

Dr. Holger Schwichtenberg

C# 7.3 Crashkurs

Die Syntax der Programmiersprache C#

für die Softwareentwicklung

in .NET Framework, .NET Core, Xamarin und Mono

2 Inhaltsverzeichnis

Verlag: www.IT-Visions.de, Fahrenberg 40b, D-45257 Essen

ISBN: 3934279-31-7

Version: 2.1.2 / 29.08.2019

Sprachliche Korrektur: Katrin Lettau und Matthias Bloch

Formatierung: Katrin Lettau

Bezugsquelle: https://www.amazon.de/exec/obidos/ASIN/3934279317/itvisions-21

Bezugsquelle: https://leanpub.com/CSharp73Crashkurs

https://www.amazon.de/exec/obidos/ASIN/3934279317/itvisions-21
https://leanpub.com/CSharp73Crashkurs

Inhaltsverzeichnis 3

4 Inhaltsverzeichnis

1 Inhaltsverzeichnis

1 Inhaltsverzeichnis .. 4

2 Vorwort ... 9

3 Über den Autor .. 10

4 Über dieses Büchlein ... 10

4.1 Versionsgeschichte dieses Büchleins .. 11

4.2 Geplante Themen ... 12

4.3 Programmcodebeispiele zu diesem Büchlein ... 12

5 Fakten zu C# .. 14

5.1 Der Name C# ... 14

5.2 Ursprünge von C# .. 14

5.3 Status der Programmiersprache C# ... 14

5.4 Versionsgeschichte ... 16

5.5 Standardisierung... 17

5.6 Implementierung des C#-Compilers .. 18

5.7 Open Source... 18

5.8 Kommende Versionen .. 18

5.9 Parität und Co-Evolution mit Visual Basic .NET ... 18

6 Grundkonzepte von C# .. 20

6.1 Sprachtypus ... 20

6.2 Groß- und Kleinschreibung... 20

6.3 Schlüsselwörter der Sprache ... 20

6.4 Namensregeln und Namenskonventionen .. 21

6.5 Blockbildung und Umbrüche .. 21

6.6 Hello World ... 22

6.7 Eingebaute Funktionen ... 22

7 Der C#-Compiler ... 23

7.1 Der ursprüngliche (alte) C#-Compiler ... 23

7.1.1 Kompilierung mit csc.exe ... 23

7.1.2 Kommandozeilenparameter... 23

7.2 Der aktuelle (neue) C#-Compiler .. 26

7.2.1 Versionsnummern des Compilers .. 27

7.2.2 Kommandozeilenparameter... 27

Inhaltsverzeichnis 5

8 Erste Schritte Visual Studio .. 31

8.1 Hello World mit dem .NET Framework .. 31

8.2 Hello World mit .NET Core.. 36

8.3 Festlegung der Compilerversion in Visual Studio .. 40

9 Datentypen .. 41

9.1 Variablendeklarationen ... 42

9.2 Typinitialisierung ... 42

9.3 Literale für Zeichen und Zeichenketten ... 43

9.4 String Interpolation .. 44

9.5 Zahlenliterale ... 44

9.6 Datumsliterale .. 45

9.7 Lokale Typableitung (Local Variable Type Inference) .. 45

9.8 Gültigkeit von Variablen .. 46

9.9 Typprüfungen... 46

9.10 Typkonvertierung ... 47

9.11 Dynamische Typisierung .. 48

9.12 Pattern Matching .. 49

9.13 Wertelose Wertetypen (Nullable Value Types).. 50

10 Operatoren ... 54

10.1 Operator ?. ... 57

10.2 Operator nameof() .. 57

11 Schleifen.. 58

11.1 Iterator-Implementierung mit yield (Yield Continuations) ... 59

11.2 Praxisbeispiel für yield ... 60

12 Verzweigungen .. 63

13 Klassendefinition ... 64

13.1 Klassendefinitionen .. 64

13.2 Klassenverwendung ... 65

13.3 Geschachtelte Klassen (eingebettete Klassen) ... 66

13.4 Sichtbarkeiten/ Zugriffsmodifizierer .. 66

13.5 Statische Klassen.. 67

14 Strukturen .. 68

14.1 Wertetyp versus Referenztyp .. 68

6 Inhaltsverzeichnis

14.2 Deklaration von Strukturen ... 70

14.3 Verwendung von Strukturen ... 71

15 Attribute (Fields und Properties) .. 73

15.1 Abweichungen von der Informatik .. 73

15.2 Felder (Field-Attribute) .. 74

15.3 Eigenschaften (Property-Attribute) ... 75

15.3.1 Explizite Properties ... 75

15.3.2 Automatische Properties ... 76

15.3.3 Zusammenfassung zu Properties ... 77

16 Methoden .. 79

16.1 Methodendefinition und Rückgabewerte ... 79

16.2 Methodenparameter .. 79

16.3 Optionale und benannte Parameter .. 80

16.4 Ref und out .. 81

16.5 Statische Methode als globale Funktionen ... 82

16.6 Lokale Funktion (ab C# 7.0) ... 83

16.7 Caller-Info-Annotationen ... 83

17 Konstruktoren und Destruktoren ... 86

18 Aufzählungstypen (Enumeration) ... 89

19 Expression-bodied Members .. 90

20 Objektinitialisierung .. 91

21 Behandlung von null .. 92

22 Partielle Klassen .. 95

23 Partielle Methoden ... 96

24 Erweiterungsmethoden (Extension Methods) .. 97

25 Annotationen (.NET-Attribute) .. 99

26 Generische Klassen .. 102

26.1 Definition einer generischen Klasse .. 102

26.2 Verwendung einer generischen Klasse .. 102

26.3 Einschränkungen für generische Typparameter (Generic Constraints)...................... 103

26.4 Kovarianz für Typparameter ... 103

27 Objektmengen.. 107

27.1 Einfache Arrays ... 107

27.2 Objektmengen (untypisiert und typisiert) .. 107

Inhaltsverzeichnis 7

28 Anonyme Typen .. 109

29 Tupel ... 110

29.1 Alte Tupelimplementierung mit System.Collections.Tupel 110

29.2 Neue Tupelimplementierung in der Sprachsyntax.. 110

29.3 Dekonstruktion ... 111

29.4 Serialisierung von Tupeln ... 113

29.5 Vergleich von Tupeln (C# 7.3) ... 113

30 Implementierungsvererbung ... 114

31 Schnittstellen (Interfaces) ... 116

32 Namensräume (Namespaces).. 117

32.1 Softwarekomponenten versus Namensräume .. 117

32.2 Vergabe der Namensraumbezeichner .. 118

32.3 Vergabe der Typnamen .. 119

32.4 Namensräume deklarieren .. 119

32.5 Import von Namensräumen... 120

32.6 Verweis auf Wurzelnamensräume ... 120

32.6.1 Beispiel .. 120

33 Operatorüberladung ... 122

34 Funktionale Programmierung in C# (Delegates / Lambdas) ... 123

34.1 Delegates ... 123

34.2 Vordefinierte Delegates Action<T> und Func<T> .. 125

34.3 Prädikate mit Predicate<T> .. 126

34.4 Lambda-Ausdrücke .. 127

35 Ereignisse .. 131

35.1 Definition von Ereignissen ... 131

35.2 Ereignis auslösen.. 131

35.3 Ereignisbehandlung .. 132

36 Laufzeitfehler .. 133

36.1 Fehler abfangen .. 133

36.2 Fehler auslösen... 134

36.3 Eigene Fehlerklassen .. 135

37 Kommentare und XML-Dokumentation ... 136

38 Asynchrone Ausführung mit async und await ... 138

8 Inhaltsverzeichnis

38.1 Async und await mit der .NET-Klassenbibliothek ... 138

38.2 Async und await mit eigenen Threads ... 139

38.3 Weitere Möglichkeiten ... 140

39 Zeigerprogrammierung .. 141

39.1 Zeigerprogrammierung mit unsafe .. 141

39.2 Zeigerprogrammierung mit ref (Managed Pointer) .. 143

40 Abfrageausdrücke / Language Integrated Query (LINQ) .. 146

40.1 Einführung und Motivation... 146

40.2 LINQ-Provider ... 147

40.2.1 LINQ-Provider von Microsoft im .NET Framework .. 147

Andere LINQ-Provider .. 147

40.2.2 Formen von LINQ .. 147

40.2.3 Einführung in die LINQ-Syntax .. 148

Übersicht über die LINQ-Befehle ... 152

40.3 LINQ to Objects ... 159

40.3.1 LINQ to Objects mit elementaren Datentypen ... 159

40.3.2 LINQ to Objects mit komplexen Typen des .NET Framework 163

40.3.3 LINQ to Objects mit eigenen Geschäftsobjekten.. 166

40.4 Parallel LINQ (PLINQ) .. 171

41 Syntaxreferenz: C# versus Visual Basic .NET .. 174

42 Ausblick auf C# 8.0 ... 180

42.1 Nullable Reference Types (C# 8.0) ... 180

42.1.1 C# 7.3 erkennt die Programmierfehler nicht .. 180

42.1.2 C# 8.0 ist strenger ... 181

42.1.3 Einstellen der Compiler-Version ... 182

42.2 Ranges (C# 8.0) ... 183

43 Quellen im Internet .. 184

44 Stichwortverzeichnis (Index) .. 185

45 Werbung in eigener Sache ☺ .. 191

Vorwort 9

2 Vorwort
Liebe Leserinnen und Leser,

der "C# Crashkurs" ist ein prägnanter Überblick über die Syntax der Programmiersprache C# in der

aktuellen Version 7.3.

Dieses Büchlein ist geeignet für Softwareentwickler, die von einer anderen objektorientierten

Programmiersprache (z.B. C++, Java, Visual Basic .NET oder PHP) auf C# umsteigen wollen oder
bereits C# einsetzen und ihr Wissen erweitern insbesondere die neusten Sprachfeatures kennenlernen

wollen. Wir schulen bei www.IT-Visions.de jedes Jahr hunderte Entwickler auf C# bzw. die neuste
Version der Sprache um. Da es viele Umsteiger von Visual Basic .NET zu C# gibt, werden hier die

Unterschiede von C# gegenüber Visual Basic .NET an einigen Stellen hervorgehoben.

Für Neueinsteiger, die mit C# erstmals eine objektorientiere Programmiersprache erlernen wollen, ist

es nicht geeignet.

Es erhebt nicht den Anspruch, alle syntaktischen Details zu C# aufzuzeigen, sondern nur die in der

Praxis am wichtigsten Konstrukte.

In diesem Büchlein werden bewusst alle Syntaxbeispiele anhand von Konsolenanwendungen gezeigt.

So brauchen Sie als Leser kein Wissen über irgendeine GUI-Bibliothek und die Beispiele sind prägnant

fokussiert auf die Syntax.

Dieses Büchlein wird vertrieben über Amazon.de

▪ Kindle-E-Book von Amazon.de für 9,99 Euro (der Autor erhält 5,56 Euro):

www.amazon.de/exec/obidos/ASIN/B07G2STYMH/itvisions-21

▪ Gedruckt (Print-on-Demand) bei Amazon.de für 14,99 Euro (der Autor erhält 5,53 Euro):

www.amazon.de/exec/obidos/ASIN/3934279317/itvisions-21

▪ PDF bei leanpub.com für 10,99 Dollar (der Autor erhält ca. 8,93 Euro):

www.leanpub.com/CSharp8

Da solch niedrige Preise leider nicht nennenswert dazu beitragen können, den Lebensunterhalt meiner
Familie zu bestreiten, ist dieses Projekt ein Hobby. Dementsprechend kann ich nicht garantieren, wann

es Updates zu diesem Büchlein geben wird. Ich werde dann an diesem Büchlein arbeiten, wenn ich

neben meinem Beruf als Softwarearchitekt, Berater und Dozent und meinen sportlichen Betätigungen

noch etwas Zeit für das Fachbuchautorenhobby übrig habe.

Zudem möchte ich darauf hinweisen, dass ich natürlich keinen kostenfreien technischen Support zu den

Inhalten dieses Büchleins geben kann. Ich freue mich aber immer über konstruktives Feedback und

Verbesserungsvorschläge. Bitte verwenden Sie dazu das Kontaktformular auf www.dotnet-doktor.de.

Wenn Sie technische Hilfe zu C# und seinen Einsatzgebieten (.NET, Mono, Xamarin) oder anderen
Themen rund um Visual Studio, Windows oder andere Microsoft-Produkte benötigen, stehe ich Ihnen

im Rahmen meiner beruflichen Tätigkeit für die Firmen www.IT-Visions.de (Beratung, Schulung,
Support) und 5Minds IT-Solutions GmbH & Co KG (Softwareentwicklung, siehe www.5minds.de)

gerne zur Verfügung. Bitte wenden Sie sich für ein Angebot an das jeweilige Kundenteam.

Auf der von mir ehrenamtlich betriebenen Leser-Website unter www.IT-Visions.de/Leser, können Sie

die Beispiele zu diesem Büchlein herunterladen. Dort müssen Sie sich registrieren. Bei der Registrierung

wird ein Losungswort abgefragt. Bitte geben Sie dort The Orville ein.

Herzliche Grüße aus Essen, dem Herzen der Metropole Ruhrgebiet

Holger Schwichtenberg

http://www.dotnet-doktor.de/
http://www.it-visions.de/
http://www.5minds.de/
http://www.it-visions.de/Leser

10 Über den Autor

3 Über den Autor
▪ Studienabschluss Diplom-Wirtschaftsinformatik an der Universität Essen

▪ Promotion an der Universität Essen im Gebiet komponentenbasierter

Softwareentwicklung

▪ Seit 1996 selbstständig als unabhängiger Berater, Dozent, Softwarearchitekt und

Fachjournalist

▪ Fachlicher Leiter des Berater- und Dozententeams bei www.IT-Visions.de

▪ Leitung der Softwareentwicklung im Bereich Microsoft/.NET bei der 5Minds IT-

Solutions GmbH & Co. KG (www.5Minds.de)

▪ Über 65 Fachbücher beim Carl Hanser Verlag, bei O'Reilly, Microsoft Press,

APress und Addison-Wesley sowie mehr als 1000 Beiträge in Fachzeitschriften

▪ Gutachter in den Wettbewerbsverfahren der EU gegen Microsoft (2006-2009)

▪ Ständiger Mitarbeiter der Zeitschriften iX (seit 1999), dotnetpro (seit 2000) und

Windows Developer (seit 2010) sowie beim Online-Portal heise.de (seit 2008)

▪ Regelmäßiger Sprecher auf nationalen und internationalen Fachkonferenzen (z.B.

Microsoft TechEd, Microsoft Summit, Microsoft IT Forum, BASTA, BASTA-on-Tour, .NET Architecture

Camp, Advanced Developers Conference, Developer Week, OOP, DOTNET Cologne, MD DevDays,

Community in Motion, DOTNET-Konferenz, VS One, NRW.Conf, Net.Object Days, Windows Forum,

Container Conf)

▪ Zertifikate und Auszeichnungen von Microsoft:

o Microsoft Most Valuable Professional (MVP)

o Microsoft Certified Solution Developer (MCSD)

▪ Thematische Schwerpunkte:

o Softwarearchitektur, mehrschichtige Softwareentwicklung, Softwarekomponenten, SOA

o Visual Studio, Continous Integration, Continous Delivery, Azure DevOps

o Microsoft .NET Framework, C#, Visual Basic

o .NET-Architektur/Auswahl von .NET-Technologien

o Einführung von .NET Framework und Visual Studio/Migration auf .NET

o Webanwendungsentwicklung und Cross-Plattform-Anwendungen mit HTML, ASP.NET,

JavaScript/TypeScript und Webframeworks wie Angular

o Enterprise .NET, verteilte Systeme/Webservices mit .NET, insbesondere Windows Communication

Foundation und WebAPI

o Relationale Datenbanken, XML, Datenzugriffsstrategien

o Objektrelationales Mapping (ORM), insbesondere ADO.NET Entity Framework und EF Core

o Windows PowerShell, PowerShell Core und Windows Management Instrumentation (WMI)

▪ Ehrenamtliche Community-Tätigkeiten:

o Vortragender für die International .NET Association (INETA)

o Betrieb diverser Community-Websites: www.dotnet-lexikon.de, www.dotnetframework.de,

www.windows-scripting.de, www.aspnetdev.de u. a.

▪ Firmenwebsites: http://www.IT-Visions.de und http://www.5Minds.de

▪ Weblog: http://www.dotnet-doktor.de

▪ Kontakt für geschäftliche Anfragen via Kundenteam:

E-Mail kundenteam@IT-Visions.de sowie Telefon 0201 / 64 95 90 - 0

▪ Kontakt für Feedback zu diesem Buch: Kontaktformular auf http://www.dotnet-doktor.de

http://www.it-visions.de/

Über dieses Büchlein 11

4 Über dieses Büchlein

4.1 Versionsgeschichte dieses Büchleins

Die folgende Tabelle zeigt die Versionen, die von diesem Büchlein erschienen sind, sowie die darin

besprochenen C#-Versionen.

Ergänzungen der Versionsnummer an der dritten Stelle (z.B. 1.2.3) sind kleine Korrekturen im

Büchlein, die nicht explizit in dieser Versionstabelle erscheinen.

Buchversion

Datum

Umfang Preis Kindle-

Ausgabe

Preis

gedruckte

Ausgabe

C#-

Version

Bemerkung

1.0

27.03.2018

166 Seiten 9,99 € 14,99 € 7.2 ▪ Grundversion

1.1

20.07.2018

167 Seiten 9,99 € 14,99 € 7.2

(7.3)

▪ Ref Local

Reassignment (C#

7.3)

▪ Ausblick auf C#

8.0

2.0

21.07.2018

172 Seiten 9,99 € 14,99 € 7.3

(8.0)

▪ Vergleich mit

Tupeln (C# 7.3)

▪ Annotationen für

Backing Field von

Auto-Properties

(C# 7.3)

▪ Verbesserungen

für unsafe-Blöcke

(C# 7.3)

▪ Ranges (C# 8.0)

2.1

27.11.2018

189 Seiten 9,99 € 14,99 € 7.3

(8.0)

▪ Kapitel
"Grundkonzepte

von C#" erweitert

▪ Kapitel "Attribute

(Fields und

Properties)"

erweitert

▪ Kapitel

"Ereignisse"

überarbeitet

▪ Kapitel

"Funktionale
Programmierung

in C#" erweitert

12 Über dieses Büchlein

▪ Kapitel

"Behandlung von

null" ergänzt

4.2 Geplante Themen

Folgende Themen sind für kommenden Ausgaben dieses Büchleins geplant:

▪ Span<T> / Memory<T> (C# 7.2)

▪ Aliase für referenzierte Assemblies

▪ IDisposable

▪ Indexer

▪ Design Pattern in C#

▪ Clean Code-Programmierung mit C#

▪ Weitere Neuerungen in C# 8.0

4.3 Programmcodebeispiele zu diesem Büchlein

Die Programmcodebeispiele zu diesem Büchlein können Sie auf der auf der von mir ehrenamtlich
betriebenen Leserwebsite www.IT-Visions.de/Leser herunterladen. Dort müssen Sie sich

registrieren. Bei der Registrierung wird ein Losungswort abgefragt. Bitte geben Sie dort das

Losungswort The Orville ein.

Alle Programmbeispiele aus diesem Büchlein sind in einem Visual Studio 2017-Projekt enthalten,

organisiert und in Unterordnern nach Sprachversionen aufgeteilt. Dies heißt, dass Sie zum Beispiel

Sprachfeatures von C# 7.0 im Ordner CS70 finden.

Wie im Vorwort bereits erwähnt handelt es sich um den Anwendungstyp "Konsolenanwendung".

So brauchen Sie als Leser kein Wissen über irgendeine GUI-Bibliohek und die Beispiele sind

prägnant fokussiert auf die Syntax.

Über dieses Büchlein 13

Abbildung: Programmcodebeispiele zu diesem Büchlein in einem Visual Studio-Projekt

5 Fakten zu C#

5.1 Der Name C#

C# wird gesprochen „C Sharp“. Das # könnte man auch in ein vierfaches Pluszeichen aufspalten

(also C++++, eine Weiterentwicklung von C++). Ursprünglich sollte die Sprache "Cool" heißen.

Eine Zeit lang wurde auch "C# .NET" verwendet; das ist heute aber nicht mehr üblich. Microsoft
spricht aber gelegentlich noch von "Visual C#", z.B. meldet sich der Kommandozeilencompiler

von C# auch in der aktuellen Version mit "Microsoft (R) Visual C# Compiler".

5.2 Ursprünge von C#

C# ist das Ergebnis eines Projektes bei Microsoft, welches im Dezember 1998 gestartet wurde,

nachdem die Firma Sun Microsoft die Veränderung der von Sun entwickelten Programmiersprache

Java verboten hatte. Vater von C# ist Anders Heljsberg

[https://de.wikipedia.org/wiki/Anders_Hejlsberg], der zuvor auch Turbo Pascal und Borland

Delphi erschaffen hat.Er war früher bei Borland und arbeitet seit 1996 bei Microsoft. Heutzutage

ist er auch verantwortlich für die Sprache TypeScript.

5.3 Status der Programmiersprache C#

Früher gab es einen wahren Glaubenskrieg in der .NET-Entwicklergemeinde um die Wahl der

»richtigen« Programmiersprache. C# oder Visual Basic .NET hieß die Frage, die viele

Projektteams bewegt hat. Auch wenn Visual Basic .NET in allen wesentlichen Punkten syntaktisch

ebenbürtig war, hat C# klar gewonnen.

C# ist heute nicht nur eine von vielen Programmiersprachen für .NET, es hat sich durchgesetzt als
DIE Programmiersprache für .NET. Gegenwärtig gibt es nur noch wenige .NET-Projekte, die

Visual Basic .NET, F# oder C++/CLI oder exotischere Sprachen verwenden.

Schaut man in die aktuelle Dokumentation der .NET-Klassen auf https://docs.microsoft.com, sieht

man dort nur noch Beispiele für C#, während die alte MSDN-Dokumentation noch Beispiele in

C#, Visual Basic .NET, und C++ enthielt.

Fakten zu C# 15

Abbildung: Beispiele in vier Sprachen in der alten MSDN-Dokumentation der .NET-Klassen

16 Fakten zu C#

Abbildung: In der neuen .NET-Klassendokumentation gibt es nur noch Beispiele in C#

5.4 Versionsgeschichte

Hinsichtlich der Versionsnummern der Sprache C# herrschte früher etwas Verwirrung. Es gab

einerseits eine offizielle Zählung mit Versionsnummer (parallel zum .NET Framework),

andererseits mit Jahreszahlen (parallel zu Visual Studio). Intern wird eine dritte Zählung für den
Compiler verwendet. Die erste Version von C# im Rahmen des .NET Framework 1.0 trug intern

die Versionsnummer 7.0. Zu .NET 1.1 gab es dann C# 7.1, im .NET Framework 2.0 und 3.0 meldet

sich der C#-Compiler mit Version 8.0. Ab .NET Framework 3.5 hat Microsoft dies aber bereinigt.

Dort meldet sich der Compiler nun auch mit Version 3.5.

Die folgende Liste dokumentiert die Versionsgeschichte von C# einschließlich der verschiedenen

Namen, die es jeweils gibt.

▪ C# 1.0 ist erschienen am 05.01.2002 (in Visual Studio.NET 2002+2003 / .NET Framework

1.0 und 1.1. Erste Version des ISO-Standards für C#.)

▪ C# 2.0 ist erschienen am 07.11.2005 (C# 2005 / in Visual Studio.NET 2005 / .NET Framework

2.0 und 3.0. Zweite Version des ISO-Standards für C#.)

▪ C# 3.0 ist erschienen am 15.08.2008 (C# 2008 / in Visual Studio.NET 2008 / .NET Framework

3.5)

▪ C# 4.0 ist erschienen am 12.04.2010 (C# 2010 / in Visual Studio.NET 2010 / .NET Framework

4.0)

▪ C# 5.0 ist erschienen am 12.08.2012 (C# 2012 / in Visual Studio.NET 2012 / .NET Framework

4.5)

Fakten zu C# 17

▪ C# 6.0 ist erschienen am 20.07.2015 (C# 2015 / in Visual Studio.NET 2015 / .NET Framework

4.6)

▪ C# 7.0 ist erschienen am 05.03.2017 (C# 2017 / in Visual Studio 2017)

▪ C# 7.1 ist erschienen am 14.08.2017 (in Visual Studio 15.3)

▪ C# 7.2 ist erschienen am 15.11.2017 (in Visual Studio 15.5)

▪ C# 8.0 Beta ist erschienen am 04.12.2018 (in Visual Studio 16.0 Preview 1)

Version der

Sprachsyntax mit

Versionsnummer

Ausgeliefert mit Version der

Sprachsyntax

mit Jahreszahl

Interne

Versionsnummer des

C#-Compilers

C# 1.0 .NET Framework 1.0 Visual C# 2002 7.0 (alter Compiler)

C# 1.1 .NET Framework 1.1 Visual C# 2003 7.1 (alter Compiler)

C# 2.0 .NET Framework 2.0 Visual C# 2005 8.0 (alter Compiler)

C# 2.0 .NET Framework 3.0 Visual C# 2005 8.0 (alter Compiler)

C# 3.0 .NET Framework 3.5 Visual C# 2008 3.5 (alter Compiler)

C# 4.0 .NET Framework 4.0 Visual C# 2010 4.0 (alter Compiler)

C# 5.0 .NET Framework 4.5 Visual C# 2012 4.5 (alter Compiler)

C# 6.0 .NET Framework 4.6

/ .NET Core 1.0
Visual C# 2015 1.x (Neuer Compiler)

C# 7.0 Visual Studio 2017

15.0 / .NET Core 2.0

Visual C# 2017 2.0 (Neuer Compiler)

C# 7.1 Visual Studio 2017

15.4 / .NET Core 2.0

Visual C# 2017 2.3 (Neuer Compiler)

C# 7.2 Visual Studio 2017

15.5 / .NET Core 2.0

Visual C# 2017 2.7 (Neuer Compiler)

C# 7.3 Visual Studio 2017

15.7 / .NET Core 2.1

Visual C# 2017 2.8 + 2.9 + 2.10 (Neuer

Compiler)

C# 8.0 Visual Studio 2019

16.0 / .NET Core 3.0

Visual C# 2018 2.11 (Neuer Compiler)

Tabelle: Verschiedene Versionsnummernzählungen für die Sprache C#

5.5 Standardisierung

Microsoft hat einige Teile des .NET Framework unter dem Namen Common Language

Infrastructure (CLI) standardisieren lassen. Die CLI wurde erstmals im Dezember 2001 von der

European Computer Manufacturers Association (ECMA) standardisiert (ECMA-Standard 335,

Arbeitsgruppe TC49 / TG3, früher: TC39 / TG3, siehe [ECMA01]); mit kleinen Änderungen

wurde der Standard im Dezember 2002 von der weltweit wichtigsten
Standardisierungsorganisation, der International Standardization Organization (ISO),

übernommen als ISO / IEC 23271.

18 Fakten zu C#

Die Begriffe lauten in den Standards zum Teil allerdings anders als bei Microsoft: Was im .NET

Framework Microsoft Intermediate Language (MSIL) heißt, entspricht im Standard der Common

Intermediate Language (CIL). Anstelle der Framework Class Library (FCL) spricht man von der

CLI Class Library. Von der Standardisierung ausgenommen sind jedoch z.B. die

Datenbankschnittstelle ADO.NET und die Benutzeroberflächen-Bibliotheken Windows Forms

und ASP.NET Webforms. Auch die neueren .NET-Bibliotheken (WPF, WCF und WF) sind nicht

standardisiert.

Auch die Programmiersprache C# ist von beiden Gremien akzeptiert (ECMA-334 bzw. ISO / IEC

23270). Die Standardisierung bezieht sich aber auf ältere Versionen. Die letzten C#-Versionen hat

Microsoft nicht mehr standardisieren lassen. Die Standardisierung ist auf dem Stand C# 2.0

Ein weiterer, von Microsoft initiierter Standard ist von der ECMA im Dezember 2005 unter

ECMA-372 (Arbeitsgruppe TC49 / TG5, früher: TC39 / TG5) verabschiedet worden: C++ / CLI

ist eine Spracherweiterung für C++ (ISO / IEC 14882:2003), die eine elegantere Nutzung von C++

auf der CLI-Plattform ermöglicht, als dies bisher mit den Managed Extensions for C++ (alias

Managed C++) möglich war.

5.6 Implementierung des C#-Compilers

Die ursprüngliche Version des C#-Compilers (csc.exe) wurde in C++ implementiert. Auch der C#-

Compiler im Mono-Projekt ist in C++ geschrieben.

Mit dem Projekt "Roslyn" (alias: .NET Compiler Platform) hat Microsoft selbst den Compiler neu

in C# implementiert. Die erste Version des neuen Compilers war C# 6.0.

5.7 Open Source

Bereits zu C# 1.0 gab es eine quelloffene Version im Projekt "Rotor" im Rahmen der

Standardisierung von C#. Diese war jedoch nicht "Open Source", sondern nur "Shared Source",

d.h. der Quellcode durfte betrachtet, aber nicht weiterverwendet werden. Seit C# 6.0 ist der neue

Compiler im Rahmen der .NET Compiler Platform "Roslyn" ein Open Source-Projekt auf Github.

Projekt für das Design der Programmiersprache:

https://github.com/dotnet/csharplang

Projekt für die Implementierung der Programmiersprache:

https://github.com/dotnet/roslyn

5.8 Kommende Versionen

Aktuell entwickelt Microsoft an der Version C# 8.0.

5.9 Parität und Co-Evolution mit Visual Basic .NET

Im Jahr 2010 hatte Microsoft verkündet, die Programmiersprache C# und Visual Basic .NET

hinsichtlich ihrer Funktionalität anzugleichen. »Die Sprachen sollen sich in Stil und Gefühl

unterscheiden, nicht in ihrem Funktionsumfang«, schrieb Mads Torgersen, Produktmanager für C#

damals. Scott Wiltamuth führt den Begriff "Co-Evolution" ein

[https://blogs.msdn.microsoft.com/scottwil/2010/03/09/vb-and-c-coevolution/].

https://github.com/dotnet/csharplang
https://github.com/dotnet/roslyn

Fakten zu C# 19

Einige Jahre hat Microsoft diese Strategie tatsächlich umgesetzt und bestehende Sprachfeatures,

die nur eine Sprache hatte, in der anderen Sprache nachgerüstet und neue Sprachfeatures

gleichzeitig oder zumindest zeitnah in beiden Sprachen veröffentlicht.

Im Jahr 2017 hat Microsoft sich von Parität und Co-Evolution wieder verabschiedet.

Visual Basic .NET ist nach C# die zweitwichtigste Programmiersprache in der .NET-Welt.

Telemetriedaten [https://blogs.msdn.microsoft.com/dotnet/2017/02/01/the-net-language-strategy]

von Microsoft zeigen einerseits, dass Visual Basic .NET hauptsächlich zur Programmierung mit

älteren .NET-Techniken wie Windows Forms und ASP.NET Webforms zum Einsatz kommt.

Andererseits beginnen viele neue .NET-Entwickler mit Visual Basic .NET, bevor sie sich an C#
herantrauen. Microsoft nahm diese Erkenntnisse zum Anlass, von der im Jahr 2010 verkündigen

Co-Evolutionsstrategie von C# und Visual Basic .NET abzurücken und zukünftig nicht mehr alle

neuen C#-Features automatisch auf Visual Basic .NET zu übertragen. Die parallel zu C# 7.0

erschienene Version 15 von Visual Basic .NET bietet daher lediglich Tupel und binäre Literale als

neue Sprachfeatures an. Zudem kann Visual Basic .NET 15 C#-Methoden nutzen, die Zeiger mit

ref liefern, selbst aber solche Methoden nicht implementieren.

20 Grundkonzepte von C#

6 Grundkonzepte von C#
Konzeptionell wurde C# vor allem von C++ und Java beeinflusst; man kann aber auch Parallelen

zu Visual Basic und Delphi finden.

6.1 Sprachtypus

Im Gegensatz zu C++, das eine hybride Sprache aus objektorientierten und nicht-objektorientierten

Konzepten ist, ist C# ebenso wie Java eine rein objektorientierte Sprache, d.h., alle Datentypen

basieren auf Klassen und alle Anweisungen erfolgen in Klassen.

C# unterstützt alle zentralen Konzepte der Objektorientierung einschließlich Schnittstellen,

Vererbung und Polymorphismus. Schon in C# 2005 wurde auch die Unterstützung für generische
Klassen und partielle Klassen hinzugefügt. Außerdem besitzt C# Konzepte der funktionalen

Programmierung (Delegates und Lambda-Ausdrücke).

6.2 Groß- und Kleinschreibung

Ein wesentlicher Unterschied zwischen C# und Visual Basic .NET ist die Tatsache, dass C# im

Gegensatz zu Visual Basic .NET zwischen Groß- und Kleinschreibung unterscheidet. Dies gilt

sowohl für die Schlüsselwörter der Sprache als auch für alle Bezeichner (a und A sind verschiedene

Variablen!). Die Schlüsselwörter der Sprache C# werden komplett in Kleinbuchstaben

geschrieben.

6.3 Schlüsselwörter der Sprache

Die folgende Liste zeigt die vordefinierten Schlüsselwörter der Programmiersprache C#. Diese

Namen dürfen in der gleichen Groß-/Kleinschreibung nicht als Bezeichner verwendet werden

(Quelle: https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/index).

Grundkonzepte von C# 21

6.4 Namensregeln und Namenskonventionen

Bei der Vergabe von eigenen Bezeichner (z.B. Variablenname, Parameternamen, Atributnamen

und Methodennamen) gibt es verpflichtende Regeln und optionale Namenskonventionen.

Verpflichtende Regeln sind:

▪ Der Name darf nur Buchstaben (*), Zahlen und den Unterstrich enthalten.

▪ Der Name muss mit einem Buchstaben beginnen

▪ Die Groß- und Kleinschreibung ist relevant

▪ Es dürfen keine Namen von C#-Schlüsselwörtern verwendet werden.

Hinweis: (*) Umlaute sind erlaubt, aber sollten dennoch besser vermieden werden: Nicht alle

Werkzeuge und alle Menschen kommen damit gut klar!

Optionale Regeln hat Microsoft in den ".NET Framework Design Guidelines"
[https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines] definiert. Die wichtigsten

Regeln dort sind:

▪ Für die Groß-/Kleinschreibung gilt grundsätzlich PascalCasing, d.h. ein Bezeichner beginnt

grundsätzlich mit einem Großbuchstaben und jedes weitere Wort innerhalb des Bezeichners

beginnt ebenfalls wieder mit einem Großbuchstaben.

Beispiel: KundenPortalBenutzer

▪ Ausnahmen gibt es für Abkürzungen, die nur aus zwei Buchstaben bestehen. Diese dürfen

komplett in Großbuchstaben geschrieben sein (z.B. UI und IO). Alle anderen Abkürzungen

werden entgegen ihrer normalen Schreibweise in Groß-/Kleinschreibung geschrieben (z.B.

Xml, Xsd und W3c).

Beispiele: System.IO.File, System.Xml.XmlDocument

▪ Lokale Variablen, versteckte Attribute (private/protected) und Parameternamen sollen in
camelCasing (Bezeichner beginnt mit einem Kleinbuchstaben, aber jedes weitere Wort

innerhalb des Bezeichners beginnt mit einem Großbuchstaben) geschrieben werden.

Beispiel: Login(KundenPortalBenutzer kundenPortalBenutzer)

6.5 Blockbildung und Umbrüche

Blockbildung findet im C / C++-Stil statt, also mit geschweiften Klammern { }. Befehlstrenner ist

das Semikolon (;).

Ein Zeilenumbruch kann zwischen den Elementen des Ausdrucks auftreten, ohne das besondere

Vorkehrungen getroffen werden müssen. Zahlen können seit C# 7.0 mit einem Unterstrich

gegliedert werden; aber man darf innerhalb von Zahlen keinen Zeilenumbruch haben.

// Formel ohne Umbrüche

double Ergebnis1 = (2 + 3) * (5 + 6) * (7 * 8) + 3.141_592_653_59;

// Formel mit Umbrüchen

double Ergebnis2 = (2 + 3) *

 (5 + 6) *

 (7 * 8)

 + 3.141_592_653_59;

22 Grundkonzepte von C#

6.6 Hello World

Das folgende Listing zeigt das Hello World-Beispiel in C#, das man in jeder Programmiersprache

zuerst schreibt.

using System;

namespace HalloWelt

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("Hallo Welt!");

 }

 }

}

Mariginal komplexer ist diese Variante, die – sofern vorhanden – den ersten übergebenen

Kommandozeilenparameter als Name auffasst und die Person mit Namen grüßt.

namespace HalloWelt

{

 class Program

 {

 static void Main(string[] args)

 {

 if (args.Length > 0)

 {

 var name = args[0];

 // Ausgabe mit String Interpolation

 Console.WriteLine($"Hallo {name}!");

 Console.ReadLine();

 }

 else

 {

 Console.WriteLine("Hallo Welt!");

 }

 }

 }

}

6.7 Eingebaute Funktionen

Anders als in Visual Basic existieren in C# keine eingebauten Funktionen zur Typumwandlung

(z.B. CBool(), CInt(), CLng(), CType()), Zeichenkettenverarbeitung (z.B. InStr(), Trim(), LCase())

und Ausgabe (z.B. MsgBox()). Auch die My-Klassenbibliothek ist nicht vorhanden. Grundsätzlich

ist es möglich, die in Visual Basic eingebauten Funktionen und die My-Bibliothek durch
Referenzierung der Microsoft.VisualBasic.dll auch in C# zu nutzen. Dies sollte jedoch vermieden

werden, um sprachunabhängig zu bleiben. Alle Visual Basic-Funktionen und -Objekte sind auch

in der .NET-Klassenbibliothek enthalten, z.B. String.IndexOf() statt InStr() und Convert.ToInt32()

statt CInt().

Der C#-Compiler 23

7 Der C#-Compiler
Es gibt zwei Varianten des C#-Compilers: eine alte, in C++ geschriebene, und neue, in C#

geschriebene Implementierung.

7.1 Der ursprüngliche (alte) C#-Compiler

Der Kommandozeilencompiler für C# im .NET Framework Redistributable ist csc.exe. Er wird

installiert im Verzeichnis C:\Windows\Microsoft.NET\Framework64\v4.0.30319. Alternativ kann

er in der .NET Framework-Klassenbibliothek im sogenannten "CodeDOM" durch die Klasse

Microsoft.CSharp.CSCodeProvider angesprochen werden.

Wenn Sie heute ein aktuelles Microsoft .NET Framework (z.B. 4.7.2) verwenden, so ist dort der

ursprüngliche C#-Compiler immer noch in der Version 5.0 enthalten.

Abbildung: In .NET Framework 4.7.1 ist der C#-Compiler für C# 5.0 enthalten.

7.1.1 Kompilierung mit csc.exe

Der Befehl

csc.exe Dateiname1.cs Dateiname2.cs DateinameX.cs

oder

csc Dateiname1.cs Dateiname2.cs DateinameX.cs

übersetzt die angegebenen Dateien in eine Konsolenanwendung. Eine Datei, die als

Konsolenanwendung oder Windows-Anwendung kompiliert wird, muss genau eine Klasse mit

folgendem Einstiegspunkt besitzen: public static void Main().

Listing: »Hello World« in C#
class Hauptprogramm

{

 public static void Main()

 {

 System.Console.WriteLine("Hello World!");

 }

}

7.1.2 Kommandozeilenparameter

Der Kommandozeilencompiler bietet zahlreiche Optionen. Die wichtigsten davon sind:

▪ /target:winexe Der Compiler erzeugt eine Windows-Anwendung

▪ /target:library Der Compiler erzeugt eine DLL (kein Main() notwendig)

24 Der C#-Compiler

▪ /r:Dateiliste Die angegebenen Assemblys werden referenziert

▪ /out:Dateiname Name der Ausgabedatei

▪ /doc:Dateiname Der Compiler erzeugt zusätzlich eine XML-Dokumentationsdatei

▪ /help Anzeige der Hilfe zu den Compiler-Optionen

▪ Anders als beim Visual Basic .NET-Compiler vbc.exe müssen die Optionen /target und /out

bei csc.exe vor den Namen der Quelldateien in der Parameterliste erscheinen.

Es folgt die komplette Liste der Kommandozeilenparameter des alten C#-Compilers

 Visual C# Compiler Options

 - OUTPUT FILES -

/out:<file> Specify output file name (default: base name of

file with main class or first file)

/target:exe Build a console executable (default) (Short form:

/t:exe)

/target:winexe Build a Windows executable (Short form: /t:winexe)

/target:library Build a library (Short form: /t:library)

/target:module Build a module that can be added to another

assembly (Short form: /t:module)

/target:appcontainerexe Build an Appcontainer executable (Short form:

/t:appcontainerexe)

/target:winmdobj Build a Windows Runtime intermediate file that is

consumed by WinMDExp (Short form: /t:winmdobj)

/doc:<file> XML Documentation file to generate

/platform:<string> Limit which platforms this code can run on: x86,

Itanium, x64, arm, anycpu32bitpreferred, or anycpu. The default is anycpu.

 - INPUT FILES -

/recurse:<wildcard> Include all files in the current directory and

subdirectories according to the wildcard specifications

/reference:<alias>=<file> Reference metadata from the specified assembly

file using the given alias (Short form: /r)

/reference:<file list> Reference metadata from the specified assembly

files (Short form: /r)

/addmodule:<file list> Link the specified modules into this assembly

/link:<file list> Embed metadata from the specified interop assembly

files (Short form: /l)

 - RESOURCES -

/win32res:<file> Specify a Win32 resource file (.res)

/win32icon:<file> Use this icon for the output

/win32manifest:<file> Specify a Win32 manifest file (.xml)

/nowin32manifest Do not include the default Win32 manifest

/resource:<resinfo> Embed the specified resource (Short form: /res)

/linkresource:<resinfo> Link the specified resource to this assembly

(Short form: /linkres)

 Where the resinfo format is <file>[,<string

name>[,public|private]]

 - CODE GENERATION -

/debug[+|-] Emit debugging information

/debug:{full|pdbonly} Specify debugging type ('full' is default, and

enables attaching a debugger to a running program)

Der C#-Compiler 25

/optimize[+|-] Enable optimizations (Short form: /o)

 - ERRORS AND WARNINGS -

/warnaserror[+|-] Report all warnings as errors

/warnaserror[+|-]:<warn list> Report specific warnings as errors

/warn:<n> Set warning level (0-4) (Short form: /w)

/nowarn:<warn list> Disable specific warning messages

 - LANGUAGE -

/checked[+|-] Generate overflow checks

/unsafe[+|-] Allow 'unsafe' code

/define:<symbol list> Define conditional compilation symbol(s) (Short

form: /d)

/langversion:<string> Specify language version mode: ISO-1, ISO-2, 3, 4,

5, or Default

 - SECURITY -

/delaysign[+|-] Delay-sign the assembly using only the public

portion of the strong name key

/keyfile:<file> Specify a strong name key file

/keycontainer:<string> Specify a strong name key container

/highentropyva[+|-] Enable high-entropy ASLR

 - MISCELLANEOUS -

@<file> Read response file for more options

/help Display this usage message (Short form: /?)

/nologo Suppress compiler copyright message

/noconfig Do not auto include CSC.RSP file

 - ADVANCED -

/baseaddress:<address> Base address for the library to be built

/bugreport:<file> Create a 'Bug Report' file

/codepage:<n> Specify the codepage to use when opening source

files

/utf8output Output compiler messages in UTF-8 encoding

/main:<type> Specify the type that contains the entry point

(ignore all other possible entry points) (Short form: /m)

/fullpaths Compiler generates fully qualified paths

/filealign:<n> Specify the alignment used for output file

sections

/pdb:<file> Specify debug information file name (default:

output file name with .pdb extension)

/errorendlocation Output line and column of the end location of each

error

/preferreduilang Specify the preferred output language name.

/nostdlib[+|-] Do not reference standard library (mscorlib.dll)

/subsystemversion:<string> Specify subsystem version of this assembly

/lib:<file list> Specify additional directories to search in for

references

/errorreport:<string> Specify how to handle internal compiler errors:

prompt, send, queue, or none. The default is queue.

/appconfig:<file> Specify an application configuration file

containing assembly binding settings

/moduleassemblyname:<string> Name of the assembly which this module will be a

part of

26 Der C#-Compiler

7.2 Der aktuelle (neue) C#-Compiler

Der im Projekt "Roslyn" neu implementierte C#-Compiler heißt auch csc.exe; er ist aber nicht

mehr Teil des .NET Framework Redistributable. Er wird auf diesen Wegen verbreitet:

▪ Visual Studio 2017 bzw. Visual Studio 2017 Build Tools

▪ .NET Core SDK

▪ Nuget-Paket https://www.nuget.org/packages/Microsoft.Net.Compilers

Visual Studio installiert den Compiler in C:\Program Files (x86)\Microsoft Visual

Studio\2017\Enterprise\MSBuild\15.0\Bin\Roslyn. Das Nuget-Paket

https://www.nuget.org/packages/Microsoft.Net.Compilers enthält den csc.exe im Ordner /Tools.

Im .NET Core SDK wird der C#-Compiler nicht als csc.exe mitgeliefert, sondern über die .NET

CLI-Werkzeuge angesprochen (z.B. dotnet build).

Die folgende Abbildung zeigt die Installation des C#-Compilers per Nuget.exe mit dem Befehl:

nuget install Microsoft.Net.Compilers

Das Programm Nuget.exe bekommt man https://www.nuget.org/downloads.

Abbildung: Installation des neuen C#-Compilers via Nuget

https://www.nuget.org/packages/Microsoft.Net.Compilers/
https://www.nuget.org/packages/Microsoft.Net.Compilers/

Der C#-Compiler 27

Abbildung: Start des neuen C#-Compiler aus der Nuget-Installation

Abbildung: Start des neue C#-Compiler aus der Visual Studio-Installation

Die Neufassung des CodeDOM-APIs mit dem neuen Compiler erhält man über das Nuget-Paket

www.nuget.org/packages/Microsoft.CodeDom.Providers.DotNetCompilerPlatform.

7.2.1 Versionsnummern des Compilers

Die Versionsummer des neuen C#-Compilers richtet sich nach dem Funktionsumfang des

Compilers, nicht nach den Sprachfeatures (siehe folgende Abbildung).

Abbildung: Versionierung des neuen C#-Compilers

[https://github.com/dotnet/roslyn/wiki/NuGet-packages]

7.2.2 Kommandozeilenparameter

Es folgen die Kommandozeilenparameter des neuen C#-Compilers

 Visual C# Compiler Options

 - OUTPUT FILES -

http://www.nuget.org/packages/Microsoft.CodeDom.Providers.DotNetCompilerPlatform

28 Der C#-Compiler

 /out:<file> Specify output file name (default: base name of

 file with main class or first file)

 /target:exe Build a console executable (default) (Short

 form: /t:exe)

 /target:winexe Build a Windows executable (Short form:

 /t:winexe)

 /target:library Build a library (Short form: /t:library)

 /target:module Build a module that can be added to another

 assembly (Short form: /t:module)

 /target:appcontainerexe Build an Appcontainer executable (Short form:

 /t:appcontainerexe)

 /target:winmdobj Build a Windows Runtime intermediate file that

 is consumed by WinMDExp (Short form: /t:winmdobj)

 /doc:<file> XML Documentation file to generate

 /refout:<file> Reference assembly output to generate

 /platform:<string> Limit which platforms this code can run on: x86,

 Itanium, x64, arm, anycpu32bitpreferred, or

 anycpu. The default is anycpu.

 - INPUT FILES -

 /recurse:<wildcard> Include all files in the current directory and

 subdirectories according to the wildcard

 specifications

 /reference:<alias>=<file> Reference metadata from the specified assembly

 file using the given alias (Short form: /r)

 /reference:<file list> Reference metadata from the specified assembly

 files (Short form: /r)

 /addmodule:<file list> Link the specified modules into this assembly

 /link:<file list> Embed metadata from the specified interop

 assembly files (Short form: /l)

 /analyzer:<file list> Run the analyzers from this assembly

 (Short form: /a)

 /additionalfile:<file list> Additional files that don't directly affect code

 generation but may be used by analyzers for

producing

 errors or warnings.

 /embed Embed all source files in the PDB.

 /embed:<file list> Embed specific files in the PDB

 - RESOURCES -

 /win32res:<file> Specify a Win32 resource file (.res)

 /win32icon:<file> Use this icon for the output

 /win32manifest:<file> Specify a Win32 manifest file (.xml)

 /nowin32manifest Do not include the default Win32 manifest

 /resource:<resinfo> Embed the specified resource (Short form: /res)

 /linkresource:<resinfo> Link the specified resource to this assembly

 (Short form: /linkres) Where the resinfo format

 is <file>[,<string name>[,public|private]]

 - CODE GENERATION -

 /debug[+|-] Emit debugging information

 /debug:{full|pdbonly|portable|embedded}

 Specify debugging type ('full' is default,

Der C#-Compiler 29

 'portable' is a cross-platform format,

 'embedded' is a cross-platform format embedded

into

 the target .dll or .exe)

 /optimize[+|-] Enable optimizations (Short form: /o)

 /deterministic Produce a deterministic assembly

 (including module version GUID and timestamp)

 /refonly Produce a reference assembly in place of the main

output

 /instrument:TestCoverage Produce an assembly instrumented to collect

 coverage information

 /sourcelink:<file> Source link info to embed into PDB.

 - ERRORS AND WARNINGS -

 /warnaserror[+|-] Report all warnings as errors

 /warnaserror[+|-]:<warn list> Report specific warnings as errors

 /warn:<n> Set warning level (0-4) (Short form: /w)

 /nowarn:<warn list> Disable specific warning messages

 /ruleset:<file> Specify a ruleset file that disables specific

 diagnostics.

 /errorlog:<file> Specify a file to log all compiler and analyzer

 diagnostics.

 /reportanalyzer Report additional analyzer information, such as

 execution time.

 - LANGUAGE -

 /checked[+|-] Generate overflow checks

 /unsafe[+|-] Allow 'unsafe' code

 /define:<symbol list> Define conditional compilation symbol(s) (Short

 form: /d)

 /langversion:? Display the allowed values for language version

 /langversion:<string> Specify language version such as

 `default` (latest major version), or

 `latest` (latest version, including minor

versions),

 or specific versions like `6` or `7.1`

 - SECURITY -

 /delaysign[+|-] Delay-sign the assembly using only the public

 portion of the strong name key

 /publicsign[+|-] Public-sign the assembly using only the public

 portion of the strong name key

 /keyfile:<file> Specify a strong name key file

 /keycontainer:<string> Specify a strong name key container

 /highentropyva[+|-] Enable high-entropy ASLR

 - MISCELLANEOUS -

 @<file> Read response file for more options

 /help Display this usage message (Short form: /?)

 /nologo Suppress compiler copyright message

 /noconfig Do not auto include CSC.RSP file

 /parallel[+|-] Concurrent build.

 /version Display the compiler version number and exit.

30 Der C#-Compiler

 - ADVANCED -

 /baseaddress:<address> Base address for the library to be built

 /checksumalgorithm:<alg> Specify algorithm for calculating source file

 checksum stored in PDB. Supported values are:

 SHA1 (default) or SHA256.

 /codepage:<n> Specify the codepage to use when opening source

 files

 /utf8output Output compiler messages in UTF-8 encoding

 /main:<type> Specify the type that contains the entry point

 (ignore all other possible entry points) (Short

 form: /m)

 /fullpaths Compiler generates fully qualified paths

 /filealign:<n> Specify the alignment used for output file

 sections

 /pathmap:<K1>=<V1>,<K2>=<V2>,...

 Specify a mapping for source path names output by

 the compiler.

 /pdb:<file> Specify debug information file name (default:

 output file name with .pdb extension)

 /errorendlocation Output line and column of the end location of

 each error

 /preferreduilang Specify the preferred output language name.

 /nostdlib[+|-] Do not reference standard library (mscorlib.dll)

 /subsystemversion:<string> Specify subsystem version of this assembly

 /lib:<file list> Specify additional directories to search in for

 references

 /errorreport:<string> Specify how to handle internal compiler errors:

 prompt, send, queue, or none. The default is

 queue.

 /appconfig:<file> Specify an application configuration file

 containing assembly binding settings

 /moduleassemblyname:<string> Name of the assembly which this module will be

 a part of

 /modulename:<string> Specify the name of the source module

Erste Schritte Visual Studio 31

8 Erste Schritte Visual Studio
Dieses Büchlein ist kein Handbuch für Visual Studio. Für Leser, die neu in Visual Studio sind,

folgt jedoch hier eine kurze Einführung in das Anlegen und übersetzen eines Projekts am Beispiel

von Konsolenanwendungsprojekten für .NET Framework und .NET Core. Zum Einsatz kommt

Visual Studio 2017.

8.1 Hello World mit dem .NET Framework

Wählen Sie bei der Installation von Visual Studio den Workload ".NET Desktop Development"

aus.

Starten Sie Visual Studio

Wählen Sie File/New Project und dann im dem Dialog "Visual C#/Windows Classic

Desktop/Console App". Geben Sie unten den gewünschten Standort ein (wählen Sie am besten

einen Verzeichnisnamen ohne Leerzeichen!) und wählen Sie die aktuellste .NET Framework-

Version aus.

32 Erste Schritte Visual Studio

Sie erhalten dann eine Projektmappe (.sln-Datei im Dateisystem) mit einem Projekt (.csproj-Datei).

In dem Projekt gibt es eine Datei program.cs mit der Grundstruktur der Konsolenanwendung.

Ergänzen Sie in Main() den folgenden Programmcode:

Erste Schritte Visual Studio 33

namespace HalloWelt

{

 class Program

 {

 static void Main(string[] args)

 {

 if (args.Length > 0)

 {

 var name = args[0];

 // Ausgabe mit String Interpolation

 Console.WriteLine($"Hallo {name}!");

 Console.ReadLine();

 }

 else

 {

 Console.WriteLine("Hallo Welt!");

 }

 Console.ReadLine();

 }

 }

}

Wählen Sie Build/Build Solution (Alternativ die Tastenkombination STRG+SHIFT+B), um den

Programmcode zu übersetzen.

Sie sollten nun im Ausgabefenster (Einblenden über View/Output) dies sehen:

Falls Sie Eingabefehler gemacht haben, sehen Sie dies im Fenster "Error List".

34 Erste Schritte Visual Studio

Wenn Ihr Programm erfolgreich übersetzt, starten Sie es im Debugger mit Debug/Start Debugging

oder der Taste F5.

Um dem Programm beim Start einen Kommandozeilenparameter zu übergeben, wählen Sie im

Solution Explorer im Kontextmenü des Projekts (nicht der Projektmappe, so "Soultion" davor
steht) den Eintrag "Properties" und tragen Sie in der Registerkarte "Debug" bei "Command Line

Arguments" Ihren Namen ein.

Erste Schritte Visual Studio 35

Drücken Sie wieder F5.

Schauen Sie sich das Projekt auf der Festplatte im Windows Explorer an. Sie erkennen ein

Ausgabeverzeichnis bin/Debug in dem das kompilierte Programm als .EXE-Datei liegt, die man

direkt starten kann.

Das Kompilat in .NET nennt man eine Assembly. Die Assembly ist in diesem Fall eine .EXE-

Datei.

36 Erste Schritte Visual Studio

Sie können ein in Visual Studio erzeugtes .NET-Projekt auch an der Kommandozeile übersetzen.

Theoretisch kann man dazu den C#-Compiler csc.exe direkt einsetzen, aber dann muss man alle

Quellcodedateien sowie benötigte Referenzen auf andere Assemblies dort als Parameter angeben.

Da diese Abhängigkeiten alle bereits in den Projektdateien definiert sind, bietet sich der Einsatz

von msbuild.exe an, dass die .csproj-Dateien auswertet. Öffnen Sie dazu den "Developer

Command Prompt", der mit Visual Studio installiert wird, gehen Sie in das Verzeichnis mit der

.sln-Datei und rufen Sie msbuild.exe auf.

Hinweis: Andere .NET-Anwendungsarten (z.B. Webanwendungen mit ASP.NET, Desktop-

Anwendungen mit Windows Forms oder Windows Presentation Foundation, Mobile Apps mit

Xamarin) erstellen und übersetzen Sie mit den gleichen Funktionen und Werkzeugen. Sie

müssen nur entsprechende Workloads im Setup von Visual Studio installieren und dann die

entsprechende Projektvorlage wählen.

8.2 Hello World mit .NET Core

Hier werden die Schritte beschrieben, die anders sind, wenn Sie .NET Core verwenden wollen statt

.NET Framework.

Erste Schritte Visual Studio 37

Wichtig ist, dass Sie in Visual Studio 2017 nicht nur den Workload ".NET Core Cross-Platform

Development" wählen, sondern das .NET Core SDK in der aktuellen Version zusätzlich von

[https://www.microsoft.com/net/download/windows] installieren.

Abbildung: Installation des Workloads ".NET Core Cross-Platform Development" in Visual Studio

2017

Wählen Sie bei File/New Project jetzt "Visual C#/.NET Core/Console App (.NET Core).

Man kann in dieser Maske nicht die .NET Core-Version festlegen. Dies geht erst nach dem

Anlegen in den Projekteigenschaften "Application/Target Framework".

38 Erste Schritte Visual Studio

Der Projektaufbau eines .NET Core-Projekts ist etwas anders als bei einem klassischen .NET-

Projekt (z.B. Ast "Dependencies" statt "References"), die Bedienung bezüglich übersetzen und

Debugging aber gleich.

Der gleiche Programmcode kann hier eingetragen werden.

Bei Start der Anwendung sieht man in der Titelzeile dotnet.exe, was das universelle

Kommandozeilenwerkzeug von .NET Core ist, dass auch zum Start einer .NET Core-Anwendung

verwendet wird.

Erste Schritte Visual Studio 39

Während man beim .NET Framework im Ausgabeverzeichnis eine .EXE-Datei erhält, bekommt

man bei .NET Core nur eine .DLL. Daher muss man dotnet.exe (oder abgekürzt dotnet) beim Start

voranstellen.

Das Kompilat nennt man auch in .NET Core eine Assembly. Die Assembly ist in diesem Fall

eine .DLL-Datei.

Ein .NET Core-Projekt können Sie an der Kommandozeile mit msbuild.exe oder dotnet.exe build

übersetzen.

Hinweis: Andere .NET Core-Anwendungsarten (z.B. Webanwendungen mit ASP.NET Core,

Universal Windows Platform Apps) erstellen und übersetzen Sie mit den gleichen Funktionen

und Werkzeugen. Sie müssen nur entsprechende Workloads im Setup von Visual Studio

installieren und dann die entsprechende Projektvorlage wählen.

40 Erste Schritte Visual Studio

8.3 Festlegung der Compilerversion in Visual Studio

Während früher die verwendete Viusal Studio-Version auch die verwendete Version des

Sprachcompilers von C# festlegte, kann man seit Visual Studio 2017 Update 3 (Version 15.3) die

Sprachversion pro Projekt in den Projekteigenschaften (Build/Avanced) festlegen.

Abbildung: Einstellen der Sprachversion

Zudem warnt Visual Studio, wenn Sie ein Sprachfeature verwenden, welches es in der eingestellten

Version noch nicht gibt.

