Dr. Holger Schwichtenberg

C# 7.3 Crashkurs

Die Syntax der Programmiersprache C#
fir die Softwareentwicklung

in .NET Framework, .NET Core, Xamarin und Mono

83 //alt (seit .NET 4.0) Tupel sind Reference Types im Heap
84 Tuple<int, string, bool> dozent =

new Tuple<int, string, bool>(1, "Holger Schwichtenberg”, true);
86 Console.WriteLine($"Dozent mit der ID{dozent.Iteml}: {dozent.Item2} {(dozent.Item3 ?
“ist ein .NET-Experte” : "ist kein .NET-Experte.”)}!");
87 Console.WriteLine(dozent.Item2);

88 onsole.WritelLine(dozent.Item3);

90 // neu: Eingebaute C#-Tupel sind Value Types (System.ValueTuple)!!!

91 // Erfordert bei .NET < 4.7: https: ackages.nuget.or ackages/System.ValueTuple

9 Conso e.writeLjne(doiéﬁtE.ItemB);

94 Console.WritelLin|

92 var dozent2 = (1, "Holger Schwichtenberg"”, true); // Tupeldeklaration!

{dozent2.Item2}
{(dozent2.Item3

98 // neu: benannte Tupels, mit var

)9 var dozent3 = (ID: 1, Name: “Holger Schwichtenberg”, DOTNETExperte: true); //
Tupeldeklaration mit Namen!!!

Console.WriteLine($"Dozent mit der ID{dozent3.ID}: {dozent3.Name}
{(dozent3.DOTNETExperte ? "ist ein .NET-Experte!™ : "")}");

01 Console.WriteLine(dozent3.1ID);
92 Console.WritelLine(dozent3.Item2);

Console.WriteLine(dozent3.DOTNETExperte);

®

_—www.IT-Visions.de
~—

Dr. Holger Schwichtenberg

?



Inhaltsverzeichnis

Verlag:
ISBN:

Version:

Sprachliche Korrektur:

Formatierung:
Bezugsquelle:

Bezugsquelle:

www.[T-Visions.de, Fahrenberg 40b, D-45257 Essen /wwwﬁw
3934979317 Dr. Holger Schwichtenberg
2.1.2/29.08.2019

Katrin Lettau und Matthias Bloch

Katrin Lettau

https://www.amazon.de/exec/obidos/ASIN/3934279317 /itvisions-2 1

https://leanpub.com/CSharp73Crashkurs



https://www.amazon.de/exec/obidos/ASIN/3934279317/itvisions-21
https://leanpub.com/CSharp73Crashkurs

Inhaltsverzeichnis




4 Inhaltsverzeichnis

Inhaltsverzeichnis
1 INhaltSVEIZEICHNIS .....coviiiiiiiiiiiiiiiic et e 4
2 VOIWOIT ..ottt e et 9
3 UDEE EN AULOT ..ottt 10
4 Uber dieses BUCKIEIN ..........o.oveiuieiieiiiieieieiieieie et 10
4.1 Versionsgeschichte dieses BUChICINS ..........c..eeevriiiiiiiiiieeiiiieeciee e 11
4.2 Geplante TREMEN .......ccooiiiiieeiiiee ettt e et e e e etbe e e e sstaeeesesaeeeenens 12
4.3  Programmcodebeispiele zu diesem Bichlein..........c.ccoeevviieiiiiieiniiiiicieec e, 12
5 FaKIEN ZU CHuoneiiiiiicieec et e 14
5.1 Der Name CH....oooniiiiiie e 14
5.2 UISPriinge VON CH ....oooiiiiiiiiiiieeiie ettt ettt e e 14
5.3 Status der Programmiersprache CH..........ccoooiiiiiiiiiiiiiii et 14
54 VersionsesChICIE. .....c...oiiiiiiiiii e 16
5.5 StandardiSIEIUNG.........coiuuiiiiieeiie ettt ettt ettt et eaaeeen 17
5.6  Implementierung des CH-COMPILETS. .......cceiiiiieiiiiiiieeie et 18
5.7 OPCI SOUICE. ....eeeeeuiiiteeaiitieeeaiitte e ettt e ettt e e ettt e ettt e e ettt e e e sataeeeabbteeeanbteeeenbaeeesnaenes 18
5.8 Kommende VETISIONEI .. ....c.coouiiiiiiiiiiiiiiiieeie ettt ettt ettt et e 18
5.9  Paritdt und Co-Evolution mit Visual Basic .NET..........cccccoviiiiiiniiniiniiniincceeen 18
6 GrundkonzZepte VON CH ......cc.ei ittt ettt et et e e stte e st e e eaee e 20
6.1 ] 01 1e] 113 013 TSP 20
6.2  GroB- und KIeinSChIeibUNG. ........cccuiiiiiiiiie ettt 20
6.3 Schliisselworter der SPrache ..........c.eeivieiiiieiie ettt 20
6.4  Namensregeln und Namenskonventionen..............cccceeeeeeiiriiiiienniieee s 21
6.5  Blockbildung und UmbIliche ...........cocouiiiiiiiiiiiieiieciie et 21
6.6 HElo WOTIA ..o e 22
6.7  Eingebaute FUNKONEN ........ccouuiiiiiiiiieiiiee ettt 22
T Dt CH-COMPIIET .....oeeiiiieeiie ettt et e et e et e e e aee e e e sneteeeeeneeeens 23
7.1 Der urspriingliche (alte) CH-ComPiler............oeeiiiiiiiiiiieeeiee e 23
7.1.1 Kompilierung Mit CSC.EXE ...eeuvvreeeiiieeeeiiieeeeiiieeeeiieeeeeeeeeeeeieeeeeneeeeesnaeeeeenees 23
7.1.2 Kommandozeilenparameter............cooveerieerieiniitinieenieenieesie e 23
7.2 Der aktuelle (neue) CH-COMPILET......c.c.eoriiiriiiiiniiiiiiieet e 26
7.2.1 Versionsnummern des COmMPIlers.........oocueerieirniiiiniieniienieeiiee e 27

7.2.2 Kommandozeilenparameter............cooveerieerieiriieinieenicenie et 27



Inhaltsverzeichnis 5

8  Erste Schritte VIiSual StUAIO.......cc.cooiiiiiiiiiiiiiiiiiieeeeceeeeeeee e 31
8.1  Hello World mit dem .NET Framework ...........cccccocevviiniiniiiiiiiiicccccceee 31
8.2 Hello World mit .INET COT€.....cc.cooiiriiniiniinienieciecieeece e 36
8.3  Festlegung der Compilerversion in Visual Studio........c..ccceevveeeriiiienncieie e, 40

L N D 1 1<) 11 o 1 PO PPPRPR 41
9.1  VariablendeKIarationen. ...........cocueeviieiiiiiiiniiiiieieeie e 42
0.2 TypinitialiSICIUNG ... .eeeeiviieeeeiiieeeiiieeeertiee e et e e e etreeeesrbeeeestbeeeesssaeesesraeeesnssaeesnnnnes 42
9.3  Literale fiir Zeichen und Zeichenketten ............coceevuieiiiniiiniienienieiceceeec e 43
9.4  String INterpolation ...........ceevuiieieiiiie ettt e et e et re e e erae e e ae e e 44
9.5 Zahlenliterale ..........cocerviiiiiiiiiiiiiitec e 44
9.6 DatumsSlterale.........cocerviiiiiiiiiiiiiitie e 45
9.7 Lokale Typableitung (Local Variable Type Inference) ........c..ccceeveeeniienieenicninneenn 45
9.8  Gilltigkeit vOn Variablen ............cocuiiiiiiiiiiiit et 46
0.9 TYPPIUIUNZEN. ...ttt ettt ettt ettt e st e et e et e e eteesnneeens 46
9.10  TYPKONVETTIETUNG ... .eeenetieeitieetie et et te et e ettt ettt et e et e etteesateesmbeeebeeenebeeeneeeanneeans 47
9.11  DynamiSChe TYPISIEIUNG ......cceiuuieiuiieiiiieetie ettt ettt et eeeiteesite e eeeseeeeseeeeseaeesnaeaans 48
9.12  Pattern MatChING .......coeiiiiiiie ettt et e e 49
9.13  Wertelose Wertetypen (Nullable Value Types).......ccceeeeiariianiieniieeieeie e 50

LU @ 0T 21101 1<) | PSPPSR 54
(O R @ 0T v 110 ) S PP 57
10.2 Operator NAMEOT() .. ....eeeeee ettt ettt ettt ettt e et e e et e e satee et e e saeeeeneeas 57

T1 SCRIEIRIL ...ttt e 58
11.1  Iterator-Implementierung mit yield (Yield Continuations) ...........cecceeevveeeiuereneeennen. 59
11.2  Praxisbeispiel fir yield..........ccoiiiiiiiiiiie e 60

12 VOIZWEIGUNZEIL. ..cnieiieeiiiiee et ie et e e ettt e et e e ettt e e ettt e e e st e e e anseeeeeaneteeeeneeeeeenneeeeennns 63

13 KIaSSENAETINITION ...cvvieuiieiiieiieieeieei ettt sttt et 64
13.1  KlassendefINItioneN . .....coc.eiiuiiiiiiiniiiiiit ettt 64
13.2 KIaSSeNVEIrWENAUING .....ccueieeeiiiieeeiiiee et e ettt e ettt e e et e e e et e e e e teeeeeenteeeesneeeeeennes 65
13.3  Geschachtelte Klassen (eingebettete KIassen) .........ccceeveuieeeriiireriiiiieniiiee e 66
13.4  Sichtbarkeiten/ZugriffSmodifiZierer. ..........ccoviiiriiiniiiniiiicec e 66
[3.5  StatisSChe KIASSEM......cceiiiiieeiiiie ettt ettt e et e et e e ettt e e s sntee e e s nteeeesntaeeeennneens 67

L4 SHUKLUICI ...ttt e e et te e e ettt e e e s tteeeesneaeeesnntaeesensseeessnsaeeeennneens 68

14.1  Wertetyp versus Referenztyp.......cccueevieeiiiiiiiiiniieiieeieceec e 68



6 Inhaltsverzeichnis
14.2  Deklaration von StrUKtUIEI. .........cocuiiiiiiiiiiiiii et 70
14.3  Verwendung von SrUKEUICN ...........viiiiiiieeeeiieeeeiieeeeiieeeeeiteeeesereeeseereeeeenraeeseenneens 71

15 Attribute (Fields und Properti€s) .........cccueeeriieieriiiieeeeiieeeeiieeeesiieeeeereeeesereeesssaeessenneens 73
15.1 Abweichungen von der Informatik.............ccccueieiniiiiiniiiieeiee e 73
15.2  Felder (FIield-AttriDULE) .....ceeeiiiiieeiieeeeiie et eeitee et e et e e e tve e et e e e eereeeeennes 74
15.3  Eigenschaften (Property-AttribUute) ........ccvveereuiiieeriiiieeeiie e 75

15.3.1  EXPliZite Properti€s.......ccceiviieeiiiiieeeiiiieeeiiieeeeieeeestreeeeireeeseserneeessneeessnnneeennes 75
15.3.2 AutomatiSChe Properties .........ccccviiieriviiieeiiieeeiiieeeeiieeeeeiee e e evee e e eiree e e eavee e 76
15.3.3  Zusammenfassung zZu Properties ...........ceevvvveieieiireeriiiieeeiiieeeesieeeesiveeeesneeee e 77

16 MEthOTEI ..ottt et e 79
16.1 Methodendefinition und RUCKZabEWETTE ..........vvveeiiiiiiiciiieeeciiee e 79
16.2  MethOdenParameEter...........veeervieieeirieeeeirieeeeiteeeerrteeeeereeeesareeeeeareeeeseraeeeeareeeesnnnes 79
16.3  Optionale und benannte Parameter..............coceviieeriiiiieiiiiee e 80
16,4 RefUNA OUL ..oouiiiiiiiiiiiiic ettt ettt 81
16.5 Statische Methode als globale Funktionen..............cocceeiiiiiiiniiiniiee e, 82
16.6  Lokale Funktion (ab C# 7.0)......oceeiiiiiiiiieeeciee ettt e 83
16.7  Caller-Info-ANNOtAtIONEI .. ..eouviitieiieieeieeieeie ettt ettt ettt stee st e sieenieens 83

17  Konstruktoren und DestruKtOrem. .........ovuveriieriierienieniiiniertcete et 86

18  Aufzdhlungstypen (ENUMETation) ..........ueeiiiiiiiieitie et ettt e e e ens 89

19  Expression-bodied MEMDETS ..........ccuieiiiiiiiiiiie ettt eee e e e 90

20 ObJeKtNIEIAIISIEIUNG ....eeeuitiiiieiiieeiie ettt et e ettt ettt e et e et eetteeseteesnbeeebeeeeeeeanseeanneeans 91

21 Behandlung von NULL..........ooiiiiiiiii ettt 92

22 Partielle KIASSEI ... .coouiiiiiiiiiiiiieeiee ettt ettt e 95

23 Partielle MEethOden.........coouiiiiiiiiiiiiiiieiiet e e 96

24 Erweiterungsmethoden (Extension Methods)..........ccoocuieiiiiiiiiieniieniie e 97

25 Annotationen ((NET-ALIDULE) ...ccccuvviiiiiiieeiiiiiiieee e ettt e e et e e e e e e e eraraeeaaeeeseneens 99

26 GeneriSChe KIASSEI......uiiuiiiiiiiiiiiiiiiiiiie ettt 102
26.1 Definition einer generischen Klasse ............oooioiiiiiiiiiiiiiiiieiee e 102
26.2  Verwendung einer generischen KIasse ...........ccovviiiiiiiiiiiiiiiiiieee e 102
26.3  Einschrinkungen fiir generische Typparameter (Generic Constraints)...................... 103
26.4  Kovarianz fir TYPParameter........ccocueirieieriienieeniie et eniteesree sttt et esiee e 103

27 ObBJEKEMENZEN....ceuutiiriiiiiiiieeiie ettt ettt ettt ettt et s e e be e e saee e sabe e sttt enbeeenanees 107
27.1  EINFACKE ATTAYS ...eeiiiiiiiiiiiiieeie ettt e 107

27.2  Objektmengen (untypisiert Und tyPISIETt) .......ccvveeerrvieerriiieeeerireeeenireeeeireeeeeeaeeeenes 107



Inhaltsverzeichnis 7

28 ANONYIME TYPEI .etiiiiiiiiiiiiiiiee ettt e ettt e e e e e sttt et e e e e e ssabttteeeeeesannnnbereeaeeessananes 109
T N 1 T< PP SPSUPS 110
29.1  Alte Tupelimplementierung mit System.Collections. Tupel............cccceeerevereerinerens 110
29.2  Neue Tupelimplementierung in der Sprachsyntax...........cccceeveveeieniiieeeiiveeeeniieeennns 110
29.3  DeEKONSIUKLION. ¢...eeutieiiientieniieiieitett ettt 111
29.4  Serialisierung VON TUPEIN........c.oeiiiiiiiiiiiiiie e eree e e eeeraee e 113
29.5  Vergleich von Tupeln (CH# 7.3) .oveieiiiee ettt vee e e s eraee e 113
30 ImplementierungSVEIEIDUINEZ ... ...cccuviieerireeeeirieeeitreeeestreeeeereeessnreeeesssreeesssraeeessseeessnnses 114
31 Schnittstellen (INterfaCS).......vviieriuiiiieiiiee et e e 116
32 NamenSraume (NAMESPACES)......ccrurrreerrreeeerirrreeirreeeeirreeeassreeeesssseeesssseeessssseesssseeessnsses 117
32.1 Softwarekomponenten versus Namensraume ............cccvveeereuvreeernveeessrveeessnreeesnnnnns 117
32.2  Vergabe der Namensraumbezeichner.............ccoovuieiiiiiiiiiiii e 118
32.3  Vergabe der TYPNAMEN ......c.ooiiuiiiiiieiiieiiee ettt ettt e 119
32.4 Namensraume deKIarieTen ............coceerierierieniinienienieneene ettt 119
32.5  Import VON NaMENSTAUMETL. .....eeeiuuiieeiiiieeiiiiieeeitieeeeritteeeatteeeasibeeeeanabeeeesareeesannees 120
32.6  Verweis auf Wurzelnamensraume. ........c..eeoueereerieenienienieneeneenienieeniee e 120
32.6.1  BISPIL .ottt et et e e 120

33 Operatoriberladtng ...........cc.ciiiiiiiiieiie ettt 122
34 Funktionale Programmierung in C# (Delegates / Lambdas)............cccoeeeriiirenienienienns 123
i B B TS (<o USSR 123
34.2  Vordefinierte Delegates Action<T> und Func<T> ..........c.cccoiiiiniinniiinniieeeen, 125
34.3  Préadikate mit Predicate<T> .........cocoiiiiiiniiniinieieeetee e 126
344  Lambda-AuSArliCKe .........cooieriiiriiiniiiiieiieieenieest et 127
T o (3 1401 ] PP 131
35.1 Definition VOn EI@IZNiSSeN ... ..ceeiiuiiiiiiiieiiiiiie ettt e 131
352 Ereignis QUSLIOSEIL. .. ..eeiiiiiiiiiiiiee ettt ettt e e e 131
35.3  Ereignisbehandlung.............cccoiiiiiiiiiiiiiie e 132
36 LaufZeitfehler .....c.cooiiiiiiiiiiii e 133
36.1  Fehler abfangen.........cooouiiiiiiiiiiiiie e 133
36.2  FEhler QUSIOSEN. ... .ueiieeiiiie ettt et e 134
36.3  Eigene Fehlerklassen.......ccocuiiiiiiiiiiiiiiiiieiic e 135
37 Kommentare und XML-DoKUMENtation ...........ceceuireriiireerriiiieesiieeeesieeeeeeneeeeeneee e 136

38 Asynchrone Ausfithrung mit async und aWait .........c.ccceeveirriieniienieeneeeec e 138



8 Inhaltsverzeichnis

38.1 Async und await mit der NET-Klassenbibliothek.............ccccccverriiiiiiniiiieniireeeee, 138
38.2  Async und await mit eigenen Threads..........cccveeveiiiieriiiieiiiieeeee e 139
38.3  Weitere MOGIChKEILEN .....cceeuiiiiieiiii et 140
39 ZeigerPrOZIAMIMICTUINE .....cccuvreeererrreeaerreeeannseeesssseeessssseeesssaeesssssseesssssseesssseessnsseeesnnssns 141
39.1 Zeigerprogrammierung mit UNSAfe ........c..eeeveviieeriiiiieeiiieeeiiieeesiiee e e 141
39.2  Zeigerprogrammierung mit ref (Managed Pointer) ............cccvvveeviieeeeniiee e, 143
40 Abfrageausdriicke /Language Integrated Query (LINQ) .......cccvvieiriieeeniiieeeiieeeeriieee s 146
40.1  Einfihrung und MOtVATION. ........ccoiviiieeiiiieeeiieeecieeeesiveeeesrreeeeereeeesereeeesnraeeeanes 146
40.2  LINQ-PIrOVIAET.....uuuviiiiiei et e e e e e e e et ar e e e e e e e e eeanns 147
40.2.1  LINQ-Provider von Microsoft im .NET Framework ...............ccccceevvveiiiiiinnnn. 147
ANdere LINQ-PrOVIAET .......oviiiiiiiiiiiiiee et e e e e eaaaee e e e e e eeaaes 147
40.2.2  Formen von LINQ .......ooooiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee ettt aaaaaeesaaaaaaees 147
40.2.3  Einfithrung in die LINQ-SYNtaX ........cccciiiiiiiiiieie e 148
Ubersicht iiber die LINQ-Befehle.............ccocvoviveeieeeeeeeeeeeeeeeeeeeeeeeeeeeee e 152

L I 1 0\ (@ R 0 o) =T £ F USSP PR 159
40.3.1  LINQ to Objects mit elementaren Datentypen ...........ccceccveeereeenieeniieniiienieenns 159
40.3.2  LINQ to Objects mit komplexen Typen des .NET Framework ...............cc..c.... 163
40.3.3  LINQ to Objects mit eigenen Geschéftsobjekten...........c.ccooeviiiiiiniieniinnienns 166
40.4 Parallel LINQ (PLINQ) ....utiiiiiiiiieiiiieeecieee ettt e e e e e save e e e s aveeeesavneaeanes 171
41 Syntaxreferenz: C# versus Visual Basic NET .........ccccciiiiiiiiiiiie e, 174
42 AUSDICK QU CH 8.0 ..ottt 180
42.1 Nullable Reference Types (C# 8.0) ....coiueieiiieiiieeiie et 180
42.1.1  C# 7.3 erkennt die Programmierfehler nicht ..............c.cocooiiiiiiiiiniiines 180

o B O N (I N 0 1<) V<) RSP UPRI 181
42.1.3  Einstellen der Compiler-Version ..............cccueeruererieeriiesieeiieeesiieesiveeseeeseeeens 182

422 RANEES (CH 8.0) weriiiiiieiiiie ettt e e et e e 183
43 Quellen im INEEIMEE .....cc.eiiiiiieeeeeeeeeee et e e e ettt e e e e e e e ebrbr e e e e e e e ssnnnbareeeaeeesananns 184
44 Stichwortverzeichnis (INAEeX)........cocuiiiiiiiiiieee e 185

45 Werbung in eigener Sache ©..........ccoociiiiiiiiiiie e 191



Vorwort 9

2 Vorwort

Liebe Leserinnen und Leser,

der "C# Crashkurs" ist ein prignanter Uberblick iiber die Syntax der Programmiersprache C# in der
aktuellen Version 7.3.

Dieses Biichlein ist geeignet fiir Softwareentwickler, die von einer anderen objektorientierten
Programmiersprache (z.B. C++, Java, Visual Basic .NET oder PHP) auf C# umsteigen wollen oder
bereits C# einsetzen und ihr Wissen erweitern insbesondere die neusten Sprachfeatures kennenlernen
wollen. Wir schulen bei www.IT-Visions.de jedes Jahr hunderte Entwickler auf C# bzw. die neuste
Version der Sprache um. Da es viele Umsteiger von Visual Basic .NET zu C# gibt, werden hier die
Unterschiede von C# gegeniiber Visual Basic .NET an einigen Stellen hervorgehoben.

Fiir Neueinsteiger, die mit C# erstmals eine objektorientiere Programmiersprache erlernen wollen, ist
es nicht geeignet.

Es erhebt nicht den Anspruch, alle syntaktischen Details zu C# aufzuzeigen, sondern nur die in der
Praxis am wichtigsten Konstrukte.

In diesem Biichlein werden bewusst alle Syntaxbeispiele anhand von Konsolenanwendungen gezeigt.
So brauchen Sie als Leser kein Wissen tiiber irgendeine GUI-Bibliothek und die Beispiele sind prignant
fokussiert auf die Syntax.

Dieses Biichlein wird vertrieben iiber Amazon.de

= Kindle-E-Book von Amazon.de fiir 9,99 Euro (der Autor erhélt 5,56 Euro):
www.amazon.de/exec/obidos/ASIN/BO7G2STYMH/itvisions-21

= Gedruckt (Print-on-Demand) bei Amazon.de fiir 14,99 Euro (der Autor erhélt 5,53 Euro):
www.amazon.de/exec/obidos/ASIN/3934279317/itvisions-21

= PDF bei leanpub.com fiir 10,99 Dollar (der Autor erhilt ca. 8,93 Euro):
www.leanpub.com/CSharp8

Da solch niedrige Preise leider nicht nennenswert dazu beitragen konnen, den Lebensunterhalt meiner
Familie zu bestreiten, ist dieses Projekt ein Hobby. Dementsprechend kann ich nicht garantieren, wann
es Updates zu diesem Biichlein geben wird. Ich werde dann an diesem Biichlein arbeiten, wenn ich
neben meinem Beruf als Softwarearchitekt, Berater und Dozent und meinen sportlichen Betitigungen
noch etwas Zeit fiir das Fachbuchautorenhobby {ibrig habe.

Zudem mochte ich darauf hinweisen, dass ich natiirlich keinen kostenfreien technischen Support zu den
Inhalten dieses Biichleins geben kann. Ich freue mich aber immer iiber konstruktives Feedback und
Verbesserungsvorschlige. Bitte verwenden Sie dazu das Kontaktformular auf www.dotnet-doktor.de.

Wenn Sie technische Hilfe zu C# und seinen Einsatzgebieten (NET, Mono, Xamarin) oder anderen
Themen rund um Visual Studio, Windows oder andere Microsoft-Produkte benétigen, stehe ich Thnen
im Rahmen meiner beruflichen Téatigkeit fiir die Firmen www.IT-Visions.de (Beratung, Schulung,
Support) und 5Minds IT-Solutions GmbH & Co KG (Softwareentwicklung, siche www.Sminds.de)
gerne zur Verfligung. Bitte wenden Sie sich fiir ein Angebot an das jeweilige Kundenteam.

Auf der von mir ehrenamtlich betriebenen Leser-Website unter www.IT-Visions.de/Leser, konnen Sie
die Beispiele zu diesem Biichlein herunterladen. Dort miissen Sie sich registrieren. Bei der Registrierung
wird ein Losungswort abgefragt. Bitte geben Sie dort The Orville ein.

Herzliche Griifle aus Essen, dem Herzen der Metropole Ruhrgebiet

Holger Schwichtenberg


http://www.dotnet-doktor.de/
http://www.it-visions.de/
http://www.5minds.de/
http://www.it-visions.de/Leser

10

Uber den Autor

3

Uber den Autor

Studienabschluss Diplom-Wirtschaftsinformatik an der Universitit Essen

Promotion an der Universitit Essen im Gebiet komponentenbasierter
Softwareentwicklung

Seit 1996 selbststindig als unabhdngiger Berater, Dozent, Softwarearchitekt und
Fachjournalist

Fachlicher Leiter des Berater- und Dozententeams bei www./T-Visions.de

Leitung der Softwareentwicklung im Bereich Microsoft/.NET bei der 5Minds IT-
Solutions GmbH & Co. KG (www.5Minds.de)

Uber 65 Fachbiicher beim Carl Hanser Verlag, bei O'Reilly, Microsoft Press, . ®
APress und Addison-Wesley sowie mehr als 1000 Beitrdge in Fachzeitschriften /m_?' Visions.de
Gutachter in den Wettbewerbsverfahren der EU gegen Microsoft (2006-2009)

Standiger Mitarbeiter der Zeitschriften iX (seit 1999), dotnetpro (seit 2000) und M d
Windows Developer (seit 2010) sowie beim Online-Portal heise.de (seit 2008) 1N S

Dr. Holger Schwichtenberg

-SOLUTIONS
RegelmaBiger Sprecher auf nationalen und internationalen Fachkonferenzen (z.B.

Microsoft TechEd, Microsoft Summit, Microsoft IT Forum, BASTA, BASTA-on-Tour, .NET Architecture
Camp, Advanced Developers Conference, Developer Week, OOP, DOTNET Cologne, MD DevDays,
Community in Motion, DOTNET-Konferenz, VS One, NRW.Conf, Net.Object Days, Windows Forum,
Container Conf)

Zertifikate und Auszeichnungen von Microsoft:
o Microsoft Most Valuable Professional (MVP)
o Microsoft Certified Solution Developer (MCSD)
Thematische Schwerpunkte:
o Softwarearchitektur, mehrschichtige Softwareentwicklung, Softwarekomponenten, SOA
Visual Studio, Continous Integration, Continous Delivery, Azure DevOps
Microsoft NET Framework, C#, Visual Basic
NET-Architektur/Auswahl von .NET-Technologien
Einfithrung von .NET Framework und Visual Studio/Migration auf .NET

Webanwendungsentwicklung und  Cross-Plattform-Anwendungen —mit HTML, ASP.NET,
JavaScript/TypeScript und Webframeworks wie Angular

O O O O O

o Enterprise .NET, verteilte Systeme/Webservices mit .NET, insbesondere Windows Communication
Foundation und WebAPI

o Relationale Datenbanken, XML, Datenzugriffsstrategien

o Objektrelationales Mapping (ORM), insbesondere ADO.NET Entity Framework und EF Core

o Windows PowerShell, PowerShell Core und Windows Management Instrumentation (WMI)
Ehrenamtliche Community-Tatigkeiten:

o Vortragender fiir die International .NET Association (INETA)

o Betrieb diverser Community-Websites: www.dotnet-lexikon.de, www.dotnetframework.de,
www.windows-scripting.de, www.aspnetdev.de u. a.

Firmenwebsites: Attp.://www.IT-Visions.de und http://www.5Minds.de
Weblog: http://www.dotnet-doktor.de

Kontakt fiir geschéftliche Anfragen via Kundenteam:
E-Mail kundenteam@IT-Visions.de sowie Telefon 0201 / 64 95 90 - 0

Kontakt fir Feedback zu diesem Buch: Kontaktformular auf Atp:/www.dotnet-doktor.de


http://www.it-visions.de/

Uber dieses Bichlein 11

4 Uber dieses Biichlein

4.1 Versionsgeschichte dieses Bilichleins

Die folgende Tabelle zeigt die Versionen, die von diesem Biichlein erschienen sind, sowie die darin
besprochenen C#-Versionen.

Erginzungen der Versionsnummer an der dritten Stelle (z.B. 1.2.3) sind kleine Korrekturen im
Biichlein, die nicht explizit in dieser Versionstabelle erscheinen.

Buchversion = Umfang Preis Kindle-  Preis C#- Bemerkung
Datum Ausgabe gedruckte Version
Ausgabe

1.0 166 Seiten 9,99 € 14,99 € 7.2 =  Grundversion
27.03.2018
1.1 167 Seiten 9,99 € 14,99 € 7.2 = RefLocal
20.07.2018 (7.3) Reassignment (C#

7.3)

=  Ausblick auf C#

8.0
2.0 172 Seiten 9,99 € 14,99 € 7.3 = Vergleich mit
21.07.2018 8.0) Tupeln (C# 7.3)

= Annotationen fiir
Backing Field von
Auto-Properties
(C#1.3)

= Verbesserungen
fiir unsafe-Blocke

(C#1.3)
= Ranges (C# 8.0)
2.1 189 Seiten 9,99 € 14,99 € 7.3 = Kapitel
27.11.2018 (8.0) "Grundkonzepte

von C#" erweitert

= Kapitel "Attribute
(Fields und
Properties)"
erweitert

= Kapitel
"Ereignisse"
iiberarbeitet

= Kapitel
"Funktionale
Programmierung
in C#" erweitert



12 Uber dieses Biichlein

= Kapitel
"Behandlung von
null" ergénzt

4.2 Geplante Themen

Folgende Themen sind fiir kommenden Ausgaben dieses Biichleins geplant:
*  Span<T>/Memory<T> (C# 7.2)

=  Aliase fiir referenzierte Assemblies

= [Disposable

*  Indexer

*  Design Pattern in C#

= (Clean Code-Programmierung mit C#

= Weitere Neuerungen in C# 8.0

4.3 Programmcodebeispiele zu diesem Buchlein

Die Programmcodebeispiele zu diesem Biichlein kdnnen Sie auf der auf der von mir ehrenamtlich
betriebenen Leserwebsite www./T-Visions.de/Leser herunterladen. Dort miissen Sie sich
registrieren. Bei der Registrierung wird ein Losungswort abgefragt. Bitte geben Sie dort das
Losungswort The Orville ein.

Alle Programmbeispiele aus diesem Biichlein sind in einem Visual Studio 2017-Projekt enthalten,
organisiert und in Unterordnern nach Sprachversionen aufgeteilt. Dies heif3t, dass Sie zum Beispiel
Sprachfeatures von C# 7.0 im Ordner CS70 finden.

Wie im Vorwort bereits erwahnt handelt es sich um den Anwendungstyp "Konsolenanwendung".
So brauchen Sie als Leser kein Wissen iiber irgendeine GUI-Bibliohek und die Beispiele sind
prignant fokussiert auf die Syntax.



Uber dieses Bichlein

13

Solution Explorer

e o-CaEm f-

Search Solution Explorer (Ctrl=u)

Em Solution 'CSharpSprachsyntax’ (2 projects)

- CSharpSprachsyntax

b
b

b
b
b
b
b
b
b
4

v v

Abbildung: Programmcodebeispiele zu diesem Biichlein in einem Visual Studio-Projekt

a}' Properties

=B References
CS-Poster 2015 (zu CS60)
CS10_NET10_2002
CS20_NET20_2005
CS30_NET35_2008
CS40_NET40_2010
CSS50_NET45_2012
CS60_NET46_2015
CS7O_NET46_2017

P &C* CST0_AsyncReturn.cs

P &C* CS70_Demos_Ref.cs

P &C* CS70_Sonstiges.cs

P &C* CS70_Tupel.cs
CS71_Aug2017
CS72_Nov2017
Objektmodell

EQ App.config

Eﬂ packages.config

a ©* Program.cs

7B readme.txt

gt



5 Fakten zu C#
5.1 Der Name C#

C# wird gesprochen ,,C Sharp®. Das # konnte man auch in ein vierfaches Pluszeichen aufspalten
(also C++++, eine Weiterentwicklung von C++). Urspriinglich sollte die Sprache "Cool" heillen.
Eine Zeit lang wurde auch "C# .NET" verwendet; das ist heute aber nicht mehr {iblich. Microsoft
spricht aber gelegentlich noch von "Visual C#", z.B. meldet sich der Kommandozeilencompiler
von C# auch in der aktuellen Version mit "Microsoft (R) Visual C# Compiler".

5.2 Urspriinge von C#

C# ist das Ergebnis eines Projektes bei Microsoft, welches im Dezember 1998 gestartet wurde,
nachdem die Firma Sun Microsoft die Verdnderung der von Sun entwickelten Programmiersprache
Java verboten hatte. Vater von C# ist Anders Heljsberg
[https://de.wikipedia.org/wiki/Anders_Hejlsberg], der zuvor auch Turbo Pascal und Borland
Delphi erschaffen hat.Er war frither bei Borland und arbeitet seit 1996 bei Microsoft. Heutzutage
ist er auch verantwortlich fiir die Sprache TypeScript.

5.3 Status der Programmiersprache C#

Friiher gab es einen wahren Glaubenskrieg in der .NET-Entwicklergemeinde um die Wahl der
wrichtigen« Programmiersprache. C# oder Visual Basic .NET hiel die Frage, die viele
Projektteams bewegt hat. Auch wenn Visual Basic .NET in allen wesentlichen Punkten syntaktisch
ebenbiirtig war, hat C# klar gewonnen.

C# ist heute nicht nur eine von vielen Programmiersprachen fiir .NET, es hat sich durchgesetzt als
DIE Programmiersprache fiir NET. Gegenwirtig gibt es nur noch wenige .NET-Projekte, die
Visual Basic .NET, F# oder C++/CLI oder exotischere Sprachen verwenden.

Schaut man in die aktuelle Dokumentation der .NET-Klassen auf Attps.//docs.microsoft.com, sieht
man dort nur noch Beispiele fiir C#, wihrend die alte MSDN-Dokumentation noch Beispiele in
C#, Visual Basic .NET, und C++ enthielt.



Fakten zu C#

15

B% NET API Browser | Micre X%

e

Abbildung: Beispiele in vier Sprachen in der alten MSDN-Dokumentation der .NET-Klassen

e INLT FIITEWUTK Cidss LIUTary

-

X | & Sicher | https;//msdn.microsoft.com/library/system.diagnostics.process(v=vs.110).aspx?cs-save-lang=18.cs-lang =csharp#code-snippet-1

PerformanceCounterType
Enumeration

PresentationTracelevel
Enumeration

PresentationTraceSources Class

Process Class

» Process Methods

» Process Properties

» Process Events
Pracess Constructor

ProcessModule Class

ProcessModuleCollection Class

ProcessPriorityClass Enumeration

ProcessStartinfo Class

ProcessThread Class

ProcessThreadCollection Class

ProcessWindowStyle Enumeration

SourceFilter Class

Sourcelevels Enumeration

SourceSwitch Class

StackFrame Class

o IYSIENLUIAYIIUSULS 1NaITIEsauEs  ~

. Process Class (System.Di: X

SYSENLUIAYIIUSLLS =

Process Class

.NET Framework (current version) QOther Versions -

System_CAPS_note Note

The .NET API Reference documentation has a new home, Visit the .NET API Browser on
decs.microsoft.com to see the new experisnce.

Provides access to local and remote processes and enables you to start and stop lecal system
processes.

To browse the .NET Framework source code for this type, see the Reference Source.

Mamespace: System.Diagnostics
Assembly: System (in System.dll)

Inheritance Hierarchy

System.Object
System.MarshalByRefObject
System.ComponentModel.Component
System.Diagnostics.Process

Syntax

[c# [ cer [ F2 [ VB |

€

[PermissionSetAttribute(SecurityAction.LinkDemand, Name = “"FullTrust™)]
[HostProtectionAttribute(SecurityAction.LinkDemand, SharedState = true,

Synchronization = true, ExternalProcessMgmt = true, SelfAffecting
[PermissionSetAttribute(SecurityAction.InheritanceDemand, MName = "FullTri

public class Process : Component

Ll




16 Fakten zu C#

B¥ Process Class (System.Di: X

& C' | & Sicher | https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics Pview=netfr:
= Microsoft Technologies Documentation ~ Resources
NET APIs .NET Core .NET Framework ASP.NET Xamarin Azure

Docs / .NET / .NET API Browser / System.Diagnostics / Process

NET Framework 4.7.1 Process C |aSS

Search Namespace: System.Diagnostics
Assemblies: System.Diagnostics.Process.dll, System.dll, netstandard.dll

> PerformanceCounter

\ Provides access to local and remote processes and enables you to start and stop local system processes
PermissionAttribute

> PerformanceCounter Cc#
PermissionEntry

3 PerformanceCounter public class Process : System.ComponentModel.Component
PermissionEntryCollection
PerformanceCounterType

Inheritance Object -» MarshalByRefObject -» Component -» Process
PresentationTracelevel

> PresentationTraceSources

Examples

Constructors
The following example uses an instance of the Process class to start a process.

> Properties
> Methods c#

> Events
using System;
> ProcessModule using System.Diagnostics;

> ProcessModuleCollection LSTHeRS veiteatCoupanentiodal;

ProcessPriorityClass namespace MyProcessSample

{

> ProcessStartinfo

Abbildung: In der neuen .NET-Klassendokumentation gibt es nur noch Beispiele in C#

54 Versionsgeschichte

Hinsichtlich der Versionsnummern der Sprache C# herrschte frither etwas Verwirrung. Es gab
einerseits eine offizielle Zdhlung mit Versionsnummer (parallel zum .NET Framework),
andererseits mit Jahreszahlen (parallel zu Visual Studio). Intern wird eine dritte Zéhlung fiir den
Compiler verwendet. Die erste Version von C# im Rahmen des .NET Framework 1.0 trug intern
die Versionsnummer 7.0. Zu .NET 1.1 gab es dann C# 7.1, im .NET Framework 2.0 und 3.0 meldet
sich der C#-Compiler mit Version 8.0. Ab .NET Framework 3.5 hat Microsoft dies aber bereinigt.
Dort meldet sich der Compiler nun auch mit Version 3.5.

Die folgende Liste dokumentiert die Versionsgeschichte von C# einschlielich der verschiedenen
Namen, die es jeweils gibt.

=  C# 1.0 st erschienen am 05.01.2002 (in Visual Studio.NET 2002+2003 / .NET Framework
1.0 und 1.1. Erste Version des ISO-Standards fiir C#.)

=  C#2.0isterschienenam 07.11.2005 (C# 2005/ in Visual Studio.NET 2005 / NET Framework
2.0 und 3.0. Zweite Version des [SO-Standards fiir C#.)

= C#3.0 isterschienenam 15.08.2008 (C# 2008/ in Visual Studio.NET 2008 / NET Framework
3.5)

= C#4.0isterschienenam 12.04.2010 (C#2010/ in Visual Studio.NET 2010/ .NET Framework
4.0)

=  C#5.0isterschienenam 12.08.2012 (C# 2012/ in Visual Studio.NET 2012 / NET Framework
4.5)



Fakten zu C#

= C#6.0 ist erschienen am 20.07.2015 (C# 2015/ in Visual Studio.NET 2015 / .NET Framework

4.6)

= C# 7.0 ist erschienen am 05.03.2017 (C# 2017 / in Visual Studio 2017)

= C# 7.1 ist erschienen am 14.08.2017 (in Visual Studio 15.3)
= C# 7.2 ist erschienen am 15.11.2017 (in Visual Studio 15.5)

=  C# 8.0 Beta ist erschienen am 04.12.2018 (in Visual Studio 16.0 Preview 1)

Version der Ausgeliefert mit Version der Interne

Sprachsyntax mit Sprachsyntax Versionsnummer des

Versionsnummer mit Jahreszahl C#-Compilers

C#1.0 NET Framework 1.0 | Visual C# 2002 7.0 (alter Compiler)

C# 1.1 NET Framework 1.1 | Visual C# 2003 7.1 (alter Compiler)

C#2.0 NET Framework 2.0 | Visual C# 2005 8.0 (alter Compiler)

C#2.0 NET Framework 3.0 | Visual C# 2005 8.0 (alter Compiler)

C#3.0 NET Framework 3.5 | Visual C# 2008 3.5 (alter Compiler)

C#4.0 NET Framework 4.0 | Visual C# 2010 4.0 (alter Compiler)

C#5.0 NET Framework 4.5 | Visual C# 2012 4.5 (alter Compiler)

C#6.0 NET Framework 4.6 | Visual C# 2015 1.x (Neuer Compiler)
/ NET Core 1.0

C#17.0 Visual Studio 2017 Visual C# 2017 2.0 (Neuer Compiler)
15.0 / NET Core 2.0

C#17.1 Visual Studio 2017 Visual C# 2017 2.3 (Neuer Compiler)
15.4/ NET Core 2.0

C#72 Visual Studio 2017 Visual C# 2017 2.7 (Neuer Compiler)
15.5/ .NET Core 2.0

C#7.3 Visual Studio 2017 Visual C# 2017 2.8 +2.9+2.10 (Neuer
15.7/ NET Core 2.1 Compiler)

C#8.0 Visual Studio 2019 Visual C# 2018 2.11 (Neuer Compiler)
16.0/ NET Core 3.0

Tabelle: Verschiedene Versionsnummernzdhlungen fiir die Sprache C#

5.5

Standardisierung

Microsoft hat einige Teile des .NET Framework unter dem Namen Common Language
Infrastructure (CLI) standardisieren lassen. Die CLI wurde erstmals im Dezember 2001 von der
European Computer Manufacturers Association (ECMA) standardisiert (ECMA-Standard 335,
Arbeitsgruppe TC49 / TG3, friiher: TC39 / TG3, siehe [ECMAO1]); mit kleinen Anderungen
wurde der Standard im  Dezember 2002 von der weltweit  wichtigsten
Standardisierungsorganisation, der International Standardization Organization (ISO),
iibernommen als ISO / [EC 23271.



18 Fakten zu C#

Die Begriffe lauten in den Standards zum Teil allerdings anders als bei Microsoft: Was im .NET
Framework Microsoft Intermediate Language (MSIL) heif3t, entspricht im Standard der Common
Intermediate Language (CIL). Anstelle der Framework Class Library (FCL) spricht man von der
CLI Class Library. Von der Standardisierung ausgenommen sind jedoch z.B. die
Datenbankschnittstelle ADO.NET und die Benutzeroberflachen-Bibliotheken Windows Forms
und ASP.NET Webforms. Auch die neueren .NET-Bibliotheken (WPF, WCF und WF) sind nicht
standardisiert.

Auch die Programmiersprache C# ist von beiden Gremien akzeptiert (ECMA-334 bzw. ISO / IEC
23270). Die Standardisierung bezieht sich aber auf dltere Versionen. Die letzten C#-Versionen hat
Microsoft nicht mehr standardisieren lassen. Die Standardisierung ist auf dem Stand C# 2.0

Ein weiterer, von Microsoft initiierter Standard ist von der ECMA im Dezember 2005 unter
ECMA-372 (Arbeitsgruppe TC49 / TGS, frither: TC39 / TGS) verabschiedet worden: C++ / CLI
ist eine Spracherweiterung fiir C++ (ISO / IEC 14882:2003), die eine elegantere Nutzung von C++
auf der CLI-Plattform ermdglicht, als dies bisher mit den Managed Extensions for C++ (alias
Managed C++) moglich war.

5.6 Implementierung des C#-Compilers

Die urspriingliche Version des C#-Compilers (csc.exe) wurde in C++ implementiert. Auch der C#-
Compiler im Mono-Projekt ist in C++ geschrieben.

Mit dem Projekt "Roslyn" (alias: .NET Compiler Platform) hat Microsoft selbst den Compiler neu
in C# implementiert. Die erste Version des neuen Compilers war C# 6.0.

5.7 Open Source

Bereits zu C# 1.0 gab es eine quelloffene Version im Projekt "Rotor" im Rahmen der
Standardisierung von C#. Diese war jedoch nicht "Open Source", sondern nur "Shared Source",
d.h. der Quellcode durfte betrachtet, aber nicht weiterverwendet werden. Seit C# 6.0 ist der neue
Compiler im Rahmen der .NET Compiler Platform "Roslyn" ein Open Source-Projekt auf Github.

Projekt fiir das Design der Programmiersprache:
https://github.com/dotnet/csharplang
Projekt fiir die Implementierung der Programmiersprache:

https://github.com/dotnet/roslyn

5.8 Kommende Versionen
Aktuell entwickelt Microsoft an der Version C# 8.0.

5.9 Paritat und Co-Evolution mit Visual Basic .NET

Im Jahr 2010 hatte Microsoft verkiindet, die Programmiersprache C# und Visual Basic .NET
hinsichtlich ihrer Funktionalitit anzugleichen. »Die Sprachen sollen sich in Stil und Gefiihl
unterscheiden, nicht in ihrem Funktionsumfang«, schrieb Mads Torgersen, Produktmanager fiir C#
damals. Scott Wiltamuth fiihrt den Begriff "Co-Evolution" ein
[https://blogs.msdn.microsoft.com/scottwil/2010/03/09/vb-and-c-coevolution/].


https://github.com/dotnet/csharplang
https://github.com/dotnet/roslyn

Fakten zu C# 19

Einige Jahre hat Microsoft diese Strategie tatsdchlich umgesetzt und bestehende Sprachfeatures,
die nur eine Sprache hatte, in der anderen Sprache nachgeriistet und neue Sprachfeatures
gleichzeitig oder zumindest zeitnah in beiden Sprachen verdffentlicht.

Im Jahr 2017 hat Microsoft sich von Paritit und Co-Evolution wieder verabschiedet.

Visual Basic .NET ist nach C# die zweitwichtigste Programmiersprache in der .NET-Welt.
Telemetriedaten [https://blogs.msdn.microsoft.com/dotnet/2017/02/01/the-net-language-strategy]|
von Microsoft zeigen einerseits, dass Visual Basic .NET hauptsdchlich zur Programmierung mit
dlteren .NET-Techniken wie Windows Forms und ASP.NET Webforms zum Einsatz kommt.
Andererseits beginnen viele neue .NET-Entwickler mit Visual Basic .NET, bevor sie sich an C#
herantrauen. Microsoft nahm diese Erkenntnisse zum Anlass, von der im Jahr 2010 verkiindigen
Co-Evolutionsstrategie von C# und Visual Basic .NET abzuriicken und zukiinftig nicht mehr alle
neuen C#-Features automatisch auf Visual Basic .NET zu iibertragen. Die parallel zu C# 7.0
erschienene Version 15 von Visual Basic .NET bietet daher lediglich Tupel und bindre Literale als
neue Sprachfeatures an. Zudem kann Visual Basic .NET 15 C#-Methoden nutzen, die Zeiger mit
ref liefern, selbst aber solche Methoden nicht implementieren.



20 Grundkonzepte von C#

6 Grundkonzepte von C#

Konzeptionell wurde C# vor allem von C++ und Java beeinflusst; man kann aber auch Parallelen
zu Visual Basic und Delphi finden.

6.1 Sprachtypus

Im Gegensatz zu C++, das eine hybride Sprache aus objektorientierten und nicht-objektorientierten
Konzepten ist, ist C# ebenso wie Java eine rein objektorientierte Sprache, d.h., alle Datentypen
basieren auf Klassen und alle Anweisungen erfolgen in Klassen.

C# unterstiitzt alle zentralen Konzepte der Objektorientierung einschlieBlich Schnittstellen,
Vererbung und Polymorphismus. Schon in C# 2005 wurde auch die Unterstiitzung fiir generische
Klassen und partielle Klassen hinzugefiigt. Aullerdem besitzt C# Konzepte der funktionalen
Programmierung (Delegates und Lambda-Ausdriicke).

6.2 GroB- und Kleinschreibung

Ein wesentlicher Unterschied zwischen C# und Visual Basic .NET ist die Tatsache, dass C# im
Gegensatz zu Visual Basic .NET zwischen Grof- und Kleinschreibung unterscheidet. Dies gilt
sowohl fiir die Schliisselworter der Sprache als auch fiir alle Bezeichner (a und A sind verschiedene
Variablen!). Die Schlisselworter der Sprache C# werden komplett in Kleinbuchstaben
geschrieben.

6.3 Schlusselworter der Sprache

Die folgende Liste zeigt die vordefinierten Schliisselworter der Programmiersprache C#. Diese
Namen diirfen in der gleichen GroB-/Kleinschreibung nicht als Bezeichner verwendet werden
(Quelle: https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/index).

abstract as base bool break
byte case catch char checked
class const continue decimal default
delegate do double else enum
event explicit extern tfalse finally
fixed float for foreach goto

a5 & implicit in int interface
internal is lock long namespace
new null object operator out
override params private protected public
readonly ref return shyte sealed
short sizeof stackalloc static string
struct switch this throw true

try typeof uint ulong unchecked
unsafe ushort using virtual void
volatile while



Grundkonzepte von C# 21

6.4 Namensregeln und Namenskonventionen

Bei der Vergabe von eigenen Bezeichner (z.B. Variablenname, Parameternamen, Atributnamen
und Methodennamen) gibt es verpflichtende Regeln und optionale Namenskonventionen.

Verpflichtende Regeln sind:

= Der Name darf nur Buchstaben (*), Zahlen und den Unterstrich enthalten.
*  Der Name muss mit einem Buchstaben beginnen

= Die GroB- und Kleinschreibung ist relevant

=  Es diirfen keine Namen von C#-Schliisselwortern verwendet werden.

Hinweis: (*) Umlaute sind erlaubt, aber sollten dennoch besser vermieden werden: Nicht alle
Werkzeuge und alle Menschen kommen damit gut klar!

Optionale Regeln hat Microsoft in den ".NET Framework Design Guidelines"
[https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines] definiert. Die wichtigsten
Regeln dort sind:

=  Fiir die GroB-/Kleinschreibung gilt grundsétzlich PascalCasing, d.h. ein Bezeichner beginnt
grundsétzlich mit einem GroBbuchstaben und jedes weitere Wort innerhalb des Bezeichners
beginnt ebenfalls wieder mit einem Gro3buchstaben.

Beispiel: KundenPortalBenutzer

=  Ausnahmen gibt es fiir Abkiirzungen, die nur aus zwei Buchstaben bestehen. Diese diirfen
komplett in GroBbuchstaben geschrieben sein (z.B. Ul und 10). Alle anderen Abkiirzungen
werden entgegen ihrer normalen Schreibweise in GroB-/Kleinschreibung geschrieben (z.B.
Xml, Xsd und W3c).

Beispiele: System.lO.File, System.Xml.XmlDocument

= Lokale Variablen, versteckte Attribute (private/protected) und Parameternamen sollen in
camelCasing (Bezeichner beginnt mit einem Kleinbuchstaben, aber jedes weitere Wort
innerhalb des Bezeichners beginnt mit einem Gro3buchstaben) geschrieben werden.

Beispiel: Login(KundenPortalBenutzer kundenPortalBenutzer)

6.5 Blockbildung und Umbriche

Blockbildung findet im C / C++-Stil statt, also mit geschweiften Klammern { }. Befehlstrenner ist
das Semikolon (;).

Ein Zeilenumbruch kann zwischen den Elementen des Ausdrucks auftreten, ohne das besondere
Vorkehrungen getroffen werden miissen. Zahlen konnen seit C# 7.0 mit einem Unterstrich
gegliedert werden; aber man darf innerhalb von Zahlen keinen Zeilenumbruch haben.

// Formel ohne Umbriiche
double Ergebnisl = (2 + 3) * (5 + 6) * (7 * 8) + 3.141 592 653 59;

// Formel mit Umbriichen
double Ergebnis2 = (2 + 3) *
(5 + 6) *
(7 * 8)
+ 3.141_592_653_59;



22 Grundkonzepte von C#
6.6 Hello World

Das folgende Listing zeigt das Hello World-Beispiel in C#, das man in jeder Programmiersprache
zuerst schreibt.

using System;

namespace HalloWelt

{

class Program

{

static void Main(string[] args)

{
Console.WritelLine ("Hallo Welt!") ;

}
}
}
Mariginal komplexer ist diese Variante, die — sofern vorhanden — den ersten iibergebenen

Kommandozeilenparameter als Name auffasst und die Person mit Namen griift.

namespace HalloWelt

{

class Program

{

static void Main(string[] args)

{
if (args.Length > 0)

{

var name = args|[0];

// Ausgabe mit String Interpolation
Console.WriteLine ($"Hallo {name}!");
Console.ReadLine() ;

}

else

{
Console.WriteLine ("Hallo Welt!") ;

}
}
}
}

6.7 Eingebaute Funktionen

Anders als in Visual Basic existieren in C# keine eingebauten Funktionen zur Typumwandlung
(z.B. CBool(), CInt(), CLng(), CType()), Zeichenkettenverarbeitung (z.B. InStr(), Trim(), LCase())
und Ausgabe (z.B. MsgBox()). Auch die My-Klassenbibliothek ist nicht vorhanden. Grundsétzlich
ist es moglich, die in Visual Basic eingebauten Funktionen und die My-Bibliothek durch
Referenzierung der Microsoft. VisualBasic.dll auch in C# zu nutzen. Dies sollte jedoch vermieden
werden, um sprachunabhéngig zu bleiben. Alle Visual Basic-Funktionen und -Objekte sind auch
in der .NET-Klassenbibliothek enthalten, z.B. String.IndexOf{() statt InStr() und Convert. ToInt32()
statt Clnt().



Der C#-Compiler 23

7 Der C#-Compiler

Es gibt zwei Varianten des C#-Compilers: eine alte, in C++ geschriebene, und neue, in C#
geschriebene Implementierung.

71 Der urspringliche (alte) C#-Compiler

Der Kommandozeilencompiler fiir C# im .NET Framework Redistributable ist csc.exe. Er wird
installiert im Verzeichnis C:\Windows\Microsoft. NET\Framework64\v4.0.30319. Alternativ kann
er in der .NET Framework-Klassenbibliothek im sogenannten "CodeDOM" durch die Klasse
Microsoft.CSharp.CSCodeProvider angesprochen werden.

Wenn Sie heute ein aktuelles Microsoft .NET Framework (z.B. 4.7.2) verwenden, so ist dort der
urspriingliche C#-Compiler immer noch in der Version 5.0 enthalten.

EX Eingabeaufforderung - m] x

ve the fout option specified

Abbildung: In .NET Framework 4.7.1 ist der C#-Compiler fiir C# 5.0 enthalten.

711 Kompilierung mit csc.exe
Der Befehl

csc.exe Dateinamel.cs Dateiname2.cs DateinameX.cs
oder
csc Dateinamel.cs Dateiname2.cs DateinameX.cs

iibersetzt die angegebenen Dateien in eine Konsolenanwendung. Eine Datei, die als
Konsolenanwendung oder Windows-Anwendung kompiliert wird, muss genau eine Klasse mit
folgendem Einstiegspunkt besitzen: public static void Main().

Listing: »Hello World« in C#

class Hauptprogramm

{

public static void Main()

{
System.Console.WriteLine ("Hello World!");

}
}

7.1.2 Kommandozeilenparameter
Der Kommandozeilencompiler bietet zahlreiche Optionen. Die wichtigsten davon sind:
= /target:winexe Der Compiler erzeugt eine Windows-Anwendung

= /target:library Der Compiler erzeugt eine DLL (kein Main() notwendig)



24 Der C#-Compiler

= /r:Dateiliste Die angegebenen Assemblys werden referenziert

» /out:Dateiname Name der Ausgabedatei

= /doc:Dateiname Der Compiler erzeugt zusétzlich eine XML-Dokumentationsdatei
= /help Anzeige der Hilfe zu den Compiler-Optionen

= Anders als beim Visual Basic .NET-Compiler vbe.exe miissen die Optionen /target und /out
bei csc.exe vor den Namen der Quelldateien in der Parameterliste erscheinen.

Es folgt die komplette Liste der Kommandozeilenparameter des alten C#-Compilers

Visual C# Compiler Options

- OUTPUT FILES -

/out:<file> Specify output file name (default: base name of
file with main class or first file)

/target:exe Build a console executable (default) (Short form:
/t:exe)

/target:winexe Build a Windows executable (Short form: /t:winexe)
/target:library Build a library (Short form: /t:library)
/target:module Build a module that can be added to another
assembly (Short form: /t:module)

/target:appcontainerexe Build an Appcontainer executable (Short form:
/t:appcontainerexe)

/target:winmdobj Build a Windows Runtime intermediate file that is
consumed by WinMDExp (Short form: /t:winmdobj)

/doc:<file> XML Documentation file to generate
/platform:<string> Limit which platforms this code can run on: x86,

Itanium, x64, arm, anycpu32bitpreferred, or anycpu. The default is anycpu.

- INPUT FILES -

/recurse:<wildcard> Include all files in the current directory and
subdirectories according to the wildcard specifications

/reference:<alias>=<file> Reference metadata from the specified assembly
file using the given alias (Short form: /r)

/reference:<file list> Reference metadata from the specified assembly
files (Short form: /r)

/addmodule:<file list> Link the specified modules into this assembly
/link:<file list> Embed metadata from the specified interop assembly

files (Short form: /1)

- RESOURCES -
/win32res:<file> Specify a Win32 resource file (.res)
/win32icon:<file> Use this icon for the output
/win32manifest:<file> Specify a Win32 manifest file (.xml)
/nowin32manifest Do not include the default Win32 manifest
/resource:<resinfo> Embed the specified resource (Short form: /res)
/linkresource:<resinfo> Link the specified resource to this assembly

(Short form: /linkres)

Where the resinfo format is <file>[,<string
name>[ ,public|private]]

- CODE GENERATION -
/debug[+] -] Emit debugging information
/debug: {full |pdbonly} Specify debugging type ('full' is default, and
enables attaching a debugger to a running program)



Der C#-Compiler 25

/optimize[+]|-] Enable optimizations (Short form: /o)

- ERRORS AND WARNINGS -

/warnaserror[+|-] Report all warnings as errors
/warnaserror[+|-] :<warn list> Report specific warnings as errors
/warn:<n> Set warning level (0-4) (Short form: /w)
/nowarn:<warn list> Disable specific warning messages

- LANGUAGE -
/checked[+]|-] Generate overflow checks
/unsafe[+]|-] Allow 'unsafe' code
/define:<symbol list> Define conditional compilation symbol(s) (Short
form: /d)
/langversion:<string> Specify language version mode: ISO-1, ISO-2, 3, 4,

5, or Default

- SECURITY -
/delaysign[+]-] Delay-sign the assembly using only the public
portion of the strong name key
/keyfile:<file> Specify a strong name key file
/keycontainer:<string> Specify a strong name key container
/highentropyval[+]|-] Enable high-entropy ASLR

- MISCELLANEOUS -
@<file> Read response file for more options
/help Display this usage message (Short form: /?)
/nologo Suppress compiler copyright message
/noconfig Do not auto include CSC.RSP file

- ADVANCED -
/baseaddress:<address> Base address for the library to be built
/bugreport:<file> Create a 'Bug Report' file
/codepage : <n> Specify the codepage to use when opening source
files
/utf8output Output compiler messages in UTF-8 encoding
/main:<type> Specify the type that contains the entry point
(ignore all other possible entry points) (Short form: /m)
/fullpaths Compiler generates fully qualified paths
/filealign:<n> Specify the alignment used for output file
sections
/pdb:<file> Specify debug information file name (default:
output file name with .pdb extension)
/errorendlocation Output line and column of the end location of each
error
/preferreduilang Specify the preferred output language name.
/nostdlib[+]| -] Do not reference standard library (mscorlib.dll)
/subsystemversion:<string> Specify subsystem version of this assembly
/lib:<file list> Specify additional directories to search in for
references
/errorreport:<string> Specify how to handle internal compiler errors:

prompt, send, queue, or none. The default is queue.

/appconfig:<file> Specify an application configuration file
containing assembly binding settings

/moduleassemblyname:<string> Name of the assembly which this module will be a
part of



26 Der C#-Compiler

7.2 Der aktuelle (neue) C#-Compiler

Der im Projekt "Roslyn" neu implementierte C#-Compiler heiflt auch csc.exe; er ist aber nicht
mehr Teil des .NET Framework Redistributable. Er wird auf diesen Wegen verbreitet:

= Visual Studio 2017 bzw. Visual Studio 2017 Build Tools
= NET Core SDK

= Nuget-Paket https://www.nuget.org/packages/Microsoft.Net. Compilers

Visual Studio installiert den Compiler in C:\Program Files (x86)\Microsoft Visual
Studio\2017\Enterprise\MSBuild\15.0\Bin\Roslyn. Das Nuget-Paket
https://www.nuget.org/packages/Microsoft. Net. Compilers enthdlt den csc.exe im Ordner /Tools.
Im .NET Core SDK wird der C#-Compiler nicht als csc.exe mitgeliefert, sondern iiber die .NET
CLI-Werkzeuge angesprochen (z.B. dotnet build).

Die folgende Abbildung zeigt die Installation des C#-Compilers per Nuget.exe mit dem Befehl:
nuget install Microsoft.Net.Compilers

Das Programm Nuget.exe bekommt man https://www.nuget.org/downloads.

ft.Net.Compilers

to project ‘"H:\',

r ‘Lowest'

Abbildung: Installation des neuen C#-Compilers via Nuget

B Command Prompt

Visual C# Compiler version
osoft Corporation. All r

rce files ified.
without source must have the fout option sp



https://www.nuget.org/packages/Microsoft.Net.Compilers/
https://www.nuget.org/packages/Microsoft.Net.Compilers/

Der C#-Compiler 27

Abbildung: Start des neuen C#Compiler aus der Nuget-Installation

B Command Prompt

rogram Files
ft (R) al

Abbildung: Start des neue C#Compiler aus der Visual Studio-Installation

Die Neufassung des CodeDOM-APIs mit dem neuen Compiler erhélt man iiber das Nuget-Paket
www.nuget.org/packages/Microsoft. CodeDom.Providers. DotNetCompilerPlatform.

7.21 Versionsnummern des Compilers

Die Versionsummer des neuen C#-Compilers richtet sich nach dem Funktionsumfang des
Compilers, nicht nach den Sprachfeatures (siehe folgende Abbildung).

e Versions 1.x mean C# 6.0 and VB 14 (Visual Studio 2015 and updates). For instance, 1.3.2

corresponds to the most recent update (update 3) of Visual Studio 2015.
e Version 2.8 means C# 7.0 and VB 15 (Visual Studio 2017 version 15.0).
e \ersion 2.1 is still C# 7.0, but with a couple fixes (Visual Studio 2017 version 15.1).

e \lersion 2.2 is still C# 7.0, but with a couple more fixes (Visual Studio 2017 version 15.2).
Language version “default” was updated to mean "7.0".

e Version 2.2 means C# 7.1 and VB 15.2 (Visual Studio 2017 version 15.3). For instance, 2.3.e-
betal corresponds to Visual Studio 2017 version 15.3 (Preview 1).

e \fersion 2.4 is still C# 7.1 and VB 15.3, but with a couple fixes (Visual Studio 2017 version 15.4).

e Version 2.6 means C# 7.2 and VB 15.5 (Visual Studio 2017 version 15.5).

s Version 2.7 means C# 7.2 and VB 15.5, but with a number of fixes (Visual Studio 2017 version
15.6).

e Version 2.2 means C# 7.3 (Visual Studio 2017 version 15.7)

e Version 2.9 is still C# 7.3 and VB 15.5, but with more fixes (Visual Studio 2017 version 15.8)

Abbildung: Versionierung des neuen C#-Compilers
[https.//github.com/dotnet/roslyn/wiki/NuGet-packages]

7.2.2 Kommandozeilenparameter

Es folgen die Kommandozeilenparameter des neuen C#-Compilers

Visual C# Compiler Options

- OUTPUT FILES -


http://www.nuget.org/packages/Microsoft.CodeDom.Providers.DotNetCompilerPlatform

28 Der C#-Compiler

/out:<file> Specify output file name (default: base name of
file with main class or first file)

/target:exe Build a console executable (default) (Short
form: /t:exe)

/target:winexe Build a Windows executable (Short form:
/t:winexe)

/target:library Build a library (Short form: /t:library)

/target:module Build a module that can be added to another
assembly (Short form: /t:module)

/target:appcontainerexe Build an Appcontainer executable (Short form:
/t:appcontainerexe)

/target:winmdobj Build a Windows Runtime intermediate file that
is consumed by WinMDExp (Short form: /t:winmdobj)

/doc:<file> XML Documentation file to generate

/refout:<file> Reference assembly output to generate

/platform:<string> Limit which platforms this code can run on: x86,

Itanium, x64, arm, anycpu32bitpreferred, or
anycpu. The default is anycpu.

- INPUT FILES -

/recurse:<wildcard> Include all files in the current directory and
subdirectories according to the wildcard
specifications

/reference:<alias>=<file> Reference metadata from the specified assembly
file using the given alias (Short form: /r)

/reference:<file list> Reference metadata from the specified assembly
files (Short form: /r)

/addmodule:<file list> Link the specified modules into this assembly

/link:<file list> Embed metadata from the specified interop
assembly files (Short form: /1)

/analyzer:<file list> Run the analyzers from this assembly

(Short form: /a)
/additionalfile:<file list> Additional files that don't directly affect code
generation but may be used by analyzers for

producing
errors or warnings.
/embed Embed all source files in the PDB.
/embed:<file list> Embed specific files in the PDB
- RESOURCES -
/win32res:<file> Specify a Win32 resource file (.res)
/win32icon:<file> Use this icon for the output
/win32manifest:<file> Specify a Win32 manifest file (.xml)
/nowin32manifest Do not include the default Win32 manifest
/resource:<resinfo> Embed the specified resource (Short form: /res)
/linkresource:<resinfo> Link the specified resource to this assembly

(Short form: /linkres) Where the resinfo format
is <file>[,<string name>[,public|private]]

- CODE GENERATION -
/debug[+] -] Emit debugging information
/debug: {full |pdbonly|portable | embedded}
Specify debugging type ('full' is default,



Der C#-Compiler 29

'portable' is a cross-platform format,
'embedded' is a cross-platform format embedded

into
the target .dll or .exe)
/optimize[+]|-] Enable optimizations (Short form: /o)
/deterministic Produce a deterministic assembly
(including module version GUID and timestamp)
/refonly Produce a reference assembly in place of the main
output
/instrument:TestCoverage Produce an assembly instrumented to collect
coverage information
/sourcelink:<file> Source link info to embed into PDB.
- ERRORS AND WARNINGS -
/warnaserror[+]|-] Report all warnings as errors
/warnaserror[+|-] :<warn list> Report specific warnings as errors
/warn:<n> Set warning level (0-4) (Short form: /w)
/nowarn:<warn list> Disable specific warning messages
/ruleset:<file> Specify a ruleset file that disables specific
diagnostics.
/errorlog:<file> Specify a file to log all compiler and analyzer
diagnostics.
/reportanalyzer Report additional analyzer information, such as

execution time.

- LANGUAGE -
/checked[+]|-] Generate overflow checks
/unsafe[+]|-] Allow 'unsafe' code
/define:<symbol list> Define conditional compilation symbol(s) (Short
form: /d)
/langversion:? Display the allowed values for language version
/langversion:<string> Specify language version such as

“default® (latest major version), or
“latest” (latest version, including minor

versions) ,
or specific versions like "6 or “7.1°
- SECURITY -
/delaysign[+]|-] Delay-sign the assembly using only the public
portion of the strong name key
/publicsign[+]-] Public-sign the assembly using only the public
portion of the strong name key
/keyfile:<file> Specify a strong name key file
/keycontainer:<string> Specify a strong name key container
/highentropyval[+]|-1] Enable high-entropy ASLR
- MISCELLANEOUS -
@<file> Read response file for more options
/help Display this usage message (Short form: /?)
/nologo Suppress compiler copyright message
/noconfig Do not auto include CSC.RSP file
/parallel[+]|-] Concurrent build.

/version Display the compiler version number and exit.



30

Der C#-Compiler

- ADVANCED -

/baseaddress:<address>
/checksumalgorithm:<alg>
/codepage : <n>
/utf8output

/main:<type>

/fullpaths
/filealign:<n>

/pathmap : <K1>=<V1>,6 <K2>=<V2>,

/pdb:<file>
/errorendlocation
/preferreduilang
/nostdlib[+]| -]
/subsystemversion:<string>

/lib:<file list>

/errorreport:<string>

/appconfig:<file>
/moduleassemblyname:<string>

/modulename:<string>

Base address for the library to be built
Specify algorithm for calculating source file
checksum stored in PDB. Supported values are:
SHA1 (default) or SHA256.

Specify the codepage to use when opening source
files

Output compiler messages in UTF-8 encoding
Specify the type that contains the entry point
(ignore all other possible entry points) (Short
form: /m)

Compiler generates fully qualified paths
Specify the alignment used for output file
sections

Specify a mapping for source path names output by
the compiler.

Specify debug information file name (default:
output file name with .pdb extension)

Output line and column of the end location of
each error

Specify the preferred output language name.

Do not reference standard library (mscorlib.dll)
Specify subsystem version of this assembly
Specify additional directories to search in for
references

Specify how to handle internal compiler errors:
prompt, send, queue, or none. The default is
queue.

Specify an application configuration file
containing assembly binding settings

Name of the assembly which this module will be
a part of

Specify the name of the source module



Erste Schritte Visual Studio 31

8 Erste Schritte Visual Studio

Dieses Biichlein ist kein Handbuch fiir Visual Studio. Fiir Leser, die neu in Visual Studio sind,
folgt jedoch hier eine kurze Einfiihrung in das Anlegen und iibersetzen eines Projekts am Beispiel
von Konsolenanwendungsprojekten fiir NET Framework und .NET Core. Zum Einsatz kommt
Visual Studio 2017.

8.1 Hello World mit dem .NET Framework

Wahlen Sie bei der Installation von Visual Studio den Workload ".NET Desktop Development"
aus.

Modifying — Visual Studio Enterprise 2017 — 15.6.1
Workloads Individual components Language packs

Windows (3)

WMl Universal Windows Platform development m] .NET desktop development
Hl Create applications for the Universal Windows Platform Build WPF, Windows Forms, and console applications using
with C#, VB, JavaScript, or optionally C++. C#, Visual Basic, and F#.

"I‘:-J Desktop development with C++
Build Windows desktop applications using the Microsoft
C++ toolset, ATL, or MFC.

Starten Sie Visual Studio

Visual Studio
2017 *

Wihlen Sie File/New Project und dann im dem Dialog "Visual C#Windows Classic
Desktop/Console App". Geben Sie unten den gewiinschten Standort ein (wéhlen Sie am besten
einen Verzeichnisnamen ohne Leerzeichen!) und wihlen Sie die aktuellste .NET Framework-
Version aus.



32

Erste Schritte Visual Studio

ﬂl Microsoft Visual Studio
File Edit  View Project Debug Team Tools Architecture Test  Analyze Window Help
-2 W b attach.. = B9 _
Mew Project ? X
P Recent Sortby: Default - Search (Ctrl=E) P-
4 |nstalled
c3 +  Type: Visual C¥
I-_'l \WPF App [ MET Framewark) Visual C# ype: Visus
4 Vijsual C# A project for creating a command-line
‘Windows Universal Dc" o 5 TR . —— application
Windows Classic Desktop indows Forms App (. ramework) isual C#
b Web CH#
NET Core E Console App (\NET Framework) Visual C#
.MET Standard o
Android E:i! Class Library [.MET Framework} Visual C#
Cloud )
=
Cross-Platform .J Shared Project Visual C&
Extensibility =
o T T e
Not finding what you are looking for? = Windows Service (,NET Framewaork) Visual C#
Open Visual Studio Installer a-ct _ o _ -
Name: HelloWorld
Location: E\MeinCode hd Browse...

Solution name: HelloWorld

-MET Framework 4.7.1 -
-MET Framewaork 2.0
MET Framework 3.0

Framework:

Create directory for solution
D Add to Source Control

Cancel

MET Framewaork 3.5
MET Framework 4
-MET Framework 4.5
MET Framework 4.5.1
NET Framework 4.5.2
MET Framework 4.6
MET Framework 4.6.1
-MET Framewark 4.6.2
NET Framewark 4.7
MET Framewaork 4.7.1
B

Sie erhalten dann eine Projektmappe (.sln-Datei im Dateisystem) mit einem Projekt (.csproj-Datei).
In dem Projekt gibt es eine Datei program.cs mit der Grundstruktur der Konsolenanwendung.

) Helloworld - Microsoft Visual Studio Y & Quiklaunch (ctl-) P - B x
File Edit  View  Project  Build Debug Team  Tools  Architecture  Test  Analyze  Window  Help Dr. Holger Schwichtenberg -
B2 WM Debug ~ AnyCPU ~ P stat~ B ] -
Program.cs # X Solution lorer *Ix
Hellowaorld - %%, HelloWorld.Program ~| @, Main(string[] args) . Q& -6 dm o ﬁlzlﬁ'
; T 1_ Search Solution Explorer [Ctrl+) P -
3 e 5 R] solution Helloworld' (1 project)
ISIngG
A Geing .| 4 HelloWorld
5 T = " 4 M properties
using
G = o € Assemblyinfo.cs
r] (E | Ref
7 —Inamespace HelloWorld JEerences
8 T & Analyzers
9 -] class Program pcILEha
10 1 System
11 -l static void Main(string[] args) "M System.Core
12 { =B System.Data
13 T =B System.Data.DataSetExtensions
%g’ I System.Met.Http
16 ¥ System.Xml

Ergénzen Sie in Main() den folgenden Programmcode:

=B System.Xml.Ling
?’3 App.config
4 @ program
- "’5 Program
&’E Main(string[l} : void




Erste Schritte Visual Studio 33

namespace HalloWelt
{
class Program
{
static void Main(string[] args)
{
if (args.Length > 0)
{
var name = args|[0];
// Ausgabe mit String Interpolation
Console.WriteLine ($"Hallo {name}!");
Console.ReadLine() ;
}
else
{
Console.WritelLine ("Hallo Welt!") ;
}
Console.ReadLine() ;
}
}
}
Wahlen Sie Build/Build Solution (Alternativ die Tastenkombination STRG+SHIFT+B), um den

Programmcode zu iibersetzen.

Sie sollten nun im Ausgabefenster (Einblenden iiber View/Output) dies sehen:

Cutput

Show output from: | Build - ¥ = | n
I Build started: Project: HelloWorld, Configuration: Debug Any CPU ------
1> HelloWorld -> t:\MeinCode\HellokorldiHelloWorldibinDebugiHellokWorld.exe

—————————— Build: 1 succeeded, @ falled, @ up-to-date, @ skipped ==========

Falls Sie Eingabefehler gemacht haben, sehen Sie dies im Fenster "Error List".



34 Erste Schritte Visual Studio

Program.cs & > -
[£#] HelloWarld - "%, HelloWorld.Program - @ Main(string[] args) -
- 5
B —namespace HellokWorld =
7 {
8 -] class Program
9 {
10 - static void Main{string[] args)
11 i
12 - if (args.Length > @)
13 {
14 var name = args[@]; -
15 f{ Busgabe mit String Interpolation [~ )
16 Console.Writeline($"Hallo {name}!™) )
- - L]
17 Console.Readline();
8 o
19 = else
20 {
21 Console.Writeline("Hallo Welt™);
22 ¥
23 Console.Readline();
24 ¥
25 ¥
26 ¥
27
114% -
Error List g > @ x
Entire Solution v ! 0'Warnings 0Dh1essages
Search Error List P
7 Code Description Project File Line
@ C51002  : expected HelloWarld Program.cs 17

Wenn Ihr Programm erfolgreich iibersetzt, starten Sie es im Debugger mit Debug/Start Debugging
oder der Taste F5.

B t\MeinCode\HelloWorld\HelloWerld\bin Debug'\HelloWorld, exe

Um dem Programm beim Start einen Kommandozeilenparameter zu iibergeben, wihlen Sie im
Solution Explorer im Kontextmenii des Projekts (nicht der Projektmappe, so "Soultion" davor
steht) den Eintrag "Properties" und tragen Sie in der Registerkarte "Debug" bei "Command Line
Arguments" Thren Namen ein.



Erste Schritte Visual Studio 35

>ﬂl HelloWorld - Microsoft Visual Studio Y &' QuickLaunch (Ctri+
File Edit View Project Build Debug Team Tools Architecture Test Analyze ‘Window Help
Q- fin gt - Debug =~ AnyCPU -/ B start - pU _
HelloWorld + X Program.cs +  Solution Explorer
Application f:l & - 'G) - CF a r@ ; -
Configuration:  Active (Debug) v Platform:  Active (Any CPU) v
Build Search Solution Explorer (Ctrl+0)
Build Events Start action m Solution 'HelloWoarld' (1 project)
[ M —
@ start project e ) Properties
Resources () start external program: C* Assemblyinfo.cs
Services o 4 ®-W References
Start browser with URL: ==
Settings :-. AlTa\yzers
Start options gy Microsaoft.CSharp
Reference Paths =B System
S Command line arguments: Holged "B System.Core
[T ]
S System.Data )
=B System,Data.DataSetExtensions
Publish =B System,MNet,Http
Code Analysis Working directory: | Brows BB SystemXml

=B System XmlLing
1"3 App.config
Debugger engines 4 C©F Program.cs
4 %, Program
mg Main(string[]) : void

[] use remote machine

D Enable native code debugging
[] Enable 50L Server debugging

Driicken Sie wieder F5.

B thMeinCode\HelloWerld\HelloWorld\bin\DebugiHelloWorld, exe
Hallo Holger!

Schauen Sie sich das Projekt auf der Festplatte im Windows Explorer an. Sie erkennen ein
Ausgabeverzeichnis bin/Debug in dem das kompilierte Programm als .EXE-Datei liegt, die man
direkt starten kann.

Das Kompilat in .NET nennt man eine Assembly. Die Assembly ist in diesem Fall eine .EXE-
Datei.

TEMP (T:) » MeinCode » HelloWorld » HelloWorld » bin » Debug

() Mame Date modified Type Size
=] HelleWorld.exe ! 1 Application 5KB
4| HelleWorld exe.cenfig Configuration Sou.. 1 KB
& HelloWorld.pdb Program Debug D... 12 KB

BE¥ Command Prompt - T:\MeinCode\HelloWaorld\HelloWorld\bin\Debug\HelloWorld.exe Holger
Microsoft Windows [Version : .16299.3@9
yft Corporation. All rights reserved.

Hallo Holger!




36 Erste Schritte Visual Studio

Sie kdnnen ein in Visual Studio erzeugtes .NET-Projekt auch an der Kommandozeile {ibersetzen.
Theoretisch kann man dazu den C#-Compiler csc.exe direkt einsetzen, aber dann muss man alle
Quellcodedateien sowie benotigte Referenzen auf andere Assemblies dort als Parameter angeben.
Da diese Abhingigkeiten alle bereits in den Projektdateien definiert sind, bietet sich der Einsatz
von msbuild.exe an, dass die .csproj-Dateien auswertet. Offnen Sie dazu den "Developer
Command Prompt", der mit Visual Studio installiert wird, gehen Sie in das Verzeichnis mit der
.sIn-Datei und rufen Sie msbuild.exe auf.

Hinweis: Andere .NET-Anwendungsarten (z.B. Webanwendungen mit ASP.NET, Desktop-
Anwendungen mit Windows Forms oder Windows Presentation Foundation, Mobile Apps mit
Xamarin) erstellen und iibersetzen Sie mit den gleichen Funktionen und Werkzeugen. Sie
miissen nur entsprechende Workloads im Setup von Visual Studio installieren und dann die
entsprechende Projektvorlage wéhlen.

B Developer Command Prompt for VS 2017 - o x

T:\MeinCode\HelloWorld>msbuild
Microsoft (R) Build Engine version 15.6.82.30579 for .NET Framework
Copyright (C) Microsoft Corporation. All rights reserved.

Building the projects in this solution one at a time. To enable parallel build, please add the "/m"
switch.

Project "T:\ g d\HelloWorld.sln" (1) is building "T:\MeinCode\HelloWorld\HelloWorld\
HelloWorld.cspr (2) on node 1 (default targets).
DevartEntityDeploy

GenerateBindingRedirects:

Generate et Fram onikerAttribute:
CoreCompile:
ConfigFile:

CopyFilesToOutputDirectory:
HelloWorld -> T:\Me ode\HelloWorld\HelloWorld\bin\Debug\HelloWorld.exe
Done Building d\HelloWorld.c: j" (default targets).

Done Building Projec 0 oWorld.sln" (default targets).

0@ Warning(s)
@ Error(s)

Time Elapsed ©0:00:00.77

T:\MeinCode\HelloWorld>_

8.2 Hello World mit .NET Core

Hier werden die Schritte beschrieben, die anders sind, wenn Sie .NET Core verwenden wollen statt
.NET Framework.



37

Wichtig ist, dass Sie in Visual Studio 2017 nicht nur den Workload ".NET Core Cross-Platform
Development" wihlen, sondern das .NET Core SDK in der aktuellen Version zusitzlich von

Erste Schritte Visual Studio

[https://www.microsoft.com/net/download/windows] installieren.

Modifying — Visual Studio Enterprise 2017 — 15.6.1

Workloads

Individual components

Mobile development with JavaSeript
Build Android, i0S and UWP apps using Tools for Apache
Cordova

Game development with C++
Use the full power of C+ + to build professional games
powered by DirectX, Unreal, or Cocos2d

Other Toolsets (3)

"] Visual Studio extension development
Create add-ons and extensions for Visual Studio, including
new commands, code analyzers and tool windows.

Language packs

Mobile development with C++
Build cross-platform applications for i0S, Android or
Windows using C =

A Linux development with C++
&3 Create and debug applications running in a Linux
environment.

_NET Core cross-platform development
Build cross-platform applicatiens using .NET Core, ASP.NET
Core, HTMUJavaScript, and Containers including Docker...

Location

C:\Program Files (x86)\Microsoft Visual Studio\2017Enterprise

Summary

2 MULE GSVEIUPIIEI W savasUpL

> .NET Core cross-platform development

« Individual components

NuGet package manager
NET Framework 4.6.1 SDK
# and Visual Basic Roslyn compilers
Static analysis tools
C# and Visual Basic
NET Portable Library targeting pack
CLR data types for SQL Server
Data sources and service references
ClickOnce Publishing
NET Framework 4.5 targeting pack
NET Framework 4.7.1 SDK
Code Clone
DGML editor
SQL Server Native Client
SQL Server Express 2016 LocalDB
Code Map
M Live Dependency Validation

MsBuild
{NET Framework 4.6.1 targeting pack
Text Template Transformation
NET Framework 4.5.2 targeting pack

Total install size:  -142 MB

By continuing, you agree to the license for the Visual Studio edition you selected. We also offer the ability to download other software with Visual Stuio. This software
is licensed separately, as set out in the 3rd Party Notices or in its accompanying license. By continuing, you also agres to those licenses.

Modify

Abbildung: Installation des Workloads ".NET Core Cross-Platform Development" in Visual Studio

2017

Wihlen Sie bei File/New Project jetzt "Visual C#.NET Core/Console App (NET Core).

Mew Project

I+ Recent - Sort by:

4 |nstalled ﬁ
4 Visual C# (»)

Windows Universal L—]i:"
Windows Classic Desktop ff! !

P Web C#
MNET Core EJ
-MET Standard

c=

Android r

Cloud a-.l
D

Cross-Platform -

Not finding what you are looking for?

Open Visual Studio Installer

Default -

Console App [.MET Core}

Class Library [.MNET Core}

MSTest Test Project \NET Core)

¥Unit Test Project (\MET Core)

ASP.NET Core Web Application

? X
Search (Ctrl=E}

P~

Type: Visual C#

Visual C#
A project for creating a command-line
application that can run on .MET Core on
Visual C# Windows, Linux and MacOs,
Visual C#
Visual C#
Visual C¥

Solution name: HelloWorldCore

Name: HelloWaorldCark |
Lacation: t\MeinCode
Solution: Create new solution -

Create directory for solution
D Add to Source Control

Man kann

in dieser Maske nicht die .NET Core-Version festlegen. Dies geht erst nach dem

Anlegen in den Projekteigenschaften "Application/Target Framework".



38 Erste Schritte Visual Studio

b @l NETCorePerformance NETCore21 -+ X QRil (TN« Class1.cs Program.cs Source Control Explorer
)~
Application
/A M/A

Build
Build Events Assembly name: Default namespace:
5' Package |NETCorePerformance_NETCore21 | |NETCorePerformance_NETCore21

Debug Target framework: Cutput type:

Signing MET Core 2.1 ~ Console Application ~
.MET Core 1.0

Resources NET Core 1.1
MET Care 2.0
Install other frame 5.

Specify how application resources will be managed:

@ lcon and manifest

A manifest determines specific settings for an application. To embed a custom manifest,
first add it to your project and then select it from the list below.

lcon:

|[Defaultlcon] V| Browse.. | "
Manifest:

|Embed manifest with default settings w |

(O Resource file:

Der Projektaufbau eines .NET Core-Projekts ist etwas anders als bei einem klassischen .NET-
Projekt (z.B. Ast "Dependencies" statt "References"), die Bedienung beziiglich iibersetzen und
Debugging aber gleich.

[’ﬂ HelloWeorldCore - Microsoft Visual Studio X &7 | Quick Launch [Ctrl+Q) P - 0 x
File Edit  View  Project  Build Debug Team Tools  Architecture Test  Analyze Window  Help Dr. Holger Schwichtenberg ~
[l - Debug - AnyCPU - P HelloWorldCore =~ BF _ n -
Program.cs # X Sl Solution Explorer
[€#] HelloWorldCore ~| "%, HelloWorldCore.Program ~| @, Main(string[] args) - @E- B-d@ ;,IEI
- - . rs
§ using System, _: Search Solution Explorer (Ctrl+d) P~
. o N . .
3 =Inamespace HellokWorldCore Tl solution HellowarldCare’ (1 project)
4 { 4 HelloWorldCore
5 = class Program 4 5 Dependencies
6 { 4 3% spK
7 = static void Main(string[] args) b 3% Microsoft. NETCore.App (2.0.0)
8 { 4 @ program.cs
9 Console.Writeline("Hello World!™); 4 "%, Program
18 ¥ =) . .
Main(string[) : vaid
11 T )
12 H

Der gleiche Programmcode kann hier eingetragen werden.

Bei Start der Anwendung sieht man in der Titelzeile dotnet.exe, was das universelle
Kommandozeilenwerkzeug von .NET Core ist, dass auch zum Start einer .NET Core-Anwendung
verwendet wird.

B ChProgram Filesvdotnet\dotnet.exe
allo Welt!




Erste Schritte Visual Studio 39

Wihrend man beim .NET Framework im Ausgabeverzeichnis eine .EXE-Datei erhilt, bekommt
man bei .NET Core nur eine .DLL. Daher muss man dotnet.exe (oder abgekiirzt dotnet) beim Start
voranstellen.

Das Kompilat nennt man auch in .NET Core eine Assembly. Die Assembly ist in diesem Fall
eine .DLL-Datei.

TEMP (T:) » MeinCode » HelloWorldCore » HelloWorldCore » bin » Debug » netcoreapp.0

=

) Name Date modified Type Size
4| HelloWorldCore.deps.json 1KB
/| HelloWorldCore.dll 5KB
3 HelloWorldCare.pdb Program Debug D... 1KB
4| HelloWorldCore.runtimeconfig.dev.json JSON Source File 1KE
x| HelloWorldCore.runtimeconfig.json JSON Source File 1KB
EX Command Prompt — m] x

osoft Windows [Version 1
(c) 2017 Microsoft Corporation.

C:\Users\hs>dotnet T:\MeinCode\HelloWorldCore\HelloWorldCore\bin\Debug\netcoreapp?2.@\HelloWorldCore.
d11
Hallo Welt!

TFul

C:\Users\hs>g

Ein .NET Core-Projekt konnen Sie an der Kommandozeile mit msbuild.exe oder dotnet.exe build
tibersetzen.

i [B® Developer Command Prompt for VS 2017 - [m} x
T:\MeinCode\HelloWorldCore>dotnet build

Microsoft (R) Build Engine version 15.7.13.29948 for .NET Core

Copyright (C) Microsoft Corporation. All rights reserved.

Restoring packages for T:\MeinCode\HelloWorldCore\HelloWorldCore\HelloWorldCore.csproj...

Generating MSBuild file T:\MeinCode\HelloWorldCore\HelloWorldCore\obj\HelloWorldCore.csproj.nuget.
g.props.

Restore completed in 295,9 ms for T:\MeinCode\HelloWorldCore\HelloWorldCore\HelloWorldCore.csproj.

HelloWorldCore -> T:\MeinCode\HelloWorldCore\HelloWorldCore\bin\Debug\netcoreapp2.@\HelloWorldCore
.d11

8 Warning(s)
8 Error(s)

Time Elapsed ©0©:00:05.94

T:\MeinCode\HelloWorldCore>

Hinweis: Andere .NET Core-Anwendungsarten (z.B. Webanwendungen mit ASP.NET Core,
Universal Windows Platform Apps) erstellen und iibersetzen Sie mit den gleichen Funktionen
und Werkzeugen. Sie miissen nur entsprechende Workloads im Setup von Visual Studio
installieren und dann die entsprechende Projektvorlage wihlen.




40

Erste Schritte Visual Studio

8.3 Festlegung der Compilerversion in Visual Studio

Wihrend frither die verwendete Viusal Studio-Version auch die verwendete Version des
Sprachcompilers von C# festlegte, kann man seit Visual Studio 2017 Update 3 (Version 15.3) die
Sprachversion pro Projekt in den Projekteigenschaften (Build/Avanced) festlegen.

Cs40. st €572 Demosics CsharpSpr.
Application Configuration: Active ([Debug) ¥| Platform: |Active
Build

Build Events

Debug General

Resources Conditional campilation symbols:

R [4] Define DEBUG constant

Settings

[] Define TRACE constant

Reference Paths.

Signing Platform target
Security [ prefer 32-bit
Publish

Code Analysis )
Optimize code

Errors and warnings
Warning level
Suppress warnings:

Treat warnings as errors
® None

O an

O specific warnings| Library base address:

Output

Output path:

Any CPU

L] Allow unsafe code

Advanced Build Settings

General
Language version: C#T2
(C# latest major version (default)

€ latest minor version (latest)

[ Check for arithmetic overflow/tsn.

Internal compiler error reporting

Output Is0-2
Debugging information: c# 3
coa
File alignment: ces
cve
c#70
ci71

bin\Debugy :! Browse...

(] %ML documentation file:

Generate serialization assembly:  Auto

Advanced...

Abbildung: Einstellen der Sprachversion

Zudem warnt Visual Studio, wenn Sie ein Sprachfeature verwenden, welches es in der eingestellten
Version noch nicht gibt.

int b = default;

Consol ¥ -r

Feature ‘default literal' is not available in C# 7. Please use language versicn 7.1 or greater.



