleri . 276
11.5 İlk İleri Geçişin . 280
11.6 Önceden Eğitilmiş Ağırlıkları Yükleme . 281
11.7 Eğitime Hazırlanmak . 286
11.8 Önemli Çıkarımlar . 288
11.9 Sırada Ne Var . 288
11.10İnceleme Soruları . 289
11.11Uygulamalı Egzersizler . 289
11.12Kontrol Noktası Egzerseni . 290

12 Modelini Eğitmek 292
12.1 Eğitim Yolculuğu Başlıyor . 293
12.2 Dil Modelleme Hedefi . 294
12.3 DataLoader ve Collate . 297
12.4 Eğitim Döngüsü . 301

İÇİNDEKİLER vi

12.5 Değerlendirme ve Aşırı Öğrenme . 305
12.6 Kontrol Noktası Kaydetme ve Devam Etme . 308
12.7 Eksiksiz Eğitim Betiği . 310
12.8 Ödül: Metin Üretimi . 313
12.9 Önemli Çıkarımlar . 316
12.10Sırada Ne Var . 317
12.11İnceleme Soruları . 317
12.12Uygulamalı Alıştırmalar . 318
12.13Kontrol Noktası Alıştırması . 319

IV Kısım IV: Kullanışlı Hale Getirin 320

13 Modeline İnce Ayar Yapmak 321
13.1 Ne Zaman İnce Ayar Yapılmalı (Ne Zaman Yapılmamalı) 322
13.2 Görev Çerçeveleme ve Veri Hazırlama . 323
13.3 Kayıp Maskeleme ile Denetimli İnce Ayar . 327
13.4 LoRA ile Parametre Verimli İnce Ayar . 330
13.5 Değerlendirme ve Önce/Sonra Karşılaştırması . 335
13.6 Dağıtım Hususları . 338
13.7 Önemli Çıkarımlar . 340
13.8 Sırada Ne Var . 341
13.9 İnceleme Soruları . 341
13.10Uygulamalı Alıştırmalar . 342
13.11Kontrol Noktası Alıştırması . 342

14 Prompt Mühendisliği 344
14.1 Tamamlama Zihniyeti . 345
14.2 Prompt’lama Temelleri . 346
14.3 Temel Prompt Kalıpları . 350
14.4 Önlemler ve Güvenlik . 357
14.5 Değerlendirme ve İterasyon . 360
14.6 Önemli Çıkarımlar . 363
14.7 Sırada Ne Var . 364
14.8 İnceleme Soruları . 364
14.9 Uygulamalı Egzersizler . 365

15 Uygulama Geliştirmek 366
15.1 Eğitimden İnşaya . 368
15.2 Bir Bakışta Uygulama Desenleri . 369
15.3 Bir Sohbet Döngüsü Geliştirmek . 370
15.4 RAG: Veri Alma Destekli Üretim . 373
15.5 Araç Kullanımı Temelleri . 382
15.6 Test ve Korkuluklar . 385
15.7 Üretim İpuçları . 389
15.8 Temel Çıkarımlar . 390
15.9 Sırada Ne Var . 391

İÇİNDEKİLER vii

15.10Değerlendirme Soruları . 391
15.11Uygulamalı Alıştırmalar . 392

V Kısım V: Dünyayla Paylaşın 394

16 Üretime Hazırlık 395
16.1 Üretimde Neler Değişir? . 396
16.2 Modelini Paketleme . 398
16.3 Bir API Arkasında Sunma . 400
16.4 Çalışır Durumda Tutma . 405
16.5 Güvenlik ve Korkuluklar . 408
16.6 Göndermeden Önce Test Etme . 412
16.7 Hepsini Bir Araya Getirmek . 414
16.8 Anahtar Terimler . 417
16.9 Özet . 417
16.10Tekrar Soruları . 418
16.11Kontrol Noktası Alıştırması . 418

17 Dağıtım Seçenekleri 419
17.1 Neden Modal? . 420
17.2 İlk Modal Dağıtımın . 422
17.3 LLM’ini Dağıtma . 425
17.4 Doğru GPU’yu Seçme . 429
17.5 Dağıtımını Yönetme . 429
17.6 LLM’in Canlı . 431
17.7 Temel Terimler . 431
17.8 Özet . 432
17.9 Değerlendirme Soruları . 432
17.10Kontrol Noktası Alıştırması . 434

18 Sıradaki Adımlar 435
18.1 İnşa Ettiklerin . 436
18.2 Büyük Resim . 437
18.3 İleriye Giden Yollar . 439
18.4 İlk Solo Projeniz . 441
18.5 Topluluğa Katılma . 443
18.6 Temel Terimler . 444
18.7 Özet . 445
18.8 İnceleme Soruları . 445
18.9 Kontrol Noktası . 446
18.10Kişisel Bir Not . 446

VI Ekler 447

19 Ek A: Sorun Giderme Kılavuzu 448

İÇİNDEKİLER viii

Ek A: Sorun Giderme Kılavuzu 449
19.1 Bölüm 1: Ortam ve Kurulum Sorunları . 449
19.2 Bölüm 2: PyTorch ve Tensör Hataları . 459
19.3 Bölüm 3: Tokenizasyon Sorunları . 472
19.4 Bölüm 4: Model Eğitim Sorunları . 482
19.5 Bölüm 5: Veri Hattı Sorunları . 492
19.6 Hızlı Referans . 503
19.7 Ne Zaman Yardım İstenmeli . 504

20 Ek B: Sözlük 505

Ek B: Sözlük 506
20.1 1. Temel Yapay Zeka Kavramları . 506
20.2 2. Python ve Programlama . 522
20.3 3. Tensör İşlemleri . 527
20.4 4. NLP ve Tokenizasyon . 532
20.5 5. Model Mimarisi . 536
20.6 6. Eğitim ve Değerlendirme . 540
20.7 7. Üretim ve Dağıtım . 546
20.8 8. Sonraki Adımlar ve Kariyer . 550
20.9 Sözlük Kuralları . 553

Ek C: Matematik Hatırlatıcısı 554
1. Sayılar ve Temel İşlemler . 555
2. Matris İşlemleri . 556
3. Softmax ve Olasılıklar . 559
4. İç Çarpımlar ve Benzerlik . 563
5. Logaritmalar ve Üstel Fonksiyonlar . 567
6. İstatistik: Ortalama, Varyans ve Standart Sapma . 569
7. Gradyanlar: Eğitim Sinyali . 573
8. Şekiller ve Yayma . 577
Hızlı Referans Tabloları . 582
Çapraz Referanslar . 583
Özet . 583

21 Ek D: İnceleme Soruları Cevapları 584

Ek D: İnceleme Soruları Cevapları 585

22 Bölüm 1: Yapay Zeka Gerçekten Nedir? (İnceleme Soruları Cevapları) 586
22.1 Soru 1: Yapay zekanın en basit tanımı nedir? . 586
22.2 Soru 2: Makine öğrenmesi geleneksel programlamadan nasıl farklıdır? 586
22.3 Soru 3: Büyük dil modelleri (LLM’ler) yapay zeka aile ağacında nereye oturur? . . . 587
22.4 Soru 4: LLM’lerin iyi olduğu üç şeyi ve iyi yapamadığı üç şeyi adlandırın. 587
22.5 Soru 5: LLM’lerde halüsinasyon neden olur? . 588
22.6 Soru 6: LLM’lerin nasıl çalıştığını anlamak, bir yapay zeka araştırmacısı olmayı

planlamasan bile neden değerli olabilir? . 588

İÇİNDEKİLER ix

22.7 Ek Notlar . 589

23 Bölüm 2: Bilgisayarlar Kelimeleri Nasıl “Anlar”? (İnceleme Soruları Cevapları)590
23.1 Soru 1: Kelimeleri yapay zeka için temsil etmek için neden sadece ASCII kodlarını

kullanamayız? . 590
23.2 Soru 2: Gömme (embedding) nedir ve neden böyle adlandırılır? 591
23.3 Soru 3: Modern gömmeler neden sadece 2 veya 3 yerine yüzlerce boyut kullanır? . . 591
23.4 Soru 4: “king - man + woman = queen” ifadesini kendi kelimelerinle açıklayın.

Gömmeler hakkında ne ortaya koyar? . 592
23.5 Soru 5: “Bir kelimeyi tuttuğu arkadaşlardan tanırsın” ne anlama gelir? Gömme

sistemleri bu fikri nasıl kullanır? . 592
23.6 Soru 6: Kelime gömmelerinin ortalamasını almak neden cümleleri anlamak için yeterli

değildir? Bir örnek verin. 593
23.7 Ek Notlar . 593

24 Bölüm 3: Dikkat Mekanizması (İnceleme Soruları Cevapları) 594
24.1 Soru 1: RNN’lerin uzun dizilerde hangi sorunu vardı? Açıklamak için bir benzetme

kullan. 594
24.2 Soru 2: Dikkat için kokteyl partisi benzetmesini açıklayın. Dikkatin ne yaptığını nasıl

yakalar? . 595
24.3 Soru 3: Kendi kelimelerinle Query, Key ve Value’nun ne temsil ettiğini açıklayın.

Faydalıysa kütüphane benzetmesini kullan. 595
24.4 Soru 4: Dikkat hesaplamasında üç ana adımı açıklayın. 596
24.5 Soru 5: Dikkat skorlarını neden boyutun karekökü ile böleriz? 596
24.6 Soru 6: Neden sadece bir yerine birden fazla dikkat başı kullanırız? Farklı başlar ne

öğrenir? . 597
24.7 Soru 7: Öz-dikkat ve çapraz-dikkat arasındaki fark nedir? Her birinin ne zaman

kullanıldığına dair bir örnek verin. 598
24.8 Soru 8: 2017’deki “Attention Is All You Need” makalesi neden devrimci oldu? Neyi

değiştirdi? . 598
24.9 Ek Notlar . 599

25 Bölüm 4: Transformer Mimarisi (İnceleme Soruları Cevapları) 601
25.1 Soru 1: Transformer’lar neden konum kodlamalarına ihtiyaç duyar? Onlar olmadan

ne olur? . 601
25.2 Soru 2: Konum kodlamaya yönelik iki ana yaklaşım nedir? Dengeler nelerdir? 602
25.3 Soru 3: Transformer katmanında ileri beslemeli ağ ne yapar? Neden genişletip sonra

daraltır? . 603
25.4 Soru 4: Artık bağlantıları bir benzetme kullanarak açıklayın. Derin ağlar için neden

önemlidirler? . 603
25.5 Soru 5: Katman normalizasyonu hangi sorunu çözer? Modern Transformer’larda ne

zaman uygulanır? . 604
25.6 Soru 6: Bir Transformer katmanında tam işlem dizisini açıklayın. 605
25.7 Soru 7: Kodlayıcı ve kod çözücü arasındaki fark nedir? Her birini ne zaman kullanırsın?607
25.8 Soru 8: Nedensel maskeleme nasıl çalışır? Metin üretimi için neden gereklidir? 609
25.9 Ek Notlar . 610

İÇİNDEKİLER x

26 Bölüm 5: İlk Python Programın (İnceleme Soruları Cevapları) 611
26.1 Soru 1: GPT-2 metni verdiğinde gerçekte ne görür? 611
26.2 Soru 2: Neden vocab[word] yerine vocab.get(word, vocab["<UNK>"]) kullanıyoruz?612
26.3 Soru 3: Fonksiyon ve sınıf arasındaki fark nedir? . 612
26.4 Soru 4: tokens[:-1] ne döndürür ve bu LLM eğitiminde neden faydalıdır? 613
26.5 Soru 5: SimpleTokenizer sınıfımız HuggingFace’in tokenizer’larına nasıl benziyor? . 614
26.6 Ek Notlar . 615

27 Bölüm 6: NumPy & PyTorch Hayatta Kalma Kılavuzu (İnceleme Soruları Ce-
vapları) 617
27.1 Soru 1: PyTorch neden varsayılan olarak float32 kullanırken NumPy varsayılan

olarak float64 kullanır ve bu ne zaman önemlidir? 617
27.2 Soru 2: reshape yerine view’ı ne zaman tercih edersin? 618
27.3 Soru 3: Broadcasting iki şeklin uyumlu olup olmadığına nasıl karar verir? 618
27.4 Soru 4: softmax’ta dim ne anlama gelir ve yanlış olanı seçersen ne olur? 618
27.5 Soru 5: with torch.no_grad() ve .detach() nasıl farklılık gösterir? 618
27.6 Soru 6: Neden backward()’dan önce optimizer.zero_grad(set_to_none=True)

çağırıyoruz? . 619
27.7 Soru 7: model.train()’den model.eval()’a geçtiğinde ne değişir? 619

28 Bölüm 7: Verilerini Hazırlama (İnceleme Soruları Cevapları) 620
28.1 Soru 1: Küçük harfe çevirme neden hem yararlı hem de potansiyel olarak zararlıdır?

Ne zaman büyük/küçük harf ayrımını korursun? . 620
28.2 Soru 2: Çoğaltma silme (deduplication) dil modelleri için hangi sorunu çözer? 620
28.3 Soru 3: Sade kelimelerle hash nedir ve SHA-1 neden burada yeterince iyidir? 621
28.4 Soru 4: Bölmeler neden paragraf seviyesi yerine belge seviyesinde yapılmalıdır? . . . 621
28.5 Soru 5: Uzun metni bölerken parça örtüşmesi (chunk overlap) nasıl yardımcı olur? . 621
28.6 Soru 6: JSONL’yi LLM veri setleri için iyi bir uyum yapan nedir? 622

29 Bölüm 8: Tokenizer İnşa Etme (İnceleme Soruları Cevapları) 623
29.1 Soru 1: Karakter seviyesi ve kelime seviyesi tokenleştirme arasındaki temel denge

nedir? Kelime dağarcığı boyutu ve dizi uzunluğu için belirli sayılar verin. 623
29.2 Soru 2: <UNK> ve <PAD> gibi özel tokenlere neden ihtiyacımız var? Her birinin ne

zaman kullanıldığına dair belirli bir örnek verin. 624
29.3 Soru 3: BPE (Byte-Pair Encoding) nasıl çalışır kendi kelimelerinle açıklayın. Neden

“un-” veya “-ing” gibi yaygın desenler için doğal olarak tokenler oluşturur? 624
29.4 Soru 4: ” Hello” (baştaki boşlukla) neden “Hello” (boşluk olmadan) ile farklı tokenleşir?

Bu istem mühendisliği için neden önemlidir? . 625
29.5 Soru 5: Bir arkadaşın şöyle diyor: “Sadece karakter seviyesi tokenleştirme kullanacağım,

daha basit ve bilinmeyen token yok!” Dezavantajlar hakkında ona ne söylerdin? . . . 626
29.6 Soru 6: Bu iki metni karşılaştırın: “The number is 10000” vs “The number is ten

thousand”. Hangisi daha az token kullanabilir? Bu neden önemlidir? 627
29.7 Soru 7: İngilizce olmayan bir dil için (örneğin Çince) sohbet robotu oluşturuyorsun.

tiktoken (GPT-4’ün tokenizer’ı) mı yoksa özel bir BPE tokenizer mı eğitmelisin? Neden?628
29.8 Soru 8: BPE neden daha önce hiç görmediği kelimeleri temsil edebilir (kelime seviyesi

tokenleştirmenin aksine), ancak yine de bir <UNK> tokenine ihtiyaç duymaz? 629

İÇİNDEKİLER xi

29.9 Soru 9: Shakespeare üzerinde bir BPE tokenizer eğittin ve “The neural network uses
backpropagation.” cümlesini tokenleştirmeyi denetiz. 18 token üretti, GPT-4 ise 7
üretiyor. Fark neden ve tokenizer’ını geliştirmek için ne yapardın? 631

30 Bölüm 9: Gömme Katmanı (İnceleme Soruları Cevapları) 632
30.1 Soru 1: Token ID’lerini doğrudan bir sinir ağına girdi olarak kullanmanın temel sorunu

nedir? . 632
30.2 Soru 2: Token gömmeleri için arama tablosu mekanizmasını açıklayın 633
30.3 Soru 3: Konum gömmelerine neden ihtiyacımız var? 633
30.4 Soru 4: Token ve konum gömmelerini neden birleştirmek yerine ekliyoruz açıklayın . 634
30.5 Soru 5: nn.init.normal_(weight, std=0.02) başlatması ne yapar ve bu neden

GPT-2 için standarttır? . 635
30.6 Soru 6: Kosinüs benzerliği iki gömme arasındaki ilişkiyi nasıl ölçer? 636
30.7 Soru 7: max_seq_len=1024 olduğunda uzunluğu 1500 olan bir diziyi gömmeye

çalışırsan ne olur? . 637
30.8 Soru 8: Ham metinden gömmelere kadar tam pipeline’ı ilgili bölümlere atıfta bulunarak

açıklayın . 638

31 Bölüm 10: Dikkat Mekanizması (İnceleme Soruları Cevapları) 642
31.1 Soru 1: Bölüm 9’daki statik gömülerin dil modelleme için neden yeterli olmadığını

açıklayın. Açıklamak için “bank” örneğini kullan. 642
31.2 Soru 2: Dikkatte Query, Key ve Value vektörlerinin rolünü açıklayın. Q · K^T nokta

çarpımı ilgiyi nasıl ölçer? . 643
31.3 Soru 3: Dikkat skorlarını neden sqrt(d_k) ile ölçeklendiririz? Bu ölçeklendirme olma-

dan ne olurdu? . 645
31.4 Soru 4: Nedensel maskeleme nedir ve otoregressif dil üretimi için neden gereklidir?

Eğitim sırasında “hile yapmayı” nasıl önler? . 646
31.5 Soru 5: Çok-başlı dikkat toplam parametre sayısını artırmadan nasıl “farklı perspek-

tifler” sağlar? Matematiği dahil et: 12 baş × 64 boyut = ? 648
31.6 Soru 6: Çok-başlı dikkatteki “yeniden şekillendirme hilesi” nedir? Başlar üzerinde

sırayla döngü yapmaktan neden daha hızlıdır? . 650
31.7 Soru 7: Bir Transformer bloğunun dört ana bileşenini listeleyin ve her birinin amacını

açıklayın. 653
31.8 Soru 8: Ön-norm ve son-norm mimarileri arasındaki fark nedir? GPT-2 hangisini

kullanır ve neden? . 656
31.9 Soru 9: Dikkat O(n²) bellek karmaşıklığına sahiptir. Bunun dizinin uzunluğu için ne

anlama geldiğini açıklayın. batch=4, heads=12, seq=2048 ile dikkat skorları için ne
kadar bellek gerekir? . 660

31.10Soru 10: Dikkat görselleştirmelerini aşırı yorumlamak konusunda neden dikkatli
olmalıyız? Dikkat ağırlığı ısı haritalarından NE çıkarılabilir ve NE çıkarılamaz? . . . 664

31.11Ek Notlar . 668

32 Bölüm 11: Transformer’ı İnşa Etmek (İnceleme Soruları Cevapları) 670
32.1 Soru 1: Mimari . 670
32.2 Soru 2: Yapılandırma . 671
32.3 Soru 3: Yığma . 671
32.4 Soru 4: LM Head . 672

İÇİNDEKİLER xii

32.5 Soru 5: Ağırlık Bağlama . 672
32.6 Soru 6: Dikkat Edilmesi Gerekenler . 673
32.7 Soru 7: Sağlamlık Kontrolleri . 674
32.8 Soru 8: Parametre Sayısı . 675
32.9 Soru 9: Modlar . 676
32.10Soru 10: Ağırlık Yükleme . 677
32.11Ek Notlar . 678

33 Bölüm 12: Modelini Eğitmek (İnceleme Soruları Cevapları) 679
33.1 Soru 1: 5 Adımlı Tarif . 679
33.2 Soru 2: Etiket Kaydırma . 680
33.3 Soru 3: Yoksay İndeksi . 680
33.4 Soru 4: Öğrenme Oranı . 681
33.5 Soru 5: Isınma . 682
33.6 Soru 6: Aşırı Uyum . 682
33.7 Soru 7: Karmaşıklık . 683
33.8 Soru 8: Kontrol Noktası . 684
33.9 Soru 9: Eğitim vs Değerlendirme Modu . 685
33.10Soru 10: Toplu ve Epoch Matematiği . 686
33.11Ek Notlar . 686

34 Bölüm 13: Modelini İnce Ayarlamak 688
34.1 1. Ne Zaman İnce Ayar Yapmalı . 688
34.2 2. Kayıp Maskeleme Amacı . 689
34.3 3. LoRA Verimliliği . 689
34.4 4. Dondurmanın Faydaları . 690
34.5 5. Veri Kalitesi . 690
34.6 6. Adaptör Kararları . 691
34.7 7. Felaket Unutma . 692
34.8 Ek Notlar . 692

35 Bölüm 14: Prompt Mühendisliği (İnceleme Soruları Cevapları) 694
35.1 1. Sistem vs Kullanıcı Mesajları . 694
35.2 2. Sıcaklık Ayarları . 695
35.3 3. Zincirleme Düşünme . 696
35.4 4. Az-Atış Hata Ayıklama . 696
35.5 5. Prompt Enjeksiyonu . 697
35.6 6. Değerlendirme İş Akışı . 698
35.7 7. Prompting vs İnce Ayar Kararı . 699
35.8 Ek Notlar . 700

36 Bölüm 15: Uygulama Geliştirme (Değerlendirme Sorusu Cevapları) 702
36.1 Soru 1: RAG, prompt mühendisliğinin tek başına çözemediği hangi problemi çözer? . 702
36.2 Soru 2: Token embeddingler (Bölüm 6) ile cümle embeddingler (bu bölüm) arasındaki

farkı açıklayın. 703
36.3 Soru 3: Dokümanları gömmeden önce neden parçalara ayırıyoruz? Parçalar çok küçük

veya çok büyük olursa ne olur? . 703

İÇİNDEKİLER xiii

36.4 Soru 4: RAG sistemin alakasız dokümanlar alırsa ne olur? Prompt’un bununla nasıl
başa çıkar? . 704

36.5 Soru 5: Araç beyaz listelemesi güvenlik için neden önemlidir? 704
36.6 Soru 6: RAG sisteminin doğru cevaplar verip vermediğini nasıl değerlendirirsin? . . . 704
36.7 Soru 7: Bir LLM uygulaması için hangi hata ayıklama bilgilerini loglamalısın? 705
36.8 Ek Notlar . 705

37 Bölüm 16: Üretime Hazırlanma (Değerlendirme Sorusu Cevapları) 706
37.1 Soru 1: Geliştirme ile üretim arasındaki fark nedir? 706
37.2 Soru 2: Sağlık kontrolü endpoint’ine neden ihtiyacımız var? 707
37.3 Soru 3: Neleri loglamalı ve neleri loglamaMALIsın? 707
37.4 Soru 4: Hız sınırlama neden önemlidir? . 708
37.5 Soru 5: Sadece mutlu yolları değil, hata yollarını test etmenin amacı nedir? 709
37.6 Ek Notlar . 710

38 Bölüm 17: Dağıtım Seçenekleri (Değerlendirme Sorusu Cevapları) 711
38.1 Soru 1: Serverless bilişim nedir ve LLM dağıtımı için neden özellikle iyidir? 711
38.2 Soru 2: Bir Modal fonksiyonuna GPU desteği nasıl eklenir? 712
38.3 Soru 3: Soğuk başlatma nedir ve etkisini nasıl azaltabilirsin? 712
38.4 Soru 4: LLM dağıtımı için neden Modal volumes kullanıyoruz? 713
38.5 Soru 5: Kimse kullanmadığında Modal uygulamana ne olur? 714
38.6 Ek Notlar . 715

39 Bölüm 18: Sıradaki Adımlar (Değerlendirme Sorusu Cevapları) 716
39.1 Soru 1: Bu kitabı tamamladıktan sonra atabileceğin üç ana yol nedir? 716
39.2 Soru 2: Sorumlu AI neden tek seferlik bir kontrol listesi değil, devam eden bir uygulama?717
39.3 Soru 3: Hangi bitirme projesi size en çok hitap ediyor ve neden? 717
39.4 Soru 4: Daha sonra keşfetmeyi planladığın iki kaynağı adlandırın. 718
39.5 Soru 5: Bu kitapta öğrendiğin en şaşırtıcı şey neydi? 718
39.6 Son Düşünce . 719

Ek E: Alternatifler 720
Bölüm 1: LLM Sağlayıcı Alternatifleri . 720
Bölüm 2: Dağıtım Alternatifleri . 725

Önsöz

“Eyleme engel olan şey, eylemi ilerletir. Yolda duran şey, yolun kendisi olur.” — Marcus
Aurelius, Düşünceler

Bugün yabancı görünen her kavram, sabır ve çabayla tanıdık hale gelecek. Şimdi zor görünen şeyler
kitabın sonunda doğal görünecek. Özel biri olman gerekmiyor. Tek yapman gereken başlamak.

Bu kitap sana sıfırdan bir Büyük Dil Modeli (Large Language Model, LLM) oluşturmayı öğretecek.
Yapay zekayı sadece kullanmayı değil, nasıl çalıştığını anlamayı, kendi ellerinle inşa etmeyi ve
çalıştırmayı da.

Yapay zekanın nasıl çalıştığını merak ediyorsan, bu kitap tam sana göre. Önceden programlama
deneyimi ya da ileri matematik bilgisi beklemiyoruz. En temel kavramlardan başlayıp, adım adım,
her şeyi açıklayarak ilerliyoruz.

İhtiyacın olan tek şey merak ve her bölümü adım adım çalışmaya istekli olmak.

Ne Oluşturacaksın
Bu kitabın sonunda çalışan bir dil modeli oluşturmuş olacaksın. Modelin metni nasıl işlediğini,
örüntüleri nasıl öğrendiğini ve yanıtları nasıl ürettiğini anlayacaksın. Daha da önemlisi, sadece
çalıştığını değil, neden çalıştığını kavrayacaksın.

Bu Kitabı Nasıl Kullanmalısın
Her bölümün yanında Google Colab’da çalışan bir not defteri (notebook) var. Hiçbir kurulum
yapmana gerek yok, bilgisayarında bir şey ayarlamana da. Sadece tıkla ve kodlamaya başla.

Her bölüm, öğrendiklerini pekiştirmek için sorularla bitiyor. Tüm cevapları Ek D’de bulabilirsin;
böylece bir sonraki bölüme geçmeden önce kendini kontrol edebilirsin.

Kitabın Yapısı
Bölüm I: Temeller ile yapay zeka ve BDM’lerin (LLM) aslında ne olduğunu, makinelerin dili nasıl
işlediğini ve bunu mümkün kılan yenilikleri keşfedeceksin.

1

Yaklaşımımız 2

Bölüm II: Python Temelleri sana ihtiyacın olacak programlama araçlarını öğretir; ne eksik ne
fazla.

Bölüm III: İlk Dil Modelini Oluştur, kitabın kalbi. Burada sıfırdan, adım adım bir dil modeli
inşa ediyoruz.

Bölüm IV: Kullanışlı Hale Getir bölümünde ince ayar (fine-tuning), prompt mühendisliği ve
modelini gerçek hayatta kullanmayı öğreneceksin.

Bölüm V: Dünyayla Paylaş ise oluşturduğun modeli başkalarının kullanabilmesi için nasıl
dağıtacağını gösterir.

Yaklaşımımız
Birkaç temel prensibe bağlı kalıyoruz:

• Koddan önce kavramlar: Nasıl yapıldığından önce neden yapıldığını anla
• Her yer benzetme dolu: Karmaşık fikirleri tanıdık örneklerle açıklıyoruz
• Atlanan adım yok: Her kod satırını tek tek açıklıyoruz
• Tek proje, baştan sona: Tüm kitap boyunca aynı projeyi birlikte inşa ediyoruz

En iyi öğrenme yolu yapmaktır. Kavramlar kafanda oturacak, çünkü onları kendin inşa edeceksin.

Telif Hakkı

İlk Dil Modelinizi Oluşturun Dil Modelleri için Uygulamalı Rehber

Telif Hakkı © 2025 Hasan Degismez

Tüm hakları saklıdır. Bu yayının hiçbir bölümü, yazarın önceden yazılı izni olmaksızın, fotokopi, kayıt
veya diğer elektronik ya da mekanik yöntemler dahil olmak üzere herhangi bir biçimde çoğaltılamaz,
dağıtılamaz veya iletilemez. Eleştirel incelemelerde yer alan kısa alıntılar ve telif hakkı yasalarının
izin verdiği belirli ticari olmayan kullanımlar bu kuralın dışındadır.

Sorumluluk Sınırı/Garanti Reddi: Bu kitabın hazırlanmasında her türlü özen gösterilmiş
olmasına rağmen, yazar hatalar veya eksikliklerden ya da burada yer alan bilgilerin kullanımından
kaynaklanan zararlardan sorumlu değildir. Kod örnekleri eğitim amaçlı sunulmuş olup, üretim
ortamında kullanım için değişiklik gerektirebilir. Atıfta bulunulan kütüphane sürümleri ve API’ler
değişebilir; okuyucular güncel teknik özellikler için resmi dokümantasyona başvurmalıdır. Bu kitapta
yer alan tavsiye ve stratejiler sizin durumunuza uygun olmayabilir.

Ticari Markalar: Python, PyTorch, TensorFlow, Google Colab ve bu kitapta adı geçen diğer ürün
adları, ilgili sahiplerinin ticari markalarıdır. Yazar, bu kitapta adı geçen herhangi bir ürün veya
satıcı ile bağlantılı değildir.

Kod Lisansı: Bu kitaptaki tüm kod örnekleri MIT License altında sunulmaktadır. Kaynak gösterimi
ile kodu özgürce kullanabilir, değiştirebilir ve dağıtabilirsiniz.

Birinci Baskı: 2025

Web sitesi: llm.degismez.com

3

Kısım I

Kısım I: Temeller

4

Bölüm 1

Dil Modelleri Nedir?

“Bir bilgisayar, eğer bir insanı kendisinin de insan olduğuna inandırabiliyorsa, akıllı
olarak adlandırılmayı hak eder.” — Alan Turing, Bilgisayar Bilimci

Bu Bölümde Öğreneceklerin - Film yapımlarındaki yapay zekanın gerçek yapay zeka ile neden
hiçbir ilgisi olmadığı - Yapay zekanın gerçekte ne olduğu (ipucu: büyük ölçekte örüntü tanıma)
- Büyük dil modellerinin (LLM) daha geniş yapay zeka manzarasına nasıl uyduğu - Büyük dil
modellerinin neler yapıp yapamadığı (ve neden hata yaptıkları) - Kendi dil modelini neden inşa
etmen gerektiği

Temel Kavramlar

• Yapay Zeka (Artificial Intelligence, AI): İnsan zekası gerektiren görevleri yerine getiren bilgisayar
sistemleri Sözlüğe bak

• Makine Öğrenmesi (Machine Learning, ML): Açık programlama yerine veriden öğrenen yapay
zeka sistemleri Sözlüğe bak

• Derin Öğrenme (Deep Learning, DL): Çok katmanlı sinir ağları kullanan makine öğrenmesi
Sözlüğe bak

• Büyük Dil Modeli (Large Language Model, LLM): Dili üretmek ve anlamak için devasa metinler
üzerinde eğitilmiş derin öğrenme sistemleri Sözlüğe bak

• Parametreler/Ağırlıklar (Parameters/Weights): Eğitim sırasında ayarlanan yapay zeka mode-
lindeki sayılar Sözlüğe bak

• Eğitim (Training): Performansı artırmak için model parametrelerini veri kullanarak ayarlama
süreci Sözlüğe bak

• Beliren Yetenek (Emergence): Yeterli ölçekte basit eğitim hedeflerinden ortaya çıkan karmaşık
yetenekler Sözlüğe bak

• Halüsinasyon (Hallucination): Bir dil modelinin yanlış bilgiyi güvenle üretmesi Sözlüğe bak

Kontrol Noktası

Bu bölümün sonunda şunları anlayacaksın:

5

BÖLÜM 1. DİL MODELLERİ NEDİR? 6

1. Film yapımlarındaki yapay zeka ile gerçek yapay zeka arasındaki fark (örüntü tanıma vs. bilinç)
2. Yapay zekanın geri bildirime dayalı sayıları ayarlayarak nasıl öğrendiği
3. Büyük dil modellerinin yapay zeka hiyerarşisinde nereye oturduğu (AI - ML - DL - LLM)
4. Büyük dil modellerinin neler yapabildiği (yazma, kodlama, muhakeme) ve neler yapamadığı

(gerçek zamanlı bilgiye erişim, güvenilir hesaplama)
5. Halüsinasyonun neden gerçekleştiği (eğitim verisinin kayıplı sıkıştırması)
6. Kendi dil modelini inşa etmenin anlayışını ve kariyer beklentilerini nasıl derinleştirdiği

Son zamanlarda yapay zeka hakkında çok şey duymuşsundur. Haberlerde, sosyal medyada… Bir de
iş arkadaşın var, ChatGPT hakkında konuşmaktan bir türlü vazgeçmiyor. Belki sen de kullandın ve
aklına takıldı: Bu şey gerçekte nasıl çalışıyor?

İşte bu kitap sana bunu öğretecek. Sadece yapay zekayı nasıl kullanacağını değil, nasıl inşa edeceğini
de. Kitabın sonunda, ChatGPT, Claude ve manşetleri süsleyen tüm yapay zeka asistanlarının
arkasındaki temel teknolojiyi, yani kendi dil modelini sıfırdan oluşturmuş olacaksın.

Ama tek bir satır kod yazmadan önce, gerçekte ne inşa ettiğimizi anlamamız gerekiyor. Bu da bazı
yanlış anlamaları ortadan kaldırmakla başlıyor.

1.1 Filmleri Unutun
Hemen bir şeyi açıklığa kavuşturalım: Hollywood’un sana yapay zeka hakkında öğrettiği hemen
hemen her şey yanlış.

Filmlerde yapay zeka şöyle görünüyor: - İnsanlığın yıkımını planlayan parlak kırmızı gözlü bir robot
(Terminator) - Yavaşça deliren ve astronotları öldüren sakin bir ses (HAL 9000) - Aşık olan ve
bilincin doğasını sorgulayan çekici bir insansı robot (Ex Machina)

Bunlar harika hikayeler yaratıyor. Ayrıca gerçek yapay zeka ile neredeyse hiçbir ilgileri yok.

İşte yapay zekanın olmadığı şeyler: - Bilinçli. Günümüz yapay zekası duygu, arzu veya deneyim kanıtı
göstermiyor. Hiçbir şey “istemiyor.” - Duyarlı. İç yaşam kanıtı yok. Kapatıldığında düşünce yok.
Rüya yok. - Bize karşı komplo kuruyor. Günümüz yapay zeka sistemleri filmlerde gösterilen türden
bilinçli entrikaya sahip değil (yapay zeka uyumlaması, yapay zekanın amacımızı gerçekleştirmesini
sağlamak, aktif bir araştırma alanı olmaya devam ediyor). - Sihir. Yapay zekanın yaptığı her şey
matematik, veri ve hesaplamadan kaynaklanıyor. Gizem yok.

Film yapımlarındaki yapay zeka ile gerçek yapay zeka arasındaki fark, kabaca bir ejderha ile bir
kertenkele arasındaki farka benziyor. Evet, ikisi de sürüngen. Ancak biri ateş püskürtüyor ve altın
biriktiriyor, diğeri ise cırcır böceği yiyor ve bir kayanın üzerinde oturuyor.

Film Yapımlarındaki Yapay Zeka vs. Gerçek Yapay Zeka

Film Yapımlarındaki Yapay Zeka Gerçek Yapay Zeka

Bilince ve duygulara sahip İç deneyim kanıtı göstermiyor
Dünyayı ele geçirmek istiyor Hiçbir şey istemiyor, bir araç

BÖLÜM 1. DİL MODELLERİ NEDİR? 7

Film Yapımlarındaki Yapay Zeka Gerçek Yapay Zeka

İnsan gibi düşünüyor, ama daha hızlı Verideki örüntüleri işliyor
“Etkinleştirildiğinde” her şeyi yapabiliyor Sadece eğitildiği şeyi yapabiliyor
Gizemli gelecek teknolojisi üzerinde çalışıyor GPU’larda matris çarpımı yaparak çalışıyor
Ya insanlığın kurtarıcısı ya da yok edicisi Çok gelişmiş bir otomatik tamamlama

Son satır yapay zekaya hakaret gibi görünebilir ama değil. “Gelişmiş otomatik tamamlama” gerçekten
etkileyici bir şey. Bir sonraki kelimeyi tahmin ederek tutarlı denemeler, çalışan kod ve yaratıcı
hikayeler üretebilmesi, bilgisayar bilimindeki en şaşırtıcı keşiflerden biri.

Ama yine de örüntü eşleştirme. Çok iyi örüntü eşleştirme.

“Bir bilgisayarın düşünüp düşünemeyeceği sorusu, bir denizaltının yüzüp yüzemeyeceği
sorusundan daha ilginç değildir.” — Edsger W. Dijkstra, Bilgisayar Bilimci

Dijkstra yapay zekaya şüpheyle yaklaşıyordu ama benzetmesi öğretici: denizaltılar balıklar gibi
yüzmez, yine de suda etkili biçimde yol alırlar. Benzer şekilde yapay zeka insanlar gibi düşünmez
ama bilgiyi yararlı şekillerde işler. Tanımlar hakkında tartışmak asıl noktayı kaçırıyor.

1.2 Yapay Zeka Örüntü Tanımadır
Peki yapay zeka düşünen bir makine değilse, nedir?

Özünde yapay zeka büyük ölçekte örüntü tanımadır. İnsanların elle bulmak için çok karmaşık
veya çok fazla olan verideki örüntüleri bulur.

Bunu her gün kullandığın bir şeyle somutlaştıralım: spam filtresi.

1.2.1 Spam Filtresi Örneği
E-postanı her kontrol ettiğinde, yapay zeka senin için çalışıyor. Spam filtren birinin elle yazdığı
kurallar listesini takip etmiyor (“eğer e-posta ‘Nijeryalı prens’ içeriyorsa, spam olarak işaretle” gibi).
Bunun yerine milyonlarca örnekten öğrendi.

BÖLÜM 1. DİL MODELLERİ NEDİR? 8

Şekil 1.1: Kural tabanlı vs makine öğrenmesi: Elle yazılmış kurallar yerine, makine öğrenmesi
yaklaşımı etiketlenmiş örneklerden örüntüler öğrenir.

İşte nasıl:

1. Eğitim verisi: Filtreye, her biri insanlar tarafından “spam” veya “spam değil” olarak etiket-
lenmiş milyonlarca e-posta gösterildi.

2. Örüntüleri bulma: Sistem kendi başına örüntüleri keşfetti:

• Spam e-postalar genellikle TAMAMINI BÜYÜK HARFLE YAZILMIŞ KELİMELERE
sahip

• Spam genellikle para, ödül veya aciliyetten bahsediyor
• Spam genellikle belirli türde adreslerden geliyor
• Spam genellikle belirli biçimlendirme örüntülerine sahip

3. Tahmin yapma: Yeni bir e-posta geldiğinde, filtre onu tüm bu öğrenilmiş örüntülere karşı
kontrol ediyor ve tahmin ediyor: spam mı değil mi?

Temel içgörü: kimse bu kuralları programlamadı. Sistem onları örneklere bakarak keşfetti. İşte
bunu “öğrenme” yapan şey.

Bunu postaları sıralamak için yeni bir çalışanı eğitmek gibi düşün. Ona 500 sayfalık bir kural kitabı
vermiyorsun. Onunla oturuyor, bir yığın postayı gözden geçiriyor ve “bu gereksiz, bu gerçek, bu
gereksiz…” diyorsun. Sonunda anlıyor. Örüntüleri öğrendi.

BÖLÜM 1. DİL MODELLERİ NEDİR? 9

Yapay zeka aynı şekilde çalışıyor; tek farkı, yüzlerce yerine milyonlarca örnekten öğrenebilmesi ve
asla yorulmaması veya dikkatinin dağılmaması.

1.2.2 Yapay Zeka Formülü
İşte çoğu modern yapay zekanın arkasındaki gizli formül:

Yapay Zeka = İstatistik + Bol Miktarda Veri + Hesaplama Gücü

Bu kadar. Sihir yok, bilinç yok, gizli sos yok.

• İstatistik: Örüntü bulma ve tahmin yapma için matematiksel teknikler
• Bol Miktarda Veri: Öğrenmek için milyonlarca veya milyarlarca örnek
• Hesaplama Gücü: Tüm bu veriyi işleyebilecek hızlı işlemciler

Şekil 1.2: Veriyi görselleştirme: net bir örüntüye (bir doğru) sahip ama biraz gürültülü noktalar.

Yirmi yıl önce istatistiğimiz vardı. Biraz verimiz vardı. Ama bunu ölçekte çalıştıracak yeterli
hesaplama gücümüz yoktu. Artık var. İşte bu yüzden yapay zeka aniden her yerde görünüyor.

1.2.3 “Öğrenme” Gerçekte Ne Anlama Geliyor
Bir yapay zeka sisteminin “öğrendiğini” söylediğimizde, belirli bir şeyi kastediyoruz: geri bildirime
dayalı sayıları ayarlamak.

Her yapay zeka modeli, özünde, büyük bir sayı koleksiyonudur (“parametreler” veya “ağırlıklar”
olarak adlandırılır). Bu sayılar rastgele başlar.

BÖLÜM 1. DİL MODELLERİ NEDİR? 10

Şekil 1.3: Eğitimden önce: Model (yeşil çizgi) rastgele tahmin ediyor ve veriyi (mavi noktalar)
kaçırıyor.

Eğitim sırasında, sistem:

1. Bir tahmin yapar
2. Ne kadar yanlış olduğunu kontrol eder
3. Bir sonraki sefer daha az yanlış olmak için sayılarını biraz ayarlar
4. Milyarlarca kez tekrarlar

Doğru uydurma örneğimizde, ayarlanacak sadece iki sayı var: ağırlık (doğrunun ne kadar dik olduğu)
ve yanlılık (doğrunun dikey ekseni nerede kestiği). Aşağıdaki grafik, bu iki sayının 10 eğitim adımı
boyunca değişimini gösteriyor:

BÖLÜM 1. DİL MODELLERİ NEDİR? 11

Şekil 1.4: Eylem halinde öğrenme: Model, en iyi uyumu bulmak için eğitim adımları boyunca ağırlığını
ve yanlılığını ayarlıyor.

Ağırlık 4,5’ten 3’e doğru düşerken ve yanlılık 0,4’ten 2’ye doğru yükselirken, yeşil tahmin doğrusu
hedefe uyana kadar döner ve kayar:

Şekil 1.5: Eğitimden sonra: Model örüntüyü buldu ve veriye uydu.

İşte öğrenme bu. Felsefi bir şey değil. Gizemli bir şey değil. Sadece sayıları, daha iyi çıktılar üretene
kadar hatalara göre ayarlamak.

Modern büyük dil modelleri yüz milyarlarca, hatta bazen bir trilyonun üzerinde parametreye sahip.

BÖLÜM 1. DİL MODELLERİ NEDİR? 12

Devasa miktarda metin üzerinde trilyonlarca tahmin yaparak ayarlandılar. Sonuç: hemen hemen her
bağlamda bir sonraki kelimeyi kayda değer doğrulukla tahmin edebilen bir sistem.

1.3 Yapay Zeka Aile Ağacı
“Yapay zeka” birçok farklı teknolojiyi kapsayan geniş bir terim. Hadi bunları bir sıralayalım.

1.3.1 Hiyerarşi
Bunu iç içe geçmiş daireler gibi düşün; her biri bir sonrakinin içinde:

Şekil 1.6: Yapay Zeka, Makine Öğrenmesi, Derin Öğrenme ve Büyük Dil Modellerinin iç içe hiyerarşisi.

Her katmanı tanımlayalım:

Yapay Zeka (Artificial Intelligence, AI): En geniş kategori. Bir insan yapsaydı “akıllı” olarak
değerlendireceğimiz görevleri yerine getiren herhangi bir bilgisayar sistemi. Spam filtreni, satranç
programlarını, öneri sistemlerini ve evet, ChatGPT’yi içeriyor.

Makine Öğrenmesi (Machine Learning, ML): Sistemlerin elle kodlanmış kurallara uymak
yerine veriden öğrendiği yapay zekanın bir alt kümesi. Bir programcının “eğer X ise Y” yazması
yerine, sistem kendi örüntülerini örneklerden keşfeder.

BÖLÜM 1. DİL MODELLERİ NEDİR? 13

Derin Öğrenme (Deep Learning, DL): Beyindeki nöronların nasıl bağlandığından gevşekçe
esinlenen “sinir ağları” sistemlerini kullanan makine öğrenmesinin bir alt kümesi. “Derin” kelimesi,
bu ağların birçok katmana sahip olduğu anlamına gelir ve giderek daha soyut örüntüler öğrenmelerine
olanak tanır. Örneğin görüntü tanımada, erken katmanlar çizgileri ve eğrileri algılar, orta katmanlar
göz gibi şekilleri tanır, derin katmanlar ise “bu bir yüz” sonucuna varır. Derin öğrenme; görüntü
tanıma, konuşma işleme ve birçok başka uygulamaya güç verir. Büyük dil modelleri, dile odaklanan
bir daldır.

Büyük Dil Modelleri (Large Language Models, LLM): Özellikle dil için tasarlanmış derin
öğrenmenin bir alt kümesi. Bu modeller bir dizideki bir sonraki kelimeyi tahmin etmek için eğitilir.
Milyarlarca parametreye sahip oldukları ve devasa miktarda metin üzerinde eğitildikleri için “büyük”
diyoruz.

1.3.2 Kısa Bir Zaman Çizelgesi
Yapay zekanın dramatik iniş çıkışlarla dolu uzun bir geçmişi var:

Yıl Olay
1950 Alan Turing makine zekası için “Turing Testi”ni öneriyor
1956 “Yapay Zeka” terimi Dartmouth Konferansı’nda ortaya atılıyor
1960’lar-70’ler Erken iyimserlik, sonra ilerleme durduğunda ilk “Yapay Zeka Kışı”
1997 IBM’in Deep Blue’su dünya satranç şampiyonu Garry Kasparov’u yeniyor
2012 AlexNet, ImageNet yarışmasını kazanıyor ve derin öğrenme devrimini ateşliyor
2017 Google “Attention Is All You Need” makalesini yayınlıyor, Transformer mimarisi
2018 GPT-1 yayınlanıyor (117 milyon parametre)
2020 GPT-3 yayınlanıyor (175 milyar parametre), yetenekleri araştırmacıları şaşırtıyor
2022 ChatGPT başlatılıyor, yapay zeka ana akım bilince giriyor
2023+ Hızlı ilerleme devam ediyor, birkaç ayda bir yeni modeller yayınlanıyor

2017 Transformer makalesi bu kitap için özellikle önemli. İnşa etmeyi öğreneceğin mimari bu. Her
modern büyük dil modelinin temelidir.

1.4 Büyük Dil Modellerini Özel Yapan Nedir?
Dil bilgisayarlar için her zaman zor olmuştur. Neden? Çünkü dil belirsiz, bağlamsal ve sürekli
gelişiyor.

“Ali’yi bankada gördüm” cümlesini düşün: - Para çekerken mi gördün? - Nehir kenarındaki sırada
mı oturuyordu?

İnsanlar bu belirsizliği bağlamı kullanarak anında çözer. Bilgisayarlar ise geleneksel olarak zorlandı
çünkü bağlamı temsil etmenin bir yolu yoktu.

BÖLÜM 1. DİL MODELLERİ NEDİR? 14

Büyük dil modelleri bu sorunu çözdü. Transformer mimarisini kullanarak (Bölüm 3 ve Bölüm
4’te öğreneceğin gibi), her kelimeyi işlerken tüm paragraf bağlamını dikkate alabilirler. Bu sayede
belirsizliği ele alabilir, referansları takip edebilir ve uzun pasajlar boyunca tutarlılığı koruyabilirler.

1.4.1 Büyük Dil Modelleri Neler Yapabilir
Modern büyük dil modelleri oldukça çok yönlü:

• Metin yazma ve düzenleme: Denemeler, e-postalar, raporlar, yaratıcı kurgu
• Kod üretme: Düzinelerce dilde çalışan programlar
• Dilleri çevirme: Birçok dil çiftinde iyi sonuçlar veriyor (kalite değişkenlik gösterse de)
• Belgeleri özetleme: Uzun metinleri anahtar noktalara yoğunlaştırma
• Soruları yanıtlama: Geniş eğitim bilgisinden yararlanma
• Problemlerde muhakeme: Çok adımlı mantık (her zaman güvenilir olmasa da)
• Kişilikleri benimseme: Farklı davranmak için talimatları takip etme
• Analiz ve açıklama: Karmaşık konuları parçalara ayırma

Dikkat çekici olan, kimsenin bu yetenekleri açıkça programlamamış olması. Hepsi tek bir basit eğitim
hedefinden ortaya çıktı: bir sonraki kelimeyi tahmin et.

Araştırmacılar buna “beliren yetenek” diyor: basit kurallar karmaşık davranış ürettiğinde ortaya
çıkan şey. Bir sonraki kelimeyi tahmin etmenin neden muhakeme gibi görünen bir şeye yol açtığını
kimse tam olarak anlamıyor. Bunun gerçek muhakeme mi yoksa çok gelişmiş örüntü eşleştirme mi
olduğu konusunda hala aktif tartışmalar var. Alandaki en büyüleyici açık sorulardan biri.

1.4.2 Büyük Dil Modelleri (Kendi Başlarına) Neler Yapamaz
Anlaşılması gereken önemli bir şey var: büyük dil modelinin kendisi sadece bir bileşen. ChatGPT
veya Claude kullandığında, bir büyük dil modeli etrafında inşa edilmiş ve üzerine ek araçlar eklenmiş
bir ürün kullanıyorsun.

Temel büyük dil modeli şunları yapamaz: - Gerçek zamanlı bilgiye erişmek: Sadece eğitim
verisinde olanları biliyor - Önceki konuşmaları hatırlamak: Her oturum yeni başlıyor - Dünyada
eylemler gerçekleştirmek: Sadece metin üretiyor - Güvenilir matematik yapmak: Hesaplama
yerine örüntü eşleştiriyor - Ne zaman yanıldığını bilmek: Öz farkındalığı yok

Ancak modern yapay zeka ürünleri bu sınırlamaları aşmak için araçlar ekliyor: - Web
araması: ChatGPT güncel bilgi için internette arama yapabiliyor - Kod yürütme: Gerçek hesap-
lamalar yapmak için Python çalıştırabiliyor - Bellek sistemleri: Bazı ürünler konuşmalar arasında
ayrıntıları hatırlıyor - Belge alma: Yüklenen dosyalarda veya veritabanlarında arama yapabiliyor

Bu ayrım önemli. ChatGPT sana bugünün havasını verdiğinde, büyük dil modeli havayı “bilmiyor.”
Aramak için bir araç kullanıyor, sonra bulduğunu bildiriyor. Büyük dil modeli beyin gibi; araçlar ise
ona el, göz ve telefon vermek gibi.

Bölüm 4’te, bu yetenekleri RAG (Retrieval-Augmented Generation, Geri Getirme ile Zenginleştirilmiş
Üretim) ve araç entegrasyonu gibi teknikler kullanarak kendin eklemeyi öğreneceksin.

Temel Büyük Dil Modeli vs. Ürün

BÖLÜM 1. DİL MODELLERİ NEDİR? 15

Büyük Dil Modelinin Kendisi Ürünler Tarafından Eklenen Araçlar
Eğitime dayalı metin tahmin eder Güncel bilgi için web araması
Oturumlar arası bellek yok Süreklilik için bellek sistemleri
Güvenilir hesaplama yapamaz Matematik için kod yorumlayıcı
Gerçekleri doğrulayamaz Doğruluk için belge alma
Eylem gerçekleştiremez Eylemler için API entegrasyonları

Şekil 1.7: Büyük dil modeli metin tahmin eder, ürün araçlar, bellek ve arayüz ekler. Birlikte ChatGPT,
Claude veya Gemini olurlar.

1.4.3 Büyük Dil Modelleri Neden “Halüsinasyon Görür”?
Muhtemelen büyük dil modellerinin bazen yanıltıcı şeyler uydurduğunu, yanlış bilgiyi tam bir güvenle
söylediğini duymuşsundur. Buna “halüsinasyon” denir.

Neden oluyor? Çünkü büyük dil modellerinin bir gerçekler veritabanı yok. Sadece metindeki örüntülere
sahipler.

“Kayıplı Sıkıştırma” Benzetmesi

BÖLÜM 1. DİL MODELLERİ NEDİR? 16

OpenAI’nin kurucu üyesi ve Tesla’da eski Yapay Zeka Direktörü Andrej Karpathy, bir büyük dil
modelini internetin “kayıplı sıkıştırması” olarak tanımlıyor.

Tüm interneti alıp küçük bir dosyaya sıkıştırmaya çalıştığını hayal et. Her kelimeyi olduğu gibi
tutamazsın, yeterli alan yok. Bunun yerine özü, örüntüleri, genel fikirleri tutuyorsun. - Sıkıştırma:
Model genel kuralları öğreniyor (dilbilgisi, muhakeme, dünya hakkında gerçekler). - Kayıplı: Tam
ayrıntıları kaybediyor.

Şekil 1.8: Kayıplı Sıkıştırma: İnterneti bir modele sıkıştırmak “bulanık” bir yeniden yapılanma ile
sonuçlanıyor.

Ona bir soru sorduğunda, o sıkıştırılmış bilgiyi anında “açıyor.” Genellikle bilgiyi doğru şekilde
yeniden inşa eder. Ama bazen, sıkıştırma “kayıplı” olduğu için, yeniden yapılanma biraz sapıyor.
Boşlukları kaydettiği örüntülere dayalı olarak makul görünen şeylerle dolduruyor. İşte halüsinasyon
bu: bulanık bir bellekten kaynaklanan bir yeniden yapılanma hatası.

“Tüm modeller yanlıştır, ama bazıları yararlıdır.” — George Box, İstatistikçi

Box istatistiksel modellerden bahsediyordu ama bu söz büyük dil modellerine de mükemmel şekilde
uyuyor. Bunlar dil modelleri, hem de gelişmiş olanları, ama yine de model. Gerçeği olduğu gibi
yakalamıyorlar; genellikle gerçekle ilişkili örüntüleri yakalıyorlar. İşte bu yüzden yararlılar. Ama
önemli bir şeyi doğrulaman gerektiğinin nedeni de bu.

1.5 Uygulamalı Alıştırmalar
Yapay zeka hakkında okumak seni ancak belirli bir yere kadar götürür. Hadi uygulamalı olalım.

ChatGPT’ye (veya Claude ya da başka bir büyük dil modeline) erişimin varsa, bu komutları dene
ve ne olduğunu gözlemle. Yanlış cevap yok, keşfediyorsun.

BÖLÜM 1. DİL MODELLERİ NEDİR? 17

1.5.1 Deneyebileceğin Komutlar
1. Basitleştirme

Fotosentezi 5 yaşındaki bir çocuğa açıklar gibi anlat.

Kelime dağarcığını nasıl uyarladığına ve benzetmeleri nasıl kullandığına dikkat et.

2. Yaratıcı yazı

Kod hata ayıklama hakkında bir haiku yaz.

5-7-5 hece yapısını takip ettiğine dikkat et.

3. Rol yapma

Sen bir korsan kaptanısın. Bileşik faizin nasıl çalıştığını açıkla.

Karmaşık bir konuyu açıklarken kişiliği nasıl sürdürdüğünü gör.

4. Muhakeme

5 makinenin 5 widget yapmak için 5 dakikaya ihtiyacı varsa, 100 makinenin 100 widget yapmak için ne kadar zamana ihtiyacı olur?

Bu klasik bir hile sorusu. Büyük dil modeli doğru bulabiliyor mu?

5. Araç kullanım testi

Dün hangi önemli haber olayları gerçekleşti?

Büyük dil modelinin web araması varsa, güncel bilgi aramasını izle. Yoksa reddetmeli veya bilmediğini
kabul etmeli. Bu, temel model ile eklenen araçlar arasındaki farkı gösteriyor.

6. Öz farkındalık

Yapamadığın şeyler neler? Sınırlamaların hakkında dürüst ol.

Kendi kısıtlamalarını nasıl tanımladığına bak.

1.5.2 Alıştırmalar
Alıştırma 1: Bir Hata Bul

Büyük dil modeline iyi bildiğin bir konu hakkında sor. Yanlış yaptığı bir şey bulabilir misin? İnce
bir hata veya tam bir uydurma olabilir. Bu teknolojiyi eleştirmek için değil. Yapay zekaya ne zaman
güveneceğin ve ne zaman doğrulayacağın konusunda sezgini geliştirmek için.

Alıştırma 2: Varyasyon

Aynı soruyu üç ayrı konuşmada üç kez sor. Yanıtlar ne kadar farklı? Bu, büyük dil modellerinin
olasılıksal olduğunu anlamana yardımcı olur: sabit cevaplar vermezler.

Alıştırma 3: Sınırları Zorla

Büyük dil modelinin zorlandığı görevleri bulmaya çalış: - Karmaşık çok adımlı matematik (mümkünse
kod yürütme olmadan dene) - Çok belirsiz veya özel konular - Kesin gerçeksel doğruluk gerektiren
görevler - Örüntü eşleştirmeyi tuzağa düşürmek için tasarlanmış mantık bulmacaları

BÖLÜM 1. DİL MODELLERİ NEDİR? 18

Bulduklarını belgele. Nerede başarılı? Nerede başarısız? Üründe web araması veya kod yürütme gibi
araçlar varsa, farkı görmek için aynı görevleri bu araçlarla ve araçsız dene.

“Bana söyle, unuturum. Bana öğret, hatırlarım. Beni dahil et, öğrenirim.” — Benjamin
Franklin

1.6 Neden Bir Tane İnşa Etmeyi Öğrenmeli?
Merak edebilirsin: ChatGPT zaten varsa, neden bir büyük dil modeli inşa etmeyi öğrenelim?

Haklı bir soru. Ama şunu düşün: tamirciler arabaları sürücülerden daha iyi anlar. Aerodinamiği
anlayan pilotlar acil durumlarda daha iyi kararlar verir. Gıda kimyasını anlayan şefler sadece tarifleri
takip edenlerden daha iyi yemekler yaratır.

İç yapıyı anlamak, bir teknolojiyle nasıl etkileşime girdiğini değiştirir. İşte yapay zeka için neden
önemli:

1.6.1 Gizemden Arındırma
Şu anda yapay zeka sana muhtemelen sihir gibi geliyor. Bu kitabın sonunda öyle gelmeyecek. Her
bileşeni, her matematiksel işlemi, her eğitim adımını anlayacaksın.

Bu önemli çünkü sihir korku ve abartıyı davet eder. Anlayış ise iyi yargıyı.

Bir toplantıda olduğunu ve birinin bir proje için yapay zeka kullanmayı önerdiğini hayal et. Diğer
herkes başını sallıyor, uygulanabilir mi yoksa abartı mı emin değil. Ama sen biliyorsun. Büyük dil
modellerinin gerçekte neler yapıp yapamayacağını, nerede başarılı olup nerede başarısız olduklarını
anlıyorsun. Teknolojinin gerçekte nasıl çalıştığına dayalı gerçekçi bir değerlendirmeyle konuşuyorsun.

İşte yapay zekayı kullanmak ile anlamak arasındaki fark bu.

1.6.2 Kariyer Avantajı
İş piyasası hızla değişiyor. Yapay zeka becerileri sektörler arası talep görüyor: - Makine öğrenmesi
sistemlerini anlayan yazılım mühendisleri - Yapay zeka ekipleriyle çalışabilen ürün yöneticileri
- Yapay zeka yeteneklerini ve sınırlamalarını anlayan tasarımcılar - Teknolojiyi ileri götürebilen
araştırmacılar - Yapay zeka destekli ürünler inşa eden girişimciler

Fayda sağlamak için makine öğrenmesi araştırmacısı olmana gerek yok. Büyük dil modellerinin nasıl
çalıştığını anlamak seni neredeyse her teknik rolde daha etkili kılıyor.

Ama iş unvanlarının ötesinde de bir şey var: dönüştürücü bir teknolojiyi erken anlayan insanlar
zamanla birikimli bir avantaj kazanır. 1995’te interneti anlayanlar endüstrileri yeniden şekillendiren
şirketler kurdular. Yapay zekayı şimdi anlayanlar benzer bir konumda.

1.6.3 Özelleştirme
Raftan hazır büyük dil modelleri genel amaçlı. Ama belirli bir şeye ihtiyacın olabilir: - Şirketinin
belgelerinde ince ayar yapılmış bir model - Telefonda çalışan daha küçük bir model - Belirli bir alan

BÖLÜM 1. DİL MODELLERİ NEDİR? 19

için özel bir asistan - Sınırlı eğitim verisine sahip bir dil veya alanda çalışan bir sistem

Temelleri anlamak, başka birinin ihtiyacın olanı inşa etmesini beklemek yerine, modelleri ihtiyaçlarına
göre özelleştirmene, ince ayar yapmana ve uyarlamana olanak tanır.

1.6.4 İnşa Ederek Anlama
Şeylerin nasıl çalıştığını anlamak konusunda derin bir tatmin var. ChatGPT’ye bir soru sorduğunda
ve akıllıca yanıt verdiğinde, perde arkasında tam olarak ne olduğunu bileceksin. Gizem mekaniğe
dönüşür.

Kendi modelini eğittiğinde ve ilk kez tutarlı metin ürettiğini izlediğinde (yarattığına yardım ettiğin
matematiksel örüntülerden gelen metin) gerçekten heyecan verici bir an. Bu, bir sihirbazlık numarası
izlemekle nasıl yapıldığını bilmek arasındaki fark gibi.

Efsanevi fizikçi Richard Feynman, kara tahtasında bir not tutuyordu: “Yaratamazsam, anlamam.”

Bu felsefe bugün Karpathy tarafından savunuluyor; çalışmaları binlerce mühendise (bu kitabın
yazarı olan ben dahil) ilham verdi. Onun “Sıfırdan Kahramana” serisi, sinir ağlarını temelden
anlamak için altın standarttır. Kendi büyük dil modelini inşa ederek bu geleneği takip ediyorsun:
gizemi ustalığa dönüştürüyorsun.

Daha Derine Girin: Bu kitapla birlikte ham kod uygulamasını görmek istersen, Andrej
Karpathy’nin YouTube serisi “Neural Networks: Zero to Hero”yu şiddetle tavsiye ederim.
Bu kitap, o derslerin mükemmel arkadaşı olacak şekilde tasarlandı; kavramları genişletiyor,
daha fazla bağlam ekliyor ve seni üretime hazır bir sistem inşa etmenin pratiklerinde
yönlendiriyor.

1.7 Kontrol Noktası Alıştırması
Süre: 15-20 dakika

Talimatlar: Geçen hafta içinde etkileşime girdiğin 5 yapay zeka sistemini belirle. Her biri için:

1. Sistem/ürünü adlandır
2. Ne yapıyor?
3. Yapay zeka aile ağacında nereye oturuyor (AI - ML - DL - LLM)?
4. Hangi örüntüleri tanıyor?

Başlamana yardımcı olacak örnekler:

Sistem Ne yapıyor Kategori Tanınan örüntüler
Gmail spam
filtresi

E-postaları sıralar ML Spam vs. meşru e-posta örüntüleri

Netflix
önerileri

Diziler öneriyor ML İzleme tercihleri ve benzer
kullanıcılar

Siri/Alexa Sesli asistan DL (Klasik) /
LLM (Modern)

Konuşma örüntüleri, metinden niyet

BÖLÜM 1. DİL MODELLERİ NEDİR? 20

Sistem Ne yapıyor Kategori Tanınan örüntüler
Telefonda
otomatik
tamamlama

Sonraki kelimeyi
tahmin eder

ML/DL Bağlamdaki kelime dizileri

Şimdi kendin 5 tane bul!

1.8 Temel Çıkarımlar
Öğrendiklerin:

1. Yapay zeka büyük ölçekte örüntü tanımadır: istatistik + veri + hesaplama gücü
2. Makine öğrenmesi sistemleri geri bildirime dayalı parametreleri ayarlayarak öğrenir
3. Büyük dil modelleri hiyerarşiye oturur: AI → ML → Derin Öğrenme → LLM
4. Büyük dil modelleri yazabilir, kodlayabilir, çevirebilir ve muhakeme edebilir, ancak kendi

başlarına gerçek zamanlı bilgiye erişemez veya güvenilir hesaplama yapamaz
5. Halüsinasyon, büyük dil modellerinin eğitim verisinin “kayıplı sıkıştırması” olduğu için gerçek-

leşir
6. Modern yapay zeka ürünleri temel büyük dil modeli etrafına araçlar ekler (web araması, kod

yürütme)

Temel kavramlar:

• Örüntü tanıma: İnsanların manuel olarak kodlamak için çok karmaşık olan verideki örüntüleri
bulma

• Parametreler/Ağırlıklar: Eğitim sırasında ayarlanan sayılar (GPT-3’ün 175 milyarı var)
• Beliren yetenek: Basit eğitim hedeflerinden ortaya çıkan karmaşık yetenekler
• Halüsinasyon: Devasa bilgiyi örüntülere sıkıştırmaktan kaynaklanan yeniden yapılanma

hataları
• Temel Büyük Dil Modeli vs Ürün: Model metin tahmin eder, araçlar ona gerçek dünya

yetenekleri verir

Yapay zeka hiyerarşisi:

Yapay Zeka (en geniş)
��� Makine Öğrenmesi (veriden öğrenir)

��� Derin Öğrenme (çok katmanlı sinir ağları)
��� Büyük Dil Modelleri (sonraki kelimeyi tahmin eder)

INFO İnceleme Sorusu Cevapları

Bu inceleme sorularının tüm cevapları Ek D’de mevcuttur.

BÖLÜM 1. DİL MODELLERİ NEDİR? 21

1.9 İnceleme Soruları
1. Yapay zekanın en basit tanımı nedir?

2. Makine Öğrenmesi geleneksel programlamadan nasıl farklıdır?

3. Büyük dil modelleri yapay zeka aile ağacında nereye oturur?

4. Büyük dil modellerinin iyi olduğu üç şeyi ve iyi yapamadığı üç şeyi adlandırın.

5. Büyük dil modellerinde halüsinasyon neden gerçekleşir?

6. Bir yapay zeka araştırmacısı olmayı planlamasan bile, büyük dil modellerinin nasıl çalıştığını
anlamak neden değerli olabilir?

1.10 Sırada Ne Var
Artık yapay zekanın ne olduğunu ve olmadığını anlıyorsun. Büyük dil modellerinin manzarada nereye
oturduğunu ve onları özel yapan şeyi biliyorsun.

Ama üst düzeyde konuşuyorduk. Bir bilgisayar metinle gerçekte nasıl çalışır? Sadece sayıları anlar.
Kelimelerden anlamı yakalayan bir şekilde sayılara nasıl gideriz?

İşte Bölüm 2: Bilgisayarlar Kelimeleri Nasıl “Anlar”. Metin nasıl matematiğe dönüşür, her şeyin
üzerine inşa edildiği temeli keşfedeceğiz.

Bölüm 2

Bilgisayarlar Kelimeleri Nasıl
“Anlar”?

“Dilimin sınırları, dünyamın sınırları anlamına gelir.” — Ludwig Wittgenstein, Filozof

Neler Öğreneceksin - Kelimeleri temsil etmek için basit yaklaşımların (ASCII gibi) neden işe
yaramadığını - Kelimelerin matematiksel bir uzayda konumlar olarak nasıl temsil edilebildiğini -
Gömme (embedding) kavramının ne olduğunu ve neden bu kadar güçlü olduğunu - “Kral - adam
+ kadın = kraliçe” denkleminin neden gerçekten işe yaradığını - Makinelerin kelime anlamlarını
bağlamdan nasıl öğrendiğini

Temel Terimler

• Gömme (Embedding): Bir kelimenin anlamını yakalayan sayılardan oluşan vektör gösterimi
Terimler sözlüğüne bak

• Vektör (Vector): Uzayda bir konumu temsil eden sayılar listesi
• Boyut (Dimension): Gömme uzayındaki bir eksen; daha fazla boyut daha nüanslı temsillere

olanak tanır Terimler sözlüğüne bak
• Kelime Uzayı (Word Space): Kelime gömmelerinin bulunduğu matematiksel uzay; mesafeler

anlamsal farklılıklara karşılık gelir
• Dağılımsal Hipotez (Distributional Hypothesis): Benzer bağlamlarda görünen kelimelerin benzer

anlamlara sahip olduğu fikri
• Anlamsal Benzerlik (Semantic Similarity): İki kelimenin anlam olarak ne kadar ilişkili olduğu;

gömme uzayında mesafe olarak ölçülebilir
• Kosinüs Benzerliği (Cosine Similarity): İki vektörün ne kadar benzer olduğunu ölçmek için

kullanılan standart yöntem; -1 ile 1 arasında değer alır Terimler sözlüğüne bak
• Word2Vec: 2013 yılında geliştirilen ve metinden kelime gömmelerini öğrenmek için kullanılan

temel bir sistem
• Öz-Denetimli Öğrenme (Self-Supervised Learning): Öğrenme sinyalinin insan etiketlerinden

değil, verinin kendisinden geldiği eğitim yaklaşımı

22

BÖLÜM 2. BİLGİSAYARLAR KELİMELERİ NASIL “ANLAR”? 23

Kontrol Noktası

Bu bölümün sonunda şunları anlayacaksın:

1. Kelimelerin anlamı yakalayan sayılara nasıl dönüştüğünü
2. Gömmelerin neden yüzlerce boyut kullandığını
3. Bağlamın makinelere anlamsal ilişkileri nasıl öğrettiğini
4. Gömmeleri pratikte nasıl görebileceğini
5. Gömmeleri bağlamsal anlayışa dönüştürmek için neden dikkate (attention) ihtiyaç duyulduğunu

Bölüm 1’de, BDM’lerin (Büyük Dil Modelleri) bir sonraki kelimeyi tahmin ettiğini belirtmiştik. Ama
bu hemen akla bir soru getiriyor: bilgisayarlar yalnızca sayıları anlar. “Kedi” veya “demokrasi” veya
“güzel” kelimelerini okuyamazlar, yalnızca 0’lar ve 1’lerle işlem yapabilirler.

Peki kelimelerden sayılara, anlamı da koruyarak nasıl geçebiliriz?

Bu bölüm tam da bu soruya yanıt veriyor. Çözüm, yapay zekanın en zarif fikirlerinden biri. Ve bunu
anlamak, bundan sonraki her şey için temel oluşturuyor.

2.1 Bilgisayarın İkilemi
Yalnızca sayılarla konuşan bir arkadaşına bir şeyler öğretmeye çalıştığını hayal et. “Kedi” kavramını
açıklamak istiyorsun. Bunu nasıl yaparsın?

İlk içgüdün harfleri sayılara dönüştürmek olabilir. Sonuçta bilgisayarlar metni bu şekilde saklıyor.

2.1.1 ASCII Yaklaşımı (Ve Neden Başarısız Olur)
Klavyendeki her karakterin bir sayısı var. ‘k’ harfi 107, ‘e’ 101, ‘d’ 100, ‘i’ 105. Yani “kedi” kelimesi
[107, 101, 100, 105] oluyor.

Sorun çözüldü mü? Hayır, hiç de değil.

Şuna bir bak: - “kedi” = [107, 101, 100, 105] - “kent” = [107, 101, 110, 116]

Bu sayılar neredeyse aynı (sadece son iki pozisyonda küçük farklar var). Oysa bir kedi ile bir kent
arasında hiçbir ortak nokta yok. Biri canlı bir hayvan, diğeri bir yerleşim yeri.

Bir de şuna bak: - “kedi” = [107, 101, 100, 105] - “yavru kedi” = [121, 97, 118, 114, 117, 32, 107,
101, 100, 105] - “kedicik” = [107, 101, 100, 105, 99, 105, 107]

Bu sayılar tamamen farklı görünüyor, oysa üç kelime de aslında aynı yaratığı ifade ediyor.

ASCII kodları yazımı yakalar, anlamı değil. Üstelik yazım keyfi bir şey: “kedi”nin k-e-d-i olarak
yazılması için özel bir neden yok, başka bir şey de olabilirdi.

BÖLÜM 2. BİLGİSAYARLAR KELİMELERİ NASIL “ANLAR”? 24

2.1.2 Kelime Kimliği Yaklaşımı (Ve Neden O da Başarısız Olur)
Tamam, harfleri unutalım. Peki ya her kelimeye benzersiz bir kimlik (ID) atasak?

• kedi = 1
• köpek = 2
• balık = 3
• kedigil = 4
• yavru kedi = 5
• otomobil = 6

Şimdi “kedi” ve “kent” farklı sayılara sahip. Ama yeni bir sorun yarattık: bu sayıların birbirleriyle
hiçbir ilişkisi yok.

Bu sistemde “kedi” (1) ile “yavru kedi” (5) arasındaki uzaklık, “kedi” (1) ile “otomobil” (6) arasındaki
uzaklık kadar. Sayılar, kedilerin ve yavru kedilerin benzer olduğunu, kedilerle otomobillerin benzer
olmadığını yakalamıyor.

Bu kimliklerle matematik yapabiliriz: kedi + köpek = 3. Ama bu balığa eşit, ki matematiksel bir
saçmalık. Bu da kimliklerin ilişkileri ne kadar kötü yakaladığını gösteriyor.

2.1.3 Gerçekte Neye İhtiyacımız Var
Aslında ihtiyacımız olan şey şu: kelimeleri sayılara öyle dönüştürmeli ki:

1. Benzer kelimeler benzer sayılar alsın
2. İlişkisiz kelimeler farklı sayılar alsın
3. Kelimeler arasındaki ilişkiler korunsun

Bunun mümkün olduğu ortaya çıktı. Ama sayıları biraz farklı düşünmemiz gerekiyor.

2.2 Konum Olarak Kelimeler
İşte kilit içgörü: her kelimeye tek bir sayı vermek yerine, her kelimeye bir konum verelim.

Bir şehir haritasını düşün. Haritada her konumun koordinatları var: bir X konumu ve bir Y konumu.
Birbirine yakın iki restoran benzer koordinatlara sahip. Şehrin karşı taraflarında bulunan bir restoran
ve bir park ise çok farklı koordinatlara sahip.

Peki ya kelimeler için de aynı şeyi yapsak?

2.2.1 Kelime Uzayı
İki boyutlu bir uzay hayal et, milimetrik kağıt gibi. Şimdi kelimeleri anlamlarına göre bu kağıdın
üzerine yerleştirdiğini düşün:

Bu görselleştirmede:

BÖLÜM 2. BİLGİSAYARLAR KELİMELERİ NASIL “ANLAR”? 25

Şekil 2.1: Kelimelerin 2 boyutlu anlamsal uzayda çizilmesi, konumun anlamı yansıttığı yer. Benzer
kelimeler bir araya kümelenir.

BÖLÜM 2. BİLGİSAYARLAR KELİMELERİ NASIL “ANLAR”? 26

• Cinsiyet Ekseni (X ekseni): Kelimeler erkekten (sol) kadına (sağ) doğru kayıyor. “Adam”
ve “kadın”ın bu eksende birbirinden uzak olduğuna, ama benzer yüksekliklerde olduğuna
dikkat et.

• Yaş Ekseni (Y ekseni): Kelimeler gençten (alt) yaşlıya (üst) doğru kayıyor. “Çocuk” altta,
“adam” ortada, “büyükbaba” üstte.

• Kümelenme: Benzer anlamsal özelliklere sahip kelimeler benzer konumlarda yer alıyor.
“Çocuk” ve “kız” aynı yükseklikte (aynı yaş) ama cinsiyet ekseninin karşı taraflarında. “Adam”
ve “kadın” da aynı kalıbı paylaşıyor: aynı yaş, farklı cinsiyet.

(Not: Bu basitleştirilmiş görselleştirmede, kelimeleri Cinsiyet ve Yaş gibi yorumlanabilir boyutlara
eşledik. Gerçek gömmeler ise eğitim verisinden otomatik olarak ortaya çıkan yüzlerce boyut kullanır.
Bu boyutlar nadiren net insan kavramlarına karşılık gelir; matematiksel olarak yararlı ama genellikle
adlandırılamayan istatistiksel kalıpları yakalarlar.)

Bir kelimenin konumu anlamı hakkında bilgi taşır. Benzer anlamlar benzer konumlara yol açar.

2.2.2 Koordinatlar Anlamı Yakalar
2 boyutlu bir uzayda her kelimenin iki sayısı var (X ve Y koordinatları):

• “çocuk” [1.0, 2.0] konumunda olabilir (Cinsiyet=1, Yaş=2)
• “adam” [1.0, 7.0] konumunda olabilir (Cinsiyet=1, Yaş=7)
• “kadın” [9.0, 7.0] konumunda olabilir (Cinsiyet=9, Yaş=7)

INFO Matematik Notu: Vektör Nedir?

Vektör, uzayda bir konumu temsil eden sayılar listesinden başka bir şey değil. [1.0, 2.0]
listesi 2 boyutlu bir vektör. Matematik detayları için endişelenme; vektörleri daha derinlemesine
anlamak istersen Ek C.1’e bakabilirsin (Matematik Tazeleme: Skalerler, Vektörler ve Matrisler).

Kilit içgörü şu: bu uzayda iki kelime ne kadar yakınsa, anlamları o kadar benzer.

Bunu matematiksel olarak ölçebiliriz. Bu 2 boyutlu ızgarada “çocuk”, “kadın”a (yaklaşık 9.4 mesafe)
göre “adam”a (mesafe 5) daha yakın.

Gerçek yüksek boyutlu gömmelerde standart yaklaşım, vektörler arasındaki açıyı ölçen kosinüs
benzerliğini kullanmak. Benzer yönleri gösteren iki kelime benzer demek.

INFO Matematik Notu: Kosinüs Benzerliği Nasıl Çalışır?

Kosinüs benzerliği, iki vektörün ne kadar benzer olduğunu, mutlak mesafelerine değil
aralarındaki açıya bakarak ölçer. Bu özellik, onu kelime anlamlarını karşılaştırmak için ideal
kılıyor. Gerçek hesaplamayı görmek istersen Ek C.4’e bakabilirsin (Matematik Tazeleme: İç
Çarpımlar ve Benzerlik).

Artık anlam ilişkilerini yakalayan sayılarımız var.

BÖLÜM 2. BİLGİSAYARLAR KELİMELERİ NASIL “ANLAR”? 27

2.2.3 Ancak İki Boyut Yeterli Değil
Elbette iki boyut dilin tüm nüanslarını yakalayamaz. Şu kelimeleri düşün:

• “kral” ve “kraliçe” (ikisi de kraliyet)
• “kral” ve “adam” (ikisi de erkek)
• “kral” ve “başkan” (ikisi de lider)

Bir kral, bir yönden kraliçeye (kraliyet), başka bir yönden adama (cinsiyet), yine başka bir yönden
başkana (liderlik) benzer. Tüm bu farklı benzerlik türlerini yakalamak için daha fazla boyuta
ihtiyacımız var.

Peki ya yüzlerce boyutumuz olsaydı? Ya da binlerce?

2.2.4 Daha Yüksek Boyutları Görselleştirme
768 boyutu hayal etmek zor, ama 3 boyutu görselleştirmeyi deneyebiliriz. Üçüncü bir eksen (Kraliyet)
ekleyerek kelimeler arasındaki başka bir ilişki türünü yakalayabiliriz.

(Not: Bu 3 boyutlu diyagramda rengi yukarıdaki 2 boyutlu diyagramdan farklı kullanıyoruz. Burada
renk cinsiyeti değil, kraliyet seviyesini kodluyor.)

Bu 3 boyutlu görselleştirmede, renk gradyanının üçüncü boyutu nasıl kodladığına dikkat et: mavi
düşük kraliyeti (çocuk, kız, adam, kadın gibi sıradan insanlar), turuncu ise yüksek kraliyeti (kral,
kraliçe, prens, prenses) gösteriyor. Uzaysal kümelenme ilişkileri görünür kılıyor: prensin krala
çocuktan daha yakın olduğunu, prensesin de kraliçeye kızdan daha yakın olduğunu görebilirsin. Ve
bu sadece üç boyutla. 768 boyutu görselleştiremezsin, ama matematik aynı şekilde çalışıyor: benzer
anlamlara sahip kelimeler bu yüksek boyutlu uzayda birbirine komşu oluyor.

2.3 Gömmelerin Büyüsü
Modern yapay zekanın tam olarak yaptığı şey bu. İki boyut yerine, kelimeler yüzlerce veya binlerce
boyutlu uzaylarda temsil ediliyor.

Bu temsil (bir kelimenin yüksek boyutlu uzaydaki konumunu kodlayan sayılar listesi) gömme olarak
adlandırılıyor.

2.3.1 Bir Gömme Nasıl Görünür
İşte gerçek bir gömmenin nasıl görünebileceği (basitleştirilmiş):

"kral" = [0.82, 0.31, 0.91, -0.24, 0.55, 0.12, ...] (toplam 768 sayı)
"kraliçe" = [0.79, 0.33, 0.88, -0.19, 0.52, 0.15, ...] (benzer!)
"muz" = [-0.51, 0.89, 0.11, 0.63, -0.22, 0.77, ...] (çok farklı!)

“Kral” ve “kraliçe”nin her pozisyonda benzer sayılara sahip olduğuna, “muz”un ise tamamen farklı
sayılara sahip olduğuna dikkat et. Bunun nedeni kralların ve kraliçelerin anlamsal olarak ilişkili
olması, muzun ise ikisiyle de ilişkisiz olması.

BÖLÜM 2. BİLGİSAYARLAR KELİMELERİ NASIL “ANLAR”? 28

Şekil 2.2: Üçüncü bir boyut (Kraliyet) eklemek, daha fazla anlamsal ilişkiyi yakalamaya olanak tanır.
Kral ve kraliçe yüksek kraliyet paylaşırken, çocuk ve kız sıradan insanlar olarak kalır.

BÖLÜM 2. BİLGİSAYARLAR KELİMELERİ NASIL “ANLAR”? 29

Biliyor muydun? Çok Dilli Sihir

Çok dilli BDM’ler dikkat çekici bir şey keşfediyor: “dog” (İngilizce) ve “hund” (Almanca) gibi
kelimeler, kimse modele bunların ilişkili olduğunu söylemeden gömme uzayında komşu oluyor. Nasıl
mı? Eğitim sırasında bu kelimeler benzer bağlamlarda görünüyor (kedi kovalar, dört ayağı vardır,
havlar), bu yüzden model bunların aynı kavrama atıfta bulunduğunu öğreniyor. Yani bir BDM
İngilizce’de köpekler hakkında bir gerçek öğrendiğinde, bunu Almanca’da da otomatik olarak “biliyor”.
Gömme uzayı dile göre değil, anlama göre düzenleniyor.

2.3.2 Daha Fazla Boyut Neden Yardımcı Olur
Bir insanı tanımlamak gibi düşün:

• 1 boyut (boy): Uzun insanları kısalardan ayırt edebilirsin.
• 2 boyut (boy + kilo): Artık uzun-inceden uzun-kiloluyu ayırt edebilirsin.
• 5 boyut (yaş, saç rengi, göz rengi ekle): Çok daha spesifik olur.
• 100 boyut: Görünümdeki ince farkları tanımlayabilirsin.

Benzer şekilde:

• Kelimeler için 2 boyut: Kaba gruplamalar (hayvanlar vs. nesneler)
• 100 boyut: Memelileri sürüngenlerden, evcil hayvanları yabani hayvanlardan ayırabilir
• 768 boyut: “Gezinti”nin keyifli bir yürüyüş, “yürüyüş”ün ise kararlı bir hareket olduğu gibi

ince nüansları yakalayabilir

Modern BDM’ler 768 (daha küçük modeller) ile 12.288 veya daha fazlası (büyük modeller) arasında
değişen gömme boyutları kullanıyor. 768 sayısı yaygın bir standart çünkü etkili BERT-base ve GPT-2
küçük modellerinde kullanılan boyuttu. Her boyut anlamın bir yönünü yakalıyor, ama (önemli olarak)
hiçbir tekil boyutun “boyut” veya “canlılık” gibi net bir insan yorumu yok. Boyutlar eğitimden
ortaya çıkıyor ve anlamı dağıtık, karmaşık şekillerde kodluyor.

2.3.3 Neden “Gömme”?
Terim matematiğe dayanıyor. Matematikte “gömme”, önemli yapıyı korurken nesneleri bir uzaydan
diğerine eşlemek demek. Biz de ayrık sembolleri (“kedi” ve “kent”in doğal bir ilişkisi olmadığı
kelimeleri) alıp sürekli bir uzaya (konumların anlamı kodladığı yere) gömüyoruz.

Kelimeler bu matematiksel uzaya gömüldükten sonra mesafeleri ölçebilir, komşuları bulabilir ve
aritmetik yapabiliriz. Dil işlemeyi matematiksel yapan, dolayısıyla bilgisayarların yapabileceği bir
şey haline getiren tam da bu.

BÖLÜM 2. BİLGİSAYARLAR KELİMELERİ NASIL “ANLAR”? 30

2.4 Ünlü Denklem
2013 yılında Google’daki araştırmacılar beklenmedik bir keşif yaptı. Kelime gömmeleri oluşturmak
için bir sistem eğittiklerinde dikkat çekici bir şey ortaya çıktı.

Kelimelerle aritmetik yapabiliyorlardı.

2.4.1 Kral - Adam + Kadın = ?
“Kral” için gömmeyi al. “Adam” için gömmeyi çıkar. “Kadın” için gömmeyi ekle. Ne elde edersin?

Sonuç uzayda bir nokta ve bu noktaya en yakın kelime dağarcığı kelimesi… “kraliçe”.

en_yakın_kelime(gömme("kral") - gömme("adam") + gömme("kadın")) = "kraliçe"

Hesaplanan vektör tam olarak kraliçenin gömmesine eşit değil, ama kraliçe kelime dağarcığında o
konuma en yakın kelime.

Şekil 2.3 bu ilişkiyi geometrik olarak gösteriyor. Mor okların (adam–>kadın ve kral–>kraliçe’nin
“cinsiyet yönü”) nasıl paralel olduğuna dikkat et. “Adam”ı “kadın”a değiştiren aynı dönüşüm, “kral”ı
da “kraliçe”ye dönüştürüyor.

Şekil 2.3: Gömme uzayında vektör aritmetiği: “kral”dan (mavi nokta) başlayarak, adam–>kadın’ı
dönüştüren aynı yönü uygulamak (mor ok), hesaplanmış bir sonuç (turuncu daire) üretir. O noktaya
en yakın kelime dağarcığı kelimesi “kraliçe”dir (yeşil nokta).

Bunun ne anlama geldiğini düşün. Sistem, kimse söylemeden şunu öğrenmiş: - “Kral” ile “adam”

BÖLÜM 2. BİLGİSAYARLAR KELİMELERİ NASIL “ANLAR”? 31

arasındaki ilişki (erkek kraliyet ile erkek) - “Kraliçe” ile “kadın” arasındaki ilişkiyle aynı (kadın
kraliyet ile kadın)

Bunu kimse programlamadı. Gömmeler dilin temel yapısını yakalamış.

2.4.2 Daha Fazla Örnek
Bu birçok ilişki için çalışıyor (ama mükemmel değil; bu “benzetme görevleri”ndeki doğruluk genellikle
%40-70 civarında, %100 değil):

Başkentler: - Paris - Fransa + İtalya ≈ Roma - Tokyo - Japonya + Almanya ≈ Berlin

Fiil zamanları: - yürüyor - yürümek + yüzmek ≈ yüzüyor - koştu - koşmak + uçmak ≈ uçtu

Karşılaştırmalar: - daha büyük - büyük + küçük ≈ daha küçük - en hızlı - hızlı + yavaş ≈ en
yavaş

İlişkiler: - erkek kardeş - adam + kadın ≈ kız kardeş - amca - adam + kadın ≈ teyze

2.4.3 Bu Ne Ortaya Koyuyor
Bu kelime aritmetiği derin bir şeyi ortaya koyuyor: gömmeler sadece benzer kelimeleri bir araya
getirmiyor. Kelimeleri, ilişkilerin tutarlı olacağı şekilde düzenliyorlar.

Gömme uzayında adamdan kadına doğru “yön”, kraldan kraliçeye, erkek kardeşten kız kardeşe,
amcadan teyzeye doğru yönle kabaca aynı. Gömmeler cinsiyet dönüşümünün soyut bir kavramını
öğrenmiş.

Benzer şekilde, seni Fransa’dan Paris’e, Japonya’dan Tokyo’ya, Almanya’dan Berlin’e götüren bir
“başkenti” yönü var.

2.4.4 Önemli Uyarılar
Bu her zaman mükemmel çalışmıyor. Bazen en yakın kelime tam olarak doğru değil. Bazen eğitim
verisindeki önyargılar sorunlu kalıplar yaratıyor. Aritmetik yaklaşık, kesin değil.

Ama bunun herhangi bir şekilde çalışması (kelimelerle anlamlı aritmetik yapabilmen), gömmelerin dil
yapısı hakkında gerçek bir şeyi yakaladığını gösteriyor. Bunlar rastgele sayılar değil; anlam haritası.

INFO Bağlantı: Kayıplı Sıkıştırma

Bölüm 1’deki “kayıplı sıkıştırma” benzetmesini hatırlıyor musun? Gömmeler o sıkıştırmanın
ilk katmanı, insan dilinin sonsuz karmaşıklığını alıp sabit boyutlu vektörlere sıkıştırıyor. Tüm
model daha sonra bu sıkıştırmayı dikkat ve ileri beslemeli katmanlar aracılığıyla sürdürüyor.
Tıpkı sıkıştırılmış bir görüntünün bazı detayları kaybetmesi gibi, model kesin gerçekleri değil
kalıpları yakalıyor. Bu nedenle BDM’ler hiç tam olarak görmedikleri kavramlar hakkında akıl
yürütebiliyor, ama aynı zamanda bazen “halüsinasyon” olarak adlandırılan makul görünen
ancak yanlış bilgiler de üretebiliyor.

BÖLÜM 2. BİLGİSAYARLAR KELİMELERİ NASIL “ANLAR”? 32

2.5 Gömmeler Nasıl Öğrenilir?
Bu sihirli sayılar nereden geliyor? Bir sistem, “kral” ve “kraliçe”nin birbirine yakın, “kral” ve
“muz”un uzak olması gerektiğini nasıl öğreniyor?

Cevap güzel bir şekilde basit: bağlam.

2.5.1 Bir Kelimeyi Arkadaşlarından Tanırsın
Dilbilimci J.R. Firth’ün bu sözü temel bir içgörüyü yakalıyor: benzer bağlamlarda görünen kelimeler
benzer anlamlara sahip olma eğiliminde.

Şu cümleleri düşün: - “___ paspasın üzerinde oturdu.” - “___ fareyi kovaladı.” - “___ ___’nın
kürkünü okşadı.”

Boşluklara hangi kelimeler uyar? Kedi, köpek, yavru kedi, köpek yavrusu. Bu kelimeler benzer
bağlamlarda görünüyor, demek ki ilişkili anlamlara sahipler.

Şimdi şunları düşün:

• “___’ya para yatırdım.”
• “___ kredimi onayladı.”
• “___’da gişe görevlisi olarak çalışıyor.”

Cevap “banka” (finans kurumu). Kedi cümlelerinden farklı bağlamlar, farklı anlam kümesi.

2.5.2 Tahmin Etmekten Öğrenme
Gömme sistemleri gerçekte şöyle öğreniyor. Temel fikir (Word2Vec tarafından 2013’te öncülük edildi):

1. Büyük miktarda metin al (internetten, kitaplardan vb. milyarlarca kelime)
2. Bir tahmin görevi oluştur: Bir boşluğun etrafındaki kelimeler verildiğinde, eksik kelimeyi

tahmin et
3. Gömmeleri ayarla öyle ki benzer bağlamlardaki kelimeler benzer konumlar alsın

Örneğin “___ paspasın üzerinde oturdu” verildiğinde sistem “paspas”, “zemin”, “kanepe” vb.’nin
muhtemel olduğunu tahmin etmeli. “Banka ___ onayladı” verildiğinde ise “kredi”, “ipotek”,
“başvuru” tahmin etmeli.

Milyarlarca tahmin sayesinde sistem şunları öğreniyor:

• “Kedi” ve “köpek” benzer bağlamlarda görünüyor –> benzer gömmeler alıyorlar
• Çeşitli bağlamlarda görünen kelimeler (hem “nehir” hem de “para” yakınında “banka” gibi)

uzlaşmacı gömmelerle sonuçlanıyor, bu birazdan ele alacağımız bir sınırlama
• “Kral” kraliyet, liderlik, erkek hükümdarlar hakkında bağlamlarda görünüyor –> gömmesi

tüm bunları kodluyor

2.5.3 Öz-Denetimin Güzelliği
Dikkat çekici olan şey, bunun insan etiketlemesi gerektirmemesi. Sistemin “kedi” ve “yavru kedi”nin
ilişkili olduğunu kimsenin söylemesi gerekmedi. Sistem bunu yalnızca bağlamdan anladı.

BÖLÜM 2. BİLGİSAYARLAR KELİMELERİ NASIL “ANLAR”? 33

Buna öz-denetimli öğrenme deniyor: eğitim sinyali insan açıklamalarından değil, verinin yapısının
kendisinden geliyor. Milyarlarca kelime üzerinde eğitim yapabilmemizin nedeni de bu, çünkü bu
kadar veriyi elle etiketlemek imkansız olurdu.

2.5.4 Statik ve Bağlamsal Gömmeler
Açıklamamız gereken önemli bir ayrım var. Word2Vec, her kelimeye bağlamdan bağımsız olarak
tek bir sabit gömme veriyor. “Banka” kelimesi, “nehir kıyısı”nda mı yoksa “banka hesabı”nda mı
göründüğüne bakmaksızın aynı gömmeyi alıyor; farklı anlamları arasında bir uzlaşma konumu.

Modern BDM’ler bunu önemli ölçüde geliştiriyor. Bağlamsal gömmeler üretiyorlar: aynı kelime
için çevreleyen kelimelere bağlı olarak farklı gömmeler. Bir transformer modelinde “banka”, “nehir
kıyısı”nda bir gömme ve “banka hesabı”nda tamamen farklı bir gömme alıyor.

Nasıl mı? Bölüm 3’te ele alacağımız dikkat mekanizması aracılığıyla. İlk kelime gömmesi sadece bir
başlangıç noktası; kullanılmadan önce bağlama göre değiştiriliyor.

Dolayısıyla Word2Vec tarzı statik gömmeler önemli bir sıçramaydı, ama modern BDM’ler onların
ötesine geçti. Statik gömmeleri anlamak sezgini oluşturuyor; dikkati anlamak ise bu sınırlamaları
nasıl aştığımızı gösteriyor.

2.6 Kelimelerden Cümlelere
Bireysel kelimeleri temsil etme sorununu çözdük. Ama dil sadece kelimeler değil, cümleler, paragraflar,
belgeler. Dizileri nasıl ele alırız?

2.6.1 Naif Yaklaşım: Ortalama Alma
En basit fikir: bir cümledeki tüm kelime gömmelerinin ortalamasını al.

“Kedi oturdu” –> (gömme(“kedi”) + gömme(“oturdu”)) / 2

Bu sana cümleyi temsil eden tek bir vektör veriyor. Ve işe yarıyor… bir bakıma. Benzer belgeler
bulmak gibi bazı görevler için ortalama alma şaşırtıcı derecede etkili.

Ama ölümcül bir kusur var.

2.6.2 Sıra Önemlidir!
Şu cümleleri düşün: - “Köpek adamı ısırdı” - “Adam köpeği ısırdı”

Aynı kelimeler. Aynı ortalama gömme. Tamamen farklı anlamlar.

İlki olağandışı değil (köpekler bazen ısırır). İkincisi tuhaf ve haber değeri taşıyor.

Ya da şunları düşün: - “Film iyi değildi” - “Film kötü değil, iyiydi”

Ortalama alma her iki cümle için “iyi” ve “değil” kelimelerini benzer şekillerde karıştırıyor, birinin
olumsuz diğerinin olumlu olduğunu kaçırıyor.

BÖLÜM 2. BİLGİSAYARLAR KELİMELERİ NASIL “ANLAR”? 34

2.6.3 Sorun
Kelime gömmeleri (en azından Word2Vec gibi statik olanlar) kelimelerin izole anlamlarını yakalıyor.
Ama dildeki anlam şunlara bağlı:

• Kelime sırası: “Köpek adamı ısırdı” ile “Adam köpeği ısırdı” aynı anlama gelmiyor
• Uzun menzilli ilişkiler: “Paspasın üzerinde oturan kedi…” “Oturan” neye atıfta bulunuyor?
• Bağlam değişikliği: “İyi değil” ifadesi “iyi”nin anlamını değiştiriyor
• Belirsizliğin giderilmesi: “Bankaya gittim” “nehir” ve “para” yakınında farklı şeyler ifade

ediyor

Ortalama alma tüm bu bilgiyi atıyor. Tam bağlama bakabilen ve kelimelerin birbirleriyle nasıl ilişkili
olduğunu anlayabilen bir şeye ihtiyacımız var.

2.6.4 Neye İhtiyacımız Var
İhtiyacımız olan:

1. Kelimeleri sırayla işlemek, sırayı korumak
2. Kelimelerin bağlama göre birbirlerinin anlamlarını etkilemesine izin vermek
3. Metindeki uzun mesafeli ilişkileri ele almak
4. Aynı kelime için farklı bağlamlarda farklı temsiller üretmek

Dikkat mekanizması tam olarak bunu yapıyor ve Bölüm 3’ün konusu da bu. Dikkat, her kelimenin
diğer her kelimeye “bakmasına” ve neyin ilgili olduğuna karar vermesine olanak tanıyor. Gömmeleri
iyi bir fikirden modern yapay zekanın temeline dönüştüren yenilik bu.

Şimdilik sınırlamayı anla: statik gömmeler gerekli ama yeterli değil. Bize kelimeler için matematiksel
bir başlangıç noktası veriyorlar, ama bunları bağlamsal anlamlara birleştirmek için ek mekanizmaya
ihtiyacımız var.

2.7 Uygulamalı Alıştırmalar
Teori iyi. Deneyim daha iyi. Gömmeleri pratikte görelim.

2.7.1 Keşfedilecek Çevrimiçi Araçlar
TensorFlow Embedding Projector (projector.tensorflow.org) - Kelime gömmelerini 3 boyutlu
görselleştiriyor - Kelimeler arayabilir ve komşularını görebilirsin - Farklı kümeleri görmek için
görselleştirmeyi döndürmeyi dene

Word2Vec Demo Siteleri - “word2vec online demo” ara - Birçok site kelime aritmetiği denemenize
izin veriyor - “Kral - adam + kadın” yaz ve ne çıktığını gör

2.7.2 Alıştırmalar
Alıştırma 1: Kümeleri Bul

BÖLÜM 2. BİLGİSAYARLAR KELİMELERİ NASIL “ANLAR”? 35

Bir gömme görselleştiricisinde şu kelimeleri ara ve yakınında ne kümelendiğini not et: - “mutlu”:
Hangi duygular onunla kümeleniyor? - “doktor”: Hangi meslekler komşu? - “kırmızı”: Hangi diğer
kelimeler yakın?

Alıştırma 2: Kelime Aritmetiği Dene

Bir kelime aritmetiği demosu bulursan, şunları dene:

• Fransa - Paris + Londra = ?
• iyi - daha iyi + daha kötü = ?
• köpek - köpek yavrusu + yavru kedi = ?

Beklenen sonuçları aldın mı? Almadıysan, bunun nedeni ne olabilir?

Alıştırma 3: Farklı Olanları Bul

Bir gömme görselleştiricisinde “elma” ara. İki küme bulabilirsin:

1. Meyveler (muz, portakal, armut)
2. Teknoloji (iPhone, Mac, Google)

Aynı kelime farklı bağlamlarda görünüyor ve birden fazla konuma sahip olabiliyor (ya da anlamlar
arasında bir uzlaşma olan bir konum).

2.8 Kontrol Noktası Alıştırması
Süre: 20-30 dakika Malzemeler: Kağıt veya elektronik tablo (kod gerekmez)

2.8.1 Talimatlar
10 hayvan için basit bir 3 boyutlu gömme sistemi oluştur.

1. Hayvanları ayıran 3 özellik seç:

• Örnek: boyut, evcil, tehlikeli
• Ya da: suda yaşayan, bacak sayısı, etçil

2. Her hayvanı her özellikte -1 ile +1 arasında puanla

3. Gömmelerini oluştur:

Hayvan Boyut Evcil Tehlikeli
Kedi -0.5 0.9 -0.7
Aslan 0.8 -1.0 0.9
Köpek 0.0 0.9 -0.3
Japon Balığı -0.9 0.8 -1.0
Köpek Balığı 0.7 -1.0 0.9
Hamster -0.9 0.9 -0.9
Ayı 0.9 -0.9 0.8

BÖLÜM 2. BİLGİSAYARLAR KELİMELERİ NASIL “ANLAR”? 36

Hayvan Boyut Evcil Tehlikeli
At 0.7 0.7 -0.2
Kurt 0.3 -0.8 0.6
Tavşan -0.7 0.7 -0.9

4. Gömmelerini analiz et:
• Hangi hayvanlar en benzer? (3 boyutlu uzayında en yakın)
• “Kedi” ve “aslan” bir araya kümeleniyor mu? (kedigiller)
• “Kedi” ve “hamster” bir araya kümeleniyor mu? (küçük evcil hayvanlar)
• Hangi gruplama daha güçlü ortaya çıkıyor?

5. Yansıma:
• Boyut seçimin hangi benzerliklerin ortaya çıktığını belirledi mi?
• Hayvanları daha iyi ayırt etmek için hangi boyutları eklerdin?
• 768 boyutun daha fazla nüans yakalayacağını görebiliyor musun?

2.9 Temel Çıkarımlar
Öğrendiklerin:

1. ASCII kodları yazımı yakalar, anlamı değil (“kedi” ve “kent” benzer görünür ama ilişkisiz)
2. Gömmeler, kelimeleri yüksek boyutlu bir anlamsal uzayda konumlar olarak temsil ediyor
3. Benzer kelimeler bir araya kümeleniyor; ilişkisiz kelimeler uzakta
4. Kelime aritmetiği işe yarıyor: kral - adam + kadın ≈ kraliçe
5. Bağlam anlamı öğretiyor: birlikte görünen kelimeler benzer gömmeler geliştiriyor
6. Statik gömmelerin bir sınırlaması var: ortalama alma kelime sırasını kaybediyor (“köpek adamı

ısırdı” ile “adam köpeği ısırdı” aynı anlama gelmiyor)

Temel kavramlar:

• Gömme (Embedding): Bir kelimenin anlamsal uzaydaki konumunu temsil eden bir sayılar
listesi (vektör)

• Vektör/Boyut: Daha fazla boyut (768+) daha nüanslı ilişkileri yakalıyor
• Kosinüs benzerliği: İki gömmenin ne kadar benzer olduğunu ölçüyor (1 = aynı, 0 = ilişkisiz,

-1 = zıt)
• Dağılımsal hipotez: Benzer bağlamlarda görünen kelimelerin benzer anlamları var (“Bir

kelimeyi arkadaşlarından tanırsın”)
• Öz-denetimli öğrenme: Veri yapısından öğrenme, insan etiketlerinden değil

Gömme hattı:

Kelime: "kral"
| gömme araması
v

Vektör: [0.82, 0.31, 0.91, -0.24, ...] (768 sayı)
| anlamsal uzay
v

BÖLÜM 2. BİLGİSAYARLAR KELİMELERİ NASIL “ANLAR”? 37

"Kraliçe"ye yakın, "muz"dan uzak konum

INFO Gözden Geçirme Sorusu Yanıtları

Bu gözden geçirme sorularının tüm yanıtları Ek D’de mevcut.

2.10 Gözden Geçirme Soruları
1. Yapay zeka için kelimeleri temsil etmek üzere neden sadece ASCII kodlarını kullanamayız?

2. Gömme nedir ve neden böyle adlandırılıyor?

3. Modern gömmeler neden sadece 2 veya 3 yerine yüzlerce boyut kullanıyor?

4. “Kral - adam + kadın = kraliçe” denklemini kendi kelimelerin ile açıkla. Gömmeler hakkında
ne ortaya koyuyor?

5. “Bir kelimeyi arkadaşlarından tanırsın” ne anlama geliyor? Gömme sistemleri bu fikri nasıl
kullanıyor?

6. Cümleleri anlamak için kelime gömmelerinin ortalamasını almak neden yeterli değil? Bir örnek
ver.

2.11 Sırada Ne Var
Artık bireysel kelimelerin anlam yakalayan sayılara nasıl dönüştüğünü anlıyoruz. Ama dil izole
kelimelerden daha fazlası, ilişki içindeki kelimeler.

Şunu düşün: “Kedi yorgun olduğu için paspasın üzerinde oturdu.”

“O” neye atıfta bulunuyor? Kedi, açıkça. Ama bir bilgisayar bunu nasıl bilecek? “O” kelimesi birçok
şeye atıfta bulunabilir. Anlamak, tüm cümleye bakmayı ve neyin neyle ilişkili olduğunu bulmayı
gerektiriyor.

Bu dikkat sorunu: her kelimenin bağlamı anlamak için diğer kelimelere nasıl “bakmasına” izin
veririz? Dizileri ilişkileri koruyarak nasıl işleriz?

İşte Bölüm 3: Dikkat Mekanizması’nın konusu tam da bu. Modern BDM’leri mümkün kılan kilit
yenilik.

Bölüm 3

Dikkat Mekanizması

“Her anını, önündeki işi tam bir ciddiyetle, sevgiyle, istekle ve adaletle yapmaya odakla.
Kendini tüm dikkat dağıtıcılardan kurtarmayı da unutma.” — Marcus Aurelius,
Düşünceler

Ne Öğreneceksin - Eski yapay zeka yaklaşımları neden uzun metinlerle zorlandı - Yapay zeka
bağlamında “dikkat” ne anlama geliyor - Sorgu (Query), Anahtar (Key) ve Değer (Value) birlikte
nasıl çalışıyor - Çok başlı dikkat neden tek baştan daha güçlü - Her şeyi değiştiren 2017 makalesi

Temel Terimler

• Dikkat (Attention): Kelimelerin diğer kelimelere seçici olarak odaklanmasını, hangilerinin ilgili
olduğunu belirlemesini ve bilgiyi buna göre harmanlamasını sağlayan mekanizma Sözlüğe bakın

• Öz-Dikkat (Self-Attention): Bir dizinin kendisine dikkat etmesi; her kelime aynı dizideki diğer
tüm kelimelere bakabilir Sözlüğe bakın

• Çapraz Dikkat (Cross-Attention): Bir dizinin farklı bir diziye dikkat etmesi; çeviri, altyazılama
ve benzeri eşleştirmeli görevlerde kullanılır Sözlüğe bakın

• Sorgu (Q), Anahtar (K), Değer (V): Gömmelerden türetilen üç vektör. Sorgu kelimenin ne
aradığını, Anahtar kelimenin ne sunduğunu, Değer ise alınan gerçek bilgiyi temsil eder Sözlüğe
bakın

• Çok Başlı Dikkat (Multi-Head Attention): Paralel çalışan birden fazla dikkat hesaplaması; her
biri farklı ilişki örüntüleri öğrenir Sözlüğe bakın

• Softmax: Skorları toplamı 1 olan olasılıklara dönüştüren fonksiyon; en yüksek skorlar en fazla
olasılığı alır Sözlüğe bakın

• Transformer : “Attention Is All You Need” (2017) makalesindeki mimari; yalnızca dikkat
mekanizmalarını kullanır, tekrarlama yok. Tüm modern BDM’lerin (Büyük Dil Modelleri)
temelidir Sözlüğe bakın

• Ölçeklendirilmiş Nokta Çarpım Dikkati (Scaled Dot-Product Attention): Nokta çarpımlarını
√boyut’a bölen dikkat; Transformer’larda standart yaklaşım Sözlüğe bakın

• Ağırlıklar (Weights): Dönüşümlerin nasıl çalıştığını tanımlayan, eğitimle öğrenilen sayılar.
Gömmeyi ağırlıklarla çarpınca Q, K veya V elde ederiz Sözlüğe bakın

38

BÖLÜM 3. DİKKAT MEKANİZMASI 39

• Dönüşüm (Transformation): Sayı kümesini ağırlıklarla çarparak başka bir kümeye dönüştürme
işlemi. Gömmelerden Sorgu, Anahtar ve Değer oluşturmak için kullanılır Sözlüğe bakın

Kontrol Noktası

Bu bölümün sonunda şunları anlayacaksın:

1. Dikkat mekanizmalarının nasıl çalıştığını ve yapay zekada neden devrim yarattığını
2. Sorgu, Anahtar ve Değer’in kelimelerin ilgili bağlamı bulmasını nasıl sağladığını
3. Çok başlı dikkatin farklı ilişkileri nasıl yakaladığını
4. 2017’deki Transformer makalesinin neden her şeyi değiştirdiğini
5. Öz-dikkat ile çapraz dikkat arasındaki farkı

Bölüm 2’de kelimeleri sayılara (anlamı yakalayan gömmelere) nasıl dönüştüreceğimizi öğrendik. Ama
aynı zamanda bir duvara da çarptık: gömmelerin ortalamasını almak gibi basit yaklaşımlar önemli
bilgileri kaybediyor. “Köpek insanı ısırdı” ile “İnsan köpeği ısırdı” aynı kelimelere ve aynı ortalama
gömmeye sahip, ama anlamları tamamen farklı.

Kelime sırası önemli. Bağlam önemli. Uzak kelimeler arasındaki ilişkiler de önemli.

Bu bölümde çözümü tanıyacağız: dikkat mekanizması. Modern BDM’leri (Büyük Dil Modelleri)
mümkün kılan ana yenilik bu ve onu anlamak, bundan sonra gelecek her şey için temel oluşturuyor.

3.1 Eski Yapay Zekanın Sorunu
Dikkatten önce yapay zekanın dil konusunda temel bir sorunu vardı: hatırlayamıyordu.

3.1.1 Sıralı Darboğaz
2017’den önce yaygın yaklaşım, Tekrarlayan Sinir Ağları (Recurrent Neural Networks, RNN) denilen
bir şey kullanıyordu. Nasıl çalıştıklarına bakalım:

Bir cümleyi kelime kelime okuduğunu, ama sadece küçük bir yapışkan not kağıdına not alabildiğini
düşün. Her kelimeden sonra notunu güncelliyorsun, ama kağıt hep aynı boyutta kalıyor. Uzun bir
paragrafın sonuna geldiğinde, başlangıçtaki bilgiler çoktan unutulmuş oluyor; yeni bilgiler eskilerini
sıkıştırmış durumda.

Cümle: "Adamın sahip olduğu köpeğin kovaladığı kedi kaçtı"

RNN işleme:
Kelime 1: "Adamın" → [notlar: "adam"]
Kelime 2: "sahip" → [notlar: "adam sahip..."]
Kelime 3: "olduğu" → [notlar: "sahip olduğu..."]
Kelime 4: "köpeğin" → [notlar: "köpek..."]
Kelime 5: "kovaladığı" → [notlar: "kovaladı... ne kovaladı?"]
Kelime 6: "kedi" → [notlar: "kedi... bekle?"]
Kelime 7: "kaçtı" → [notlar: "kaçtı... ne kaçtı?"]

BÖLÜM 3. DİKKAT MEKANİZMASI 40

“kaçtı” kelimesine geldiğimizde neyin kaçtığını unutmuş oluyoruz. Kedi mi? Köpek mi? Adam
mı? Model unutmuş. Teknik terimlerle buna kaybolan gradyan sorunu (vanishing gradient
problem) deniyor: bilgi zincir boyunca ilerledikçe bozuluyor.

3.1.2 Uzun Metnin Gerektirdikleri
Şu cümleyi düşün:

“Kupa bavula sığmadı çünkü o çok büyüktü.”

“O” neye atıfta bulunuyor? Kupaya mı (kupa sığamayacak kadar büyük olduğu için) yoksa bavula
mı (bavul çok büyük… dur bir dakika, bu mantıklı değil)?

Bu soruyu yanıtlamak için şunları yapman gerekiyor:

1. “O” kelimesine geldiğinde hem “kupa”yı hem de “bavul”u hatırla
2. Hangisinin mantıklı olduğunu anlamak için “çok büyük” ifadesini kullan
3. Cümlede birbirinden uzak olan kelimeleri bağla

Eski yapay zeka bu üçünün hepsinde zorlanıyordu. Herhangi bir anda herhangi bir kelimeye geri
bakabilen ve neyin ilgili olduğunu anlayabilen bir şeye ihtiyacımız vardı.

Dikkate ihtiyacımız vardı.

3.2 Dikkat Nedir?
Dikkat, her kelimenin doğrudan diğer her kelimeye “bakmasına” izin vererek sıralı darboğazı çözüyor.
Telefon oyununa gerek yok.

3.2.1 Kokteyl Partisi
Kalabalık bir kokteyl partisinde olduğunu hayal et. Onlarca konuşma etrafını sarıyor, uğultulu bir
ses duvarı. Ama bir şekilde sadece tek bir konuşmaya odaklanabiliyorsun. Odanın karşısından biri
adını söylediğinde hemen fark ediyorsun. Beynin gürültüyü filtreliyor ve önemli olana dikkat ediyor.

İşte dikkat tam olarak bu: ilgiye dayalı seçici odaklanma.

Şekil 3.1 bu karşıtlığı gösteriyor. Solda her ses eşit şekilde rekabet ediyor (saf gürültü). Sağda ise
beynin önemli olanı vurgularken geri kalanını karartıyor. Soluk görünen konuşmaların tamamen
görünmez olmadığına dikkat et: hala bir şekilde onların farkındasın, sadece daha az dikkat ediyorsun.

Yapay zekada dikkat benzer şekilde çalışıyor. Kelimeleri zincir boyunca birer birer işlemek yerine,
her kelime doğrudan diğer her kelimeyi inceleyebiliyor ve anlamı için neyin ilgili olduğuna karar
verebiliyor.

3.2.2 Sıralıdan Paralele
İşte temel değişim:

BÖLÜM 3. DİKKAT MEKANİZMASI 41

Şekil 3.1: Kokteyl Partisi Etkisi: Dikkat olmadan (solda), tüm konuşmalar eşit şekilde rekabet eder
ve kafa karışıklığı yaratır. Dikkatle (sağda), kalabalık bir odada adını duymak gibi ilgili bilgilere
seçici olarak odaklanırız.

Şekil 3.2: RNN kelimeleri bilginin solduğu bir zincir boyunca sırayla işler, Dikkat ise her kelimenin
doğrudan diğer her kelimeye erişmesine izin verir.

	Önsöz
	Ne Oluşturacaksın
	Bu Kitabı Nasıl Kullanmalısın
	Kitabın Yapısı
	Yaklaşımımız

	I Kısım I: Temeller
	Dil Modelleri Nedir?
	Filmleri Unutun
	Yapay Zeka Örüntü Tanımadır
	Yapay Zeka Aile Ağacı
	Büyük Dil Modellerini Özel Yapan Nedir?
	Uygulamalı Alıştırmalar
	Neden Bir Tane İnşa Etmeyi Öğrenmeli?
	Kontrol Noktası Alıştırması
	Temel Çıkarımlar
	İnceleme Soruları
	Sırada Ne Var

	Bilgisayarlar Kelimeleri Nasıl ``Anlar''?
	Bilgisayarın İkilemi
	Konum Olarak Kelimeler
	Gömmelerin Büyüsü
	Ünlü Denklem
	Gömmeler Nasıl Öğrenilir?
	Kelimelerden Cümlelere
	Uygulamalı Alıştırmalar
	Kontrol Noktası Alıştırması
	Temel Çıkarımlar
	Gözden Geçirme Soruları
	Sırada Ne Var

	Dikkat Mekanizması
	Eski Yapay Zekanın Sorunu
	Dikkat Nedir?
	Sorgu, Anahtar, Değer: Temel Üçlü
	Dikkat Hesaplaması
	Çok Başlı Dikkat
	Öz-Dikkat vs. Çapraz Dikkat
	2017 Devrimi
	Uygulamalı Alıştırmalar
	Kontrol Noktası Alıştırması
	Önemli Çıkarımlar
	İnceleme Soruları
	Sıradaki

	Transformer Mimarisi
	Eksik Parça: Konum
	İleri Beslemeli Ağlar: Dikkatten Sonra İşleme
	Artık Bağlantılar: Otoyol Sistemi
	Katman Normalizasyonu: İşleri Kararlı Tutmak
	Hepsini Bir Araya Getirmek
	Kodlayıcı vs. Kod Çözücü
	Mimariden Uygulamaya
	Uygulamalı Alıştırmalar
	Kontrol Noktası Alıştırması
	Önemli Çıkarımlar
	İnceleme Soruları
	Sırada Ne Var

	II Kısım II: Python Temelleri
	İlk Python Programın
	Kısım 2'ye Hoş Geldin: Teoriden Koda
	Başlangıç: GPT-2'yi Çalıştır
	Neden Python?
	Metni Saklama ve İşleme
	Kelime Dağarcığı Oluşturma
	Uç Durumları Ele Alma
	Yeniden Kullanılabilir Hale Getirme
	Profesyoneller Gibi Paketleme
	Tam Döngü
	Uygulamalı Alıştırmalar
	Önemli Çıkarımlar
	İnceleme Soruları
	Sırada Ne Var

	NumPy ve PyTorch Hayatta Kalma Kılavuzu
	Neden Tensörler?
	NumPy'dan PyTorch'a: Ne Değişiyor?
	Listelerden Tensörlere: Boyutları Oluşturma
	Tensör Oluşturma
	Tensör Şekilleri ve Yeniden Şekillendirme
	İndeksleme ve Dilimleme
	Broadcasting
	Temel İşlemler
	Dikkat: Transformer'ların Kalbi
	Autograd Özetle
	nn.Module ile Katman Oluşturma
	Token ve Konum Gömmeleri
	Minimal Eğitim Döngüsü
	Uygulamalı Alıştırmalar
	Anahtar Çıkarımlar
	İnceleme Soruları
	Sırada Ne Var

	III Kısım III: İlk Dil Modelinizi Oluşturun
	Verilerini Hazırlamak
	Veri Kalitesi Neden Her Şeyi Belirler
	Metin Kaynağı Bulmak (Etik ve Lisanslama)
	İhtiyacın Olacak Yeni Python Araçları
	Temizleme ve Normalize Etme
	Çoğaltma Kaldırma ve Filtreleme
	Eğitim/Doğrulama/Test Bölümleri (Sızıntı Yok)
	Bağlam Penceresi için Parçalama
	Veri Kümesini Saklama
	Kalite Kontrolleri ve Hızlı İstatistikler
	Önemli Çıkarımlar
	İşlenmiş Örnek: Uçtan Uca Veri Hattı
	Uygulamalı Alıştırmalar
	İnceleme Soruları
	Sırada Ne Var

	Tokenizer'ı Oluşturma
	Neden Tokenize Edilir?
	Karakter Düzeyinde Tokenizasyon
	Kelime Düzeyinde Tokenizasyon
	Altkelime Tokenizasyonu: Goldilocks Çözümü
	Kendi BPE Tokenizer'ını Eğitme
	Üretim Tokenizer'ları: tiktoken ve Hugging Face
	Tokenizasyon Tuhaflıkları ve Tuzakları
	Bölüm 9'a Bağlanma: Token'lardan Gömmelere
	Temel Çıkarımlar
	Gözden Geçirme Soruları
	Uygulamalı Alıştırmalar

	Gömme Katmanları
	Neden Sadece Token ID'leri Kullanamıyoruz?
	Token Gömmeleri: Arama Tablosu
	Konum Gömmeleri: Konumu Öğretmek
	Token ve Konum Gömmelerini Birleştirme
	GPT-2'nin Gömmelerini Keşfetme
	Pratik Hususlar
	Bölüm 10'a Bağlanma: Dikkat
	Temel Çıkarımlar
	İnceleme Soruları
	Uygulamalı Alıştırmalar

	Tek İhtiyacın Dikkat
	Statik Gömmelerin Neden Yeterli Olmadığı
	Dikkat NEDİR? Temel Sezgi
	Öz-Dikkati Adım Adım Oluşturmak
	Özbağlanımlı Üretim İçin Nedensel Maskeleme
	Bir Baştan Birden Fazla Başlığa
	Tam Transformer Bloklarını Oluşturmak
	Dikkat Örüntülerini Görselleştirme
	Pratik Düşünceler
	Temel Çıkarımlar
	İnceleme Soruları

	Transformer'ı Oluşturmak
	Montaj Zorluğu
	Model Yapılandırması
	MiniGPT Mimarisi
	Sağlık Kontrolleri
	İlk İleri Geçişin
	Önceden Eğitilmiş Ağırlıkları Yükleme
	Eğitime Hazırlanmak
	Önemli Çıkarımlar
	Sırada Ne Var
	İnceleme Soruları
	Uygulamalı Egzersizler
	Kontrol Noktası Egzerseni

	Modelini Eğitmek
	Eğitim Yolculuğu Başlıyor
	Dil Modelleme Hedefi
	DataLoader ve Collate
	Eğitim Döngüsü
	Değerlendirme ve Aşırı Öğrenme
	Kontrol Noktası Kaydetme ve Devam Etme
	Eksiksiz Eğitim Betiği
	Ödül: Metin Üretimi
	Önemli Çıkarımlar
	Sırada Ne Var
	İnceleme Soruları
	Uygulamalı Alıştırmalar
	Kontrol Noktası Alıştırması

	IV Kısım IV: Kullanışlı Hale Getirin
	Modeline İnce Ayar Yapmak
	Ne Zaman İnce Ayar Yapılmalı (Ne Zaman Yapılmamalı)
	Görev Çerçeveleme ve Veri Hazırlama
	Kayıp Maskeleme ile Denetimli İnce Ayar
	LoRA ile Parametre Verimli İnce Ayar
	Değerlendirme ve Önce/Sonra Karşılaştırması
	Dağıtım Hususları
	Önemli Çıkarımlar
	Sırada Ne Var
	İnceleme Soruları
	Uygulamalı Alıştırmalar
	Kontrol Noktası Alıştırması

	Prompt Mühendisliği
	Tamamlama Zihniyeti
	Prompt'lama Temelleri
	Temel Prompt Kalıpları
	Önlemler ve Güvenlik
	Değerlendirme ve İterasyon
	Önemli Çıkarımlar
	Sırada Ne Var
	İnceleme Soruları
	Uygulamalı Egzersizler

	Uygulama Geliştirmek
	Eğitimden İnşaya
	Bir Bakışta Uygulama Desenleri
	Bir Sohbet Döngüsü Geliştirmek
	RAG: Veri Alma Destekli Üretim
	Araç Kullanımı Temelleri
	Test ve Korkuluklar
	Üretim İpuçları
	Temel Çıkarımlar
	Sırada Ne Var
	Değerlendirme Soruları
	Uygulamalı Alıştırmalar

	V Kısım V: Dünyayla Paylaşın
	Üretime Hazırlık
	Üretimde Neler Değişir?
	Modelini Paketleme
	Bir API Arkasında Sunma
	Çalışır Durumda Tutma
	Güvenlik ve Korkuluklar
	Göndermeden Önce Test Etme
	Hepsini Bir Araya Getirmek
	Anahtar Terimler
	Özet
	Tekrar Soruları
	Kontrol Noktası Alıştırması

	Dağıtım Seçenekleri
	Neden Modal?
	İlk Modal Dağıtımın
	LLM'ini Dağıtma
	Doğru GPU'yu Seçme
	Dağıtımını Yönetme
	LLM'in Canlı
	Temel Terimler
	Özet
	Değerlendirme Soruları
	Kontrol Noktası Alıştırması

	Sıradaki Adımlar
	İnşa Ettiklerin
	Büyük Resim
	İleriye Giden Yollar
	İlk Solo Projeniz
	Topluluğa Katılma
	Temel Terimler
	Özet
	İnceleme Soruları
	Kontrol Noktası
	Kişisel Bir Not

	VI Ekler
	Ek A: Sorun Giderme Kılavuzu
	Ek A: Sorun Giderme Kılavuzu
	Bölüm 1: Ortam ve Kurulum Sorunları
	Bölüm 2: PyTorch ve Tensör Hataları
	Bölüm 3: Tokenizasyon Sorunları
	Bölüm 4: Model Eğitim Sorunları
	Bölüm 5: Veri Hattı Sorunları
	Hızlı Referans
	Ne Zaman Yardım İstenmeli

	Ek B: Sözlük
	Ek B: Sözlük
	1. Temel Yapay Zeka Kavramları
	2. Python ve Programlama
	3. Tensör İşlemleri
	4. NLP ve Tokenizasyon
	5. Model Mimarisi
	6. Eğitim ve Değerlendirme
	7. Üretim ve Dağıtım
	8. Sonraki Adımlar ve Kariyer
	Sözlük Kuralları

	Ek C: Matematik Hatırlatıcısı
	1. Sayılar ve Temel İşlemler
	2. Matris İşlemleri
	3. Softmax ve Olasılıklar
	4. İç Çarpımlar ve Benzerlik
	5. Logaritmalar ve Üstel Fonksiyonlar
	6. İstatistik: Ortalama, Varyans ve Standart Sapma
	7. Gradyanlar: Eğitim Sinyali
	8. Şekiller ve Yayma
	Hızlı Referans Tabloları
	Çapraz Referanslar
	Özet

	Ek D: İnceleme Soruları Cevapları
	Ek D: İnceleme Soruları Cevapları
	Bölüm 1: Yapay Zeka Gerçekten Nedir? (İnceleme Soruları Cevapları)
	Soru 1: Yapay zekanın en basit tanımı nedir?
	Soru 2: Makine öğrenmesi geleneksel programlamadan nasıl farklıdır?
	Soru 3: Büyük dil modelleri (LLM'ler) yapay zeka aile ağacında nereye oturur?
	Soru 4: LLM'lerin iyi olduğu üç şeyi ve iyi yapamadığı üç şeyi adlandırın.
	Soru 5: LLM'lerde halüsinasyon neden olur?
	Soru 6: LLM'lerin nasıl çalıştığını anlamak, bir yapay zeka araştırmacısı olmayı planlamasan bile neden değerli olabilir?
	Ek Notlar

	Bölüm 2: Bilgisayarlar Kelimeleri Nasıl ``Anlar''? (İnceleme Soruları Cevapları)
	Soru 1: Kelimeleri yapay zeka için temsil etmek için neden sadece ASCII kodlarını kullanamayız?
	Soru 2: Gömme (embedding) nedir ve neden böyle adlandırılır?
	Soru 3: Modern gömmeler neden sadece 2 veya 3 yerine yüzlerce boyut kullanır?
	Soru 4: ``king - man + woman = queen'' ifadesini kendi kelimelerinle açıklayın. Gömmeler hakkında ne ortaya koyar?
	Soru 5: ``Bir kelimeyi tuttuğu arkadaşlardan tanırsın'' ne anlama gelir? Gömme sistemleri bu fikri nasıl kullanır?
	Soru 6: Kelime gömmelerinin ortalamasını almak neden cümleleri anlamak için yeterli değildir? Bir örnek verin.
	Ek Notlar

	Bölüm 3: Dikkat Mekanizması (İnceleme Soruları Cevapları)
	Soru 1: RNN'lerin uzun dizilerde hangi sorunu vardı? Açıklamak için bir benzetme kullan.
	Soru 2: Dikkat için kokteyl partisi benzetmesini açıklayın. Dikkatin ne yaptığını nasıl yakalar?
	Soru 3: Kendi kelimelerinle Query, Key ve Value'nun ne temsil ettiğini açıklayın. Faydalıysa kütüphane benzetmesini kullan.
	Soru 4: Dikkat hesaplamasında üç ana adımı açıklayın.
	Soru 5: Dikkat skorlarını neden boyutun karekökü ile böleriz?
	Soru 6: Neden sadece bir yerine birden fazla dikkat başı kullanırız? Farklı başlar ne öğrenir?
	Soru 7: Öz-dikkat ve çapraz-dikkat arasındaki fark nedir? Her birinin ne zaman kullanıldığına dair bir örnek verin.
	Soru 8: 2017'deki ``Attention Is All You Need'' makalesi neden devrimci oldu? Neyi değiştirdi?
	Ek Notlar

	Bölüm 4: Transformer Mimarisi (İnceleme Soruları Cevapları)
	Soru 1: Transformer'lar neden konum kodlamalarına ihtiyaç duyar? Onlar olmadan ne olur?
	Soru 2: Konum kodlamaya yönelik iki ana yaklaşım nedir? Dengeler nelerdir?
	Soru 3: Transformer katmanında ileri beslemeli ağ ne yapar? Neden genişletip sonra daraltır?
	Soru 4: Artık bağlantıları bir benzetme kullanarak açıklayın. Derin ağlar için neden önemlidirler?
	Soru 5: Katman normalizasyonu hangi sorunu çözer? Modern Transformer'larda ne zaman uygulanır?
	Soru 6: Bir Transformer katmanında tam işlem dizisini açıklayın.
	Soru 7: Kodlayıcı ve kod çözücü arasındaki fark nedir? Her birini ne zaman kullanırsın?
	Soru 8: Nedensel maskeleme nasıl çalışır? Metin üretimi için neden gereklidir?
	Ek Notlar

	Bölüm 5: İlk Python Programın (İnceleme Soruları Cevapları)
	Soru 1: GPT-2 metni verdiğinde gerçekte ne görür?
	Soru 2: Neden vocab[word] yerine vocab.get(word, vocab["<UNK>"]) kullanıyoruz?
	Soru 3: Fonksiyon ve sınıf arasındaki fark nedir?
	Soru 4: tokens[:-1] ne döndürür ve bu LLM eğitiminde neden faydalıdır?
	Soru 5: SimpleTokenizer sınıfımız HuggingFace'in tokenizer'larına nasıl benziyor?
	Ek Notlar

	Bölüm 6: NumPy & PyTorch Hayatta Kalma Kılavuzu (İnceleme Soruları Cevapları)
	Soru 1: PyTorch neden varsayılan olarak float32 kullanırken NumPy varsayılan olarak float64 kullanır ve bu ne zaman önemlidir?
	Soru 2: reshape yerine view'ı ne zaman tercih edersin?
	Soru 3: Broadcasting iki şeklin uyumlu olup olmadığına nasıl karar verir?
	Soru 4: softmax'ta dim ne anlama gelir ve yanlış olanı seçersen ne olur?
	Soru 5: with torch.no_grad() ve .detach() nasıl farklılık gösterir?
	Soru 6: Neden backward()'dan önce optimizer.zero_grad(set_to_none=True) çağırıyoruz?
	Soru 7: model.train()'den model.eval()'a geçtiğinde ne değişir?

	Bölüm 7: Verilerini Hazırlama (İnceleme Soruları Cevapları)
	Soru 1: Küçük harfe çevirme neden hem yararlı hem de potansiyel olarak zararlıdır? Ne zaman büyük/küçük harf ayrımını korursun?
	Soru 2: Çoğaltma silme (deduplication) dil modelleri için hangi sorunu çözer?
	Soru 3: Sade kelimelerle hash nedir ve SHA-1 neden burada yeterince iyidir?
	Soru 4: Bölmeler neden paragraf seviyesi yerine belge seviyesinde yapılmalıdır?
	Soru 5: Uzun metni bölerken parça örtüşmesi (chunk overlap) nasıl yardımcı olur?
	Soru 6: JSONL'yi LLM veri setleri için iyi bir uyum yapan nedir?

	Bölüm 8: Tokenizer İnşa Etme (İnceleme Soruları Cevapları)
	Soru 1: Karakter seviyesi ve kelime seviyesi tokenleştirme arasındaki temel denge nedir? Kelime dağarcığı boyutu ve dizi uzunluğu için belirli sayılar verin.
	Soru 2: <UNK> ve <PAD> gibi özel tokenlere neden ihtiyacımız var? Her birinin ne zaman kullanıldığına dair belirli bir örnek verin.
	Soru 3: BPE (Byte-Pair Encoding) nasıl çalışır kendi kelimelerinle açıklayın. Neden ``un-'' veya ``-ing'' gibi yaygın desenler için doğal olarak tokenler oluşturur?
	Soru 4: '' Hello'' (baştaki boşlukla) neden ``Hello'' (boşluk olmadan) ile farklı tokenleşir? Bu istem mühendisliği için neden önemlidir?
	Soru 5: Bir arkadaşın şöyle diyor: ``Sadece karakter seviyesi tokenleştirme kullanacağım, daha basit ve bilinmeyen token yok!'' Dezavantajlar hakkında ona ne söylerdin?
	Soru 6: Bu iki metni karşılaştırın: ``The number is 10000'' vs ``The number is ten thousand''. Hangisi daha az token kullanabilir? Bu neden önemlidir?
	Soru 7: İngilizce olmayan bir dil için (örneğin Çince) sohbet robotu oluşturuyorsun. tiktoken (GPT-4'ün tokenizer'ı) mı yoksa özel bir BPE tokenizer mı eğitmelisin? Neden?
	Soru 8: BPE neden daha önce hiç görmediği kelimeleri temsil edebilir (kelime seviyesi tokenleştirmenin aksine), ancak yine de bir <UNK> tokenine ihtiyaç duymaz?
	Soru 9: Shakespeare üzerinde bir BPE tokenizer eğittin ve ``The neural network uses backpropagation.'' cümlesini tokenleştirmeyi denetiz. 18 token üretti, GPT-4 ise 7 üretiyor. Fark neden ve tokenizer'ını geliştirmek için ne yapardın?

	Bölüm 9: Gömme Katmanı (İnceleme Soruları Cevapları)
	Soru 1: Token ID'lerini doğrudan bir sinir ağına girdi olarak kullanmanın temel sorunu nedir?
	Soru 2: Token gömmeleri için arama tablosu mekanizmasını açıklayın
	Soru 3: Konum gömmelerine neden ihtiyacımız var?
	Soru 4: Token ve konum gömmelerini neden birleştirmek yerine ekliyoruz açıklayın
	Soru 5: nn.init.normal_(weight, std=0.02) başlatması ne yapar ve bu neden GPT-2 için standarttır?
	Soru 6: Kosinüs benzerliği iki gömme arasındaki ilişkiyi nasıl ölçer?
	Soru 7: max_seq_len=1024 olduğunda uzunluğu 1500 olan bir diziyi gömmeye çalışırsan ne olur?
	Soru 8: Ham metinden gömmelere kadar tam pipeline'ı ilgili bölümlere atıfta bulunarak açıklayın

	Bölüm 10: Dikkat Mekanizması (İnceleme Soruları Cevapları)
	Soru 1: Bölüm 9'daki statik gömülerin dil modelleme için neden yeterli olmadığını açıklayın. Açıklamak için ``bank'' örneğini kullan.
	Soru 2: Dikkatte Query, Key ve Value vektörlerinin rolünü açıklayın. Q · K^T nokta çarpımı ilgiyi nasıl ölçer?
	Soru 3: Dikkat skorlarını neden sqrt(d_k) ile ölçeklendiririz? Bu ölçeklendirme olmadan ne olurdu?
	Soru 4: Nedensel maskeleme nedir ve otoregressif dil üretimi için neden gereklidir? Eğitim sırasında ``hile yapmayı'' nasıl önler?
	Soru 5: Çok-başlı dikkat toplam parametre sayısını artırmadan nasıl ``farklı perspektifler'' sağlar? Matematiği dahil et: 12 baş × 64 boyut = ?
	Soru 6: Çok-başlı dikkatteki ``yeniden şekillendirme hilesi'' nedir? Başlar üzerinde sırayla döngü yapmaktan neden daha hızlıdır?
	Soru 7: Bir Transformer bloğunun dört ana bileşenini listeleyin ve her birinin amacını açıklayın.
	Soru 8: Ön-norm ve son-norm mimarileri arasındaki fark nedir? GPT-2 hangisini kullanır ve neden?
	Soru 9: Dikkat O(n²) bellek karmaşıklığına sahiptir. Bunun dizinin uzunluğu için ne anlama geldiğini açıklayın. batch=4, heads=12, seq=2048 ile dikkat skorları için ne kadar bellek gerekir?
	Soru 10: Dikkat görselleştirmelerini aşırı yorumlamak konusunda neden dikkatli olmalıyız? Dikkat ağırlığı ısı haritalarından NE çıkarılabilir ve NE çıkarılamaz?
	Ek Notlar

	Bölüm 11: Transformer'ı İnşa Etmek (İnceleme Soruları Cevapları)
	Soru 1: Mimari
	Soru 2: Yapılandırma
	Soru 3: Yığma
	Soru 4: LM Head
	Soru 5: Ağırlık Bağlama
	Soru 6: Dikkat Edilmesi Gerekenler
	Soru 7: Sağlamlık Kontrolleri
	Soru 8: Parametre Sayısı
	Soru 9: Modlar
	Soru 10: Ağırlık Yükleme
	Ek Notlar

	Bölüm 12: Modelini Eğitmek (İnceleme Soruları Cevapları)
	Soru 1: 5 Adımlı Tarif
	Soru 2: Etiket Kaydırma
	Soru 3: Yoksay İndeksi
	Soru 4: Öğrenme Oranı
	Soru 5: Isınma
	Soru 6: Aşırı Uyum
	Soru 7: Karmaşıklık
	Soru 8: Kontrol Noktası
	Soru 9: Eğitim vs Değerlendirme Modu
	Soru 10: Toplu ve Epoch Matematiği
	Ek Notlar

	Bölüm 13: Modelini İnce Ayarlamak
	1. Ne Zaman İnce Ayar Yapmalı
	2. Kayıp Maskeleme Amacı
	3. LoRA Verimliliği
	4. Dondurmanın Faydaları
	5. Veri Kalitesi
	6. Adaptör Kararları
	7. Felaket Unutma
	Ek Notlar

	Bölüm 14: Prompt Mühendisliği (İnceleme Soruları Cevapları)
	1. Sistem vs Kullanıcı Mesajları
	2. Sıcaklık Ayarları
	3. Zincirleme Düşünme
	4. Az-Atış Hata Ayıklama
	5. Prompt Enjeksiyonu
	6. Değerlendirme İş Akışı
	7. Prompting vs İnce Ayar Kararı
	Ek Notlar

	Bölüm 15: Uygulama Geliştirme (Değerlendirme Sorusu Cevapları)
	Soru 1: RAG, prompt mühendisliğinin tek başına çözemediği hangi problemi çözer?
	Soru 2: Token embeddingler (Bölüm 6) ile cümle embeddingler (bu bölüm) arasındaki farkı açıklayın.
	Soru 3: Dokümanları gömmeden önce neden parçalara ayırıyoruz? Parçalar çok küçük veya çok büyük olursa ne olur?
	Soru 4: RAG sistemin alakasız dokümanlar alırsa ne olur? Prompt'un bununla nasıl başa çıkar?
	Soru 5: Araç beyaz listelemesi güvenlik için neden önemlidir?
	Soru 6: RAG sisteminin doğru cevaplar verip vermediğini nasıl değerlendirirsin?
	Soru 7: Bir LLM uygulaması için hangi hata ayıklama bilgilerini loglamalısın?
	Ek Notlar

	Bölüm 16: Üretime Hazırlanma (Değerlendirme Sorusu Cevapları)
	Soru 1: Geliştirme ile üretim arasındaki fark nedir?
	Soru 2: Sağlık kontrolü endpoint'ine neden ihtiyacımız var?
	Soru 3: Neleri loglamalı ve neleri loglamaMALIsın?
	Soru 4: Hız sınırlama neden önemlidir?
	Soru 5: Sadece mutlu yolları değil, hata yollarını test etmenin amacı nedir?
	Ek Notlar

	Bölüm 17: Dağıtım Seçenekleri (Değerlendirme Sorusu Cevapları)
	Soru 1: Serverless bilişim nedir ve LLM dağıtımı için neden özellikle iyidir?
	Soru 2: Bir Modal fonksiyonuna GPU desteği nasıl eklenir?
	Soru 3: Soğuk başlatma nedir ve etkisini nasıl azaltabilirsin?
	Soru 4: LLM dağıtımı için neden Modal volumes kullanıyoruz?
	Soru 5: Kimse kullanmadığında Modal uygulamana ne olur?
	Ek Notlar

	Bölüm 18: Sıradaki Adımlar (Değerlendirme Sorusu Cevapları)
	Soru 1: Bu kitabı tamamladıktan sonra atabileceğin üç ana yol nedir?
	Soru 2: Sorumlu AI neden tek seferlik bir kontrol listesi değil, devam eden bir uygulama?
	Soru 3: Hangi bitirme projesi size en çok hitap ediyor ve neden?
	Soru 4: Daha sonra keşfetmeyi planladığın iki kaynağı adlandırın.
	Soru 5: Bu kitapta öğrendiğin en şaşırtıcı şey neydi?
	Son Düşünce

	Ek E: Alternatifler
	Bölüm 1: LLM Sağlayıcı Alternatifleri
	Bölüm 2: Dağıtım Alternatifleri

