

Dr. Holger Schwichtenberg

C# 8.0 Crashkurs

Die Syntax der Programmiersprache C#

für die Softwareentwicklung

in .NET Framework, .NET Core, Xamarin und Mono

2 Inhaltsverzeichnis

Verlag: www.IT-Visions.de, Fahrenberg 40b, D-45257 Essen

ISBN: 3934279-32-5

Version: 3.0 Preview / 11.09.2019

Sprachliche Korrektur: Heike Rickert, Katrin Lettau und Matthias Bloch

Formatierung: Katrin Lettau

Bezugsquelle: https://www.amazon.de/exec/obidos/ASIN/3934279317/itvisions-21

Bezugsquelle: https://leanpub.com/CSharp8

https://www.amazon.de/exec/obidos/ASIN/3934279317/itvisions-21
https://leanpub.com/CSharp8

Inhaltsverzeichnis 3

1 Inhaltsverzeichnis

1 Inhaltsverzeichnis .. 3

2 Vorwort ... 9

3 Über den Autor .. 10

4 Über dieses Buch ... 11

4.1 Versionsgeschichte dieses Buchs .. 11

4.2 Geplante Themen .. 12

4.3 Programmcodebeispiele zu diesem Buch .. 13

5 Fakten zu C# ... 15

5.1 Der Name C# ... 15

5.2 Ursprünge von C# ... 15

5.3 Status der Programmiersprache C# ... 15

5.4 Versionsgeschichte .. 17

5.5 Standardisierung .. 18

5.6 Implementierung des C#-Compilers .. 19

5.7 Open Source .. 19

5.8 Kommende Versionen ... 19

5.9 Parität und Co-Evolution mit Visual Basic .NET .. 20

5.10 Neuerungen in C# 8.0 .. 20

6 Grundkonzepte von C#.. 22

6.1 Sprachtypus ... 22

6.2 Groß- und Kleinschreibung ... 22

6.3 Schlüsselwörter der Sprache ... 22

6.4 Namensregeln und Namenskonventionen ... 23

6.5 Blockbildung und Umbrüche .. 23

6.6 Hello World ... 24

6.7 Eingebaute Funktionen .. 24

7 Der C#-Compiler ... 25

7.1 Der ursprüngliche (alte) C#-Compiler ... 25

7.1.1 Kompilierung mit csc.exe .. 25

7.1.2 Kommandozeilenparameter ... 25

7.2 Der aktuelle (neue) C#-Compiler .. 28

4 Inhaltsverzeichnis

7.2.1 Versionsnummern des Compilers .. 29

7.2.2 Kommandozeilenparameter ... 29

8 Erste Schritte Visual Studio .. 33

8.1 Hello World mit dem .NET Framework .. 33

8.2 Hello World mit .NET Core .. 39

8.3 Festlegung der Compilerversion in Visual Studio ... 43

9 Datentypen .. 46

9.1 Variablendeklarationen ... 47

9.2 Typinitialisierung .. 47

9.3 Literale für Zeichen und Zeichenketten... 48

9.4 String Interpolation ... 49

9.5 Zahlenliterale ... 49

9.6 Datumsliterale ... 50

9.7 Lokale Typableitung (Local Variable Type Inference) ... 50

9.8 Gültigkeit von Variablen ... 51

9.9 Typprüfungen .. 51

9.10 Typkonvertierung .. 52

9.11 Dynamische Typisierung ... 53

9.12 Pattern Matching ... 54

9.13 Wertelose Wertetypen (Nullable Value Types) ... 55

10 Operatoren ... 59

10.1 Überblick über die Operatoren .. 59

10.2 Operator ?? .. 62

10.3 Operator ?. ... 62

10.4 Operator nameof() ... 62

10.5 Range und Index (C# 8.0) ... 63

10.5.1 Index .. 63

10.5.2 Range ... 64

10.5.3 Weitere Beispiele .. 64

10.5.4 Einschränkungen ... 64

11 Schleifen .. 66

11.1 Iterator-Implementierung mit yield (Yield Continuations) ... 67

11.2 Praxisbeispiel für yield .. 68

12 Verzweigungen ... 71

Inhaltsverzeichnis 5

12.1 Einfache Verzweigungen mit if…else ... 71

12.2 Mehrfachverzweigungen mit switch ... 72

12.3 Switch Expressions (C# 8.0) ... 72

13 Klassendefinition ... 74

13.1 Klassendefinitionen ... 74

13.2 Klassenverwendung .. 75

13.3 Geschachtelte Klassen (eingebettete Klassen) .. 76

13.4 Sichtbarkeiten/ Zugriffsmodifizierer .. 76

13.5 Statische Klassen ... 77

14 Strukturen .. 78

14.1 Wertetyp versus Referenztyp .. 78

14.2 Deklaration von Strukturen ... 80

14.3 Verwendung von Strukturen ... 81

14.4 Strukturen mit Readonly (ab C# 7.2) .. 82

14.5 Readonly für einzelne Mitglieder einer Struktur (ab C# 8.0) .. 83

15 Attribute (Fields und Properties) ... 86

15.1 Abweichungen von der Informatik .. 86

15.2 Felder (Field-Attribute) ... 87

15.3 Eigenschaften (Property-Attribute) ... 88

15.3.1 Explizite Properties ... 88

15.3.2 Automatische Properties .. 89

15.3.3 Zusammenfassung zu Properties ... 90

16 Methoden .. 92

16.1 Methodendefinition und Rückgabewerte... 92

16.2 Methodenparameter ... 92

16.3 Optionale und benannte Parameter .. 93

16.4 Ref und out .. 94

16.5 Statische Methode als globale Funktionen .. 95

16.6 Lokale Funktion (ab C# 7.0) ... 96

16.7 Statische lokale Funktionen (ab C# 8.0) .. 96

16.8 Caller-Info-Annotationen .. 97

17 Konstruktoren und Destruktoren ... 100

18 Aufzählungstypen (Enumeration) ... 103

6 Inhaltsverzeichnis

19 Expression-bodied Members ... 104

20 Objektinitialisierung .. 105

21 Behandlung von null ... 106

21.1 NullReferenceException ... 106

21.2 Null-Prüfung und Toleranz gegenüber Null .. 106

21.3 Null-Referenz-Prüfung / Nullable Reference Types (C# 8.0) 108

21.3.1 Compiler erkennt die Programmierfehler nicht ... 108

21.3.2 Aktivieren der Null-Referenz-Prüfung .. 110

21.3.3 Verbessertes Programm ... 111

21.3.4 Null Forgiveness-Operator .. 113

22 Partielle Klassen .. 114

23 Partielle Methoden .. 115

24 Erweiterungsmethoden (Extension Methods) ... 116

25 Annotationen (.NET-Attribute) ... 118

26 Generische Klassen ... 121

26.1 Definition einer generischen Klasse .. 121

26.2 Verwendung einer generischen Klasse .. 121

26.3 Einschränkungen für generische Typparameter (Generic Constraints) 122

26.4 Kovarianz für Typparameter ... 122

27 Objektmengen ... 126

27.1 Einfache Arrays ... 126

27.2 Objektmengen (untypisiert und typisiert) .. 126

28 Anonyme Typen .. 128

29 Tupel ... 129

29.1 Alte Tupelimplementierung mit System.Collections.Tupel .. 129

29.2 Neue Tupelimplementierung in der Sprachsyntax .. 129

29.3 Dekonstruktion .. 130

29.4 Serialisierung von Tupeln ... 132

29.5 Vergleich von Tupeln (C# 7.3) .. 132

30 Implementierungsvererbung .. 133

31 Schnittstellen (Interfaces) .. 135

31.1 Deklaration einer Schnittstelle .. 135

31.2 Verwendung von Schnittstellen ... 135

31.3 Standardimplementierungen in Schnittstellen ... 136

Inhaltsverzeichnis 7

31.3.1 Realisierung einer Standardimplementierung in einer Schnittstelle 136

31.3.2 Einfaches Beispiel ... 136

31.3.3 Überschreiben der Implementierung ... 138

31.3.4 Komplexeres Beispiel .. 138

32 Namensräume (Namespaces) .. 141

32.1 Softwarekomponenten versus Namensräume .. 141

32.2 Vergabe der Namensraumbezeichner .. 142

32.3 Vergabe der Typnamen ... 143

32.4 Namensräume deklarieren ... 143

32.5 Import von Namensräumen ... 144

32.6 Verweis auf Wurzelnamensräume ... 144

33 Operatorüberladung ... 146

34 Funktionale Programmierung in C# (Delegates / Lambdas) ... 147

34.1 Delegates ... 147

34.2 Vordefinierte Delegates Action<T> und Func<T> ... 149

34.3 Prädikate mit Predicate<T> ... 150

34.4 Lambda-Ausdrücke ... 151

35 Ereignisse .. 155

35.1 Definition von Ereignissen .. 155

35.2 Ereignis auslösen ... 155

35.3 Ereignisbehandlung ... 156

36 IDisposable / Using-Blöcke .. 157

36.1 Hintergründe zur Speicher- und Ressourcenverwaltung in .NET 157

36.2 Schnittstelle IDisposable ... 157

36.3 Using-Blöcke ... 159

36.4 Vereinfachte Using-Deklarationen in C# 8.0 .. 159

36.5 IDispose für Strukturen auf dem Stack ... 160

37 Laufzeitfehler .. 161

37.1 Fehler abfangen ... 161

37.2 Fehler auslösen .. 162

37.3 Eigene Fehlerklassen ... 163

38 Kommentare und XML-Dokumentation ... 164

39 Asynchrone Ausführung mit async und await ... 166

8 Inhaltsverzeichnis

39.1 Async und await mit der .NET-Klassenbibliothek .. 166

39.2 Async und await mit eigenen Threads ... 167

39.3 Weitere Möglichkeiten .. 168

40 Zeigerprogrammierung.. 169

40.1 Zeigerprogrammierung mit unsafe .. 169

40.2 Zeigerprogrammierung mit ref (Managed Pointer) ... 171

41 Abfrageausdrücke / Language Integrated Query (LINQ) ... 174

41.1 Einführung und Motivation ... 174

41.2 LINQ-Provider .. 175

41.2.1 LINQ-Provider von Microsoft im .NET .. 175

41.2.2 Andere LINQ-Provider .. 175

41.2.3 Formen von LINQ ... 175

41.2.4 Einführung in die LINQ-Syntax .. 176

Übersicht über die LINQ-Befehle ... 180

41.3 LINQ to Objects .. 187

41.3.1 LINQ to Objects mit elementaren Datentypen .. 187

41.3.2 LINQ to Objects mit komplexen Typen des .NET Framework 191

41.3.3 LINQ to Objects mit eigenen Geschäftsobjekten .. 194

41.4 Parallel LINQ (PLINQ) ... 199

42 Syntaxreferenz: C# versus Visual Basic .NET .. 202

43 Quellen im Internet ... 208

44 Stichwortverzeichnis (Index) .. 209

45 Werbung in eigener Sache ☺ .. 215

Vorwort 9

2 Vorwort
Liebe Leserinnen und Leser,

der "C# Crashkurs" ist ein prägnanter Überblick über die Syntax der Programmiersprache C# in der aktuellen

Version 8.0.

Dieses Buch ist geeignet für Softwareentwickler, die von einer anderen objektorientierten

Programmiersprache (z.B. C++, Java, Visual Basic .NET oder PHP) auf C# umsteigen wollen oder bereits C#

einsetzen und ihr Wissen erweitern insbesondere die neusten Sprachfeatures kennenlernen wollen. Wir

schulen bei www.IT-Visions.de jedes Jahr hunderte Entwickler auf C# bzw. die neuste Version der Sprache

um. Da es viele Umsteiger von Visual Basic .NET zu C# gibt, werden hier die Unterschiede von C# gegenüber

Visual Basic .NET an einigen Stellen hervorgehoben.

Für Neueinsteiger, die mit C# erstmals überhaupt eine objektorientiere Programmiersprache erlernen wollen,

ist dieses Werk hingegen nicht geeignet, denn es werden die OO-Grundkonzepte nicht erklärt, da die meisten

Softwareentwickler heutzutage diese aus anderen Sprachen kennen und das Buch nicht mit diesen Grundlagen

unnötig in die Länge gezogen werden soll.

Es erhebt nicht den Anspruch, alle syntaktischen Details zu C# aufzuzeigen, sondern nur die in der Praxis am

wichtigsten Konstrukte.

In diesem Buch werden bewusst alle Syntaxbeispiele anhand von Konsolenanwendungen gezeigt. So

brauchen Sie als Leser kein Wissen über irgendeine GUI-Bibliothek und die Beispiele sind prägnant fokussiert

auf die Syntax.

Dieses Buch wird vertrieben über Amazon.de

▪ Kindle-E-Book von Amazon.de für 9,99 Euro (der Autor erhält 5,56 Euro):

www.amazon.de/exec/obidos/ASIN/B07G2STYMH/itvisions-21

▪ Gedruckt (Print-on-Demand) bei Amazon.de für 14,99 Euro (der Autor erhält 5,53 Euro):

www.amazon.de/exec/obidos/ASIN/3934279325/itvisions-21

▪ PDF bei leanpub.com für 10,99 Dollar (der Autor erhält ca. 8,93 Euro):

www.leanpub.com/CSharp8

Da solch niedrige Preise leider nicht nennenswert dazu beitragen können, den Lebensunterhalt meiner Familie

zu bestreiten, ist dieses Projekt ein Hobby. Dementsprechend kann ich nicht garantieren, wann es Updates zu

diesem Buch geben wird. Ich werde dann an diesem Buch arbeiten, wenn ich neben meinem Beruf als

Softwarearchitekt, Berater und Dozent und meinen sportlichen Betätigungen noch etwas Zeit für das

Fachbuchautorenhobby übrig habe.

Zudem möchte ich darauf hinweisen, dass ich natürlich keinen kostenfreien technischen Support zu den

Inhalten dieses Buchs geben kann. Ich freue mich aber immer über konstruktives Feedback und

Verbesserungsvorschläge. Bitte verwenden Sie dazu das Kontaktformular auf www.dotnet-doktor.de.

Wenn Sie technische Hilfe zu C# und seinen Einsatzgebieten (.NET, Mono, Xamarin) oder anderen Themen

rund um Visual Studio, Windows oder andere Microsoft-Produkte benötigen, stehe ich Ihnen im Rahmen

meiner beruflichen Tätigkeit für die Firmen www.IT-Visions.de (Beratung, Schulung, Support) und 5Minds

IT-Solutions GmbH & Co KG (Softwareentwicklung, siehe www.5minds.de) gerne zur Verfügung. Bitte

wenden Sie sich für ein Angebot an das jeweilige Kundenteam.

Auf der von mir ehrenamtlich betriebenen Leser-Website unter www.IT-Visions.de/Leser, können Sie die

Beispiele zu diesem Buch herunterladen. Dort müssen Sie sich registrieren. Bei der Registrierung wird ein

Losungswort abgefragt. Bitte geben Sie dort The Expanse ein.

Herzliche Grüße aus Essen, dem Herzen der Metropole Ruhrgebiet

Holger Schwichtenberg

http://www.dotnet-doktor.de/
http://www.it-visions.de/
http://www.5minds.de/
http://www.it-visions.de/Leser

10 Über den Autor

3 Über den Autor
▪ Studienabschluss Diplom-Wirtschaftsinformatik an der Universität Essen

▪ Promotion an der Universität Essen im Gebiet komponentenbasierter

Softwareentwicklung

▪ Seit 1996 selbstständig als unabhängiger Berater, Dozent, Softwarearchitekt und

Fachjournalist

▪ Fachlicher Leiter des Berater- und Dozententeams bei www.IT-Visions.de

▪ Leitung der Softwareentwicklung im Bereich Microsoft/.NET bei der 5Minds IT-

Solutions GmbH & Co. KG (www.5Minds.de)

▪ Über 65 Fachbücher beim Carl Hanser Verlag, bei O'Reilly, Microsoft Press,

APress und Addison-Wesley sowie mehr als 1000 Beiträge in

Fachzeitschriften

▪ Gutachter in den Wettbewerbsverfahren der EU gegen Microsoft (2006-2009)

▪ Ständiger Mitarbeiter der Zeitschriften iX (seit 1999), dotnetpro (seit 2000) und

Windows Developer (seit 2010) sowie beim Online-Portal heise.de (seit 2008)

▪ Regelmäßiger Sprecher auf nationalen und internationalen Fachkonferenzen (z.B. Microsoft TechEd,

Microsoft Summit, Microsoft IT Forum, BASTA, BASTA-on-Tour, .NET Architecture Camp, Advanced

Developers Conference, Developer Week, OOP, DOTNET Cologne, MD DevDays, Community in Motion,

DOTNET-Konferenz, VS One, NRW.Conf, Net.Object Days, Windows Forum, Container Conf)

▪ Zertifikate und Auszeichnungen von Microsoft:

o Microsoft Most Valuable Professional (MVP)

o Microsoft Certified Solution Developer (MCSD)

▪ Thematische Schwerpunkte:

o Softwarearchitektur, mehrschichtige Softwareentwicklung, Softwarekomponenten, SOA

o Visual Studio, Continous Integration, Continous Delivery, Azure DevOps

o Microsoft .NET Framework, .NET Core, C#, Visual Basic

o .NET-Architektur/Auswahl von .NET-Technologien

o Einführung von .NET Framework/.NET Core und Visual Studio/Migration auf .NET

o Webanwendungsentwicklung und Cross-Plattform-Anwendungen mit HTML, ASP.NET,

JavaScript/TypeScript und Webframeworks wie Angular

o Enterprise .NET, verteilte Systeme/Webservices mit .NET, insbesondere Windows Communication

Foundation und WebAPI

o Relationale Datenbanken, XML, Datenzugriffsstrategien

o Objektrelationales Mapping (ORM), insbesondere ADO.NET Entity Framework und EF Core

o Windows PowerShell, PowerShell Core und Windows Management Instrumentation (WMI)

▪ Ehrenamtliche Community-Tätigkeiten:

o Vortragender für die International .NET Association (INETA)

o Betrieb diverser Community-Websites: www.dotnet-lexikon.de, www.dotnetframework.de,

www.windows-scripting.de, www.aspnetdev.de u. a.

▪ Firmenwebsites: http://www.IT-Visions.de und http://www.5Minds.de

▪ Weblog: http://www.dotnet-doktor.de

▪ Kontakt für geschäftliche Anfragen via Kundenteam:

E-Mail kundenteam@IT-Visions.de sowie Telefon 0201 / 64 95 90 - 0

▪ Kontakt für Feedback zu diesem Buch: Kontaktformular auf http://www.dotnet-doktor.de

http://www.it-visions.de/

Über dieses Buch 11

4 Über dieses Buch

4.1 Versionsgeschichte dieses Buchs

Die folgende Tabelle zeigt die Versionen, die von diesem Buch erschienen sind, sowie die darin

besprochenen C#-Versionen.

Ergänzungen der Versionsnummer an der dritten Stelle (z.B. 1.2.3) sind kleine Korrekturen im

Buch, die nicht explizit in dieser Versionstabelle erscheinen.

Buchversion

Datum

Umfang Preis

Kindle-

Ausgabe

Preis

gedruckte

Ausgabe

C#-

Version

Bemerkung

1.0

27.03.2018

166

Seiten

9,99 € 14,99 € 7.2 ▪ Grundversion

1.1

20.07.2018

167

Seiten

9,99 € 14,99 € 7.2

(7.3)

▪ Ref Local Reassignment

(C# 7.3)

▪ Ausblick auf C# 8.0

2.0

21.07.2018

172

Seiten

9,99 € 14,99 € 7.3

(8.0)

▪ Vergleich mit Tupeln

(C# 7.3)

▪ Annotationen für

Backing Field von

Auto-Properties (C#

7.3)

▪ Verbesserungen für

unsafe-Blöcke (C# 7.3)

2.1

27.11.2018

189

Seiten

9,99 € 14,99 € 7.3

(8.0)

▪ Kapitel "Grundkonzepte

von C#" erweitert

▪ Kapitel "Attribute

(Fields und Properties)"

erweitert

▪ Kapitel "Ereignisse"

überarbeitet

▪ Kapitel "Funktionale

Programmierung in C#"

erweitert

▪ Kapitel "Behandlung

von null" ergänzt

3.0

11.09.2019

214

Seiten

9,99 € 19,99 € 8.0 ▪ Neues Kapitel

"Operatoren/Ranges

und Indexe"

▪ Kapitel

"Verzweigungen"

12 Über dieses Buch

überarbeitet, "Switch

Expressions" ergänzt

▪ Kapitel "Schnittstellen"

überarbeitet, ergänzt

"Standardimplementieru

ngen in Schnittstellen"

▪ Kleinere neue

Funktionen von C# 8.0

an verschiedenen

Stellen eingebaut

▪ Neues Kapitel

"IDisposable/ Using-

Blöcke"

▪ Neues Kapitel

"Strukturen/Strukturen

mit Readonly"

▪ Neues Kapitel

"Strukturen/Readonly

für einzelne Mitglieder

einer Struktur"

▪ Kapitel "Behandlung

von null/Nullable

Reference Types"

aktualisiert.

4.2 Geplante Themen

Folgende Themen sind für kommenden Ausgaben dieses Buchs geplant:

▪ Span<T> / Memory<T> (C# 7.2)

▪ Strukturen auf dem Stack (ref struct) in C# 7.2

▪ Unmanaged Constructed Types (C# 8.0)

▪ Aliase für referenzierte Assemblies

▪ Indexer

▪ Implicit Cast Operator [https://docs.microsoft.com/de-de/dotnet/csharp/language-

reference/keywords/implicit]

▪ Async Streams (C# 8.0)

▪ Design Pattern in C#

▪ Clean Code-Programmierung mit C#

Über dieses Buch 13

4.3 Programmcodebeispiele zu diesem Buch

Die Programmcodebeispiele zu diesem Buch können Sie auf der auf der von mir ehrenamtlich

betriebenen Leserwebsite www.IT-Visions.de/Leser herunterladen. Dort müssen Sie sich

registrieren. Bei der Registrierung wird ein Losungswort abgefragt. Bitte geben Sie dort das

Losungswort The Expanse ein.

Alle Programmbeispiele aus diesem Buch sind in einer Visual Studio 2019-Projektmappe mit zwei

Projekten enthalten. Es muss seit C# 8.0 zwei Projekte geben, weil einige Sprachfeatures nicht

mehr im .NET Framework laufen. Die beiden Projekte enthalten:

▪ CSharpSprachsyntax (.NET Framework): Alle Sprachfeatures von C# 1.0 bis 7.3 und solche

von C# 8.0, die auf .NET Framework laufen

▪ CSharpSprachsyntaxNETCore (.NET Core): Alle Sprachfeatures von C# 8.0, die NICHT auf

.NET Framework laufen

Die Beispiele sind in Unterordnern nach Sprachversionen aufgeteilt. Dies heißt, dass Sie zum

Beispiel Sprachfeatures von C# 8.0 im Ordner CS80 finden.

Wie im Vorwort bereits erwähnt handelt es sich um den Anwendungstyp "Konsolenanwendung".

So brauchen Sie als Leser kein Wissen über irgendeine GUI-Bibliohek und die Beispiele sind

prägnant fokussiert auf die Syntax.

14 Über dieses Buch

Abbildung: Programmcodebeispiele zu diesem Buch in zwei Visual Studio-Projekten

5 Fakten zu C#

5.1 Der Name C#

C# wird gesprochen „C Sharp“. Das # könnte man auch in ein vierfaches Pluszeichen aufspalten

(also C++++, eine Weiterentwicklung von C++). Ursprünglich sollte die Sprache "Cool" heißen.

Eine Zeit lang wurde auch "C# .NET" verwendet; das ist heute aber nicht mehr üblich. Microsoft

spricht aber gelegentlich noch von "Visual C#", z.B. meldet sich der Kommandozeilencompiler

von C# auch in der aktuellen Version mit "Microsoft (R) Visual C# Compiler".

5.2 Ursprünge von C#

C# ist das Ergebnis eines Projektes bei Microsoft, welches im Dezember 1998 gestartet wurde,

nachdem die Firma Sun Microsoft die Veränderung der von Sun entwickelten Programmiersprache

Java verboten hatte. Vater von C# ist Anders Heljsberg

[https://de.wikipedia.org/wiki/Anders_Hejlsberg], der zuvor auch Turbo Pascal und Borland

Delphi erschaffen hat.Er war früher bei Borland und arbeitet seit 1996 bei Microsoft. Heutzutage

ist er auch verantwortlich für die Sprache TypeScript.

5.3 Status der Programmiersprache C#

Früher gab es einen wahren Glaubenskrieg in der .NET-Entwicklergemeinde um die Wahl der

»richtigen« Programmiersprache. C# oder Visual Basic .NET hieß die Frage, die viele

Projektteams bewegt hat. Auch wenn Visual Basic .NET in allen wesentlichen Punkten syntaktisch

ebenbürtig war, hat C# klar gewonnen.

C# ist heute nicht nur eine von vielen Programmiersprachen für .NET, es hat sich durchgesetzt als

DIE Programmiersprache für .NET. Gegenwärtig gibt es nur noch wenige .NET-Projekte, die

Visual Basic .NET, F# oder C++/CLI oder exotischere Sprachen verwenden.

Schaut man in die aktuelle Dokumentation der .NET-Klassen auf https://docs.microsoft.com, sieht

man dort nur noch Beispiele für C#, während die alte MSDN-Dokumentation noch Beispiele in

C#, Visual Basic .NET, und C++ enthielt.

16 Fakten zu C#

Abbildung: Beispiele in vier Sprachen in der alten MSDN-Dokumentation der .NET-Klassen

Fakten zu C# 17

Abbildung: In der neuen .NET-Klassendokumentation gibt es nur noch Beispiele in C#

5.4 Versionsgeschichte

Hinsichtlich der Versionsnummern der Sprache C# herrschte früher etwas Verwirrung. Es gab

einerseits eine offizielle Zählung mit Versionsnummer (parallel zum .NET Framework),

andererseits mit Jahreszahlen (parallel zu Visual Studio). Intern wird eine dritte Zählung für den

Compiler verwendet. Die erste Version von C# im Rahmen des .NET Framework 1.0 trug intern

die Versionsnummer 7.0. Zu .NET 1.1 gab es dann C# 7.1, im .NET Framework 2.0 und 3.0 meldet

sich der C#-Compiler mit Version 8.0. Ab .NET Framework 3.5 hat Microsoft dies aber bereinigt.

Dort meldet sich der Compiler nun auch mit Version 3.5.

Die folgende Liste dokumentiert die Versionsgeschichte von C# einschließlich der verschiedenen

Namen, die es jeweils gibt.

▪ C# 1.0 ist erschienen am 05.01.2002 (in Visual Studio.NET 2002+2003 / .NET Framework

1.0 und 1.1. Erste Version des ISO-Standards für C#.)

▪ C# 2.0 ist erschienen am 07.11.2005 (C# 2005 / in Visual Studio.NET 2005 / .NET Framework

2.0 und 3.0. Zweite Version des ISO-Standards für C#.)

▪ C# 3.0 ist erschienen am 15.08.2008 (C# 2008 / in Visual Studio.NET 2008 / .NET Framework

3.5)

▪ C# 4.0 ist erschienen am 12.04.2010 (C# 2010 / in Visual Studio.NET 2010 / .NET Framework

4.0)

▪ C# 5.0 ist erschienen am 12.08.2012 (C# 2012 / in Visual Studio.NET 2012 / .NET Framework

4.5)

18 Fakten zu C#

▪ C# 6.0 ist erschienen am 20.07.2015 (C# 2015 / in Visual Studio.NET 2015 / .NET Framework

4.6)

▪ C# 7.0 ist erschienen am 05.03.2017 (C# 2017 / in Visual Studio 2017)

▪ C# 7.1 ist erschienen am 14.08.2017 (in Visual Studio 15.3)

▪ C# 7.2 ist erschienen am 15.11.2017 (in Visual Studio 15.5)

▪ C# 7.2 ist erschienen am 02.08.2018 (in Visual Studio 15.7)

▪ C# 8.0 ist erschienen am 23.09.2019 (in Visual Studio 16.3)

Version der

Sprachsyntax mit

Versionsnummer

Ausgeliefert mit Version der

Sprachsyntax

mit Jahreszahl

Interne

Versionsnummer des

C#-Compilers

C# 1.0 .NET Framework 1.0 Visual C# 2002 7.0 (alter Compiler)

C# 1.1 .NET Framework 1.1 Visual C# 2003 7.1 (alter Compiler)

C# 2.0 .NET Framework 2.0 Visual C# 2005 8.0 (alter Compiler)

C# 2.0 .NET Framework 3.0 Visual C# 2005 8.0 (alter Compiler)

C# 3.0 .NET Framework 3.5 Visual C# 2008 3.5 (alter Compiler)

C# 4.0 .NET Framework 4.0 Visual C# 2010 4.0 (alter Compiler)

C# 5.0 .NET Framework 4.5 Visual C# 2012 4.5 (alter Compiler)

C# 6.0 .NET Framework 4.6

/ .NET Core 1.0

Visual C# 2015 1.x (Neuer Compiler)

C# 7.0 Visual Studio 2017

15.0 / .NET Core 2.0

Visual C# 2017 2.0 (Neuer Compiler)

C# 7.1 Visual Studio 2017

15.4 / .NET Core 2.0

Visual C# 2017 2.3 (Neuer Compiler)

C# 7.2 Visual Studio 2017

15.5 / .NET Core 2.0

Visual C# 2017 2.7 (Neuer Compiler)

C# 7.3 Visual Studio 2017

15.7 / .NET Core 2.1

Visual C# 2017 2.8 + 2.9 + 2.10 (Neuer

Compiler)

C# 8.0 Preview Visual Studio 2019

16.0 bis 16.2 / .NET

Core 3.0 Preview

Visual C# 2018 3.0 + 3.1 + 3.2 (Neuer

Compiler)

C# 8.0 RTM Visual Studio 2019

16.3 / .NET Core 3.0

Visual C# 2018 3.3 (Neuer Compiler)

Tabelle: Verschiedene Versionsnummernzählungen für die Sprache C#

5.5 Standardisierung

Microsoft hat einige Teile des .NET Framework unter dem Namen Common Language

Infrastructure (CLI) standardisieren lassen. Die CLI wurde erstmals im Dezember 2001 von der

Fakten zu C# 19

European Computer Manufacturers Association (ECMA) standardisiert (ECMA-Standard 335,

Arbeitsgruppe TC49 / TG3, früher: TC39 / TG3, siehe [ECMA01]); mit kleinen Änderungen

wurde der Standard im Dezember 2002 von der weltweit wichtigsten

Standardisierungsorganisation, der International Standardization Organization (ISO),

übernommen als ISO / IEC 23271.

Die Begriffe lauten in den Standards zum Teil allerdings anders als bei Microsoft: Was im .NET

Framework Microsoft Intermediate Language (MSIL) heißt, entspricht im Standard der Common

Intermediate Language (CIL). Anstelle der Framework Class Library (FCL) spricht man von der

CLI Class Library. Von der Standardisierung ausgenommen sind jedoch z.B. die

Datenbankschnittstelle ADO.NET und die Benutzeroberflächen-Bibliotheken Windows Forms

und ASP.NET Webforms. Auch die neueren .NET-Bibliotheken (WPF, WCF und WF) sind nicht

standardisiert.

Auch die Programmiersprache C# ist von beiden Gremien akzeptiert (ECMA-334 bzw. ISO / IEC

23270). Die Standardisierung bezieht sich aber auf ältere Versionen. Die letzten C#-Versionen hat

Microsoft nicht mehr standardisieren lassen. Die Standardisierung ist auf dem Stand C# 2.0

Ein weiterer, von Microsoft initiierter Standard ist von der ECMA im Dezember 2005 unter

ECMA-372 (Arbeitsgruppe TC49 / TG5, früher: TC39 / TG5) verabschiedet worden: C++ / CLI

ist eine Spracherweiterung für C++ (ISO / IEC 14882:2003), die eine elegantere Nutzung von C++

auf der CLI-Plattform ermöglicht, als dies bisher mit den Managed Extensions for C++ (alias

Managed C++) möglich war.

5.6 Implementierung des C#-Compilers

Die ursprüngliche Version des C#-Compilers (csc.exe) wurde in C++ implementiert. Auch der C#-

Compiler im Mono-Projekt ist in C++ geschrieben.

Mit dem Projekt "Roslyn" (alias: .NET Compiler Platform) hat Microsoft selbst den Compiler neu

in C# implementiert. Die erste Version des neuen Compilers war C# 6.0.

5.7 Open Source

Bereits zu C# 1.0 gab es eine quelloffene Version im Projekt "Rotor" im Rahmen der

Standardisierung von C#. Diese war jedoch nicht "Open Source", sondern nur "Shared Source",

d.h. der Quellcode durfte betrachtet, aber nicht weiterverwendet werden. Seit C# 6.0 ist der neue

Compiler im Rahmen der .NET Compiler Platform "Roslyn" ein Open Source-Projekt auf Github.

Projekt für das Design der Programmiersprache:

https://github.com/dotnet/csharplang

Projekt für die Implementierung der Programmiersprache:

https://github.com/dotnet/roslyn

5.8 Kommende Versionen

Aktuell entwickelt Microsoft an der Version C# 8.0.

https://github.com/dotnet/csharplang
https://github.com/dotnet/roslyn

20 Fakten zu C#

5.9 Parität und Co-Evolution mit Visual Basic .NET

Im Jahr 2010 hatte Microsoft verkündet, die Programmiersprache C# und Visual Basic .NET

hinsichtlich ihrer Funktionalität anzugleichen. »Die Sprachen sollen sich in Stil und Gefühl

unterscheiden, nicht in ihrem Funktionsumfang«, schrieb Mads Torgersen, Produktmanager für C#

damals. Scott Wiltamuth führt den Begriff "Co-Evolution" ein

[https://blogs.msdn.microsoft.com/scottwil/2010/03/09/vb-and-c-coevolution/].

Einige Jahre hat Microsoft diese Strategie tatsächlich umgesetzt und bestehende Sprachfeatures,

die nur eine Sprache hatte, in der anderen Sprache nachgerüstet und neue Sprachfeatures

gleichzeitig oder zumindest zeitnah in beiden Sprachen veröffentlicht.

Im Jahr 2017 hat Microsoft sich von Parität und Co-Evolution wieder verabschiedet.

Visual Basic .NET ist nach C# die zweitwichtigste Programmiersprache in der .NET-Welt.

Telemetriedaten [https://blogs.msdn.microsoft.com/dotnet/2017/02/01/the-net-language-strategy]

von Microsoft zeigen einerseits, dass Visual Basic .NET hauptsächlich zur Programmierung mit

älteren .NET-Techniken wie Windows Forms und ASP.NET Webforms zum Einsatz kommt.

Andererseits beginnen viele neue .NET-Entwickler mit Visual Basic .NET, bevor sie sich an C#

herantrauen. Microsoft nahm diese Erkenntnisse zum Anlass, von der im Jahr 2010 verkündigen

Co-Evolutionsstrategie von C# und Visual Basic .NET abzurücken und zukünftig nicht mehr alle

neuen C#-Features automatisch auf Visual Basic .NET zu übertragen. Die parallel zu C# 7.0

erschienene Version 15 von Visual Basic .NET bietet daher lediglich Tupel und binäre Literale als

neue Sprachfeatures an. Zudem kann Visual Basic .NET 15 C#-Methoden nutzen, die Zeiger mit

ref liefern, selbst aber solche Methoden nicht implementieren.

5.10 Neuerungen in C# 8.0

Die wichtigsten Neuerungen in C# 8.0 sind:

▪ Nullable Reference Types string? !.

▪ Standardimplementierungen in Schnittstellen (*)

▪ Index ^ und Range^ (*)

▪ Switch Expressions

Weitere Neuerungen in C# 8.0 sind:

▪ Null Coalescing Assignment ??=

▪ Alternative für verbatim interpolated Strings: @$ zusätzlich zu $@

▪ Async Streams (*)

▪ Static Local Functions

▪ using-Deklarations ohne Blöcke

▪ Unmanaged Constructed Types

▪ Readonly-Mitglieder in einer Struktur

▪ Dispose() für ref structs (Strukturen auf dem Stack)

Fakten zu C# 21

(*) erfordert .NET Standard 2.1, d.h. nur für .NET Core, Xamarin, Mono und Unity.

Diese Sprachefeatures sind im klassischen .NET Framework nicht verfügbar und Microsoft

plant auch nicht, diese dort noch einzubauen.

22 Grundkonzepte von C#

6 Grundkonzepte von C#
Konzeptionell wurde C# vor allem von C++ und Java beeinflusst; man kann aber auch Parallelen

zu Visual Basic und Delphi finden.

6.1 Sprachtypus

Im Gegensatz zu C++, das eine hybride Sprache aus objektorientierten und nicht-objektorientierten

Konzepten ist, ist C# ebenso wie Java eine rein objektorientierte Sprache, d.h., alle Datentypen

basieren auf Klassen und alle Anweisungen erfolgen in Klassen.

C# unterstützt alle zentralen Konzepte der Objektorientierung einschließlich Schnittstellen,

Vererbung und Polymorphismus. Schon in C# 2005 wurde auch die Unterstützung für generische

Klassen und partielle Klassen hinzugefügt. Außerdem besitzt C# Konzepte der funktionalen

Programmierung (Delegates und Lambda-Ausdrücke).

6.2 Groß- und Kleinschreibung

Ein wesentlicher Unterschied zwischen C# und Visual Basic .NET ist die Tatsache, dass C# im

Gegensatz zu Visual Basic .NET zwischen Groß- und Kleinschreibung unterscheidet. Dies gilt

sowohl für die Schlüsselwörter der Sprache als auch für alle Bezeichner (a und A sind verschiedene

Variablen!). Die Schlüsselwörter der Sprache C# werden komplett in Kleinbuchstaben

geschrieben.

6.3 Schlüsselwörter der Sprache

Die folgende Liste zeigt die vordefinierten Schlüsselwörter der Programmiersprache C#. Diese

Namen dürfen in der gleichen Groß-/Kleinschreibung nicht als Bezeichner verwendet werden

(Quelle: https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/index).

Grundkonzepte von C# 23

6.4 Namensregeln und Namenskonventionen

Bei der Vergabe von eigenen Bezeichner (z.B. Variablenname, Parameternamen, Atributnamen

und Methodennamen) gibt es verpflichtende Regeln und optionale Namenskonventionen.

Verpflichtende Regeln sind:

▪ Der Name darf nur Buchstaben (*), Zahlen und den Unterstrich enthalten.

▪ Der Name muss mit einem Buchstaben beginnen

▪ Die Groß- und Kleinschreibung ist relevant

▪ Es dürfen keine Namen von C#-Schlüsselwörtern verwendet werden.

Hinweis: (*) Umlaute sind erlaubt, aber sollten dennoch besser vermieden werden: Nicht alle

Werkzeuge und alle Menschen kommen damit gut klar!

Optionale Regeln hat Microsoft in den ".NET Framework Design Guidelines"

[https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines] definiert. Die wichtigsten

Regeln dort sind:

▪ Für die Groß-/Kleinschreibung gilt grundsätzlich PascalCasing, d.h. ein Bezeichner beginnt

grundsätzlich mit einem Großbuchstaben und jedes weitere Wort innerhalb des Bezeichners

beginnt ebenfalls wieder mit einem Großbuchstaben.

Beispiel: KundenPortalBenutzer

▪ Ausnahmen gibt es für Abkürzungen, die nur aus zwei Buchstaben bestehen. Diese dürfen

komplett in Großbuchstaben geschrieben sein (z.B. UI und IO). Alle anderen Abkürzungen

werden entgegen ihrer normalen Schreibweise in Groß-/Kleinschreibung geschrieben (z.B.

Xml, Xsd und W3c).

Beispiele: System.IO.File, System.Xml.XmlDocument

▪ Lokale Variablen, versteckte Attribute (private/protected) und Parameternamen sollen in

camelCasing (Bezeichner beginnt mit einem Kleinbuchstaben, aber jedes weitere Wort

innerhalb des Bezeichners beginnt mit einem Großbuchstaben) geschrieben werden.

Beispiel: Login(KundenPortalBenutzer kundenPortalBenutzer)

6.5 Blockbildung und Umbrüche

Blockbildung findet im C / C++-Stil statt, also mit geschweiften Klammern { }. Befehlstrenner ist

das Semikolon (;).

Ein Zeilenumbruch kann zwischen den Elementen des Ausdrucks auftreten, ohne das besondere

Vorkehrungen getroffen werden müssen. Zahlen können seit C# 7.0 mit einem Unterstrich

gegliedert werden; aber man darf innerhalb von Zahlen keinen Zeilenumbruch haben.

// Formel ohne Umbrüche

double Ergebnis1 = (2 + 3) * (5 + 6) * (7 * 8) + 3.141_592_653_59;

// Formel mit Umbrüchen

double Ergebnis2 = (2 + 3) *

 (5 + 6) *

 (7 * 8)

 + 3.141_592_653_59;

24 Grundkonzepte von C#

6.6 Hello World

Das folgende Listing zeigt das Hello World-Beispiel in C#, das man in jeder Programmiersprache

zuerst schreibt.

using System;

namespace HalloWelt

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("Hallo Welt!");

 }

 }

}

Mariginal komplexer ist diese Variante, die – sofern vorhanden – den ersten übergebenen

Kommandozeilenparameter als Name auffasst und die Person mit Namen grüßt.

namespace HalloWelt

{

 class Program

 {

 static void Main(string[] args)

 {

 if (args.Length > 0)

 {

 var name = args[0];

 // Ausgabe mit String Interpolation

 Console.WriteLine($"Hallo {name}!");

 Console.ReadLine();

 }

 else

 {

 Console.WriteLine("Hallo Welt!");

 }

 }

 }

}

6.7 Eingebaute Funktionen

Anders als in Visual Basic existieren in C# keine eingebauten Funktionen zur Typumwandlung

(z.B. CBool(), CInt(), CLng(), CType()), Zeichenkettenverarbeitung (z.B. InStr(), Trim(), LCase())

und Ausgabe (z.B. MsgBox()). Auch die My-Klassenbibliothek ist nicht vorhanden. Grundsätzlich

ist es möglich, die in Visual Basic eingebauten Funktionen und die My-Bibliothek durch

Referenzierung der Microsoft.VisualBasic.dll auch in C# zu nutzen. Dies sollte jedoch vermieden

werden, um sprachunabhängig zu bleiben. Alle Visual Basic-Funktionen und -Objekte sind auch

in der .NET-Klassenbibliothek enthalten, z.B. String.IndexOf() statt InStr() und Convert.ToInt32()

statt CInt().

Der C#-Compiler 25

7 Der C#-Compiler
Es gibt zwei Varianten des C#-Compilers: eine alte, in C++ geschriebene, und neue, in C#

geschriebene Implementierung.

7.1 Der ursprüngliche (alte) C#-Compiler

Der Kommandozeilencompiler für C# im .NET Framework Redistributable ist csc.exe. Er wird

installiert im Verzeichnis C:\Windows\Microsoft.NET\Framework64\v4.0.30319. Alternativ kann

er in der .NET Framework-Klassenbibliothek im sogenannten "CodeDOM" durch die Klasse

Microsoft.CSharp.CSCodeProvider angesprochen werden.

Wenn Sie heute ein aktuelles Microsoft .NET Framework (z.B. 4.7.2) verwenden, so ist dort der

ursprüngliche C#-Compiler immer noch in der Version 5.0 enthalten.

Abbildung: In .NET Framework 4.7.1 ist der C#-Compiler für C# 5.0 enthalten.

7.1.1 Kompilierung mit csc.exe

Der Befehl

csc.exe Dateiname1.cs Dateiname2.cs DateinameX.cs

oder

csc Dateiname1.cs Dateiname2.cs DateinameX.cs

übersetzt die angegebenen Dateien in eine Konsolenanwendung. Eine Datei, die als

Konsolenanwendung oder Windows-Anwendung kompiliert wird, muss genau eine Klasse mit

folgendem Einstiegspunkt besitzen: public static void Main().

Listing: »Hello World« in C#
class Hauptprogramm

{

 public static void Main()

 {

 System.Console.WriteLine("Hello World!");

 }

}

7.1.2 Kommandozeilenparameter

Der Kommandozeilencompiler bietet zahlreiche Optionen. Die wichtigsten davon sind:

▪ /target:winexe Der Compiler erzeugt eine Windows-Anwendung

▪ /target:library Der Compiler erzeugt eine DLL (kein Main() notwendig)

