

Dr. Holger Schwichtenberg

Moderne Datenzugriffslösungen mit

Entity Framework Core 2.0/2.1

Datenbankprogrammierung mit C# in .NET/.NET Core/Xamarin

Version 5.1 dieses Buchs

Stand 15.05.2018

2 Inhaltsverzeichnis

Verlag: www.IT-Visions.de, Fahrenberg 40b, D-45257 Essen

ISBN: 3934279-19-8

Sprachliche Korrektur: Matthias Bloch, M.A.

Formatierung: Matthias Bloch, M.A.

Bezugsquelle PDF: https://leanpub.com/EntityFrameworkCore

Bezugsquelle Kindle: https://www.amazon.de/dp/B07BLP6NBH

https://leanpub.com/EntityFrameworkCore2
https://www.amazon.de/dp/B07BLP6NBH

Inhaltsverzeichnis 3

Für Heidi, Felix und Maja

4 Inhaltsverzeichnis

1 Inhaltsverzeichnis

1 Inhaltsverzeichnis .. 4

2 Vorwort ... 16

3 Über den Autor .. 17

4 Über dieses Buch ... 19

4.1 Versionsgeschichte dieses Buchs .. 19

4.2 Bezugsquelle für Aktualisierungen ... 25

4.3 Geplante Kapitel .. 25

4.4 Programmiersprache in diesem Buch .. 25

5 Fallbeispiele in diesem Buch ... 27

5.1 Entitäten .. 27

5.2 Englische Version des Beispiels .. 31

5.3 Anwendungsarten in diesem Buch .. 31

5.4 Hilfsroutinen zur Konsolenausgabe .. 32

6 Programmcodebeispiel zum Download ... 38

7 Was ist Entity Framework Core? .. 39

7.1 Was ist ein Objekt-Relationaler Mapper (ORM)? ... 39

7.2 ORM in der .NET-Welt ... 40

7.3 Versionsgeschichte von Entity Framework Core .. 41

7.4 Unterstützte Betriebssysteme .. 43

7.5 Unterstützte .NET-Versionen .. 43

7.6 Unterstützte Visual Studio-Versionen ... 44

7.7 Unterstützte Datenbanken ... 44

7.8 Funktionsumfang von Entity Framework Core ... 46

7.9 Funktionen, die dauerhaft entfallen ... 46

7.10 Funktionen, die Microsoft bald nachrüsten will .. 47

7.11 Hohe Priorität, aber nicht kritisch ... 48

7.12 Neue Funktionen in Entity Framework Core .. 49

7.13 Einsatzszenarien für Entity Framework Core .. 49

8 Installation von Entity Framework Core ... 51

8.1 Nuget-Pakete ... 51

8.2 Paketinstallation .. 53

8.3 Aktualisierung auf eine neue Version ... 57

Inhaltsverzeichnis 5

9 Konzepte von Entity Framework Core .. 62

9.1 Vorgehensmodelle bei Entity Framework Core .. 62

9.2 Artefakte bei Entity Framework Core ... 65

10 Reverse Engineering bestehender Datenbanken.. 67

10.1 Reverse Engineering-Werkzeuge .. 67

10.2 Vorbereiten des Reverse Engineering mit PowerShell-Befehlen 67

10.3 Codegenerierung ... 69

10.4 Generierter Programmcode ... 72

10.5 Beispiel-Client ... 77

10.6 .NET Core-Tool .. 78

10.7 Schwächen des Reverse Engineering .. 80

11 Forward Engineering für neue Datenbanken ... 81

11.1 Zwei Klassentypen beim Forward Engineering .. 81

11.2 Beispiele in diesem Kapitel ... 81

11.3 Regeln für die selbsterstellten Entitätsklassen ... 82

11.3.1 Nuget-Pakete ... 82

11.3.2 Properties ... 83

11.3.3 Datentypen .. 83

11.3.4 Beziehungen (Master-Detail) .. 83

11.3.5 Vererbung .. 84

11.3.6 Primärschlüssel .. 84

11.3.7 Beispiele .. 84

11.4 Regeln für die selbsterstellte Kontextklasse .. 87

11.4.1 Nuget-Pakete ... 87

11.4.2 Basisklasse .. 88

11.4.3 Konstruktor.. 88

11.4.4 Verweise zu den Entitätsklassen ... 88

11.4.5 Provider und Verbindungszeichenfolge .. 89

11.4.6 Beispiel .. 89

11.4.7 Eigene Verbindungen .. 90

11.4.8 Thread-Sicherheit .. 90

11.5 Regeln für die Datenbankschemagenerierung ... 90

11.6 Beispiel-Client ... 91

6 Inhaltsverzeichnis

11.7 Anpassung per Fluent-API (OnModelCreating()) ... 92

11.8 Das erzeugte Datenmodell ... 94

12 Anpassung des Datenbankschemas ... 97

12.1 Beispiele in diesem Kapitel ... 97

12.2 Konvention versus Konfiguration ... 97

12.3 Persistente versus transiente Klassen .. 98

12.4 Namen im Datenbankschema .. 99

12.5 Reihenfolge der Spalten in einer Tabelle .. 100

12.6 Spaltentypen/Datentypen ... 100

12.7 Typkonvertierungen .. 102

12.8 Pflichtfelder und optionale Felder ... 102

12.9 Feldlängen ... 102

12.10 Primärschlüssel.. 102

12.11 Beziehungen und Fremdschlüssel ... 103

12.12 Optionale Beziehungen und Pflichtbeziehungen ... 104

12.13 Uni- und Bidirektionale Beziehungen ... 106

12.14 1:1-Beziehungen .. 107

12.15 Indexe festlegen ... 108

12.16 Syntaxoptionen für das Fluent-API ... 109

12.16.1 Sequentielle Konfiguration .. 109

12.16.2 Strukturierung durch Statement Lambdas ... 110

12.16.3 Strukturierung durch Unterroutinen .. 111

12.16.4 Strukturierung durch Konfigurationsklassen ... 111

12.17 Massenkonfiguration mit dem Fluent-API .. 112

13 Datenbankschemamigrationen .. 114

13.1 Anlegen der Datenbank zur Laufzeit ... 114

13.2 Schemamigrationen zur Entwicklungszeit .. 115

13.3 Befehle für die Schemamigrationen .. 115

13.4 ef.exe ... 116

13.5 Add-Migration ... 117

13.6 Update-Database ... 121

13.7 Schemamigrationen bei der Installation .. 122

13.8 Script-Migration .. 123

Inhaltsverzeichnis 7

13.9 Schemamigrationen zur Laufzeit ... 123

13.9.1 Verwendung von Migrate() ... 123

13.9.2 IMigrator-Service .. 124

13.9.3 Informationen zum Migrationsstand ... 124

13.9.4 Praxiseinsatz: Ein Kommandozeilenwerkzeug für die Schemamigration 125

13.10 Migrationsszenarien .. 129

13.11 Weitere Möglichkeiten .. 131

13.12 Probleme bei der Schemamigration in Verbindung mit TFS 132

13.13 Startverhalten von Entity Framework Core ... 132

14 Daten lesen mit LINQ ... 133

14.1 Kontextklasse .. 133

14.2 LINQ-Abfragen ... 133

14.3 Schrittweises Zusammensetzung von LINQ-Abfragen ... 136

14.4 Einsatz von var .. 137

14.5 Repository-Pattern ... 137

14.6 LINQ-Abfragen mit Paging ... 141

14.7 Projektionen .. 142

14.7.1 Projektion auf einen Entitätstypen ... 143

14.7.2 Projektionen auf einen anonymen Typen .. 143

14.7.3 Projektionen auf einen beliebigen Typen .. 145

14.8 Abfrage nach Einzelobjekten .. 146

14.9 Laden anhand des Primärschlüssels mit Find() ... 147

14.10 Gruppierungen ... 148

14.11 Umgehung für das GroupBy-Problem ... 149

14.11.1 Mapping auf Nicht-Entitätstypen .. 150

14.11.2 Entitätsklasse für die Datenbanksicht anlegen .. 151

14.11.3 Einbinden der Entitätsklasse in die Kontextklasse .. 151

14.11.4 Verwendung der Pseudo-Entitätsklasse ... 152

14.11.5 Herausforderung: Migrationen .. 152

14.11.6 Gruppierungen mit Datenbanksichten ... 154

14.12 LINQ im RAM statt in der Datenbank (Client Evaluation)... 154

14.13 Falsche Befehlsreihenfolge ... 156

14.14 Eigene Funktionen in LINQ .. 157

8 Inhaltsverzeichnis

14.15 Kurzübersicht über die LINQ-Syntax ... 157

14.15.1 Einfache SELECT-Befehle (Alle Datensätze) ... 158

14.15.2 Bedingungen (where) .. 159

14.15.3 Bedingungen mit Mengen (in) ... 159

14.15.4 Sortierungen (orderby) .. 159

14.15.5 Paging (Skip() und Take()) .. 160

14.15.6 Projektion .. 160

14.15.7 Aggregatfunktionen (Count(), Min(), Max(), Average(), Sum()) 161

14.15.8 Gruppierungen (GroupBy) .. 161

14.15.9 Einzelobjekte (SingleOrDefault(), FirstOrDefault()) 162

14.15.10 Verbundene Objekte (Include()) .. 162

14.15.11 Inner Join (Join)... 163

14.15.12 Cross Join (Kartesisches Produkt) ... 164

14.15.13 Join mit Gruppierung ... 164

14.15.14 Unter-Abfragen (Sub-Select) ... 165

15 Objektbeziehungen und Ladestrategien .. 167

15.1 Überblick über die Ladestrategien ... 167

15.2 Standardverhalten .. 167

15.3 Lazy Loading... 169

15.3.1 Aktivierung des Lazy Loading .. 169

15.3.2 Gefahren von Lazy Loading .. 171

15.3.3 Lazy Loading ohne Proxyklassen .. 172

15.4 Explizites Nachladen (Explicit Loading) .. 175

15.5 Eager Loading ... 177

15.6 Relationship Fixup .. 180

15.6.1 Beispiel für Fall 1 .. 181

15.6.2 Beispiel für Fall 2 .. 182

15.6.3 Beispiel für Fall 3 .. 183

15.7 Preloading mit Relationship Fixup .. 184

16 Einfügen, Löschen und Ändern ... 189

16.1 Speichern mit SaveChanges() ... 189

16.2 Änderungsverfolgung auch für Unterobjekte .. 191

16.3 Zusammenfassen von Befehlen (Batching) ... 192

Inhaltsverzeichnis 9

16.4 Das Foreach-Problem .. 193

16.5 Objekte hinzufügen mit Add()... 194

16.6 Verbundene Objekte anlegen .. 196

16.7 Verbundene Objekte ändern / Relationship Fixup... 199

16.8 Widersprüchliche Beziehungen ... 201

16.8.1 Objekte löschen mit Remove() .. 206

16.8.2 Löschen mit einem Attrappen-Objekt ... 208

16.8.3 Massenlöschen .. 209

16.9 Datenbanktransaktionen .. 210

16.9.1 Transaktion in einer Kontextinstanz .. 210

16.9.2 Transaktion über mehrere Kontextinstanzen ohne TransactionScope 211

16.9.3 Transaktion über mehrere Kontextinstanzen mit TransactionScope 213

16.10 Change Tracker abfragen .. 215

16.10.1 Zustand eines Objekts ... 215

16.10.2 Liste aller geänderten Objekte ... 217

17 Datenänderungskonflikte (Concurrency) .. 220

17.1 Rückblick .. 220

17.2 Im Standard keine Konflikterkennung .. 221

17.3 Optimistisches Sperren / Konflikterkennung .. 222

17.4 Konflikterkennung für alle Eigenschaften ... 223

17.5 Konflikteinstellung per Konvention .. 224

17.6 Fallweise Konflikteinstellung .. 225

17.7 Zeitstempel (Timestamp) .. 225

17.8 Konflikte auflösen ... 227

17.9 Pessimistisches Sperren bei Entity Framework Core .. 231

18 Protokollierung (Logging) ... 235

18.1 Verwendung der Erweiterungsmethode Log() .. 235

18.2 Implementierung der Log()-Erweiterungsmethode ... 237

18.3 Protokollierungskategorien ... 241

19 Asynchrone Programmierung.. 242

19.1 Asynchrone Erweiterungsmethoden .. 242

19.2 ToListAsync() ... 242

19.3 SaveChangesAsync()... 243

10 Inhaltsverzeichnis

19.4 ForeachAsync() ... 244

20 Dynamische LINQ-Abfragen .. 246

20.1 Schrittweises zusammensetzen von LINQ-Abfragen .. 246

20.2 Expression Trees ... 247

20.3 Dynamic LINQ .. 250

21 Daten lesen und ändern mit SQL, Stored Procedures und Table Valued Functions 253

21.1 Abfragen mit FromSql() .. 253

21.2 Zusammensetzbarkeit von LINQ und SQL ... 255

21.3 Stored Procedures und Table Valued Functions .. 256

21.4 Nicht-Entitätsklassen als Ergebnismenge .. 258

21.5 Erweiterungsmethode ExecuteSqlQuery() .. 259

21.6 SQL-DML-Befehle ohne Resultset ... 260

22 Weitere Tipps und Tricks zum Mapping ... 261

22.1 Shadow Properties ... 261

22.1.1 Automatische Shadow Properties .. 261

22.1.2 Festlegung eines Shadow Property .. 262

22.1.3 Ausgabe aller Shadow Properties einer Entitätsklasse .. 262

22.1.4 Lesen und Ändern eines Shadow Property .. 262

22.1.5 LINQ-Abfragen mit Shadow Properties .. 264

22.1.6 Praxisbeispiel: Automatisches Setzen bei jedem Speichern 264

22.1.7 Praxisbeispiel: Erweitern der Tabellen zur Betriebszeit der Anwendung 265

22.2 Berechnete Spalten (Computed Columns) .. 267

22.2.1 Automatisches SELECT .. 267

22.2.2 Praxistipp: Spalten mit einer Berechnungsformel anlegen 268

22.2.3 Spalten mit einer Berechnungsformel nutzen .. 269

22.2.4 Spalten mit einer Berechnungsformel beim Reverse Engineering 271

22.3 Standardwerte (Default Values) .. 271

22.3.1 Standardwerte beim Forward Engineering festlegen ... 272

22.3.2 Standardwerte verwenden ... 272

22.3.3 Praxistipp: Standardwerte schon beim Anlegen des Objekts vergeben 274

22.3.4 Standardwerte beim Reverse Engineering ... 275

22.4 Tabellenaufteilung (Table Splitting) ... 275

22.5 Sequenzobjekte (Sequences) ... 278

Inhaltsverzeichnis 11

22.5.1 Was sind Sequenzen? .. 278

22.5.2 Erstellen von Sequenzen beim Forward Engineering .. 279

22.5.3 Sequenzen im Einsatz .. 280

22.6 Alternative Schlüssel ... 283

22.6.1 Alternative Schlüssel definieren .. 284

22.6.2 Alternative Schlüssel im Einsatz ... 286

22.7 Kaskadierendes Löschen (Cascading Delete) .. 289

22.7.1 Löschoptionen in Entity Framework Core .. 289

22.7.2 Beispiel .. 291

22.8 Abbildung von Datenbanksichten (Views) .. 296

22.8.1 Datenbanksicht anlegen ... 296

22.8.2 Entitätsklasse für die Datenbanksicht anlegen .. 296

22.8.3 Einbinden der Entitätsklasse in die Kontextklasse .. 297

22.8.4 Verwendung der Datenbanksicht .. 298

22.8.5 Herausforderung: Migrationen .. 299

22.9 Wertkonvertierungen (Value Converter) ... 301

22.9.1 Einschränkungen ... 302

22.9.2 Beispiel 1: Konvertierung zwischen String und Boolean 302

22.9.3 Beispiel 2: Konvertierung zwischen Aufzählungstyp und String 305

23 Weitere Tipps und Tricks zu LINQ und SQL ... 310

23.1 Globale Abfragefilter (ab Version 2.0) ... 310

23.1.1 Filter definieren ... 310

23.1.2 Filter nutzen... 310

23.1.3 Praxistipp: Filter ignorieren ... 311

23.1.4 Globale Abfragefilter bei SQL-Abfragen (ab Version 2.0) 311

23.1.5 Globale Abfragefilter bei Stored Procedures und Table Valued Functions 312

23.2 Zukünftige Abfragen (Future Queries) .. 312

24 Leistungsoptimierung (Performance Tuning) ... 315

24.1 Vorgehensmodell zur Leistungsoptimierung bei Entity Framework Core 315

24.2 Best Practices für Ihre eigenen Leistungstests .. 315

24.3 Leistungsvergleich verschiedener Datenzugriffstechniken in .NET 316

24.4 Objektzuweisung optimieren ... 317

24.5 Massenoperationen .. 320

12 Inhaltsverzeichnis

24.5.1 Einzellöschen .. 320

24.5.2 Optimierung durch Batching ... 320

24.5.3 Löschen ohne Laden mit Pseudo-Objekten ... 322

24.5.4 Einsatz von klassischem SQL anstelle des Entity Framework Core-APIs 323

24.5.5 Lamdba-Ausdrücke für Massenlöschen mit EFPlus .. 324

24.5.6 Massenaktualisierung mit EFPlus ... 327

24.6 Leistungsoptimierung durch No-Tracking .. 327

24.6.1 No-Tracking aktivieren ... 328

24.6.2 No-Tracking fast immer möglich .. 329

24.6.3 No-Tracking im änderbaren Datagrid .. 332

24.6.4 QueryTrackingBehavior und AsTracking() ... 340

24.6.5 Konsequenzen des No-Tracking-Modus ... 342

24.6.6 Best Practices .. 342

24.7 Auswahl der besten Ladestrategie ... 343

24.8 Zwischenspeicherung (Caching) ... 343

24.8.1 MemoryCache ... 344

24.8.2 CacheManager ... 346

24.9 Second-Level-Caching mit EFPlus ... 353

24.9.1 Einrichten des Second-Level-Cache .. 354

24.9.2 Verwenden des Second-Level-Cache .. 354

25 Softwarearchitektur mit Entity Framework Core .. 357

25.1 Monolithisches Modell .. 357

25.2 Entity Framework Core als Datenzugriffsschicht.. 358

25.3 Reine Geschäftslogik ... 359

25.4 Geschäftsobjekt- und ViewModel-Klassen ... 360

25.5 Verteilte Systeme .. 361

25.6 Fazit ... 364

26 Zusatzwerkzeuge ... 365

26.1 Entity Framework Core Power Tools .. 365

26.1.1 Funktionsüberblick .. 365

26.1.2 Reverse Engineering mit Entity Framework Core Power Tools 366

26.1.3 Diagramme mit Entity Framework Core Power Tools .. 370

26.2 LINQPad ... 371

Inhaltsverzeichnis 13

26.2.1 Aufbau von LINQPad ... 372

26.2.2 Datenquellen einbinden ... 373

26.2.3 LINQ-Befehle ausführen ... 376

26.2.4 Abspeichern ... 378

26.2.5 Weitere LINQPad-Treiber ... 378

26.2.6 Interaktive Programmcodeeingabe .. 379

26.2.7 Fazit zu LINQPad .. 380

26.3 Entity Developer ... 380

26.3.1 Auswahl der ORM-Technik .. 381

26.3.2 Reverse Engineering mit Entity Developer ... 383

26.3.3 Forward Engineering mit Entity Developer .. 392

26.4 Entity Framework Profiler ... 397

26.4.1 Einbinden des Entity Framework Profilers ... 399

26.4.2 Befehle überwachen mit Entity Framework Profiler ... 399

26.4.3 Warnungen vor potenziellen Problemen ... 402

26.4.4 Analysefunktionen... 403

26.4.5 Kommandozeilenunterstützung und API ... 404

26.4.6 Fazit zu Entity Framework Profiler ... 404

27 Zusatzkomponenten .. 405

27.1 Oracle-Treiber von DevArt ... 405

27.1.1 Installation ... 405

27.1.2 Werkzeuge ... 405

27.1.3 Kontextklasse .. 406

27.1.4 Entitätsklassen ... 406

27.1.5 Datentypen .. 406

27.2 Entity Framework Plus (EFPlus) ... 408

27.3 Second-Level-Caching mit EFSecondLevelCache.Core ... 409

27.4 Objekt-Objekt-Mapping mit AutoMapper... 409

27.4.1 Objekt-Objekt-Mapping per Reflection... 411

27.4.2 AutoMapper .. 414

27.4.3 Beispielszenario .. 414

27.4.4 Abbildungen konfigurieren ... 416

27.4.5 Abbildung ausführen mit Map() .. 416

14 Inhaltsverzeichnis

27.4.6 Nicht-statisches API .. 417

27.4.7 Abbildungskonventionen ... 417

27.4.8 Abbildungskonventionen ändern ... 419

27.4.9 Profilklassen .. 419

27.4.10 Verbundene Objekte .. 420

27.4.11 Manuelle Abbildungen .. 420

27.4.12 Typkonvertierungen .. 423

27.4.13 Objektmengen ... 424

27.4.14 Vererbung .. 425

27.4.15 Generische Klassen ... 428

27.4.16 Zusatzaktionen vor und nach dem Mapping .. 430

27.4.17 Geschwindigkeit .. 432

27.4.18 Fazit zu AutoMapper ... 433

27.5 Weitere Erweiterungen .. 433

28 Praxislösungen .. 435

28.1 Entity Framework Core in einer ASP.NET Core-Anwendung.................................... 435

28.1.1 Das Fallbeispiel "MiracleList" .. 435

28.1.2 Architektur .. 439

28.1.3 Entitätsklassen ... 443

28.1.4 Entity Framework Core-Kontextklasse ... 445

28.1.5 Lebensdauer der Kontextklasse in ASP.NET Core-Anwendungen 446

28.1.6 Geschäftslogik ... 447

28.1.7 WebAPI ... 457

28.1.8 Verwendung von Entity Framework Core per Dependency Injection 467

28.1.9 Praxistipp: Kontextinstanzpooling (DbContext Pooling) 470

28.2 DevOps mit Entity Framework (Continous Integration und Continous Delivery) 470

28.2.1 Unit Tests und Integrationstests mit Entity Framework Core 471

28.2.2 In-Memory-Treiber ... 471

28.2.3 SQLite In-Memory-Treiber ... 474

28.2.4 Entity Framework Core beim serverseitigen Build (Continous Integration) 475

28.2.5 Entity Framework Core beim automatischen Release (Continous Delivery) 479

28.3 Entity Framework Core in einer Universal Windows Platform App 480

28.3.1 Das Fallbeispiel "MiracleList Light" ... 480

Inhaltsverzeichnis 15

28.3.2 Architektur .. 481

28.3.3 Entitätsklassen ... 482

28.3.4 Entity Framework Core-Kontextklasse ... 484

28.3.5 Startcode .. 484

28.3.6 Erzeugte Datenbank .. 485

28.3.7 Datenzugriffscode ... 487

28.3.8 Benutzeroberfläche .. 491

28.4 Entity Framework Core in einer Xamarin-Cross-Platform-App 492

28.4.1 Das Fallbeispiel "MiracleList Light" ... 492

28.4.2 Architektur .. 494

28.4.3 Entitätsklassen ... 496

28.4.4 Entity Framework Core-Kontextklasse ... 497

28.4.5 Startcode .. 498

28.4.6 Erzeugte Datenbank .. 499

28.4.7 Datenzugriffscode ... 499

28.4.8 Benutzeroberfläche .. 502

28.5 N:M-Beziehungen zu sich selbst ... 504

29 Quellen im Internet ... 511

30 Stichwortverzeichnis (Index) .. 512

31 Werbung in eigener Sache ☺ .. 522

16 Vorwort

2 Vorwort
Liebe Leserinnen und Leser,

ich nutze Entity Framework in echten Softwareentwicklungsprojekten seit der allerersten Version, also seit der

Version 1.0 von ADO.NET Entity Framework im Jahr 2008. Zuvor hatte ich einen selbstentwickelten Objekt-

Relationalen Mapper in meinen Projekten verwendet. Entity Framework Core ist das Nachfolgeprodukt, das es seit

2016 gibt. Ich setzte seitdem auch (aber nicht ausschließlich) Entity Framework Core in der Praxis ein. Viele

Projekte laufen noch mit dem klassischen Entity Framework.

Microsoft entwickelt Entity Framework Core inkrementell, d.h. die Versionen 1.x und 2.x stellen zunächst eine in

vielen Punkten noch unvollständige Grundversion dar, die in den Folgeversionen dann komplettiert wird. In der in

Entwicklung befindlichen Version 2.1 schließt Microsoft einige Lücken. Dieses Buch behandelt bereits die

Neuerungen der Version 2.1 soweit diese in der aktuellen ersten Preview-Version enthalten sind.

Dieses inkrementelle Konzept habe ich auch mit diesem Buch umgesetzt. Das Buch ist seit September 2016 in

mehreren Versionen erschienen. Die vor Ihnen liegende Version 5.0 dieses Buchs beschreibt alle Kernaspekte und

viele Tipps und Tricks sowie Praxisszenarien zu Entity Framework Core. Ich plane, in Zukunft weitere Versionen

dieses Buchs zu veröffentlichen, die die kommenden Versionen von Entity Framework Core beschreiben und auch

weitere Tipps & Tricks sowie Praxisszenarien ergänzen.

Dieses Buch wird vertrieben auf folgenden Wegen:

▪ Kindle-E-Book von Amazon für 9,99 Euro:

https://www.amazon.de/exec/obidos/ASIN/393427918X/itvisions-21

▪ PDF-E-Book von Leanpub für 39,00 Dollar:

https://leanpub.com/EntityFrameworkCore2

▪ Gedruckt im Carl Hanser Verlag unter dem Titel "Effizienter Datenzugriff mit Entity Framework Core" für

42,00 Euro: https://www.amazon.de/exec/obidos/ASIN/3446448985/itvisions-21

Die vorliegende Version dieses Buchs kostet nur rund 40 Euro (Die Plattform leanpub.com weist die Preise in Dollar

ohne Mehrwertsteuer aus. Der von mir gesetzte Preis von 39,00 Dollar zzgl. 19% Mehrwertsteuer ergibt aktuell

40,47 Euro). Käufer der Grundversion können Updates jeweils für 10,00 Dollar (zzgl. Mehrwertsteuer) erwerben

(https://leanpub.com/EntityFrameworkCore/c/update). Sie erhalten eine Update-Nachricht über Leanpub (sofern

Sie nicht gegenüber Leanpub erklären, dass Sie keine Benachrichtigungen wünschen). Später einsteigende Käufer

zahlen entsprechend mehr für die dann aktuelle Version. Käufer, die das Buch von Amazon in gedruckter Version

bezogen haben, können unter dem o.g. Link zusätzlich das PDF-E-Book ebenfalls so günstig erhalten. Bitte

beachten Sie, dass über den Verlagsstand des gedruckten Buchs der Carl Hanser-Verlag entscheidet. Um zu

erfahren, welchen Stand das Buch hat, fragen Sie bitte bei dem Verlag an.

Da solch niedrige Preise in Anbetracht der vielen Stunden Arbeit an diesem Buch leider nicht nennenswert dazu

beitragen können, den Lebensunterhalt meiner Familie zu bestreiten, ist dieses Projekt ein Hobby. Dementsprechend

kann ich nicht garantieren, wann es Updates zu diesem Buch geben wird. Ich werde dann an diesem Buch arbeiten,

wenn ich neben meinem Beruf als Softwarearchitekt, Berater und Dozent und meinen sportlichen Betätigungen noch

etwas Zeit für das Fachbuchautorenhobby übrig habe.

Zudem möchte ich darauf hinweisen, dass ich natürlich keinen kostenfreien technischen Support zu den Inhalten

dieses Buchs geben kann. Ich freue mich aber immer über konstruktives Feedback und Verbesserungsvorschläge.

Bitte verwenden Sie dazu das Kontaktformular auf www.dotnet-doktor.de.

Wenn Sie technische Hilfe zu Entity Framework und Entity Framework Core oder anderen Themen rund um .NET,

Visual Studio, Windows oder andere Microsoft-Produkte benötigen, stehe ich Ihnen im Rahmen meiner beruflichen

Tätigkeit für die Firmen www.IT-Visions.de (Beratung, Schulung, Support) und 5Minds IT-Solutions GmbH & Co

KG (Softwareentwicklung, siehe www.5minds.de) gerne zur Verfügung. Bitte wenden Sie sich für ein Angebot an

das jeweilige Kundenteam.

Die Beispiele zu diesem Buch können Sie herunterladen auf der von mir ehrenamtlich betriebenen Leser-Website

unter www.IT-Visions.de/Leser. Dort müssen Sie sich registrieren. Bei der Registrierung wird ein Losungswort

abgefragt. Bitte geben Sie dort 12Monkeys ein.

Herzliche Grüße aus Essen, dem Herzen der Metropole Ruhrgebiet

Holger Schwichtenberg

https://www.amazon.de/exec/obidos/ASIN/3934279163/itvisions-21
https://www.amazon.de/exec/obidos/ASIN/3934279171/itvisions-21
https://leanpub.com/EntityFrameworkCore/c/update
http://www.dotnet-doktor.de/
http://www.it-visions.de/
http://www.5minds.de/
http://www.it-visions.de/Leser

Über den Autor 17

3 Über den Autor
▪ Studienabschluss Diplom-Wirtschaftsinformatik an der Universität

Essen

▪ Promotion an der Universität Essen im Gebiet

komponentenbasierter Softwareentwicklung

▪ Seit 1996 selbstständig als unabhängiger Berater, Dozent,

Softwarearchitekt und Fachjournalist

▪ Leiter des Berater- und Dozententeams bei www.IT-Visions.de

▪ Leitung der Softwareentwicklung im Bereich Microsoft/.NET bei

der 5minds IT-Solutions GmbH & Co. KG (www.5minds.de)

▪ Über 65 Fachbücher beim Carl Hanser Verlag, bei O'Reilly,

Microsoft Press, APress und Addison-Wesley sowie mehr als 1000

Beiträge in Fachzeitschriften

▪ Gutachter in den Wettbewerbsverfahren der EU gegen Microsoft

(2006-2009)

▪ Ständiger Mitarbeiter der Zeitschriften iX (seit 1999), dotnetpro (seit

2000) und Windows Developer (seit 2010) sowie beim Online-Portal heise.de (seit 2008)

▪ Regelmäßiger Sprecher auf nationalen und internationalen Fachkonferenzen (z.B. Microsoft

TechEd, Microsoft Summit, Microsoft IT Forum, BASTA, BASTA-on-Tour, .NET

Architecture Camp, Advanced Developers Conference, Developer Week, OOP, DOTNET

Cologne, MD DevDays, Community in Motion, DOTNET-Konferenz, VS One, NRW.Conf,

Net.Object Days, Windows Forum, Container Conf)

▪ Zertifikate und Auszeichnungen von Microsoft:

o Microsoft Most Valuable Professional (MVP)

o Microsoft Certified Solution Developer (MCSD)

▪ Thematische Schwerpunkte:

o Softwarearchitektur, mehrschichtige Softwareentwicklung, Softwarekomponenten, SOA

o Microsoft .NET Framework, Visual Studio, C#, Visual Basic

o .NET-Architektur/Auswahl von .NET-Technologien

o Einführung von .NET Framework und Visual Studio/Migration auf .NET

o Webanwendungsentwicklung und Cross-Plattform-Anwendungen mit HTML, ASP.NET,

JavaScript/TypeScript und Webframeworks wie Angular

o Enterprise .NET, verteilte Systeme/Webservices mit .NET, insbesondere Windows

Communication Foundation und WebAPI

o Relationale Datenbanken, XML, Datenzugriffsstrategien

o Objektrelationales Mapping (ORM), insbesondere ADO.NET Entity Framework und EF

Core

o Windows PowerShell, PowerShell Core und Windows Management Instrumentation

(WMI)

▪ Ehrenamtliche Community-Tätigkeiten:

o Vortragender für die International .NET Association (INETA)

http://www.it-visions.de/

18 Über den Autor

o Betrieb diverser Community-Websites: www.dotnet-lexikon.de,

www.dotnetframework.de, www.entwickler-lexikon.de, www.windows-scripting.de,

www.aspnetdev.de u. a.

▪ Firmenwebsites: http://www.IT-Visions.de und http://www.5minds.de

▪ Weblog: http://www.dotnet-doktor.de

▪ Kontakt: E-Mail buero@IT-Visions.de sowie Telefon 0201-64 95 90-0

Über dieses Buch 19

4 Über dieses Buch

4.1 Versionsgeschichte dieses Buchs

Die folgende Tabelle zeigt die Versionen, die von diesem Buch erschienen sind, sowie die darin

besprochenen Entity Framework Core-Versionen.

Ergänzungen der Versionsnummer an der dritten Stelle (z.B. 1.2.3) sind kleine Korrekturen im

Buch, die nicht explizit in dieser Versionstabelle erscheinen.

Buchversio

n

Datum

Umfang

Leanpub.com

-Preis für

PDF

Amazon.de-

Preis für

gedruckte

Ausgabe

Entity

Framework

Core-

Version(en)

Bemerkung

1.0

16.09.2016

101 Seiten

15,00 Dollar - 1.0.1 Grundversion mit folgenden Kapiteln:

▪ Was ist Entity Framework Core?

▪ Reverse Engineering bestehender

Datenbanken

▪ Forward Engineering für neue

Datenbanken

▪ Anpassung des Datenbankschemas

▪ Schemamigrationen

▪ Daten lesen mit LINQ

▪ Objektbeziehungen und

Ladestrategien

▪ Einfügen, Löschen und Ändern

1.1

18.11.2016

122 Seiten

17,50 Dollar - 1.1 ▪ Aktualisiert auf Entity Framework

Core Version 1.1

▪ Neues Unterkapitel: Laden anhand

des Primärschlüssels mit Find()

▪ Neues Unterkapitel: Explizites

Nachladen

▪ Neues Unterkapitel:

Änderungsverfolgung auch für

Unterobjekte

▪ Neues Kapitel:

Leistungsoptimierung durch No-

Tracking

▪ Neues Kapitel: Quellen im Internet

1.2

07.04.2017

145 Seiten

18,50

Dollar

19,99

Euro

1.1.1 ▪ Neues Kapitel:

Datenänderungskonflikte

20 Über dieses Buch

Buchversio

n

Datum

Umfang

Leanpub.com

-Preis für

PDF

Amazon.de-

Preis für

gedruckte

Ausgabe

Entity

Framework

Core-

Version(en)

Bemerkung

▪ Neues Kapitel: Praxislösungen /

N:M-Beziehungen zu sich selbst

1.3

14.06.2017

194 Seiten

19,50

Dollar

- 1.1.2 und

2.0-

Preview1

▪ Aktualisiert auf Version 2.0

Preview 1

▪ Erweitert: Fallbeispiel in diesem

Buch

▪ Erweitert: LINQ im RAM statt in

Datenbank

▪ Erweitert: Regeln für die

selbsterstellte Kontextklasse

▪ Neues Kapitel: Artefakte der Entity

Framework Core-Programmierung

▪ Neues Kapitel: Daten

lesen/Globale Abfragefilter

▪ Neues Kapitel: Einfügen, Ändern

und Löschen/Das Foreach-Problem

▪ Neues Kapitel: Einfügen, Ändern

und Löschen/Transaktionen

▪ Neues Kapitel: Asynchrone

Programmierung

▪ Neues Kapitel: Zusatzwerkzeuge:

LINQPad, Entity Developer

▪ Erweitert: Tipps und Best Practices

in einigen Kapiteln.

▪ Verbessert:

Seitennummernformatierung

1.4

06.07.2017

210 Seiten

19,50

Dollar

19,99

Euro

1.1.2 und

2.0-

Preview2

▪ Aktualisiert auf Version 2.0

Preview 2

▪ Neues Kapitel: Was ist Entity

Framework Core/Unterstützte

.NET-Versionen

▪ Neues Kapitel: Was ist Entity

Framework Core/Unterstützte

Visual Studio-Versionen

▪ Neues Kapitel: Installation von

Entity Framework Core

Über dieses Buch 21

Buchversio

n

Datum

Umfang

Leanpub.com

-Preis für

PDF

Amazon.de-

Preis für

gedruckte

Ausgabe

Entity

Framework

Core-

Version(en)

Bemerkung

▪ Neues Kapitel: Daten lesen und

ändern mit SQL, Stored Procedures

und Table Valued Functions

2.0

17.07.2017

296 Seiten

24,50 Dollar 24,99

Euro

1.1.2 und

2.0-

Preview2

▪ Neues Kapitel: "Was ist Entity

Framework Core?/Was ist ein OR-

Mapper?"

▪ Neues Kapitel: "Was ist Entity

Framework Core?/ORM in der

.NET-Welt"

▪ Neues Kapitel: "Einfügen, Löschen

und Ändern/Change Tracker

abfragen"

▪ Neues Kapitel:

"Praxislösungen/Entity Framework

Core in einer Universal Windows

App"

▪ Neues Kapitel: "Protokollierung

(Logging)"

▪ Neues Kapitel: "Dynamische

LINQ-Abfragen"

▪ Kapitel "Daten lesen und ändern

mit SQL, Stored Procedures und

Table Valued Functions" erweitert

um Globale Filter.

▪ Neues Kapitel:

"Softwarearchitektur mit Entity

Framework Core"

▪ Neues Kapitel: "Zusatzwerkzeuge/

Profiling mit Entity Framework

Profiler"

▪ Neues Kapitel: "Zusatzwerkzeuge/

Objekt-Objekt-Mapping und

AutoMapper"

▪ Stichwortverzeichnis (Index)

ergänzt

2.1

14.08.2017

296 Seiten

24,50 Dollar 24,99

Euro

1.1.2 und

2.0

▪ Aktualisiert auf die am 14.8.

erschienene RTM-Version von

Entity Framework Core 2.0

22 Über dieses Buch

Buchversio

n

Datum

Umfang

Leanpub.com

-Preis für

PDF

Amazon.de-

Preis für

gedruckte

Ausgabe

Entity

Framework

Core-

Version(en)

Bemerkung

3.0

01.09.2017

395 Seiten

34,50 Dollar 34,99

Euro

1.1.2 und

2.0

▪ Erweiterung des Kapitels:

"Aktualisierung auf eine neue

Version"

▪ Neues Kapitel: "Anpassung des

Datenbankschemas/Indexe"

▪ Neues Kapitel:

"Leistungsoptimierung"

▪ Neues Kapitel:

"Tipps&Tricks/Shadow Properties"

▪ Neues Kapitel:

"Tipps&Tricks/Table Splitting"

▪ Neues Kapitel:

"Tipps&Tricks/Berechnete

Spalten"

▪ Neues Kapitel:

"Tipps&Tricks/Standardwerte"

▪ Neues Kapitel:

"Tipps&Tricks/Sequenzen"

▪ Neues Kapitel:

"Tipps&Tricks/Alternative

Schlüssel"

▪ Neues Kapitel

"Praxislösungen/Entity Framework

Core in einer ASP.NET Core-

Anwendung"

3.1

19.09.2017

422 Seiten

34,50 Dollar 34,99

Euro

1.1.2 und

2.0

▪ Neues Kapitel: "Konzepte von

Entity Framework

Core/Vorgehensmodelle"

▪ Neues Kapitel: "Anpassung des

Datenbankschemas/Weitere

Syntaxoptionen für das Fluent-

API"

▪ Neues Kapitel: "Daten lesen mit

LINQ/ Umgehung für das

GroupBy-Problem"

▪ Neues Kapitel: "Einfügen, Löschen

und Ändern/Widersprüchliche

Beziehungen"

Über dieses Buch 23

Buchversio

n

Datum

Umfang

Leanpub.com

-Preis für

PDF

Amazon.de-

Preis für

gedruckte

Ausgabe

Entity

Framework

Core-

Version(en)

Bemerkung

▪ Aktualisiert:

"Leistungsoptimierung/

Leistungsvergleich"

▪ Neues Kapitel: "Weitere Tipps und

Tricks zum

Mapping/Kaskadierendes Löschen"

▪ Neues Kapitel "Weitere Tipps und

Tricks zum Mapping/Abbildung

von Datenbansichten (Views)"

▪ Neues Kapitel: "Weitere Tipps und

Tricks zu LINQ"

4.0

06.10.2017

460 Seiten

39,00 Dollar 39,99

Euro

1.1.3 und

2.0

▪ Neues Kapitel: "Daten lesen mit

LINQ/ Kurzübersicht über die

LINQ-Syntax"

▪ Neues Kapitel:

"Praxislösungen/Entity Framework

Core in einer Xamarin-Cross-

Platform-App"

▪ Überarbeitetes Kapitel:

"Zusatzkomponenten/AutoMapper

"

▪ Verbesserung des Layouts

4.1

22.10.2017

474 Seiten

39,00 Dollar 39,99

Euro

1.1.3 und

2.0

▪ Neues Kapitel:

"Zusatzwerkzeuge/Entity

Framework Core Power Tools"

4.2

20.12.2017

485 Seiten

39,00 Dollar 39,99

Euro

1.1.5 und

2.0.1

▪ Neues Kapitel "Objektbeziehungen

und Ladestrategien/Relationship

Fixup"

4.3

03.01.2018

473 Seiten

39,00 Dollar 39,99

Euro

1.1.5 und

2.0.1

▪ Einige Kapitel überarbeitet

▪ Neues Kapitel

"Zusatzkomponenten/Oracle-

Treiber von DevArt"

▪ Erweiterung des Kapitels

"Leistungsoptimierung durch No-

Tracking"

▪ Erweiterung des Kapitels "Weitere

Tipps und Tricks zum

Mapping/Shadow Properties"

24 Über dieses Buch

Buchversio

n

Datum

Umfang

Leanpub.com

-Preis für

PDF

Amazon.de-

Preis für

gedruckte

Ausgabe

Entity

Framework

Core-

Version(en)

Bemerkung

▪ Formatierung der Listings nun

kompakter, daher die verringerte

Seitenzahl

4.4

02.03.2018

493 Seiten

39,00 Dollar Nicht

verfügbar

1.1.5 und

2.0.1

▪ Erweiterung des Kapitels:

"Datenbankschemamigrationen"

▪ Neues Kapitel "Praxislösungen/

Continous Integration und

Continous Delivery

5.0

20.3.2018

522 Seiten

44,00 Dollar Nicht

verfügbar

1.1.5, 2.0.2

und 2.1

Preview 1

▪ Zahlreiche Stellen aktualisiert auf

Version 2.1 Preview 1

▪ Kapitel "LINQ/Gruppierungen"

ergänt

▪ Kapitel "Umgehung für das

GroupBy-Problem" aktualisiert auf

Entity Framework Core 2.1

Preview 1

▪ Erweiterung des Kapitels

"LINQ/Projektionen"

▪ Erweiterung des Kapitels

"LINQ/Repository-Pattern"

▪ Kapitel "SQL/Nicht-

Entitätsklassen als Ergebnismenge"

aktualisiert auf Entity Framework

Core 2.1 Preview 1

▪ Kapitel "Weitere Tipps zum

Mapping/Abbildung von

Datenbanksichten" aktualisiert auf

Entity Framework Core 2.1

Preview 1

▪ Kapitel "Weitere Tipps zum

Mapping/Wertkonvertierungen"

ergänzt

▪ Kapitel "Einfügen, Löschen und

Ändern/

Datenbanktransaktionen/Transactio

nScope" ergänzt

5.1

522 Seiten

44,00 Dollar Nicht

verfügbar

1.1.5, 2.0.2

und 2.1

RC 1

▪ Aktualisert auf 2.1 RC1

Über dieses Buch 25

4.2 Bezugsquelle für Aktualisierungen

Wenn Sie eine ältere Version dieses Buch besitzen, können Sie jederzeit eine aktuelle PDF-Version

zum stark vergünstigten Preis von nur 15,00 Dollar (zzgl. 19% Mehrwertsteuer) unter folgendem

Link beziehen:

https://leanpub.com/EntityFrameworkCore/c/update2

Sie können diesen Link auch verwenden, wenn Sie eine gedruckte Version bei Amazon gekauft

haben und nun gerne auch das E-Book zusätzlich hätten (zum Beispiel für die Volltextsuche).

Leider erlaubt Amazon nicht, dass Sie eine Aktualisierung als Kindle oder in gedruckter Form

vergünstigt erhalten.

4.3 Geplante Kapitel

Die Reihenfolge der für die folgenden Versionen geplanten Kapitel ist hier zunächst alphabetisch

angeordnet und entspricht nicht der Reihenfolge, in der die Kapitel erscheinen werden.

▪ Auditing mit Entity Framework Plus

▪ Connection Resiliency / EnableRetryOnFailure (seit Entity Framework Core 1.1)

▪ Data Seeding und Spaltensortierung beim Anlegen einer Tabelle (ab Entity Framework Core

2.1)

▪ Include für abgeleitete Typen (ab Entity Framework Core 2.1)

▪ Mapping mit (privaten) Feldern (seit Entity Framework Core 1.1)

▪ Migration von Entity Framework 6.x

▪ Parameter in Konstruktoren von Entitätsklassen (ab Entity Framework Core 2.1)

▪ Owned Types (ab Entity Framework Core 2.0)

▪ Scalare Datenbankfunktionen nutzen (seit Entity Framework Core 2.0)

▪ SQL Server memory-optimized Tables (seit Entity Framework Core 1.1)

▪ Temporale Tabellen (seit SQL Server 2016)

▪ Zusätzliche Erweiterungen wie z.B. EntityFrameworkCore.Rx,

EFDetached.EntityFramework, EntityFrameworkCore.Triggers,

EntityFrameworkCore.PrimaryKey und EntityFrameworkCore.TypedOriginalValues

Folgende Themen in diesem Buch sollen in Zukunft erweitert werden:

▪ Entity Framework Core in verteilten Systemen / Einsatz mit Webservices

▪ Reload

4.4 Programmiersprache in diesem Buch

Als Programmiersprache kommt in diesem Buch C# zum Einsatz, weil dies die bei weitem am

häufigsten verwendete Programmiersprache in .NET ist. Der Autor dieses Buchs programmiert in

26 Über dieses Buch

einigen Kundenprojekten .NET-Anwendungen zwar auch in Visual Basic .NET, leider bietet

dieses Buch jedoch nicht den Raum, alle Listings in beiden Sprachen wiederzugeben.

Eine Sprachkonvertierung zwischen C# und Visual Basic .NET ist im WWW kostenfrei verfügbar

z.B. auf der Website http://converter.telerik.com.

http://converter.telerik.com/

Fallbeispiele in diesem Buch 27

5 Fallbeispiele in diesem Buch
Die meisten Beispielprogrammcodes in diesem Buch drehen sich um das Fallbeispiel der fiktiven

Fluggesellschaft "World Wide Wings", abgekürzt "WWWings" oder als dreibuchstabiger Airline

Code einfach "WWW". Es gibt auch eine Website zu der Fluggesellschaft (www.world-wide-

wings.de) – dort einen Flug zu buchen, möchte der Autor dieses Buchs Ihnen aber nicht empfehlen
☺

Abbildung: Logo der fiktiven Fluggesellschaft "World Wide Wings"

Hinweis: In einzeln Unterkapitel werden andere Fallbeispiele verwendet (z.B. die

Aufgabenverwaltung "MiracleList"). Diese Fallbeispiele werden dann in den jeweiligen

Kapiteln erläutert.

5.1 Entitäten

Im Anwendungsfall "World Wide Wings" geht es um folgende Entitäten:

▪ Flüge zwischen zwei Orten, bei denen die Orte bewusst nicht als eigene Entität modelliert

wurden, sondern Zeichenketten sind (dies vereinfacht das Verständnis vieler Beispiele)

▪ Passagiere, die auf Flügen fliegen

▪ Mitarbeiter der Fluggesellschaft, die wiederum Vorgesetzte haben, die auch Mitarbeiter sind

▪ Piloten als eine Spezialisierung von Mitarbeitern. Ein Flug hat einfacheren Modell nur einen

Piloten. Es gibt keinen Copiloten bei World Wide Wings. Den Copiloten abzuschaffen und im

Notfall das Flugzeug von der Stewardess landen zu lassen (wie im Film "Turbulence" von

1997), war übrigens ein echter Vorschlag von Michael O'Leary, dem Chef der irischen

Fluggesellschaft Ryanair im Jahr 2010 (siehe [http://www.dailymail.co.uk/news/article-

1308852/Let-stewardesses-land-plane-crisis-says-Ryanair-boss-Airline-wants-ditch-

pilots.html]).

▪ Personen als Sammlung der gemeinsamen Eigenschaften für alle Menschen in diesem

Beispiel. Personen gibt es aber nicht eigenständig, sondern nur in den

Ausprägungen/Spezialisierungen Passagier, Mitarbeiter und Pilot. Im objektorientierten Sinne

ist Person also eine abstrakte Basisklasse, die keine Instanzen besitzen kann, sondern nur der

Vererbung dient.

Es gibt zwei Datenmodelle:

▪ Das etwas einfachere Modell #1 (alias Modell Version 6.6, siehe Abbildungen 1 und 2) ist das

Ergebnis klassischen relationalen Datenbankdesigns mit Normalisierung. Das Objektmodell

daraus entsteht per Reverse Engineering.

▪ Modell #2 (alias Modell Version 7.0, siehe Abbildungen 3 und 4) ist das Ergebnis des Forward

Engineering mit Entity Framework Core aus einem Objektmodell. Zusätzlich gibt es hier

weitere Entitäten (Persondetail, Flugzeugtyp und Flugzeugtypdetail), um weitere

Modellierungsaspekte aufzeigen zu können. In diesem Fall gibt es auch für jeden Flug einen

optional Copiloten.

http://www.world-wide-wings.de/
http://www.world-wide-wings.de/

28 Fallbeispiele in diesem Buch

In Modell #1 gibt es eine jeweils eigene Tabelle für Personen (auch wenn es keine eigenständigen

Personen gibt), Mitarbeiter, Piloten und Passagiere. Diese Aufteilung entspricht den Klassen im

Objektmodell.

Hinweis: Bitte beachten Sie, dass die Objektmodelle, die in diesem Buch zu den Datenmodellen

erstellt werden, nicht das Idealbild eines Objektmodells darstellen können, denn Entity

Framework Core unterstützt einige Mapping-Möglichkeiten wie z.B. das N:M-Mapping noch

nicht.

Das Objektmodell zum Datenbankschema World Wide Wings Version 6.6 (Abbildung 2) ist

das automatisch von Entity Framework Core aus der Datenbank generierte Objektmodell

(Reverse Engineering); es ist bewusst nicht verändert worden, auch wenn einige der generierten

Namen unschön sind.

Abbildung 1: World Wide Wings-Datenmodell in der einfacheren Version 6.6

Fallbeispiele in diesem Buch 29

Abbildung 2: Objektmodell zum World Wide Wings-Datenmodell in der einfacheren Version 6.6

In Modell #2 gibt es lediglich die Tabellen Passagiere und Mitarbeiter für diese vier Entitäten.

Entity Framework Core ist derzeit etwas eingeschränkt und unterstützt das "Table per Type"-

Mapping (also eine eigenständige Tabelle für jede Klasse) nicht. Daher umfasst die Tabelle

Passagiere auch alle Eigenschaften von Person. Die Tabelle Mitarbeiter umfasst neben den

Personeneigenschaften die Eigenschaften der Entitäten Mitarbeiter und Pilot. In der Tabelle wird

per Diskriminatorspalte unterschieden zwischen Datensätzen, die ein Mitarbeiter sind, und

solchen, die ein Pilot sind. Entity Framework Core mischt hier die Konzepte Table per Concrete

Type (TPC) und Table per Hierarchy (TPH). Einen dezidierten Einfluss auf diese Abbildung hat

man in Entity Framework Core 1.x/2.0 noch nicht. Das klassische Entity Framework bietet hier

mehr Optionen.

Die Abhängigkeitsarten in Modell #2 sind:

▪ Ein Flug muss einen Piloten besitzen. Es gibt einen Copilot, aber er ist optional.

▪ Ein Flug kann optional einen Flugzeutyp zugeordnet haben. Ein Flugzeugtyp hat eine

Beziehung zu Flugzeugtypdetail.

▪ Jede Person und damit auch jeder Pilot und Passagier muss ein Persondetail-Objekt besitzen.

In diesem Buch kommen beide Datenmodelle vor, teilweise auch in modifizierter Form, um

bestimmte Szenarien (z.B. Datenbankschemamigrationen) aufzuzeigen.

30 Fallbeispiele in diesem Buch

Abbildung 3: World Wide Wings-Datenmodell in der komplexeren Version 7.0

Abbildung 4: Objektmodell zum World Wide Wings-Datenmodell in der komplexeren Version 7.0

Fallbeispiele in diesem Buch 31

5.2 Englische Version des Beispiels

Da dieses Buch bald auch in Englisch (bei APress) erscheinen wird, war es notwendig, die

Programmcodebeispiele auf Englisch umzustellen, da der Aufwand für die Pflege von Quellcode

in zwei Sprachen nicht wirtschaftlich vertretbar war. Daher verwenden einige neuere Beispiele in

diesem Buch bereits die englischen Klassennamen, z.B. Flight statt Flug und Passenger statt

Passagier sowie Airline statt Fluggesellschaft und Booking statt Buchung usw.

Die folgende Abbildung zeigt das analog Objektmodell in englischer Sprache.

Abbildung: Englische Fassung des Objektmodells zum World Wide Wings-Datenmodell in der

komplexeren Version 7.0

5.3 Anwendungsarten in diesem Buch

In diesem Buch erfolgen Bildschirmausgaben meist an der textbasierten Konsole in

Konsolenanwendungen, denn dies ermöglicht die Fokussierung auf den Datenbankzugriff. Beim

Einsatz von grafischen Benutzeroberflächen wie WPF, Windows Forms, ASP.NET Webforms

oder ASP.NET MVC ist die Darstellung durch Datenbindung entkoppelt, das heißt man würde

immer ein zweites Listing brauchen, um zu verstehen, dass die Datenzugriffe überhaupt liefern.

Eingaben des Benutzers werden in den Konsolenbeispielen durch Variablen zu Beginn des

Programmcodes simuliert.

Der Autor dieses Buchs führt seit vielen Jahren Schulungen und Beratungseinsätze im Bereich

Datenzugriff durch und hat dabei die Erfahrung gemacht, dass Konsolenausgaben das didaktisch

beste Instrument sind, da die Listings sonst sehr umfangreich und damit schlechter zu verstehen

sind.

Natürlich ist die Konsolenausgabe in 99% der Fälle der Softwareentwicklung nicht die gängige

Praxis. Grafische Benutzeroberflächen sind Inhalt anderer Bücher, und die Datenbindung hat in

32 Fallbeispiele in diesem Buch

der Regel keinen Einfluss auf die Form des Datenzugriffs. Dort, wo der Datenzugriff doch relevant

ist, wird dieses Buch auch Datenbindungsbeispiele zeigen.

5.4 Hilfsroutinen zur Konsolenausgabe

Für die Bildschirmausgabe an der Konsole wird an mehreren Stellen nicht nur Console.WriteLine()

verwendet, sondern auch Hilfsroutinen kommen zur Anwendung, die farbige Bildschirmausgaben

erzeugen. Diese Hilfsroutinen in der Klasse CUI aus der ITV_DemoUtil.dll sind hier zum besseren

Verständnis abgedruckt:

Listing: Klasse CUI mit Hilfsroutinen für die Bildschirmausgabe an der Konsole
using System;

using System.Runtime.InteropServices;

using System.Web;

using ITVisions.UI;

using System.Diagnostics;

namespace ITVisions

{

 /// <summary>

 /// Helper utilities for console UIs

 /// (C) Dr. Holger Schwichtenberg 2002-2018

 /// </summary>

 public static class CUI

 {

 public static bool IsDebug = false;

 public static bool IsVerbose = false;

 #region Print only under certain conditions

 public static void PrintDebug(object s)

 {

 PrintDebug(s, System.Console.ForegroundColor);

 }

 public static void PrintVerbose(object s)

 {

 PrintVerbose(s, System.Console.ForegroundColor);

 }

 #endregion

 #region Issues with predefined colors

 public static void MainHeadline(string s)

 {

 Print(s, ConsoleColor.Black, ConsoleColor.Yellow);

 }

 public static void Headline(string s)

 {

 Print(s, ConsoleColor.Yellow);

 }

 public static void HeaderFooter(string s)

 {

 Console.ForegroundColor = ConsoleColor.Green;

Fallbeispiele in diesem Buch 33

 Console.WriteLine(s);

 Console.ForegroundColor = ConsoleColor.Gray;

 }

 public static void SubHeadline(string s)

 {

 Print(s, ConsoleColor.White);

 }

 public static void PrintSuccess(object s)

 {

 Print(s, ConsoleColor.Green);

 }

 public static void H1(string s)

 {

 MainHeadline(s);

 }

 public static void H2(string s)

 {

 Headline(s);

 }

 public static void H3(string s)

 {

 SubHeadline(s);

 }

 public static void PrintGreen(string s)

 {

 Print(s, ConsoleColor.Green);

 }

 public static void PrintYellow(string s)

 {

 Print(s, ConsoleColor.Yellow);

 }

 public static void PrintRed(string s)

 {

 Print(s, ConsoleColor.Red);

 }

 public static void PrintSuccess(object s)

 {

 Print(s, ConsoleColor.Green);

 }

 public static void PrintStep(object s)

 {

 Print(s, ConsoleColor.Cyan);

34 Fallbeispiele in diesem Buch

 }

 public static void PrintDebugSuccess(object s)

 {

 PrintDebug(s, ConsoleColor.Green);

 }

 public static void PrintVerboseSuccess(object s)

 {

 PrintVerbose(s, ConsoleColor.Green);

 }

 public static void PrintWarning(object s)

 {

 Print(s, ConsoleColor.Cyan);

 }

 public static void PrintDebugWarning(object s)

 {

 PrintDebug(s, ConsoleColor.Cyan);

 }

 public static void PrintVerboseWarning(object s)

 {

 PrintVerbose(s, ConsoleColor.Cyan);

 }

 public static void PrintError(object s)

 {

 Print(s, ConsoleColor.White, ConsoleColor.Red);

 }

 public static void PrintDebugError(object s)

 {

 PrintDebug(s, ConsoleColor.White, ConsoleColor.Red);

 }

 public static void PrintVerboseError(object s)

 {

 Print(s, ConsoleColor.White, ConsoleColor.Red);

 }

 public static void Print(object s)

 {

 PrintInternal(s, null);

 }

 #endregion

 #region Print with selectable color

 public static void Print(object s, ConsoleColor farbe, ConsoleColor?

hintergrundfarbe = null)

 {

Fallbeispiele in diesem Buch 35

 PrintInternal(s, farbe, hintergrundfarbe);

 }

 public static void PrintDebug(object s, ConsoleColor farbe, ConsoleColor?

hintergrundfarbe = null)

 {

 if (IsDebug || IsVerbose) PrintDebugOrVerbose(s, farbe, hintergrundfarbe);

 }

 public static void PrintVerbose(object s, ConsoleColor farbe)

 {

 if (!IsVerbose) return;

 PrintDebugOrVerbose(s, farbe);

 }

 #endregion

 #region Print with additional data

 /// <summary>

 /// Print with Thread-ID

 /// </summary>

 public static void PrintWithThreadID(string s, ConsoleColor c =

ConsoleColor.White)

 {

 var ausgabe = String.Format("Thread #{0:00} {1:}: {2}",

System.Threading.Thread.CurrentThread.ManagedThreadId,

DateTime.Now.ToLongTimeString(), s);

 CUI.Print(ausgabe, c);

 }

 /// <summary>

 /// Print with time

 /// </summary>

 public static void PrintWithTime(object s, ConsoleColor c = ConsoleColor.White)

 {

 CUI.Print(DateTime.Now.Second + "." + DateTime.Now.Millisecond + ":" + s);

 }

 private static long count;

 /// <summary>

 /// Print with counter

 /// </summary>

 private static void PrintWithCounter(object s, ConsoleColor farbe,

ConsoleColor? hintergrundfarbe = null)

 {

 count += 1;

 s = $"{count:0000}: {s}";

 CUI.Print(s, farbe, hintergrundfarbe);

 }

 #endregion

 #region internal helper routines

36 Fallbeispiele in diesem Buch

 private static void PrintDebugOrVerbose(object s, ConsoleColor farbe,

ConsoleColor? hintergrundfarbe = null)

 {

 count += 1;

 s = $"{count:0000}: {s}";

 Print(s, farbe, hintergrundfarbe);

 Debug.WriteLine(s);

 Trace.WriteLine(s);

 Trace.Flush();

 }

 /// <summary>

 /// Output to console, trace and file

 /// </summary>

 /// <param name="s"></param>

 [DebuggerStepThrough()]

 private static void PrintInternal(object s, ConsoleColor? farbe = null,

ConsoleColor? hintergrundfarbe = null)

 {

 if (s == null) return;

 if (HttpContext.Current != null)

 {

 try

 {

 if (farbe != null)

 {

 HttpContext.Current.Response.Write("<span style='color:" +

farbe.Value.DrawingColor().Name + "'>");

 }

 if (!HttpContext.Current.Request.Url.ToString().ToLower().Contains(".asmx")

&& !HttpContext.Current.Request.Url.ToString().ToLower().Contains(".svc") &&

!HttpContext.Current.Request.Url.ToString().ToLower().Contains("/api/"))

HttpContext.Current.Response.Write(s.ToString() + "
");

 if (farbe != null)

 {

 HttpContext.Current.Response.Write("");

 }

 }

 catch (Exception)

 {

 }

 }

 else

 {

 object x = 1;

 lock (x)

 {

 ConsoleColor alteFarbe = Console.ForegroundColor;

 ConsoleColor alteHFarbe = Console.BackgroundColor;

 if (farbe != null) Console.ForegroundColor = farbe.Value;

Fallbeispiele in diesem Buch 37

 if (hintergrundfarbe != null) Console.BackgroundColor =

hintergrundfarbe.Value;

 //if (farbe.ToString().Contains("Dark")) Console.BackgroundColor =

ConsoleColor.White;

 //else Console.BackgroundColor = ConsoleColor.Black;

 Console.WriteLine(s);

 Console.ForegroundColor = alteFarbe;

 Console.BackgroundColor = alteHFarbe;

 }

 }

 }

 #endregion

 #region Set the position of the console window

 [DllImport("kernel32.dll", ExactSpelling = true)]

 private static extern IntPtr GetConsoleWindow();

 private static IntPtr MyConsole = GetConsoleWindow();

 [DllImport("user32.dll", EntryPoint = "SetWindowPos")]

 public static extern IntPtr SetWindowPos(IntPtr hWnd, int hWndInsertAfter, int

x, int Y, int cx, int cy, int wFlags);

 // Set the position of the console window without size

 public static void SetConsolePos(int xpos, int ypos)

 {

 const int SWP_NOSIZE = 0x0001;

 SetWindowPos(MyConsole, 0, xpos, ypos, 0, 0, SWP_NOSIZE);

 }

 // Set the position of the console window with size

 public static void SetConsolePos(int xpos, int ypos, int w, int h)

 {

 SetWindowPos(MyConsole, 0, xpos, ypos, w, h, 0);

 }

 #endregion

 }

}

38 Programmcodebeispiel zum Download

6 Programmcodebeispiel zum Download
Die Beispiele zu diesem Buch können Sie als Visual Studio-Projekte herunterladen auf der Leser-

Website unter www.IT-Visions.de/Leser. Dort müssen Sie sich einmalig registrieren. Bei der

Registrierung wird ein Losungswort abgefragt, das Sie als Käufer dieses Buchs ausweist. Bitte

geben Sie dort 12Monkeys ein. Durch die Registrierung erhalten Sie ein persönliches Kennwort

per E-Mail zugesendet, das Sie dann für die Anmeldung nutzen können.

Bitte beachten Sie, dass nicht jede einzelne Zeile Programmcode, die Sie in diesem Buch finden,

in den herunterladbaren Projekten enthalten sein kann. Die Projekte bilden funktionierende

Lösungen. In diesem Buch warden auch alternative Lösungen für Einzelfälle diskutiert, die nicht

unbedingt zu einer Gesamtlösung passen.

Dateiname Inhalt

EFC_Reverse.rar Beispiel aus dem Kapitel "Reverse Engineering". Das

Paket enthält auch die SQL-Skripte für das einfachere

"World Wide Wings"-Datenmodell inkl. Testdaten.

EFC_Forward.rar "World Wide Wings"-Beispiel aus dem Kapitel "Forward

Engineering"

EFC_Hauptbeispielsammlung.rar Beispiele aller anderen Kapitel, die auf einer erweiterten

Variante des "World Wide Wings"-Beispiels aus dem

Kapitel "Forward Engineering" basieren. Hierin enthalten

ist das Objektmodell, aus dem das komplexere

Datenmodell zur Entwicklungs- oder Laufzeit angelegt

werden kann. Testdaten lassen sich durch einen

Datengenerator generieren, der im Quellcode enthalten

ist.

EFC_UWP_SQLite.rar

und

EFC_Xamarin_SQLite.rar

Beispielanwendung: Einfacher Merkzettel "MiracleList

Light" als Universal App für Windows 10 und Cross-

Platform-App für iOS, Android und Windows 10. Die

App speichert Daten mit Hilfe von Entity Framework

Core in SQLite.

EFC_Countries_NMSelf.rar Ländergrenzen-Beispiel aus dem Kapitel

"Praxislösungen"

http://www.it-visions.de/Leser

Was ist Entity Framework Core? 39

7 Was ist Entity Framework Core?
Entity Framework Core ist ein Objekt-Relationaler Mapper (ORM) für .NET (.NET Framework,

.NET Core, Mono und Xamarin). Entity Framework Core ist eine Neuimplementierung des

"ADO.NET Entity Framework".

Zusammen mit .NET Core Version 1.0 und ASP.NET Core Version 1.0 ist auch Entity Framework

Core Version 1.0 am 27. Juni 2016 erstmals erschienen. Die Version 2.0 ist am 14. August 2017

erschienen. Version 2.1 ist in Arbeit.

7.1 Was ist ein Objekt-Relationaler Mapper (ORM)?

In der Datenbankwelt sind relationale Datenbanken vorherschend, in der Programmierwelt sind es

Objekte. Zwischen den beiden Welten gibt es erhebliche semantische und syntaktische

Unterschiede, die man unter dem Begriff "Impedance Mismatch" (zu deutsch: Unverträglichkeit,

vgl. [https://dict.leo.org/englisch-deutsch/impedance%20mismatch]) oder "Semantic Gap" (zu

deutsch: semantische Lücke) zusammenfasst.

Kern des objektorientierten Programmierens (OOP) ist die Arbeit mit Objekten als Instanzen von

Klassen im Hauptspeicher. Die meisten Anwendungen beinhalten dabei auch die Anforderung, in

Objekten gespeicherte Daten dauerhaft zu speichern, insbesondere in Datenbanken. Grundsätzlich

existieren objektorientierte Datenbanken (OODB), die direkt in der Lage sind, Objekte zu

speichern. Allerdings haben objektorientierte Datenbanken bisher nur eine sehr geringe

Verbreitung. Der vorherrschende Typus von Datenbanken sind relationale Datenbanken, die

Datenstrukturen jedoch anders abbilden als Objektmodelle.

Um die Handhabung von relationalen Datenbanken in objektorientierten Systemen natürlicher zu

gestalten, setzt die Software-Industrie seit Jahren auf O/R-Mapper (auch: OR-Mapper oder ORM

geschrieben). O steht dabei für objektorientiert und R für relational. Diese Werkzeuge bilden

demnach Konzepte aus der objektorientierten Welt, wie Klassen, Attribute oder Beziehungen

zwischen Klassen, auf entsprechende Konstrukte der relationalen Welt, wie zum Beispiel Tabellen,

Spalten und Fremdschlüssel, ab. Der Entwickler kann somit in der objektorientierten Welt

verbleiben und den O/R-Mapper anweisen, bestimmte Objekte, welche in Form von Datensätzen

in den Tabellen der relationalen Datenbank vorliegen, zu laden bzw. zu speichern. Wenig

interessante und fehleranfällige Aufgaben wie das manuelle Erstellen von INSERT-, UPDATE-

oder DELETE-Anweisungen übernimmt der O/R-Mapper hierbei ebenfalls, was zu einer weiteren

Entlastung des Entwicklers führt.

40 Was ist Entity Framework Core?

Tabelle/Sicht/SPTabelle/Sicht/SP
Klasse

Datenbank Hauptspeicher

Objekt

Zeile

Zelle

Attribut

Methode

SQL DML

Stored Procedures

Klasse

Klasse

Klasse KlasseKlasse

KlasseKlasse

Klasse

Klasse

Klasse KlasseKlasse

KlasseKlasse

nvarchar

Bit

binary
String

Boolean

Byte[]

Abbildung: Beim ORM bildet man Konstrukte der OOP-Welt auf die relationale Welt ab.

Zwei besonders hervorstechende Unterschiede zwischen Objektmodell und Relationenmodell sind

N:M-Beziehungen und Vererbung. Während man in einem Objektmodell eine N:M-Beziehung

zwischen Objekten durch eine wechselseitige Objektmenge abbilden kann, benötigt man in der

relationalen Datenbank eine Zwischentabelle. Vererbung kennen relationale Datenbanken gar

nicht. Hier gibt es verschiedene Möglichkeiten der Nachbildung, doch dazu später mehr.

7.2 ORM in der .NET-Welt

Wenn ein .NET-Entwickler aus einer Datenbank mit einem DataReader oder DataSet Daten

einliest, dann betreibt er noch kein OR Mapping. DataReader und DataSet sind zwar .NET-

Objekte, aber diese verwalten nur Tabellenstrukturen. DataReader und DataSet sind aus der Sicht

eines Objektmodells untypisierte, unspezifische Container. Erst wenn ein Entwickler spezifische

Klassen für die in den Tabellen gespeicherten Strukturen definiert und die Inhalte aus DataSet oder

DataReader in diese spezifischen Datenstrukturen umkopiert, betreibt er OR Mapping. Solch ein

"händisches OR Mapping" ist für den Lesezugriff (gerade bei sehr breiten Tabellen) eine sehr

aufwändige, mühselige und eintönige Programmierarbeit. Will man dann Änderungen in den

Objekten auch noch wieder speichern, wird die Arbeit allerdings zur intellektuellen

Herausforderung. Denn man muss erkennen können, welche Objekte verändert wurden, da man

sonst ständig alle Daten aufs Neue speichert, was in Mehrbenutzerumgebungen ein Unding ist.

Was ist Entity Framework Core? 41

Während in der Java-Welt das ORM-Werkzeug schon sehr lange zu den etablierten Techniken

gehört, hat Microsoft diesen Trend lange verschlafen bzw. es nicht vermocht, ein geeignetes

Produkt zur Marktreife zu führen. ADO.NET in .NET 1.0 bis 3.5 enthielt keinen ORM, sondern

beschränkte sich auf den direkten Datenzugriff und die Abbildung zwischen XML-Dokumenten

und dem relationalen Modell.

Viele .NET-Entwickler haben sich daher daran gesetzt, diese Arbeit mit Hilfsbibliotheken und

Werkzeugen zu vereinfachen. Dies war die Geburtsstunde einer großen Vielfalt von ORM-

Werkzeugen für .NET. Dabei scheint es so, dass viele .NET-Entwickler das geflügelte Wort, dass

ein Mann in seinem Leben einen Baum gepflanzt, ein Kind gezeugt und ein Haus gebaut haben

sollte, um den Punkt "einen OR-Mapper geschrieben" ergänzt haben (wobei der Autor dieses

Buchs sich davon auch nicht freisprechen kann, weil er ebenfalls einen OR-Mapper geschrieben

hat). Anders ist die Vielfalt der ähnlichen Lösungen kaum erklärbar. Neben den öffentlich

bekannten ORM-Werkzeugen für .NET findet man in den Unternehmen zahlreiche hauseigene

Lösungen.

Bekannte öffentliche ORM für .NET von Drittanbietern (z.T. Open Source) sind:

▪ nHibernate

▪ Telerik Data Access (alias Open Access)

▪ Genome

▪ LLBLGen Pro

▪ Wilson

▪ Subsonic

▪ OBJ.NET

▪ .NET Data Objects (NDO)

▪ Dapper

▪ PetaPoco

▪ Massive

▪ Developer Express XPO

Neben den aktiven Entwicklern von ORM-Werkzeugen für .NET und den passiven Nutzern gibt

eine noch größere Fraktion von Entwicklern, die ORM bisher nicht einsetzen. Meist herrscht

Unwissenheit, die auch nicht aufgearbeitet wird, denn es herrscht das Motto "Wenn Microsoft es

nicht macht, ist es auch nicht wichtig!"

Mit LINQ-to-SQL und dem ADO.NET Entity Framework sowie Entity Framework bietet

Microsoft selbst jedoch inzwischen sogar drei verschiedene Produkte an. Der Softwarekonzern hat

aber inzwischen verkündet, dass sich die Weiterentwicklungsbemühungen allein auf das Entity

Framework Core konzentieren.

7.3 Versionsgeschichte von Entity Framework Core

Die folgende Abildung zeigt die Versionsgeschichte von Entity Framework Core.

42 Was ist Entity Framework Core?

Abbildung: Entity Framework Core-Versionsgeschichte

[Quelle: https://www.nuget.org/packages/Microsoft.EntityFrameworkCore]

Versionsnummernänderungen an der dritten Stelle (z.B. 1.0.1 und 1.0.2) enthalten nur

Fehlerbehebungen. Bei Versionsnummernänderungen an der zweiten Stelle sind auch neue

Funktionen enthalten. In diesem Buch wird darauf hingewiesen, wenn eine Funktion besprochen

wird, die eine bestimmte Versionsnummer voraussetzt.

HINWEIS: Die endgültige Version der Entity Framework Core-Werkzeuge für Entity

Framework Core 1.x ist erst am 6.3.2017 im Rahmen von Entity Framework Core 1.1.1 und

Visual Studio 2017 erschienen. Zuvor gab es nur "Preview"-Versionen. Seit Entity Framework

Core 2.0 werden die Werkzeuge immer mit den neuen Produktreleases ausgeliefert.

https://www.nuget.org/packages/Microsoft.EntityFrameworkCore

Was ist Entity Framework Core? 43

7.4 Unterstützte Betriebssysteme

Genau wie die anderen Produkte der Core-Produktfamilie ist das Entity Framework Core (früherer

Name: Entity Framework 7.0) ebenfalls plattformunabhängig. Die Core-Variante des etablierten

Objekt-Relationalen Mappers läuft nicht nur auf dem .NET „Full“ Framework, sondern auch auf

.NET Core und Mono inklusive Xamarin. Damit kann man Entity Framework Core auf Windows,

Windows Phone/Mobile, Linux, MacOS, iOS und Android nutzen.

7.5 Unterstützte .NET-Versionen

Entity Framework Core 1.x läuft auf .NET Core 1.x, .NET Framework ab Version 4.5.1, Mono ab

Version 4.6, Xamarin.iOS ab Version 10, Xamarin Android ab Version 7.0 und der Windows

Univeral Platform (UWP).

Entity Framework Core 2.0 und 2.1 basieren auf .NET Standard 2.0 und setzen daher eine der

folgenden .NET-Implementierungen voraus:

▪ .NET Core 2.0 (oder höher)

▪ .NET Framework 4.6.1 (oder höher)

▪ Mono 5.4 (oder höher)

▪ Xamarin.iOS 10.14 (oder höher)

▪ Xamarin.Mac 3.8 (oder höher)

▪ Xamarin.Android 7.5 (oder höher)

▪ Universal Windows Platform (UWP) 10.0.16299 (oder höher)

44 Was ist Entity Framework Core?

Abbildung: Implementierungen von .NET Standard

[Quelle: https://docs.microsoft.com/de-de/dotnet/standard/library]

HINWEIS: Microsoft begründet die Beschränkung auf .NET Standard in Entity Framework

Core 2.0/2.1 in [https://github.com/aspnet/Announcements/issues/246]. Unter anderem kann

dadurch die Größe der Nuget-Pakete deutlich reduziert werden.

7.6 Unterstützte Visual Studio-Versionen

Für die Nutzung von Entity Framework Core 2.0/2.1 benötigt man zwingend Visual Studio 2017

Update 3 oder höher, auch wenn man mit dem klassischen .NET Framework programmiert, da

Visual Studio nur mit diesem Update .NET Standard 2.0 kennt und versteht, dass .NET Framework

4.6.1 und höher Implementierungen von .NET Standard 2.0 sind.

Wenn man für .NET Core programmiert, benötigt man für Entity Framework Core 1.x Visual

Studio 2017, (die Werkzeuge für Visual Studio 2015 sind veraltert und werden von Microsoft nicht

mehr aktualisiert). Für Entity Framework Core 1.x in Verbindung mit dem klassischen .NET

Framework reicht auch eine ältere Visual Studio-Version.

7.7 Unterstützte Datenbanken

Die folgende Tabelle zeigt die von Entity Framework Core durch Microsoft (SQL Server, SQL

Compact und SQLite von Microsoft) und Drittanbieter (PostgreSQL, DB2, Oracle, MySQL u.a.)

unterstützten Datenbankmanagementsysteme.

Auf Mobilgeräten mit Xamarin bzw. im Rahmen von Windows 10 Universal Platform Apps konnte

Entity Framework Core 1.x nur lokale Datenbanken (SQLite) ansprechen. Mit der Einführung von

https://docs.microsoft.com/de-de/dotnet/standard/library

Was ist Entity Framework Core? 45

.NET Standard 2.0 steht nun der Microsoft SQL Server-Client auch auf Xamarin und der Windows

10 Universal Platform (ab dem Herbst 2017 Creators Update) zur Verfügung.

Die geplante Unterstützung für NoSQL-Datenbanken wie Redis und Azure Table Storage ist in

Version 1.x/2.x von Entity Framework Core noch nicht enthalten. Es gibt aber für MongoDB ein

Entwicklungsprojekt auf Github [https://github.com/crhairr/EntityFrameworkCore.MongoDb].

Datenbank Anbieter / Preis URL

Microsoft SQL Server Microsoft / kostenfrei www.nuget.org/packages/Mi

crosoft.EntityFrameworkCor

e.SqlServer

Microsoft SQL Server

Compact 3.5

Microsoft / kostenfrei www.nuget.org/packages/En

tityFrameworkCore.SqlServe

rCompact35

Microsoft SQL Server

Compact 4.0

Microsoft / kostenfrei www.nuget.org/packages/En

tityFrameworkCore.SqlServe

rCompact40

SQLite Microsoft / kostenfrei www.nuget.org/packages/Mi

crosoft.EntityFrameworkCor

e.Sqlite

In-Memory Microsoft / kostenfrei www.nuget.org/packages/Mi

crosoft.EntityFrameworkCor

e.InMemory

MySQL Oracle / kostenfrei www.nuget.org/packages/My

SQL.Data.EntityFramework

Core

PostgreSQL Open Source-Team

npgsql.org / kostenfrei

www.nuget.org/packages/Np

gsql.EntityFrameworkCore.

PostgreSQL

DB2 IBM / kostenfrei www.nuget.org/packages/En

tityFramework.IBMDataServ

er

MySQL, Oracle, PostgreSQL,

SQLite, DB2, Salesforce,

Dynamics CRM, SugarCRM,

Zoho CRM, QuickBooks,

FreshBooks, MailChimp,

ExactTarget, Bigcommerce,

Magento

Devart / kostenpflichtig (99

bis 299 Dollar pro

Treiberart)

www.devart.com/purchase.ht

ml#dotConnect

Tabelle: Verfügbare Datenbanktreiber für Entity Framework Core

ACHTUNG: Aufgrund von "Breaking Changes" in den Provider-Schnittstellen, sind die

Provider für Entity Framework Core 1.x nicht kompatibel zu Entity Framework Core 2.0/2.1.

Man benötigt also für die Version 2.0 neue Provider! Die Treiber für Entity Framework Core

46 Was ist Entity Framework Core?

2.0 laufen auch in Entity Framework Core 2.1, einzelne neue Features (z.B. Value Converter)

brauchen aber eine neue Version des Treibers.

7.8 Funktionsumfang von Entity Framework Core

Die Abbildung visualisiert, dass Entity Framework Core (gelb) gegenüber dem bisherigen Entity

Framework (blau, aktuelle Version 6.x) einige neue Funktionen enthält (Bereich, der nur gelb, aber

nicht blau ist). Es gibt aber auch einige Bereiche, die nur blau und nicht gelb sind: Das sind die

Funktionen, die in Entity Framework 6.x enthalten sind, aber nicht in Entity Framework Core

1.x/2.0. Microsoft wird einige Funktionen davon in den kommenden Versionen von Entity

Framework Core nachrüsten, andere Funktionen werden für immer entfallen.

Abbildung: Funktionsumfang des bisherigen Entity Framework im Vergleich zu Entity

Framework Core. Links zeigt eine Sprechblase einige Features, die dauerhaft entfallen sind.

7.9 Funktionen, die dauerhaft entfallen

Folgende Funktionen aus dem klassischen Entity Framework hat Microsoft grundsätzlich in Entity

Framework Core gestrichen:

▪ Die Vorgehensweise Database First und Model First. in Entity Framework Core gibt es nur

noch das Code-based Modelling (früher Code First), mit dem man sowohl Programmcode aus

Datenbanken erzeugen kann (Reverse Engineering) als auch Datenbanken aus Programmcode

(Forward Engineering).

▪ Das Entity Data Model (EDM) und die XML-Repräsentation davon (EDMX) entfallen. Bisher

wurde auch beim Code First intern ein EDM im RAM erzeugt. Der Overhead entfällt.

▪ Die Basisklasse ObjectContext für den Entity Framework-Kontext entfällt. Es gibt nur noch

die Basisklasse DbContext. DbContext ist jetzt in Entity Framework Core kein Wrapper um

ObjectContext mehr, sondern eine komplett neue, eigenständige Implementierung.

▪ Die Basisklasse EntityObject für Entitätsklassen entfällt. Die Entitätsklassen sind nun immer

Plain Old CLR Objects (POCOs).

Was ist Entity Framework Core? 47

▪ Auch die Abfragesprache Entity SQL (ESQL) entfällt. Es gibt nur noch Unterstützung für

LINQ, SQL und Stored Procedures (SPs) sowie Table Valued Functions (TVFs).

▪ Automatische Schemamigrationen werden nicht mehr angeboten. Schemamigrationen

inklusive der Ersterstellung eines Datenbankschemas sind nun zur Entwicklungszeit immer

manuell auszuführen. Zur Laufzeit kann eine Migration weiterhin beim ersten Zugriff auf die

Datenbank erfolgen.

▪ Einige Szenarien des komplexeren Mappings zwischen Tabellen und Typen entfallen. Dazu

gehört das Multiple Entity Sets per Type (MEST, verschiedene Tabellen auf dieselbe Entität

abbilden) und das Kombinieren der Strategien Table per Hierarchy (TPH), Table per Type

(TPT) und Table per Concrete Type (TPC) in einer Vererbungshierarchie.

7.10 Funktionen, die Microsoft bald nachrüsten will

In der Roadmap für Entity Framework-Core

[https://github.com/aspnet/EntityFramework/wiki/Roadmap] dokumentiert Microsoft-Entwickler

Rowan Miller, welche Features in Entity Framework-Core fehlen, die man „bald“ nachrüsten will.

Dabei ist dies nicht mit einem konkreten Zeitplan hinterlegt. Bemerkenswert ist, dass Microsoft

einige dieser Funktionen selbst als „kritisch“ bezeichnet. Zu diesen "kritischen" fehlenden

Funktionen gehören:

▪ Entity Framework Core unterstützt nur den Zugriff auf Tabellen, nicht aber auf Views

(Sichten) in der Datenbank. Man kann Views nur nutzen, wenn man den View sowie den

Programmcode manuell erstellt und den View wie eine Tabelle behandelt. → In Entity

Framework Core 2.1 ist dies eleganter möglich.

▪ Stored Procedures können bisher nur zum Abfragen von Daten (SELECT), nicht aber zum

Einfügen (INSERT), Aktualisieren (UPDATE) und Löschen (DELETE) verwendet werden.

▪ Einige LINQ-Befehle werden derzeit nicht in der Datenbank, sondern im RAM ausgeführt.

Dazu gehört auch der GroupBy-Operator, d.h. bei allen Gruppierungen werden alle Datensätze

aus der Datenbank ins RAM gelesen und dort gruppiert, was bei allen Tabellen (außer sehr

kleinen) zu einer katastrophalen Performance führt. → In Entity Framework Core 2.1 wird

GroupBy() in vielen Fällen in der Datenbank ausgeführt.

▪ Es gibt weder ein automatisches Lazy Loading noch ein explizites Nachladen im Entity

Framework Core-API. Aktuell kann der Entwickler verbundene Datensätze nur direkt

mitladen (Eager Loading) oder mit separaten Befehlen nachladen. → In Entity Framework

Core 2.1 wird Lazy Loading unterstützt.

▪ Direktes SQL und Stored Procedures können nur genutzt werden, wenn sie Entitätstypen

zurückliefern. Andere Typen werden bisher nicht unterstützt. → In Entity Framework Core

2.1 wird dies unterstützt.

▪ Reverse Engineering bestehender Datenbanken kann man bisher nur von der Kommandozeile

bzw. der Nuget-Konsole in Visual Studio starten. Den GUI-basierten Assistenten gibt es nicht

mehr.

▪ Es gibt auch kein „Update Model from Database“ für bestehende Datenbanken, d.h. nach

einem Reverse Engineering einer Datenbank muss der Entwickler

Datenbankschemaänderungen im Objektmodell manuell nachtragen oder das ganze

Objektmodell neu generieren. Diese Funktion gab es aber auch bisher schon bei Code First

nicht, sondern nur bei Database First.

https://github.com/aspnet/EntityFramework/wiki/Roadmap

48 Was ist Entity Framework Core?

▪ Komplexe Typen (Complex Types), also Klassen, die keine eigene Entität, sondern Teil einer

anderen Entität darstellen, gibt es nicht.

7.11 Hohe Priorität, aber nicht kritisch

In einer zweiten Liste nennt Microsoft weitere Funktionen, die sie nicht als kritisch ansehen, die

aber dennoch „hohe Priorität“ haben:

▪ Es gibt bisher keine grafische Visualisierung eines Objektmodells, wie das bislang bei EDMX

möglich war.

▪ Einige der bisher vorhandenen Typkonvertierungen, z.B. zwischen XML und String, gibt es

noch nicht. → Entity Framework Core 2.1 unterstützt Typkonvertierungen.

▪ Die Geo-Datentypen Geography und Geometry von Microsoft SQL Server werden bisher

nicht unterstützt.

▪ Entity Framework Core unterstützt keine N:M-Abbildungen: Bisher muss der Entwickler dies

mit zwei 1:N-Abbildung und einer Zwischenentität analog zur Zwischentabelle in der

Datenbank nachbilden.

▪ Table per Type wird bislang nicht als Vererbungsstrategie unterstützt. Entity Framework Core

verwendet TPH, wenn es für die Basisklasse ein DBSet<T> gibt, sonst TPC. TPC kann man

nicht explizit konfigurieren.

▪ Das Befüllen der Datenbank mit Daten im Rahmen der Migration (Seed()-Funktion) ist nicht

möglich. → Entity Framework Core 2.1 unterstützt dies.

▪ Die mit Entity Framework 6.0 eingeführten Command Interceptors, mit denen ein

Softwareentwickler von Entity Framework zur Datenbank gesendete Befehle vor und nach der

Ausführung in der Datenbank beeinflussen kann, gibt es noch nicht.

Einige Punkte auf dieser High Priority-Liste von Microsoft sind zudem auch neue Features, die

Entity Framework 6.x selbst (noch) gar nicht beherrscht:

▪ Festlegung von Bedingungen für mitzuladene Datensätze beim Eager Loading (Eager Loading

Rules)

▪ Unterstützung für E-Tags.

▪ Unterstützung für Nicht-Relationale Datenspeicher ("NoSQL") wie Azure Table Storage und

Redis. → CosmosDB ist für Entity Framework Core 2.1 in Arbeit.

Diese Priorisierung stammt aus der Sicht von Microsoft. Der Autor dieses Buchs würde auf Basis

seiner Praxiserfahrung einige Punkte anders priorisieren, zum Beispiel die N:M-Abbildung als

„kritisch“ hochstufen: Eine Nachbildung von N:M durch zwei 1:N-Beziehungen im Objektmodell

ist zwar möglich, macht aber den Programmcode komplexer. Die Migration von bestehenden

Entity Framework-Lösungen zu Entity Framework Core wird damit sehr erschwert.

Das gilt auch für die fehlende Unterstützung von Table per Type-Vererbung: Auch hier muss

bestehender Programmcode umfangreich geändert werden. Und auch für neue Anwendungen mit

einem neuen Datenbankschema und Forward Engineering gibt es ein Problem: Wenn die

Vererbung erst mal mit TPH oder TPC realisiert ist, muss man aufwändig die Daten im

Datenbankschema umschichten, wenn man später doch auf TPH setzen will.

Was ist Entity Framework Core? 49

Außerdem fehlen in Microsofts Listen auch Features wie etwa die Validierung von Entitäten, die

unnötige Roundtrips zur Datenbank ersparen kann, wenn schon im RAM klar ist, dass die Entität

die erforderlichen Bedingungen nicht erfüllt.

7.12 Neue Funktionen in Entity Framework Core

Entity Framework Core kann insbesondere mit folgenden Vorteilen gegenüber dem Vorgänger

auftrumpfen:

▪ Entity Framework Core läuft nicht nur in Windows, Linux und MacOS, sondern auch auf

Mobilgeräten mit Windows 10, iOS und Android. Auf den Mobilgeräten ist freilich lediglich

ein Zugriff auf lokale Datenbanken (z.B. SQLite) vorgesehen. In Windows 10 Universal Apps

kann man seit Windows 10 Version 1709 aber auch lokale und entferne Microsoft SQL Server

ansprechen mit Entity Framework Core.

▪ Entity Framework Core bietet eine höhere Ausführungsgeschwindigkeit – insbesondere beim

Datenlesen (dabei wird fast die Leistung wie beim handgeschriebenen Umkopieren von Daten

aus einem DataReader-Objekt in ein typisiertes .NET-Objekt erreicht).

▪ Projektionen mit Select() können nun direkt auf Entitätsklassen abgebildet werden. Der

Umweg über anonyme .NET-Objekte ist nicht mehr notwendig.

▪ Per "Batching" fasst Entity Framework Core nun INSERT-, DELETE- und UPDATE-

Operationen zu einem Rundgang zum Datenbankmanagementsystem zusammen, statt jeden

Befehl einzeln zu senden.

▪ Standardwerte für Spalten in der Datenbank werden nun sowohl beim Reverse Engineering

als auch beim Forward Engineering unterstützt.

▪ Zur Schlüsselgenerierung sind neben den klassischen Autowerten nun auch neuere Verfahren

wie Sequenzen erlaubt.

▪ Als "Shadow Properties" bezeichnet Entity Framework Core den jetzt möglichen Zugriff auf

Spalten der Datenbanktabelle, für die es kein Attribut in der Klasse gibt.

▪ Mit globalen Filtern können Entwickler Bedingungen festlegen, die automatisch bei jeder

Abfrage angewendet werden.

▪ Mit Value Convertern kann man Werte aus dem Objekt beim Speichern in die Datenbank bzw.

beim Laden aus der Datenbank in einen anderen Datentyp konvertieren.

7.13 Einsatzszenarien für Entity Framework Core

Angesichts dieser langen Liste von fehlenden Funktionen stellt sich die Frage, ob und wofür Entity

Framework Core in der Version 1.x/2.0 überhaupt zu gebrauchen ist.

Das Haupteinsatzgebiet liegt auf den Plattformen, wo Entity Framework bisher gar nicht lief:

Windows Phone/Mobile, Android, iOS, Linux und MacOS.

▪ Universal Windows Platform (UWP) Apps und Xamarin Apps können nur Entity Framework

Core verwenden, nicht das klassische Entity Framework.

▪ Wenn man eine neue ASP.NET Core-Webnwendung oer WebAPI entwickeln will und diese

nicht auf .NET „Full“ Framework, sondern .NET Core basieren soll, führt kein Weg an Entity

Framework Core vorbei, denn das bisherige Entity Framework 6.x läuft nicht auf .NET Core.

50 Was ist Entity Framework Core?

Allerdings gibtes für ASP.NET Core auch den Weg, als Basis das klassische .NET Framework

4.6.x/4.7.x zu verwenden, sodass man dann auch Entity Framework 6.x nutzen kann.

Ein Szenario, in dem der Einsatz von Entity Framework Core auf dem Webserver empfohlen

werden kann, ist das Offline-Szenario, bei dem es auf dem Mobilgerät eine lokale Kopie der

Serverdatenbank geben soll. In diesem Fall kann man auf dem Client und dem Server mit

demselben Datenzugriffscode arbeiten: Der Client verwendet Entity Framework Core für den

Zugriff auf SQLite und der Webserver denselben Entity Framework Core-Programmcode für den

Zugriff auf einen Microsoft SQL Server (siehe folgende Abbildung).

Abbildung: Teilen der Datenzugriffsschicht zwischen Mobilgerät und Webserver mit Entity

Framework Core

Für Projekte auf anderen Plattformen gilt:

▪ Die Migration bestehenden Programmcodes von Entity Framework 6.x auf Entity Framework

Core ist aufwändig. Man muss sich gut überlegen, ob die verbesserten Features und die höhere

Leistung von Entity Framework Core den Aufwand rechtfertigen.

▪ Aber in neuen Projekten können Entwickler schon jetzt Entity Framework Core als

performante Zukunftstechnik einsetzen und ggf. als Zwischenlösung für existierende Lücken

parallel dort noch das bisherige Entity Framework nutzen.

Mobilgerät (z.B. Android, iOS, Windows 10)

 EF-
Entitäts-

klassen
(selbe

wie
Server)

Serverdatenbank, z.B.
Microsoft SQL Server

Proxy

Client-Offline-Datenbank,
z.B. SQLite

Webserver

Entity Framework Core Entity Framework Core

Datenzugriffsschicht
(selbe wie auf Server)

Datenzugriffsschicht

(selbe wie auf Client)

Geschäftslogik Geschäftslogik

Benutzerschnittstelle

Service-

Fassade EF-
Entitäts-

klassen

Obj
Obj

Teilen der Datenzugriffsschicht zwischen Mobilgerät und Server
mit Entity Framework Core
© Dr. Holger Schwichtenberg, www.IT-Visions.de 2016

Datensynchronisation

über Webservices

