

Developing Web Applications with Play & Scala

Paul E. Sevinç, Dr. sc. ETH Zürich

Developing Web Applications

with Play & Scala

Paul E. Sevinç

This book is available at <https://leanpub.com/DevWebApps>

This version was published on 2025-09-18

This is a [Leanpub](#) book. Leanpub empowers authors and publishers with the Lean Publishing process. [Lean Publishing](#) is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

© 2021 - 2025 Paul E. Sevinç

Contents

Cover-Picture Sources	1
Preface	2
Prerequisites	3
Tools of the Trade	4
Teaching Aid	8
Schedule like it's 200X	8
Getting Started: Hello, Play!	11
Project Layout	12
Outwith: Überproject	12
Within: So Long, Layered MVC!	12
Monolith, Modular, and Microservices	12
New	13
... Repository	13
... Application	13
Dependency Injection	14
Controllers and Filters	14
Two Become One 1	15
Dude, where's my API?	15
Prepare for Launch	15
GUI Libraries	16
Bootstrap	16
React Router	16
Getting htmx and Bootstrap as well as Bootstrap Icons	16
Security as a Forethought	17
Hardening the backend	17
Hardening the frontend	22

CONTENTS

Rinse & Repeat	25
Database Management System	27
MongoDB	27
Event Sourcing	27
MongoDB	27
Internationalization and Localization	29
Both Fixadat and SVPofWFTTC	29
Only Fixadat: Backend	29
Only Fixadat: Frontend	29
CI/CD	31
Two Become One 2	32
Alternatives	32
Building Images Locally	32
Running Containers Locally	32
Continuous Integration	33
Test	33
Scan	33
Continuous Delivery	34
Pull	34
Push	34
Continuous Deployment	35
MongoDB	35
Docker or Java	35
Features	37
Going Public	38
index.html	38
Records and Case Classes	38
Primitive Types	38
Interaction Design	39
Users and Interactions	39
Boilerplate	39
Configuration	40
Configuration Files	40

CONTENTS

Application Secret	40
Session Cookie	40
Logging	40
Template	41
Boilerplate	42
Privacy	43
Legalese	44
Appendix	45
Updating and Upgrading	46
Updating the Backend	46
Updating the Frontend	46
Upgrading the Backend	46
Upgrading the Frontend	46

Cover-Picture Sources

- <https://wiki.openjdk.org/display/duke/Gallery>¹
- https://commons.wikimedia.org/wiki/File:Play_Framework_logo.svg
- <https://commons.wikimedia.org/wiki/File:Scala-full-color.svg>

¹<https://wiki.openjdk.org/display/duke/Gallery?preview=/http%3A%2F%2Fcr.openjdk.java.net%2Fjeff%2FDuke%2Fpng%2FJuggler.png>

Preface

Welcome to *Developing Web Apps!*

This book shows how to develop Web applications with Play & Scala and with the Ports & Adapters pattern as well as DDD's tactical patterns.

The teaching aid that we are going to dissect shows how to implement a Web application's API with Play & Scala and its GUI with React & TypeScript, the focus being on the former and not the latter. Note that the resulting Web application (be it a self-contained system or a monolith) consists of one only deployment unit. This is reflected by there being only one Git/Docker² repository.

In order to also show how to implement a GUI without React (or one of its [alternatives³](#)), a small part of the GUI has been reimplemented twice, once with Play's Twirl in combination with htmx and once with Twirl only. For about a decade, using React & TypeScript for developing GUIs was a no-brainer to me and is still a great choice since both React and TypeScript are state-of-the-art pieces of technology that remain very popular (as the [State of JavaScript⁴](#) survey keeps confirming) for many good reasons. But [the discovery of htmx⁵](#) was somewhat of a revelation that even allowed for re-discovering Twirl.

MVP

This book is about **building the thing right**, not about **building the right thing**. Therefore, we will not dwell on how to come up with a product, let alone worry about how viable the product is. Check out [Product Management in Practice⁶](#) if you are interested in product management, too.

²<https://www.oreilly.com/library/view/product-management-in/9781098119720/>

Truth be told, I did have somewhat of a mid-life crisis and was on the verge of switching from Scala to Kotlin and from Play to a framework with Kotlin support (Spring Boot? Quarkus? Ktor?). But I still prefer Play over Spring Boot (which, unlike Quarkus and Ktor, I have experience with) and Scala over both Java and Kotlin.⁶

Enough about me. Let us talk about you for a minute.

³Familiarity with Git or Docker is not a prerequisite.

⁴<https://2024.stateofjs.com/en-US/libraries/front-end-frameworks/>

⁴<https://2024.stateofjs.com/>

⁵<https://www.heise.de/news/JavaScript-htmx-2-0-verabschiedet-sich-vom-Internet-Explorer-9768803.html>

⁶Plus, Scala keeps evolving.

Prerequisites

I am not going to teach Play (let alone Scala) to you. Alas, I have read too many books whose authors have bitten off more than they could chew by trying to explain anything & everything themselves. The parts which go to make Play are concisely and well explained in the official, freely accessible docs. There is no point in me reinventing the wheel. Instead, my intention is to show how to apply what you have learned by reading the Play docs (whether [lazily](#)⁷, while going through the rest of this book, or [eagerly](#)⁸, before going through the rest of this book) to a production-level, albeit simple, Web app.

In any case, I strongly recommend reading the Play docs (i.e., the [Main concepts for Scala](#)⁹, the [Advanced topics for Scala](#)¹⁰, and the [Common topics](#)¹¹) “from cover to cover” eventually, both to solidify your Play knowledge and to learn of features you did not know existed but that might actually be of use to you.

In other words:

- You need to understand basic Web technologies such as HTML and HTTP. If that is not the case yet, start to [Learn web development](#)¹² and go back to [the MDN project](#)¹³ whenever you are unfamiliar with or unsure about a piece of Web technology.
- You need to know Scala. If you are new to programming, study chapters 1 to 10 as well as 13, 15, and 16 of [Introduction to Programming and Problem Solving Using Scala](#)¹⁴. If you are only new to Scala, read [Programming in Scala](#)¹⁵ or [Scala for the Impatient](#)¹⁶.
- You need to be familiar with Play. If you are new to Play, take a quick look at its [home page](#)¹⁷, skim through the [Getting Started](#)¹⁸ section, and go through the [tutorial](#)¹⁹ in order to gain a first impression of Play.

Depending on which GUI(s) you are interested in, you need to be familiar with React & TypeScript and/or with htmx:

⁷https://en.wikipedia.org/wiki/Lazy_evaluation

⁸https://en.wikipedia.org/wiki/Eager_evaluation

⁹<https://www.playframework.com/documentation/latest/ScalaHome>

¹⁰<https://www.playframework.com/documentation/latest/ScalaAdvanced>

¹¹<https://www.playframework.com/documentation/latest/Build>

¹²<https://developer.mozilla.org/en-US/docs/Learn>

¹³<https://developer.mozilla.org/en-US/>

¹⁴<https://www.programmingusingscala.net/home/introduction-to-programming-and-problem-solving-using-scala-2nd-edition>

¹⁵https://www.artima.com/shop/programming_in_scala_5ed

¹⁶<https://horstmann.com/scala/index.html>

¹⁷<https://www.playframework.com/>

¹⁸<https://www.playframework.com/documentation/latest/Introduction>

¹⁹<https://www.playframework.com/documentation/latest/HelloWorldTutorial>

- If you are new to React & TypeScript, read [Learn React with TypeScript²⁰](#).
- If you are new to htmx, read [Hypermedia Systems²¹](#).

It took me quite a while, but thanks to Scala, I finally learned to appreciate functional programming. Even if you were primarily interested in Java or Kotlin (or any other programming language, for that matter), I would strongly recommend studying [Functional and Concurrent Programming²²](#) as well as [Functional Programming in Scala²³](#). (If you understand German, you could also study [Funktionale Programmierung in Java und Kotlin²⁴](#).)

Tools of the Trade

- While Scala can target platforms (namely [Scala JavaScript²⁵](#) and [Scala Native²⁶](#)) other than the Java Virtual Machine (JVM), Play apps are JVM-based. So for any Play project, you need to have a Java Development Kit (JDK) installed. There are quite a few to choose from (and there is also [GraalVM²⁷](#) to consider), including but not limited to
 - the canonical one from [Oracle²⁸](#)
 - [Azul Zulu²⁹](#)
 - [Amazon Corretto³⁰](#)
 - [Eclipse Temurin by Adoptium³¹](#)
- To follow along with the examples in this book, you need to have [sbt³²](#) installed. (You could use [Gradle³³](#) or [Mill³⁴](#) for your Play project, but I am using sbt for mine.)
- Even if you are not interested in the React/TypeScript-based GUI, you need to have [Node.js³⁵](#) installed (which includes [npm³⁶](#)) in order to run the teaching aid.
- Unless your app does not need server-side persistence, you need to have a database for development and test purposes (and unless my app really needs a relational DBMS such as [PostgreSQL³⁷](#) or a graph DBMS such as [Neo4j³⁸](#), I typically choose a MongoDB database, see the [DBMS chapter](#)), but you could run the teaching aid without one.

²⁰<https://www.packtpub.com/en-ch/product/learn-react-with-typescript-9781836643166>

²¹<https://hypermedia.systems/>

²²<https://www.fcpbook.org/>

²³<https://www.manning.com/books/functional-programming-in-scala-second-edition>

²⁴<https://dpunkt.de/produkt/funktionale-programmierung-in-java-und-kotlin/>

²⁵<https://www.scala-js.org/>

²⁶<https://scala-native.org/>

²⁷<https://www.graalvm.org/>

²⁸<https://java.oracle.com/>

²⁹<https://www.azul.com/downloads/>

³⁰<https://aws.amazon.com/corretto/>

³¹<https://adoptium.net/>

³²<https://www.scala-sbt.org/>

³³<https://github.com/orgs/playframework/discussions/12338>

³⁴<https://mill-build.org/mill/contrib/playlib.html>

³⁵<https://nodejs.org/>

³⁶<https://www.npmjs.com/>

³⁷<https://www.postgresql.org/>

³⁸<https://neo4j.com/>

- You need to have an editor³⁹ (Visual Studio Code in my case, see below).

Instead of downloading and installing the JDK, sbt, etc. individually, you may want to manage them with [SDKMAN!](#)⁴⁰ or [Coursier](#)⁴¹.

Variable	Wert
COURSIER_HOME	C:\Users\Paul\AppData\Local\Coursier\data
GRADLE_HOME	C:\Users\Paul\AppData\Local\Gradle\gradle-9.0.0
JAVA_HOME	C:\Users\Paul\AppData\Local\Java\jdk-21.0.8
OneDrive	C:\Users\Paul\OneDrive - Sqweng AG
OneDriveCommercial	C:\Users\Paul\OneDrive - Sqweng AG
OneDriveConsumer	C:\Users\Paul\OneDrive
Path	C:\Users\Paul\AppData\Local\Java\jdk-21.0.8\bin;C:\Users\Paul\AppData\Local\Coursier\data\bin;C:\Users\Paul\AppData\Local\sbt\sbt-1.11.4\bin;C:\Users\Paul\AppData\Local\Gradle\gradle-9.0.0\bin;...
SBT_HOME	C:\Users\Paul\AppData\Local\sbt\sbt-1.11.4
TEMP	C:\Users\Paul\AppData\Local\Temp
TMP	C:\Users\Paul\AppData\Local\Temp

HOMEs

Make sure that JAVA_HOME, COURSIER_HOME or SBT_HOME, and Path are set correctly.

Visual Studio Code

At work, from about 2000 until 2007, [TextPad](#)⁴² used to be not only my main editor but also my poor man's Java IDE (even though a friend of mine had told me about [IntelliJ IDEA](#)⁴³ when it was brand-new). Somewhere around 2007 or 2008, I kept TextPad as my main editor but switched to [Eclipse](#)⁴⁴ as my Java (and later also Scala) IDE. Somewhere around 2015 or 2016, I switched to [Visual Studio Code](#)⁴⁵ (VSC) as both my main editor and my main Java & Scala IDE. I guess I am a sucker for [Erich Gamma](#)⁴⁶ IDEs.

At home, my main editor used to be [BBEdit](#)⁴⁷. I had bought a PowerBook G4 right after Apple's release of OS X even though—only weeks before—a then recent graduate of CMU's [HCII](#)⁴⁸ and now famous designer had explained to me why the new UI was terrible and doomed to fail. (But then, I had also bought Apple shares the summer before when—you know—Apple was dead and its acquisition of NeXTSTEP doomed to fail; if only I had held on to them instead of selling them with a 100% gain. ☹) Eventually, Larry Page would play around with my Mac and start wondering whether to switch from PCs to Macs ... ☹

With the following [extensions](#)⁴⁹, VSC is a great IDE for both Java and Scala:

³⁹<https://scalameta.org/metals/docs/editors/overview.html>

⁴⁰<https://sdkman.io/>

⁴¹<https://get-coursier.io/>

⁴²<https://www.textpad.com/>

⁴³<https://www.jetbrains.com/idea/>

⁴⁴<https://eclipseide.org/>

⁴⁵<https://code.visualstudio.com/>

⁴⁶<https://github.com/egamma>

⁴⁷<https://www.barebones.com/products/bbedit/>

⁴⁸<https://www.hci.umd.edu/>

⁴⁹<https://marketplace.visualstudio.com/VSCode>

- Language Support for Java(TM) by Red Hat⁵⁰ (this and other extensions are also part of the Extension Pack for Java⁵¹)
- Scala Syntax (official)⁵²
- Scala (Metals)⁵³

There are also Java⁵⁴ and GraalVM Tools for Java⁵⁵ to consider.

⁵⁰<https://marketplace.visualstudio.com/items?itemName=redhat.java>

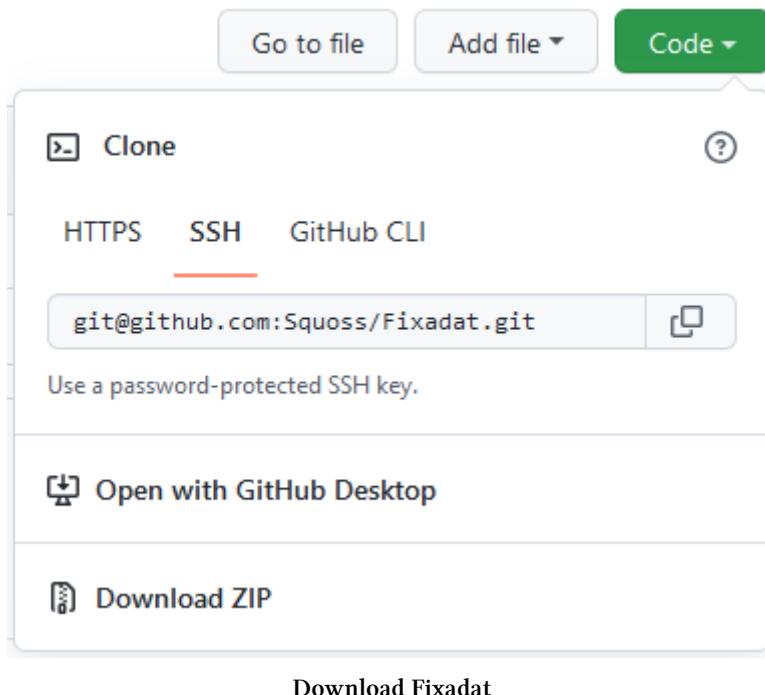
⁵¹<https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-pack>

⁵²<https://marketplace.visualstudio.com/items?itemName=scala-lang.scala>

⁵³<https://marketplace.visualstudio.com/items?itemName=scalameta.metals>

⁵⁴<https://marketplace.visualstudio.com/items?itemName=Oracle.oracle-java>

⁵⁵<https://marketplace.visualstudio.com/items?itemName=oracle-labs-graalvm.graalvm>


Container Tools Makes it easy to create, manage, and debug ... Microsoft	Prettier - Code formatter Code formatter using prettier Prettier
Debugger for Firefox Debug your web application or browser exte... Firefox DevTools	Project Manager for Java Manage Java projects in Visual Studio Code Microsoft
Debugger for Java A lightweight Java debugger for Visual Studi... Microsoft	Pylance A performant, feature-rich language server f... Microsoft
Docker DX Edit smarter, ship faster with an enhanced D... Docker	Python Python language support with extension acc... Microsoft
GitHub Actions GitHub Actions workflows and runs for github...	Python Debugger Python Debugger extension using debugpy. Microsoft
GitHub Copilot Your AI pair programmer GitHub	Python Environments Provides a unified python environment expe... Microsoft
GitHub Copilot Chat AI chat features powered by Copilot GitHub	Scala (Metals) Scala language server with rich IDE features Scalameta
Gradle for Java Manage Gradle Projects, run Gradle tasks an... Microsoft	Scala Syntax (official) Official Scala Syntax scala-lang
Language Support for Java(TM) by Red Hat Java Linting, Intellisense, formatting, refactor... Red Hat	SonarQube for IDE Advanced linter to detect & fix coding issues... SonarSource
MongoDB for VS Code Connect to MongoDB and Atlas directly fro... MongoDB	Test Runner for Java Run and debug JUnit or TestNG test cases. Microsoft

VSC extensions

Teaching Aid

Schedule like it's 200X

The Web app that serves as a teaching aid is Fixadat. Give it a try at <https://fixadat.com/> (and feel free to use it for actually fixing dates & times). Once you got an idea of what Fixadat offers its users, head over to GitHub where its source code is published at <https://github.com/Squoss/Fixadat> and download the project folder as a ZIP file.

Extract the ZIP file, which results in a folder called `Fixadat-main`.

With your shell, execute the commands `sbt "run -Dconfig.file=conf/insecurelocalhost.conf"` in `Fixadat-main/beapi` and `npm install` as well as `npm start` in `Fixadat-main/fegui` to run the apps locally; yes, [during development](#), the API and the GUI are two separate apps. We will see how two become one [during deployment](#). With your browser⁵⁶, visit <http://localhost:9000> and <http://localhost:5173>.

⁵⁶I am using Firefox with the React Developer Tools extension, by the way.

Access Control

Fixadat requires authorization but does not require authentication. Unless we trust all users to be trustworthy and identify themselves truthfully, how can we achieve one without the other?

The definitions of trust and trustworthy are often confused. The following example illustrates the difference: if an NSA employee is observed in a toilet stall at Baltimore Washington International airport selling key material to a Chinese diplomat, then (assuming his operation was not authorized) we can describe him as ‘trusted but not trustworthy’. Hereafter, we’ll use the NSA definition that a trusted system or component is one whose failure can break the security policy, while a trustworthy system or component is one that won’t fail.”

Ross Anderson, *Security Engineering*⁵⁷

Capabilities

Even though Fixadat does not have any user accounts, we can still control access to resources by taking advantage of [capability URLs](#)⁵⁸. In a capability URL such as `https://doodle.com/inturicogmbh`, the capability `inturicogmbh` must not only serve as an identifier and therefore be unique, but also be [virtually unguessable](#)⁵⁹.

We could generate the capabilities ourselves by careful, proper use of a [cryptographic pseudorandom number generator](#)⁶⁰, or we can leave the heavy lifting to Java’s `java.util.UUID.randomUUID()`⁶¹.

Unfortunately, there is an undeniable [risk of exposure](#)⁶² with capability URLs. Simply moving the capability to the URLs query string would not mitigate the risk⁶³. However, we can move it to the fragment identifier⁶⁴ and have the frontend [pick it up](#)⁶⁵ and provide it to the backend via a request header.

While we are at it, we can split the capability into a regular identifier (without security properties) and an access token, separating the two concerns: `https://fixadat.com/events/{EVENT_ID}#{ACCESS_TOKEN}`. This has the added benefit of allowing for revoking and re-issuing access tokens as well as for issuing tokens with differing access right.

If you like capabilities for access control, you may also like [Macaroons](#)⁶⁶.

⁵⁷<https://www.cl.cam.ac.uk/~rja14/book.html>

⁵⁸<https://www.w3.org/TR/capability-urls/>

⁵⁹<https://www.w3.org/TR/capability-urls/#capability-url-design>

⁶⁰https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator

⁶¹[https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/UUID.html#randomUUID\(\)](https://docs.oracle.com/en/java/javase/16/docs/api/java.base/java/util/UUID.html#randomUUID())

⁶²<https://www.w3.org/TR/capability-urls/#risk-of-exposure>

⁶³https://owasp.org/www-community/vulnerabilities/Information_exposure_through_query_strings_in_url

⁶⁴<https://developer.mozilla.org/en-US/docs/Web/API/Location/hash>

⁶⁵<https://reactrouter.com/web/api/location>

⁶⁶<https://www.manning.com/books/api-security-in-action>

Identification and Authentication

I would not implement user accounts myself anymore (even though I seem to have got them right with respect to **password storage**⁶⁷ years before many major sites thanks to the first edition of **Cryptography Engineering**⁶⁸). Instead, I would leave **identity management**⁶⁹ to the pros by falling back on an Identity as a Service (IDaaS) provider such as **Zitadel**⁷⁰, on an off-the-shelf Identity and Access Management (IAM) solution such as **Keycloak**⁷¹, or on so-called **social login**⁷² (either directly or via Zitadel or Keycloak).

⁶⁷https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html

⁶⁸<https://www.schneier.com/books/cryptography-engineering>

⁶⁹<https://link.springer.com/book/10.1007/978-1-4842-8261-8>

⁷⁰<https://zitadel.com/>

⁷¹<https://www.keycloak.org/>

⁷²https://en.wikipedia.org/wiki/Social_login

Getting Started: Hello, Play!

At this point, I assume that you have skimmed through the *Getting Started*⁷³ section and have gone through the [tutorial](#)⁷⁴.

If you have not done so yet, get familiar with Play's philosophy⁷⁵ as well.

⁷³<https://www.playframework.com/documentation/latest/Introduction>

⁷⁴<https://www.playframework.com/documentation/latest/HelloWorldTutorial>

⁷⁵<https://www.playframework.com/documentation/latest/Philosophy>

Project Layout

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Outwith: Überproject

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Within: So Long, Layered MVC!

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

sbt Subproject

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

ArchUnit tests

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Monolith, Modular, and Microservices

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

New ...

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

... Repository

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Which came first: The chicken or the egg?

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

... Application

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Remove Clutter

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

The Controllers are Dead, Long Live the Controllers!

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Amend .gitignore

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Dependency Injection

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Controllers and Filters

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Two Become One 1

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Dude, where's my API?

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Prepare for Launch

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

GUI Libraries

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Bootstrap

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

React Router

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Getting htmx and Bootstrap as well as Bootstrap Icons

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

htmx

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Bootstrap

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Bootstrap Icons

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Taking Bootstrap and Bootstrap Icons for a Spin

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Security as a Forethought

If you have not done so yet, read [The Configuration API⁷⁶](#) as well as [Configuration file syntax and features⁷⁷](#), [Configuring the application secret⁷⁸](#), and [Configuring the session cookie⁷⁹](#).

As you certainly know, you cannot develop and deploy any Web app without considering security. And I mean *you* personally. Your organization also needs to seriously consider data protection and [privacy⁸⁰](#) as those are a question of your organization's policy (vis-à-vis its customers, its products' users, etc.), some of which is enforced with security mechanisms.

Considering a Web app's security means considering aspects such as identification & authentication, authorization, software security, security software, and many more. This chapter is not about any of these aspects. This chapter is about hardening the app against some common Web threats that are virtually independent of your app and that services such as [Mozilla Observatory⁸¹](#) (bookmark it!) can partially measure.

If you are new to Web application security, peruse the [OWASP⁸²](#) resources, in particular the [OWASP Top Ten⁸³](#) and the [OWASP Cheat Sheet Series⁸⁴](#).

Hardening a Web app is more of a backend responsibility, but the frontend is not completely off the hook.

Hardening the backend

As we shall see in the [configuration chapter](#), the configuration for a Play app is found in its `application.conf` file (`Fixadat/beapi/conf/application.conf` in our case). Furthermore, Play provides various filters, most of which are security filters. Not all of Play's security mechanisms which allow for hardening a Play app are filters, but all can be configured.

When running Fixadat or SVPofWFTTC, you must see the following output (in any order):

⁷⁶<https://www.playframework.com/documentation/latest/ScalaConfig>

⁷⁷<https://www.playframework.com/documentation/latest/ConfigFile>

⁷⁸<https://www.playframework.com/documentation/latest/ApplicationSecret>

⁷⁹<https://www.playframework.com/documentation/latest/SettingsSession>

⁸⁰<http://williamstallings.com/Privacy/>

⁸¹<https://observatory.mozilla.org/>

⁸²<https://owasp.org/>

⁸³<https://owasp.org/www-project-top-ten/>

⁸⁴<https://cheatsheetsseries.owasp.org/>

```

1 play.filters.csrf.CSRFFilter
2 play.filters.headers.SecurityHeadersFilter
3 play.filters.hosts.AllowedHostsFilter
4 play.filters.csp.CSPFilter
5 play.filters.https.RedirectHttpsFilter

```

This is necessary but not sufficient for Play to be configured securely.

The first three filters listed above are enabled by default; to make it explicit, include the key-value pair `play.http.filters = play.api.http.EnabledFilters`. The last two filters listed above must be enabled explicitly by adding the key-value pairs `play.filters.enabled += play.filters.csp.CSPFilter`, and `play.filters.enabled += play.filters.https.RedirectHttpsFilter`. Note that even in Fixadat's case, the **CORS filter**⁸⁵ is not enabled⁸⁶; Fixadat is a **self-contained system**⁸⁷ whose API is not meant for third-party clients (yet).

Testing

If the (default) filters interfere with (unit) tests, refer to

- [Testing Default Filters^a](#)
- [Testing CSRF^b](#)
- [Testing with CSRFFilter^c](#)
- [Testing^d](#)
- [Testing with AllowedHostsFilter^e](#)

^a<https://www.playframework.com/documentation/latest/Filters#Testing-Default-Filters>

^b<https://www.playframework.com/documentation/latest/ScalaCsrf#Testing-CSRF>

^c<https://www.playframework.com/documentation/latest/Filters#Testing-with-CSRFFilter>

^d<https://www.playframework.com/documentation/latest/AllowedHostsFilter#Testing>

^e<https://www.playframework.com/documentation/latest/Filters#Testing-with-AllowedHostsFilter>

Application Secret

Play requires an application secret, which defaults to `changeme`, which in turn would not be accepted in production as it would be insecure. In production, we are going to [set it via an environment variable](#)⁸⁸. We are going to define the environment variable (named `APPLICATION_SECRET`) in the [next part](#). Right now, we only need to add the key-value pair `play.http.secret.key = ${?APPLICATION_SECRET}` so that Play looks for it.

⁸⁵<https://www.playframework.com/documentation/latest/CorsFilter>

⁸⁶If your app needs to allow for [Cross Origin Resource Sharing](#), heed [OWASP's advice](#).

⁸⁷<https://scs-architecture.org/>

⁸⁸<https://www.playframework.com/documentation/latest/ApplicationSecret#Environment-variables>

Session Cookie

Unless you have really really good reasons (Do you really?) not to, you should harden all your app's cookies by setting `Secure`⁸⁹, `SameSite=Strict`⁹⁰, and `HttpOnly`⁹¹. You can configure Play to do so for the session cookie by adding the key-value pairs `play.http.session.secure = true`, `play.http.session.sameSite = "strict"`, and `play.http.session.httpOnly = true`.

Cross-Site Request Forgery (CSRF)

In order to prevent⁹² CSRF attacks⁹³, a CSRF token must be included with certain HTTP requests. Remember that “*By default, Play will require a CSRF check when **all** of the following **are true**:*”

- The request method is not GET, HEAD or OPTIONS.
- The request has one or more Cookie or Authorization headers.
- The CORS filter is not configured to trust the request’s origin.

The first requirement implies that an API better be `RESTful`⁹⁴; more specifically, GET, HEAD, and OPTIONS requests must not have any side effects. The second requirement can be re-configured to protect all requests: add the key-value pair `play.filters.csrf.header.protectHeaders = null`. The third requirement can be re-configured to NOT `trust CORS requests`⁹⁵: add the key-value pair `play.filters.csrf.bypassCorsTrustedOrigins = false`.

Since “*CSRF tokens should not be transmitted using cookies*”⁹⁶, we are going to `use a custom request header`⁹⁷. In production, the backend is going to `store the CSRF token in the DOM`⁹⁸. Therefore, the frontend must provide a placeholder in `Fixadat/fegui/public/index.html` and `set the custom header`⁹⁹ when it makes certain API calls. In order to test the replacement of the placeholder during development, add the line `<meta name="csrf-token" content="REPLACE_CSRF_TOKEN" />` to `Fixadat/beapi/public/index.html`’s `<head>` section. In order to actually replace the placeholder, overwrite the implementation of the `index()` method in `Fixadat/beapi/app/controllers/HomeController.scala` with the following one (and add `import play.filters.csrf.CSRF`):

⁸⁹https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#secure-attribute

⁹⁰https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#samesite-attribute

⁹¹https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#httponly-attribute

⁹²https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html

⁹³<https://owasp.org/www-community/attacks/csrf>

⁹⁴<https://dpunkt.de/produkt/rest-und-http-2/>

⁹⁵<https://www.playframework.com/documentation/latest/ScalaCsrf#Trusting-CORS-requests>

⁹⁶https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#synchronizer-token-pattern

⁹⁷https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#use-of-custom-request-headers

⁹⁸https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#storing-the-csrf-token-value-in-the-dom

⁹⁹https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#overriding-defaults-to-set-custom-header

```

1  def index() = Action { implicit request: Request[AnyContent] =>
2    val token =
3      CSRF.getToken // // https://www.playframework.com/documentation/latest/ScalaCs\
4      rf#Getting-the-current-token
5      Ok(string.replace("REPLACE_CSRF_TOKEN", token.get.value))
6      .as("text/html")
7  }

```

In production, Fixadat's frontend and backend will agree on what the value of the CSRF token is. During development, they will not. Instead, the backend can be configured to skip the CSRF check¹⁰⁰ when the value of the Csrf-Token header is REPLACE_CSRF_TOKEN. For obvious reasons, we do not want to add the key-value pair play.filters.csrf.header.bypassHeaders.Csrf-Token = "REPLACE_CSRF_TOKEN" to application.conf. Instead, add the following configuration as insecurelocalhost.conf (the inverse of a production configuration file¹⁰¹, so to speak) to Fixadat/beapi/conf and start the backend locally with [Fixadat] \$ run-Dconfig.file=conf/insecurelocalhost.conf from now on:

```

1  include "application"
2
3  play.filters.csrf.header.bypassHeaders.Csrf-Token = "REPLACE_CSRF_TOKEN"

```

Security Headers

Play supports various headers¹⁰² to enhance security¹⁰³. In two cases, we can be even stricter than Play's defaults¹⁰⁴ by adding the key-value pairs play.filters.headers.permittedCrossDomainPolicies = "none" and play.filters.headers.referrerPolicy = "strict-origin-when-cross-origin". Furthermore, let us make it explicit that we do not allow for action-specific overrides¹⁰⁵ by adding the key-value pair play.filters.headers.allowActionSpecificHeaders = false.

Content Security Policy (CSP)

Play features a dedicated CSP¹⁰⁶ filter. As we want to have a tight basic content-security policy¹⁰⁷ (namely, Content-Security-Policy: default-src 'none'; script-src 'self'; connect-src 'self'; img-src 'self'; style-src 'self';), add the following key-value pairs:

¹⁰⁰<https://www.playframework.com/documentation/latest/ScalaCsrf#Plays-CSRF-protection>

¹⁰¹<https://www.playframework.com/documentation/latest/ApplicationSecret#Production-configuration-file>

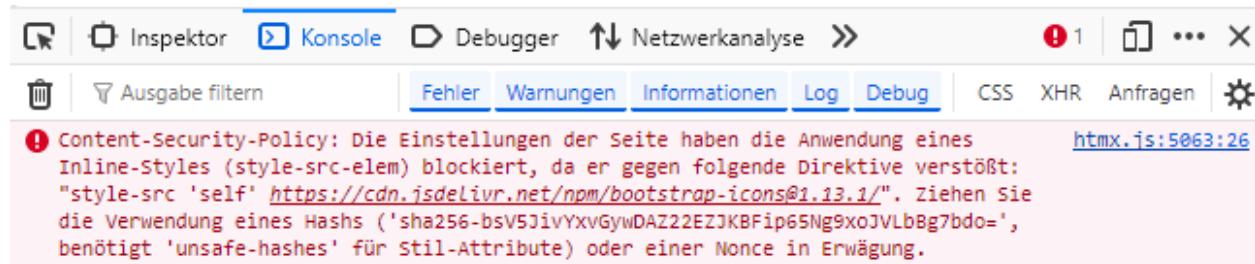
¹⁰²<https://owasp.org/www-project-secure-headers/>

¹⁰³https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#http-headers-to-enhance-security

¹⁰⁴<https://www.playframework.com/documentation/latest/SecurityHeaders#Configuring-the-security-headers>

¹⁰⁵<https://www.playframework.com/documentation/latest/SecurityHeaders#Action-specific-overrides>

¹⁰⁶<https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP>


¹⁰⁷https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html#basic-csp-policy

```

1 play.filters.csp.directives.default-src = "'none'"
2 play.filters.csp.directives.connect-src = "'self'"
3 play.filters.csp.directives.font-src = "'self'"
4 play.filters.csp.directives.img-src = "'self'"
5 play.filters.csp.directives.manifest-src = "'self'"
6 play.filters.csp.directives.script-src = "'self'"
7 play.filters.csp.directives.style-src = "'self'"

```

Furthermore, we want [click-jacking to be prevented](#)¹⁰⁸ by adding the key-value pair `play.filters.csp.directives.frame-ancestors = "'none'"`.

Hash as a Service

Such a tight CSP might be too tight in practice. Resist the temptation to simply allow `unsafe-eval`, `unsafe-inline`, etc. (their prefix is `unsafe` for a reason). Instead, loosen the policy in a controlled fashion and maybe even refactor bits and pieces of your app in order to avoid loosening it further; in SVPofWFTTC's case, for example, the `onchange="switchBootstrapTheme()"` attribute had to be removed from the `input` tag in `main.scala.html` and the line `document.getElementById('bsThemeSwitch').onchange = switchBootstrapTheme;` added to `main.js`.

Allowed Hosts

As you know¹⁰⁹, Play allows for limiting the hosts that can make requests by allow-listing those. We would like `fixadat.com` (including any and all sub-domains) and `localhost` to be allow-listed, which is why we add the key-value pair `play.filters.hosts.allowed = [".fixadat.com", "localhost", ${?PAAS_DOMAIN}]`. The last entry in the array value allows for substituting the domain of the PaaS provider via an environment variable.

In the [last part](#), we are going to allow-list `"fixadat.cleverapps.io"`. If we would like to allow-list further domains of our PaaS provider Clever Cloud, `fixadat-test.cleverapps.io` for instance, we have to allow-list them explicitly and must not allow-list `cleverapps.io` in general!

¹⁰⁸https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html#preventing-clickjacking

¹⁰⁹from <https://www.playframework.com/documentation/latest/ScalaContentNegotiation#Language>

Redirecting HTTP to HTTPS

In production, enforcing HTTP over TLS or simply HTTPS is a must. As you know¹¹⁰, Fixadat further instructs browsers to switch to HTTPS even if the user entered only “http://” by taking advantage of **Strict Transport Security**¹¹¹:
`play.filters.https.strictTransportSecurity = "max-age=31536000; includeSubDomains"`

If you would like to already **enforce HTTPS during development**¹¹², add the key-value pair `play.filters.https.redirectEnabled = true`. If you would like to, you could configure a custom TLS certificate **for the Play project**¹¹³ or even **for your browser**¹¹⁴, but the latter would be akin to playing with fire, so beware!

Note that in production, determining whether a request was sent over TLS requires **configuring trusted proxies**¹¹⁵, which we are going to do in the **last part**. That’s because the TLS connection terminates at the edge and is not **handled by Play**¹¹⁶ itself.

In the **last part**, we are also configuring our PaaS provider Clever Cloud to enforce HTTPS.

Force HTTPS

Any non secured HTTP request to this application will be redirected to HTTPS with a *301 Moved Permanently* status code.

Force HTTPS

Hardening the frontend

Content Security Policy (CSP)

Even though the **content security policy**¹¹⁷ (CSP) is configured at and served by the backend, there is something we have to do for it (or rather because of it) in the frontend. Since **we want a CSP**¹¹⁸ that does **not** allow ‘`unsafe-inline`’¹¹⁹ (let alone ‘`unsafe-eval`’), React needs to be configured not to generate any inline scripts. As you know¹²⁰, you need to add a file called `.env` to `Fixadat/fegui` and add the line `INLINE_RUNTIME_CHUNK=false` to it.

¹¹⁰from <https://www.playframework.com/documentation/latest/RedirectHttpsFilter>

¹¹¹<https://www.playframework.com/documentation/latest/RedirectHttpsFilter#Strict-Transport-Security>

¹¹²<https://www.playframework.com/documentation/latest/RedirectHttpsFilter#Enabling-the-HTTPS-filter>

¹¹³(<https://www.playframework.com/documentation/latest/ConfiguringHttps#SSL-Certificates-from-a-keystore>)

¹¹⁴<https://github.com/FiloSottile/mkcert>

¹¹⁵<https://www.playframework.com/documentation/latest/HTTPServer#Configuring-trusted-proxies>

¹¹⁶<https://www.playframework.com/documentation/latest/ConfiguringHttps#Production-usage-of-HTTPS>

¹¹⁷<https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy>

¹¹⁸https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html

¹¹⁹<https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/script-src>

¹²⁰from <https://create-react-app.dev/docs/production-build/>, <https://create-react-app.dev/docs/adding-custom-environment-variables/>, and <https://create-react-app.dev/docs/advanced-configuration/>

Cross-Site Request Forgery (CSRF)

In order to prevent¹²¹ CSRF attacks¹²², a CSRF token must be included with certain HTTP requests. Since “*CSRF tokens should not be transmitted using cookies*”¹²³, we are going to use a custom request header¹²⁴. In production, the backend is going to store the CSRF token in the DOM¹²⁵. Therefore, the frontend must provide a placeholder in `Fixadat/fegui/public/index.html` and set the custom header¹²⁶ when it makes certain API calls. For the former, add the line `<meta name="csrf-token" content="REPLACE_CSRF_TOKEN" />` to `Fixadat/fegui/public/index.html`’s `<head>` section. For the latter, add the following helper functions as `fetchJson.ts` (which is a mash-up between <https://www.carlrippon.com/fetch-with-async-await-and-typescript/> and https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#xmlhttprequest-native-javascript) to `Fixadat/fegui/src`:

```

1 // https://www.carlrippon.com/fetch-with-async-await-and-typescript/
2
3 interface HttpResponse<T> extends Response {
4     parsedBody?: T;
5 }
6 async function fetchJson<T>(request: Request): Promise<HttpResponse<T>> {
7     // https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#xmlhttprequest-native-javascript
8     if (!/^($|GET|HEAD|OPTIONS)$/.test(request.method)) {
9         const csrf_token = document.querySelector("meta[name='csrf-token']")!.getAttribute("content");
10        request.headers.append("Csrf-Token", csrf_token);
11    }
12
13    const response: HttpResponse<T> = await fetch(request);
14    try {
15        response.parsedBody = await response.json();
16    } catch (ex) { }
17
18    if (!response.ok) {
19        throw new Error(response.statusText);
20    }
21
22    return response;
23

```

¹²¹https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html

¹²²<https://owasp.org/www-community/attacks/csrf>

¹²³https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#synchronizer-token-pattern

¹²⁴https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#use-of-custom-request-headers

¹²⁵https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#storing-the-csrf-token-value-in-the-dom

¹²⁶https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#overriding-defaults-to-set-custom-header

```
24  }
25
26 export async function get<T>(path: string, accessToken: string, args: RequestInit = \
27 { method: "get", mode: "same-origin", credentials: "same-origin", cache: "no-store", \
28 redirect: "error", headers: { "X-Access-Token": accessToken } }): Promise<HttpRespo\
29 nse<T>> {
30     return await fetchJson<T>(new Request(path, args));
31 }
32
33 export async function patch<T>(
34     path: string,
35     accessToken: string,
36     body: any,
37     args: RequestInit = { method: "PATCH", body: JSON.stringify(body), mode: "same-ori\
38 gin", credentials: "same-origin", cache: "no-store", redirect: "error", headers: { "\\
39 Content-Type": "application/json", "X-Access-Token": accessToken } },
40 ): Promise<HttpResponse<T>> {
41     return await fetchJson<T>(new Request(path, args));
42 }
43
44 export async function post<T>(
45     path: string,
46     accessToken = "",
47     body = {},
48     args: RequestInit = { method: "POST", body: JSON.stringify(body), mode: "same-orig\
49 in", credentials: "same-origin", cache: "no-store", redirect: "error", headers: { "C\
50 ontent-Type": "application/json", "X-Access-Token": accessToken } },
51 ): Promise<HttpResponse<T>> {
52     return await fetchJson<T>(new Request(path, args));
53 }
54
55 export async function put<T>(
56     path: string,
57     accessToken: string,
58     body: any,
59     args: RequestInit = { method: "PUT", body: JSON.stringify(body), mode: "same-origi\
60 n", credentials: "same-origin", cache: "no-store", redirect: "error", headers: { "Co\
61 ntent-Type": "application/json", "X-Access-Token": accessToken } },
62 ): Promise<HttpResponse<T>> {
63     return await fetchJson<T>(new Request(path, args));
64 }
```

Cross-Site Scripting (XSS)

In order to prevent¹²⁷ Stored or Reflected XSS attacks¹²⁸ and to prevent¹²⁹ DOM-based attacks¹³⁰, the GUI's content must be properly escaped. Luckily, React takes care of escaping¹³¹. If you really really have to circumvent React escaping¹³² some content (Do you really?), do yourself a favor and at least avoid any user-generated content as well as content consumed from third parties (e.g., via their APIs)!

What about TLS?

In production, enforcing HTTP over TLS or simply HTTPS is a must. If you already enable or even enforce HTTPS in the backend during development, you may want to do so in the frontend as well. Simply add the line `HTTPS=true` to `Fixadat/fegui/.env`. If you would like to, you could configure a custom TLS certificate for your frontend project^a or even for your browser^b, but the latter would be akin to playing with fire, so beware!

^a<https://create-react-app.dev/docs/using-https-in-development/#custom-ssl-certificate>

^b<https://github.com/FiloSottile/mkcert>

Rinse & Repeat

For as long as your project is deployed, you will not be done with security; you need to strive for continuous security¹³³. With respect to this chapter, you need to answer at least two questions on a regular basis (e.g., at the end of a Sprint¹³⁴ before you deliver the Increment¹³⁵ if you happen to employ Scrum with Essence¹³⁶ (or without)):

1. Do I need to update Play¹³⁷ or another dependency¹³⁸ because of a newly discovered security vulnerability?
2. Do I need to update React¹³⁹ or another package¹⁴⁰ because of a newly discovered security vulnerability?

¹²⁷https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

¹²⁸<https://owasp.org/www-community/attacks/xss/>

¹²⁹https://cheatsheetseries.owasp.org/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.html

¹³⁰https://owasp.org/www-community/attacks/DOM_Based_XSS

¹³¹<https://reactjs.org/docs/introducing-jsx.html#jsx-prevents-injection-attacks>

¹³²<https://reactjs.org/docs/dom-elements.html#dangerouslysetinnerhtml>

¹³³<https://www.manning.com/books/securing-devops>

¹³⁴<https://www.scrumguides.org/scrum-guide.html#the-sprint>

¹³⁵<https://www.scrumguides.org/scrum-guide.html#increment>

¹³⁶<https://www.scruminc.com/better-scrum-with-essence/>

¹³⁷<https://www.playframework.com/documentation/latest/Migration28>

¹³⁸<https://github.com/albucht/sbt-dependency-check>

¹³⁹<https://create-react-app.dev/docs/updating-to-new-releases>

¹⁴⁰<https://docs.npmjs.com/cli/v6/commands/npm-audit>

3. Are the steps taken above still **necessary**¹⁴¹ and sufficient?

As for 1 and 2, you could automate some parts within your **repository**¹⁴² and/or **pipeline**¹⁴³ and/or

...

¹⁴¹https://infosec.mozilla.org/guidelines/web_security

¹⁴²<https://docs.github.com/en/free-pro-team@latest/github/managing-security-vulnerabilities>

¹⁴³<https://support.snyk.io/hc/en-us/sections/360001152577-CI-CD-integrations>

Database Management System

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

MongoDB

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Event Sourcing

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

MongoDB

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Driver

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Configuration

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Code

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Connection helper

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Dependency Injection

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Internationalization and Localization

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Both Fixadat and SVPofWFTTC

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Supported Locales

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Switching the Locale

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Only Fixadat: Backend

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Serving the Localizations

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Only Fixadat: Frontend

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Using a Localization Context

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Fetching and Providing the Localizations

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Using the Localizations

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Switching the Locale

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

CI/CD

Like the previous part and unlike the next part, this entire part is pretty much independent of the domain.

Two Become One 2

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Alternatives

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Building Images Locally

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Running Containers Locally

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Continuous Integration

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Test

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Scan

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Continuous Delivery

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Pull

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Push

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Cleaning up & out

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Continuous Deployment

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

MongoDB

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Docker or Java

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Pull

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Push

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Cleaning up & out

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Clever Cloud

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

GitHub

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Domains

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Features

Going Public

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

index.html

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Records and Case Classes

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Primitive Types

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Unsigned Integers

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Interaction Design

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Users and Interactions

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Hosts

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Guests

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Boilerplate

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Configuration

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Configuration Files

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Application Secret

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Session Cookie

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Logging

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Template

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Boilerplate

Privacy

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Legalese

This content is not available in the sample book. The book can be purchased on Leanpub at <https://leanpub.com/DevWebApps>.

Appendix

Updating and Upgrading

At the very least for [security reasons](#), you need to update and eventually upgrade your projects on a regular basis.

Updating the Backend

- update FROM hseeberger/scala-sbt:JAVA_SBT_SCALA as play in Fixadat/Dockerfile
- follow the [migration instructions](#)¹⁴⁴ if need be
- update scalaVersion in Fixadat/beapi/build.sbt as well as in Fixadat/beapi/hexagon/build.sbt
- update sbt.version in Fixadat/beapi/project/build.properties as well as in Fixadat/beapi/hexagon/project/build.properties
- update addSbtPlugin("com.typesafe.play" % "sbt-plugin" % "X.Y.Z") in Fixadat/beapi/project/plugins.sbt
- update third-party dependencies in both Fixadat/beapi/build.sbt and Fixadat/beapi/hexagon/build.sbt

Updating the Frontend

- follow the [migration instructions](#)¹⁴⁵ if need be
- with your shell, execute the command `npm update` in Fixadat/fegui
- with your shell, execute the command `npm audit fix` in Fixadat/fegui

Upgrading the Backend

- upgrade FROM openjdk:JAVA as well as FROM hseeberger/scala-sbt:JAVA_SBT_SCALA as play in Fixadat/Dockerfile
- follow the [migration instructions](#)¹⁴⁶
- to be continued

Upgrading the Frontend

- upgrade FROM node:JS as react in Fixadat/Dockerfile
- follow the [migration instructions](#)¹⁴⁷
- to be continued

¹⁴⁴<https://www.playframework.com/documentation/latest/Migration28>

¹⁴⁵<https://github.com/facebook/create-react-app/blob/main/CHANGELOG.md>

¹⁴⁶<https://www.playframework.com/documentation/latest/Migration28>

¹⁴⁷<https://github.com/facebook/create-react-app/blob/main/CHANGELOG.md>