

CakePHP User
Authentication

rrd

This book is for sale at
http://leanpub.com/CakePHPUserAuthentication

This version was published on 2014-12-20

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean
Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader
feedback, pivot until you have the right book and build
traction once you do.

©2013 - 2014 rrd

http://leanpub.com/CakePHPUserAuthentication
http://leanpub.com
http://leanpub.com/manifesto
http://leanpub.com/manifesto

Tweet This Book!
Please help rrd by spreading the word about this book on
Twitter!

The suggested tweet for this book is:

I just bought CakePHP User Authentication e-book.
#CakePHP
https://leanpub.com/CakePHPUserAuthentication

The suggested hashtag for this book is #cakephp.

Find out what other people are saying about the book by
clicking on this link to search for this hashtag on Twitter:

https://twitter.com/search?q=#cakephp

http://twitter.com
https://twitter.com/search?q=%23cakephp
https://twitter.com/search?q=%23cakephp

Contents

Introduction . i

About the Book ii
Why I Wrote This Book ii
My Development Environment iv
Who This Book Is For iv
Prerequisites . iv

About the Author v

Thanks . vi

My E-books on CakePHP vii
CakePHP Unit Testing vii
CakePHP User Authentication viii

My CakePHP Plugins ix

Model Preparation 1
Creating User Table 1
Baking User . 1

CONTENTS

Controller Preparation 13

View Preparation 27

Login and Logout 33
Login . 33
Logout . 37

Epilogue . 38

Introduction
Nearly all web application needs some kind of user han-
dling functionality. User handling could be simple like
a rod, or a really sophisticated and complicated system.
Sometimes we will have only one user, who could add new
things, edit and delete them in our application. Sometimes
we have to handle many users, different permissions, roles
and groups and do it as comfortable as possible. Luckily
CakePHP offers a great help in our work by its Auth
component.

About the Book
I wrote this book for CakePHP developers who want to
know how to handle users and user related functions. For
people who do not want to reinvent the wheel but wants
flexibility and like to write their own code using best
practices.

The examples in this book use CakePHP, but the presented
ideas themselves are not framework or language specific.

Why I Wrote This Book

I started to use CakePHP at version 1.1. The framework is
wonderful, and improving nicely, with an open and helpful
staff and community. It helped me to became a better
programmer.

When I started to code, I did everything from scratch. I
did not know about programming patterns, utilities, or
libraries. I was able to build up middle size systems this
way.

After a while, I decided that mixing application logic and
presentation logic has more cons than pros, so I started to
use Smarty¹. Smarty was a great help. In time it helped me

¹http://smarty.net/

http://smarty.net/
http://smarty.net/

About the Book iii

to see thatmy best practices were reallymyworst practices.
I knew I needed something more.

I realized there are a few features I need in most of my
web applications. I started to think about how I code and
after some time came up with an extremely simple and dull
framework, without really knowing that frameworks exist.

That was when I heard about MVC pattern. At first it
seemed like unnecessary complications in the code, but I
wanted to give it a try anyway. When I tried to understand
MVC, I found some information about frameworks. I tried
CodeIgniter², and then CakePHP³.

The first bite of CakePHP was awful. Especially because
I was (and am) a big fan of bake auto code generation. I
thought that the whole framework just saved so much time
and produced a much clearer and more maintainable code.

CakePHP has a lot of built-in functionality, including au-
thentication. It is clear, well written, easy to use. Still
we tend to forget what we did last time, how we solved
different problems. I think many of you have had similar
experiences. Let’s try to shorten our learning curve.

I hope this book will help you and that my suggestions can
save you some time.

²http://ellislab.com/codeigniter
³http://cakephp.org

http://ellislab.com/codeigniter
http://cakephp.org
http://ellislab.com/codeigniter
http://cakephp.org

About the Book iv

My Development Environment

I tried to use code examples that are independent from the
environment but, as we all know, this is impossible. With
that in mind, this is my system and the software I’m using.

• Ubuntu 14.04
• PHP 5.5.9-1ubuntu4.4
• CakePHP 2.5
• MySQL 5.5.38
• Komodo Edit 8.5
• phpMyAdmin 4.0.10

Who This Book Is For

This book is for novice and intermediate programmers.

It assumes that you have a general understanding of PHP
and object-oriented programming (OOP).

It’s good if you are already familiar with CakePHP. But
even if you’re not, you will probably still be able to under-
stand most of the principles and codes.

Prerequisites

I assume that you have already successfully installedCakePHP⁴,
created a database for your application and set debug level
to 1 or 2.

⁴http://cakephp.org

http://cakephp.org
http://cakephp.org

About the Author
rrd started to code for the web in plain HTML in 1998. As
the web evolved, he turned to PHP, then to Javascript. As
mobile technologies arrived, he started to play with Java
for android development.

He’s a big fan of CakePHP, jQuery, Prototype, and Scrip-
taculous frameworks, open source, and pizza. All of them
are there in his web development.

Thanks
I would like to thank you for spending your time reading
this book.

I also should say thank you to the core CakePHP team and
everybody else who’s contributed anything, small or big,
to this wonderful framework.

Finally, special thanks go to Italy for Pizza and to Hungary
for Turo Rudi - both are essential for web development.

My E-books on CakePHP

CakePHP Unit Testing

CakePHP Unit Testing

Download from Leanpub⁵

⁵https://leanpub.com/cakephpunittesting

https://leanpub.com/cakephpunittesting
https://leanpub.com/cakephpunittesting

My E-books on CakePHP viii

CakePHP User Authentication

CakePHP User Authentication

Download from Leanpub⁶

⁶https://leanpub.com/CakePHPUserAuthentication

https://leanpub.com/CakePHPUserAuthentication
https://leanpub.com/CakePHPUserAuthentication

My CakePHP Plugins
Protection against brute force attacks rBruteFore⁷

⁷https://github.com/rrd108/rBruteForce

https://github.com/rrd108/rBruteForce
https://github.com/rrd108/rBruteForce

Model Preparation

Creating User Table

We will need a user table in our database. Let’s create it.

1 CREATE TABLE `users` (

2 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,

3 `email` varchar(255) NOT NULL,

4 `password` varchar(255) NOT NULL,

5 PRIMARY KEY (`id`),

6 UNIQUE KEY `email` (`email`)

7) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREM\

8 ENT=1;

As a start we have only 3 columns in our table, id, email
and password. The password will be stored encrypted, so
the field should be enough big.

Baking User

Our next step is to create a basic skeleton for our user
handling functionality. For this we should create our user
model, view and controller. As always the easiest way to

Model Preparation 2

use CakePHP’s automatic code generation tool and bake

them.

Open a terminal and step into your application’s root direc-
tory. Step into app/Console folder and type ./cake bake“.
This will start CakePHP’s interactive bake console. bake
console is a smart and handy tool and it is self explanatory.
If you do not familiar yet, we will walk through the whole
process, what normally takes 20 seconds.

Baking User Model

After starting bake console in your terminal window you
will see this.

1 Welcome to CakePHP v2.4.0 Console

2 --

3 App : app

4 Path: /home/rrd/public_html/blog/app/

5 --

6 Interactive bake Shell

7 --

8 [D]atabase Configuration

9 [M]odel

10 [V]iew

11 [C]ontroller

12 [P]roject

13 [F]ixture

14 [T]est case

15 [Q]uit

Model Preparation 3

First we bake our user model. Press m after the question
“What would you like to bake?” appears. By this we started
to bake our user model.

1 What would you like to bake? (D/M/V/C/P/F/T/Q)

2 > m

3 --

4 `bake` Model

5 Path: /home/rrd/public_html/blog/app/Model/

6 --

Next we should choose which database schema should be
used. Just press enter and it will select default.

1 Use Database Config: (default/test)

2 [default] >

After this we should tell to the bake script what model
we want to create. Use the number in front of User. As in
core.php I choose to use database for my sessions I should
select 2. If you did not changed this and left as default your
User option will be 1. If you have more database tables than
choose the number in the beginning of the User row.

Model Preparation 4

1 Possible Models based on your current database:

2 1. CakeSession

3 2. User

4 Enter a number from the list above,

5 type in the name of another model, or 'q' to exi\

6 t

7 [q] > 2

You should set your display field. CakePHP will use it in
select boxes. We do not need it in this phase so you could
press n and let the bake script know that we will go without
any display filed.

1 A displayField could not be automatically detect\

2 ed

3 would you like to choose one? (y/n)

4 > n

Perhaps we do not want to have useless data anywhere, so
we will use validation.

..

Validation is not a security check. Never forget to
sanitize your input.

Model Preparation 5

1 Would you like to supply validation criteria

2 for the fields in your model? (y/n)

3 [y] >

After this the bake script will ask validation criteria for
each fields.

For the field id, we do not need any validation criteria, as
we will just let the database to auto increment its value. So
you could just press enter and accept what the bake script
offers as default.

1 Field: id

2 Type: integer

3 --

4 Please select one of the following validation op\

5 tions:

6 --

7 1. alphanumeric 18. maxlength

8 2. between 19. mimetype

9 3. blank 20. minlength

10 4. boolean 21. money

11 5. cc 22. multiple

12 6. comparison 23. naturalnumber

13 7. custom 24. notempty

14 8. date 25. numeric

15 9. datetime 26. phone

16 10. decimal 27. postal

17 11. email 28. range

18 12. equalto 29. ssn

Model Preparation 6

19 13. extension 30. time

20 14. filesize 31. uploaderror

21 15. inlist 32. url

22 16. ip 33. userdefined

23 17. luhn 34. uuid

24

25 35 - Do not do any validation on this field.

26 --

27 ... or enter in a valid regex validation string.

28

29 [35] >

Next is the field email, what should looks like an email
address. Validation do not check if it is a real email ad-
dress.Email addresses has their own built-in validation
criteria so we choose this.

1 Field: email

2 Type: string

3 --

4 Please select one of the following validation op\

5 tions:

6 --

7 1. alphanumeric 18. maxlength

8 2. between 19. mimetype

9 3. blank 20. minlength

10 4. boolean 21. money

11 5. cc 22. multiple

12 6. comparison 23. naturalnumber

Model Preparation 7

13 7. custom 24. notempty

14 8. date 25. numeric

15 9. datetime 26. phone

16 10. decimal 27. postal

17 11. email 28. range

18 12. equalto 29. ssn

19 13. extension 30. time

20 14. filesize 31. uploaderror

21 15. inlist 32. url

22 16. ip 33. userdefined

23 17. luhn 34. uuid

24

25 35 - Do not do any validation on this field.

26 --

27 ... or enter in a valid regex validation string.

28

29 [11] >

As we could have multiple validation criteria the bake

script asks if we would like to add an other. This time just
press enter at accept the default answer, no.

1 Would you like to add another validation rule? (\

2 y/n)

3 [n] >

For the password field we will have more criteria like it
should be more than 5 characters, etc. At this point we do
not have to worry about this, we will add extra validation
criteria later. So just accept default answer.

Model Preparation 8

1 Field: password

2 Type: string

3 --

4 Please select one of the following validation op\

5 tions:

6 --

7 1. alphanumeric 18. maxlength

8 2. between 19. mimetype

9 3. blank 20. minlength

10 4. boolean 21. money

11 5. cc 22. multiple

12 6. comparison 23. naturalnumber

13 7. custom 24. notempty

14 8. date 25. numeric

15 9. datetime 26. phone

16 10. decimal 27. postal

17 11. email 28. range

18 12. equalto 29. ssn

19 13. extension 30. time

20 14. filesize 31. uploaderror

21 15. inlist 32. url

22 16. ip 33. userdefined

23 17. luhn 34. uuid

24

25 35 - Do not do any validation on this field.

26 --

27 ... or enter in a valid regex validation string.

28

29 [24] >

Model Preparation 9

30 Would you like to add another validation rule? (\

31 y/n)

32 [n] >

We do not have more fields, so bake moves forward and
asks about model relationships. In this example app we do
not have any model relations so we could press n.

1 Would you like to define model associations

2 (hasMany, hasOne, belongsTo, etc.)? (y/n)

3 [y] > n

Finally bake gives us a summary. Press enter.

1 --

2 The following Model will be created:

3 --

4 Name: User

5 DB Table: `blog`.`users`

6 Validation: Array

7 (

8 [email] => Array

9 (

10 [email] => email

11)

12

13 [password] => Array

14 (

Model Preparation 10

15 [notempty] => notempty

16)

17

18)

19

20 --

21 Look okay? (y/n)

22 [y] >

After this CakePHP try to create our User Model. If it is
successful you will see something like this.

1 Baking model class for User...

2

3 Creating file /home/rrd/public_html/blog/app/Mod\

4 el/User.php

5 Wrote `/home/rrd/public_html/blog/app/Model/User\

6 .php`

Last question is about unit testing. This timewe do not need
unit tests, so press n.

Unit testing is an extremely useful tool in
software development. Please read my book
CakePHP Unit Testing if you are interested.

Model Preparation 11

1 PHPUnit is not installed. Do you want to bake un\

2 it test files anyway? (y/n)

3 [y] > n

Now you could open your automatically generated /app/-
Model/User.php file.

1 <?php

2 App::uses('AppModel', 'Model');

3 /**

4 * User Model

5 *

6 */

7 class User extends AppModel {

8

9 /**

10 * Validation rules

11 *

12 * @var array

13 */

14 public $validate = array(

15 'email' => array(

16 'email' => array(

17 'rule' => array('email'),

18 //'message' => 'Your custom message here\

19 ',

20 //'allowEmpty' => false,

21 //'required' => false,

22 //'last' => false, // Stop validation af\

Model Preparation 12

23 ter this rule

24 //'on' => 'create', // Limit validation \

25 to 'create' or 'update' operations

26),

27),

28 'password' => array(

29 'notempty' => array(

30 'rule' => array('notempty'),

31 //'message' => 'Your custom message here\

32 ',

33 //'allowEmpty' => false,

34 //'required' => false,

35 //'last' => false, // Stop validation af\

36 ter this rule

37 //'on' => 'create', // Limit validation \

38 to 'create' or 'update' operations

39),

40),

41);

42 }

43 ?>

Controller Preparation
Create a basic controller with CRUD functions is also a
really simple and straightforward process. It will take an
other 20 seconds.

If you did not closed your bake terminal you could just
continue. If you did please start it again. This time you
should press c at the first step. By that the bake script will
auto generate your controller code.

1 --

2 Interactive Bake Shell

3 --

4 [D]atabase Configuration

5 [M]odel

6 [V]iew

7 [C]ontroller

8 [P]roject

9 [F]ixture

10 [T]est case

11 [Q]uit

12 What would you like to Bake? (D/M/V/C/P/F/T/Q)

13 > c

As we did for our model we should choose which database

Controller Preparation 14

to use, and what controller we want to build. Chose defaut
database and Users controller.

1 --

2 Bake Controller

3 Path: /home/rrd/public_html/blog/app/Controller/

4 --

5 Use Database Config: (default/test)

6 [default] >

7 Possible Controllers based on your current datab\

8 ase:

9 --

10 1. CakeSessions

11 2. Users

12 Enter a number from the list above,

13 type in the name of another controller, or 'q' t\

14 o exit

15 [q] > 2

The bake script could build your controller interactively
or silently. I prefer to use the interactive shell, as there is
a good chance that we want to change at least one thing
from default to something else. So press enter and accept
the default answer.

Controller Preparation 15

1 --

2 Baking UsersController

3 --

4 Would you like to build your controller interact\

5 ively? (y/n)

6 [y] >

Scaffolding is an extremely good way to have a working
basic web application in a few minutes. As we will change
the controller code soon chose n. By this the bake script will
generate the code and will not use scaffolds.

1 Would you like to use dynamic scaffolding? (y/n)

2 [n] >

Next bake asks about creating basic CRUD functions. Choose
y. This will generate controller functions for adding, view-
ing, editing and listing users.

1 Would you like to create some basic class method\

2 s

3 (index(), add(), view(), edit())? (y/n)

4 [n] > y

Admin routing helps you differentiate between regular
users and admins. It means you will have different CRUD
functions for admins and for regular users in your con-
troller. It is not a must have, you could code the same
thing without admin routes, but this is a more clear and
maintainable way. So press y for admin routing.

Controller Preparation 16

1 Would you like to create the basic class methods\

2 for admin routing? (y/n)

3 [n] > y

The bake script will add basic helpers to your controller.
Press enter and accept default answer. If we will need more
helpers we would add them in our controller code later.

1 Would you like this controller to use other help\

2 ers

3 besides HtmlHelper and FormHelper? (y/n)

4 [n] >

Next question is about components. At this step we could
just accept the default.

1 Would you like this controller to use other comp\

2 onents

3 besides PaginatorComponent? (y/n)

4 [n] >

We need to show flash messages, so choose yes for the next
question.

1 Would you like to use Session flash messages? (y\

2 /n)

3 [y] >

Aswe choose to use admin routeswe should edit /app/Config/core.php
and switch it on. You could change the routing prefix from
admin to anything you like.

Controller Preparation 17

1 --

2 You need to enable Configure::write('Routing.pre\

3 fixes', array('admin')) in /app/Config/core.php \

4 to use prefix routing.

5 What would you like the prefix route to be?

6 Example: www.example.com/admin/controller

7 Enter a routing prefix:

8 [admin] >

Finally bake gives us a summary. Press enter.

1 --

2 The following controller will be created:

3 --

4 Controller Name:

5 Users

6 Components:

7 Paginator

8 --

9 Look okay? (y/n)

10 [y] >

11

12 Baking controller class for Users...

13

14 Creating file /home/rrd/public_html/blog/app/Con\

15 troller/UsersController.php

Last question is about unit testing. This timewe do not need
unit tests, so press n.

Controller Preparation 18

Unit testing is an extremely useful tool in
software development. Please read my book
CakePHP Unit Testing if you are interested.

1 Wrote `/home/rrd/public_html/blog/app/Controller\

2 /UsersController.php`

3 PHPUnit is not installed. Do you want to bake un\

4 it test files anyway? (y/n)

5 [y] > n

Now app/Controller/UsersController.php is generated
and you could open it with your favorite text editor.

1 <?php

2 App::uses('AppController', 'Controller');

3 /**

4 * Users Controller

5 *

6 * @property User $User

7 * @property PaginatorComponent $Paginator

8 */

9 class UsersController extends AppController {

10

11 /**

12 * Components

13 *

14 * @var array

15 */

Controller Preparation 19

16 public $components = array('Paginator');

17

18 /**

19 * index method

20 *

21 * @return void

22 */

23 public function index() {

24 $this->User->recursive = 0;

25 $this->set('users', $this->Paginator->pagina\

26 te());

27 }

28

29 /**

30 * view method

31 *

32 * @throws NotFoundException

33 * @param string $id

34 * @return void

35 */

36 public function view($id = null) {

37 if (!$this->User->exists($id)) {

38 throw new NotFoundException(__('Invalid us\

39 er'));

40 }

41 $options = array('conditions' => array('User\

42 .' . $this->User->primaryKey => $id));

43 $this->set('user', $this->User->find('first'\

44 , $options));

Controller Preparation 20

45 }

46

47 /**

48 * add method

49 *

50 * @return void

51 */

52 public function add() {

53 if ($this->request->is('post')) {

54 $this->User->create();

55 if ($this->User->save($this->request->data\

56)) {

57 $this->Session->setFlash(__('The user ha\

58 s been saved.'));

59 return $this->redirect(array('action' =>\

60 'index'));

61 } else {

62 $this->Session->setFlash(__('The user co\

63 uld not be saved. Please, try again.'));

64 }

65 }

66 }

67

68 /**

69 * edit method

70 *

71 * @throws NotFoundException

72 * @param string $id

73 * @return void

Controller Preparation 21

74 */

75 public function edit($id = null) {

76 if (!$this->User->exists($id)) {

77 throw new NotFoundException(__('Invalid us\

78 er'));

79 }

80 if ($this->request->is('post') || $this->req\

81 uest->is('put')) {

82 if ($this->User->save($this->request->data\

83)) {

84 $this->Session->setFlash(__('The user ha\

85 s been saved.'));

86 return $this->redirect(array('action' =>\

87 'index'));

88 } else {

89 $this->Session->setFlash(__('The user co\

90 uld not be saved. Please, try again.'));

91 }

92 } else {

93 $options = array('conditions' => array('Us\

94 er.' . $this->User->primaryKey => $id));

95 $this->request->data = $this->User->find('\

96 first', $options);

97 }

98 }

99

100 /**

101 * delete method

102 *

Controller Preparation 22

103 * @throws NotFoundException

104 * @param string $id

105 * @return void

106 */

107 public function delete($id = null) {

108 $this->User->id = $id;

109 if (!$this->User->exists()) {

110 throw new NotFoundException(__('Invalid us\

111 er'));

112 }

113 $this->request->onlyAllow('post', 'delete');

114 if ($this->User->delete()) {

115 $this->Session->setFlash(__('The user has \

116 been deleted.'));

117 } else {

118 $this->Session->setFlash(__('The user coul\

119 d not be deleted. Please, try again.'));

120 }

121 return $this->redirect(array('action' => 'in\

122 dex'));

123 }

124

125 /**

126 * admin_index method

127 *

128 * @return void

129 */

130 public function admin_index() {

131 $this->User->recursive = 0;

Controller Preparation 23

132 $this->set('users', $this->Paginator->pagina\

133 te());

134 }

135

136 /**

137 * admin_view method

138 *

139 * @throws NotFoundException

140 * @param string $id

141 * @return void

142 */

143 public function admin_view($id = null) {

144 if (!$this->User->exists($id)) {

145 throw new NotFoundException(__('Invalid us\

146 er'));

147 }

148 $options = array('conditions' => array('User\

149 .' . $this->User->primaryKey => $id));

150 $this->set('user', $this->User->find('first'\

151 , $options));

152 }

153

154 /**

155 * admin_add method

156 *

157 * @return void

158 */

159 public function admin_add() {

160 if ($this->request->is('post')) {

Controller Preparation 24

161 $this->User->create();

162 if ($this->User->save($this->request->data\

163)) {

164 $this->Session->setFlash(__('The user ha\

165 s been saved.'));

166 return $this->redirect(array('action' =>\

167 'index'));

168 } else {

169 $this->Session->setFlash(__('The user co\

170 uld not be saved. Please, try again.'));

171 }

172 }

173 }

174

175 /**

176 * admin_edit method

177 *

178 * @throws NotFoundException

179 * @param string $id

180 * @return void

181 */

182 public function admin_edit($id = null) {

183 if (!$this->User->exists($id)) {

184 throw new NotFoundException(__('Invalid us\

185 er'));

186 }

187 if ($this->request->is('post') || $this->req\

188 uest->is('put')) {

189 if ($this->User->save($this->request->data\

Controller Preparation 25

190)) {

191 $this->Session->setFlash(__('The user ha\

192 s been saved.'));

193 return $this->redirect(array('action' =>\

194 'index'));

195 } else {

196 $this->Session->setFlash(__('The user co\

197 uld not be saved. Please, try again.'));

198 }

199 } else {

200 $options = array('conditions' => array('Us\

201 er.' . $this->User->primaryKey => $id));

202 $this->request->data = $this->User->find('\

203 first', $options);

204 }

205 }

206

207 /**

208 * admin_delete method

209 *

210 * @throws NotFoundException

211 * @param string $id

212 * @return void

213 */

214 public function admin_delete($id = null) {

215 $this->User->id = $id;

216 if (!$this->User->exists()) {

217 throw new NotFoundException(__('Invalid us\

218 er'));

Controller Preparation 26

219 }

220 $this->request->onlyAllow('post', 'delete');

221 if ($this->User->delete()) {

222 $this->Session->setFlash(__('The user has \

223 been deleted.'));

224 } else {

225 $this->Session->setFlash(__('The user coul\

226 d not be deleted. Please, try again.'));

227 }

228 return $this->redirect(array('action' => 'in\

229 dex'));

230 }

231 }

You will notice plain and admin CRUD functions are
generated and the code are the same in them. Do not worry
about this, we will get back to them in a short time.

View Preparation
We should bake our user views also. It is just as simple as
for models and controllers. Go back to your bake console
and choose v for generating views.

1 --

2 Interactive Bake Shell

3 --

4 [D]atabase Configuration

5 [M]odel

6 [V]iew

7 [C]ontroller

8 [P]roject

9 [F]ixture

10 [T]est case

11 [Q]uit

12 What would you like to Bake? (D/M/V/C/P/F/T/Q)

13 > v

As we did earlier we should choose the database and the
controller for which we create the views.

View Preparation 28

1 --

2 Bake View

3 Path: /home/rrd/public_html/blog/app/View/

4 --

5 Use Database Config: (default/test)

6 [default] >

7 Possible Controllers based on your current datab\

8 ase:

9 --

10 1. CakeSessions

11 2. Users

12 Enter a number from the list above,

13 type in the name of another controller, or 'q' t\

14 o exit

15 [q] > 2

We choose interactive mode as we did for the controller.

1 Would you like bake to build your views interact\

2 ively?

3 Warning: Choosing no will overwrite Users views \

4 if it exist. (y/n)

5 [n] > y

As we already generated controller CRUD functions now
we could generate their corresponding views.

View Preparation 29

1 Would you like to create some CRUD views

2 (index, add, view, edit) for this controller?

3 NOTE: Before doing so, you'll need to create you\

4 r controller

5 and model classes (including associated models).\

6 (y/n)

7 [y] >

And we also generate views for admin functions.

1 Would you like to create the views for admin rou\

2 ting? (y/n)

3 [n] > y

The bake script now actually generate the files and writes
them to our hard drive.

1 Baking `index` view file...

2

3 Creating file /home/rrd/public_html/blog/app/Vie\

4 w/Users/index.ctp

5 Wrote `/home/rrd/public_html/blog/app/View/Users\

6 /index.ctp`

7

8 Baking `view` view file...

9

10 Creating file /home/rrd/public_html/blog/app/Vie\

11 w/Users/view.ctp

View Preparation 30

12 Wrote `/home/rrd/public_html/blog/app/View/Users\

13 /view.ctp`

14

15 Baking `add` view file...

16

17 Creating file /home/rrd/public_html/blog/app/Vie\

18 w/Users/add.ctp

19 Wrote `/home/rrd/public_html/blog/app/View/Users\

20 /add.ctp`

21

22 Baking `edit` view file...

23

24 Creating file /home/rrd/public_html/blog/app/Vie\

25 w/Users/edit.ctp

26 Wrote `/home/rrd/public_html/blog/app/View/Users\

27 /edit.ctp`

28

29 Baking `admin_index` view file...

30

31 Creating file /home/rrd/public_html/blog/app/Vie\

32 w/Users/admin_index.ctp

33 Wrote `/home/rrd/public_html/blog/app/View/Users\

34 /admin_index.ctp`

35

36 Baking `admin_view` view file...

37

38 Creating file /home/rrd/public_html/blog/app/Vie\

39 w/Users/admin_view.ctp

40 Wrote `/home/rrd/public_html/blog/app/View/Users\

View Preparation 31

41 /admin_view.ctp`

42

43 Baking `admin_add` view file...

44

45 Creating file /home/rrd/public_html/blog/app/Vie\

46 w/Users/admin_add.ctp

47 Wrote `/home/rrd/public_html/blog/app/View/Users\

48 /admin_add.ctp`

49

50 Baking `admin_edit` view file...

51

52 Creating file /home/rrd/public_html/blog/app/Vie\

53 w/Users/admin_edit.ctp

54 Wrote `/home/rrd/public_html/blog/app/View/Users\

55 /admin_edit.ctp`

When it is ready you could open your view files and see
the generated code. So we spent again 20 seconds with
CakePHP automatic code generating tool bake.

Now if you navigate your browser to your app (in my case
it is at http://localhost/∼rrd/blog/) and type users to
the end of the url you should see the following screen.

View Preparation 32

Users Controller After Baking

You should be able to add, edit, delete and view users. As
we generated validation rules your input will be validated
against them. So if you try to add a new user with a non
valid email address the app should reject it.

Login and Logout
So now we are able to create, edit, delete and list users.
Better to say now anyone could do this things. So if anyone
finds your application on the web will able to create new
users, delete existing users and edit all users’ data. Clearly
this is not what we want.

We have to know who plays in our application. For this we
should log the user in.

Login

Login - controller

Let’s create our loginmethod in our User controller. Open
/app/Controller/UsersController.php and the follow-
ing method.

Login and Logout 34

1 public function login() {

2 if ($this->request->is('post')) {

3 if ($this->Auth->login()) {

4 return $this->redirect($this->Auth->redire\

5 ctUrl());

6 }

7 else {

8 $this->Session->setFlash(__('Username or p\

9 assword is incorrect'), 'default', array(), 'aut\

10 h');

11 }

12 }

13 }

As we would like to use Auth component in our controller
we should add it to the controller’s $components array.
The best place for this is AppController.php. So replace the
$components array with this.

1 public $components = array('Session', 'Auth');

CakePHP conventions are really handy but sometimes we
want to use something else. The Auth component waiting
for username and password fields. We use email and not
username so we should set up the Auth component to
handle this. Without this setting it will not log us in even
with the right email password combination.

Open UsersController.php and at the beginning change
$components array.

Login and Logout 35

1 public $components = array(

2 'Paginator',

3 'Auth' => array(

4 'authenticate' => array(

5 'Form' => array(

6 'fields' => array('username' => 'email')

7)

8)

9)

10);

Login - view

We should create the login view with two input field for
the e-mail address and the password.

1 <div class="users form">

2 <?php echo $this->Form->create('User', array('ac\

3 tion' => 'login')); ?>

4 <fieldset>

5 <legend><?php echo __('Login'); ?></legend>

6 <?php

7 echo $this->Form->input('email');

8 echo $this->Form->input('password');

9 ?>

10 </fieldset>

11 <?php echo $this->Form->end(__('Login')); ?>

12 </div>

Login and Logout 36

We would like to show error messages to the user. I
prefer to have all error messages at the same place, be-
cause it improves usability. So open your default.ctp at
app/View/Layouts and add the following line somewhere.
I recommend to put to the top of the content div.

1 <?php echo $this->Session->flash('auth'); ?>

At this point we should able to log in. Thanks to Auth if we
try to open any url it will automatically redirect us to the
login page and on successful login we will be redirected to
the original url.

From nowwithout logging in nobody could access any part
of our application except the login page.

Usability

Usability requires informing the user about successful login
or about the fact he or she is already logged in. A best
practice is to put a message to the top of the page.

Open default.ctp at app/View/Layouts and add this to
the header div.

Login and Logout 37

1 if($this->Session->read('Auth.User.id')){

2 print 'Hi ' . $this->Session->read('Auth.User.\

3 email') . ' ' . $this->Html->link('Logout', arra\

4 y('controller' => 'users', 'action' => 'logout')\

5);

6 }

7 else{

8 print $this->Html->link('Login', array('contro\

9 ller' => 'users', 'action' => 'login'));

10 }

Logout

Perhapswe need a logoutmethod to UsersController.php.

1 function logout(){

2 $this->redirect($this->Auth->logout());

3 }

Epilogue
I hope by reading this e-book your main questions about
user authentication is answered. Perhaps I could write this
book double or triple in size if I going to cover everything
related to this topic. My purpose was to represent the
idea itself, and I am pretty sure that you could easily find
solutions to your further questions.

Happy coding.

	Table of Contents
	Introduction
	About the Book
	Why I Wrote This Book
	My Development Environment
	Who This Book Is For
	Prerequisites

	About the Author
	Thanks
	My E-books on CakePHP
	CakePHP Unit Testing
	CakePHP User Authentication

	My CakePHP Plugins
	Model Preparation
	Creating User Table
	Baking User

	Controller Preparation
	View Preparation
	Login and Logout
	Login
	Logout

	Epilogue

