14
15

16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32

Dr. Holger Schwichtenberg

C# 8.0 Crashkurs

Die Syntax der Programmiersprache C#
fior die Softwareentwicklung

in .NET Framework, .NET Core, Xamarin und Mono

string[] Namen = { "Leon", "Hannah", "Lukas", "Anna", "Leonie", "Marie",
"Niklas®, "Sarah", "Jan", "Laura"™, "“Julia", "Lisa", "Kevin" };

// Ausschnitt .. von x bis vor!!! y (erstes ist INKLUSIV, zweites ist
EXKLUSIV!)

string[] t1 = Namen[1..3]; // zweiter und dritter: "Hannah", "Lukas"

// Abschneiden ..#

string[] t2 = Namen[6..74]; // sechs von vorne und vier hinten abschneiden:
"Niklas", "Sarzoss

string t3 =4 / 7 3"
try
{
Person pl ¥ oerg" };
PrintPerson (payaee- —
Person? p2 = null; // nullable Person
PrintPerson(p2);
// Warnung, auch wenn Firstname im ctor initialisiert wurde.
// Lésung: !'. = null forgiving operator ("dammit operator")
string name = pl!.Firstname!.ToUpper(); //
}
catch (System.Exception ex)
|

/www._ﬁ\'-Visions.de@

_/
Dr. Holger Schwichtenberg

Inhaltsverzeichnis

Verlag:
ISBN:

Version:

Sprachliche Korrektur:

Formatierung:
Bezugsquelle:

Bezugsquelle:

www.[T-Visions.de, Fahrenberg 40b, D-45257 Essen /wwwﬁw
3034279.30.5 Dr. Holger Schwichtenberg
3.0 Preview / 11.09.2019

Heike Rickert, Katrin Lettau und Matthias Bloch

Katrin Lettau

https://www.amazon.de/exec/obidos/ASIN/3934279317/itvisions-21

https://leanpub.com/CSharp8

https://www.amazon.de/exec/obidos/ASIN/3934279317/itvisions-21
https://leanpub.com/CSharp8

Inhaltsverzeichnis 3

1 Inhaltsverzeichnis

1 INRAltSVETZEICHIIS . c..cuteiitiiteciceiteteteet ettt ettt et een 3
2 VOTWOTL ittt ettt et ettt st b et ettt ettt s bt bt e bt et eat e eae e ae ettt es 9
3 UDEI AEN AULOT.....ceoeieceeeeceee et e ettt s e n e 10
4 Ul dieSeS BUCK.......c.voieiceiieeeceeeeee et aenans 11
4.1 Versionsgeschichte dieses BUChScoooiiiiiiiiiiiieee e 11
4.2 Geplante TREMEIooouiiiiiieiee ettt st 12
43 Programmecodebeispiele zu diesem Buchccoooiiiiiiiiiiiiieee 13

T 1 <531 10 RS 15
5.1 Der NAME CH ..ottt sttt et ettt es 15
5.2 UTSPITUNEZE VON CH ..ottt ettt ettt ettt e et e e sabeeaaeesnseennees 15
53 Status der Programmiersprache CH#cccevieviieiiiienieciesieeeie e ees 15
54 VersionsSGeSCHICHLEccuiiiiiiieiecieieeeee ettt eee 17
5.5 StandardiSICIUNG.........cceeeieriieiieieeie ettt ste e e steesteesteebeessesssessaesseesseesseenseessenns 18
5.6 Implementierung des CH-COMPILErS........ccvvviiiiiiiiiieriierieete ettt eee e e 19
5.7 OPETL SOUICE ...ttt ettt ettt et sa e et e st e st e sab e e et e sabeesabeesabeeeabeesabeesaneens 19
5.8 Kommende VErSIONEIcccuiriiiieiieiiieie ettt ettt st see et et enee s e e eneeas 19
59 Paritdt und Co-Evolution mit Visual Basic .NET..........ccccecovviiiiiiiiieieceeeeeen 20
510 Neuerungen i CH 8.0......oooui ittt ettt ettt eae e e ene 20

6 Grundkonzepte VON CH........ccouieiieiieiieieeeee ettt ettt ettt et s enee 22
6.1 8] ¢ 16] 11 010 ST 22
6.2 Grof3- und KIeinSChreibUNGcccvviiiiieiiieeiieciie ettt st sbee e s 22
6.3 Schllisselworter der SPrachec.cocviieiieiiieiiecie e 22
6.4 Namensregeln und Namenskonventioneneccueevveerieenieeniieenieeneeesieeseeenveennnes 23
6.5 Blockbildung und UmbIriichecoccviiiiieiiiiieiiieee e 23
6.6 HEIIO WOTIA....eiiiiiiiiiiieie ettt et s 24
6.7 Eingebaute FUnKtOoNen........ccccoiviiiiirieiiiiniieneeectetctenecete ettt 24

A D 1 o O 1041 11 < PP 25
7.1 Der urspriingliche (alte) CH#-COmMPILET.........c.cocveeierieieieeieee e 25
7.1.1 KOMPIlierung Mt CSC.EXEC..uuevrerieririrrreriertiesieerteesteeseeeesseesseesseeseesessesnsessnesses 25
7.1.2 Kommandozeilenparameter.............ccueeverierienieeniienieeeeeeeeetesieeseeieese e saeseaeees 25

7.2 Der aktuelle (neue) CH-COMPILETc.coceeeuieriieiieieeie ettt 28

4 Inhaltsverzeichnis
7.2.1 Versionsnummern des COMPIIETS.cccuvierieeriiirieeiieeireeee e esre e sve e 29
7.2.2 Kommandozeilenparameter............cooueiuereeiieneenieere e 29

8 Erste Schritte VISual STUAIO ...c..ooveiuiriiiiiiiiiiiiescet et 33

8.1 Hello World mit dem .NET Framework..........ccccoceviiiiniiiinininiiicccencenceeeeen 33
8.2 Hello World mit .NET COTEccueruirieiiiiiiinieninieeiteiteentee sttt 39
8.3 Festlegung der Compilerversion in Visual StUdio.........ccceevvereieriierienienieieeieeieeienenn 43

L B T 173113 o2 1 OO OO RTRRRPTRRO 46
9.1 VariablendeKIarationenc..coeeeeieieniiieninineeteeee e 47
9.2 TypinitialiSIEITUNGccviiuiiiiieiiieie ettt ettt ettt et e ees 47
9.3 Literale fiir Zeichen und Zeichenketten.............cccoeiieiiriiiiiienieeec e 48
9.4 String INtErPOIatioNcc.eiiuiiiiieieee ettt 49
9.5 ZANIENIIEETALC ..ottt ettt sttt et ae s 49
9.6 DatumSIIteralecoouieiieiieieee ettt 50
9.7 Lokale Typableitung (Local Variable Type Inference)..........cceevvvvevierverieenieecrennene 50
9.8 Giiltigkeit VON Variablencccveeiiiiiiiieieciesieieeie ettt se s 51
0.9 TYPPIUIUNZEN ...ccvvieeiieiieeiiecttee ettt et e st esteesbeesbeesbeessesseebeesseesseessessnenes 51
9.10 TYPKONVEITIEIUNGveevvieeveieieiieieeteeeteeetesteesteesseeesessaesseesseesseesseessesssesseesseessenssesssessnesses 52
9.11 Dynamische TYPiSIEIUNG..........covveruieiieieetieiietieteeeeseesteesreeseebeeseesseesseesseessesssessnenes 53
9.12 Pattern MAtCRING ...cc.ecvieiiiiiieiiieieeic ettt te et e et eteesteesbeesbeesseessesnneeeis 54
9.13 Wertelose Wertetypen (Nullable Value TYPes).....ccccereereenieniieiieieeieseeeee e 55
TO OPCIALOTEI. ..eeueteiiiieiieeite ettt ettt et e et e st e et e sabe e e bt e sab e e sabeesabeesabeesabeeeabeesabeeebeenane 59
10.1 Uberblick iiber die OPEratorenccccevevuevivceeeeeeeeeeeeeeeeeeeeeeeeeeeseseeseneeseseeeeseneeen 59
LO.2 OPETALOT 77 ..ottt et sttt et et e et be et e e e e s e 62
LO.3 OPCTALOT 7.ttt ettt et sttt ettt s et be et e e 62
10.4 Operator NAMEOT() .c..eeveeueeieientinierieeieeit ettt ettt ettt st bbbt sa et sbeebeeneennen 62
10.5 Range und INdeX (CH 8.0) .eocvieeiiiiiieiieeieeee ettt ettt ettt esae e seaeesaae e saaeeenas 63
TO.5.1 TACX ittt sttt et a ettt sa e bt ene e nean 63
TO.5.2 RANEE....iiiiiiiiiecieectteeee ettt et e et e st e et e st e esateenteeensteentaeensbeesbeennseeneas 64
10.5.3 Weitere BEISPICIEvvveiiiiiieeiieciie ettt e ave et e ssae e 64
10.5.4 EinSCRIrANKUNZENoc.eiiiiiiiiiiiiieeee et 64

T1 SCRICIHEM.....eeiiiiiieteee ettt sttt ettt s b et 66
11.1 Iterator-Implementierung mit yield (Yield Continuations)c.ccecceevevveneneneneeeennes 67
11.2 Praxisbeispie]l fllr YIeld.......ccoooieriieiiiiiirieieeeeee e 68

12 VEIZWEIGUNZENeveieiieeiieciieeiieieeie et esete st et esteesseesaessaesseesseenseesseenseessesseenseenseensennsesnnennns 71

Inhaltsverzeichnis 5

13

14

15

16

17
18

12.1 Einfache Verzweigungen mit if...€lS€........ccoeriiiiiiiiiiiiieniiii e 71
12.2 Mehrfachverzweigungen mit SWItChcccciiiiiiiiiiiiieniei e 72
12.3 Switch EXpressions (C# 8.0) ...cccvveiieierienieiieie ettt et be e eae e ees 72

K1aSSENAETINITION. ¢..c..eteeiieiieiiertetee ettt sttt 74
13,1 KIassendefinItioNenccviiiriiriiniirieeiietetertes ettt ettt st eaeen 74
13.2 KIaSSENVEIWENAUNEocuveieieiieiieieeieeieesieeieeteetesetestee e eseessessaeesaessaeseenseensesssesssensns 75
13.3 Geschachtelte Klassen (eingebettete KIassen)ccoovververieniieciieiienienieieeie e 76
13.4 Sichtbarkeiten/ ZugriffSmOdifiZICrer..........cccveviieeiiiieiieriee e 76
13.5 StatiSChe KIASSEMoiuiiiiiiiiiiiieie ettt e 77

N8 L1 (<) | BSOS 78
14.1 Wertetyp versus Referenztypccocveeieuieniieiieeee et 78
14.2 Deklaration von StruKtUIENcoouiiiiiieiieieee et 80
143 Verwendung von SruKtUIeNcoocviiiiiiieiieiiee et 81
14.4 Strukturen mit Readonly (ab CH 7.2) ..cccveeieriieiiieieiiecieseet et 82
14.5 Readonly fiir einzelne Mitglieder einer Struktur (ab C# 8.0)cceevveevevieviieieeieeeee 83

Attribute (Fields und Properties)ccueiieriieeririieiieiierieeieeteeeeesreesteesseessesssessaeseeesseesseensenns 86
15.1 Abweichungen von der Informatik............ccccceeviireiiiiiiiieiieicie e 86
152 Felder (Field-AtriDULE)cceevvieiieiieieeieeeeieeie ettt st sbe e esseesaesseesnas 87
15.3 Eigenschaften (Property-Atribute)cccuevieruirciiiieiiereere e eree e ere e eae e e 88

15.3.1 EXPlZIte PrOPEITIES ..c..eeiuieiieiieieeiieeiieee ettt ettt eees 88

1532 AutomatisSChe ProPerties........ccoecurrieriieiiieiieie ettt 89

15.3.3 Zusammenfassung zu Propertiesc.ccoceeievierieninieninineeiciccicneee e 90

1Y) 103 1o T 13 & OSSPSR 92
16.1 Methodendefinition und RUCKZADEWETLE.........ccevuiriiriiiiiiniininceiectcceece e 92
16.2 MethOdeNPEATAIMETETc.eetiiiiitiriieieeitetetert ettt ettt sttt ettt se et st ebe e eneen 92
16.3 Optionale und benannte Parameter...........c.eeevieiieerieenieenieerie e eseeesveesve e 93
164 REfUNA OUL...oouiiiiiiiiiiieiiec ettt st ettt e et 94
16.5 Statische Methode als globale Funktionenccccevcveeviierieenieenieeie e 95
16.6 Lokale FUunktion (ab CH 7.0) ...cccueeiiieeiieiiieeie ettt ettt et e ae et e e esaeesae e e 96
16.7 Statische lokale Funktionen (ab C# 8.0).......cccceevuieriiiiiieriiecieeie e 96
16.8 Caller-Info-AnnOtationenc..coeiuiriirieiiiiniirene ettt sttt 97

Konstruktoren und DestruktOrencecueiiiiriiriirinineeieiereese et 100

Aufzahlungstypen (ENUMEation)cccerieriieiireiieniesie et et eee e eesseessee e ensesneeseneses 103

6 Inhaltsverzeichnis

19 Expression-bodied MEMDETS........cc.uiivieeiieiiieeieeiieeeieesiee e e sveesreessreessseesesaessseessseensseens 104
20 ODbjeKtNItIAlISIEITUIZ ... eeuteeiteeeieitieite ettt ettt ettt et tesetesseesbeesae e bt eateeaeesbeesbeenbeenseas 105
21 Behandlung vOn NUIL.........ccoiiiiiiiiieieie ettt enaeseaessaessaenseas 106
21.1 NUllReferenCeEXCEPLIONc.ieviieiieiieiieieeieeie e ete et eeseae st e steeseensesssessnesneeneas 106
21.2 Null-Priifung und Toleranz gegentiber Null...........cccccoeviieiiieiinienienieieeie e 106
21.3 Null-Referenz-Priifung / Nullable Reference Types (C# 8.0)ooveveveniierivncienieeennne. 108
21.3.1 Compiler erkennt die Programmierfehler nicht...........c..cocceceeviniiinnininnnnene. 108
21.3.2 Aktivieren der Null-Referenz-Prifung...........ccccovveviiciiniinienieieeee e 110
21.3.3 Verbessertes Programim...........coccoeoiiiiiiinienieeeeee e 111
21.3.4 Null Forgiveness-Operatorcceoieieeierierieieeeeie e seeseee e eee e enee e seeeaeas 113

22 Partielle KIaSSENc.eeiuiiiieieeiieii ettt sttt ettt ene e neeeean 114
23 Partielle MEthOdenc.oouiiiiiieiieeee ettt ettt 115
24 Erweiterungsmethoden (Extension Methods)cccoevieiieiiiieiieneiiee e 116
25 Annotationen (NET-ArIDULE)c.cocverrieriieiiieieeieeiieseeie ettt sae e seaesseeseenseas 118
26 GeNEriSChE KIASSEIeuitiiiiiiieiiiiiieite sttt st 121
26.1 Definition einer generischen KIasseccocvvevieiieiiieciiiciiiieceeeee e 121
26.2 Verwendung einer generischen KIaSSe..........ccocvvevvieriieiiiiieiieiieniieie e 121
26.3 Einschrankungen fiir generische Typparameter (Generic Constraints) 122
26.4 Kovarianz fir TYPPAramMELErcccvevvieriieieeieeiesieerteeteereseeseesseesseeseesseessesssessessses 122
27 ODJEKUMEIZEN ...ttt et et ettt et e et e st et e e st e et enseeneesseesseesseeseenseenseeneeeneenseensenn 126
20 R 23 11N To] TS AN § TSP 126
27.2 Objektmengen (untypisiert Und tyPISICIt)........cccverueerurrruerierierienieneeree e eeeseeeseeeeens 126
28 ANONYME TYPON...coiiiiiiiiiiiiiiieit ettt ettt e e e 128
29 TUPEL ..ttt h ettt ettt eae e 129
29.1 Alte Tupelimplementierung mit System.Collections. Tupelcccccevevenineneniennnene 129
29.2 Neue Tupelimplementierung in der SprachSyntaxccccceeecveercieeniieenieencieesieeeneenn 129
29.3 DEKONSIIUKIION ...ttt sttt ettt e b enbeas 130
29.4 Serialisierung VOn TUPEINccviviiiiiiieii e 132
29.5 Vergleich von Tupeln (C# 7.3).c.ooiiiiiiieeeeeeeee et 132
30 ImplementierungSVEIrEIDUNE.cc.tetiiieeiieetiertie ettt ettt et e e e et seeesbeesbeeeeeneeeneeeae 133
31 Schnittstellen (INtErfACES)......cuerirrieiieiieie ettt sae e sseeseenseenne e 135
31.1 Deklaration einer SChnittStellecccecueriirierininiriiieicereeeee e 135
31.2 Verwendung von SchnittStellen............ocveeiieierienieiieie et 135

31.3 Standardimplementierungen in Schnittstellenccccoeverininiiiieiininninneeeeee 136

Inhaltsverzeichnis V

31.3.1 Realisierung einer Standardimplementierung in einer Schnittstelle.................... 136
31.3.2 Einfaches BeiSpiel......c.ccoiiiiiiiiiiiiii et 136
31.3.3 Uberschreiben der IMplementierungc.cc.occoeveveuevereeeeereeeeeeeseseeeenennnes 138
31.3.4 KompleXeres BeiSPICl......cccverieriieriiiiinieeieieieeie et nees 138

32 Namensraume (NAMESPACES) ..eeervreerureerurerrieeeriieerieeerteesteeesseeenteeesstesseesssaessseessseessseessseesnne 141
32.1 Softwarekomponenten versus Namensraume...........cceecveeverrerverreenseerseeseneesseensennsens 141
32.2 Vergabe der NamensraumbezeiChNerccvevvieriieiiieieeie e 142
323 Vergabe der TYPNAMENc..evuveieieiieiieie e eieeeesieeieeaeeaeseaeseeesseeseesseesaessaenseenseensens 143
32.4 Namensraume deKIarierencoieerieiiiiiiieriesee ettt 143
32.5 Import von NamMENSTAUMEIccocuetrtiiiiieiiieeniteeite et ettt ettt esitee sttt esiteesareesareesareesaneens 144
32.6 Verweis auf Wurzelnamensratime.ceueveeruierieiieeieeie et see e eeeeseeeeeas 144
33 Operatoriiberladung...........coeiiiiiiiei e 146
34 Funktionale Programmierung in C# (Delegates / Lambdas)ccccceveirinieiiinieneens 147
341 DEIEEALES ...cveevieiieiieeieete et cte sttt ettt ettt ettt e ta e taesre e beebeerbeenbeesaeesaentaenrean 147
34.2 Vordefinierte Delegates Action<T> und Func<T>cc.cccovvrrirnierierrieieeeeneenenn 149
34.3 Préadikate mit Predicate<T>........cccooiriiiiiiieiieeee e 150
344 Lambda-AuUSAITCKEcocueiiiiiiiiiiiiieieeee e 151
35 EICIZNISSE .evveivietieiieeieeteeeteeeteeteesteeteesbeesseesaesseesseesseesseasseasseassessenseessaessesssessaesseesseessennsens 155
35.1 Definition VON EIeIgNiSSENccuveriieriieiieiieiieeiiesieesieeteeveseeseeesseeseesseesseessesssessessses 155
352 Ereignis QUSIOSEIN .. cc.eeiuieiieiieiiie ittt ettt st e ettt et eeneenreenean 155
35.3 Ereignisbehandlung............ccooiiiiiiiiiiii e 156
36 IDisposable / USING-BIOCKEccociriririiiiniiieiinenteectecenceesc ettt 157
36.1 Hintergriinde zur Speicher- und Ressourcenverwaltung in NET ..o 157
36.2 Schnittstelle IDISPOSADIEc..couiviiruiriiiiiiiieniiecrceece ettt 157
36.3 USING-BIOCKE. ...c.uiotiiuiiiiiiieieieeerieece ettt 159
36.4 Vereinfachte Using-Deklarationen in C# 8.0ccceeevieriieniieeniiienieecieeeeee e 159
36.5 IDispose fiir Strukturen auf dem Stackcceccvverieeriiiiiiieeeeceeee e 160
37 LaufZeitfeR]er ...c..ooouiiiiii e e e 161
37.1 Fehler abfangencocuoiiiiiiiieiee e 161
37.2 Fehler QUSIOSEI. ... couieiiiiiiieiieitiet et e 162
37.3 Eigene Fehlerklassen.........cccoioieiieiieniieiieieeieeteeee et 163
38 Kommentare und XML-DoKumentationcoceeereeieienienienineneneeieteeneesienieeieeeenees 164

39 Asynchrone Ausfithrung mit async und aWait.............ccoecveeeeerierieneeseee e 166

8 Inhaltsverzeichnis

39.1 Async und await mit der .NET-KlassenbibliotheKcccceevveriiiiniieniinecieiieeenene 166
39.2 Async und await mit eigenen Threads..........ccooieiiiiiiiiiiii e 167
39.3 Weitere MOGIIChKEIENecuveiieiieiieiicic ettt as 168
40 ZeigeIPIOZIAMIMICTUNG. ... eeuveeevererertreseeseeseesesssesseesseeseessesssesssessaesseesseesseessesssesssesseessesnsens 169
40.1 Zeigerprogrammierung mit UNSAEccvvvieiiiiriierienieie e 169
40.2 Zeigerprogrammierung mit ref (Managed Pointer)ccoecvvvierienienieneeeeee e 171
41 Abfrageausdriicke/Language Integrated Query (LINQ)......ccoecvevierienieniieieeieeieeieeeenn 174
41.1 Einfihrung und MOtIVATIONcceeriieriieiieie ettt se e e eseeneesnnesns 174
41.2 LINQ-PIOVIAET ...oeecviiiiieeiiecieecite ettt et e st e et e s b e e saeesabeesbeessbaeesseesssaessseesnseesnseens 175
41.2.1 LINQ-Provider von Microsoft im .NETcccceevviiiiieeiiiiiiieciee e 175
41.2.2 Andere LINQ-Provider.......c.ccocuieiiieriieiiieeiee sttt sve e s e e e sesaesavee s 175
41.2.3 Formen von LINQc.cooiiiiiiiiie ettt e e e e eeee e e snaea e 175
41.2.4 Einfilhrung in die LINQ-SYNtaxccccoeoeiiiiieiieiiee e 176
Ubersicht iiber die LINQ-BEfehlec.ooviioieeieeeeeeeeeeeeeeeeeeeeee et 180

413 LINQ 10 ODJEOLS .evrerureiieiieeieeteetiesteesteeteetestesttesteesseesseesseessesssesseesseessesssesssesssessnesses 187
41.3.1 LINQ to Objects mit elementaren Datentypencceevveeiereereereesieenesenenes 187
41.3.2 LINQ to Objects mit komplexen Typen des .NET Framework............c..ccoenneene. 191
41.3.3 LINQ to Objects mit eigenen Geschéftsobjektenc.ccceevevvierieniienieeieennne. 194
41.4 Parallel LINQ (PLINQ) .c.tittiieieieieteiertesteei ettt s 199
42 Syntaxreferenz: C# versus Visual Basic INETcccoccoriiriiiiiieecee e 202
43 Quellen M INTEIMETeeiviiiiieciieeieecte ettt ettt reeeb e e st e e s b e e s ebeesabeesabaessseeenseasnseeas 208
44 Stichwortverzeichnis (INAEX)ccceeiciiieiiieiiiecie ettt e e sbe e re e s veesaneeas 209

45 Werbung in eigener SAChe ©cocoiiiiiiiiiiieiee s 215

Vorwort 9

2 Vorwort

Liebe Leserinnen und Leser,

der "C# Crashkurs" ist ein priignanter Uberblick iiber die Syntax der Programmiersprache C# in der aktuellen
Version 8.0.

Dieses Buch ist geeignet fiir Softwareentwickler, die von einer anderen objektorientierten
Programmiersprache (z.B. C++, Java, Visual Basic .NET oder PHP) auf C# umsteigen wollen oder bereits C#
einsetzen und ihr Wissen erweitern insbesondere die neusten Sprachfeatures kennenlernen wollen. Wir
schulen bei www.IT-Visions.de jedes Jahr hunderte Entwickler auf C# bzw. die neuste Version der Sprache
um. Da es viele Umsteiger von Visual Basic .NET zu C# gibt, werden hier die Unterschiede von C# gegeniiber
Visual Basic .NET an einigen Stellen hervorgehoben.

Fiir Neueinsteiger, die mit C# erstmals iiberhaupt eine objektorientiere Programmiersprache erlernen wollen,
ist dieses Werk hingegen nicht geeignet, denn es werden die OO-Grundkonzepte nicht erklirt, da die meisten
Softwareentwickler heutzutage diese aus anderen Sprachen kennen und das Buch nicht mit diesen Grundlagen
unndtig in die Lange gezogen werden soll.

Es erhebt nicht den Anspruch, alle syntaktischen Details zu C# aufzuzeigen, sondern nur die in der Praxis am
wichtigsten Konstrukte.

In diesem Buch werden bewusst alle Syntaxbeispicle anhand von Konsolenanwendungen gezeigt. So
brauchen Sie als Leser kein Wissen iiber irgendeine GUI-Bibliothek und die Beispiele sind pragnant fokussiert
auf die Syntax.

Dieses Buch wird vertrieben tiber Amazon.de

= Kindle-E-Book von Amazon.de fiir 9,99 Euro (der Autor erhilt 5,56 Euro):
www.amazon.de/exec/obidos/ASIN/B07G2STYMH/itvisions-2 1

= Gedruckt (Print-on-Demand) bei Amazon.de fiir 14,99 Euro (der Autor erhilt 5,53 Euro):
www.amazon.de/exec/obidos/ASIN/3934279325/itvisions-2 1

= PDF bei leanpub.com fiir 10,99 Dollar (der Autor erhélt ca. 8,93 Euro):
www.leanpub.com/CSharp8

Da solch niedrige Preise leider nicht nennenswert dazu beitragen konnen, den Lebensunterhalt meiner Familie
zu bestreiten, ist dieses Projekt ein Hobby. Dementsprechend kann ich nicht garantieren, wann es Updates zu
diesem Buch geben wird. Ich werde dann an diesem Buch arbeiten, wenn ich neben meinem Beruf als
Softwarearchitekt, Berater und Dozent und meinen sportlichen Betdtigungen noch etwas Zeit fiir das
Fachbuchautorenhobby iibrig habe.

Zudem mochte ich darauf hinweisen, dass ich natiirlich keinen kostenfreien technischen Support zu den
Inhalten dieses Buchs geben kann. Ich freue mich aber immer iiber konstruktives Feedback und
Verbesserungsvorschlige. Bitte verwenden Sie dazu das Kontaktformular auf www.dotnet-doktor.de.

Wenn Sie technische Hilfe zu C# und seinen Einsatzgebieten (.NET, Mono, Xamarin) oder anderen Themen
rund um Visual Studio, Windows oder andere Microsoft-Produkte benétigen, stehe ich Thnen im Rahmen
meiner beruflichen Tétigkeit fiir die Firmen www./T-Visions.de (Beratung, Schulung, Support) und 5Minds
IT-Solutions GmbH & Co KG (Softwareentwicklung, siche www.5minds.de) geme zur Verfiigung. Bitte
wenden Sie sich fiir ein Angebot an das jeweilige Kundenteam.

Auf der von mir ehrenamtlich betricbenen Leser-Website unter www.IT-Visions.de/Leser, konnen Sie die
Beispiele zu diesem Buch herunterladen. Dort miissen Sie sich registrieren. Bei der Registrierung wird ein
Losungswort abgefragt. Bitte geben Sie dort The Expanse ein.

Herzliche Griile aus Essen, dem Herzen der Metropole Ruhrgebiet

Holger Schwichtenberg

http://www.dotnet-doktor.de/
http://www.it-visions.de/
http://www.5minds.de/
http://www.it-visions.de/Leser

Uber den Autor

Uber den Autor

Studienabschluss Diplom-Wirtschaftsinformatik an der Universitit Essen

Promotion an der Universitdt Essen im Gebiet komponentenbasierter
Softwareentwicklung

Seit 1996 selbststindig als unabhingiger Berater, Dozent, Softwarearchitekt und
Fachjournalist

Fachlicher Leiter des Berater- und Dozententeams bei www.IT-Visions.de

Leitung der Softwareentwicklung im Bereich Microsoft/.NET bei der SMinds IT-
Solutions GmbH & Co. KG (www.5Minds.de)

Uber 65 Fachbiicher beim Carl Hanser Verlag, bei O'Reilly, Microsoft Press, /m—\ .. ®
APress und Addison-Wesley sowie mehr als 1000 Beitrdge in .IT-Visions.de
Fachzeitschriften Dr. Holger Schwichtenberg

Gutachter in den Wettbewerbsverfahren der EU gegen Microsoft (2006-2009) M -
inds

Standiger Mitarbeiter der Zeitschriften iX (seit 1999), dotnetpro (seit 2000) und = : ol 0TI oe
Windows Developer (seit 2010) sowie beim Online-Portal heise.de (seit 2008) i

RegelmiBiger Sprecher auf nationalen und internationalen Fachkonferenzen (z.B. Microsoft TechEd,
Microsoft Summit, Microsoft IT Forum, BASTA, BASTA-on-Tour, NET Architecture Camp, Advanced
Developers Conference, Developer Week, OOP, DOTNET Cologne, MD DevDays, Community in Motion,
DOTNET-Konferenz, VS One, NRW.Conf, Net.Object Days, Windows Forum, Container Conf)

Zertifikate und Auszeichnungen von Microsoft:

o Microsoft Most Valuable Professional (MVP)

o Microsoft Certified Solution Developer (MCSD)
Thematische Schwerpunkte:

o Softwarearchitektur, mehrschichtige Softwareentwicklung, Softwarekomponenten, SOA
Visual Studio, Continous Integration, Continous Delivery, Azure DevOps

Microsoft NET Framework, .NET Core, C#, Visual Basic

NET-Architektur/Auswahl von .NET-Technologien

Einfiihrung von .NET Framework/NET Core und Visual Studio/Migration auf .NET

Webanwendungsentwicklung und Cross-Plattform-Anwendungen mit HTML, ASP.NET,
JavaScript/TypeScript und Webframeworks wie Angular

O O O O O

o Enterprise .NET, verteilte Systeme/Webservices mit NET, insbesondere Windows Communication
Foundation und WebAPI

o Relationale Datenbanken, XML, Datenzugritfsstrategien

o Objektrelationales Mapping (ORM), insbesondere ADO.NET Entity Framework und EF Core

o Windows PowerShell, PowerShell Core und Windows Management Instrumentation (WMI)
Ehrenamtliche Community-Tétigkeiten:

o Vortragender fiir die International NET Association (INETA)

o Betrieb diverser Community-Websites: www.dotnet-lexikon.de, www.dotnetframework.de,
www.windows-scripting.de, www.aspnetdev.de u. a.

Firmenwebsites: Attp.//www.IT-Visions.de und http://www.5Minds.de
Weblog: http://www.dotnet-doktor.de

Kontakt fiir geschéftliche Anfragen via Kundenteam:
E-Mail kundenteam@IT-Visions.de sowie Telefon 0201 / 64 95 90 - 0

Kontakt fiir Feedback zu diesem Buch: Kontaktformular auf /tp://www.dotnet-doktor.de

http://www.it-visions.de/

Uber dieses Buch

11

4 Uber dieses Buch

4.1 Versionsgeschichte dieses Buchs

Die folgende Tabelle zeigt die Versionen, die von diesem Buch erschienen sind, sowie die darin

besprochenen C#-Versionen.

Ergdnzungen der Versionsnummer an der dritten Stelle (z.B. 1.2.3) sind kleine Korrekturen im
Buch, die nicht explizit in dieser Versionstabelle erscheinen.

Buchversion
Datum

1.0
27.03.2018

1.1
20.07.2018

2.0
21.07.2018

2.1
27.11.2018

3.0
11.09.2019

Umfang

166
Seiten

167
Seiten

172
Seiten

189
Seiten

214
Seiten

Preis Preis C#-
Kindle- gedruckte Version
Ausgabe Ausgabe
9,99 € 14,99 € 7.2
9,99 € 14,99 € 7.2
(7.3)
9,99 € 14,99 € 7.3
(8.0)
9,99 € 14,99 € 73
(8.0)
9,99 € 19,99 € 8.0

Bemerkung

Grundversion

Ref Local Reassignment
(C#17.3)

Ausblick auf C# 8.0

Vergleich mit Tupeln
(C#17.3)

Annotationen fiir
Backing Field von
Auto-Properties (C#
7.3)

Verbesserungen fiir
unsafe-Blocke (C# 7.3)

Kapitel "Grundkonzepte
von C#" erweitert

Kapitel "Attribute
(Fields und Properties)"
erweitert

Kapitel "Ereignisse"
iiberarbeitet

Kapitel "Funktionale
Programmierung in C#"
erweitert

Kapitel "Behandlung
von null" ergénzt

Neues Kapitel
"Operatoren/Ranges
und Indexe"

Kapitel
"Verzweigungen"

Uber dieses Buch

uberarbeitet, "Switch
Expressions" erginzt

= Kapitel "Schnittstellen"
iiberarbeitet, ergénzt
"Standardimplementieru
ngen in Schnittstellen"

= Kleinere neue
Funktionen von C# 8.0
an verschiedenen
Stellen eingebaut

= Neues Kapitel

"IDisposable/ Using-
Blocke"

= Neues Kapitel
"Strukturen/Strukturen
mit Readonly"

= Neues Kapitel
"Strukturen/Readonly

fiir einzelne Mitglieder
einer Struktur"

= Kapitel "Behandlung

von null/Nullable
Reference Types"
aktualisiert.

4.2 Geplante Themen

Folgende Themen sind fiir kommenden Ausgaben dieses Buchs geplant:

Span<T>/ Memory<T> (C# 7.2)

Strukturen auf dem Stack (ref struct) in C# 7.2
Unmanaged Constructed Types (C# 8.0)
Aliase fiir referenzierte Assemblies

Indexer

Implicit Cast Operator [https://docs.microsoft.com/de-de/dotnet/csharp/language-
reference/keywords/implicit]

Async Streams (C# 8.0)
Design Pattern in C#

Clean Code-Programmierung mit C#

Uber dieses Buch 13

4.3 Programmcodebeispiele zu diesem Buch

Die Programmcodebeispiele zu diesem Buch konnen Sie auf der auf der von mir ehrenamtlich
betriebenen Leserwebsite www.IT-Visions.de/Leser herunterladen. Dort miissen Sie sich
registrieren. Bei der Registrierung wird ein Losungswort abgefragt. Bitte geben Sie dort das
Losungswort The Expanse ein.

Alle Programmbeispiele aus diesem Buch sind in einer Visual Studio 2019-Projektmappe mit zwei
Projekten enthalten. Es muss seit C# 8.0 zwei Projekte geben, weil einige Sprachfeatures nicht
mehr im .NET Framework laufen. Die beiden Projekte enthalten:

= CSharpSprachsyntax (NET Framework): Alle Sprachfeatures von C# 1.0 bis 7.3 und solche
von C# 8.0, die auf .NET Framework laufen

= CSharpSprachsyntaxNETCore (.NET Core): Alle Sprachfeatures von C# 8.0, die NICHT auf
.NET Framework laufen

Die Beispiele sind in Unterordnern nach Sprachversionen aufgeteilt. Dies heifit, dass Sie zum
Beispiel Sprachfeatures von C# 8.0 im Ordner CS80 finden.

Wie im Vorwort bereits erwédhnt handelt es sich um den Anwendungstyp "Konsolenanwendung".
So brauchen Sie als Leser kein Wissen iiber irgendeine GUI-Bibliohek und die Beispiele sind
priagnant fokussiert auf die Syntax.

14 Uber dieses Buch

Solution E}{p|grer ...

@i D-B =]
Search Solution Explorer (Ctrl+ 0}

-q'__| Solution "CsharpSprachsyntax’ (3 of 3 projects)
4 &[c%] CSharpSprachsyntax
b &/ Properties
[=W References
C5-Poster 2015 (zu C560)
CS10_MET10_2002
CS520_MET20_2005
C530_MET35_2008
C540_MET40_2010
CS50_MET45_2012
CSB0_MET46_2015
CS7T0_MET46_2017
C571_Aug2017
C572_Nov2017
C573_Aug2018
C580_Sep2019
CObjektmodell Fluggesellschaft
Objektmodell Uni
WeitereBeispiele
Ei'f_j App.config
i ©* GlobalSuppressions.cs
Eﬁ packages.config
P & C* Program.cs
a2 readme.bd
4 o CSharpSyntaxMETCore
P «& Dependencies
[C580_Sep2019
P & C* Buchcover.cs
85 CsharpSyntaxMETCore.csprojvspsce
P &C* CUI_[CONSOLE).cs
P &C* Program.cs

=

=R A = A A A A A A A A

Abbildung: Programmcodebeispiele zu diesem Buch in zwei Visual Studio-Projekten

5 Fakten zu C#
5.1 Der Name C#

C# wird gesprochen ,,C Sharp®. Das # konnte man auch in ein vierfaches Pluszeichen aufspalten
(also C++++, eine Weiterentwicklung von C++). Urspriinglich sollte die Sprache "Cool" heif3en.
Eine Zeit lang wurde auch "C# NET" verwendet; das ist heute aber nicht mehr {iblich. Microsoft
spricht aber gelegentlich noch von "Visual C#", z.B. meldet sich der Kommandozeilencompiler
von C# auch in der aktuellen Version mit "Microsoft (R) Visual C# Compiler".

5.2 Urspriinge von C#

C# ist das Ergebnis eines Projektes bei Microsoft, welches im Dezember 1998 gestartet wurde,
nachdem die Firma Sun Microsoft die Verdnderung der von Sun entwickelten Programmiersprache
Java verboten hatte. Vater von C# ist Anders Heljsberg
[https://de.wikipedia.org/wiki/Anders_Hejlsberg], der zuvor auch Turbo Pascal und Borland
Delphi erschaffen hat.Er war frither bei Borland und arbeitet seit 1996 bei Microsoft. Heutzutage
ist er auch verantwortlich fiir die Sprache TypeScript.

5.3 Status der Programmiersprache C#

Frither gab es einen wahren Glaubenskrieg in der .NET-Entwicklergemeinde um die Wahl der
wrichtigen« Programmiersprache. C# oder Visual Basic .NET hiel die Frage, die viele
Projektteams bewegt hat. Auch wenn Visual Basic .NET in allen wesentlichen Punkten syntaktisch
ebenbiirtig war, hat C# klar gewonnen.

CH# ist heute nicht nur eine von vielen Programmiersprachen fiir .NET, es hat sich durchgesetzt als
DIE Programmiersprache fiir .NET. Gegenwirtig gibt es nur noch wenige .NET-Projekte, die
Visual Basic .NET, F# oder C++/CLI oder exotischere Sprachen verwenden.

Schaut man in die aktuelle Dokumentation der .NET-Klassen auf https://docs.microsoft.com, sicht
man dort nur noch Beispiele fiir C#, wihrend die alte MSDN-Dokumentation noch Beispiele in
C#, Visual Basic .NET, und C++ enthielt.

16 Fakten zu C#

B® NET AP| Browser | Micre X ' (_ Process Class (System.Dic X

< X | & Sicher | https;//msdn.microsoft.com/library/system.diagnostics.process(v=vs.110).aspx?cs-save-lang=18.cs-lang =csharp#code-snippet-1 €

e NLT FIGITEWUTK Cidss LIUTElY ~ OySIENLUIdYIIusics NdITEspPaies ~ SysEiLuidyiiusucs =

Process Class

.NET Framework (current version) QOther Versions -

PerformanceCounterType
Enumeration

PresentationTracelevel
Enumeration

* PresentationTraceSources Class System_CAPS_note Note

¥ Process Class The .NET API Reference documentation has a new home, Visit the .NET API Browser on

decs.microsoft.com to see the new experisnce.
» Process Methods

O s P i Provides access to local and remote processes and enables you to start and stop local system
rocesses.
» Process Events P

Pl 7ess (s e To browse the .NET Framework source code for this type, see the Reference Source.

Mamespace: System.Diagnostics
» ProcessModule Class Assembly: System (in System.dll)

* ProcessModuleCollection Class

Inheritance Hierarchy 4

System.Object
System.MarshalByRefObject
System.ComponentModel.Component
System.Diagnostics.Process

ProcessPriorityClass Enumeration

» ProcessStartinfo Class

» ProcessThread Class

ProcessThreadCollection Class

ProcessWindowStyle Enumeration Syntax
[c# [cer [F2 [VB |

-

SourcefFilter Class

[PermissionSetAttribute(SecurityAction.LinkDemand, Name = “"FullTrust™)]

[HostProtectionAttribute(SecurityAction.LinkDemand, SharedState = true,
Synchronization = true, ExternalProcessMgmt = true, SelfAffecting

Sourcelevels Enumeration

[PermissionSetAttribute(SecurityAction.InheritanceDemand, MName = "FullTri
* SourceSwitch Class public class Process : Component
] 3

» StackFrame Class

Abbildung: Beispiele in vier Sprachen in der alten MSDN-Dokumentation der .NET-Klassen

Fakten zu C# 17

B¥ Process Class (System.Di: X

& C | @ Sicher | https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics view=netfr:
= Microsoft Technologies Documentation ~ Resources
NET APIs .NET Core .NET Framework ASP.NET Xamarin Azure

Docs / .NET / .NET API Browser / System.Diagnostics / Process

NET Framework 4.7.1 Process C |aSS

Search Namespace: System.Diagnostics

Assemblies: System.Diagnostics.Process.dll, System.dll, netstandard.dll

> PerformanceCounter

\ Provides access to local and remote processes and enables you to start and stop local system processes
PermissionAttribute

> PerformanceCounter Cc#
PermissionEntry

3 PerformanceCounter public class Process : System.ComponentModel.Component
PermissionEntryCollection
PerformanceCounterType

Inheritance Object -» MarshalByRefObject -» Component -» Process
PresentationTracelevel

> PresentationTraceSources

Examples

Constructors
The following example uses an instance of the Process class to start a process.

> Properties
> Methods c#

> Events
using System;
> ProcessModule using System.Diagnostics;

> ProcessModuleCollection LSTHeRS veiteatCoupanentiodal;

ProcessPriorityClass namespace MyProcessSample

{

> ProcessStartinfo

Abbildung: In der neuen .NET-Klassendokumentation gibt es nur noch Beispiele in C#

54 Versionsgeschichte

Hinsichtlich der Versionsnummern der Sprache C# herrschte frither etwas Verwirrung. Es gab
einerseits eine offizielle Zdhlung mit Versionsnummer (parallel zum .NET Framework),
andererseits mit Jahreszahlen (parallel zu Visual Studio). Intern wird eine dritte Zahlung fiir den
Compiler verwendet. Die erste Version von C# im Rahmen des .NET Framework 1.0 trug intern
die Versionsnummer 7.0. Zu .NET 1.1 gab es dann C# 7.1, im .NET Framework 2.0 und 3.0 meldet
sich der C#-Compiler mit Version 8.0. Ab .NET Framework 3.5 hat Microsoft dies aber bereinigt.
Dort meldet sich der Compiler nun auch mit Version 3.5.

Die folgende Liste dokumentiert die Versionsgeschichte von C# einschlieBlich der verschiedenen
Namen, die es jeweils gibt.

= C# 1.0 ist erschienen am 05.01.2002 (in Visual Studio.NET 2002+2003 / .NET Framework
1.0 und 1.1. Erste Version des ISO-Standards fiir C#.)

= C#2.0isterschienen am 07.11.2005 (C# 2005 / in Visual Studio.NET 2005 / .NET Framework
2.0 und 3.0. Zweite Version des ISO-Standards fiir C#.)

= C#3.0 isterschienen am 15.08.2008 (C# 2008 / in Visual Studio.NET 2008 / NET Framework
3.5)

= C#4.0 isterschienen am 12.04.2010 (C#2010/in Visual Studio.NET 2010/ .NET Framework
4.0)

= C#5.0isterschienen am 12.08.2012 (C# 2012/ in Visual Studio.NET 2012 / .NET Framework
4.5)

18 Fakten zu C#

= C#6.0 isterschienen am 20.07.2015 (C# 2015/ in Visual Studio.NET 2015 / .NET Framework
4.6)

= C# 7.0 ist erschienen am 05.03.2017 (C# 2017 / in Visual Studio 2017)
= C# 7.1 ist erschienen am 14.08.2017 (in Visual Studio 15.3)
= C# 7.2 ist erschienen am 15.11.2017 (in Visual Studio 15.5)
= C# 7.2 ist erschienen am 02.08.2018 (in Visual Studio 15.7)
= C# 8.0 ist erschienen am 23.09.2019 (in Visual Studio 16.3)

Version der Ausgeliefert mit Version der Interne

Sprachsyntax mit Sprachsyntax Versionsnummer des

Versionsnummer mit Jahreszahl C#-Compilers

C#1.0 NET Framework 1.0 | Visual C# 2002 7.0 (alter Compiler)

C# 1.1 NET Framework 1.1 | Visual C# 2003 7.1 (alter Compiler)

C#2.0 NET Framework 2.0 | Visual C# 2005 8.0 (alter Compiler)

C#2.0 NET Framework 3.0 | Visual C# 2005 8.0 (alter Compiler)

C#3.0 NET Framework 3.5 | Visual C# 2008 3.5 (alter Compiler)

C#4.0 NET Framework 4.0 | Visual C# 2010 4.0 (alter Compiler)

C#5.0 NET Framework 4.5 | Visual C# 2012 4.5 (alter Compiler)

C#6.0 NET Framework 4.6 | Visual C# 2015 1.x (Neuer Compiler)
/ NET Core 1.0

C#7.0 Visual Studio 2017 Visual C# 2017 2.0 (Neuer Compiler)
15.0 / NET Core 2.0

C#17.1 Visual Studio 2017 Visual C# 2017 2.3 (Neuer Compiler)
15.4/ NET Core 2.0

C#17.2 Visual Studio 2017 Visual C# 2017 2.7 (Neuer Compiler)
15.5/.NET Core 2.0

C#173 Visual Studio 2017 Visual C# 2017 2.8 +2.9+2.10 (Neuer
15.7 / NET Core 2.1 Compiler)

C# 8.0 Preview Visual Studio 2019 Visual C# 2018 3.0+3.1+3.2 (Neuer
16.0 bis 16.2/ NET Compiler)
Core 3.0 Preview

C# 8.0 RTM Visual Studio 2019 Visual C# 2018 3.3 (Neuer Compiler)
16.3/ NET Core 3.0

Tabelle: Verschiedene Versionsnummernzdhlungen fiir die Sprache C#

5.5

Microsoft hat einige Teile des .NET Framework unter dem Namen Common Language
Infrastructure (CLI) standardisieren lassen. Die CLI wurde erstmals im Dezember 2001 von der

Standardisierung

Fakten zu C# 19

European Computer Manufacturers Association (ECMA) standardisiert (ECMA-Standard 335,
Arbeitsgruppe TC49 / TG3, frither: TC39 / TG3, siche [ECMAO1]); mit kleinen Anderungen
wurde der Standard im Dezember 2002 von der weltweit wichtigsten
Standardisierungsorganisation, der International Standardization Organization (ISO),
iibernommen als ISO / [EC 23271.

Die Begriffe lauten in den Standards zum Teil allerdings anders als bei Microsoft: Was im .NET
Framework Microsoft Intermediate Language (MSIL) heift, entspricht im Standard der Common
Intermediate Language (CIL). Anstelle der Framework Class Library (FCL) spricht man von der
CLI Class Library. Von der Standardisierung ausgenommen sind jedoch z.B. die
Datenbankschnittstelle ADO.NET und die Benutzeroberfldchen-Bibliotheken Windows Forms
und ASP.NET Webforms. Auch die neueren .NET-Bibliotheken (WPF, WCF und WF) sind nicht
standardisiert.

Auch die Programmiersprache C# ist von beiden Gremien akzeptiert (ECMA-334 bzw. ISO / IEC
23270). Die Standardisierung bezieht sich aber auf éltere Versionen. Die letzten C#-Versionen hat
Microsoft nicht mehr standardisieren lassen. Die Standardisierung ist auf dem Stand C# 2.0

Ein weiterer, von Microsoft initiierter Standard ist von der ECMA im Dezember 2005 unter
ECMA-372 (Arbeitsgruppe TC49 / TGS, frither: TC39 / TGS) verabschiedet worden: C++ / CLI
ist eine Spracherweiterung fiir C++ (ISO / IEC 14882:2003), die eine elegantere Nutzung von C++
auf der CLI-Plattform ermdglicht, als dies bisher mit den Managed Extensions for C++ (alias
Managed C++) moglich war.

5.6 Implementierung des C#-Compilers

Die urspriingliche Version des C#-Compilers (csc.exe) wurde in C++ implementiert. Auch der C#-
Compiler im Mono-Projekt ist in C++ geschrieben.

Mit dem Projekt "Roslyn" (alias: .NET Compiler Platform) hat Microsoft selbst den Compiler neu
in C# implementiert. Die erste Version des neuen Compilers war C# 6.0.

5.7 Open Source

Bereits zu C# 1.0 gab es eine quelloffene Version im Projekt "Rotor" im Rahmen der
Standardisierung von C#. Diese war jedoch nicht "Open Source", sondern nur "Shared Source",
d.h. der Quellcode durfte betrachtet, aber nicht weiterverwendet werden. Seit C# 6.0 ist der neue
Compiler im Rahmen der .NET Compiler Platform "Roslyn" ein Open Source-Projekt auf Github.

Projekt fiir das Design der Programmiersprache:
https.//github.com/dotnet/csharplang
Projekt fiir die Implementierung der Programmiersprache:

https.//github.com/dotnet/roslyn

5.8 Kommende Versionen
Aktuell entwickelt Microsoft an der Version C# 8.0.

https://github.com/dotnet/csharplang
https://github.com/dotnet/roslyn

20 Fakten zu C#

59 Paritat und Co-Evolution mit Visual Basic .NET

Im Jahr 2010 hatte Microsoft verkiindet, die Programmiersprache C# und Visual Basic .NET
hinsichtlich ihrer Funktionalitit anzugleichen. »Die Sprachen sollen sich in Stil und Gefiihl
unterscheiden, nicht in ihrem Funktionsumfang«, schrieb Mads Torgersen, Produktmanager fiir C#
damals. Scott Wiltamuth fiihrt den Begriff "Co-Evolution" ein
[https://blogs.msdn.microsoft.com/scottwil/2010/03/09/vb-and-c-coevolution/].

Einige Jahre hat Microsoft diese Strategie tatsdchlich umgesetzt und bestehende Sprachfeatures,
die nur eine Sprache hatte, in der anderen Sprache nachgeriistet und neue Sprachfeatures
gleichzeitig oder zumindest zeitnah in beiden Sprachen verdffentlicht.

Im Jahr 2017 hat Microsoft sich von Paritdt und Co-Evolution wieder verabschiedet.

Visual Basic .NET ist nach C# die zweitwichtigste Programmiersprache in der .NET-Welt.
Telemetriedaten [https://blogs.msdn.microsoft.com/dotnet/2017/02/01/the-net-language-strategy]
von Microsoft zeigen einerseits, dass Visual Basic .NET hauptsichlich zur Programmierung mit
dlteren .NET-Techniken wie Windows Forms und ASP.NET Webforms zum Einsatz kommt.
Andererseits beginnen viele neue .NET-Entwickler mit Visual Basic .NET, bevor sie sich an C#
herantrauen. Microsoft nahm diese Erkenntnisse zum Anlass, von der im Jahr 2010 verkiindigen
Co-Evolutionsstrategie von C# und Visual Basic .NET abzuriicken und zukiinftig nicht mehr alle
neuen C#-Features automatisch auf Visual Basic .NET zu {ibertragen. Die parallel zu C# 7.0
erschienene Version 15 von Visual Basic .NET bietet daher lediglich Tupel und binére Literale als
neue Sprachfeatures an. Zudem kann Visual Basic .NET 15 C#-Methoden nutzen, die Zeiger mit
ref liefern, selbst aber solche Methoden nicht implementieren.

5.10 Neuerungen in C# 8.0

Die wichtigsten Neuerungen in C# 8.0 sind:

= Nullable Reference Types string? !.

= Standardimplementierungen in Schnittstellen (*)
= Index ~ und Range" (¥)

= Switch Expressions

Weitere Neuerungen in C# 8.0 sind:

= Null Coalescing Assignment ?7=

= Alternative fiir verbatim interpolated Strings: @$ zusétzlich zu $@
= Async Streams (*)

= Static Local Functions

= using-Deklarations ohne Blocke

= Unmanaged Constructed Types

= Readonly-Mitglieder in einer Struktur

= Dispose() fiir ref structs (Strukturen auf dem Stack)

Fakten zu C# 21

(*) erfordert .NET Standard 2.1, d.h. nur fir .NET Core, Xamarin, Mono und Unity.
Diese Sprachefeatures sind im klassischen .NET Framework nicht verfiigbar und Microsoft
plant auch nicht, diese dort noch einzubauen.

22 Grundkonzepte von C#

6 Grundkonzepte von C#

Konzeptionell wurde C# vor allem von C++ und Java beeinflusst; man kann aber auch Parallelen
zu Visual Basic und Delphi finden.

6.1 Sprachtypus

Im Gegensatz zu C++, das eine hybride Sprache aus objektorientierten und nicht-objektorientierten
Konzepten ist, ist C# ebenso wie Java eine rein objektorientierte Sprache, d.h., alle Datentypen
basieren auf Klassen und alle Anweisungen erfolgen in Klassen.

C# unterstiitzt alle zentralen Konzepte der Objektorientierung einschlieBlich Schnittstellen,
Vererbung und Polymorphismus. Schon in C# 2005 wurde auch die Unterstiitzung fiir generische
Klassen und partielle Klassen hinzugefiigt. Aullerdem besitzt C# Konzepte der funktionalen
Programmierung (Delegates und Lambda-Ausdriicke).

6.2 Grof- und Kleinschreibung

Ein wesentlicher Unterschied zwischen C# und Visual Basic .NET ist die Tatsache, dass C# im
Gegensatz zu Visual Basic .NET zwischen Grof3- und Kleinschreibung unterscheidet. Dies gilt
sowohl fiir die Schliisselworter der Sprache als auch fiir alle Bezeichner (a und A sind verschiedene
Variablen!). Die Schlisselworter der Sprache C# werden komplett in Kleinbuchstaben
geschrieben.

6.3 Schlusselworter der Sprache

Die folgende Liste zeigt die vordefinierten Schliisselworter der Programmiersprache C#. Diese
Namen diirfen in der gleichen GroB-/Kleinschreibung nicht als Bezeichner verwendet werden
(Quelle: https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/index).

abstract as base bool break
byte case catch char checked
class const continue decimal default
delegate do double else enum
event explicit extern tfalse finally
fixed float for foreach goto

a5 & implicit in int interface
internal is lock long namespace
new null object operator out
override params private protected public
readonly ref return shyte sealed
short sizeof stackalloc static string
struct switch this throw true

try typeof uint ulong unchecked
unsafe ushort using virtual void
volatile while

Grundkonzepte von C# 23

6.4 Namensregeln und Namenskonventionen

Bei der Vergabe von eigenen Bezeichner (z.B. Variablenname, Parameternamen, Atributnamen
und Methodennamen) gibt es verpflichtende Regeln und optionale Namenskonventionen.

Verpflichtende Regeln sind:

= Der Name darf nur Buchstaben (*), Zahlen und den Unterstrich enthalten.
= Der Name muss mit einem Buchstaben beginnen

= Die GroB3- und Kleinschreibung ist relevant

= Es dirfen keine Namen von C#-Schliisselwortern verwendet werden.

Hinweis: (*) Umlaute sind erlaubt, aber sollten dennoch besser vermieden werden: Nicht alle
Werkzeuge und alle Menschen kommen damit gut klar!

Optionale Regeln hat Microsoft in den ".NET Framework Design Guidelines"
[https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines] definiert. Die wichtigsten
Regeln dort sind:

= Fiir die GroB-/Kleinschreibung gilt grundsitzlich PascalCasing, d.h. ein Bezeichner beginnt
grundsitzlich mit einem GroBbuchstaben und jedes weitere Wort innerhalb des Bezeichners
beginnt ebenfalls wieder mit einem GroBbuchstaben.

Beispiel: KundenPortalBenutzer

= Ausnahmen gibt es fiir Abkiirzungen, die nur aus zwei Buchstaben bestehen. Diese diirfen
komplett in Gro3buchstaben geschrieben sein (z.B. UI und 10). Alle anderen Abkiirzungen
werden entgegen ihrer normalen Schreibweise in GroB-/Kleinschreibung geschrieben (z.B.
Xml, Xsd und W3c).

Beispiele: System.[O.File, System.Xml.XmlDocument

= Lokale Variablen, versteckte Attribute (private/protected) und Parameternamen sollen in
camelCasing (Bezeichner beginnt mit einem Kleinbuchstaben, aber jedes weitere Wort
innerhalb des Bezeichners beginnt mit einem GroBbuchstaben) geschrieben werden.

Beispiel: Login(KundenPortalBenutzer kundenPortalBenutzer)

6.5 Blockbildung und Umbriiche

Blockbildung findet im C / C++-Stil statt, also mit geschweiften Klammern { }. Befehlstrenner ist
das Semikolon (;).

Ein Zeilenumbruch kann zwischen den Elementen des Ausdrucks auftreten, ohne das besondere
Vorkehrungen getroffen werden miissen. Zahlen kdnnen seit C# 7.0 mit einem Unterstrich
gegliedert werden; aber man darf innerhalb von Zahlen keinen Zeilenumbruch haben.

// Formel ohne Umbriiche
double Ergebnisl = (2 + 3) * (5 + 6) * (7 * 8) + 3.141_592 653 59;

// Formel mit Umbriichen
double Ergebnis2 = (2 + 3) *
(5 + 6) *
(7 * 8)
+ 3.141_592_653 59;

24 Grundkonzepte von C#
6.6 Hello World

Das folgende Listing zeigt das Hello World-Beispiel in C#, das man in jeder Programmiersprache
zuerst schreibt.

using System;

namespace HalloWelt

{

class Program

{

static void Main(string[] args)

{
Console.WriteLine ("Hallo Welt!");

}
}
}
Mariginal komplexer ist diese Variante, die — sofern vorhanden — den ersten iibergebenen

Kommandozeilenparameter als Name auffasst und die Person mit Namen griif3t.

namespace HalloWelt

{

class Program

{

static void Main(string[] args)

{

if (args.Length > 0)

{
var name = args[0];
// Ausgabe mit String Interpolation
Console.WriteLine ($"Hallo {name}!");
Console.ReadLine() ;

}

else

{
Console.WriteLine ("Hallo Welt!") ;

}
}
}
}

6.7 Eingebaute Funktionen

Anders als in Visual Basic existieren in C# keine eingebauten Funktionen zur Typumwandlung
(z.B. CBool(), CInt(), CLng(), CType()), Zeichenkettenverarbeitung (z.B. InStr(), Trim(), LCase())
und Ausgabe (z.B. MsgBox()). Auch die My-Klassenbibliothek ist nicht vorhanden. Grundsétzlich
ist es moglich, die in Visual Basic eingebauten Funktionen und die My-Bibliothek durch
Referenzierung der Microsoft.VisualBasic.dll auch in C# zu nutzen. Dies sollte jedoch vermieden
werden, um sprachunabhéngig zu bleiben. Alle Visual Basic-Funktionen und -Objekte sind auch
in der .NET-Klassenbibliothek enthalten, z.B. String.IndexOf() statt InStr() und Convert.ToInt32()
statt Clnt().

Der C#-Compiler 25

7 Der C#-Compiler

Es gibt zwei Varianten des C#-Compilers: eine alte, in C++ geschriebene, und neue, in C#
geschriebene Implementierung.

71 Der urspriingliche (alte) C#-Compiler

Der Kommandozeilencompiler fiir C# im .NET Framework Redistributable ist csc.exe. Er wird
installiert im Verzeichnis C:\Windows\Microsoft. NET\Framework64\v4.0.30319. Alternativ kann
er in der .NET Framework-Klassenbibliothek im sogenannten "CodeDOM" durch die Klasse
Microsoft.CSharp.CSCodeProvider angesprochen werden.

Wenn Sie heute ein aktuelles Microsoft .NET Framework (z.B. 4.7.2) verwenden, so ist dort der
urspriingliche C#-Compiler immer noch in der Version 5.0 enthalten.

EX Eingabeaufforderung - m] x

Abbildung: In .NET Framework 4.7.1 ist der C#-Compiler fiir C# 5.0 enthalten.

711 Kompilierung mit csc.exe
Der Befehl

csc.exe Dateinamel.cs Dateiname2.cs DateinameX.cs
oder
csc Dateinamel.cs Dateiname2.cs DateinameX.cs

ibersetzt die angegebenen Dateien in eine Konsolenanwendung. Eine Datei, die als
Konsolenanwendung oder Windows-Anwendung kompiliert wird, muss genau eine Klasse mit
folgendem Einstiegspunkt besitzen: public static void Main().

Listing: »Hello World« in C#
class Hauptprogramm

{

public static void Main()

{
System.Console.WriteLine ("Hello World!") ;

}
}

7.1.2 Kommandozeilenparameter
Der Kommandozeilencompiler bietet zahlreiche Optionen. Die wichtigsten davon sind:
= /target:winexe Der Compiler erzeugt eine Windows-Anwendung

= Jtarget:library Der Compiler erzeugt eine DLL (kein Main() notwendig)

