
 

Dr. Holger Schwichtenberg 

C# 13.0 Crashkurs 
 

Die Syntax der Programmiersprache C#  

für die Softwareentwicklung  

in .NET Framework und .NET bis einschließlich Version 9.0 

 

 

 

  



2 Inhaltsverzeichnis (Hauptkapitel) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Buchversion/Auflage: 13.0.0 vom 01.11.2024 

Verlag:   www.IT-Visions.de, Fahrenberg 40b, D-45257 Essen 

Sprachliche Korrektur:  Matthias Bloch, Heike Rickert, Dorothea Fleischer 

ISBN:   978-3-934-27944-5 

Bezugsquellen:  www.IT-Visions.de/Buch/CS13  

http://www.it-visions.de/Buch/CS13


Inhaltsverzeichnis (Hauptkapitel)  3 

 

1 Inhaltsverzeichnis (Hauptkapitel) 
 

1 Inhaltsverzeichnis (Hauptkapitel) ........................................................................................... 3 

2 Inhaltsverzeichnis (Details) ..................................................................................................... 5 

3 Vorwort ................................................................................................................................. 15 

4 Über den Autor ..................................................................................................................... 17 

5 Über dieses Buch .................................................................................................................. 19 

6 Fakten zu C# ......................................................................................................................... 31 

7 Grundkonzepte von C# ......................................................................................................... 53 

8 Der C#-Compiler .................................................................................................................. 58 

9 Erste C#-Schritte mit Visual Studio ...................................................................................... 67 

10 Datentypen ............................................................................................................................ 94 

11 Operatoren .......................................................................................................................... 116 

12 Schleifen ............................................................................................................................. 127 

13 Verzweigungen ................................................................................................................... 129 

14 Klassendefinition ................................................................................................................ 143 

15 Datenmitglieder / Attribute (Fields und Properties) ............................................................ 152 

16 Methoden ............................................................................................................................ 163 

17 Konstruktoren und Destruktoren (Finalizer) ....................................................................... 180 

18 Aufzählungstypen (Enumeration) ....................................................................................... 186 

19 Expression-bodied Members ............................................................................................... 187 

20 Behandlung von null ........................................................................................................... 188 

21 Partielle Klassen, Methoden, Properties und Indexer ......................................................... 200 

22 Erweiterungsmethoden (Extension Methods) ..................................................................... 206 

23 Annotationen (.NET-Attribute) ........................................................................................... 218 

24 Generische Klassen ............................................................................................................. 224 

25 Objektmengen (Arrays und Collections)............................................................................. 231 

26 Implementierungsvererbung ............................................................................................... 241 

27 Schnittstellen (Interfaces) ................................................................................................... 243 

28 Namensräume (Namespaces) .............................................................................................. 250 

29 Anonyme Typen .................................................................................................................. 258 

30 Operatorüberladung ............................................................................................................ 259 

31 Strukturen ............................................................................................................................ 261 

32 Record-Typen ..................................................................................................................... 277 



4 Inhaltsverzeichnis (Hauptkapitel) 

 

33 Immutable Objects............................................................................................................... 295 

34 Tupel .................................................................................................................................... 299 

35 Typaliase (seit C# 12.0) ....................................................................................................... 304 

36 Funktionale Programmierung in C# (Delegates / Lambdas) ............................................... 306 

37 Ereignisse ............................................................................................................................ 317 

38 IDisposable / Using-Blöcke ................................................................................................. 319 

39 Exklusive Zugriffe auf Ressourcen mit lock() ..................................................................... 323 

40 Laufzeitfehler ...................................................................................................................... 326 

41 Modul-Initialisierer.............................................................................................................. 329 

42 Kommentare und XML-Dokumentation ............................................................................. 331 

43 Asynchrone Ausführung mit async und await ..................................................................... 333 

44 Iteratoren ............................................................................................................................. 336 

45 Zeigerprogrammierung ........................................................................................................ 341 

46 Abfrageausdrücke / Language Integrated Query (LINQ) ..................................................... 346 

47 Source-Generatoren ............................................................................................................. 374 

48 Performanceoptimierungen ................................................................................................. 378 

49 Anhang: Syntaxreferenz: C# versus Visual Basic .NET ..................................................... 394 

50 Anhang: Neuerungen in früheren Versionen ....................................................................... 402 

51 Anhang: Quellen im Internet ............................................................................................... 410 

52 Anhang: Versionsgeschichte dieses Buchs .......................................................................... 411 

53 Stichwortverzeichnis (Index) ............................................................................................... 412 

54 Werbung in eigener Sache ☺ .............................................................................................. 421 

 

 

  



Inhaltsverzeichnis (Details)  5 

 

2 Inhaltsverzeichnis (Details) 
 

1 Inhaltsverzeichnis (Hauptkapitel) ........................................................................................... 3 

2 Inhaltsverzeichnis (Details) ..................................................................................................... 5 

3 Vorwort ................................................................................................................................. 15 

4 Über den Autor ..................................................................................................................... 17 

5 Über dieses Buch .................................................................................................................. 19 

5.1 Versionsgeschichte dieses Buchs .................................................................................. 19 

5.2 Hinweis zu den Vertriebswegen .................................................................................... 19 

5.3 Bezugsquelle des PDF-E-Books für Amazon-Kunden ................................................. 19 

5.4 Bezugsquelle für Aktualisierungen ............................................................................... 20 

5.5 Hinweise zur Breite und Tiefe dieses Buchs – Sie haben Einfluss! .............................. 20 

5.6 Geplante Themen .......................................................................................................... 20 

5.7 Programmcodebeispiele zu diesem Buch ...................................................................... 21 

5.8 Hilfsklasse zur Konsolenausgabe (CUI) ....................................................................... 24 

5.9 Qualitätssicherung der Programmcodebeispiele ........................................................... 29 

5.10 Ihre Belohnung, wenn Sie helfen, dieses Buch zu verbessern! ..................................... 30 

6 Fakten zu C# ......................................................................................................................... 31 

6.1 Der Name C# ................................................................................................................ 31 

6.2 Ursprünge von C# ......................................................................................................... 31 

6.3 .NET als Basis für C# ................................................................................................... 31 

6.4 Status der Programmiersprache C# ............................................................................... 32 

6.5 Dokumentation zu C# 12.0 ........................................................................................... 34 

6.6 Versionsgeschichte ........................................................................................................ 35 

6.7 Standardisierung............................................................................................................ 36 

6.8 Implementierung des C#-Compilers ............................................................................. 37 

6.9 Open Source .................................................................................................................. 37 

6.10 Parität und Co-Evolution mit Visual Basic .NET ......................................................... 38 

6.11 Popularität von C# ........................................................................................................ 38 

6.12 Editoren für C#.............................................................................................................. 46 

6.13 Neuerungen in C# 13.0 ................................................................................................. 47 

6.14 Vertagte neue Sprachfeatures ........................................................................................ 50 

6.15 Vorschläge für kommende Sprachfeatures.................................................................... 51 

7 Grundkonzepte von C# ......................................................................................................... 53 



6 Inhaltsverzeichnis (Details) 

 

7.1 Sprachtypus ................................................................................................................... 53 

7.2 Groß- und Kleinschreibung ........................................................................................... 53 

7.3 Schlüsselwörter der Sprache .......................................................................................... 53 

7.4 Namensregeln und Namenskonventionen ..................................................................... 54 

7.5 Blockbildung und Umbrüche ......................................................................................... 55 

7.6 Hello World ................................................................................................................... 56 

7.7 Eingebaute Funktionen .................................................................................................. 56 

8 Der C#-Compiler ................................................................................................................... 58 

8.1 Der ursprüngliche (alte) C#-Compiler ........................................................................... 58 

8.1.1 Kompilierung mit csc.exe ..................................................................................... 58 

8.1.2 Kommandozeilenparameter .................................................................................. 58 

8.2 Der aktuelle (neue) C#-Compiler .................................................................................. 61 

8.2.1 Versionsnummern des Compilers ......................................................................... 62 

8.2.2 Kommandozeilenparameter .................................................................................. 63 

9 Erste C#-Schritte mit Visual Studio ...................................................................................... 67 

9.1 Visual Studio versus Visual Studio Code ...................................................................... 67 

9.2 Visual Studio-Versionen ................................................................................................ 67 

9.3 Hello World mit dem klassischen .NET Framework ..................................................... 68 

9.4 Hello World mit modernem .NET ................................................................................. 74 

9.5 Programme ohne Main() (Top-Level Statements) ......................................................... 81 

9.6 Festlegung der Compilerversion .................................................................................... 84 

9.7 Eingabeunterstützung in Visual Studio ......................................................................... 88 

9.7.1 IntelliSense ........................................................................................................... 88 

9.7.2 IntelliCode ............................................................................................................ 88 

9.7.3 Copilot .................................................................................................................. 90 

9.8 Refactoring in Visual Studio ......................................................................................... 90 

9.9 .NET Fiddle ................................................................................................................... 91 

10 Datentypen............................................................................................................................. 94 

10.1 Überblick über die Datentypen ...................................................................................... 94 

10.2 Variablendeklarationen .................................................................................................. 96 

10.3 Typinitialisierung .......................................................................................................... 96 

10.4 Literale für Zeichen und Zeichenketten ......................................................................... 97 

10.5 Konsolenausgabenformatierung mit ANSI-Codes ........................................................ 99 



Inhaltsverzeichnis (Details)  7 

 

10.6 String Interpolation ..................................................................................................... 101 

10.7 Raw Literal Strings (seit C# 11.0) ............................................................................... 104 

10.8 UTF-8-Zeichenkettenliterale (seit C# 11.0) ................................................................ 107 

10.9 Zahlenliterale .............................................................................................................. 107 

10.10 Datumsliterale ............................................................................................................. 108 

10.11 Lokale Typableitung (Local Variable Type Inference) ............................................... 108 

10.12 Gültigkeit von Variablen ............................................................................................. 109 

10.13 Typprüfungen .............................................................................................................. 109 

10.14 Typkonvertierung ........................................................................................................ 110 

10.15 Dynamische Typisierung ............................................................................................ 111 

10.16 Wertelose Wertetypen (Nullable Value Types) .......................................................... 112 

11 Operatoren .......................................................................................................................... 116 

11.1 Überblick über die Operatoren .................................................................................... 116 

11.2 Überlaufprüfung .......................................................................................................... 118 

11.3 Null Coalescing Operator ?? ....................................................................................... 120 

11.4 Null Coalescing Assignment ??= ................................................................................ 120 

11.5 Null Conditional Operator ?. ....................................................................................... 121 

11.6 Operator nameof() ....................................................................................................... 121 

11.6.1 Neuerungen für nameof() seit C# 11.0 ................................................................ 122 

11.6.2 Neuerungen für nameof() seit C# 12.0 ................................................................ 123 

11.7 Index und Range (C# 8.0) ........................................................................................... 124 

11.7.1 Index ................................................................................................................... 124 

11.7.2 Range .................................................................................................................. 124 

11.7.3 Weitere Beispiele ................................................................................................ 125 

11.7.4 Einschränkungen ................................................................................................. 126 

12 Schleifen ............................................................................................................................. 127 

13 Verzweigungen ................................................................................................................... 129 

13.1 Einfache Verzweigungen mit if…else ........................................................................ 129 

13.2 Mehrfachverzweigungen mit switch ........................................................................... 130 

13.3 Switch Expressions (seit C# 8.0)................................................................................. 130 

13.4 Pattern Matching ......................................................................................................... 133 

13.4.1 Pattern Matching in Bedingungen mit is und is not ............................................ 133 

13.4.2 Pattern Matching bei switch ................................................................................ 134 



8 Inhaltsverzeichnis (Details) 

 

13.4.3 Pattern Matching für Typen ................................................................................ 135 

13.4.4 Pattern Matching mit Größenvergleichen ........................................................... 135 

13.4.5 Pattern Matching mit logische Operatoren ......................................................... 135 

13.4.6 Pattern Matching für Daten in einem Objekt (Property Pattern) ........................ 136 

13.4.7 Pattern Matching für Listen und Teilmengen (List Pattern und Slice Pattern) ... 137 

14 Klassendefinition ................................................................................................................. 143 

14.1 Klassendefinitionen ..................................................................................................... 143 

14.2 Instanzierung mit dem Operator new........................................................................... 145 

14.2.1 Angabe der Konstruktorparameter...................................................................... 145 

14.2.2 Schlüsselwort var ................................................................................................ 145 

14.2.3 Verwendung des Operators new ohne Typangabe (Target-Typed New Expression )

 146 

14.3 Objektinitialisierung .................................................................................................... 147 

14.4 Geschachtelte Klassen (eingebettete Klassen) ............................................................. 148 

14.5 Sichtbarkeiten/ Zugriffsmodifizierer für Klassen und Klassenmitglieder .................... 148 

14.6 File-local Types (seit C# 11.0) .................................................................................... 149 

14.7 Statische Klassen ......................................................................................................... 151 

15 Datenmitglieder / Attribute (Fields und Properties) ............................................................ 152 

15.1 Abweichungen von der Lehre ...................................................................................... 152 

15.2 Felder (Field-Attribute) ............................................................................................... 153 

15.2.1 Deklaration von Feldern ..................................................................................... 153 

15.2.2 Felder mit readonly ............................................................................................. 153 

15.3 Eigenschaften (Property-Attribute) ............................................................................. 154 

15.3.1 Explizite Properties mit Field ............................................................................. 155 

15.3.2 Automatische Properties ..................................................................................... 156 

15.3.3 Properties, die nach Initialisierung unveränderlich sind (Init Only Properties) .. 157 

15.3.4 Init Only Setters in .NET Framework und .NET Standard ................................. 159 

15.3.5 Zusammenfassung zu Properties ........................................................................ 159 

15.4 Pflichtmitglieder (Required Members) ........................................................................ 160 

16 Methoden ............................................................................................................................. 163 

16.1 Methodendefinition und Rückgabewerte ..................................................................... 163 

16.2 Methodenparameter ..................................................................................................... 163 

16.3 Methodenüberladungen ............................................................................................... 164 

16.4 Prioritäten für Methodenüberladungen ........................................................................ 164 



Inhaltsverzeichnis (Details)  9 

 

16.5 Optionale und benannte Parameter ............................................................................. 167 

16.6 Parametermodifizierer in, ref und out ......................................................................... 168 

16.7 Parameterlisten ............................................................................................................ 173 

16.8 Statische Methoden als globale Funktionen ................................................................ 174 

16.9 Lokale Funktion (seit C# 7.0) ..................................................................................... 174 

16.10 Statische lokale Funktionen (seit C# 8.0) .................................................................... 175 

16.11 Caller-Info-Annotationen ............................................................................................ 176 

16.12 Caller Argument Expressions ..................................................................................... 178 

17 Konstruktoren und Destruktoren (Finalizer) ....................................................................... 180 

17.1 Klasse mit Konstruktoren und Finalizer ...................................................................... 180 

17.2 Aufruf von Konstruktoren ........................................................................................... 181 

17.3 Primärkonstruktoren (seit C# 12.0) ............................................................................. 182 

18 Aufzählungstypen (Enumeration) ....................................................................................... 186 

19 Expression-bodied Members ............................................................................................... 187 

20 Behandlung von null ........................................................................................................... 188 

20.1 NullReferenceException ............................................................................................. 188 

20.2 Null-Prüfung und Toleranz gegenüber Null ................................................................ 188 

20.3 Null-Referenz-Prüfung / Non-Nullable Reference Types (C# 8.0) ............................. 190 

20.3.1 Neue Compiler-Features ..................................................................................... 191 

20.3.2 Compiler erkennt die Programmierfehler nicht ................................................... 194 

20.3.3 Aktivieren der Null-Referenz-Prüfung ................................................................ 195 

20.3.4 Verbessertes Programm ...................................................................................... 196 

20.3.5 Null Forgiveness-Operator .................................................................................. 198 

21 Partielle Klassen, Methoden, Properties und Indexer ......................................................... 200 

21.1 Partielle Klassen .......................................................................................................... 200 

21.2 Partielle Methoden ...................................................................................................... 201 

21.3 Partielle Properties und partielle Indexer .................................................................... 203 

22 Erweiterungsmethoden (Extension Methods) ..................................................................... 206 

22.1 Entwicklung von Erweiterungsmethoden ................................................................... 206 

22.2 Nutzung von Erweiterungsmethoden .......................................................................... 207 

22.3 Praxisbeispiele: Erweiterungsmethoden für die Datentypkonvertierung .................... 208 

22.3.1 Eingebaute Konvertierungsfunktionen ................................................................ 208 

22.3.2 Erweiterungsmethoden zum Konvertieren .......................................................... 209 



10 Inhaltsverzeichnis (Details) 

 

22.3.3 Erweiterungsmethoden für Zeichenketten mit null ............................................. 212 

22.3.4 Erweiterungsmethoden für beliebige null-Verweise .......................................... 213 

22.3.5 Universelle Erweiterungsmethode To<T>.......................................................... 214 

22.4 Sammlungen von Erweiterungsmethoden ................................................................... 216 

23 Annotationen (.NET-Attribute) ........................................................................................... 218 

23.1 Annotationen verwenden ............................................................................................. 218 

23.2 Annotationen selber schreiben ..................................................................................... 220 

23.3 Annotationen mit Typparametern ................................................................................ 222 

24 Generische Klassen ............................................................................................................. 224 

24.1 Definition einer generischen Klasse ............................................................................ 224 

24.2 Verwendung einer generischen Klasse ........................................................................ 224 

24.3 Einschränkungen für generische Typparameter (Generic Constraints) ....................... 225 

24.4 Kovarianz für Typparameter........................................................................................ 225 

24.5 Generische Mathematik ............................................................................................... 228 

25 Objektmengen (Arrays und Collections) ............................................................................. 231 

25.1 Einfache Arrays ........................................................................................................... 231 

25.2 Untypisierte Collections .............................................................................................. 231 

25.3 Typisierte Collections .................................................................................................. 232 

25.4 Collection Initializer .................................................................................................... 233 

25.5 Objektmengen-Initialisierung mit Index ...................................................................... 234 

25.6 Dictionary Initializer.................................................................................................... 236 

25.7 Vereinfachte Initialisierung und Zuweisung für Mengen (Collection Expressions) (seit 

C# 12.0) ................................................................................................................................... 236 

25.8 Typparameter ............................................................................................................... 238 

25.9 Indexer ......................................................................................................................... 239 

26 Implementierungsvererbung ................................................................................................ 241 

27 Schnittstellen (Interfaces) .................................................................................................... 243 

27.1 Deklaration einer Schnittstelle ..................................................................................... 243 

27.2 Verwendung von Schnittstellen ................................................................................... 243 

27.3 Standardimplementierungen in Schnittstellen ............................................................. 244 

27.3.1 Realisierung einer Standardimplementierung in einer Schnittstelle ................... 244 

27.3.2 Einfaches Beispiel .............................................................................................. 244 

27.3.3 Überschreiben der Implementierung .................................................................. 246 

27.3.4 Komplexeres Beispiel ......................................................................................... 246 



Inhaltsverzeichnis (Details)  11 

 

27.4 Statische abstrakte Properties und Methoden in Schnittstellen ................................... 248 

28 Namensräume (Namespaces) .............................................................................................. 250 

28.1 Softwarekomponenten versus Namensräume ............................................................. 250 

28.2 Vergabe der Namensraumbezeichner .......................................................................... 251 

28.3 Vergabe der Typnamen ............................................................................................... 252 

28.4 Namensräume deklarieren ........................................................................................... 252 

28.5 Import von Namensräumen ......................................................................................... 254 

28.6 Verweis auf Wurzelnamensräume .............................................................................. 256 

29 Anonyme Typen .................................................................................................................. 258 

30 Operatorüberladung ............................................................................................................ 259 

31 Strukturen ............................................................................................................................ 261 

31.1 Wertetyp versus Referenztyp ...................................................................................... 261 

31.2 Deklaration von Strukturen ......................................................................................... 264 

31.3 Verwendung von Strukturen ....................................................................................... 266 

31.4 Initialisieren einer Struktur mit default ....................................................................... 267 

31.5 Strukturen mit Readonly (seit C# 7.2) ........................................................................ 267 

31.6 Readonly für einzelne Mitglieder einer Struktur (seit C# 8.0) .................................... 268 

31.7 With-Ausdrücke .......................................................................................................... 270 

31.8 Boxing und Unboxing ................................................................................................. 273 

31.9 Strukturen ausschließlich auf dem Stack (ref struct) ................................................... 274 

32 Record-Typen ..................................................................................................................... 277 

32.1 Records deklarieren ..................................................................................................... 277 

32.2 Record-Typen mit Primärkonstruktor ......................................................................... 283 

32.3 Records verwenden ..................................................................................................... 286 

32.4 Überschreiben von ToString() ..................................................................................... 288 

32.5 Record Structs ............................................................................................................. 289 

33 Immutable Objects .............................................................................................................. 295 

33.1 Immutable Objects auf Basis von Readonly Fields ..................................................... 295 

33.2 Immutable Objects auf Basis von Properties mit Init Only Setter .............................. 296 

33.3 Immutable Objects auf Basis von Records.................................................................. 297 

33.4 Praxisbeispiel: Immutable Objects mit Record-Typen beim Flux-/Redux-Pattern ..... 298 

34 Tupel ................................................................................................................................... 299 

34.1 Alte Tupelimplementierung mit System.Collections.Tupel ........................................ 299 



12 Inhaltsverzeichnis (Details) 

 

34.2 Neue Tupelimplementierung in der Sprachsyntax ....................................................... 299 

34.3 Tupel-Dekonstruktion .................................................................................................. 300 

34.4 Serialisierung von Tupeln ............................................................................................ 302 

34.5 Vergleich von Tupeln (C# 7.3) .................................................................................... 302 

35 Typaliase (seit C# 12.0) ....................................................................................................... 304 

36 Funktionale Programmierung in C# (Delegates / Lambdas) ............................................... 306 

36.1 Delegates ..................................................................................................................... 306 

36.2 Vordefinierte Delegates Action<T> und Func<T> ..................................................... 308 

36.3 Prädikate mit Predicate<T> ......................................................................................... 310 

36.4 Lambdas ...................................................................................................................... 310 

36.4.1 Einzeilige Lambda-Ausdrücke ........................................................................... 311 

36.4.2 Einsatzbeispiele für Lambda-Ausdrücke ............................................................ 312 

36.4.3 Mehrzeilige Lambdas ......................................................................................... 314 

36.4.4 Optionale Lambda-Parameter (seit C# 12.0) ...................................................... 315 

37 Ereignisse ............................................................................................................................ 317 

37.1 Definition von Ereignissen .......................................................................................... 317 

37.2 Ereignis auslösen ......................................................................................................... 317 

37.3 Ereignisbehandlung ..................................................................................................... 318 

38 IDisposable / Using-Blöcke ................................................................................................. 319 

38.1 Hintergründe zur Speicher- und Ressourcenverwaltung in .NET ................................ 319 

38.2 Schnittstelle IDisposable ............................................................................................. 319 

38.3 Using-Blöcke ............................................................................................................... 321 

38.4 Vereinfachte Using-Deklarationen (C# 8.0) ................................................................ 321 

38.5 IDispose für Strukturen auf dem Stack ........................................................................ 322 

39 Exklusive Zugriffe auf Ressourcen mit lock() ..................................................................... 323 

40 Laufzeitfehler ...................................................................................................................... 326 

40.1 Fehler abfangen ........................................................................................................... 326 

40.2 Fehler auslösen ............................................................................................................ 327 

40.3 Eigene Fehlerklassen ................................................................................................... 328 

41 Modul-Initialisierer.............................................................................................................. 329 

42 Kommentare und XML-Dokumentation ............................................................................. 331 

43 Asynchrone Ausführung mit async und await ..................................................................... 333 

43.1 Async und await mit der .NET-Klassenbibliothek ...................................................... 333 



Inhaltsverzeichnis (Details)  13 

 

43.2 Async und await mit eigenen Threads ........................................................................ 334 

43.3 Weitere Möglichkeiten mit async und await ............................................................... 335 

44 Iteratoren ............................................................................................................................. 336 

44.1 Iterator-Implementierung mit yield (Yield Continuations) ......................................... 336 

44.2 Praxisbeispiel für yield ................................................................................................ 337 

44.3 Asynchrone Streams / await foreach (seit C# 8.0) ...................................................... 338 

45 Zeigerprogrammierung ....................................................................................................... 341 

45.1 Zeigerprogrammierung mit unsafe .............................................................................. 341 

45.2 Zeigerprogrammierung mit ref (Managed Pointer) ..................................................... 343 

46 Abfrageausdrücke / Language Integrated Query (LINQ)..................................................... 346 

46.1 Einführung und Motivation ......................................................................................... 346 

46.2 LINQ-Provider ............................................................................................................ 347 

46.2.1 LINQ-Provider von Microsoft im .NET .............................................................. 347 

46.2.2 Andere LINQ-Provider ....................................................................................... 348 

46.2.3 Formen von LINQ ............................................................................................... 348 

46.2.4 Einführung in die LINQ-Syntax .......................................................................... 348 

Übersicht über die LINQ-Befehle ....................................................................................... 352 

46.3 LINQ to Objects .......................................................................................................... 359 

46.3.1 LINQ to Objects mit elementaren Datentypen .................................................... 359 

46.3.2 LINQ to Objects mit komplexen Typen des .NET Framework .......................... 363 

46.3.3 LINQ to Objects mit eigenen Geschäftsobjekten ................................................ 367 

46.4 Parallel LINQ (PLINQ)............................................................................................... 371 

47 Source-Generatoren ............................................................................................................ 374 

47.1 Aufbau eines Source-Generators ................................................................................. 374 

47.2 Praxisbeispiel .............................................................................................................. 376 

48 Performanceoptimierungen ................................................................................................. 378 

48.1 x64 versus x86 ............................................................................................................ 378 

48.2 Debug versus Release ................................................................................................. 379 

48.3 Vermeidung von Laufzeitfehlern (Exceptions) ........................................................... 380 

48.4 Ahead-of-Timer-Compiler (Native AOT) ................................................................... 381 

48.4.1 Native AOT in .NET 7.0 ..................................................................................... 382 

48.4.2 Native AOT in .NET 8.0 ..................................................................................... 386 

48.4.3 Neue Native AOT-Option in Projektvorlagen ..................................................... 388 



14 Inhaltsverzeichnis (Details) 

 

48.4.4 Warnungen bei nicht kompatiblem Code ........................................................... 391 

48.4.5 Mögliche und nicht mögliche Operationen bei Native AOT .............................. 391 

48.4.6 Performance bei Native AOT ............................................................................. 392 

49 Anhang: Syntaxreferenz: C# versus Visual Basic .NET ..................................................... 394 

50 Anhang: Neuerungen in früheren Versionen ....................................................................... 402 

50.1 Neuerungen in C# 8.0 .................................................................................................. 402 

50.2 Neuerungen in C# 9.0 .................................................................................................. 405 

50.3 Neuerungen in C# 10.0 ................................................................................................ 406 

50.4 Neuerungen in C# 11.0 ................................................................................................ 408 

51 Anhang: Quellen im Internet ............................................................................................... 410 

52 Anhang: Versionsgeschichte dieses Buchs .......................................................................... 411 

53 Stichwortverzeichnis (Index) ............................................................................................... 412 

54 Werbung in eigener Sache ☺ .............................................................................................. 421 

54.1 Dienstleistungen .......................................................................................................... 421 

54.2 Aktion "Buch für Buchrezension" ............................................................................... 422 

54.3 Angebot "PDF-Buch-Abo" .......................................................................................... 423 

 

 

  



Vorwort  15 

 

3 Vorwort  
Liebe Leserinnen und Leser, 

der "C# Crashkurs" ist ein prägnanter Überblick über die Syntax der Programmiersprache C# in 

der aktuellen Version 13.0, die zusammen mit .NET 9.0 am 12. November 2024 erschienen ist. 

Dieses Buch ist geeignet für Softwareentwickler, die von einer anderen objektorientierten 

Programmiersprache (z.B. C++, Java, JavaScript, Visual Basic .NET, Delphi oder PHP) auf 

C# umsteigen wollen oder bereits C# einsetzen und ihr Wissen erweitern, insbesondere die 

neusten Sprachfeatures kennenlernen wollen. Wir schulen bei www.IT-Visions.de jedes Jahr 

hunderte Entwickler auf C# bzw. die neuste Version der Sprache um. Da es viele Umsteiger von 

Visual Basic .NET zu C# gibt, werden hier die Unterschiede von C# gegenüber Visual Basic .NET 

an einigen Stellen im Buch hervorgehoben. 

Für Neueinsteiger, die mit C# erstmals überhaupt eine objektorientiere Programmiersprache (OOP) 

erlernen wollen, ist dieses Werk hingegen nicht geeignet, denn es werden die OO-Grundkonzepte 

nicht erklärt, da die meisten Softwareentwickler heutzutage diese aus anderen Sprachen kennen 

und das Buch nicht mit diesen Grundlagen unnötig in die Länge gezogen werden soll. 

Dieser Crashkurs erhebt nicht den Anspruch, alle syntaktischen Details zu C# aufzuzeigen, sondern 

nur die in der Praxis wichtigsten Sprachkonstrukte. 

In diesem Buch werden bewusst alle Syntaxbeispiele anhand von Konsolenanwendungen gezeigt. 

So brauchen Sie als Leser kein Wissen über irgendeine (manchmal kurzlebige) GUI-Bibliothek 

und die Beispiele sind prägnant fokussiert auf die Syntax. 

Dieses Buch wird vertrieben: 

▪ PDF-E-Book bei Leanpub.com ab 29,99 Dollar (der Autor erhält 19,99 Dollar): 

www.leanpub.com/CSharp13 

▪ Gedruckt (Print-on-Demand) bei Amazon.de für 39,99 Euro (der Autor erhält 15,38 Euro): 

www.amazon.de/exec/obidos/ASIN/3934279449/itvisions-21 

▪ Kindle-E-Book bei Amazon.de für 29,99 Euro (der Autor erhält 9,81 Euro): 

www.amazon.de/exec/obidos/ASIN/B0CM47LGY8/itvisions-21 

▪ Als Teil des E-Book-Buch-Abos zusammen mit anderen aktuellen Fachbüchern ab 99,00 

Euro im Jahr inkl. aller Updates (der Autor erhält den kompletten Preis): 

www.IT-Visions.de/BuchAbo  

Tipp: Käufer bei Leanpub.com können jederzeit Aktualisierungen des PDF-Buchs (gleiche 

Hauptversion) kostenfrei dort beziehen. Käufer bei Amazon erhalten die PDF-Ausgabe 

einmalig kostenfrei (siehe Kapitel "Über dieses Fachbuch"). E-Book-Abonnenten haben 

jederzeit Zugriff auf alle aktuellsten Ausgaben der Fachbücher von Dr. Holger Schwichtenberg. 

Da solch niedrige Preise leider nicht nennenswert dazu beitragen können, den Lebensunterhalt 

meiner Familie zu bestreiten, ist dieses Projekt ein Hobby. Dementsprechend kann ich nicht 

garantieren, wann es Updates zu diesem Buch geben wird. Ich werde dann an diesem Buch 

arbeiten, wenn ich neben meinem Beruf als Softwarearchitekt, Berater und Dozent und meinen 

sportlichen Betätigungen noch etwas Zeit für das Fachbuchautorenhobby übrig habe. 

Falls mir in diesem Buch oder den zugehörigen Downloads menschliche Fehler passiert sind, 

möchte ich mich dafür schon jetzt in aller Form entschuldigen bei Ihnen. Bitte geben Sie mir einen 

freundlichen, genau beschriebenen Hinweis auf meine Fehler. Ich freue mich immer über 

http://www.leanpub.com/CSharp13
http://www.amazon.de/exec/obidos/ASIN/3934279449/itvisions-21
http://www.amazon.de/exec/obidos/ASIN/B09G2RG7JB/itvisions-21
http://www.it-visions.de/BuchAbo


16 Vorwort 

 

konstruktives Feedback und Verbesserungsvorschläge. Bitte verwenden Sie dazu das 

Kontaktformular: www.dotnet-doktor.de/Leserfeedback 

Tipp: Ich belohne Sie mit E-Books für gemeldete Fehler, siehe Kapitel  

"Über dieses Buch / Ihre Belohnung, wenn Sie helfen, dieses Buch zu verbessern". 

Ich helfe Ihnen gerne, Ihren eigenen Programmcode zu schreiben, aber ich hoffe, Sie verstehen, 

dass ich dies nicht ehrenamtlich tun kann. Wenn Sie technische Hilfe zu Entity Framework und 

Entity Framework Core oder anderen Themen rund um die Entwicklung und den Betrieb von 

Anwendungen (Desktop, Web und Mobile) sowie Server und  Cloud  benötigen, stehe ich Ihnen 

im Rahmen meiner beruflichen Tätigkeit für die Firma www.IT-Visions.de (Beratung, Schulung, 

Support, Softwareentwicklung) gerne zur Verfügung. Bitte wenden Sie sich für ein Angebot an 

das jeweilige Kundenteam. Bitte kontaktieren Sie die Firmen aber nicht für Feedback und 

Verbesserungsvorschläge zu diesem Buch, da dieses Buch reine Privatsache ist. 

Auf der von mir ehrenamtlich betriebenen Leser-Website unter www.IT-Visions.de/Leser, können 

Sie die Beispiele zu diesem Buch herunterladen. Dort müssen Sie sich registrieren. Bei der 

Registrierung wird ein Losungswort abgefragt. Bitte geben Sie dort bei der Registrierung das 

Losungswort AWAY ein. 

Herzliche Grüße aus Essen, dem Herzen der Metropole Ruhrgebiet 

Holger Schwichtenberg  

http://www.dotnet-doktor.de/Leserfeedback
http://www.it-visions.de/
http://www.it-visions.de/Leser


Über den Autor  17 

 

4 Über den Autor 
▪ Studienabschluss Diplom-Wirtschaftsinformatik an der Universität 

Essen 

▪ Promotion an der Universität Essen im Fachgebiet 

komponentenbasierter Softwareentwicklung 

▪ Seit 1996 in der IT tätig als Softwareentwickler, Softwarearchitekt, 

Berater, Dozent und Fachjournalist 

▪ Fachlicher Leiter des Expertenteams bei www.IT-Visions.de in Essen 

▪ Über 95 Fachbücher bei verschiedenen Verlagen, u.a. Carl Hanser 

Verlag, O'Reilly, APress, Microsoft Press und Addison Wesley 

sowie im Selbstverlag 

▪ Mehr als 1500 Beiträge in Fachzeitschriften und Online-Portalen 

▪ Gutachter in den Wettbewerbsverfahren der EU vs. Microsoft (2006-2009) 

▪ Ständiger Mitarbeiter der Zeitschriften iX (seit 1999), dotnetpro (seit 2000) und Windows 

Developer (seit 2010) sowie beim Online-Portal heise.de (seit 2008) 

▪ Regelmäßiger Sprecher auf nationalen und internationalen Fachkonferenzen (z.B. BASTA!, 

Developer Week, .NET Developer Conference, MD DevDays, Microsoft TechEd, Microsoft 

Summit, Microsoft IT Forum, OOP, .NET Architecture Camp, IT Tage, enterJS, Advanced 

Developers Conference, DOTNET Cologne, iterate=>ruhr, Community in Motion, 

DOTNET-Konferenz, VS One, NRW.Conf, Windows Forum, Container Conf) 

▪ Auszeichnungen und Zertifikate von Microsoft: 

o Microsoft Most Valuable Professional (MVP), ununterbrochen ausgezeichnet seit 2004 

o Microsoft Certified Solution Developer (MCSD) 

▪ Thematische Schwerpunkte: 

o Softwarearchitektur, mehrschichtige Softwareentwicklung, Softwarekomponenten 

o Visual Studio, Continous Integration (CI) und Continous Delivery (CD) mit Azure 

DevOps 

o Microsoft .NET (.NET Framework, .NET Core, modernes .NET), C#, Visual Basic 

o .NET-Architektur, Auswahl von .NET-Techniken 

o Einführung von .NET, Migration auf .NET 

o Webanwendungsentwicklung und Cross-Plattform-Anwendungen mit HTML/CSS, 

JavaScript/ TypeScript und C# sowie Webframeworks wie Angular, Vue.js, Svelte, 

ASP.NET (Core) und Blazor 

o Verteilte Systeme/Webservices mit .NET, insbesondere WebAPI, gRPC und 

WCF/CoreWCF 

o Relationale Datenbanken, XML, Datenzugriffsstrategien 

o Objekt-Relationales Mapping (ORM), insbesondere ADO.NET Entity Framework und 

Entity Framework Core 

o PowerShell 

o Architektur- und Code-Reviews 

o Performance-Analysen und -Optimierung 

o Entwicklungsrichtlinien  

http://www.it-visions.de/


18 Über den Autor 

 

▪ Ehrenamtliche Community-Tätigkeiten: 

o Vortragender für die International .NET Association (INETA) und .NET Foundation 

o Betrieb diverser Community-Websites:  

www.dotnet-lexikon.de 

www.dotnetframework.de 

www.windows-scripting.de 

www.aspnetdev.de  

u.a. 

▪ Firmenwebsite: www.IT-Visions.de 

▪ Weblog: www.dotnet-doktor.de 

▪ Kontakt für Anfragen zu Schulung und Beratung sowie Softwareentwicklungsprojekten:  

E-Mail kundenteam@IT-Visions.de  

Telefon 0201 / 64 95 90 – 50 

▪ Kontakt für Feedback zu diesem Buch:  

www.dotnet-doktor.de/Leserfeedback 

http://www.dotnet-lexikon.de/
http://www.dotnetframework.de/
http://www.windows-scripting.de/
http://www.it-visions.de/
http://www.dotnet-doktor.de/


Über dieses Buch  19 

 

5 Über dieses Buch 

5.1 Versionsgeschichte dieses Buchs 

Die Versionsgeschichte dieses Buch finden Sie in einem eigenen Kapitel am Ende des Buchs.   

Hinweis: Die Versionsgeschichte ist eine wichtige Referenz für die Leser, die sich aktuelle 

Versionen des Buchs beschaffen (z.B. über Leanpub.com) und wissen wollen, was sich geändert 

hat. Wenn Sie das Buch erstmalig lesen, müssen Sie die Versionsgeschichte nicht lesen. 

5.2 Hinweis zu den Vertriebswegen 

Dieses Fachbuch wird vertrieben auf folgenden Wegen (Ich nenne neben dem Verkaufspreis auch, wie 

viel – bzw. wenig – ich als Autor von den jeweiligen Händlern erhalte. Der Rest ist Gewinn der 

Händler): 

▪ Gedruckt (Print-on-Demand) bei Amazon.de für 39,99 Euro (der Autor erhält 15,38 Euro): 

www.amazon.de/exec/obidos/ASIN/3934279449/itvisions-21 

▪ Kindle-E-Book bei Amazon.de für 29,99 Euro (der Autor erhält 9,81 Euro): 

www.amazon.de/exec/obidos/ASIN/B0CM47LGY8/itvisions-21 

▪ PDF-E-Book inkl. aller Buch-Updates bei Leanpub.com ab 29,99 Dollar (der Autor erhält 

19,99 Dollar): 

www.leanpub.com/CSharp13 

▪ Als Teil des E-Book-Buch-Abos zusammen mit anderen aktuellen Fachbüchern ab 99,00 

Euro im Jahr inkl. aller Buch-Updates (der Autor erhält den kompletten Preis): 

www.IT-Visions.de/BuchAbo  

Hinweise: Ich habe mich für den Vertriebsweg des gedruckten Buchs über Amazon 

entschieden, weil ich dort ständig Updates zu dem Buch einreichen kann. Per Print-on-Demand 

erhalten Leser dann immer das topaktuelle Buch. Oft liefert Amazon dennoch am Tag nach der 

Bestellung das Buch schon aus. Der Vertrieb dieses Buch über klassische IT-Verlage, die leider 

heutzutage immer noch größere Auflagen vorproduzieren, ist für ein sehr agiles 

Softwareprodukt wie C# keine Alternative mehr. 

Ich nenne dabei auch den Erlös für den Autor, weil ich sehr häufig Leser treffe, die 

fälschlicherweise denken, der wesentliche Teil des Buchpreises komme dem Autor zu Gute. 

Das ist leider nicht so, außer bei Leanpub.com oder eigenen Vertriebswegen wie meinem 

Buchabo. Daher denke ich, dass es sinnvoll ist, dies transparent zu machen. 

5.3 Bezugsquelle des PDF-E-Books für Amazon-
Kunden 

Wenn Sie dieses Buch in gedruckter Form oder als Kindle-Ausgabe bei Amazon erworben haben, 

können Sie zusätzlich eine PDF-Version des Buchs kostenfrei erhalten.  

Leiten Sie dazu Ihren Kaufbeleg von Amazon an folgende E-Mail-Adresse weiter: 

PDFBuchZugabe@dotnet-doktor.de 

Geben Sie dabei bitte Vorname, Name, Firma und E-Mail-Adresse an. 

http://www.amazon.de/exec/obidos/ASIN/3934279449/itvisions-21
http://www.amazon.de/exec/obidos/ASIN/B09G2RG7JB/itvisions-21
http://www.leanpub.com/CSharp13
http://www.it-visions.de/BuchAbo
mailto:PDFBuchZugabe@dotnet-doktor.de


20 Über dieses Buch 

 

Sie erhalten dann binnen 1-2 Wochen das auf Sie personalisierte PDF-Dokument. Dieses Angebot 

gilt innerhalb von 6 Monaten nach dem Kauf des Buchs bei Amazon. 

5.4 Bezugsquelle für Aktualisierungen 

Sie können jederzeit Aktualisierungen des PDF-Buchs (gleiche Hauptversion!) kostenfrei bei 

Leanpub.com beziehen.  

Käufer der Kindle- oder Druck-Version können die aktuelle PDF-Version zum Preis von 9,99 

Dollar (zzgl. 7% Mehrwertsteuer) unter folgender Webadresse beziehen: 

https://leanpub.com/CSharp13/c/AWAY 

Hinweise: Leider erlauben Amazon u.a. Buchhändler aufgrund der Buchpreisbindungsgesetze 

in Deutschland den Autoren grundsätzlich nicht, dass Leser eine Aktualisierung im Kindle-

Format oder in gedruckter Form vergünstigt erhalten.  

Bitte beachten Sie auch, dass die ISBN-Regularien erfordern, dass man bei einer Titeländerung 

bei neuer Produktversion eine neue ISBN vergeben und damit auch ein neues Buchprojekt bei 

Amazon und Leanpub erstellt werden muss. 

5.5 Hinweise zur Breite und Tiefe dieses Buchs – Sie 
haben Einfluss! 

Ein Fachbuch, das ein riesengroßes Themengebiet wie C# behandelt, kann nicht jedes Teilgebiet 

und jeden Aspekt der Programmiersprache behandeln, zumindest nicht in gleicher Tiefe. Dann 

würde solch ein Fachbuch über eintausend Seiten, in einigen Fällen sogar mehrere tausend Seiten 

umfassen. 

Ich denke, dass ich nach aktuellem Stand der Technik und meinem Wissenstand etwa 1.000 Seiten 

zur C#-Syntax und -Tools sowie 3.000 Seiten zu den C#-Bibliotheken schreiben könnte. Würden 

Sie so ein dickes (und entsprechend teures) Buch kaufen und lesen wollen?  

Wie jeder Fachautor lese auch ich immer wieder Kritik, dass ein Leser ein bestimmtes Thema nicht 

oder nicht in ausreichender Tiefe behandelt sei in dem Buch. Das ist aus der Sicht des einzelnen 

Lesers sicherlich gerechtfertigt, aber wie jeder Fachautor muss ich eben zwingend eine Auswahl 

der Themen treffen. Gerne dokumentiere ich hier, wie ich persönlich diese Auswahl für meine 

Bücher treffe: 

▪ Ich behandele im Buch die Themen, die wir in unserer Firma selbst in der Praxis brauchen. 

▪ Ich behandele zusätzlich die Themen, die unsere Kunden in Beratungsgesprächen behandelt 

haben möchten. 

Folglich sind die Themen, die ich im Buch nicht oder nur kurz behandele, für uns und unsere 

Kunden nicht relevant bzw. so selbsterklärend, dass es keine Fragen dazu gibt. 

Natürlich kann das für Sie anders sein. Sie können mir immer gerne schreiben, wenn Sie ein Thema 

im Buch behandelt haben möchten. Ich sammele diese Anregungen und wenn es mehrere 

Zuschriften zu einem Thema gibt, dann kommt das Thema weit oben auf die Prioritätenliste. Ich 

denke, das ist ein faires Verfahren. 

5.6 Geplante Themen 

Folgende Themen sind für kommenden Ausgaben dieses Buchs geplant: 

https://leanpub.com/CSharp13/c/AWAY
https://leanpub.com/CSharp13/c/AWAY


Über dieses Buch  21 

 

▪ Aliase für referenzierte Assemblies 

▪ Checked Operators (seit C# 11.0) 

▪ Covariant Return Types (seit C# 9.0) 

▪ Dekompilierung mit ILSpy u.a. [https://blog.ndepend.com/in-the-jungle-of-net-decompilers]  

▪ Deployment von modernen .NET-Anwendungen mit dotnet publish 

▪ Extension Method GetEnumerator() (seit C# 9.0) 

▪ Implicit Cast Operator [learn.microsoft.com/dotnet/csharp/language-

reference/keywords/implicit] 

▪ Inkrementelle Source-Generatoren (seit C# 10.0) 

▪ Interceptoren (experimentell seit C# 12.0)  

▪ Operatoren für Unsigned Right Shift >>> und >>>= (seit C# 11.0) 

▪ Laufzeitcodegenerierung / Refection Emit 

▪ Nullable-Annotationen wie [AllowNull], [DisallowNull], [return: NotNullIfNotNull("xy")], 

[DoesNotReturn], [return: MaybeNull], MaybeNullWhen(bool), NotNullWhen(bool) 

▪ Ref Fields und ref scoped (seit C# 11.0) 

▪ Span<T> / Memory<T> (seit C# 7.2) 

▪ Statische Codeanalyse 

▪ Unmanaged Constructed Types (seit C# 8.0) 

▪ Visual Studio Code als Alternative zu Visual Studio 

Eventuell, wenn der Autor die Zeit findet, kommen irgendwann auch diese über die Sprachsyntax 

und den Compiler hinausgehenden Themen hinzu: 

▪ Clean Code-Programmierung mit C# 

▪ Design Pattern in C# 

5.7 Programmcodebeispiele zu diesem Buch 

Die Programmcodebeispiele zu diesem Buch können Sie auf der auf der von mir ehrenamtlich 

betriebenen Leserwebsite www.IT-Visions.de/Leser herunterladen. Dort müssen Sie sich 

registrieren. Bei der Registrierung wird ein Losungswort abgefragt. Bitte geben Sie dort das 

Losungswort AWAY ein. 

Alle Programmbeispiele aus diesem Buch sind in einer Visual Studio 2022-Projektmappe mit zwei 

Projekten enthalten. Es muss seit C# 8.0 zwei Projekte geben, weil einige Sprachfeatures von C# 

8.0 nicht mehr im klassischen .NET Framework laufen und C# seit Version 9.0 gar nicht mehr dort 

läuft. Die beiden Projekte enthalten: 

▪ CSharpSprachsyntax_NETClassic (.NET Framework 4.8): Alle Sprachfeatures von C# 1.0 bis 

7.3 und solche von C# 8.0, die auch auf klassischen .NET Framework laufen 

▪ CSharpSprachsyntax_NET (.NET 6.0): Alle Sprachfeatures von C# 8.0, die NICHT auf .NET 

Framework laufen sowie alle Sprachfeatures ab C# 9.0 

Die Beispiele sind in Unterordnern nach Sprachversionen aufgeteilt. Dies heißt, dass Sie zum 

Beispiel Sprachfeatures von C# 12.0 im Ordner CS120 finden bzw. C# 11.0 in CS110. 

https://blog.ndepend.com/in-the-jungle-of-net-decompilers/
https://docs.microsoft.com/de-de/dotnet/csharp/language-reference/keywords/implicit
https://docs.microsoft.com/de-de/dotnet/csharp/language-reference/keywords/implicit


22 Über dieses Buch 

 

Wie im Vorwort bereits erwähnt handelt es sich um den Anwendungstyp "Konsolenanwendung". 

So brauchen Sie als Leser kein Wissen über irgendeine GUI-Bibliothek und die Beispiele sind 

prägnant fokussiert auf die Syntax. Bitte beachten Sie das nächste Kapitel zum Hilfsklasse "CUI". 



Über dieses Buch  23 

 

 
Abbildung: Programmcodebeispiele zu diesem Buch in zwei Visual Studio-

Konsolenanwendungen (EXE) plus Hilfsbibliotheken (DLLs) 



24 Über dieses Buch 

 

5.8 Hilfsklasse zur Konsolenausgabe (CUI) 

Für die Bildschirmausgabe an der Konsole wird in diesem Buch oft nicht nur Console.WriteLine() 

verwendet, sondern auch Hilfsroutinen kommen zur Anwendung, die farbige Bildschirmausgaben 

erzeugen. Diese Hilfsroutinen sind in der Klasse ITVisions.CUI (CUI besteht dabei für 

Commandline User Interface) implementiert. Diese Klasse ist Teil des NuGet-Pakets 

ITV.AppUtil…nupkg, welches bei den herunterladbaren Projekten zu diesem Buch in Form 

mitgeliefert und via <packageSource> in der Datei NuGet.config einbezogen wird. 

Diese wichtigsten Hilfsroutinen in der Klasse CUI sind im Folgenden zum besseren Verständnis 

abgedruckt. 

Listing: Klasse CUI mit Hilfsroutinen für die Bildschirmausgabe an der Konsole 
using System; 

using System.Runtime.InteropServices; 

using System.Web; 

using ITVisions.UI; 

using System.Diagnostics; 

 

namespace ITVisions 

{ 

 /// <summary> 

 /// Helper utilities for console UIs 

 /// (C) Dr. Holger Schwichtenberg 2002-2018 

 /// </summary> 

 public static class CUI 

 { 

  public static bool IsDebug = false; 

  public static bool IsVerbose = false; 

 

  #region Print only under certain conditions 

 public static void PrintDebug(object s) 

  { 

   PrintDebug(s, System.Console.ForegroundColor); 

  } 

 

  public static void PrintVerbose(object s) 

  { 

   PrintVerbose(s, System.Console.ForegroundColor); 

  } 

  #endregion 

 

  #region Issues with predefined colors 

  public static void MainHeadline(string s) 

  { 

   Print(s, ConsoleColor.Black, ConsoleColor.Yellow); 

 

  } 

  public static void Headline(string s) 

  { 

   Print(s, ConsoleColor.Yellow); 

  } 

  public static void HeaderFooter(string s) 



Über dieses Buch  25 

 

  { 

   Console.ForegroundColor = ConsoleColor.Green; 

   Console.WriteLine(s); 

   Console.ForegroundColor = ConsoleColor.Gray; 

  } 

 

  public static void SubHeadline(string s) 

  { 

   Print(s, ConsoleColor.White); 

  } 

 

  public static void PrintSuccess(object s) 

  { 

   Print(s, ConsoleColor.Green); 

  } 

 

  public static void H1(string s) 

  { 

   MainHeadline(s); 

  } 

 

  public static void H2(string s) 

  { 

   Headline(s); 

  } 

 

  public static void H3(string s) 

  { 

   SubHeadline(s); 

  } 

 

  public static void PrintGreen(string s) 

  { 

   Print(s, ConsoleColor.Green); 

  } 

 

  public static void PrintYellow(string s) 

  { 

   Print(s, ConsoleColor.Yellow); 

  } 

 

  public static void PrintRed(string s) 

  { 

   Print(s, ConsoleColor.Red); 

  } 

 

  public static void PrintSuccess(object s) 

  { 

   Print(s, ConsoleColor.Green); 

  } 

 

  public static void PrintStep(object s) 

  { 



26 Über dieses Buch 

 

   Print(s, ConsoleColor.Cyan); 

  } 

 

  public static void PrintDebugSuccess(object s) 

  { 

   PrintDebug(s, ConsoleColor.Green); 

  } 

 

  public static void PrintVerboseSuccess(object s) 

  { 

   PrintVerbose(s, ConsoleColor.Green); 

  } 

 

  public static void PrintWarning(object s) 

  { 

   Print(s, ConsoleColor.Cyan); 

  } 

 

  public static void PrintDebugWarning(object s) 

  { 

   PrintDebug(s, ConsoleColor.Cyan); 

  } 

 

  public static void PrintVerboseWarning(object s) 

  { 

   PrintVerbose(s, ConsoleColor.Cyan); 

  } 

 

  public static void PrintError(object s) 

  { 

   Print(s, ConsoleColor.White, ConsoleColor.Red); 

  } 

 

  public static void PrintDebugError(object s) 

  { 

   PrintDebug(s, ConsoleColor.White, ConsoleColor.Red); 

  } 

 

  public static void PrintVerboseError(object s) 

  { 

   Print(s, ConsoleColor.White, ConsoleColor.Red); 

  } 

 

  public static void Print(object s) 

  { 

   PrintInternal(s, null); 

  } 

  #endregion 

 

  #region Print with selectable color 

 

  public static void Print(object s, ConsoleColor farbe, ConsoleColor? 

hintergrundfarbe = null) 



Über dieses Buch  27 

 

  { 

   PrintInternal(s, farbe, hintergrundfarbe); 

  } 

 

  public static void PrintDebug(object s, ConsoleColor farbe, ConsoleColor? 

hintergrundfarbe = null) 

  { 

   if (IsDebug || IsVerbose) PrintDebugOrVerbose(s, farbe, hintergrundfarbe); 

  } 

 

  public static void PrintVerbose(object s, ConsoleColor farbe) 

  { 

   if (!IsVerbose) return; 

   PrintDebugOrVerbose(s, farbe); 

  } 

  #endregion 

 

  #region Print with additional data 

 

  /// <summary> 

  /// Print with Thread-ID 

  /// </summary> 

  public static void PrintWithThreadID(string s, ConsoleColor c = 

ConsoleColor.White) 

  { 

   var ausgabe = String.Format("Thread #{0:00} {1:}: {2}", 

System.Threading.Thread.CurrentThread.ManagedThreadId, 

DateTime.Now.ToLongTimeString(), s); 

   CUI.Print(ausgabe, c); 

  } 

 

  /// <summary> 

  ///  Print with time 

  /// </summary> 

  public static void PrintWithTime(object s, ConsoleColor c = ConsoleColor.White) 

  { 

   CUI.Print(DateTime.Now.Second + "." + DateTime.Now.Millisecond + ":" + s); 

  } 

 

  private static long count; 

  /// <summary> 

  /// Print with counter 

  /// </summary> 

  private static void PrintWithCounter(object s, ConsoleColor farbe, 

ConsoleColor? hintergrundfarbe = null) 

  { 

   count += 1; 

   s = $"{count:0000}: {s}"; 

   CUI.Print(s, farbe, hintergrundfarbe); 

  } 

 

  #endregion 

 

  #region internal helper routines 



28 Über dieses Buch 

 

  private static void PrintDebugOrVerbose(object s, ConsoleColor farbe, 

ConsoleColor? hintergrundfarbe = null) 

  { 

   count += 1; 

   s = $"{count:0000}: {s}"; 

   Print(s, farbe, hintergrundfarbe); 

   Debug.WriteLine(s); 

   Trace.WriteLine(s); 

   Trace.Flush(); 

  } 

 

  /// <summary> 

  /// Output to console, trace and file 

  /// </summary> 

  /// <param name="s"></param> 

  [DebuggerStepThrough()] 

  private static void PrintInternal(object s, ConsoleColor? farbe = null, 

ConsoleColor? hintergrundfarbe = null) 

  { 

   if (s == null) return; 

 

   if (HttpContext.Current != null) 

   { 

    try 

    { 

 if (farbe != null) 

     { 

      HttpContext.Current.Response.Write("<span style='color:" + 

farbe.Value.DrawingColor().Name + "'>"); 

     } 

     if (!HttpContext.Current.Request.Url.ToString().ToLower().Contains(".asmx") 

&& !HttpContext.Current.Request.Url.ToString().ToLower().Contains(".svc") && 

!HttpContext.Current.Request.Url.ToString().ToLower().Contains("/api/")) 

HttpContext.Current.Response.Write(s.ToString() + "<br>"); 

 

     if (farbe != null) 

     { 

      HttpContext.Current.Response.Write("</span>"); 

     } 

    } 

    catch (Exception) 

    { 

    } 

   } 

   else 

   { 

    object x = 1; 

    lock (x) 

    { 

     ConsoleColor alteFarbe = Console.ForegroundColor; 

     ConsoleColor alteHFarbe = Console.BackgroundColor; 

 

     if (farbe != null) Console.ForegroundColor = farbe.Value; 



Über dieses Buch  29 

 

     if (hintergrundfarbe != null) Console.BackgroundColor = 

hintergrundfarbe.Value; 

 

     //if (farbe.ToString().Contains("Dark")) Console.BackgroundColor = 

ConsoleColor.White; 

     //else Console.BackgroundColor = ConsoleColor.Black; 

 

     Console.WriteLine(s); 

     Console.ForegroundColor = alteFarbe; 

     Console.BackgroundColor = alteHFarbe; 

    } 

   } 

  } 

  #endregion 

 

  #region Set the position of the console window 

  [DllImport("kernel32.dll", ExactSpelling = true)] 

  private static extern IntPtr GetConsoleWindow(); 

  private static IntPtr MyConsole = GetConsoleWindow(); 

 

  [DllImport("user32.dll", EntryPoint = "SetWindowPos")] 

  public static extern IntPtr SetWindowPos(IntPtr hWnd, int hWndInsertAfter, int 

x, int Y, int cx, int cy, int wFlags); 

 

  // Set the position of the console window without size 

  public static void SetConsolePos(int xpos, int ypos) 

  { 

   const int SWP_NOSIZE = 0x0001; 

   SetWindowPos(MyConsole, 0, xpos, ypos, 0, 0, SWP_NOSIZE); 

  } 

 

  // Set the position of the console window with size 

  public static void SetConsolePos(int xpos, int ypos, int w, int h) 

  { 

   SetWindowPos(MyConsole, 0, xpos, ypos, w, h, 0); 

  } 

  #endregion 

 } 

} 

5.9 Qualitätssicherung der Programmcodebeispiele 

Ich versichere Ihnen, dass die Programmcodebeispiele auf zwei meiner Entwicklungssysteme 

kompilierten und liefen, bevor ich sie per Kopieren & Einfügen in das Manuskript zu diesem Buch 

übernommen habe und auf der Leser-Website zum Download veröffentlicht habe.  

Dennoch gibt es leider Gründe, warum die Beispiele bei Ihnen als Leser nicht laufen: 

▪ Eine abweichende Systemkonfiguration (in der heutigen komplexen Welt der vielen Varianten 

und Versionen von Betriebssystemen und Anwendungen nicht unwahrscheinlich). Es ist 

einem Autor nicht möglich, alle Konfigurationen durchzutesten. 



30 Über dieses Buch 

 

▪ Änderungen, die sich seit der Erstellung der Beispiele ergeben haben (von den vielen Breaking 

Changes, die die neueren .NET-Versionen immer wieder durch Microsoft erhalten, können 

auch Beispiele betroffen sein, was nicht immer leicht zu entdecken ist) 

▪ Schließlich sind auch menschliche Fehler des Autors möglich. Bitte bedenken Sie, dass das 

Fachbuchschreiben – wie im Vorwort erwähnt – nur ein Hobby ist. Es gibt nur sehr wenige 

Menschen in Deutschland, die hauptberuflich als Fachbuchautor arbeiten und so professionell 

Programmcodebeispiele erstellen und testen können wie kommerziellen (bezahlten) 

Programmcode. 

Falls dennoch Beispiele bei Ihnen nicht laufen, kontaktieren Sie mich bitte unter  

www.dotnet-doktor.de/Leserfeedback  

mit einer sehr genauen Fehlerbeschreibung. Ich bemühe mich, Ihnen binnen zwei Wochen zu 

antworten. Im Einzelfall kann es wegen dienstlicher oder privater Abwesenheit aber auch länger 

dauern. 

5.10 Ihre Belohnung, wenn Sie helfen, dieses Buch zu 
verbessern! 

Wenn Sie Fehler in diesem Buch finden, bin ich Ihnen nicht nur wirklich sehr dankbar, sondern 

Sie bekommen auch eine Belohnung in Form von aktualisierten oder weiteren E-Books. 

Fehlerart E-Book-Guthaben 

Inhaltlicher Fehler Pro Fehler 5 Euro 

Sprachlicher Fehler Pro Fehler 2 Euro 

 

Ein Beispiel: Wenn Sie zwei inhaltliche Fehler und zehn Rechtschreibfehler in diesem Buch 

finden, dann haben Sie bei mir 30 Euro gut. Dafür können Sie dann eins meiner selbstverlegten 

Bücher als E-Book bekommen. 

Die selbstverlegten Bücher finden Sie unter www.IT-Visions.de/Verlag 

Melden Sie die Fehler unter www.dotnet-doktor.de/Leserfeedback 

Schreiben Sie dabei, welches E-Book Sie wünschen. Das Buch schicke ich Ihnen dann per E-Mail 

zu. 

Tipp: Auch Fehler auf meiner persönlichen Website www.dotnet-doktor.de und der 

Firmenwebsite www.IT-Visions.de zählen mit! 

Ich freue mich auf Ihre Fehlermeldung! 

Holger Schwichtenberg 

P.S. Die Fehlermeldung zählt nur, wenn nicht ein anderer Leser dies bereits gemeldet hat und es 

daher in der aktuellen Auflage schon korrigiert ist. 

http://www.dotnet-doktor.de/Leserfeedback
http://www.it-visions.de/Verlag
http://www.dotnet-doktor.de/Leserfeedback
http://www.dotnet-doktor.de/
http://www.it-visions.de/


Fakten zu C#  31 

 

6 Fakten zu C#  

6.1 Der Name C# 

C# wird gesprochen „C Sharp“. Das # könnte man auch in ein vierfaches Pluszeichen aufspalten 

(also C++++, eine Weiterentwicklung von C++). Ursprünglich sollte die Sprache "Cool" heißen. 

Eine Zeit lang wurde auch "C# .NET" verwendet; das ist heute aber nicht mehr üblich. Microsoft 

spricht aber gelegentlich noch von "Visual C#", z.B. meldet sich der Kommandozeilencompiler 

von C# auch in der aktuellen Version mit "Microsoft (R) Visual C# Compiler". 

6.2 Ursprünge von C# 

C# ist das Ergebnis eines Projektes bei Microsoft, welches im Dezember 1998 gestartet wurde, 

nachdem die Firma Sun Microsoft die Veränderung der von Sun entwickelten Programmiersprache 

Java verboten hatte. Vater von C# ist Anders Hejlsberg [de.wikipedia.org/wiki/Anders_Hejlsberg], 

der zuvor auch Turbo Pascal und Borland Delphi erschaffen hat. Er war früher bei Borland und 

arbeitet seit 1996 bei Microsoft. Heutzutage ist er auch verantwortlich für die Sprache TypeScript. 

6.3 .NET als Basis für C# 

Die Programmiersprache C# ist sehr eng verbunden mit der Softwareentwicklungsplattform 

Microsoft .NET. C#-Programmcode läuft immer auf Basis einer .NET-Laufzeitumgebung und 

benötigt Klassen aus der .NET-Basisklassenbibliothek. So besitzt C# selbst keine Datentypen: Alle 

Datentypen, die man in C# verwendet, z.B. string, sind in Wirklichkeit Klassen aus der .NET-

Basisklassenbibliothek (string → System.String). Auch andere Sprachkonstrukte in C# basieren 

auf Schnittstellen und Klassen der .NET-Basisklassenbibliothek, z.B. foreach(…) { … } basiert 

auf der Schnittstelle System.Collections.IEnumerable und await foreach(…) { … } basiert auf 

System.Collections.Generic.IAsyncEnumerable<T>. Der Range-Operator (1..10) erfordert die 

Klasse System.Range usw. 

Im Laufe der Geschichte von .NET (seit dem Jahr 2001) gab es zahlreiche Implementierungen von 

.NET (.NET Framework, Mono, .NET Compact Framework, .NET Framework Client Profile, 

.NET Micro Framework, Silverlight, XNA, .NET Profile für Windows Runtime, .NET Core, 

Universal Windows Platform). Derzeit sind noch in signifikantem Umfang in Einsatz: 

▪ .NET Framework 

▪ .NET Core 

▪ Universal Windows Platform (UWP) 

▪ Mono/Xamarin 

▪ .NET ab Version 5.0 

Hinweis: Mit .NET 6.0 führt Microsoft diese Implementierungen zu einer einheitlichen 

Plattform zusammen. Alle anderen Implementierungen werden nicht mehr entwickelt.  

Zumindest das ".NET Framework" wird aber noch viele Jahre eine Bedeutung im Markt haben, 

weil Microsoft dafür zumindest noch Updates im Bereich Fehlerbehebung, Zuverlässigkeit und 

Sicherheit liefert. Für alle anderen Implementierungen wird auch dieser Support bald enden. 

 

https://de.wikipedia.org/wiki/Anders_Hejlsberg


32 Fakten zu C# 

 

Tizen BrowseriOS
macOS

.NET Standard Library 2.1 (System.*, Microsoft.*) 

 .NET Framework Class Library (FCL)
im .NET Framework 4.8 

(.NET  Full   Desktop  Framework)

Basisklassen, Registry, Data, XML, IO, Logging, Configuration, 

CodeDOM, Security, Caching, Network, LDAP, Workflow, WCF, ...

.NET 9.0-spezifische Klassen (Microsoft.Extensions.*)

WPF,
Windows 

Forms,
Windows
Services,
Console

ASP.NET
(Webforms,

 MVC 5, WebAPI 2
 WebPages 3, 

SignalR 2)

ASP.NET Core 8.0

(MVC, Razor Pages,
SignalR, WebAPI,
gRPC, CoreWCF, 

Blazor SSR, Blazor Server)
System.Web

Windows
UI

Library 3
(WinUI3)

.NET Framework 4.8.1 .NET Core Runtime in .NET 9.0 Mono Runtime in .NET 9.0

Collections IO

© Dr. Holger Schwichtenberg, www.IT-Visions.de, Stand 01.11.2024

Die .NET-Familie 2024

Windows

Windows 10/11
in allen Varianten

Windows, Linux, macOS

Konsole

Windows
Services/

Linux
Daemons

Configuration

Data

Logging Hosting

XML

 Entity Framework Core 1.x bis 9.0

...

DI Caching

Windows Compatibility Pack (System.*, Microsoft.*) 

Math

Registry ODBC Drawing

.NET for
Android

...

WPF &
Windows

Forms
(.NET Core

Desktop
Runtime)

Windows
ab 7

nur
v1.x +

v2.x auch
auf

.NET  Full 
Framework

 nur v1.x +
v2.0

 LDAP WMI

...

Blazor
Web-

Assembly

Entity Framework 6.3/6.4/6.5

nur Entity Framework Core 1.x, 2.x, 3.1
 

 

CodeDOM Caching WCF-Client

LINQ Globalization Security Threading Text TCP/IP

Options

C# 7.x + Teile von C# 8.0/9.0/10.0/11.0/12.0/13.0 Alle Sprachfeatures von C# 13.0

.NET for
iOS/macOS

Android

.NET MAUI

.NET for
Tizen

 
Abbildung: Die .NET-Familie mit .NET Framework 4.8 und .NET 9.0 

6.4 Status der Programmiersprache C# 

Früher gab es einen wahren Glaubenskrieg in der .NET-Entwicklergemeinde um die Wahl der 

»richtigen« Programmiersprache. C# oder Visual Basic .NET hieß die Frage, die viele 

Projektteams bewegt hat. Auch wenn Visual Basic .NET in allen wesentlichen Punkten syntaktisch 

ebenbürtig war, hat C# klar gewonnen. 

C# ist heute nicht nur eine von vielen Programmiersprachen für .NET, es hat sich durchgesetzt als 

DIE Programmiersprache für .NET. Gegenwärtig gibt es nur noch wenige .NET-Projekte, die 

Visual Basic .NET, F# oder C++/CLI oder exotischere Sprachen verwenden. 

Während früher viele .NET-Fachbücher in zwei verschiedenen Editionen zu C# und Visual Basic 

.NET erschienen sind, gibt es heutzutage nur noch eine Variante zu C#. 

In der Dokumentation der .NET-Klassenbibliothek gibt es aber mittlerweile neben C# auch wieder 

Beispiele in Visual Basic .NET,  



Fakten zu C#  33 

 

 

Abbildung: Beispiele in vier Sprachen in der alten MSDN-Dokumentation der .NET-Klassen in 

verschiedenen Registerkarten 



34 Fakten zu C# 

 

 

Abbildung: Neue Dokumentation auf learn.microsoft.com mit Auswahl der Sprachen per 

Dropdown oben auf der Seite 

6.5 Dokumentation zu C#  

Die offizielle Dokumentation zu C# finden Sie unter 

https://learn.microsoft.com/en-us/dotnet/csharp  

Weitere Dokumentation finden Sie in zwei GitHub-Projekten: 

https://github.com/dotnet/csharplang 

https://github.com/dotnet/roslyn 

 

https://learn.microsoft.com/en-us/dotnet/csharp/
https://github.com/dotnet/csharplang
https://github.com/dotnet/roslyn


Fakten zu C#  35 

 

6.6 Versionsgeschichte 

Hinsichtlich der Versionsnummern der Sprache C# herrschte früher etwas Verwirrung. Es gab 

einerseits eine offizielle Zählung mit Versionsnummer (parallel zum .NET Framework), 

andererseits mit Jahreszahlen (parallel zu Visual Studio). Intern wird eine dritte Zählung für den 

Compiler verwendet. Die erste Version von C# im Rahmen des .NET Framework 1.0 trug intern 

die Versionsnummer 7.0. Zu .NET 1.1 gab es dann C# 7.1, im .NET Framework 2.0 und 3.0 meldet 

sich der C#-Compiler mit Version 8.0. Ab .NET Framework 3.5 hat Microsoft dies aber bereinigt. 

Dort meldet sich der Compiler nun auch mit Version 3.5. 

Die folgende Liste dokumentiert die Versionsgeschichte von C# einschließlich der verschiedenen 

Namen, die es jeweils gibt. 

▪ C# 1.0 ist erschienen am 05.01.2002 (in Visual Studio.NET 2002+2003 / .NET Framework 

1.0 und 1.1. Erste Version des ISO-Standards für C#.) 

▪ C# 2.0 ist erschienen am 07.11.2005 (C# 2005 / in Visual Studio.NET 2005 / .NET Framework 

2.0 und 3.0. Zweite Version des ISO-Standards für C#.) 

▪ C# 3.0 ist erschienen am 15.08.2008 (C# 2008 / in Visual Studio.NET 2008 / .NET Framework 

3.5) 

▪ C# 4.0 ist erschienen am 12.04.2010 (C# 2010 / in Visual Studio.NET 2010 / .NET Framework 

4.0) 

▪ C# 5.0 ist erschienen am 12.08.2012 (C# 2012 / in Visual Studio.NET 2012 / .NET Framework 

4.5) 

▪ C# 6.0 ist erschienen am 20.07.2015 (C# 2015 / in Visual Studio.NET 2015 / .NET Framework 

4.6) 

▪ C# 7.0 ist erschienen am 05.03.2017 (C# 2017 / in Visual Studio 2017 v15.0) 

▪ C# 7.1 ist erschienen am 14.08.2017 (in Visual Studio 2017 v15.3) 

▪ C# 7.2 ist erschienen am 15.11.2017 (in Visual Studio 2017 v15.5) 

▪ C# 7.3 ist erschienen am 02.08.2018 (in Visual Studio 2017 v15.7) 

▪ C# 8.0 ist erschienen am 23.09.2019 (in Visual Studio 2019 v16.3) 

▪ C# 9.0 ist erschienen am 10.11.2020 (in Visual Studio 2019 v16.8) 

▪ C# 10.0 ist erschienen am 08.11.2021 (in Visual Studio 2022, v17.0) 

▪ C# 11.0 ist erschienen am 08.11.2022 (in Visual Studio 2022, v17.4) 

▪ C# 12.0 ist erschienen am 14.11.2023 (in Visual Studio 2022, v17.8) 

▪ C# 13.0 ist erschienen am 12.11.2024 (in Visual Studio 2022, v17.12) 

Version der 

Sprachsyntax mit 

Versionsnummer 

Ausgeliefert mit Version der 

Sprachsyntax 

mit Jahreszahl 

Interne 

Versionsnummer des 

C#-Compilers 

C# 1.0 .NET Framework 1.0 Visual C# 2002 7.0 (alter Compiler) 

C# 1.1 .NET Framework 1.1 Visual C# 2003 7.1 (alter Compiler) 

C# 2.0 .NET Framework 2.0 Visual C# 2005 8.0 (alter Compiler) 

C# 2.0 .NET Framework 3.0 Visual C# 2005 8.0 (alter Compiler) 

C# 3.0 .NET Framework 3.5 Visual C# 2008 3.5 (alter Compiler) 



36 Fakten zu C# 

 

Version der 

Sprachsyntax mit 

Versionsnummer 

Ausgeliefert mit Version der 

Sprachsyntax 

mit Jahreszahl 

Interne 

Versionsnummer des 

C#-Compilers 

C# 4.0 .NET Framework 4.0 Visual C# 2010 4.0 (alter Compiler) 

C# 5.0 .NET Framework 4.5 Visual C# 2012 4.5 (alter Compiler) 

C# 6.0 .NET Framework 4.6 

/ .NET Core 1.0 

Visual C# 2015 1.x (Neuer Compiler) 

C# 7.0 Visual Studio 2017 

15.0 / .NET Core 2.0 

Visual C# 2017 2.0 (Neuer Compiler) 

C# 7.1 Visual Studio 2017 

15.4 / .NET Core 2.0 

Visual C# 2017 2.3 (Neuer Compiler) 

C# 7.2 Visual Studio 2017 

15.5 / .NET Core 2.0 

Visual C# 2017 2.7 (Neuer Compiler) 

C# 7.3 Visual Studio 2017 

15.7 / .NET Core 2.1 

Visual C# 2017 2.8 + 2.9 + 2.10 (Neuer 

Compiler) 

C# 8.0  Visual Studio 2019 

16.3 / .NET Core 3.x 

Visual C# 2018 3.3 bis 3.7 (Neuer 

Compiler) 

C# 9.0  Visual Studio 2019 

16.8 / .NET 5.0 

Visual C# 2020 ab v3.8 (Neuer 

Compiler) 

C# 10.0 Visual Studio 2022 

17.0 / .NET 6.0 

Visual C# 2022 ab v4.0 (Neuer 

Compiler) 

C# 11.0 Visual Studio 2022 

17.4 / .NET 7.0 

Visual C# 2023 ab v4.4 (Neuer 

Compiler) 

C# 12.0 Visual Studio 2022 

17.8 / .NET 8.0 

Visual C# 2023 ab v4.8 (Neuer 

Compiler) 

C# 13.0 Visual Studio 2022 

17.12 / .NET 9.0 

Visual C# 2024 ab v4.11 (Neuer 

Compiler) 

Tabelle: Verschiedene Versionsnummernzählungen für die Sprache C# 

6.7 Standardisierung 

Microsoft hat einige Teile des .NET Framework unter dem Namen Common Language 

Infrastructure (CLI) standardisieren lassen. Die CLI wurde erstmals im Dezember 2001 von der 

European Computer Manufacturers Association (ECMA) standardisiert (ECMA-Standard 335, 

Arbeitsgruppe TC49 / TG3, früher: TC39 / TG3, siehe [ECMA01]); mit kleinen Änderungen 

wurde der Standard im Dezember 2002 von der weltweit wichtigsten 

Standardisierungsorganisation, der International Standardization Organization (ISO), 

übernommen als ISO / IEC 23271. 

Die Begriffe lauten in den Standards zum Teil allerdings anders als bei Microsoft: Was im .NET 

Framework Microsoft Intermediate Language (MSIL) heißt, entspricht im Standard der Common 

Intermediate Language (CIL). Anstelle der Framework Class Library (FCL) spricht man von der 

CLI Class Library. Von der Standardisierung ausgenommen sind jedoch z.B. die 



Fakten zu C#  37 

 

Datenbankschnittstelle ADO.NET und die Benutzeroberflächen-Bibliotheken Windows Forms 

und ASP.NET Webforms. Auch die neueren .NET-Bibliotheken (WPF, WCF und WF) sind nicht 

standardisiert. 

Auch die Programmiersprache C# ist von beiden Gremien akzeptiert (ECMA-334 bzw. ISO / IEC 

23270). Die Standardisierung bezieht sich aber auf ältere Versionen. Die letzten C#-Versionen hat 

Microsoft nicht mehr standardisieren lassen. Die Standardisierung von C# ist alllerdings auf dem 

Stand C# 6.0 stehengeblieben [www.ecma-international.org/publications-and-

standards/standards/ecma-334/]. 

 

Abbildung: Standard der C#-Standardisierung [Quelle: www.ecma-

international.org/publications-and-standards/standards/ecma-334, Stand: 29.10.2023] 

Ein weiterer, von Microsoft initiierter Standard ist von der ECMA im Dezember 2005 unter 

ECMA-372 (Arbeitsgruppe TC49 / TG5, früher: TC39 / TG5) verabschiedet worden: C++ / CLI 

ist eine Spracherweiterung für C++ (ISO / IEC 14882:2003), die eine elegantere Nutzung von C++ 

auf der CLI-Plattform ermöglicht, als dies bisher mit den Managed Extensions for C++ (alias 

Managed C++) möglich war. 

6.8 Implementierung des C#-Compilers 

Die ursprüngliche Version des C#-Compilers (csc.exe) wurde in C++ implementiert. Auch der C#-

Compiler im Mono-Projekt ist in C++ geschrieben. 

Mit dem Projekt "Roslyn" (alias: .NET Compiler Platform) hat Microsoft selbst den Compiler neu 

in C# implementiert. Die erste Version des neuen Compilers war C# 6.0. 

6.9 Open Source 

Bereits zu C# 1.0 gab es eine quelloffene Version im Projekt "Rotor" im Rahmen der 

Standardisierung von C#. Diese war jedoch nicht "Open Source", sondern nur "Shared Source", 

d.h. der Quellcode durfte betrachtet, aber nicht weiterverwendet werden. Seit C# 6.0 ist der neue 

Compiler im Rahmen der .NET Compiler Platform "Roslyn" ein Open Source-Projekt auf Github. 

https://www.ecma-international.org/publications-and-standards/standards/ecma-334/
https://www.ecma-international.org/publications-and-standards/standards/ecma-334/
http://www.ecma-international.org/publications-and-standards/standards/ecma-334
http://www.ecma-international.org/publications-and-standards/standards/ecma-334


38 Fakten zu C# 

 

Projekt für das Design der Programmiersprache: 

github.com/dotnet/csharplang 

Projekt für die Implementierung der Programmiersprache: 

github.com/dotnet/roslyn 

6.10 Parität und Co-Evolution mit Visual Basic .NET 

Im Jahr 2010 hatte Microsoft verkündet, die Programmiersprache C# und Visual Basic .NET 

hinsichtlich ihrer Funktionalität anzugleichen. »Die Sprachen sollen sich in Stil und Gefühl 

unterscheiden, nicht in ihrem Funktionsumfang«, schrieb Mads Torgersen, Produktmanager für C# 

damals. Scott Wiltamuth führt den Begriff "Co-Evolution" ein 

[blogs.msdn.microsoft.com/scottwil/2010/03/09/vb-and-c-coevolution]. 

Einige Jahre hat Microsoft diese Strategie tatsächlich umgesetzt und bestehende Sprachfeatures, 

die nur eine Sprache hatte, in der anderen Sprache nachgerüstet und neue Sprachfeatures 

gleichzeitig oder zumindest zeitnah in beiden Sprachen veröffentlicht. 

Im Jahr 2017 hat Microsoft sich von Parität und Co-Evolution wieder verabschiedet. Die parallel 

zu C# 7.0 erschienene Version 15 von Visual Basic .NET bietet daher lediglich Tupel und binäre 

Literale als neue Sprachfeatures an. Zudem kann Visual Basic .NET 15 C#-Methoden nutzen, die 

Zeiger mit ref liefern, selbst aber solche Methoden nicht implementieren. 

Im März 2020 hat Microsoft verkündet, die Programmiersprache Visual Basic .NET hinsichtlich 

der Syntax nicht mehr weiter zu entwickeln, diese Sprache aber zumindest bei einigen Projektarten 

in .NET weiterhin zu unterstützen [devblogs.microsoft.com/vbteam/visual-basic-in-net-core-3-0/]. 

Zentrale Aussagen darin waren: 

▪ "Going forward, we do not plan to evolve Visual Basic as a language." 

▪ "Future features of .NET Core that require language changes may not be supported in Visual 

Basic. " 

▪ "Due to differences in the platform, there will be some differences between Visual Basic on 

.NET Framework and .NET Core." 

Visual Basic .NET ist dennoch nach C# weiterhin die zweitwichtigste Programmiersprache in 

der .NET-Welt. Telemetriedaten [blogs.msdn.microsoft.com/dotnet/2017/02/01/the-net-

language-strategy] von Microsoft zeigen einerseits, dass Visual Basic .NET hauptsächlich zur 

Programmierung mit älteren .NET-Techniken wie Windows Forms und ASP.NET Webforms 

zum Einsatz kommt. Andererseits beginnen viele neue .NET-Entwickler mit Visual Basic .NET, 

bevor sie sich an C# herantrauen.  

6.11 Popularität von C# 

Für die Beliebtheit von Programmiersprachen gibt es verschiedene Erhebungen. Sehr beliebt ist 

der Tiobe Index [www.tiobe.com/tiobe-index], der monatlich durch eine Auswertung von 

Internetseiten ermittelt wird. Hier liegt C# in der Regel seit längerem auf Platz 5, hinter Python, 

C++, C und Java. Knapp hinter C# liegt Visual Basic .NET, hier nur als "Visual Basic" bezeichnet, 

aber abzugrenzen von "Visual Basic Classic" auf Platz 22 (hier nicht mehr im Bild). 

https://github.com/dotnet/csharplang
https://github.com/dotnet/roslyn
https://blogs.msdn.microsoft.com/scottwil/2010/03/09/vb-and-c-coevolution
https://devblogs.microsoft.com/vbteam/visual-basic-in-net-core-3-0/
https://blogs.msdn.microsoft.com/dotnet/2017/02/01/the-net-language-strategy
https://blogs.msdn.microsoft.com/dotnet/2017/02/01/the-net-language-strategy
https://www.tiobe.com/tiobe-index/


Fakten zu C#  39 

 

 
Abbildung: Beliebtheit der Programmiersprachen (Quelle: www.tiobe.com/tiobe-index) 

 

Abbildung: Beliebtheit von C# von 2002 bis 2024 (Quelle: www.tiobe.com/tiobe-index) 

Das Ranking der IEEE (Institute of Electrical and Electronics Engineers) basiert auf der 

Auswertung mehrerer Datenquellen (CareerBuilder, GitHub, Google, Hacker News, IEEE, Reddit, 

Stack Overflow und Twitter). 

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/


40 Fakten zu C# 

 

 

Abbildung: IEEE-Ranking 2023 [spectrum.ieee.org/top-programming-languages/#toggle-gdpr] 

("The “Spectrum” ranking is weighted towards the profile of the typical IEEE member, the 

“Trending” ranking seeks to spot languages that are in the zeitgeist, and the “Jobs” ranking 

measures what employers are looking for.") 

Auch das IT-Marktforschungsunternehmen RedMonk liefert ein Programmiersprachenranking 

basierend auf GitHub und Stackoverflow.com. C# liegt dort zusammen mit C++ und CSS auf Platz 

5. Davor sind JavaScript, Python, Java und PHP. 

https://spectrum.ieee.org/top-programming-languages/%23toggle-gdpr


Fakten zu C#  41 

 

 
Abbildung: Programmiersprachen-Ranking von RedMonk, Stand Januar 2024: Diagramm 

korreliert GitHub-Pull-Requests (x-Achse) zum Rang bei Stack Overflow (y-Achse) 

[https://redmonk.com/sogrady/2024/03/08/language-rankings-1-

24https://redmonk.com/sogrady/2022/03/28/language-rankings-1-22/] 

 

https://redmonk.com/sogrady/2024/03/08/language-rankings-1-24/
https://redmonk.com/sogrady/2024/03/08/language-rankings-1-24/
https://redmonk.com/sogrady/2022/03/28/language-rankings-1-22/


42 Fakten zu C# 

 

 
Abbildung: Jahresauswertungen von RedMonk 2012 bis 2024 

[https://redmonk.com/rstephens/2024/03/08/top20-jan2024] 

Seit dem Jahr 2017 gibt es eine Umfrage "The State of Developer Ecosystem" der Firma JetBrains. 

C# liegt im Jahr 2023 bei der Beliebtheit auf Platz 9, mit 21% weit hinter den Webtechniken wie 

JavaScript, TypeScript und HTML/CSS. Auch Python, SQL, Java, Shell-Sprachen und sogar C++ 

sind bei der Umfrage beliebter.  

https://redmonk.com/rstephens/2024/03/08/top20-jan2024/


Fakten zu C#  43 

 

 
Abbildung: Umfrage "The State of Developer Ecosystem" 2023 

[https://www.jetbrains.com/lp/devecosystem-2023] 

Eine weitere viel beachtete Statistik ist die jährliche Umfrage von Stackoverflow.com. In der 

Jahresumfrage 2023 (2023, 2022, 2021, 2020, 2019, 2018) mit rund 65.000 Teilnehmern 

(weltweit) war C# auf Platz 8 (8, 8, 8, 7, 7, 8) der Liste der am meisten eingesetzten Programmier- 

und Markupsprachen mit 27,1%, (27,62%, 27,98%, 27,86%, 31,4 %, 31,9%, 35,35%). 

https://www.jetbrains.com/lp/devecosystem-2023


44 Fakten zu C# 

 

 
Abbildung: Einsatzhäufigkeit von C# in der Jahresumfrage 2024 von stackoverflow.com 

[https://survey.stackoverflow.co/2024] 

In der Stackoverflow-Umfrage wird auch nach "Desired" (blauer Kreis, bei C# 21,6%) und 

"Admired" (roter Kreis, bei C# 64,1%) gefragt. 

▪ "Admired": Ist im Einsatz und Entwickler/Entwicklerin möchte es weiterhin nutzen 

▪ "Desired": Bisher nicht im Einsatz, aber Entwickler/Entwicklerin möchte es gerne nutzen 



Fakten zu C#  45 

 

Abbildung: Liebe und Abneigung zu C# in der Jahresumfrage 2024 von stackoverflow.com 

[https://survey.stackoverflow.co/2024] 

Eine weitere Umfrage unter Entwicklern liefert SlashData. Das Analystenteam von SlashData 

berichtet mit seinem Report “State Of The Developer Nation“ vierteljährlich darüber, mit welchen 

Programmiersprachen die weltweite Gemeinschaft der Softwareentwickler arbeitet. Hier liegt C# 

auf Platz 4. JavaScript, TypeScript und CoffeeScript sind zusammengefasst auf Platz 1. 

 
Abbildung: SlashData-Umfrage, Stand 1. Quartal 2022  

[Quelle: https://www.developernation.net/developer-reports/dn26] 

Falls es Ihnen bei der Programmierung auf Energie-Effizienz ankommt, sollten Sie sich diese 

Studie durchlesen: "Energy Efficiency across Programming Languages - How Does Energy, Time, 

and Memory Relate?" [https://greenlab.di.uminho.pt/wp-content/uploads/2017/09/paperSLE.pdf] 

https://www.developernation.net/developer-reports/dn26/
https://greenlab.di.uminho.pt/wp-content/uploads/2017/09/paperSLE.pdf


46 Fakten zu C# 

 

 
Abbildung: C# liegt bei der Studie zum Vergleich der Programmiersprachen im Mittelfeld 

6.12 Editoren für C# 

Microsoft liefert für C# selbst drei Editoren: 

▪ Visual Studio: nur für Windows. Kostenfreie Community-Version nur für Open Source-

Projekte, Studierende und kleine Unternehmen. 

visualstudio.microsoft.com/de/downloads  

▪ Visual Studio for Mac: kostenfrei (Nachfolger des früheren Xamarin Studio, wird aber am 

31.8.2024 eingestellt) 

visualstudio.microsoft.com/de/vs/mac  

https://visualstudio.microsoft.com/de/downloads
https://visualstudio.microsoft.com/de/vs/mac/


Fakten zu C#  47 

 

▪ Visual Studio Code: kostenfrei für Windows, macOS und Linux. 

code.visualstudio.com  

Die C#-Erweiterung "C# for Visual Studio Code" muss installiert sein! 

marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp 

Projektmappen-Explorer und Test-Explorer bekommt man über eine weitere Erweiterung, 

das C# Dev Kit: 

https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit  

Beide Erweiterungen beinhalten aber nicht alle Werkzeuge aus dem großen Visual Studio, 

z.B. keine grafischen UI-Designer 

 

Zudem liefert Microsoft mit OmniSharp [www.omnisharp.net] eine Basis für die Integration in 

anderen (plattformneutralen) Editoren wie ATOM, Brackets, Emacs, Sublime und Vim (siehe 

Abbildung). Hier wird nicht nur Syntax-Farbeinfärbung, sondern auch Eingabeunterstützung 

(IntelliSense) angeboten. Auch die Visual Studio Code-Erweiterung für C# basiert auf OmniSharp. 

 

Es gibt weitere einfache Editoren, die für die C#-Syntax nur Einfärbung, aber keine 

Eingabeunterstützung bieten. 

Einen weiteren professionellen C#-Editor mit vielen Eingabeunterstützung- und Refactoring-

Funktionen liefert die Firma JetBrains mit ihrem Produkt "Rider" (kostenpflichtig, 

www.jetbrains.com/rider). 

6.13 C# 13.0 

C# 13.0 ist zusammen mit Visual Studio 2022 Version 17.12 und .NET 9.0 am 12. November 2024 

erschienen. 

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
http://www.omnisharp.net/
http://www.jetbrains.com/rider


48 Fakten zu C# 

 

Wie schon bei .NET 6.0/C# 10.0 und .NET 7.0/C# 11.0 sowie .NET 8.0/C# 12.0 verwendet 

Microsoft bei .NET 9.0/C# 13.0 an vielen, aber nicht allen Stellen die Versionsnummer ohne ".0". 

Hier wird einheitlich die Schreibweise mit ".0" verwendet.  

Anders als .NET 8.0 besitzt die 9.0-Version nur einen "Standard-Term-Support" (STS) für 18 

Monate statt 36 Monaten. Nach aktuellem Stand gibt es dafür dann also Unterstützung und Updates 

von November 2024 bis Mai 2026. 

6.14 Support für C# 13.0 

C# 13.0 wird offiziell von Microsoft erst ab .NET 9.0 unterstützt ("C# 13.0 is supported only on 

.NET 9 and newer versions." [learn.microsoft.com/en-us/dotnet/csharp/language-

reference/configure-language-version].  

Tipp: Man kann allerdings auf eigene Verantwortung dennoch die einige (aber nicht alle!) C# 

13.0-Sprachfeatures auch in älteren .NET-Versionen einschließlich .NET Framework, .NET 

Core und Xamarin nutzen. Dazu muss man die <LangVersion> in der Projektdatei (.csproj) auf 

"13.0" erhöhen. Dies wird im Kapitel "Erste C#-Schritte/Festlegen der Compilerversion" 

beschrieben.  

Bitte beachten Sie aber, dass es für den Einsatz von C# 13.0-Sprachfeatures in .NET-Versionen 

vor 9.0 keinen technischen Support von Microsoft gibt, d.h. falls Sie Probleme damit haben, 

können Sie nicht Ihren Support-Vertrag nutzen, um Microsoft um Hilfe zu ersuchen. Dennoch 

ist der Einsatz höherer C#-Versionen in älteren .NET-Projekten in einigen Unternehmen 

gängige und problemlose Praxis.  

Notwendige Visual Studio-Version für C# 13.0 ist Visual Studio 2022 v17.12 oder höher. Eine 

Verwendung von C# 14.0 auch mit einer aktuellen Version von Visual Studio Code und anderen 

OmniSharp-kompatiblen Editoren [www.omnisharp.net] ist möglich. 

6.15 Neuerungen in C# 13.0 

In C# 13.0 sind gegenüber Version 12.0 zehn Neuerungen erschienen. In C# 12.0 gab es sieben 

Neuerungen gegenüber C# 11.0. In C# 11.0 gegenüber 10.0 sowie Version 10.0 gegenüber 9.0 gab 

es jeweils 16 Neuerungen. 

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
http://www.omnisharp.net/


Fakten zu C#  49 

 

 
Abbildung: Übersicht über die Neuerungen in C# 13.0 | Quelle: Microsoft  

[github.com/dotnet/csharplang/blob/main/Language-Version-History.md] 

Sie finden in diesem Buch: 

▪ Partielle Properties und partielle Indexer im Kapitel "Partielle Klassen, Methoden, Properties 

und partielle Indexer" 

▪ Prioritäten für Methodenüberladungen im Kapitel "Methoden" 

▪ Generische Mengen in Verbindung mit dem Schlüsselwort params im Kapitel 

"Methoden/Parameterlisten" 

▪ Konsolenausgabenformatierung mit ANSI-Codes mit neuem Escape-Zeichen \e im Kapitel 

"Datentypen" 

▪ System.Threading.Lock im Kapitel "Exklusive Zugriffe auf Ressourcen mit lock()" 

▪ Einsatz von Range-Indexern bei der Mengeninitialisierung im Kapitel "Objektmengen-

Initialisierung mit Index"  

▪ Neuerungen für ref struct im Kapitel "Strukturen/Strukturen ausschließlich auf dem Stack (ref 

struct)" 

6.16 C# 13.0 in älteren .NET-Versionen 

Nur diejenigen neuen Sprachfeatures funktionieren auch in .NET-Versionen vor .NET 9.0, die 

keine Abhängigkeit von erst in .NET 9.0 eingeführten Basisbibliotheksklassen haben. Sofern man 

<LangVersion>latest</LangVersion> setzt in der Projektdatei, sind in älteren Versionen folgende 

neuen Sprachfeatures von C# 13.0 möglich: 

▪ Partielle Properties und partielle Indexer  

▪ Generische Mengen in Verbindung mit dem Schlüsselwort params  

▪ Neuerungen für ref struct, außer der Verwendung als Typargument  

▪ Escape-Zeichen \e  

https://github.com/dotnet/csharplang/blob/main/Language-Version-History.md


50 Fakten zu C# 

 

6.17 Breaking Changes in C# 13.0 

Es gibt einige wenige Breaking Changes im Verhalten des Compilers in C# 13.0 gegenüber C# 

12.0. Dies sind jedoch Sonderfälle von geringer Bedeutung (z.B. Verbot der Annotation 

[InlineArray] auf record struct) und werden hier daher nicht näher besprochen. Sie finden die 

Informationen unter 

https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/breaking-

changes/compiler%20breaking%20changes%20-%20dotnet%209  

6.18 Vertagte neue Sprachfeatures 

Folgende Sprachfeatures waren für C# 13.0 geplant, wurden aber dann auf C# 14.0 (November 

2025) vertagt: 

• Tupel-Dekonstruktion (int x, string y) = default statt (default, default) 

• Automatische Konvertierung zwischen Array, Span<T>, ReadOnlySpan<T> 

• Semi-Auto-Properties mit neuem Schlüsselwort field 

• Extension Types: Eine weiterentwickelte Form der Extension Methods, bei der man nicht 

nur Instanzmethoden, sondern Methoden und Properties sowohl auf Instanz- als auch 

Klassenebene ("static") ergänzen kann. Dazu will Microsoft das neue Schlüsselwort 

extension einführen, siehe nächstes Bild. 

 

Abbildung: So sollten Extension Types in C# 13.0 aussehen 

Die kommende Version C# 14.0 soll im November 2025 zusammen mit .NET 10.0 erscheinen.  

Die Liste der Sprachfeatures, an denen Microsoft aktiv arbeitet, findet man unter 

https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/breaking-changes/compiler%20breaking%20changes%20-%20dotnet%209
https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/breaking-changes/compiler%20breaking%20changes%20-%20dotnet%209


Fakten zu C#  51 

 

https://github.com/dotnet/roslyn/blob/main/docs/Language%20Feature%20Status.md 

 
Abbildung: Sprachfeatures in Arbeit für C# 14.0 

Sprachfeatures, die sich bereits in der Entwicklung befinden aber noch nicht Teil des 

Sprachcompilers sind, können Sie ausprobieren auf dieser Website: 

sharplab.io 

 

Abbildung: sharplab.io mit dem nun für C# 13.0 geplanten Sprachfeatures "Semi-Auto-

Properties" mit dem neuen Schlüsselwort field für den Zugriff auf das automatisch generierte 

Backing-Field eines Properties 

6.19 Vorschläge für kommende Sprachfeatures 

Weitere Vorschläge für kommende Sprachfeatures findet man unter 

github.com/dotnet/csharplang/tree/main/proposals  

Jedermann kann Vorschläge für neue Sprachfeatures einreichen; die Hürden zur Annahme sind 

aber recht hoch. 

https://github.com/dotnet/roslyn/blob/main/docs/Language%20Feature%20Status.md
https://github.com/dotnet/roslyn/blob/main/docs/Language%20Feature%20Status.md
https://sharplab.io/
http://www.sharplab.io/
https://github.com/dotnet/csharplang/tree/main/proposals


52 Grundkonzepte von C# 

 

7 Grundkonzepte von C# 
Konzeptionell wurde C# vor allem von C++ und Java beeinflusst; man kann aber auch Parallelen 

zu Visual Basic und Delphi finden. 

7.1 Sprachtypus 

Im Gegensatz zur Programmiersprache C++, die eine hybride Sprache aus objektorientierten und 

nicht-objektorientierten Konzepten darstellt, ist C# ebenso wie Java eine rein objektorientierte 

Sprache, d.h. alle Datentypen basieren auf Klassen und alle Anweisungen erfolgen in Klassen.  

C# unterstützt alle zentralen Konzepte der Objektorientierung einschließlich Schnittstellen, 

Vererbung und Polymorphismus. Schon in C# 2.0 wurde auch die Unterstützung für generische 

Klassen und partielle Klassen hinzugefügt. Außerdem besitzt C# Konzepte der funktionalen 

Programmierung (Delegates und Lambda-Ausdrücke). Man nennt C# daher auch "Multi-

Paradigmen-Sprache". 

7.2 Groß- und Kleinschreibung 

Ein wesentlicher Unterschied zwischen C# und Visual Basic .NET ist die Tatsache, dass C# im 

Gegensatz zu Visual Basic .NET zwischen Groß- und Kleinschreibung unterscheidet. Dies gilt 

sowohl für die Schlüsselwörter der Sprache als auch für alle Bezeichner (a und A sind verschiedene 

Variablen!). Die Schlüsselwörter der Sprache C# werden komplett in Kleinbuchstaben 

geschrieben.  

7.3 Schlüsselwörter der Sprache 

Die folgende Liste zeigt die vordefinierten Schlüsselwörter der Programmiersprache C#. Diese 

Namen dürfen in der gleichen Groß-/Kleinschreibung nicht als Bezeichner verwendet werden 

(Quelle: learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/index). 

 



Grundkonzepte von C#  53 

 

Darüberhinaus gibt es weitere sogenannte Kontext-Schlüsselworte, die eine besondere Bedeutung 

in bestimmten Zusammenhängen haben, die aber dennoch auch als Bezeichner verwendet werden 

dürfen. 

 

7.4 Namensregeln und Namenskonventionen 

Bei der Vergabe von eigenen Bezeichnern (z.B. Variablennamen, Parameternamen, Attributnamen 

und Methodennamen) gibt es verpflichtende Regeln und optionale Namenskonventionen. 

Verpflichtende Regeln sind: 

▪ Der Name darf nur Buchstaben (*), Zahlen und den Unterstrich enthalten. 

▪ Der Name muss mit einem Buchstaben beginnen 

▪ Die Groß- und Kleinschreibung ist relevant  

▪ Es dürfen keine Namen von C#-Schlüsselwörtern verwendet werden (Theoretisch kann man 

C#-Schlüsselwörternamen mit vorangestelltem @ verwenden, also z.B. @class oder @if oder 

@for usw. Aber dies zu tun, ist nicht üblich und erschwert den Lesefluss von Programmcode!) 

Hinweis: (*) Umlaute sind erlaubt, aber sollten dennoch besser vermieden werden: Nicht alle 

Werkzeuge und alle Menschen kommen damit gut klar! 

Seit C# 11.0 gibt es zudem eine Compiler-Warnung (CS8981), wenn man Typnamen (für Klassen, 

Strukturen, Enumerationen, Record-Typen, Delegaten) verwendet, die nur aus Kleinbuchstaben 

bestehen. Dies geschieht vor dem Hintergrund, dass Microsoft zukünftig weitere neue 

Schlüsselwörter in die Programmiersprache C# einführen möchte (vgl. das in C# 11.0 neu 

eingeführte required), ohne dass es Konflikte mit bestehenden Typnamen der C#-Nutzer gibt. 

 



54 Grundkonzepte von C# 

 

 
Abbildung: Warnung bei einem Klassennamen und einem Delegaten, die nur aus 

Kleinbuchstaben besteht. 

Optionale Regeln hat Microsoft in den ".NET Framework Design Guidelines" 

[learn.microsoft.com/en-us/dotnet/standard/design-guidelines] definiert. Die wichtigsten Regeln 

dort sind: 

▪ Für die Groß-/Kleinschreibung gilt grundsätzlich PascalCasing, d.h. ein Bezeichner beginnt 

grundsätzlich mit einem Großbuchstaben und jedes weitere Wort innerhalb des Bezeichners 

beginnt ebenfalls wieder mit einem Großbuchstaben. 

Beispiel: KundenPortalBenutzer 

▪ Ausnahmen gibt es für Abkürzungen, die nur aus zwei Buchstaben bestehen. Diese dürfen 

komplett in Großbuchstaben geschrieben sein (z.B. UI und IO). Alle anderen Abkürzungen 

werden entgegen ihrer normalen Schreibweise in Groß-/Kleinschreibung geschrieben (z.B. 

Xml, Xsd und W3c).  

Beispiele: System.IO.File, System.Xml.XmlDocument 

▪ Lokale Variablen, versteckte Attribute (private/protected) und Parameternamen sollen in 

camelCasing (Bezeichner beginnt mit einem Kleinbuchstaben, aber jedes weitere Wort 

innerhalb des Bezeichners beginnt mit einem Großbuchstaben) geschrieben werden. 

Beispiel: Login(KundenPortalBenutzer kundenPortalBenutzer) 

 
Abbildung: Hier gibt es keine Warnung, sondern nur eine Nachricht von der eingebauten Style-

Polizei, weil der Klassenname zwar Großbuchstaben enthält, aber nicht mit einem solchen 

beginnt. 

7.5 Blockbildung und Umbrüche 

Blockbildung findet in C# im Stil der Programmiersprachen C und C++ statt, also mit 

geschweiften Klammern { }. Befehlstrenner ist das Semikolon (;).  

Ein Zeilenumbruch kann zwischen den Elementen des Ausdrucks auftreten, ohne das besondere 

Vorkehrungen getroffen werden müssen. Zahlen können seit C# 7.0 mit einem Unterstrich 

gegliedert werden; aber man darf innerhalb von Zahlen keinen Zeilenumbruch haben. 

// Formel ohne Umbrüche 

double Ergebnis1 = (2 + 3) * ( 5 + 6) * (7 * 8) + 3.141_592_653_59; 

https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines


Grundkonzepte von C#  55 

 

 

// Formel mit Umbrüchen 

double Ergebnis2 = (2 + 3) *  

                   (5 + 6) *  

                   (7 * 8) 

                   + 3.141_592_653_59; 

7.6 Hello World 

Das folgende Listing zeigt das Hello World-Beispiel in C#, das man in jeder Programmiersprache 

zuerst schreibt. 

using System; 

  

namespace HalloWelt 

{ 

 class Program 

 { 

  static void Main(string[] args) 

  { 

   Console.WriteLine("Hallo Welt!"); 

  } 

 } 

} 

Marginal komplexer ist diese Variante, die – sofern vorhanden – den ersten übergebenen 

Kommandozeilenparameter als Name auffasst und die Person mit Namen grüßt. 

namespace HalloWelt 

{ 

 class Program 

 { 

  static void Main(string[] args) 

  { 

   if (args.Length > 0) 

   { 

    var name = args[0]; 

    // Ausgabe mit String Interpolation 

    Console.WriteLine($"Hallo {name}!"); 

    Console.ReadLine(); 

   } 

   else 

   { 

    Console.WriteLine("Hallo Welt!"); 

   } 

  } 

 } 

} 

 

7.7 Eingebaute Funktionen 

Anders als in Visual Basic existieren in C# keine eingebauten Funktionen zur Typumwandlung 

(z.B. CBool(), CInt(), CLng(), CType()), Zeichenkettenverarbeitung (z.B. InStr(), Trim(), LCase()) 

und Ausgabe (z.B. MsgBox()). Auch die My-Klassenbibliothek ist nicht vorhanden.  

Grundsätzlich ist es möglich, die in Visual Basic eingebauten Funktionen und die My-Bibliothek 

durch Referenzierung der Microsoft.VisualBasic.dll auch in C# zu nutzen. Dies sollte jedoch 

vermieden werden, um sprachunabhängig zu bleiben. Alle Visual Basic-Funktionen und -Objekte 

sind auch in der .NET-Klassenbibliothek enthalten, z.B. String.IndexOf() statt InStr() und 

Convert.ToInt32() statt CInt(). 



56 Grundkonzepte von C# 

 

 



Der C#-Compiler  57 

 

8 Der C#-Compiler 
Es gibt zwei Varianten des C#-Compilers: eine alte, in C++ geschriebene, und neue, in C# 

geschriebene Implementierung. 

8.1 Der ursprüngliche (alte) C#-Compiler 

Der Kommandozeilencompiler für C# im .NET Framework Redistributable ist csc.exe. Er wird 

installiert im Verzeichnis C:\Windows\Microsoft.NET\Framework64\v4.0.30319. Alternativ kann 

er in der .NET Framework-Klassenbibliothek im sogenannten "CodeDOM" durch die Klasse 

Microsoft.CSharp.CSCodeProvider angesprochen werden.  

Wenn Sie heute ein aktuelles Microsoft .NET Framework (z.B. 4.8.1) verwenden, so ist dort der 

ursprüngliche C#-Compiler immer noch in der Version 5.0 enthalten. 

 

Abbildung: In .NET Framework 4.8.1 ist der C#-Compiler für C# 5.0 enthalten. 

8.1.1 Kompilierung mit csc.exe 

Der Befehl 

csc.exe Dateiname1.cs Dateiname2.cs DateinameX.cs 

oder 

csc Dateiname1.cs Dateiname2.cs DateinameX.cs 

übersetzt die angegebenen Dateien in eine Konsolenanwendung. Eine Datei, die als 

Konsolenanwendung oder Windows-Anwendung kompiliert wird, muss genau eine Klasse mit 

folgendem Einstiegspunkt besitzen: public static void Main(). 

Listing: »Hello World« in C# 
class Hauptprogramm 

{ 

 public static void Main() 

 { 

  System.Console.WriteLine("Hello World!"); 

 } 

} 

8.1.2 Kommandozeilenparameter 

Der Kommandozeilencompiler bietet zahlreiche Optionen. Die wichtigsten davon sind: 

▪ /target:winexe     Der Compiler erzeugt eine Windows-Anwendung 

▪ /target:library     Der Compiler erzeugt eine DLL (kein Main() notwendig) 

▪ /r:Dateiliste     Die angegebenen Assemblys werden referenziert 



58 Der C#-Compiler 

 

▪ /out:Dateiname     Name der Ausgabedatei 

▪ /doc:Dateiname     Der Compiler erzeugt zusätzlich eine XML-Dokumentationsdatei 

▪ /help      Anzeige der Hilfe zu den Compiler-Optionen 

▪ Anders als beim Visual Basic .NET-Compiler vbc.exe müssen die Optionen /target und /out 

bei csc.exe vor den Namen der Quelldateien in der Parameterliste erscheinen.  

Es folgt die komplette Liste der Kommandozeilenparameter des alten C#-Compilers 

                        Visual C# Compiler Options 

 

                        - OUTPUT FILES - 

/out:<file>                    Specify output file name (default: base name of 

file with main class or first file) 

/target:exe                    Build a console executable (default) (Short form: 

/t:exe) 

/target:winexe                 Build a Windows executable (Short form: /t:winexe) 

/target:library                Build a library (Short form: /t:library) 

/target:module                 Build a module that can be added to another 

assembly (Short form: /t:module) 

/target:appcontainerexe        Build an Appcontainer executable (Short form: 

/t:appcontainerexe) 

/target:winmdobj               Build a Windows Runtime intermediate file that is 

consumed by WinMDExp (Short form: /t:winmdobj) 

/doc:<file>                    XML Documentation file to generate 

/platform:<string>             Limit which platforms this code can run on: x86, 

Itanium, x64, arm, anycpu32bitpreferred, or anycpu. The default is anycpu. 

 

                        - INPUT FILES - 

/recurse:<wildcard>            Include all files in the current directory and 

subdirectories according to the wildcard specifications 

/reference:<alias>=<file>      Reference metadata from the specified assembly 

file using the given alias (Short form: /r) 

/reference:<file list>         Reference metadata from the specified assembly 

files (Short form: /r) 

/addmodule:<file list>         Link the specified modules into this assembly 

/link:<file list>              Embed metadata from the specified interop assembly 

files (Short form: /l) 

 

                        - RESOURCES - 

/win32res:<file>               Specify a Win32 resource file (.res) 

/win32icon:<file>              Use this icon for the output 

/win32manifest:<file>          Specify a Win32 manifest file (.xml) 

/nowin32manifest               Do not include the default Win32 manifest 

/resource:<resinfo>            Embed the specified resource (Short form: /res) 

/linkresource:<resinfo>        Link the specified resource to this assembly 

(Short form: /linkres) 

                               Where the resinfo format is <file>[,<string 

name>[,public|private]] 

 

                        - CODE GENERATION - 

/debug[+|-]                    Emit debugging information 

/debug:{full|pdbonly}          Specify debugging type ('full' is default, and 

enables attaching a debugger to a running program) 

/optimize[+|-]                 Enable optimizations (Short form: /o) 

 



Der C#-Compiler  59 

 

                        - ERRORS AND WARNINGS - 

/warnaserror[+|-]              Report all warnings as errors 

/warnaserror[+|-]:<warn list>  Report specific warnings as errors 

/warn:<n>                      Set warning level (0-4) (Short form: /w) 

/nowarn:<warn list>            Disable specific warning messages 

 

                        - LANGUAGE - 

/checked[+|-]                  Generate overflow checks 

/unsafe[+|-]                   Allow 'unsafe' code 

/define:<symbol list>          Define conditional compilation symbol(s) (Short 

form: /d) 

/langversion:<string>          Specify language version mode: ISO-1, ISO-2, 3, 4, 

5, or Default 

 

                        - SECURITY - 

/delaysign[+|-]                Delay-sign the assembly using only the public 

portion of the strong name key 

/keyfile:<file>                Specify a strong name key file 

/keycontainer:<string>         Specify a strong name key container 

/highentropyva[+|-]            Enable high-entropy ASLR 

 

                        - MISCELLANEOUS - 

@<file>                        Read response file for more options 

/help                          Display this usage message (Short form: /?) 

/nologo                        Suppress compiler copyright message 

/noconfig                      Do not auto include CSC.RSP file 

 

                        - ADVANCED - 

/baseaddress:<address>         Base address for the library to be built 

/bugreport:<file>              Create a 'Bug Report' file 

/codepage:<n>                  Specify the codepage to use when opening source 

files 

/utf8output                    Output compiler messages in UTF-8 encoding 

/main:<type>                   Specify the type that contains the entry point 

(ignore all other possible entry points) (Short form: /m) 

/fullpaths                     Compiler generates fully qualified paths 

/filealign:<n>                 Specify the alignment used for output file 

sections 

/pdb:<file>                    Specify debug information file name (default: 

output file name with .pdb extension) 

/errorendlocation              Output line and column of the end location of each 

error 

/preferreduilang               Specify the preferred output language name. 

/nostdlib[+|-]                 Do not reference standard library (mscorlib.dll) 

/subsystemversion:<string>     Specify subsystem version of this assembly 

/lib:<file list>               Specify additional directories to search in for 

references 

/errorreport:<string>          Specify how to handle internal compiler errors: 

prompt, send, queue, or none. The default is queue. 

/appconfig:<file>              Specify an application configuration file 

containing assembly binding settings 

/moduleassemblyname:<string>   Name of the assembly which this module will be a 

part of 



60 Der C#-Compiler 

 

8.2 Der aktuelle (neue) C#-Compiler 

Der im Projekt "Roslyn" neu implementierte C#-Compiler heißt auch csc.exe; er ist aber nicht 

mehr Teil des .NET Framework Redistributable. Er wird auf diesen Wegen verbreitet: 

▪ Visual Studio bzw. Visual Studio Build Tools 

▪ .NET SDK  

dotnet.microsoft.com/download/dotnet/6.0  

▪ NuGet-Paket "Microsoft.Net.Compilers"  

www.nuget.org/packages/Microsoft.Net.Compilers  

Visual Studio installiert den Compiler im Dateisystemverzeichnis C:\Program Files\Microsoft 

Visual Studio\2022\<Visual Studio-Edition>\MSBuild\Current\Bin\Roslyn z.B. C:\Program 

Files\Microsoft Visual Studio\2022\Enterprise\MSBuild\Current\Bin\Roslyn.  

Das NuGet-Paket www.nuget.org/packages/Microsoft.Net.Compilers enthält den csc.exe im 

Ordner /Tools. Im .NET Core SDK wird der C#-Compiler nicht als csc.exe mitgeliefert, sondern 

über die .NET CLI-Werkzeuge angesprochen (z.B. dotnet build). 

Die folgende Abbildung zeigt die Installation des C#-Compilers per NuGet.exe mit dem Befehl: 

nuget install Microsoft.Net.Compilers 

Das Programm NuGet.exe bekommt man www.nuget.org/downloads 

https://dotnet.microsoft.com/download/dotnet/6.0
http://www.nuget.org/packages/Microsoft.Net.Compilers
https://www.nuget.org/packages/Microsoft.Net.Compilers/


Der C#-Compiler  61 

 

 
Abbildung: Installation des neuen C#-Compilers via NuGet 

 
Abbildung: Start des neuen C#-Compiler aus der NuGet-Installation 

 

Abbildung: Start des neuen C#-Compilers aus der Visual Studio-Installation 

Die Neufassung des CodeDOM-APIs mit dem neuen Compiler erhält man über das NuGet-Paket 

www.nuget.org/packages/Microsoft.CodeDom.Providers.DotNetCompilerPlatform. 

8.2.1 Versionsnummern des Compilers 

Die Versionsnummer des neuen C#-Compilers richtet sich nach dem Funktionsumfang des 

Compilers, nicht nach den Sprachfeatures (siehe folgende Abbildung). 

http://www.nuget.org/packages/Microsoft.CodeDom.Providers.DotNetCompilerPlatform


62 Der C#-Compiler 

 

 
Abbildung: Versionierung des neuen C#-Compilers 

[github.com/dotnet/roslyn/blob/master/docs/wiki/NuGet-packages.md] 

8.2.2 Kommandozeilenparameter 

Es folgen die Kommandozeilenparameter des neuen C#-Compilers 

                              Visual C# Compiler Options 

 

                        - OUTPUT FILES - 

 /out:<file>                   Specify output file name (default: base name of 

                               file with main class or first file) 

 /target:exe                   Build a console executable (default) (Short 

                               form: /t:exe) 

 /target:winexe                Build a Windows executable (Short form: 

                               /t:winexe) 

 /target:library               Build a library (Short form: /t:library) 

 /target:module                Build a module that can be added to another 

                               assembly (Short form: /t:module) 

 /target:appcontainerexe       Build an Appcontainer executable (Short form: 

https://github.com/dotnet/roslyn/blob/master/docs/wiki/NuGet-packages.md


Der C#-Compiler  63 

 

                               /t:appcontainerexe) 

 /target:winmdobj              Build a Windows Runtime intermediate file that 

                               is consumed by WinMDExp (Short form: /t:winmdobj) 

 /doc:<file>                   XML Documentation file to generate 

 /refout:<file>                Reference assembly output to generate 

 /platform:<string>            Limit which platforms this code can run on: x86, 

                               Itanium, x64, arm, anycpu32bitpreferred, or 

                               anycpu. The default is anycpu. 

 

                        - INPUT FILES - 

 /recurse:<wildcard>           Include all files in the current directory and 

                               subdirectories according to the wildcard 

                               specifications 

 /reference:<alias>=<file>     Reference metadata from the specified assembly 

                               file using the given alias (Short form: /r) 

 /reference:<file list>        Reference metadata from the specified assembly 

                               files (Short form: /r) 

 /addmodule:<file list>        Link the specified modules into this assembly 

 /link:<file list>             Embed metadata from the specified interop 

                               assembly files (Short form: /l) 

 /analyzer:<file list>         Run the analyzers from this assembly 

                               (Short form: /a) 

 /additionalfile:<file list>   Additional files that don't directly affect code 

                               generation but may be used by analyzers for 

producing 

                               errors or warnings. 

 /embed                        Embed all source files in the PDB. 

 /embed:<file list>            Embed specific files in the PDB 

 

                        - RESOURCES - 

 /win32res:<file>              Specify a Win32 resource file (.res) 

 /win32icon:<file>             Use this icon for the output 

 /win32manifest:<file>         Specify a Win32 manifest file (.xml) 

 /nowin32manifest              Do not include the default Win32 manifest 

 /resource:<resinfo>           Embed the specified resource (Short form: /res) 

 /linkresource:<resinfo>       Link the specified resource to this assembly 

                               (Short form: /linkres) Where the resinfo format 

                               is <file>[,<string name>[,public|private]] 

 

                        - CODE GENERATION - 

 /debug[+|-]                   Emit debugging information 

 /debug:{full|pdbonly|portable|embedded} 

                               Specify debugging type ('full' is default, 

                               'portable' is a cross-platform format, 

                               'embedded' is a cross-platform format embedded 

into 

                               the target .dll or .exe) 

 /optimize[+|-]                Enable optimizations (Short form: /o) 

 /deterministic                Produce a deterministic assembly 

                               (including module version GUID and timestamp) 

 /refonly                      Produce a reference assembly in place of the main 

output 

 /instrument:TestCoverage      Produce an assembly instrumented to collect 



64 Der C#-Compiler 

 

                               coverage information 

 /sourcelink:<file>            Source link info to embed into PDB. 

 

                        - ERRORS AND WARNINGS - 

 /warnaserror[+|-]             Report all warnings as errors 

 /warnaserror[+|-]:<warn list> Report specific warnings as errors 

 /warn:<n>                     Set warning level (0-4) (Short form: /w) 

 /nowarn:<warn list>           Disable specific warning messages 

 /ruleset:<file>               Specify a ruleset file that disables specific 

                               diagnostics. 

 /errorlog:<file>              Specify a file to log all compiler and analyzer 

                               diagnostics. 

 /reportanalyzer               Report additional analyzer information, such as 

                               execution time. 

 

                        - LANGUAGE - 

 /checked[+|-]                 Generate overflow checks 

 /unsafe[+|-]                  Allow 'unsafe' code 

 /define:<symbol list>         Define conditional compilation symbol(s) (Short 

                               form: /d) 

 /langversion:?                Display the allowed values for language version 

 /langversion:<string>         Specify language version such as 

                               `default` (latest major version), or 

                               `latest` (latest version, including minor 

versions), 

                               or specific versions like `6` or `7.1` 

 

                        - SECURITY - 

 /delaysign[+|-]               Delay-sign the assembly using only the public 

                               portion of the strong name key 

 /publicsign[+|-]              Public-sign the assembly using only the public 

                               portion of the strong name key 

 /keyfile:<file>               Specify a strong name key file 

 /keycontainer:<string>        Specify a strong name key container 

 /highentropyva[+|-]           Enable high-entropy ASLR 

 

                        - MISCELLANEOUS - 

 @<file>                       Read response file for more options 

 /help                         Display this usage message (Short form: /?) 

 /nologo                       Suppress compiler copyright message 

 /noconfig                     Do not auto include CSC.RSP file 

 /parallel[+|-]                Concurrent build. 

 /version                      Display the compiler version number and exit. 

 

                        - ADVANCED - 

 /baseaddress:<address>        Base address for the library to be built 

 /checksumalgorithm:<alg>      Specify algorithm for calculating source file 

                               checksum stored in PDB. Supported values are: 

                               SHA1 (default) or SHA256. 

 /codepage:<n>                 Specify the codepage to use when opening source 

                               files 

 /utf8output                   Output compiler messages in UTF-8 encoding 

 /main:<type>                  Specify the type that contains the entry point 



Der C#-Compiler  65 

 

                               (ignore all other possible entry points) (Short 

                               form: /m) 

 /fullpaths                    Compiler generates fully qualified paths 

 /filealign:<n>                Specify the alignment used for output file 

                               sections 

 /pathmap:<K1>=<V1>,<K2>=<V2>,... 

                               Specify a mapping for source path names output by 

                               the compiler. 

 /pdb:<file>                   Specify debug information file name (default: 

                               output file name with .pdb extension) 

 /errorendlocation             Output line and column of the end location of 

                               each error 

 /preferreduilang              Specify the preferred output language name. 

 /nostdlib[+|-]                Do not reference standard library (mscorlib.dll) 

 /subsystemversion:<string>    Specify subsystem version of this assembly 

 /lib:<file list>              Specify additional directories to search in for 

                               references 

 /errorreport:<string>         Specify how to handle internal compiler errors: 

                               prompt, send, queue, or none. The default is 

                               queue. 

 /appconfig:<file>             Specify an application configuration file 

                               containing assembly binding settings 

 /moduleassemblyname:<string>  Name of the assembly which this module will be 

                               a part of 

 /modulename:<string>          Specify the name of the source module 



66 Erste C#-Schritte mit Visual Studio 

 

9 Erste C#-Schritte mit Visual Studio 
Dieses Buch ist kein Handbuch für Visual Studio. Für Leser, die neu in Visual Studio sind, folgt 

jedoch hier eine kurze Einführung in das Anlegen und Übersetzen eines Projekts am Beispiel von 

Konsolenanwendungsprojekten für .NET Framework und .NET Core.  

Achtung: Für C# 13.0 benötigen Sie Visual Studio 2022 ab Version 17.12. Für C# 12.0 

benötigen Sie Visual Studio 2022 ab Version 17.8. Vorherige Versionen von Visual Studio 2022 

ab 17.4 können C# 11.0. Die Version 17.0 bis 17.3 können nur C# 10.0. In Visual Studio 2019 

kompiliert C# bis Version 9.0. Visual Studio 2017 kann nur C# 7.x. 

Achten Sie auch darauf, ob Sie ein Konsolenprojekt für das klassische .NET Framework 

(Vorlagename: Console Application (.NET Framework) oder für das moderne .NET 

(Vorlagename: Console Application, Zusatz früher ".NET Core", heute kein Zusatztext mehr!) 

erstellen. Das klassische .NET Framework kann nur maximal C# 7.0 und einige Teile der 

moderneren C#-Versionen. Nur die jeweils modernsten .NET-Versionen können alle 

Sprachversionen. 

9.1 Visual Studio versus Visual Studio Code 

Visual Studio ist die primäre Entwicklungsumgebung für C#. Sie läuft allerdings auf Windows. 

https://visualstudio.microsoft.com/downloads 

Falls Sie auf Linux oder macOS entwickeln wollen, sollten Sie Visual Studio Code (VSCode) 

verwenden: https://code.visualstudio.com  

Hinweis: VSCode wird in diesem Buch nicht behandelt. 

9.2 Visual Studio-Versionen 

Visual Studio gibt es in drei Varianten und zwei Kanälen. Varianten sind: 

▪ Community 

▪ Professional 

▪ Enterprise 

Die kostenfreie Community-Variante entspricht funktional der Professional-Variante. Allerdings 

darf die Community-Variante nur für Open Source-Projekte, von Studenten und kleineren 

Unternehmen eingesetzt werden. 

Die Enterprise-Variante bietet zahlreiche zusätzliche Funktionen im Vergleich zu Professional und 

Community. Sie ist wesentlich teurer. 

Hinweis: Für alle Inhalte in diesem Buch reichen die Varianten Professional bzw. Community. 

Es gibt von jeder Visual Studio-Version stets zwei Kanäle: Den stabilen Kanal und den Preview-

Kanal.  

https://visualstudio.microsoft.com/downloads
https://code.visualstudio.com/


Erste C#-Schritte mit Visual Studio  67 

 

 

Sie können jeweils mehrere Visual Studio-Versionen und pro Kanal jeweils eine Unterversion 

parallel auf einem Windows-System installieren.  

Beispiel: Auf einem Rechner ist möglich: 

▪ Visual Studio 2019 Community Version 16.5 

▪ Visual Studio 2022 Professional Version 17.7 

▪ Visual Studio 2022 Enterprise Preview Version 17.12 

Tipp 1: Installieren Sie die englische Version. In den deutschen Übersetzungen sind teilweise 

haarsträubende Übersetzungsfehler, die die Arbeit mit der Entwicklungsumgebung sehr 

erschweren. 

Tipp 2: Die Preview-Versionen sind immer kostenfrei. Ebenso gibt es kostenfrei Community-

Versionen.  

Wählen Sie bei der Installation von Visual Studio den Workload ".NET Desktop Development" 

aus. Die folgenden Screenshots zeigen Visual Studio 2022. Die Vorgehensweise in Visual Studio 

2019 ist analog. 

 

9.3 Hello World mit dem klassischen .NET Framework 

Starten Sie Visual Studio. 



68 Erste C#-Schritte mit Visual Studio 

 

   

In Visual Studio wählen Sie File/New Project und dann in dem Dialog "Visual C#/Windows 

Classic Desktop/Console App".  

Seit Visual Studio 2019 wurde der Dialog komplett verändert und erscheint nur als Assistent mit 

zwei Seiten. Ein Konsolenprojekt findet man am leichtesten, wenn man in dem Suchfeld "Console" 

eingibt und den Filter auf "C#" stellt (siehe Screenshot). Die Auswahl der .NET Framework-

Version kann man erst auf der zweiten Seite vornehmen.  

 

 

 



Erste C#-Schritte mit Visual Studio  69 

 

 

Sie erhalten dann eine Projektmappe (.sln-Datei im Dateisystem) mit einem Projekt (.csproj-Datei). 

In dem Projekt gibt es eine Datei Program.cs mit der Grundstruktur der Konsolenanwendung. 



70 Erste C#-Schritte mit Visual Studio 

 

 

Ergänzen Sie in Main() den folgenden Programmcode: 

namespace HalloWelt 

{ 

 class Program 

 { 

  static void Main(string[] args) 

  { 

   if (args.Length > 0) 

   { 

    var name = args[0]; 

    // Ausgabe mit String Interpolation 

    Console.WriteLine($"Hallo {name}!"); 

    Console.ReadLine(); 

   } 

   else 

   { 

    Console.WriteLine("Hallo Welt!"); 

   } 

   Console.ReadLine(); 

  } 

 } 

} 

Wählen Sie das Menü "Build/Build Solution" (Alternativ die Tastenkombination 

STRG+SHIFT+B), um den Programmcode zu übersetzen. 

Sie sollten nun im Ausgabefenster (Einblenden über View/Output) dies sehen: 

 

Falls Sie Eingabefehler gemacht haben, sehen Sie dies im Fenster "Error List". 



Erste C#-Schritte mit Visual Studio  71 

 

 

Wenn Ihr Programm erfolgreich übersetzt wurde, starten Sie es im Debugger mit Debug/Start 

Debugging oder der Taste F5. 

 

Um dem Programm beim Start einen Kommandozeilenparameter zu übergeben, wählen Sie im 

Solution Explorer im Kontextmenü des Projekts (nicht der Projektmappe, wo "Solution" davor 

steht) den Eintrag "Properties" und tragen Sie in der Registerkarte "Debug" bei "Command Line 

Arguments" Ihren Namen ein. 



72 Erste C#-Schritte mit Visual Studio 

 

 

Drücken Sie wieder F5. 

 

Schauen Sie sich das Projekt auf der Festplatte im Windows Explorer an. Sie erkennen ein 

Ausgabeverzeichnis bin/Debug in dem das kompilierte Programm als .EXE-Datei liegt, die man 

direkt starten kann. 

Hinweis: Das Kompilat in .NET nennt man eine Assembly. Die Assembly ist in diesem Fall 

eine .EXE-Datei. 

 



Erste C#-Schritte mit Visual Studio  73 

 

Sie können ein in Visual Studio erzeugtes .NET-Projekt auch an der Kommandozeile übersetzen. 

Theoretisch kann man dazu den C#-Compiler csc.exe direkt einsetzen, aber dann muss man alle 

Quellcodedateien sowie benötigte Referenzen auf andere Assemblies dort als Parameter angeben. 

Da diese Abhängigkeiten alle bereits in den Projektdateien definiert sind, bietet sich der Einsatz 

von msbuild.exe an, dass die .csproj-Dateien auswertet. Öffnen Sie dazu den "Developer 

Command Prompt", der mit Visual Studio installiert wird, gehen Sie in das Verzeichnis mit der 

.sln-Datei und rufen Sie msbuild.exe auf. 

Hinweis: Andere .NET-Anwendungsarten (z.B. Webanwendungen mit ASP.NET, Desktop-

Anwendungen mit Windows Forms oder Windows Presentation Foundation, Mobile Apps mit 

.NET MAUI) erstellen und übersetzen Sie mit den gleichen Funktionen und Werkzeugen. Sie 

müssen nur entsprechende Workloads im Setup von Visual Studio installieren und dann die 

entsprechende Projektvorlage wählen. 

 

9.4 Hello World mit modernem .NET 

Hier werden die Schritte beschrieben, die anders sind, wenn Sie das moderne .NET verwenden 

wollen statt .NET Framework. Dabei kommt Visual Studio 2022 zum Einsatz, denn die aktuellen 

.NET-Versionen ab 6.0 setzen diese Version voraus. Mit Visual Studio 2019 können Sie nur bis 

.NET 5.0 entwickeln. 



74 Erste C#-Schritte mit Visual Studio 

 

Wichtig ist, dass Sie in Visual Studio den Workload "ASP.NET and Web Development" und/oder 

".NET Desktop Development" wählen und zudem das .NET SDK in der aktuellen Version 

zusätzlich von [dotnet.microsoft.com/download/dotnet] installieren.  

Hinweis: Es kann sein, dass Sie das aktuelle SDK schon durch Visual Studio installiert 

bekommen haben, da es aber häufig Updates des SDKs gibt, gehen Sie damit sicher, dass Sie 

die aktuelle Version haben. 

 
Abbildung: Installation von Workloads in Visual Studio 2022 

Wählen Sie im Projektvorlagendialog (Menu File/New/Project oder Taste STRG+SHIFT+N) nun 

"Console Application" (ohne Zusatz). 

Hinweis: In früheren Visual Studio-Versionen hatten die Vorlagennamen noch den Zusatz 

"(.NET Core)". 



Erste C#-Schritte mit Visual Studio  75 

 

 

Abbildung: Konsolenprojekt anlegen in Visual Studio 2022 

 



76 Erste C#-Schritte mit Visual Studio 

 

 

Abbildung: Optionen beim Anlegen eines Konsolenprojekt in Visual Studio 2022 

Die zu verwendende .NET-Version kann man erst auf der dritten Seite wählen. 

 
Abbildung: Weitere Optionen beim Anlegen eines Konsolenprojekt in Visual Studio 2022 

Sie erhalten dann eine Projektmappe (.sln-Datei im Dateisystem) mit einem Projekt (.csproj-Datei) 

und einer Datei Program.cs. Der Projektaufbau eines modern .NET-Projekts ist etwas anders als 



Erste C#-Schritte mit Visual Studio  77 

 

bei einem klassischen .NET-Projekt (z.B. Ast "Dependencies" statt "References"), die Bedienung 

bezüglich Übersetzung und Debugging sind aber gleich. 

Bei der Struktur des erzeugten Codes gibt es zwei Möglichkeiten: 

▪ Klassische Grundstruktur mit class Program und Methode Main() mit Parameter args für die 

übergebenen Kommandozeilenparameter 

▪ Minimalcode mit Top-Level-Statements ohne Klasse und Methode. Auch in diesem 

minimalen C# 10-Konsolenprojekt kann man auf die Kommandozeilenparameter zugreifen: 

args ist jetzt eine "unsichtbare" deklarierte Variable. 

Beides wird in den folgenden Abbildungen dargestellt. 

 
Abbildung: Klassische Grundstruktur einer Konsolenanwendung in Visual Studio 2019 bzw. 

Visual Studio 2022 seit Version 17.3 mit Option "Do not use top-level statements" 

 
Abbildung: Minimal-Konsolenanwendung mit Top-Level-Statement in Visual Studio 2022 

Welche Grundstruktur Sie erhalten, ist von der Version der eingesetzten Werkzeuge abhängig: 

▪ Visual Studio 2019 und .NET SDK vor Version 6.0: Immer klassische Grundstruktur 

▪ Visual Studio 2022 Versionen 17.1 und 17.2 sowie .NET SDK 6.0: Top-Level-Statements für 

viele (aber nicht alle) Projektarten, z.B. Konsolen- und Webanwendungen. WPF- und 

Windows Forms-Anwendungen werden weiterhin mit der klassischen Grundstruktur erstellt 

▪ Visual Studio 2022 Versionen seit Version 17.3 sowie .NET SDK seit Version 7.0: Es gibt 

eine Option zur Abwahl der Top-Level-Statements (siehe oben "Do not use Top-Level-

Statements"). 



78 Erste C#-Schritte mit Visual Studio 

 

In beiden Fällen gilt: Es gibt aber keine Namensraumimporte mehr: C# 10.0 bietet Implicit 

Namespace Imports für häufig genutzte Namensräume wie System, System.IO, System.Linq und 

System.Task.  

Kommentar: Warum gibt es die reduzierten Vorlagen? Weil Microsoft Anfängern zeigen will, 

dass .NET sehr einfach ist – so einfach wie node.js. Ich bin kein Fan von diesem Minimalismus 

und der args-"Magie". 

Es war mein Wunsch, dass es eine Auswahl der Entwickler zwischen klassischer Struktur und 

Minimal-Projekt gibt. Seit Visual Studio 2022 Version 17.3 ist mein Wunsch implementiert! 

Egal wie die Struktur des Codes aussieht, der Start erfolgt gleich: Starten Sie die Anwendung im 

Debugger mit Debug/Start Debugging oder der Taste F5. 

 

Abbildung: Start der Konsolenanwendung aus Visual Studio heraus 

Hinweis: Bei modernen .NET-Projekten endet eine im Debugger gestartete 

Konsolenanwendung nicht automatisch, sondern wartet auf einen Tastendruck, siehe 

Screenshot. Wenn Sie die Konsolenanwendung aber außerhalb von Visual Studio starten, endet 

die Anwendung nach der Abarbeitung des Programmcodes sofort, außer wenn Sie mit 

Console.ReadLine() auf eine Eingabe warten. 

Ein modernes .NET Core-/.NET-Projekt können Sie auch an der Kommandozeile mit msbuild.exe 

oder dotnet build übersetzen. 



Erste C#-Schritte mit Visual Studio  79 

 

 
Abbildung: Übersetzung der Konsolenanwendung mit dotnet build 

Hinweis: Andere moderne .NET-Anwendungsarten (z.B. Webanwendungen mit ASP.NET 

Core, Universal Windows Platform Apps) erstellen und übersetzen Sie mit den gleichen 

Funktionen und Werkzeugen. Sie müssen nur entsprechende Workloads im Setup von Visual 

Studio installieren und dann die entsprechende Projektvorlage wählen. 

In älteren .NET Core-Versionen (vor .NET Core 3.0) sah man in der Titelzeile dotnet.exe, das 

universelle Kommandozeilenwerkzeug von .NET Core, dass auch zum Start einer .NET Core-

Anwendung verwendet wurde. Während man beim .NET Framework im Ausgabeverzeichnis 

immer eine .EXE-Datei erhielt, bekam man bei .NET Core nur eine .DLL. Daher muss man 

dotnet.exe (oder abgekürzt dotnet) beim Start voranstellen. Die aktuelleren Versionen erzeugen 

aber wieder direkt Executables und brauchen dotnet.exe nicht mehr als Starthilfe. Auch in den 

aktuellen Versionen wird aber immer neben der EXE eine DLL erzeugt, die man über dotnet.exe 

starten kann (siehe folgende Abbildung). 

 



80 Erste C#-Schritte mit Visual Studio 

 

 

Abbildung: Start der Konsolenanwendungen in älteren .NET Core-Versionen 

9.5 Programme ohne Main() (Top-Level Statements) 

Seit C# 9.0 ist die Verwendung einer Einsprungmethode Main() nicht mehr verpflichtend. Man 

kann als Startcode der Anwendung auch direkt freien Programmcode in eine beliebige .cs-Datei 

schreiben, z.B. 

using System; 

Console.WriteLine("Hello Word"); 

oder sogar in eine Zeile 

System.Console.WriteLine("Hello Word"); 

Intern erzeugt der C#-Compiler aus den Top-Level-Statements doch wieder eine class Program mit 

Main()-Methode. 

Beispiel: Aus diesem Programm 

string GetNETVersion() 

{ 

 return System.Runtime.InteropServices.RuntimeInformation.FrameworkDescription; 

} 

  

CUI.H1("C# Top-Level Statements (seit C# 9.0)"); 

Console.WriteLine(GetNETVersion()); 

Console.ReadLine(); 

erzeugt der Compiler 



Erste C#-Schritte mit Visual Studio  81 

 

 
Abbildung: Decompilierung eines Top-Level-Statements mit ILSpy 

[https://github.com/icsharpcode/ILSpy] 

Sofern es innerhalb des Top-Level-Codes ein await gibt 

string GetNETVersion() 

{ 

 return System.Runtime.InteropServices.RuntimeInformation.FrameworkDescription; 

} 

  

CUI.H1("C# Top-Level Statements (seit C# 9.0)"); 

Console.WriteLine("Hole Daten..."); 

await System.Threading.Tasks.Task.Delay(1000); 

Console.WriteLine(GetNETVersion()); 

Console.ReadLine(); 

erzeugt der C#-Compiler automatisch eine den Einsprungpunkt Main() mit dem Zusatz async: 

 

Abbildung: Decompilierung eines Top-Level-Statements mit einem asynchronen Aufruf 

 



82 Erste C#-Schritte mit Visual Studio 

 

Es darf natürlich in einem C#-Projekt nicht mehr als eine Datei geben, die solch freien Code 

enthält, sonst wäre der Einsprungpunkt der Anwendung nicht mehr eindeutig. Der Compiler 

beschwert sich dann "Error CS8802: Only one compilation unit can have top-level statements." 

Zu beachten ist auch, dass in der Datei mit dem Top-Level-Statement keine 

Namensraumdeklaration mit File-Scoped Namespaces erfolgen kann (CS0116: A namespace 

cannot directly contain members such as fields, methods or statements) und die Programmstart-

Befehle vor allen in der Datei ebenfalls noch möglichen Typdeklarationen stehen müssen (CS8803: 

Top-level statements must precede namespace and type declarations). 

Falls es ein Top-Level Statement und ein void Main() gibt, wird void Main() ignoriert! 

Praxishinweis: Der Einsatz dieses Sprachfeatures ist umstritten. Microsoft schreibt dazu: "One 

of the most common uses for this feature is creating teaching materials. Beginner C# developers 

can write the canonical “Hello World!” in one or two lines of code. None of the extra ceremony 

is needed."  

Der Autor dieses Buchs sieht allerdings mit Top-Level-Statement die Gefahr, dass der Code 

unübersichtlicher wird. Der Einsprungpunkt einer Anwendung ist nicht mehr auf Anhieb zu 

finden und man schreibt leicht aus Versehen ein Top-Level-Statement!  Der Autor dieses Buchs 

sieht in dem Weglassen von Main() allenfalls ein Einsatzgebiet und zwar im Einsatz von C# als 

Skriptsprache, wo das Skript nur aus einer Datei besteht. 

In .NET 6.0 hatte Microsoft begonnen, in vielen modernen Projektvorlagen nur mit Top-Level-

Statements zu arbeiten. Seit .NET 7.0 bzw. Visual Studio 2022 Version 17.3 hat der Entwickler 

wieder die Wahl. 

 

Abbildung: WebAPI-Projekte anlegen in Visual Studio 17.2 versus 17.3 

Beim Kommandozeilenbefehl dotnet new gibt es ab .NET 7.0 dafür nun den Parameter --use-

program-main 

z.B. 

dotnet new console --use-program-main 



Erste C#-Schritte mit Visual Studio  83 

 

und 

dotnet new webapi --use-program-main 

9.6 Festlegung der Compilerversion  

Während früher die verwendete Visual Studio-Version auch die verwendete Version des 

Sprachcompilers von C# festlegte, kann man seit Visual Studio 2017 die Sprachversion pro Projekt 

in den Projekteigenschaften (Build/Advanced) festlegen. 

 
Abbildung: Einstellen der Sprachversion 

Zudem warnt Visual Studio, wenn Sie ein Sprachfeature verwenden, welches es in der eingestellten 

Version noch nicht gibt. 

 

Seit Visual Studio 2019 hat Microsoft diese freie Auswahl wieder abgeschafft. Nun legt die 

verwendete Framework-Version eine bestimmte Compiler-Version fest. 



84 Erste C#-Schritte mit Visual Studio 

 

 

Abbildung: Auswahl der Sprachversion in Visual Studio 2019 

 
Abbildung: Informationen zur automatisch eingestellten Sprachversion-Version in Visual Studio 

2022 

Der Link führt zu [learn.microsoft.com/de-de/dotnet/csharp/language-reference/configure-

language-version] und dort steht: 

https://docs.microsoft.com/de-de/dotnet/csharp/language-reference/configure-language-version
https://docs.microsoft.com/de-de/dotnet/csharp/language-reference/configure-language-version


Erste C#-Schritte mit Visual Studio  85 

 

 
Abbildung: Mögliche Einstellungen für <LangVersion> 

(Quelle: learn.microsoft.com/de-de/dotnet/csharp/language-reference/configure-language-

version) 

Um eine bestimmte Version der C#-Sprachsyntax zu erzwingen, kann man aber die Projektdatei 

manuell bearbeiten und dort mit dem Tag <LangVersion> eine bestimmte Version erzwingen. So 

ist es zum Beispiel möglich, in .NET Framework und .NET Standard auch Sprachsyntaxelemente 

aus C# 8.0 und höher zu verwenden. 

Hinweis: In einem .NET 9.0-Projekt (Projekteinstellung: 

<TargetFramework>net9.0</TargetFramework>) ist C#-Sprachversion 13.0 der automatisch 

eingestellte Standard, auch ohne Tag <LangVersion>. 

Die <LangVersion> legt man in den Projekteinstellungen (in der Datei .csproj) fest. Man kann auf 

diese Weise neuere aber auch ältere Sprachversionsnummern erzwingen. 

Tipp: Bei modernen .NET-SDK-Projekten kann man die .csproj-Datei einfach bearbeiten, 

indem man einen Doppelklick auf der Projektdatei im Solution Explorer macht. Bei klassischen 

https://docs.microsoft.com/de-de/dotnet/csharp/language-reference/configure-language-version
https://docs.microsoft.com/de-de/dotnet/csharp/language-reference/configure-language-version


86 Erste C#-Schritte mit Visual Studio 

 

.csproj-Dateien muss man erst "Unload Project" und dann "Edit Project File" wählen. Nach der 

Bearbeitung muss man "Reload Project" ausführen. 

Listing: Setzen der <LangVersion> in modernen .NET-SDK-Projekten.  

Hier: Upgrade von C# 12.0 auf C# 13.0 in einem .NET 8.0-Projekt 
<PropertyGroup> 

  <TargetFramework>.net8.0</TargetFramework> 

  <LangVersion>13.0</LangVersion> 

</PropertyGroup> 

Listing: Setzen der <LangVersion> in klassischen .NET Framework-Projekten 

Hier: Upgrade von C# 7.2 auf C# 13.0 in einem .NET Framework-Projekt 
<PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Debug|AnyCPU' "> 

    <PlatformTarget>AnyCPU</PlatformTarget> 

.. 

    <LangVersion>13.0</LangVersion> 

</PropertyGroup> 

 

<PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Release|AnyCPU' "> 

    <PlatformTarget>AnyCPU</PlatformTarget> 

.. 

    <LangVersion>13.0</LangVersion> 

</PropertyGroup> 

Wichtig: In den klassischen .csproj-Dateien, die .NET Framework verwendet, ist die 

<LangVersion> pro Compilerkonfiguration zu setzen. 

 

Abbildung: Bearbeitung der <LangVersion> in einem klassischen .NET Framework-Projekt 

nach dem "Unloading" des Projekts 

Wenn ein Entwickler Sprachelemente verwendet, die gemäß aktuell gültiger Sprachversion nicht 

verfügbar sind, meckert der Compiler. Manchmal steht auch dabei, welche Sprachversion 

notwendig wird. 



Erste C#-Schritte mit Visual Studio  87 

 

 

 
Abbildung: Fehlermeldung, wenn eine zu niedrige Sprachversion verwendet wird 

Hinweis: Neben der Einstellung der <LangVersion> sind zum Teil weitere Tricks erforderlich, 

um neuere Sprachversionen auf älteren, von Microsoft nicht für die aktuellen C#-

Sprachversionen unterstützten .NET-Versionen nutzen zu können. Sie finden darauf jeweils 

Hinweise in den einzelnen Kapiteln, siehe z.B. Kapitel "Init Only Setters in .NET Framework 

und .NET Standard". 

9.7 Eingabeunterstützung in Visual Studio 

Visual Studio unterstützt den Entwickler mit Hilfsfunktionen bei der Programmcodeeingabe. 

9.7.1 IntelliSense  

Die IntelliSense-Eingabeunterstützung, die kontextabhängige Vorschläge für Bezeichner und 

Klassenmitglieder macht, gibt es nicht erst seit der ersten Visual Studio-Version im Jahr 1997, 

sondern sie gab es auch schon in den Vorgängerprodukten (Visual C++, Visual Basic, Visual 

FoxPro etc). Seit dem Jahr 2018 gibt es mit IntelliCode [hwww.heise.de/developer/meldung/Build-

2018-IntelliCode-C-Eingabeunterstuetzung-mit-kuenstlicher-Intelligenz-4044483.html] eine 

Zusatzfunktion, die aus dem Kontext heraus häufig verwendete Klassenmitglieder hervorhebt. 

 

Abbildung: IntelliSense-Vorschläge in Visual Studio 2022 

9.7.2 IntelliCode  

In Visual Studio 2022 macht Microsoft erstmals nicht nur Vorschläge für einzelne Bezeichner, 

sondern aus dem aktuellen Kontext heraus für vollständige Programmzeilen (siehe Abbildungen). 

Microsoft nennt diese Funktion IntelliCode. Mit einem doppelten Drücken auf die Tabulator-Taste 

übernimmt der Entwickler den Vorschlag. Die Vorschläge basieren dabei auf dem KI-Training mit 

dem Quellcode einer halben Million Open-Source-Projekten auf GitHub. Details zu dieser 

erweiterten IntelliCode-Funktion findet man in einem Blogeintrag 

[devblogs.microsoft.com/visualstudio/type-less-code-more-with-intellicode-completions]. 

 

https://www.heise.de/developer/meldung/Build-2018-IntelliCode-C-Eingabeunterstuetzung-mit-kuenstlicher-Intelligenz-4044483.html
https://www.heise.de/developer/meldung/Build-2018-IntelliCode-C-Eingabeunterstuetzung-mit-kuenstlicher-Intelligenz-4044483.html
https://devblogs.microsoft.com/visualstudio/type-less-code-more-with-intellicode-completions/


88 Erste C#-Schritte mit Visual Studio 

 

 
Abbildung: IntelliCode-Zeilenvorschläge in Visual Studio 2022 

 
Abbildung: IntelliCode-Zeilenvorschläge in Visual Studio 2022 

 

Abbildung: IntelliCode-Einstellungen in Visual Studio 2022 

 

Abbildung: IntelliCode-Einstellungen in Visual Studio 2022 



Erste C#-Schritte mit Visual Studio  89 

 

9.7.3 Copilot  

Noch umfangreichere Vorschläge (mehrzeilige Codeblöcke / ganze Methoden auf Basis von 

Kommentaren) erhalten Sie mit GitHub Copilot, das wie ChatGPT auf den KI-Modellen von 

OpenAI basiert. Allerdings ist dazu ein kostenpflichtiges Copilot-Abo bei GitHub erforderlich (ab 

10 Euro/Monat, Ausnahmen gelten für Studenten und Open Source-Projekte): 

https://github.com/features/copilot  

Für Visual Studio müssen Sie für Copilot eine Erweiterung installieren: 

https://marketplace.visualstudio.com/items?itemName=GitHub.copilotvs 

 

Abbildung: GitHub-Copilot schlägt auf Basis einer vom Entwickler erfassten Kommentarzeile 

eine ganze Methode vor. Den Vorschlag kann man mit Drücken der Tabulatortaste übernehmen. 

Im Copilot-Fenster sieht man weitere Alternativen, die man durch Klick auf "Accept Solution" 

übernehmen kann. 

9.8 Refactoring in Visual Studio  

Während man in den Anfangsjahren von .NET für das effiziente Refactoring (Umgestalten) von 

Code Zusatzsoftware wie ReSharper von JetBrains [https://www.jetbrains.com/resharper] oder 

CodeRush von Developer Express [https://www.devexpress.com/products/coderush] zwingend 

brauchte, bietet Visual Studio inzwischen zahlreiche integrierte Refactoring-Funktionen.  

Die Refactoring-Funktionen findet man in der Glühbirne neben den Zeilennummern.  

Tipp: Sofern die Glühbirne nicht automatisch erscheint, drücken Sie die Tasten STRG und . 

zusammen. 

 

https://github.com/features/copilot
https://marketplace.visualstudio.com/items?itemName=GitHub.copilotvs
https://www.jetbrains.com/resharper/
https://www.devexpress.com/products/coderush/


90 Erste C#-Schritte mit Visual Studio 

 

 

Abbildung: Vorschlag zur Umwandlung der Zeichenkette in eine interpolierte Zeichenkette 

 

Abbildung: Vorschlag zur Umwandlung des Getters des Properties in einem Lambda-Ausdruck 

9.9 .NET Fiddle 

Eine Möglichkeit, C#-Code auf einfache Weise auszuprobieren, ist die Website .NET Fiddle 

[https://dotnetfiddle.net]. 

Hier kann man C#-Code eingeben und innerhalb der Webseite ausführen. Dabei kann man die 

.NET-Version wählen. 

Ein Zugriff auf lokale Ressourcen auf dem PC des Entwicklers ist freilich wegen der Sandbox des 

Webbrowsers nicht möglich. 

Angemeldete Benutzer können den Programmcode speichern. 

 

https://dotnetfiddle.net/


Erste C#-Schritte mit Visual Studio  91 

 

 
Abbildung: Test einer formatierten Ausgabe mit Console.WriteLine und interpolierter 

Zeichenkette in .NET Fiddle 

 



92 Erste C#-Schritte mit Visual Studio 

 

 
Abbildung: Umbenennen eines Typs (Refactoring "Rename") 

 
Abbildung: Umwandlung in eine interpolierte Zeichenkette (Refactoring "Convert to Interpolated 

String") 

 
Abbildung: Ändern einer Methodensignatur (Refactoring "Change Signature") 



Datentypen  93 

 

10 Datentypen 
Die Datentypen orientieren sich in allen .NET-Programmiersprachen basierend auf den in der 

.NET-Basisklassenbibliothek implementierten Datentypen. Innerhalb der Programmiersprache 

kann es für einen .NET-Basistyp einen Alias geben. Der Entwickler kann wahlweise entweder den 

Klassennamen oder den Alias verwenden, auch gemischt. 

System.String vorname = "Holger"; // Variable typisiert mit Basisklasse 

string nachname = "Schwichtenberg"; // Variable typisiert mit C#-Alias 

System.String GanzerName = vorname + " " + nachname; 

string GanzerNameUmgekehrt = nachname + ", " + vorname; 

10.1 Überblick über die Datentypen 

Die folgende Tabelle gibt einen Überblick über die wichtigsten Datentypen in C#. 



94 Datentypen 

 

Datentyp .NET-Basisklasse Alias  

in C# 

Alias in  

Visual Basic .NET 

Boolean System.Boolean bool Boolean 

Ganzzahl 

1 Byte 

System.Byte byte Byte 

Ganzzahl  

2 Bytes 

System.Int16 short Short 

Ganzzahl  

4 Bytes 

System.Int32 int Integer 

Ganzzahl  

8 Bytes 

System.Int64 long Long  

Ganzzahl  

16 Bytes 

System.Int128  

(seit .NET 7.0) 

--- --- 

Gebrochene 

Zahlen 

2 Bytes 

System.Half  

(seit .NET 7.0) 

--- --- 

Gebrochene 

Zahlen 

4 Bytes 

System.Single float Single 

Gebrochene 

Zahlen 

8 Bytes 

System.Double double Double 

Gebrochene 

Zahlen 

12 Bytes 

System.Decimal decimal Decimal  

Zeichen 

1 Byte oder 

2 Bytes 

System.Char char Char 

Zeiger 

(Numeric 

Integer 

Pointer) 

System.IntPtr nint (seit C# 11.0) --- 

Zeichenkette 

(UTF-16 

codiert) 

System.String string String  

Datum / 

Uhrzeit 

System.DateTime DateTime Date  

Tabelle: Vergleich der wichtigsten Datentypen in .NET, C# und Visual Basic .NET 

Hinweis: Für die Ganzzahltypen und die Zeiger gibt es jeweils auch eine Variante mit dem 

Vorbuchstaben "u" wie "Unsigned", also uint ist Alias für System.UInt32. Diese Zahlen haben 

einen Wertebereich von 0 beginnend. 



Datentypen  95 

 

Eine Bennungsausnahme ist System.UIntPtr: Hier heißt der Alias nicht unint, sondern nuint.  

Eine weitere Ausnahme ist der Typ byte bzw. System.Byte: Der Wertebereich liegt von 0 bis 

255. Wenn man negative Zahlen ausdrücken will mit einem Byte, gibt es den Typ System.SByte 

mit dem alias sbyte (Wertebreich -128 bis 127). 

 
Abbildung: Wertebereich der Ganzzahl-Datentypen (Quelle: [https://learn.microsoft.com/de-

de/dotnet/csharp/language-reference/builtin-types/integral-numeric-types]). 

 

Abbildung: Wertebereich der Fließkommazahl-Datentypen (Quelle: 

[https://learn.microsoft.com/de-de/dotnet/csharp/language-reference/builtin-types/floating-point-

numeric-types]). 

10.2 Variablendeklarationen 

In C# steht der Typ am Anfang jeder Deklaration. Mehrfachdeklarationen sind möglich durch 

Kommatrennung. 

int a, b, c; 

string x, y, z; 

System.Guid g1, g2, g3; 

10.3 Typinitialisierung 

Ebenfalls sehr streng ist C# hinsichtlich der Initialisierung von Variablen. Während der Visual 

Basic .NET-Compiler in seiner Standardeinstellung folgende Anweisung immer durchgehen lässt, 



96 Datentypen 

 

Dim a As Integer 

a = a + 1 

weil a mit 0 vorinitialisiert wurde, erfordert der C#-Compiler die explizite Initialisierung bei allen 

lokalen (methodeninternen) Variablen (nicht aber bei Klassenmitgliedern). 

int a = 0; 

a = a + 1; 

 

Abbildung: Der C#-Compiler beschwert sich über die Verwendung einer nicht initialisierten 

Variable 

Hinweis: Der C#-Compiler seit Version 2005 erzeugt Warnungen bei deklarierten, aber nicht 

verwendeten Variablen. 

Mit dem Schlüsselwort default kann man eine Variable auf ihren Standardwert setzen. Dies ist 0 

für alle Zahlen und null für Zeichenketten und Referenztypen. Für Datumswerte ist es der 

01.01.0001 um 00:00:00 Uhr. Während in den bisherigen Versionen die Syntax vorsah, nach 

default in Klammern den Datentyp zu nennen 

int x = default(Int32); 

kann man diesen seit C# 7.1 weglassen (Default Literal Expressions): 

int x = default; 

Beispiele: 

decimal zahl1 = default(decimal); // 0.0 

decimal zahl2 = default; // 0.0 

int ganzzahl1 = default(int); // 0 

int ganzzahl2 = default; // 0 

bool janein1 = default(bool); // false 

bool janein2 = default; // false 

string zeichenkette1 = default(string); // null 

string zeichenkette2 = default; // null 

Person person1 = default(Person); // null 

Person person2 = default; // null 

DateTime d1 = default(DateTime); // 01.01.0001 00:00:00 

DateTime d2 = default;// 01.01.0001 00:00:00 

10.4 Literale für Zeichen und Zeichenketten 

Zeichenketten sind in doppelte Anführungszeichen zu setzen. Zeichenketten werden in .NET intern 

als Folge von Bytes in UTF-16-Codierung abgelegt. 

Einzelne Zeichen, in einfache Anführungszeichen. 

string Name = "Holger Schwichtenberg"; 

string Wichtigkeit1 = "A"; 

char Wichtigkeit2 = 'C'; 

Sonderzeichen in Zeichenketten werden – wie in C++ – durch einen Backslash (\) eingeleitet (z.B. 

steht \n für einen Zeilenumbruch). Man spricht von Escapesequenz (siehe Tabelle). 



Datentypen  97 

 

Escape-Sequenz Bedeutung 

\a Ton 

\b Rücktaste 

\f Seitenvorschub 

\n Zeilenwechsel 

\r Wagenrücklauf 

\t Horizontaler Tabulator 

\v Vertikaler Tabulator 

\' Einfaches Anführungszeichen 

\" Doppeltes Anführungszeichen 

\\ Umgekehrter Schrägstrich 

\? Literales Fragezeichen 

\xhh ASCII-Zeichen in der Hexadezimalnotation 

\xhhhh Unicode-Zeichen in der Hexadezimalnotation 

 

Beispiel 1: 

string seineAussage = "Er sagte:\n\"Hallo Welt!\""; 

Console.WriteLine(seineAussage); 

 

Beispiel 2:  

Console.WriteLine("\x48\x6f\x6c\x67\x65\x72 \x53\x63\x68\x77\x69\x63\x68\x74\x65\

x6e\x62\x65\x72\x67"); 

 

 

Da der Backslash in der Zeichenkette ein Sonderzeichen darstellt, müssen Pfadangaben besonders 

behandelt werden. 

 

Richtig ist, entweder für jeden Backslash \ einen doppelten Backslash \\ zu verwenden oder aber 

die Zeichenkette mit einem @ einzuleiten. @ leitet eine "wortgetreue Zeichenkette" (Verbatim 

String) ein. Dadurch verlieren alle Escapesequenzen ihre Bedeutung und der Backslash ist wieder 

ein normales Zeichen. Synonym sind daher: "c:\\ordner\\datei.txt" und @"c:\ordner\datei.txt". 

string PfadRichtig1 = "C:\\Windows\\Microsoft.NET\\Framework64\\v4.0.30319"; 

string PfadRichtig2 = @"C:\Windows\Microsoft.NET\Framework64\v4.0.30319"; 

Console.WriteLine(PfadRichtig1 + ": "+ System.IO.Directory.Exists(PfadRichtig1)); 



98 Datentypen 

 

Console.WriteLine(PfadRichtig1 + ": " + 

System.IO.Directory.Exists(PfadRichtig1)); 

10.5 Konsolenausgabenformatierung mit ANSI-Codes 

Mit den uralten VT100/ANSI-Codes (siehe https://en.wikipedia.org/wiki/ANSI_escape_code) 

kann man auch heute noch in Konsolenanwendungen zahlreiche Formatierungen auslösen, z.B. 

24-Bit-Farben, Fettschrift, Unterstreichen, Durchstreichen, Blinken usw. Die VT100/ANSI-Codes 

werden durch das ESCAPE-Zeichen (ASCII-Zeichen 27, hexadezimal: 0x1b) eingeleitet.  

Vor C# 13.0 konnte man dieses ESCAPE-ASCII-Zeichen 27 in .NET-Konsolenanwendungen bei 

Console.WriteLine() nur umständlich ausdrücken über \u001b, \U0000001b oder \x1b, wobei 

letzteres nicht empfohlen ist: "Wenn Sie die Escapesequenz \x verwenden, weniger als vier 

Hexadezimalziffern angeben und es sich bei den Zeichen, die der Escapesequenz unmittelbar 

folgen, um gültige Hexadezimalziffern handelt (z. B. 0–9, A–F und a–f), werden diese als Teil der 

Escapesequenz interpretiert. \xA1 erzeugt beispielsweise "¡" (entspricht dem Codepunkt U+00A1). 

Wenn das nächste Zeichen jedoch "A" oder "a" ist, wird die Escapesequenz stattdessen als \xA1A 

interpretiert und der Codepunkt "ਚ" erzeugt (entspricht dem Codepunkt U+0A1A). In solchen 

Fällen können Fehlinterpretationen vermieden werden, indem Sie alle vier Hexadezimalziffern (z. 

B. \x00A1) angeben." [https://learn.microsoft.com/de-de/dotnet/csharp/programming-

guide/strings/]. 

Hinweis: ਚ ist ein Panjabi-Schriftzeichen. Panjabi ist eine in Pakistan und Indien gesprochene 

Sprache. 

Typischerweise sahen Ausgaben mit VT100/ANSI-Escape-Codes dann aus wie im nächsten 

Listing.  

Listing: Bisherige VT100/ANSI-Escape-Codes 
Console.WriteLine("This is a regular text"); 

Console.WriteLine("\u001b[1mThis is a bold text\u001b[0m"); 

Console.WriteLine("\u001b[2mThis is a dimmed text\u001b[0m"); 

Console.WriteLine("\u001b[3mThis is an italic text\u001b[0m"); 

Console.WriteLine("\u001b[4mThis is an underlined text\u001b[0m"); 

Console.WriteLine("\u001b[5mThis is a blinking text\u001b[0m"); 

Console.WriteLine("\u001b[6mThis is a fast blinking text\u001b[0m"); 

Console.WriteLine("\u001b[7mThis is an inverted text\u001b[0m"); 

Console.WriteLine("\u001b[8mThis is a hidden text\u001b[0m"); 

Console.WriteLine("\u001b[9mThis is a crossed-out text\u001b[0m"); 

Console.WriteLine("\u001b[21mThis is a double-underlined text\u001b[0m"); 

Console.WriteLine("\u001b[38;2;255;0;0mThis is a red text\u001b[0m"); 

Console.WriteLine("\u001b[48;2;255;0;0mThis is a red background\u001b[0m"); 

Console.WriteLine("\u001b[38;2;0;0;255;48;2;255;255;0mThis is a blue text with a 

yellow background\u001b[0m"); 

Seit C# 13.0 gibt es nun \e als Kurzform für das ESCAPE-Zeichen ASCII 27 ein, sodass die 

Zeichenfolgen deutlich kompakter und übersichtlicher werden (siehe nächstes Listings).  

Listing: Etwas übersichtlichere VT100/ANSI-Escape-Codes mit der neuen Abkürzung \e in C# 

13.0 
Console.WriteLine("This is a regular text"); 

Console.WriteLine("\e[1mThis is a bold text\e[0m"); 

Console.WriteLine("\e[2mThis is a dimmed text\e[0m"); 

Console.WriteLine("\e[3mThis is an italic text\e[0m"); 

Console.WriteLine("\e[4mThis is an underlined text\e[0m"); 

https://en.wikipedia.org/wiki/ANSI_escape_code
https://learn.microsoft.com/de-de/dotnet/csharp/programming-guide/strings/
https://learn.microsoft.com/de-de/dotnet/csharp/programming-guide/strings/


Datentypen  99 

 

Console.WriteLine("\e[5mThis is a blinking text\e[0m"); 

Console.WriteLine("\e[6mThis is a fast blinking text\e[0m"); 

Console.WriteLine("\e[7mThis is an inverted text\e[0m"); 

Console.WriteLine("\e[8mThis is a hidden text\e[0m"); 

Console.WriteLine("\e[9mThis is a crossed-out text\e[0m"); 

Console.WriteLine("\e[21mThis is a double-underlined text\e[0m"); 

Console.WriteLine("\e[38;2;255;0;0mThis is a red text\e[0m"); 

Console.WriteLine("\e[48;2;255;0;0mThis is a red background\e[0m"); 

Console.WriteLine("\e[38;2;0;0;255;48;2;255;255;0mThis is a blue text with a yell

ow background\e[0m"); 

Die Abbildung zeigt das Ergebnis, das sowohl beide Listings produziert. 

 
Abbildung: Die Ausgabe der beiden vorherigen Listings sieht gleich aus. 

So gibt man ein Farbraster mit den neuen Escape-Codes aus (das war mit den alten Escape-Codes 

natürlich auch schon möglich, es ist jetzt nur prägnanter): 

Console.WriteLine("\n\nFarbraster:"); 

for (int i = 0; i < 16; i++) 

{ 

 for (int j = 0; j < 16; j++) 

 { 

  Console.Write("\e[48;5;" + (i * 16 + j) + "m" + (i * 16 + j).ToString().PadLeft

(4)); 

 } 

 Console.WriteLine("\e[0m"); 

} 



100 Datentypen 

 

 
Abbildung: Farbraster in der Konsole mit ANSI-Codes 

10.6 String Interpolation 

Mit einer String Interpolation können Entwickler seit C# 6.0 die Zusammensetzung von 

Zeichenketten aus festen und variablen Bestandteilen übersichtlicher als bisher realisieren. 

var ausgabeAlt1 = "Kunde #" + String.Format("{0:0000}", k.ID) +": " + 

k.GanzerName + " ist in der Liste seit " + String.Format("{0:d}", k.ErzeugtAm) + 

"."; 

var ausgabeAlt2 = String.Format("Kunde #{0:0000}: {1} ist in der Liste seit 

{2:d}.", k.ID, k.GanzerName, k.ErzeugtAm); 

var ausgabeNeu = $"Kunde #{k.ID:0000}: {k.GanzerName} ist in der Liste seit 

{k.ErzeugtAm:d}."; 

Console.WriteLine(ausgabeAlt1); 

Console.WriteLine(ausgabeAlt2); 

Console.WriteLine(ausgabeNeu); 

 

Abbildung: Ausgabe des obigen Beispiels 

Der Einsatz des ternären Operators und Verschachtelungen von Interpolationsausdrücken sind 

möglich: 

var ausgabeVerschachtelt = $"Kunde #{k.ID:0000}: {k.GanzerName} {(k.ErzeugtAm != 

null ? $"ist in der Liste seit {k.ErzeugtAm:d}" : "ist nicht in der Liste")}."; 

Schon seit C# 6.0 lassen sich die einer Zeichenkette vorangestellten Operatoren $ und @ 

kombinieren, aber zunächst nur in der Reihenfolge 

$@"{ID}: {Name} \\server\User{ID:000}"; 

Erst mit C# 8.0 wurde eingeführt, dass auch die andere Reihenfolge erlaubt ist: 

@$"{ID}: {Name} \\server\User{ID:000}"; 



Datentypen  101 

 

Erst seit C# 10.0 ist String Interpolation bei der Wertzuweisung an Konstanten möglich. 

Voraussetzung ist allerdings, dass die verwendeten Platzhalter auch alle mit Konstanten befüllt 

werden. 

const string Vorname = "Holger"; 

const string Nachname = "Schwichtenberg"; 

// Constant Interpolated String 

const string GanzerName = $"Dr. {Vorname} {Nachname}"; 
 

 
Abbildung: Der Compiler beschwert sich, dass im Interpolated String "GanzerName" eine 

Variable statt einer Konstanten verwendet wird. 

Die String Interpolation ist seit C# 10 – sowohl mit Konstanten als auch Variablen – deutlich 

schneller als C# 6.0 bis 9.0, da Microsoft die Umsetzung durch den Compiler überarbeitet hat. 

Während vor C# 10.0 die Zeichenketten mit String.Format() und String.Concat() verbunden 

wurden, arbeitet im Untergrund nun eine Instanz der Klasse InterpolatedStringHandler, eine 

Variante der Klasse StringBuilder. 

Aus dieser String Interpolation  

string companyInfo = $"Company {ID:0000} {CompanyName} Postcode {Postcode:00000} 

Founded {Founded:yyyy}"; 

macht der Compiler: 

 

Microsoft kommt zu diesen Performance-Ergebnissen, wobei "Old" C# 9.0 meint und "New" C# 

10.0 [devblogs.microsoft.com/dotnet/string-interpolation-in-c-10-and-net-6]). 

 

Mit dem folgenden Programmcode können Sie selbst nachmessen. 

Listing: Vergleich von String Interpolation mit String.Format() und String.Concat() 
using System.Diagnostics; 

 

namespace CS10 

{ 

 public class CS10_InterpolatedStringPerformance 

https://devblogs.microsoft.com/dotnet/string-interpolation-in-c-10-and-net-6


102 Datentypen 

 

 { 

 

  int loopCount = 1000000; 

 

  public int ID { get; set; } = 123; 

  public string CompanyName { get; set; } = "www.IT-Visions.de"; 

  public int Postcode { get; set; } = 45257; 

  public DateTime Founded { get; set; } = new DateTime(1996, 1, 1); 

 

  public void Run() 

  { 

 

   var sw1 = new Stopwatch(); 

   sw1.Start(); 

   for (int i = 0; i < loopCount; i++) 

   { 

    string name = "Company " + String.Format("{0:0000}", ID) + " " + CompanyName 

+ " Postcode " + String.Format("{0:00000}", Postcode) + " Founded " + 

String.Format("{0:yyyy}", Founded); 

   } 

   sw1.Stop(); 

   Console.WriteLine($"{loopCount} String Concat+String Format: 

{sw1.ElapsedMilliseconds}ms"); 

 

   var sw2 = new Stopwatch(); 

   sw2.Start(); 

   for (int i = 0; i < loopCount; i++) 

   { 

    string name = String.Format("Company {0:0000} {1} Postcode {0:00000} Founded 

{0:yyyy}", ID, CompanyName, Postcode, Founded); 

   } 

   sw2.Stop(); 

   Console.WriteLine($"{loopCount} String Format: {sw2.ElapsedMilliseconds}ms"); 

 

   var sw3 = new Stopwatch(); 

   sw3.Start(); 

   for (int i = 0; i < loopCount; i++) 

   { 

    string name = $"Company {ID:0000} {CompanyName} Postcode {Postcode:00000} 

Founded {Founded:yyyy}"; 

 

   } 

   sw3.Stop(); 

   Console.WriteLine($"{loopCount} String Interpolation: 

{sw3.ElapsedMilliseconds}ms"); 

  } 

 } 

} 
 



Datentypen  103 

 

 
Abbildung: Ergebnisse des obigen Listings 

Neu in C# 11.0 ist, dass Entwickler Zeilenumbrüche und Kommentare innerhalb von 

Zeichenketten-Interpolationsausdrücken (also innerhalb der geschweiften Klammern) erfassen 

können: 

string ganzerName = "Dr. Holger Schwichtenberg"; 

var t = $"Vorname: {ganzerName // Aufteilen 

                    .Split(" ")  // dann erstes Element 

                    .ElementAt(1) }"; 

Console.WriteLine(t); 

10.7 Raw Literal Strings (seit C# 11.0) 

Seit C# 11.0 gibt es eine neue Syntaxform für Zeichenkettenliterale mit Umbrüchen. Bei einem 

"Raw Literal String" beginnt die Zeichenkette mit drei oder mehr Anführungszeichen (z.B. """) 

und endet mit der gleichen Anzahl von Anführungszeichen.  

Die Motivation für dieses neue Sprachfeature war, eine Zeichenkettenrepräsentation zu 

verschaffen, in der keine Steuerzeichen (Escape-Sequenzen) notwendig werden, mit der sich aber 

dennoch einfach Umbrüche abbilden lassen und die Interpolation unterstützt. 

In Raw Literal Strings gilt: 

▪ Umbrüche landen in der Zeichenkette. 

▪ Es gibt keine Steuerzeichen. 

▪ Einrückungen bleiben erhalten, aber in jeder Zeile entfallen genau so viele Einrückungen wie 

es Einrückungen in der letzten Zeile vor dem Ende (z.B. """) gibt. 

▪ Interpolationsausdrücke sind möglich mit zwei oder mehr Dollarzeichen vor den 

Anführungszeichen. Es sind dann in der Zeichenkette für den Interpolationsausdruck genauso 

viele geschweifte Klammern zu verwenden. 

Ein erstes Beispiel mit einen Raw Literal String (hier ohne Einrückungen und ohne Interpolation) 

zeigt dieses Codefragment: 

// Raw Literal String: 3 oder mehr Anführungszeichen zu Beginn 

var rawLiteralString = """"  

.NET 7.0 

ist am 8. November 2022 erschienen 

mit Support für 18 Monate 

""""; 

Die bisherigen Syntaxformen "Regular String" (Umbrüche mit \n) und "Verbatim String" (Beginn 

mit @) bleiben aber weiterhin erlaubt: 

var regularString = "\n.NET 7.0\nist am 8. November 2022 

erschienen\nmit Support für 18 Monate.\n"; 

 

var verbatimString = @" 

.NET 7.0 

ist am 8. November 2022 erschienen 



104 Datentypen 

 

mit Support für 18 Monate 

"; 

Visual Studio 2022 seit Unterversion 17.2 bietet Refactoring-Funktionen, um zwischen den nun 

drei Zeichenkettenformen (Regular String, Verbatim String, Raw Literal String) umzuwandeln 

(siehe Abbildung). 

 

Abbildung: Refactoring für Zeichenketten in Visual Studio 2022 seit Version 17.2 

Die folgenden Beispiele zeigen Raw Literal String mit Einrückung und Interpolation: 

  var name = "Dr. Holger Schwichtenberg"; 

  var website = "www.dotnet-doktor.de"; 

   

  var nameUndWebsite1 = $$""" 

   Name: {{{name}}} Website: {{{website}}} 

   """; 

  Console.WriteLine(nameUndWebsite1); // Name: {Dr. Holger Schwichtenberg} Websit

e: {www.dotnet-doktor.de} 

  

  

  var nameUndWebsite2 = $$$""" 

   Name: {{{name}}} Website: {{{website}}}  

  """; 

  Console.WriteLine(nameUndWebsite2); // Name: Dr. Holger Schwichtenberg Website:

 www.dotnet-doktor.de 

Praxisbeispiel 

Das folgende Listing zeigt den Einsatz eines Raw Literal String für die Konstruktion einer JSON-

Zeichenkette mit Einrückungen und Interpolation inklusive Kommentare in der Interpolation. 

Listing: Ein Raw Literal String mit Interpolation, der JSON erzeugt 
var name = "Dr. Holger Schwichtenberg"; 

var website = "www.dotnet-doktor.de"; 

  

var json = $$""" 

     { 

      "Person": { 

       "Name": "{{name // Name der Person 

                }}", 

       "Webseite": "{{website // Website in Kleinbuchstaben 

                            .ToLower()}}" 

       } 

     } 

     """; 



Datentypen  105 

 

Der Debugger Visualizer in Visual Studio zeigt bereits an, dass die Einrückungen per Leerzeichen 

erhalten bleiben (siehe nächste Abbildung). 

 

Abbildung: Raw Literal String im Debugger-Visualizer  

Die Ausgabe an der Konsole sieht daher so aus: 

 
Abbildung: Ausgabe des Raw Literal String an der Konsole  

Hinweis zu den Einrückungen in Raw Literal Strings 

Die Einrückungen bei einem Raw Literal können gemischt aus Tabulatoren und Leerzeichen 

bestehen, z.B. 

 

Abbildung: Gültige Mischung von Tabulatoren und Leerzeichen in einem Raw Literal String 

Allerdings muss die Einrückung links von der Linie einheitlich in allen Zeilen sein. Die folgende 

Bildschirmabbildung zeigt eine ungültige Einrückung, weil in Zeile 51 und 53 jeweils zweimal 

einen Tabulator verwendet wird, in allen anderen Zeilen nur einmal. Visual Studio zeigt daher auch 

nicht die Linie an, die die Einrückung im Code von der Einrückung im String trennt. 



106 Datentypen 

 

 

Abbildung 5: Ungültige Mischung von Tabulatoren und Leerzeichen in einem Raw Literal String 

10.8 UTF-8-Zeichenkettenliterale (seit C# 11.0) 

.NET arbeitet im Standard mit Zeichenketten in der Zeichencodierung UTF-16. In 

Webanwendungen wird in der Regel UTF-8 verwendet.  

UTF-16 is the only web-encoding incompatible with ASCII and never gained popularity on the 

web, where it is declared by under 0.002% of web pages[ (and many of these are actually UTF-8 

because of "contradictory character encoding specifications" and/or "incorrect character 

encoding defined"). UTF-8, by comparison, accounts for 98% of all web pages. The Web Hypertext 

Application Technology Working Group (WHATWG) considers UTF-8 "the mandatory encoding 

for all [text]" and that for security reasons browser applications should not use UTF-16." 

[https://en.wikipedia.org/wiki/UTF-16] 

Neu in C# 11.0 sind auch UTF-8-Zeichenkettenliterale mit denen Entwickler eine Zeichenkette 

angeben dürfen, aus der man eine Bytefolge von UTF-8-Codes in Form einer Instanz des .NET-

Typs ReadOnlySpan<byte> erhält. Eine UTF-8-Zeichenkette benötigt den Nachsatz u8 oder U8 

nach dem schließenden Anführungszeichen. 

Die folgenden Beispiele zeigen "Hallo Holger!" in UTF-8-Zeichenkettenliteralen: 

ReadOnlySpan<byte> s1 = "Hallo Holger!"u8; 

var s2 = "Hallo Holger!"u8; 

var s3 = "Hallo Holger!"U8; 

byte[] s4 = "Hallo Holger!"u8.ToArray(); 

Alle diese Syntaxvarianten erzeugen in C# 11.0 die folgende Bytefolge: 

0x48 0x61 0x6C 0x6C 0x6F 0x20 0x48 0x6F 0x6C 0x67 0x65 0x72 0x21 

UTF8-Zeichenketten können jedoch nicht verwendet werden mit String Interpolation und in 

Standardwerten für Parameter! 

10.9 Zahlenliterale 

Für die gebrochenen Zahlen gibt es in C# besondere Kürzel, die in Literalen zu verwenden sind. 

Im Standard ist eine gebrochene Zahl vom Typ double. Der Suffix d ist also optional. 

 byte z1 = 123; 

 short z2 = 123; 

 int z3 = 123; 

 long z4 = 123; 

 float z5 = 123.45f; 

 double z6 = 123.45d; 

 decimal z7 = 123.45m; 

Zahlenliterale kann der Entwickler seit C# 7.0 auch in Binärform hinterlegen. Der Unterstrich ist 

als Trennzeichen zur übersichtlicheren Darstellung bei Binär- und Dezimalsystemliteralen erlaubt 

und hat keinen Einfluss auf den Wert. 



Datentypen  107 

 

int AntwortAufAlleFragen = 0b001_01010; // 42 

Console.WriteLine(AntwortAufAlleFragen); 

 

decimal JahresGehalt = 123_456_789m; 

Console.WriteLine(JahresGehalt); 

10.10 Datumsliterale 

Es gibt – anders als in Visual Basic .NET – keine eigene Syntax für Datumsliterale. Man kann ein 

Datum nur unter Verwendung des Konstruktors .NET-Klasse DateTime erzeugen. 

   DateTime d1 = new DateTime(2018, 03, 23); // 23.3.2018 00:00:00 Uhr 

   DateTime d2 = new DateTime(2018, 11, 11, 11,11,11); // 11.11.2018 11:11:11 Uhr 

10.11 Lokale Typableitung (Local Variable Type 
Inference) 

In C# 3.0 wurde die Typableitung neu eingeführt. Typableitung bedeutet, dass der Entwickler in 

seinem Programmcode keinen expliziten Typ vergibt, sondern der Compiler den Typ während der 

Übersetzung festlegt. Typableitung darf nicht mit Variant aus Visual Basic 5.0 / 6.0 verwechselt 

werden (auch wenn in C# 2008 das Schlüsselwort var heißt): Bei einem Variant konnte man 

jederzeit im Programmablauf den Typ ändern. Ein Variant war eine sehr speicherfressende 

Datenstruktur. Variablen, die mit Typableitung erzeugt wurden, erhalten hingegen zur 

Übersetzungszeit einen festen Typ, der im Programmablauf nicht mehr geändert werden darf und 

nicht mehr Speicher als bei einer expliziten Deklaration verbrauchen. 

Typableitungen werden in C# durch das neue Schlüsselwort var anstelle des Datentyps, aber mit 

Initialisierung festgelegt. 

Listing: Drei Typableitungen in C# 
// Local Variable Type Inference für String 

var heimatflughafen = "Essen/Mülheim"; 

Console.WriteLine(heimatflughafen.GetType().FullName); 

 

// Local Variable Type Inference für Int32 

var anzahl = vorstandsmitglieder.Count; 

Console.WriteLine(anzahl.GetType().FullName); 

    

// Local Variable Type Inference für die Klasse Vorstandsmitglied 

var vorstandschef = vorstandsmitglieder[0]; 

Console.WriteLine(vorstandschef.GetType().FullName); 

Hinweis: Die Typableitung heißt lokal, weil sie nur für lokale Variablen in Methoden möglich 

ist. Ein Einsatz als Attribut einer Klasse bzw. Parameter oder Rückgabewert einer Methode ist 

ausgeschlossen. Eine Typableitung muss immer mit einer Wertinitialisierung verbunden sein, 

da sonst keine Typableitung möglich ist. null bzw. nothing ist nicht erlaubt, da hier keine 

Typableitung möglich ist. 

Man kann die Typableitung auch für Laufvariablen in Schleifen verwenden. 

 

Wichtig: Bei vielen Entwicklern herrscht zunächst Skepsis über den Sinn der lokalen 

Typableitungen. Tatsächlich machen Typableitungen für sich isoliert betrachtet nur einen 

begrenzten Sinn. Typableitungen sind jedoch absolut notwendig im Zusammenhang mit 

anonymen Typen und LINQ-Projektionen. In beiden Szenarien entstehen Klassen, deren Namen 

der Entwickler nicht kennen kann.  



108 Datentypen 

 

Man darf Typableitung nicht mit dem Einsatz der allgemeinen Klasse System.Object 

verwechseln. Eine mit System.Object (alias object oder Object) deklarierte Variable kann 

tatsächlich im Programmablauf verschiedenartigste Inhalte aufnehmen. Eine mit lokaler 

Typableitung deklarierte Variable hingegen hat einen festen, unveränderbaren Typ. 

 

Tipp: Gerade bei der Klasseninstanziierung in C# kann man durch die Typableitung die 

überflüssige Doppelnennung des Klassennamens vermeiden, denn man schreibt nun statt  

Vorstandsmitglied v1 = new Vorstandsmitglied();  

kürzer: 

var v2 = new Vorstandsmitglied(); 

Die neue Schreibweise hat keinen Nachteil! 

  

Abbildung:Beim Betrachten mit dem Decompiler .NET Reflector sieht man, dass der Compiler 

beide Zeilen gleich übersetzt hat 

10.12 Gültigkeit von Variablen 

Eine innerhalb eines Anweisungsblocks { … } deklarierte Variable ist nur innerhalb des Blocks 

gültig, nicht in der ganzen Unterroutine. 

  public void Aktion() 

  { 

   int a = 1; 

   { 

    int b = 2; 

    Console.WriteLine($"{a}+{b}={a}{b}"); 

   } 

   // geht nicht, denn b ist hier nicht mehr gültig 

   // Console.WriteLine($"{a}+{b}={a}{b}"); 

  } 

10.13 Typprüfungen 

Mit GetType() ermittelt man von einer Variablen den Typ in Form einer Instanz der .NET-Klasse 

System.Type. Dies kann man mit dem Typ einer anderen Variablen vergleichen oder dem 

statischen Ausdruck typeof(Typ). Solch ein Vergleich macht nur Sinn für Variablen des Typs 

object oder dynamic. Wenn eine Variable typisiert ist (auch bei Einsatz des Schlüsselwortes var), 

wird die Prüfung immer nur für diesen Typ erfolgreich sein, selbst wenn eine Konvertierung in 

einen anderen Typ möglich wäre (hier am Beispiel: "5" ist eine Zeichenkette, keine Zahl). Eine 

solche Typkonvertierung muss man explizit implementieren (siehe nächstes Unterkapitel). 

   // Dieser Wert wurde eingegeben 

   object eingabe = "Holger"; 

 

   if (eingabe.GetType() == typeof(string)) { Console.WriteLine("Eingabe ist ein 

Text"); } // wahr 

 

    eingabe = 1; 



Datentypen  109 

 

   if (eingabe.GetType() == typeof(int)) { Console.WriteLine("Eingabe ist eine 

Zahl"); } // wahr 

 

   dynamic eingabe2 = "Holger"; 

 

   if (eingabe2.GetType() == typeof(string)) { Console.WriteLine("Eingabe ist ein 

Text"); } // wahr 

 

   eingabe2 = 1; 

   if (eingabe2.GetType() == typeof(int)) { Console.WriteLine("Eingabe ist eine 

Zahl"); } // wahr 

 

   var name = "Holger Schwichtenberg"; 

   if (name.GetType() == typeof(string)) { Console.WriteLine("name ist ein 

Text"); } // wahr 

 

    name = "5"; 

   if (name.GetType() == typeof(int)) { Console.WriteLine("name ist eine Zahl"); 

} // falsch  

10.14 Typkonvertierung 

Typkonvertierung (engl. Type Cast) bezeichnet die Umwandlung von einem Datentyp in einen 

anderen, z.B. Umwandeln einer Zahl in eine Zeichenkette oder Extrahieren einer Zahl aus einer 

Zeichenkette. 

In C# kommt immer eine sehr strenge Typprüfung zum Einsatz, wohingegen sie in Visual Basic 

.NET explizit (mit Option Strict) eingeschaltet werden muss. Für  

int zahl = 1;  

sind folgende Konstrukte nicht gültig: 

// falsch: string text = zahl; 

// falsch: string text = ((string) zahl); 

// falsch: string text = zahl as string; 

 

 

Abbildung: Der Compiler ist streng 

Die Konvertierung von Zahl zu Text ist nur möglich über die ToString()-Methode oder über die 

.NET Basisklasse System.Convert. 

string text1 = zahl.ToString(); 

string text2 = Convert.ToString(zahl); 

Darüberhinaus bieten alle Klassen für Zahlen (System.Byte, System.Int16, System.Int32, etc.) 

sowie einige andere Typen wie System.Version und System.Guid die Möglichkeit, den Typ aus 

einer Zeichenkette zu extrahieren mithilfe der Methoden Parse() und TryParse(). 

decimal eingabezahlA; 

if (System.Decimal.TryParse(eingabeA, out eingabezahlA)) 

   { Console.WriteLine("Eingabe ist die Zahl: " + eingabezahlA); } 

else 



110 Datentypen 

 

   { Console.WriteLine("Eingabe war keine Zahl!"); } 

Seit C# 7.0 kann man mit sogenannten "Inline-out-Variablen" die Syntax verkürzen: 

string eingabeB = "123.45"; 

if (System.Decimal.TryParse(eingabeB, out decimal eingabezahlB)) 

   { Console.WriteLine("Eingabe ist die Zahl: " + eingabezahlB); } 

else 

   { Console.WriteLine("Eingabe war keine Zahl!"); } 

Wenn es nur um die Typprüfung, aber nicht um die Konvertierung geht, dann kann man bei out 

die sogenannte Discard-Variable, die nur aus dem Unterstrich ( _ ) besteht, einsetzen (ebenfalls 

seit C# 7.0). 

string eingabeC = "123.45"; 

if (System.Decimal.TryParse(eingabeC, out _)) 

   { Console.WriteLine("Eingabe ist die Zahl!"); } 

else 

   { Console.WriteLine("Eingabe war keine Zahl!"); }  

Zwischen polymorphen Klassen gibt es zwei Syntaxformen für die Typumwandlung: 

1. Voranstellen des Zieltyps in runden Klammern 

pass = ((Passagier)a[0]);  

2. Verwendung des Operators as 

pass = (a[0] as Passagier); 

Der Unterschied zwischen der Schreibweise mit dem vorangestellten Typnamen und der 

Verwendung des as-Operators ist, dass in dem ersten Fall eine Ausnahme (InvalidCastException) 

erzeugt wird, wenn die Konvertierung nicht möglich ist, während der as-Operator in diesem Fall 

null zurückliefert. 

Hinweis: Sie finden im Kapitel "Erweiterungsmethoden" Beispiele für einige sehr elegante 

Lösungen für die Typkonvertierung. 

10.15 Dynamische Typisierung 

Dynamische Typisierung bedeutet, dass die Einsprungstelle für einen Attributzugriff oder einen 

Methodenaufruf nicht zur Kompilierzeit feststeht (statische Typisierung), sondern erst zur Laufzeit 

ermittelt wird. Grundsätzlich ist statische Typisierung erstrebenswert, aber nicht immer ist dies 

möglich. Unmöglich ist die statische Typisierung zum Beispiel bei der Verwendung von COM-

Bibliotheken, die als Datentypen Variant verwenden. Oder beim Zusammenspiel mit dynamischen 

Sprachen wie IronPython. 

Achtung: Bei dynamischer Typisierung kann Visual Studio keine IntelliSense-

Eingabeunterstützung bieten. Dynamische Typisierung birgt immer die Gefahr, dass die 

entsprechende Aktion nicht verfügbar ist, sei es durch einen Tippfehler oder weil ein anderes 

Objekt geliefert wird, als erwartet wurde. Wenn die Bindung nicht möglich ist, kommt es zum 

Laufzeitfehler (RuntimeBinderException). 



Datentypen  111 

 

 
 

Abbildung: Laufzeitfehler, denn die Methode zum Schließen wäre Quit() statt Close() gewesen  

In C# wurde die dynamische Typisierung erst in C# 4.0 auf einfache Weise ermöglicht. Vorher 

musste man sehr umständlich mit dem .NET-Reflection-Mechanismus arbeiten. C# bietet seit 

Version 4.0 dafür das Schlüsselwort dynamic. 

Um dynamic in C# zu nutzen, muss man die Assembly Microsoft.CSharp.dll referenzieren. Es 

kommt sonst zum Fehler »Predefined type 'Microsoft.CSharp.RuntimeBinder.Binder' is not 

defined or imported.« 

Listing: Verwendung der dynamischen Typisierung in C# [CS10_Dynamic.cs] 
  /// <summary> 

  /// Beispiel für dynamische Nutzung einer COM-

Bibliothek (hier: Microsoft Excel) 

  /// </summary> 

  public static void ExcelDemo() 

  { 

  dynamic excel = Activator.CreateInstance(Type.GetTypeFromProgID("Excel.Applicat

ion")); 

  excel.Visible = true; 

  dynamic workBook = excel.Workbooks.Add(); 

  excel.Cells[1, 1].Value2 = "Test"; 

  workBook.SaveAs (@"C:\temp\testdatei.xls"); 

  excel.Quit(); 

  } 

10.16 Wertelose Wertetypen (Nullable Value Types)  

Während Referenztypen bereits in .NET 1.x den Zustand null als Repräsentanz des Zustands nicht 

vorhanden / nicht gesetzt annehmen konnten, war dies für Wertetypen nicht vorgesehen. Ab .NET 

2.0 existiert ein Hilfskonstrukt, um auch Wertetypen den Wert null zuweisen zu können. 

In .NET (seit Version 2.0) ist ein auf null setzbarer Wertetyp eine generische Struktur 

(System.Nullable<T>), die aus dem eigentlichen Wert (Value) und einem Hilfs-Flag HasValue 

(Typ boolean) besteht, das anzeigt, ob der Wert des Typs null ist. 

C# unterstützt Nullable Value Types bereits seit Version 2005 durch ein besonderes 

Sprachkonstrukt: Durch ein Fragezeichen als Suffix eines Wertetyps in einer Typdeklaration sorgt 

der C#-Compiler automatisch dafür, dass der Wertetyp in die generische System.Nullable-Struktur 

verpackt wird. Möglich ist auch eine explizite Deklaration mit System.Nullable. 



112 Datentypen 

 

// Wertetyp ohne null 

int a = 1; 

int b = 0; 

// Wertetyp mit null erlaubt 

int? x = 2; 

System.Nullable<Int32> y = 6; 

Die folgende Tabelle zeigt verschiedene Ergebnisse für Operationen mit den obigen Variablen. 

Operation Ergebnis, falls x den 

Wert 2 hat 

Ergebnis, falls x null ist 

string s1 = 

x.HasValue.ToString(); 

True False 

string s2 = x; Kompilierungsfehler Kompilierungsfehler 

string s3 = x.Value.ToString(); 2 Laufzeitfehler 

string s4 = x.ToString(); 2 Leere Zeichenkette 

int? z = x + 10; 12 Null 

int a1 = x; 2 Kompilierungsfehler 

int a2 = (int)x; 2 Laufzeitfehler 

int a3 = x ?? 0; 2 0 

Tabelle: Verschiedene Operationen mit wertelosen Wertetypen in C# seit Version 2005 

Bitte beachten Sie, dass man den Typ string (System.String) nicht als wertelosen Wertetyp 

verwenden kann, da String kein Wertetyp ist, sondern ein Referenztyp, der sich in einigen 

Punkten (z.B. Wertzuweisungen) verhält wie ein Wertetyp. Richtig ist also  string i = null; statt  

string? i = null; 

Listing: Verschiedene Beispiele mit Nullable Types 
 

public void NullableTypes() 

  { 

   int a = 1; 

   // Elegante Deklaration in C# 

   int? b = 2;  

   // a = null; // verboten! 

   b = null; // Erlaubt 

   // Explizite Deklaration 

   System.Nullable<Int32> c = null; 

   c = 100; 

   Demo.Print(c.HasValue.ToString()); 

   Demo.Print(c.Value.ToString()); // Achtung: Geht nur, wenn c tatsächlich einen 

Wert hat! 

   // Besser: "Null" abfangen 

   Demo.Print ("b = " + ( b.HasValue ? b.Value.ToString() : "null")); 

  } 



Datentypen  113 

 

 C# Visual Basic .NET 

Deklaration eines 

normalen Wertetyps 

int a; Dim a As Integer 

Zuweisung des nicht 

vorhandenen an 

einen normalen 

Wertetyp 

Nicht möglich 

(Kompilierungsfehler) 

a = nothing 

setzt den Wert auf die Zahl 0 bzw. 

anderen Startwert (z.B.z.B. 

DateTime.MinValue) 

Deklaration eines 

wertelosen Wertetyps 

in Langform 

System.Nullable<Int32> x = 

null 

Dim x As System.Nullable(Of 

Integer) = Nothing 

Deklaration eines 

wertelosen Wertetyps 

in Kurzform 

int? x = null; Integer? x = nothing; 

Ausdruck x Liefert Wert oder null Visual Basic .NET 2005: Nicht 

möglich (Kompilierungsfehler) 

Ab Visual Basic .NET 2008: 

Liefert Wert oder null 

Ausdruck x.Value Liefert Wert oder 

Laufzeitfehler (»Das Objekt 

mit Nullwert muss einen Wert 

haben.«) 

Liefert Wert oder Laufzeitfehler 

(»Das Objekt mit Nullwert muss 

einen Wert haben.«) 

Ausdruck 

x.HasValue 

Liefert true oder false Liefert true oder false 

Ausdruck x + 1 Liefert null, wenn x gleich null Visual Basic .NET 2005: Nicht 

möglich (Kompilierungsfehler) 

Ab Visual Basic .NET 2008: 

Liefert null, wenn x gleich null 

Zuweisung x = a Erlaubt, liefert a Erlaubt, liefert a 

Zuweisung a = x Kompilierungsfehler: 

Verbotene Typkonvertierung 

Mit Option Strict: Verbotene 

Typkonvertierung  

 

Ohne Option Strict: Laufzeitfehler 

(»Das Objekt mit Nullwert muss 

einen Wert haben.«), wenn x 

gleich null 

Zuweisung a = (int) x  

bzw.  

a = CType(x, Integer) 

Laufzeitfehler (»Das Objekt 

mit Nullwert muss einen Wert 

haben.«), wenn x gleich null 

Laufzeitfehler (»Das Objekt mit 

Nullwert muss einen Wert 

haben.«), wenn x gleich null 



114 Datentypen 

 

Konvertierung eines 

wertelosen Wertetyps 

in einen normalen 

Wertetypen mit der 

Semantik: liefert x, 

wenn x einen Wert 

hat oder Zahl 0, 

wenn x gleich null. 

a = x ?? 0 

 

If x.HasValue Then 

   a = x.Value 

Else 

   a = 0 

End If 

Tabelle: Gegenüberstellung der Behandlung von wertelosen Wertetypen in C# und Visual Basic 

.NET 



Operatoren  115 

 

11 Operatoren 
Es gibt einige wichtige Unterschiede zwischen den Operatoren in Visual Basic .NET und C#, die 

bei Portierungen von Code zu beachten sind: 

▪ Das Gleichheitszeichen = ist in C# immer der Zuweisungsoperator. Zum Vergleichen müssen 

immer zwei Gleichheitszeichen = = verwendet werden. 

▪ Das Ungleichheitszeichen ist != statt <>. 

▪ Zeichenkettenverknüpfungen erfolgen immer mit dem Pluszeichen (+). Das kaufmännische 

Und (&) ist nicht erlaubt. 

▪ Die logischen Operatoren Und (&&) und Oder (||) verwenden immer die Short-Circuit-

Auswertung, d. h., die folgenden Teile eines Ausdrucks werden nicht mehr ausgewertet, 

sobald feststeht, dass der Ausdruck nicht mehr wahr werden kann. && entspricht also 

AndAlso und || also OrElse in Visual Basic .NET. 

▪ Bei der Division ist es vom Typ der Operanden abhängig, ob die Division als Ganzzahldivision 

ausgeführt wird. 

11.1 Überblick über die Operatoren 

Die folgende Tabelle zeigt die Operatoren in C# im Vergleich zu anderen Programmiersprachen 

der .NET-Welt. 



116 Operatoren 

 

 Visual 

Basic 

C# Visual J# C++ JScript 

Mathematik 

Addition + + + + + 

Subtraktion – – – – – 

Multiplikation * * * * * 

Division / / / / / 

Ganzzahldivision \ /    

Modulus  Mod % % % % 

Potenz ^     

Negation Not ~ ~ ~ ~ 

Inkrement  ++ ++ ++ ++ 

Dekrement  - - - - - - - - 

Zuweisung 

Einfache Zuweisung = = = = = 

Addition + =  + = + = + = += 

Subtraktion - =  - = - = - = - = 

Multiplikation *=  *= *= *= *= 

Division /=  /= /= /= /= 

Ganzzahl-Division \=  /=     

Zeichenketten-

verbindung 

&=  += +=   += 

Modulus (Divisionsrest)  %= %= %= %= 

Bit-Verschiebung nach 

links 

<< =  << = << = << = << = 

Bit-Verschiebung nach 

rechts 

>> =  >> = >> = >> = >> = 

Bit-weises UND  &= &= &= &= 

Bit-weises XOR  ^= ^= ^= ^= 

Bit-weises OR  |= |= |= |= 

Vergleich 

Kleiner  < < < < < 

Kleiner gleich < = < = < = < = < = 

Größer > > > > > 



Operatoren  117 

 

 Visual 

Basic 

C# Visual J# C++ JScript 

Größer gleich > = > = > = > = > = 

Gleich = = = = = = = = =  

Nicht gleich < > != != != != 

Objektvergleich Is = = = =  = = 

Objektvergleich (negativ) IsNot != !=  != 

Objekttypvergleich TypeOf x 

Is Class1 

x is Class1  x instanceof 

Class1 

 Instanceof 

Zeichenkettenvergleich = = =    = = 

Zeichenkettenverbindung & + +  + 

Logische Operatoren 

UND And && && && && 

ODER Or || || || || 

NICHT Not ! ! ! ! 

Short-circuited UND  AndAlso && && && && 

Short-circuited ODER OrElse || || || || 

Bit-Operatoren 

Bit-weises UND And & & & & 

Bit-weises XOR Xor ^ ^ ^ ^ 

Bit-weises OR Or | | | | 

Bit-Verschiebung nach 

links 

<<  << << << << 

Bit-Verschiebung nach 

rechts 

>>  >> >> >> >>, >>> 

Sonstiges 

Bedingt IIF-

Funktion 

und If-

Operator 

?: ?: ?: ?: 

Bedingt (für Nullable 

Types) 

 ?? :    

Tabelle: Vergleich der Operatoren in verschiedenen .NET-Sprachen 

11.2 Überlaufprüfung 

Standardmäßig ignoriert C# Überläufe in Ganzzahloperationen, was zu falschen Ergebnissen 

führen kann, ohne eine Ausnahme auszulösen.  



118 Operatoren 

 

Beispiel: Der maximale Wert eines int in C# ist 2.147.483.647. Wenn dieser Wert um 1 erhöht 

wird, führt dies zu einem Überlauf, wodurch der Wert negativ wird ("unterläuft"): -2.147.483.648. 

int max = int.MaxValue; 

int result = max + 1;  // Keine Exception, führt zu Überlauf und negativem Wert 

Console.WriteLine(result);  // Ausgabe: -2147483648 

Mit dem Einsatz von checked kann man diese Überläufe zur Laufzeit prüfen. Das Schlüsselwort 

checked kann man in einem einzelnen mathematischen Ausdruck wie eine Funktion verwenden 

oder als Blockoperator mit geschweiften Klammern wie z.B. using oder unsafe. 

Listing: Einsatz von checked 
try 

{ 

 int result2 = checked(max + 1); 

 Console.WriteLine(result2); 

} 

catch (Exception ex) 

{ 

 CUI.Error(ex); // System.OverflowException: 'Arithmetic operation resulted in an

 overflow.' 

} 

  

try 

{ 

 checked 

 { 

  int result3 = max + 1; 

  Console.WriteLine(result3); 

 } 

} 

catch (Exception ex) 

{ 

 CUI.Error(ex); // System.OverflowException: 'Arithmetic operation resulted in an

 overflow.' 

} 

Zusätzlich gibt es auch das Gegenteil, das Schlüsselwort unchecked, das Überlaufüberprüfungen 

explizit ausschaltet in Fällen, in denen bereits der Compiler einen Überlauf erkennt, man dies aber 

zulassen will: 

 

Listing: Einsatz von unchecked 
unchecked 

 { 

  long e1 = long.MaxValue * 2; 

  Console.WriteLine(e1); // erlaubter Überlauf -> -2 

  

  ulong e2 = ulong.MaxValue * 2; 

  Console.WriteLine(e2); // erlaubter Überlauf -> 18446744073709551614 

 } 

  

 long e3 = unchecked(long.MaxValue * 2); 



Operatoren  119 

 

 Console.WriteLine(e3); // erlaubter Überlauf -> 2 

  

 ulong e4 = unchecked(ulong.MaxValue * 2); 

 Console.WriteLine(e4); // erlaubter Überlauf -> 18446744073709551614 

} 

Hinweis: Das Ausschalten der Überlaufprüfung mit unchecked steigert die Performance, führt 

aber ggf. zu falschen Ergebnissen! 

In C# unterstützen Fließkomma-Datentypen wie float, double und decimal weder checked noch 

unchecked. Das Verhalten ist aber bei diesen Typen verschieden: 

▪ Bei einem Überlauf wirft der decimal-Typ immer eine OverflowException, unabhängig 

davon, ob checked oder unchecked verwendet wird. 

▪ Für float und double ist das Verhalten bei Überläufen, Division durch Null und 

Ungenauigkeiten ist im IEEE 754-Standard festgelegt. Anstelle einer OverflowException 

geben diese Typen spezielle Werte wie Infinity, -Infinity und NaN (Not a Number) zurück. 

11.3 Null Coalescing Operator ?? 

Ein C#-Operator, für den es keine Entsprechung in Visual Basic .NET gibt, ist das doppelte 

Fragezeichen (??). Der "Null Coalescing Operator" ?? liefert (seit C# 2.0) den Wert des vo-

rangestellten Ausdrucks, wenn dieser nicht null ist. Wenn der Wert null ist, wird der Wert des 

nachfolgenden Ausdrucks übergeben. Somit kann man auf elegante Weise den null-Fall in einen 

anderen Wert umwandeln. 

Listing: Einsatz des ??-Operators 
// Umwandlung eines Nullable Int in einen Int 

int? d = null; 

int e = d ?? -1; 

// Behandlung eines String 

string s = null; 

Demo.Print ("s = " + (s ?? "(kein Inhalt)")); 

Leider ist der Operator nicht hilfreich, wenn man einen wertelosen Zahlenwert ausgeben möchte, 

weil beide Operanden den gleichen Typ besitzen müssen. 

Demo.Print("d = " + (d ?? "null")); // geht leider nicht :-(  

11.4 Null Coalescing Assignment ??= 

Eine weitere Behandlung des null-Falls ist in C# 8.0 hinzugekommen in Form des Operators "Null 

Coalescing Assignment" mit ??=. Mit diesem Zuweisungsoperator kann der C#-

Softwareentwickler eine Zuweisung ausführen, wenn eine Variable den Wert null hat. Damit 

werden einige Einsatzgebiete des Null Assignment Operators nochmals verkürzt. 

Statt 

p = p ?? new Person() { ID = 1, Name = "Holger Schwichtenberg" }; 

oder 

if (p == null) p = new Person() { ID = 1, Name = "Holger Schwichtenberg" };  

kann man nun auch prägnanter schreiben: 

p ??= new Person() { ID = 1, Name = "Holger Schwichtenberg" }; 



120 Operatoren 

 

11.5 Null Conditional Operator ?. 

Zu den sehr praktischen Neuerungen seit C# 6.0 gehört der Fragezeichen-Punkt-Operator (?.), der 

im Gegensatz zu dem einfachen Punkt-Operator keinen Laufzeitfehler auslöst, wenn der Ausdruck 

vor dem Punkt keinen Wert besitzt, also "null" (in C#) beziehungsweise "nothing" (in Visual Basic 

.NET) liefert. Microsoft nennt den Operator den Null Conditional Operator. 

In der folgenden Zeile ist der Inhalt der Variablen name null, wenn entweder: 

▪ Die Variable repository null ist 

▪ Die Methode GetKontakt(123) null liefert 

▪ Oder das String-Attribut Name im gelieferten Kontakt-Objekt null ist. 

string name = repository?.GetKontakt(123)?.Name; 

Hinweis: Auf den ersten Blick könnte man denken, dass hier die Ursache für einen Fehler nicht 

mehr erkennbar ist. In vielen Fällen geht es aber gar nicht darum, die Ursache für einen Fehler 

zu kennen, sondern primär erstmal darum, dass es gar keinen Fehler gibt. Hier hilft der Operator 

?. sehr. 

11.6 Operator nameof() 

Der in C# 6.0 (und Visual Basic 14.0) neu eingeführte Operator nameof() liefert den Namen eines 

Bezeichners als Zeichenkette (bei mehrgliederigen Namen nur den letzten Teil). Dieser Operator 

erhöht die Robustheit und erleichtert das Refactoring in Situationen, in denen der Name einer 

Klasse oder eines Klassenmitglieds als Zeichenkette zu übergeben ist. 

Listing: Einsatz des Operators nameof() für ArgumentNullException 
public void SaveKontakt(Kontakt neuerKontakt) 

  { 

   if (neuerKontakt == null) throw new 

ArgumentNullException(nameof(neuerKontakt)); 

   ... 

  } 

Listing: Einsatz des Operators nameof() für PropertyChangedEventArgs 
public int KontaktAnzahl 

  { 

   get { return kontaktAnzahl; } 

   set 

   { 

    PropertyChanged(this, new PropertyChangedEventArgs(nameof(KontaktAnzahl))); 

    kontaktAnzahl = value; 

   } 

  } 

Laut der Dokumentation ist der Operator nameof() auf Variablen, Typen und Mitglieder 

beschränkt. 

 



Operatoren  121 

 

Abbildung: learn.microsoft.com/en-us/dotnet/csharp/language-reference/operators/nameof 

Tatsächlich funktioniert nameof() aber auch mit Namensräumen. 

Listing: Einsatzgebiete von nameof() 
namespace CS60 

{ 

 class CS60Demos 

 { 

  public int Property { get; set; } 

  public static void DemoNameOf() 

  { 

   int Variable; 

   Console.WriteLine("Namensraum: " + nameof(CS60)); 

   Console.WriteLine("Klasse: " + nameof(CS60Demos)); 

   Console.WriteLine("Methode: " + nameof(DemoNameOf)); 

   Console.WriteLine("Property: " + nameof(Property)); 

   Console.WriteLine("Variable: " + nameof(Variable)); 

  } 

 } 

} 

Der Operator nameof() kann auch außerhalb der Klasse eingesetzt werden indem man den 

Klassennamen dem Mitgliedsnamen getrennt durch einen Punkt voranstellt: 

nameof(Klasse.Klassenmitglied) 

Hinweis: Dies ist aber nur für öffentliche Klassenmitglieder möglich 

[github.com/dotnet/csharplang/issues/1990]. Daher ist im nächsten Beispiel der Einsatz für 

"FieldPrivate" nicht möglich. 

Listing: Einsatz des Operators nameof() für das Mapping eines Fields bei Entity Framework 

Core  
public class DemoEntityClass 

{ 

   public byte ID { get; set; } 

    public int FieldPublic; 

   private int FieldPrivate; 

} 

 

… 

protected override void OnModelCreating(ModelBuilder modelBuilder) 

{ 

 modelBuilder.Entity<DemoEntityClass>().Property(nameof(DemoEntityClass.FieldPubl

ic)); 

 modelBuilder.Entity<DemoEntityClass>().Property("FieldPrivate"); 

} 

 

11.6.1 Neuerungen für nameof() seit C# 11.0 

Der Operator nameof() funktioniert seit C# 11.0 auch für Parameter von Methoden in 

Annotationen, die auf der Methode oder einen Parameter gesetzt sind. 

[Description($"Diese Methode besitzt einen generischen Typparameter mit Namen {na

meof(T)} und erwartet eine Instanz dieses Types im Parameter {nameof(obj)}.")] 

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/nameof
https://github.com/dotnet/csharplang/issues/1990


122 Operatoren 

 

static void NameOfErweiterungen1<T>(T obj) 

{ 

  

} 

  

static void NameOfErweiterungen2<T>([Description($"Die Methode {nameof(NameOfErwe

iterungen2)} erwartet im ersten Parameter {nameof(obj)} ein Objekt vom Typ des ge

nerischen Parameters {nameof(T)}!")] T obj) 

{ 

  

} 

11.6.2 Neuerungen für nameof() seit C# 12.0 

Der Operator nameof() funktionierte vor C# 12.0 in manchen Situationen nicht. Der Abruf des 

Namens von Instanzmitgliedern von Klassenmitglieder war nicht möglich in einigen Fällen 

(statische Mitglieder, Annotationen) vor C# 12.0. Microsoft hat den Einsatzbereich von C# in 

Version 12.0 auf diese Fälle erweitert. 

Listing: nameof() funktioniert seit C# 12.0 auch in Annotationen und statischen Mitgliedern 
[Description($"{nameof(StringLength)} liefert von {nameof(Name)} die Eigenschaft 

{nameof(Name.Length)}")] // nameof(Name.Length) nicht möglich vor C# 12.0! 

public struct Person 

{ 

 public string Name; 

 // bisher schon möglich: 

 public string MemberName1() => nameof(Name); 

 // bisher schon möglich: 

 public string MemberName2() => nameof(Name.Length); 

 // bisher schon möglich: 

 public static string MemberName3() => nameof(Name); 

 // bisher Fehler CS0120, da statisches Mitglieder versucht auf Mitglied von Mitg

lied zuzugreifen 

 public static string MemberName4() => nameof(Name.Length); 

  

 [Description($"{nameof(StringLength)} liefert von {nameof(Name)} die Eigenschaft

 {nameof(Name.Length)}")] // nameof(Name.Length) war nicht möglich vor C# 12.0! 

 public int StringLength() 

 { 

  return Name.Length; 

 } 

  

 public void PrintMemberInfo() 

 { 

  Console.WriteLine($"Die Struktur {nameof(Person)} hat ein Mitglied {nameof(Name

)}, welches eine Eigenschaft {nameof(Name.Length)} besitzt!");  

 } 

} 

Hier wäre vor C# 12.0 der Ausdruck nameof(Name.Length) in drei der sechs oben gezeigten Fälle 

nicht möglich gewesen und vom Compiler mit dem Kompilierungsfehler "error CS0120: An object 

reference is required for the non-static field, method, or property 'Name.Length'" quittiert worden. 

Der folgende Screenshot zeigt mit roten Linien, was vor C# 12.0 nicht möglich war. 



Operatoren  123 

 

 

Abbildung: Unterstrichen sind vor C# 12.0 nicht mögliche Anwendungsfälle von nameof() 

11.7 Index und Range (C# 8.0) 

In C# 8.0 sind zwei neue Operatoren für die Auswahl von Teilmengen aus Mengen enthalten: 

▪ Der Index-Operator (^), der eine Position relativ zum Ende einer Menge kennzeichnet. Der 

Compiler verwendet dafür die Klasse System.Index. 

▪ Der Range-Operator (..), der einen Bereich mit Start und Ende aus einer Menge kennzeichnet. 

Der Compiler verwendet dafür die Klasse System.Range. 

Hinweis: Range- und Index-Operator funktionieren nur in .NET Core seit Version 3.0, nicht 

aber im klassischen .NET Framework. 

11.7.1 Index 

Der Index-Operator (^) kennzeichnet eine Position relativ zum Ende einer Menge. Der Compiler 

verwendet dafür die Klasse System.Index. 

string[] Namen = { "Leon", "Hannah", "Lukas", "Anna", "Leonie", "Marie", 

"Niklas", "Sarah", "Jan", "Laura", "Julia", "Lisa", "Kevin" }; 

string i1 = Namen[^2]; // Index Operator: zweiter von hinten = "Lisa"  (^2 == 

Namen.Length-2) 

string i2 = Namen[Namen.Length - 2]; // alte Schreibweise! 

 

List<string> namensListen = Namen.ToList(); 

string l1 = namensListen[^2]; 

 

// ---- Andere Formulierungsweisen 

 

Index i3 = ^2; // neue Klasse System.Index: zweiter von hinten 

string n3 = Namen[i3]; // zweiter von hinten = "Lisa" 

 

Index i4 = Index.FromEnd(2); // andere Schreibweise: zweiter von hinten 

string n4 = Namen[i4]; // zweiter von hinten = "Lisa" 

Achtung: Ein Zugriff auf Namen[^0] führt hingegen zum Laufzeitfehler 

"System.IndexOutOfRangeException: 'Index was outside the bounds of the array.'", denn ^0 

bedeutet Namen.Length-0, also Namen[Namen.Length], was ungültig ist, da die Zählung von 0 

bis Namen.Length-1 läuft. 

11.7.2 Range 

Der Range-Operator (..) kennzeichnet einen Bereich mit Start und Ende aus einer Menge. Der 

Compiler verwendet dafür die Klasse System.Range. 



124 Operatoren 

 

Achtung: Bei Range ist der Start-Index inklusive (enthalten in der Zielmenge), aber der Ende-

Index exklusiv (nicht enthalten in der Zielmenge). Die Zählung beginnt bei 0. Der Range 1..3 

bedeutet also: das zweite und dritte Element. Das vierte Element der Menge ist NICHT dabei. 

Dies empfinden einige Entwickler nicht als intuitiv. Microsoft hat sich nach einer Diskussion 

aber am 22.1.2018 bewusst so entschieden. Die Diskussion können Sie hier nachlesen: 

https://github.com/dotnet/csharplang/blob/main/meetings/2018/LDM-2018-01-22.md  

Ranges können mit Indexen kombiniert werden. 

// Ausschnitt .. von x bis vor!!! y (erstes ist INKLUSIV, zweites ist EXKLUSIV!) 

string[] m1 = Namen[1..3]; // zweiter und dritter: "Hannah", "Lukas" 

string[] m2 = Namen[6..^4]; // sechs von vorne und vier hinten abschneiden: 

"Niklas", "Sarah", "Jan" 

string[] m3 = Namen[11..]; // vom 12. Element bis Ende: "Lisa", "Kevin" 

string[] m4 = Namen[0..^0]; // alle 

string[] m5 = Namen[..]; // alle 

 

// ---- Andere Formulierungsweisen 

System.Range r1 = 1..3; // neue Klasse System.Range 

string[] m6 = Namen[r1]; // zweiter und dritter: "Hannah", "Lukas" 

Hinweise: Ranges waren ursprünglich schon für C# 7.3 geplant. 

In der PowerShell gibt es schon seit Version 1.0 das Konzept der Ranges mit zwei Punkten als 

Operator. Der Ausdruck "0..20" generiert dabei die Menge aller Zahlen von 0 bis 20. Man kann 

Ranges in PowerShell auch Teilmengen adressieren, z.B. Menge[1..3] sind die Elemente 2, 3 

und 4 der Menge. Bei der PowerShell ist also anders als in C# auch das Ende inklusive. 

11.7.3 Weitere Beispiele 

Das folgende Listing zeigt Beispiele für Range und Index mit einer Zeichenkette als 

Eingabemenge. 

#region Ranges/Indexe mit Zeichenkette 

string text = "0123456789"; 

 

//alt: 

var teilstring1a = text.Substring(4, text.Length - 4); // --> ab dem 5. Zeichen 

bis Ende "456789" 

//neu 

string teilstring1b = text[4..]; // --> ab dem 5. Zeichen bis Ende "456789" 

 

string teilstring2 = text[^4..^0]; // 0 = Ende --> "6789" 

string teilstring3 = text[2..4]; // "23" 

string teilstring4 = text[0..^0]; // alle 

string teilstring5 = text[..]; // .. == alle 

 

// ---- Andere Formulierungsweisen 

System.Range r7 = 1..3;// neue Klasse System.Range 

string t7 = text[r7]; // "12" 

#endregion 

https://github.com/dotnet/csharplang/blob/main/meetings/2018/LDM-2018-01-22.md


Operatoren  125 

 

11.7.4 Einschränkungen 

Während Indizes mit generischen Listen (Klassen, die IEnumerable<T> implementieren) 

funktionieren, ist dies mit Ranges nicht möglich. 

List<string> namensListen = Namen.ToList(); 

string l1 = namensListen[^2]; 

Console.WriteLine(l1); // Lisa 

//string l2 = namensListen[1..3]; // geht nicht ;-( 



126 Schleifen 

 

12 Schleifen 
Sowohl Visual Basic .NET als auch C# unterstützen vier Typen von Schleifen: 

▪ Kopfgeprüfte bedingte Schleifen while (bedingung) { … } 

▪ Fußgeprüfte bedingte Schleifen do { … } while (Bedingung) 

▪ Zählschleifen: Schleife mit einer bestimmten Anzahl von Durchläufen  

for ([Initialisierung];[Abbruchbedingung];[Iteration]) { … } 

▪ Mengenschleifen: Schleifen über alle Mitglieder eines Arrays oder eine anderer Objektmenge, 

welche die IEnumerable-Schnittstelle unterstützen (insbesondere die Klassen aus dem .NET-

Basisklassen-Namensraum System.Collections): foreach (x in y) { … } 

Das Besondere an der for-Schleife ist, dass alle drei Bestandteile der runden Klammer optional 

sind. Das nachfolgende Beispiel enthält daher eine gültige for-Schleife, bei der Initialisierung, 

Abbruchbedingung und Iteration in eigenen Codezeilen enthalten sind. Eine innerhalb eines 

Anweisungsblocks einer Schleife deklarierte Variable ist nur innerhalb des Blocks gültig, nicht in 

der ganzen Unterroutine. 

Normale For-Schleife For-Schleife ohne Inhalt in den runden 

Klammern 

for (int a = 0; a <= 10; a++) 

{ 

… 

} 

int b = 0; 

for (; ; ) 

{ 

  b++; 

  if (b > 10) break; 

  … 

} 

Tabelle: Beispiele für For-Schleifen in C# 

Um eine aufzählbare Objektmengenklasse zu implementieren, leitet man diese von einer 

bestehenden aufzählbaren Klasse (aus dem Namensraum System.Collections) ab oder 

implementiert IEnumerable selbst unter Verwendung des Schlüsselworts yield, das mit C# 2.0 

neu eingeführt wurde. 

Listing: Beispiele für Schleifen 
// 1. For-Schleife 

   for (int a = 1; a <= 10; a++) 

   { 

    Console.WriteLine($"a={a}"); 

   } 

 

// 2. Endlos-For-Schleife mit Abbruchbedingung 

   int b = 0; 

   for (;;) 

   { 

    b++; 

    Console.WriteLine($"b={b}"); 

    if (b >= 10) break; 

   } 

 

// 3. while-Schleife 



Schleifen  127 

 

   int c = 0; 

   while (c < 10) 

   { 

    c++; 

    Console.WriteLine($"c={c}"); 

   } 

 

// 4. do-while-Schleife 

   int d = 0; 

   do 

   { 

    d++; 

    Console.WriteLine($"d={d}"); 

   } while (d < 10); 

 

// 5. foreach-Schleife 

   IEnumerable<int> zahlen = Enumerable.Range(1, 10); 

   foreach (int e in zahlen) 

   { 

    Console.WriteLine($"e={e}"); ; 

   } 



128 Verzweigungen 

 

13 Verzweigungen 
Für die Verzweigung im Programmcode unterstützt C# die gleichen Konstrukte wie Visual Basic 

.NET: einfache Verzweigungen und Mehrfachverzweigungen. 

▪ if (Bedingung) {…} else {…}  

▪ switch (Bedingung) { case Wert:… default:… } 

13.1 Einfache Verzweigungen mit if…else 

Bei der if-Verzweigung und der if…else-Verzweigung sowie der if..else..else if-Verzweigung 

gelten folgende Regeln: 

▪ Die Bedingungen müssen immer in runden Klammern stehen 

▪ Die Befehlsblöcke müssen nur dann in geschweiften Klammern stehen, wenn mehr als eine 

Anweisung folgt. Wenn im Ausführungsblock nur eine Anweisung folgt, kann man die 

geschweifte Klammer weglassen. Die eine Anweisung kann direkt in derselben Zeile wie die 

Bedingung stehen oder eine Zeile danach. Es ist Geschmackssache, ob man immer 

geschweifte Klammern setzen will. Viele Entwicklungsteam einigen sich hier auf Regeln 

im Team. 

▪ Eine innerhalb eines Anweisungsblocks { … } einer Bedingung deklarierte Variable ist nur 

innerhalb des Blocks gültig, nicht in der ganzen Unterroutine. 

Listing: Fallunterscheidungen in C# mit if 
   var note = 3; // Wert kommt irgendwo her 

 

   // eine Ausführungszeile ohne Blockklammern ohne Umbruch 

   if (note < 1 || note > 6) throw new ApplicationException("ungültige Note!"); 

   if (note <= 3) Console.WriteLine("akzeptable Leistung"); 

   else Console.WriteLine("zu schlecht"); 

 

   // eine Ausführungszeile ohne Blockklammern mit Umbruch 

   if (note < 1 || note > 6) 

    throw new ApplicationException("ungültige Note!"); 

   if (note <= 3) 

    Console.WriteLine("akzeptable Leistung"); 

    // hier kann nicht noch eine Befehlszeile stehen , das bemängelt der 

Compiler!: Console.WriteLine("Es geht aber noch besser!"); 

   else 

    Console.WriteLine("zu schlecht"); 

 

   // mit Blockklammern mit beliebiger Zeilenanzahl und beliebigen Umbrüchen 

   if (note < 1 || note > 6) { throw new ApplicationException("ungültige Note!"); 

} 

   if (note <= 3)  

    {  

      Console.WriteLine("akzeptable Leistung"); 

      Console.WriteLine("Es geht aber noch besser!"); 

    } 

   else { Console.WriteLine("zu schlecht"); } 



Verzweigungen  129 

 

13.2 Mehrfachverzweigungen mit switch 

Bei der switch-Anweisung sind im Vergleich zu der Select-Anweisung in Visual Basic .NET 

folgende Punkte zu beachten: 

▪ Jeder Fall muss mit einer break-Anweisung abgeschlossen werden 

▪ Anders als in Visual Basic .NET kann man bei C# keine Wertebereiche nach case angeben 

 Listing: Fallunterscheidungen in C# mit switch 
switch (note) 

{ 

 case 1: e = "sehr gut"; break; 

 case 2: e = "gut"; break; 

 case 3: e = "befriedigend"; break; 

 default: e = "zu schlecht"; break; 

} 

13.3 Switch Expressions (seit C# 8.0) 

Die Mehrfachverzweigungen switch { case: … break; default: … } gibt es in C# seit der ersten 

Version. In C# 8.0 hat Microsoft eine deutlich prägnantere Variante dieses Sprachkonstrukts 

eingeführt.  

Die neuen Switch Expressions sind so aufgebaut: 

▪ Zuerst kommt der Wert (in der Regel in einer Variablen), anhand dessen unterschieden werden 

soll. 

▪ Dann folgt das Schlüsselwort switch 

▪ Dann folgt in geschweiften Klammern die Liste der Alternativen, jeweils gefolgt von einem 

Lambda-Pfeil => und dem resultierenden Wert. Break-Anweisungen sind dabei nicht 

notwendig.  

▪ Anstelle des Schlüsselwortes default tritt die Discard-Variable (Unterstrich: _ ). 

Hinweis: Da es sich bei einer Switch Expression dem Namen nach um einen Ausdruck handelt, 

muss ein Wert zurückgegeben und dieser verwertet werden, zum Beispiel für eine Zuweisung 

an eine Variable, als Rückgabewert oder Teil eines Ausdrucks. 

Das folgende Beispiel zeigt eine Fallunterscheidung für eine textliche Aussage über einen Kunden 

anhand seiner Klassifizierung (A, B oder C). Die Fallunterscheidung wird zunächst mit dem 

klassischen Switch-Konstrukt realisiert, dann mit der in C# 8.0 neu eingeführten Switch 

Expressions. 

Listing: Fallunterscheidung mit klassischen Switch-Konstrukt 
string name = "Max Müller"; 

string status = "A"; 

string aussageUeberKunde = $"{name} ist ein "; 

  

switch (status) 

{ 

 case "A": 

  aussageUeberKunde += "guter Kunde"; break; 

 case "B": 

  aussageUeberKunde += "durchschnittlicher Kunde"; break; 

 case "C": 

  aussageUeberKunde += "schlechter Kunde"; break; 



130 Verzweigungen 

 

 default: 

  aussageUeberKunde += "sonstiger Kunde"; break; 

} 

Console.WriteLine(aussageUeberKunde); 

Listing: Fallunterscheidung mit Switch-Expressions (seit C# 8.0) 
string name2 = "Max Müller"; 

string status2 = "A"; 

  

var aussageUeberKunde2 = $"{name2} ist ein " + status2 switch 

{ 

 // keine weiteren Statements hier erlaubt, z.B. string ausgabe = "{name} ist ein

"; 

 "A" => $"guter Kunde", 

 "B" => $"durchschnittlicher Kunde", 

 "C" => $"schlechter Kunde", 

 _ => $"sonstiger Kunde" 

}; 

Console.WriteLine(aussageUeberKunde2) 

Es gibt auch die Option, dass eine ganze Methode nur aus einer Switch Expression bestehen kann. 

Dazu kombiniert man eine Switch Expression mit den Expression-bodied Members (seit C# 6.0 

erlaubt. Hierzu gibt es ein eigenes Kapitel in diesem Buch. 

Der erste Lambda-Ausdruck => für den Expression-bodied Member folgt nach der Parameterliste. 

Er legt die in der switch-Anweisung zu nutzende Variable fest. Danach folgt das Schlüsselwort 

switch. Die einzelnen Werte mit dem Folgeausdruck sind dann wieder jeweils durch den Lambda-

Ausdruck => getrennt.  

Die folgenden Listings zeigen drei Varianten des obigen Beispiels zur Kundenklassifizierung. 

Listing: Klassisches Switch-Konstrukt in einer Methode 
string GetKundenTypString_Classic(string name, string abc) 

{ 

 //  weitere Statements hier erlaubt 

 string kundenText = ""; 

 switch (abc) 

 { 

  case "A": 

   kundenText = "guter Kunde"; break; 

  case "B": 

   kundenText = "durchschnittlicher Kunde"; break; 

  case "C": 

   kundenText = "schlechter Kunde"; break; 

  default: 

   kundenText = "sonstiger Kunde"; break; 

 } 

 return $"{name} ist ein {kundenText}."; 

} 

Seit C# 8.0 geht das prägnanter mit einer Switch Expression: 

Listing: Switch Expression ohne Expression-bodied Member 
string GetKundenTypString(string name, string abc) 

{ 

 return abc switch 

 { 



Verzweigungen  131 

 

  // keine weiteren Statements hier erlaubt, z.B. string ausgabe = "{name} ist ei

n"; 

  "A" => $"{name} ist ein guter Kunde", 

  "B" => $"{name} ist ein durchschnittlicher Kunde", 

  "C" => $"{name} ist ein schlechter Kunde", 

  _ => $"{name} ist ein sonstiger Kunde" 

 }; 

} 

Noch prägnanter ist es, wenn man eine Switch Expression und Expression-bodied Member 

kombiniert: 

Listing: Switch Expression und Expression-bodied Member  
string GetKundenTypString2(string name, string abc) => abc switch 

 { 

  // keine weiteren Statements hier erlaubt, z.B. string ausgabe = "{name} ist ei

n"; 

  "A" => $"{name} ist ein guter Kunde", 

  "B" => $"{name} ist ein durchschnittlicher Kunde", 

  "C" => $"{name} ist ein schlechter Kunde", 

  _ => $"{name} ist ein sonstiger Kunde" 

 }; 

Der Wert, der zur Fallunterscheidung herangezogen wird, muss kein elementarer Datentyp sein. 

Das folgende Listing zeigt die Fallunterscheidung anhand eines Enumerationstyps. 

Listing: Farbunterscheidung für einen  in der klassischen Version 
public ConsoleColor GetColor_Classic(LogLevel level) 

  { 

   switch (level) 

   { 

    case LogLevel.Information: 

     return ConsoleColor.White; 

    case LogLevel.Warning: 

     return ConsoleColor.Yellow; 

    case LogLevel.Error: 

     return ConsoleColor.Red; 

    default: 

     throw new ArgumentException("Ungültiger Wert: " + level, nameof(level)); 

   }; 

  } 

Listing: Farbunterscheidung für ein Property eines Objekts mit Switch Expression 
public ConsoleColor GetColor(LogLevel level) => level switch 

  { 

   LogLevel.Information => ConsoleColor.White, 

   LogLevel.Warning => ConsoleColor.Yellow, 

   LogLevel.Error => ConsoleColor.Red, 

   _ => throw new ArgumentException("Ungültiger Wert: " + level, nameof(level)) 

  }; 

Hinweis: Switch Expressions kann man auch verschachteln. Ein Beispiel dazu finden Sie im 

nächsten Kapitel "Pattern Matching". 



132 Verzweigungen 

 

13.4 Pattern Matching 

Pattern Matching ist der Oberbegriff für eine Reihe von zusätzlichen Vergleichsoperationen, die 

Microsoft in C# 7.0 in die Sprache einbaut hat. Dieses Sprachfeature wurde von Microsoft in C# 

9.0 und C# 10.0 sowie C# 11.0 weiter ausgebaut. 

13.4.1 Pattern Matching in Bedingungen mit is und is not 

Das Pattern Matching mit is wurde in C# 7.0 eingeführt. Seit C# 9.0 gibt es auch is not.  

Mit is und is not sind Vergleiche nicht nur mit dem passenden Typ, sondern auch mit dem 

Basistyp System.Object möglich.  

Beispiel: 

Für diese Variable 

object x = 42; 

ist der folgende Vergleich nicht erlaubt, weil man ein Objekt vom Typ System.Object nicht mit 

einer Zahl vergleichen kann (Error CS0019 Operator '>' cannot be applied to operands of type 

'object' and 'int'): 

if (x > 0 && x <= 100) { Console.WriteLine($"x ist zwischen 0 und 100!"); } 

Mit dem Pattern Matching-Operator ist der Vergleich jedoch möglich und funktioniert: 

if (x is >= 0 and <= 100) { Console.WriteLine($"x ist zwischen 0 und 100!"); } 

Weiteres Beispiel für: 

object d = '1'; 

nicht erlaubt ist: 

if ((d >= 'a' && d <= 'z') || (d >= 'A' && d <= 'Z')) { Console.WriteLine("Buchst

abe!"); } 

Möglich ist aber: 

if (d is (>= 'a' and <= 'z') or (>= 'A' and <= 'Z')) { Console.WriteLine("Buchsta

be!"); } 

if (d is not (>= 'a' and <= 'z') or (>= 'A' and <= 'Z')) { Console.WriteLine("Kei

n Buchstabe!"); } 

In diesen beiden Pattern könnte man die inneren Klammern weglassen, da and wie üblich eine 

höhere Präzedenz als or besitzt: 

if (d is (>= 'a' and <= 'z' or >= 'A' and <= 'Z')) { Console.WriteLine("Buchstabe

!"); } 

if (d is not (>= 'a' and <= 'z' or >= 'A' and <= 'Z')) { Console.WriteLine("Kein 

Buchstabe!"); } 

Hinweis: Gewöhnungsbedürftig ist, dass man in Pattern Und mit and statt wie sonst in C# üblich 

mit && und Oder mit or statt wie sonst üblich || sowie Nicht mit not statt ! ausdrückt. 

Typkonvertierungen von dem Typ System.Object in einen beliebigen anderen Typ können seit C# 

7.0 in if- und switch-Bedingungen leichter realisiert werden mit Pattern Matching.  

Mit dem Operator is kann der Entwickler ein Objekt in einer auf System.Object deklarierten 

Variablen auf einen beliebigen .NET-Typ prüfen und bei erfolgreicher Prüfung in eine zweite 

Variable, die nach dem Typ anzugeben ist, konvertieren lassen (siehe Listing). Anstelle der 

Bedingung eingabe == null kann der Entwickler in C# 7.0 auch eingabe is null schreiben. 



Verzweigungen  133 

 

Listing: Pattern Matching erlaubt Typprüfung und Typkonvertierung in einem Abwasch 
 

  // Beispiel: Ein Eingabewert, der aus einer Import-Datei kommt 

   object eingabe = 123;  

   // ... 

 

   if (eingabe is int zahl) { Console.WriteLine(zahl * 2); } 

   else { Console.WriteLine("Keine Zahl!"); } 

 

   if (eingabe is null) { Console.WriteLine("Leer"); } 

 

Seit C# 9.0 ist auch ein Vergleich auf Ungleichheit mit is not möglich: 

if (eingabe is not int zahl2) { Console.WriteLine("Keine Zahl!"); } 

Die Routine PruefeEingabe() im folgenden Listing zeigt einige Beispiele für den Einsatz von is 

und is not. 

Listing: Weitere Beispiele für Pattern Matching in Bedingungen 
void PruefeEingabe(object eingabe) 

{ 

 CUI.H3("Eingabe = " + eingabe); 

  

 // Vergleiche mit null 

 if (eingabe is null) { Console.WriteLine("Leer"); } 

 if (eingabe is not null) { Console.WriteLine("Nicht leer"); } 

 // Typprüfung 

 if (eingabe is int zahl1) { Console.WriteLine("Zahl: " + zahl1); } 

 if (eingabe is not int) { Console.WriteLine("Keine Zahl!"); } 

  

 // Wertevergleiche mit is 

 if (eingabe is >= 0 and <= 100) { Console.WriteLine($"Eingabe ist zwischen 0 und

 100!"); } 

 if (eingabe is < 0 or > 100) { Console.WriteLine($"Eingabe ist nicht zwischen 0 

und 100!"); } 

 if (eingabe is 0 or 100) { Console.WriteLine($"Eingabe ist Extremwert!"); } 

 if (eingabe is (>= 0 and <= 10) or (>= 90 and <= 100)) { Console.WriteLine($"Ein

gabe ist hoher oder niedriger Wert!"); } 

  

 // Wertevergleiche mit is not 

 if (eingabe is not (>= 0 and <= 100)) { Console.WriteLine("Eingabe ist nicht zwi

schen 0 und 100!"); } 

 if (eingabe is not >= 0 or not <= 100) { Console.WriteLine("Eingabe ist nicht zw

ischen 0 und 100!"); } 

} 

13.4.2 Pattern Matching bei switch 

Auch in Verbindung mit Schlüsselwort switch ist Pattern Matching möglich.  

Listing: Pattern Matching bei switch mit Type Pattern 
// Beispiel: Ein Eingabewert, der aus einer Import-Datei kommt 

object eingabe = 123;  

… 

switch (eingabe) 

   { 



134 Verzweigungen 

 

    case int z: 

     Console.WriteLine("Das Doppelte ist: " + z * 2); 

     break; 

    case string s: 

     Console.WriteLine(s); 

     break; 

    case bool b: 

     if (b) Console.WriteLine("Die Aussage ist wahr!"); 

     break; 

    case null: 

     Console.WriteLine("Kein Wert"); 

     break; 

    default: 

     break; 

   } 

13.4.3 Pattern Matching für Typen 

Seit C# 9.0 kann man auch Typvergleiche per Pattern Matching in Switch Expressions sehr 

prägnant definieren, wenn der konkrete Wert nicht interessiert. Microsoft nennt dies "Simplified 

Type Pattern". 

Listing: Switch Expression mit Simplified Type Pattern 
var ausgabe1 = eingabe switch 

{ 

    int => "Eingabe ist eine Zahl!", 

    string => "Eingabe ist eine Zeichenkette!", 

    _ => "Eingabe ist etwas anderes" 

}; 

13.4.4 Pattern Matching mit Größenvergleichen 

Seit C# 9.0 sind auch Vergleiche mit den Operatoren >, >=, <= und < möglich. Microsoft nennt 

dies "Relational Pattern". 

Listing: Switch Expression mit Relational Pattern  
var ausgabe2 = eingabe switch 

{ 

    < 0 => "Eingabe ist negative Zahl!", 

    <= 100 => "Eingabe ist zwischen 0 und 100!", 

    _ => "Eingabe ist größer als 100" 

}; 

13.4.5 Pattern Matching mit logische Operatoren 

Seit C# 9.0 sind auch logische Operatoren (und / oder) beim Pattern Matching möglich.  

Aber Achtung: Abweichend von dem in C# sonst üblichen Standard drückt man diese nicht mit 

&& und || aus, sondern mit den Wörtern and und or. 

Listing: Switch Expression mit Relational Pattern und Logical Pattern 
var ausgabe3 = eingabe switch 

{ 

    < 0 => "Eingabe ist negative Zahl!", 

    0 or 100 => "Alles oder nichts!", 



Verzweigungen  135 

 

    > 0 and < 100 => "Eingabe ist zwischen 0 und 100!", 

    _ => "Eingabe ist größer als 100" 

}; 

Praxisbeispiel  

In dem folgenden Praxisbeispiel werden Type Pattern, Simplified Type Pattern, Relational Pattern 

und Logical Pattern kombiniert in einer verschachtelten Switch Expression. 

Listing: Verschachtelte Switch Expression mit mehreren Pattern 
public static void EingabeAuswerten() 

  { 

   // Beispiel: Ein Eingabewert, der aus einer Import-Datei kommt 

   object eingabe = 98; 

 

   string ausgabe = eingabe switch 

   { 

    int z => z switch 

    { 

     <0 => "Negative Zahl", 

     0 => "Kein Ergebnis!", 

     >= 1 and <=100 => "Zahl zwischen 1 und 100", 

     _ => $"Sonstige Zahl: {z}" 

    }, 

    DateTime => "Eingabe ist Datum!", 

    _ => "Ungültige Eingabe!" 

   }; 

   Console.WriteLine(ausgabe); 

  } 

13.4.6 Pattern Matching für Daten in einem Objekt (Property 
Pattern) 

Bei einer Switch-Anweisung über ein komplexes Objekt kann man auch das sogenannte Property 

Pattern verwenden. Dabei wird bei den Fällen wieder das Objekt durch eine geschweifte Klammer 

repräsentiert und Bezug auf ein oder mehrere Properties genommen in der Form { Property1 : 

Wert1, Property2: Wert2, Property3: Wert3, usw }. 

Listing: Switch Expression mit Property Pattern über ein Property 
string GetKundenTypStringFromKunde(Kunde k) => k switch 

  { 

   // keine weiteren Statements hier erlaubt, z.B. string ausgabe = "{name} ist 

ein"; 

   { Status: 'A' } => $"{k.Name} ist ein gute Kunde", 

   { Status: 'B' } => $"{k.Name} ist ein durchschnittlicher Kunde", 

   _ => $"{k.Name} ist ein sonstiger Kunde" 

  }; 

Listing: Switch Expression mit Property Pattern über zwei Properties 
string GetKontaktTypString(Kontakt k) => k switch 

  { 

   // keine weiteren Statements hier erlaubt, z.B. string ausgabe = "{name} ist 

ein"; 

   { Status: 'A', Art: KontaktArt.Kunde } => $"{k.Name} ist ein guter Kunde", 

   { Status: 'A', Art: KontaktArt.Lieferant } => $"{k.Name} ist ein guter 

Lieferant", 



136 Verzweigungen 

 

   { Status: 'B', Art: KontaktArt.Kunde } => $"{k.Name} ist ein 

durchschnittlicher Kunde", 

   { Status: 'B', Art: KontaktArt.Lieferant } => $"{k.Name} ist ein 

durchschnittlicher Lieferant", 

   _ => $"{k.Name} ist ein sonstiger Kontakt" 

  }; 

Wenn man mehrere übergebene Parameter in die Fallunterscheidung einbeziehen will, kann man 

die Parameter in der Switch Expression zu einem Tupel zusammenfassen. Man spricht hier vom 

Tupel Pattern. Tupel gibt es in C# seit Version 7.0 (Hierüber gibt es ein eigenes Kapitel in diesem 

Buch). Dabei folgt nach dem Lambda-Pfeil in der Parameterliste die Erschaffung eines Tupels aus 

den gewünschten Parametern. Das Tupel wird dann in jeder Fallzeile der Switch Expression 

verwendet. 

Listing: Switch Expression mit Tupel Pattern 
public string GetAnrede(string Geschlecht, string Art) 

    => (Geschlecht, Art) switch 

    { 

     ("w", "Kunde") => "Sehr geehrte Kundin", 

     ("w", "Lieferant") => "Sehr geehrte Lieferantin", 

     ("m", "Kunde") => "Sehr geehrter Kunde", 

     ("m", "Lieferant") => "Sehr geehrter Lieferant", 

     (_, _) => "Sehr geehrte Damen und Herren" 

    }; 

Über das Property Pattern kann man auch Unterobjekte ansprechen. Wenn eine Klasse Person ein 

Unterobjekt Firma vom Typ Firma mit einem Property Firmennamen besitzt, kann man so prüfen, 

ob der Firmenname einen bestimmten Wert (hier: Leerstring) hat: 

if (p is Person { Firma: { Firmenname: "" } }) 

  { 

   Console.WriteLine("Firmenname fehlt!"); 

  } 

Seit C# 10.0 geht das mit dem "Extended Property Pattern" auch eleganter mit der Punktnotation: 

if (p is Person { Firma.Firmenname: "" }) 

  { 

   Console.WriteLine("Firmenname fehlt!"); 

  } 

13.4.7 Pattern Matching für Listen und Teilmengen (List Pattern 
und Slice Pattern) 

Wie schon in den letzten C#-Versionen (seit Version 7.0) erweiterte Microsoft in C# 11.0 das 

Pattern Matching, dieses Mal um die Prüfung von Listen (List Pattern) und die Extraktion von 

Teilmengen (Slice Pattern). 

Im Muster steht ein Unterstrich _ für ein Element und der zweifache Punkt .. für beliebig viele 

Elemente. 

Die beiden Methoden CheckList() im folgenden Listing (in zwei Varianten mit Parameter vom 

Typ Integer-Array und List von Integer) prüfen, ob eine Zahlenmenge mit 1 und 2 oder nur mit 1 

beginnt und liefert entsprechende Textaussagen zurück. 

Listing: List Pattern 
public string CheckList(int[] values) 

=> values switch 



Verzweigungen  137 

 

{ 

 [1, 2, .., 10] 

    => "Liste beginnt mit 1 und 2 sowie endet mit 10", 

 [1, 2] => "Liste besteht aus 1 und 2", 

 [1, _] => "Liste beginnt mit 1, es kommt danach noch genau ein Element", 

 [1, ..] => "Liste beginnt mit 1, danach noch mehrere Elemente", 

 [_] => "Liste aus einem Element, beginnt nicht mit 1", 

 [..] => "Liste aus mehreren Elementen, beginnt nicht mit 1" 

}; 

  

public string CheckList(List<int> values) 

=> values switch 

{ 

 [1, 2, .., 10] 

    => "Liste beginnt mit 1 und 2 sowie endet mit 10", 

 [1, 2] => "Liste besteht aus 1 und 2", 

 [1, _] => "Liste beginnt mit 1, es kommt danach noch genau ein Element", 

 [1, ..] => "Liste beginnt mit 1, danach noch mehrere Elemente", 

 [_] => "Liste aus einem Element, beginnt nicht mit 1", 

 [..] => "Liste aus mehreren Elementen, beginnt nicht mit 1" 

}; 

Für die folgenden Beispielaufrufe bekommt der Aufrufer die jeweils als Kommentar dahinter 

genannten Rückgabewerte: 

Console.WriteLine(CheckList(new[] { 1, 2, 10 }));          // "Liste beginnt mit 

1 und 2 sowie endet mit 10" 

Console.WriteLine(CheckList(new[] { 1, 2, 7, 3, 10 }));    // "Liste beginnt mit 

1 und 2 sowie endet mit 10" 

Console.WriteLine(CheckList(new[] { 1, 2 }));              // "Liste besteht aus 

1 und 2" 

Console.WriteLine(CheckList(new[] { 1, 3 }));              // "Liste beginnt mit 

1, es kommt danach noch genau ein Element" 

Console.WriteLine(CheckList(new[] { 1, 2, 5 }));           // "Liste beginnt mit 

1, danach noch mehrere Elemente" 

Console.WriteLine(CheckList(new[] { 3 }));                 // "Liste aus einem El

ement, beginnt nicht mit 1" 

Console.WriteLine(CheckList(new[] { 3, 5, 6, 7 }));        // "Liste aus mehreren

 Elementen, beginnt nicht mit 1" 

Console.WriteLine(CheckList(new[] { 3, 4 }));              // "Liste aus mehreren

 Elementen, beginnt nicht mit 1" 

  

Console.WriteLine(CheckList(new List<int> { 1, 2, 10 }));          // "Liste begi

nnt mit 1 und 2 sowie endet mit 10" 

Console.WriteLine(CheckList(new List<int> { 1, 2, 7, 3, 10 }));    // "Liste begi

nnt mit 1 und 2 sowie endet mit 10" 

Console.WriteLine(CheckList(new List<int> { 1, 2 }));              // "Liste best

eht aus 1 und 2" 

Console.WriteLine(CheckList(new List<int> { 1, 3 }));              // "Liste begi

nnt mit 1, es kommt danach noch genau ein Element" 

Console.WriteLine(CheckList(new List<int> { 1, 2, 5 }));           // "Liste begi

nnt mit 1, danach noch mehrere Elemente" 

Console.WriteLine(CheckList(new List<int> { 3 }));                 // "Liste aus 

einem Element, beginnt nicht mit 1" 

Console.WriteLine(CheckList(new List<int> { 3, 5, 6, 7 }));        // "Liste aus 

mehreren Elementen, beginnt nicht mit 1" 



138 Verzweigungen 

 

Console.WriteLine(CheckList(new List<int> { 3, 4 }));              // "Liste aus 

mehreren Elementen, beginnt nicht mit 1" 

Man kann mit Variablennamen im Pattern auch einzelne Elemente einer Menge herausgreifen 

(Slice Pattern). ExtractValue() liefert eine Zeichenkette aus einer Menge von Zahlen: 

Listing 8: Slice Pattern 
/// <summary> 

/// Slice Pattern 

/// </summary> 

public string ExtractValue(int[] values) 

=> values switch 

{ 

 [1, var middle, _] => $"Mittlere Zahl von 3 Zahlen (Beginn 1): {String.Join(", "

, middle)}", 

 [_, var middle, _] => $"Mittlere Zahl von 3 Zahlen (Beginn beliebig): {String.Jo

in(", ", middle)}", 

 [.. var all] => $"Alle Zahlen: {String.Join(", ", all)}" 

}; 

Hier liefern die Aufrufe von ExtractValue() folgende Ergebnisse: 

Console.WriteLine(ExtractValue(new[] { 1, 2, 6 }));        // "Mittlere Zahl von 

3 Zahlen (Beginn 1): 2" 

Console.WriteLine(ExtractValue(new[] { 3, 4, 5 }));        // "Mittlere Zahl von 

3 Zahlen (Beginn beliebig): 4" 

Console.WriteLine(ExtractValue(new[] { 2, 5, 6 }));        // "Mittlere Zahl von 

3 Zahlen (Beginn beliebig): 5" 

Console.WriteLine(ExtractValue(new[] { 1, 2, 5, 6 }));     // "Alle Zahlen: 1, 2,

 5, 6" 

Console.WriteLine(ExtractValue(new[] { 2, 5, 6, 7 }));     // "Alle Zahlen: 2, 5,

 6, 7"  

Durch Voranstellen von zwei Punkten vor der Variablen (.. var middle) entspricht die 

Teilmenge (Slice) mehreren Elementen. Hier eine Variante ExtractValues(): 

public string ExtractValues(int[] values) 

     => values switch 

     { 

      [1, .. var middle, _] => $"Mittlere Zahlen: {String.Join(", ", middle)}", 

      [.. var all] => $"Alle Zahlen: {String.Join(", ", all)}" 

     }; 

} 

Hier liefern die Aufrufe von ExtractValues() folgende Ergebnisse: 

Console.WriteLine(ExtractValues(new[] { 1, 2, 5, 6 }));    // "Mittlere Zahlen (B

eginn 1): 2, 5" 

Console.WriteLine(ExtractValues(new[] { 1, 2, 6 }));       // "Mittlere Zahlen (B

eginn 1): 2" 

Console.WriteLine(ExtractValues(new[] { 2, 5, 6, 7 }));    // "Alle Zahlen: 2, 5,

 6, 7"  

Console.WriteLine(ExtractValues(new[] { 2, 5, 6 }));       // "Alle Zahlen: 2, 5,

 6" 

Hinweise: Das List-Pattern funktioniert mit allen Mengentypen, die eine Eigenschaft Length 

oder Count sowie einen Indexer (name[x]) besitzen. Beim Slice-Pattern muss der Indexer der 

Menge ein Range-Objekt als Eingabe unterstützen oder aber der Listentyp muss eine Slice()-

Methode mit zwei Integer-Parametern besitzen. Diese Voraussetzungen sind für die auf der 

Schnittstelle IEnumerable basierenden Mengentypen noch nicht generell gegeben. Microsoft 



Verzweigungen  139 

 

ruft zum Feedback auf (siehe [https://devblogs.microsoft.com/dotnet/early-peek-at-csharp-11-

features/]). 

Die Struktur Autor im nächsten Listing bietet eine Methode ExtractTitleAndSurname() zur 

Extraktion von Namensbestandteilen. ExtractTitleAndSurname() liefert als Rückgabe eine 

Zeichenkette, die man per Split() bei den Leerzeichen auftrennt. Dann wird der Titel und der 

Nachname extrahiert. ToString() liefert Titel und Nachname als JSON-Zeichenkette. 

Listing: Extraktion von Namensbestandteilen mit Slice Pattern 
struct Autor : IAutor 

{ 

 public required int ID;  

 public string Name { get; set; } 

 public Autor() { } 

  

 private (string Titel, string Surname) ExtractTitleAndSurname(string fullname) 

     => fullname.Split(" ") switch // Slice Pattern 

     { 

      ["Prof.", "Dr.", var nachname] => ("Professor Doktor", nachname), 

      ["Dr.", var nachname] => ("Doktor", nachname), 

      ["Prof.", var nachname] => ("Professor", nachname), 

      ["Prof.", "Dr.", _, .. var all] => ("Professor Doktor", String.Join(" ", al

l)), 

      ["Dr.", _, .. var all] => ("Doktor", String.Join(" ", all)), 

      ["Prof.", _, .. var all] => ("Professor", String.Join(" ", all)), 

      [_, var nachname] => ("", nachname), 

      [var nachname] => ("", nachname), 

      [_, .. var all] => ("", String.Join(" ", all)), 

      _ => ("", "") 

     }; 

  

 public override string ToString() 

 { 

  var json = $$""" 

     { 

      "Autor": { 

       "ID": "{{ID}}", 

       "Titel": "{{ExtractTitleAndSurname(Name) 

                   .Titel}}", 

       "Nachname": "{{ExtractTitleAndSurname(Name) 

                      .Surname}}" 

       } 

     } 

     """; 

  return json; 

 } 

} 

Hinweis: Es sind in dem Beispiel noch nicht alle möglichen Fälle abgedeckt. Es gibt in .NET 

und C# schon lange andere Optionen für solch eine Extraktion, z.B. reguläre Ausdrücke, die 

aber in so einem Fall unübersichtlicher sind. 

Der Client im folgenden Listing zeigt, welche Fälle von ExtractTitleAndSurname() abgedeckt sind. 

https://devblogs.microsoft.com/dotnet/early-peek-at-csharp-11-features/
https://devblogs.microsoft.com/dotnet/early-peek-at-csharp-11-features/


140 Verzweigungen 

 

Listing: Nutzung des Slice Pattern aus dem vorherigen Listing  
Autor hs = new() { ID = 1, Name = "Dr. Holger Schwichtenberg" }; 

Console.WriteLine(hs); 

  

Autor mm = new() { ID = 2, Name = "Jörg Krause" }; 

Console.WriteLine(mm); 

  

Autor jf = new() { ID = 3, Name = "Dr. Fuchs" }; 

Console.WriteLine(jf); 

  

Autor ol = new() { ID = 4, Name = "Lischke" }; 

Console.WriteLine(ol); 

  

Autor rn = new() { ID = 5, Name = "Prof. Dr. Robin Nunkesser" }; 

Console.WriteLine(rn); 

  

Autor leer = new() { ID = 6, Name = "" }; 

Console.WriteLine(leer); 

  

Autor mehrereNamen = new() { ID = 7, Name = "Max Müller Lüdenscheidt" }; 

Console.WriteLine(mehrereNamen); 

Dies ist die zugehörige Ausgabe des Clients: 



Verzweigungen  141 

 

 
Abbildung: Ausgabe des obigen Listings 

 



142 Klassendefinition 

 

14 Klassendefinition 
Klassen sind in .NET das zentrale Konzept zur Aufnahme von Daten und Programmcode. Eine 

Klassendefinition erstellt eine neue Klasse. 

Klassen können folgende Elemente enthalten: 

▪ Attribute in Form von Feldern oder Property-Routinen 

▪ Methoden mit und ohne Rückgabewerte (Function/Sub) 

▪ Ereignisse (Events) 

Hinweis: Sowohl in C# als auch in Visual Basic .NET gilt: Anders als in Java darf eine 

Quellcodedatei beliebig viele Klassen enthalten und der Name der Quellcodedatei muss nicht 

dem in der Datei implementierten Klassennamen entsprechen. Die in Visual Studio integrierten 

Refactoring-Funktionen (Funktionen zur nachträglichen Umgestaltung von Programmcode) 

werden für C#-Klassen allerdings automatisch tätig, wenn eine Quellcodedatei umbenannt wird, 

die eine Klasse mit gleichem Namen enthält. In diesem Fall wird auch die Klasse umbenannt. 

14.1 Klassendefinitionen 

Klassen werden in C# durch das Schlüsselwort class und einen Block mit geschweiften Klammern 

gebildet. 

Das Listing zeigt die Implementierung der Klasse Person mit zahlreichen Klassenmitgliedern, die 

in den folgenden Kapiteln näher erläutert werden.  

Listing: Implementierung der Klasse Person in C# 
#region Namensräume einbinden 

using System; 

using System.Collections.Generic; 

using System.Text; 

#endregion 

 

namespace de.WWWings 

{ 

 

 /// <summary> 

 /// Basisklasse für Mitarbeiter und Passagiere 

 /// </summary> 

 [System.Serializable()] 

 public class Person 

 { 

  #region Attribute (Fields) 

  private long _ID; 

  #endregion 

 

  #region Attribute (Properties) 

  public long ID 

  { 

   get { return _ID; } 

   set { _ID = value; } 

  } 

 



Klassendefinition  143 

 

  public string Vorname { get; set; } 

  public string Nachname { get; set; } 

  public DateTime Geburtsdatum { get; set; } 

  #endregion 

 

  #region  Errechnete Attribute (Properties) 

 

  /// <summary> 

  /// Liefert Vorname und Nachname 

  /// </summary> 

  public string GanzerName 

  { 

   get 

   { 

    return this.Vorname + " " + this.Nachname; 

   } 

  } 

  #endregion 

 

  #region  Konstruktoren 

  // Parameterloser Konstruktor 

  public Person() 

  { 

  } 

  // Konstruktor, der an anderen Konstruktor delegiert 

  public Person(int id, string nachname, string vorname) : this(nachname,vorname) 

  { 

   this.ID = id; 

  } 

 

  public Person(string Nachname, string Vorname) 

  { 

   this.Vorname = Vorname; 

   this.Nachname = Nachname; 

  } 

  #endregion 

 

  #region Methoden 

 

 

  /// <summary> 

  /// Überschreiben einer geerbten Methode 

  /// </summary> 

  public override string ToString() 

  { 

   return "Person: " + this.GanzerName; 

  } 

 

  public virtual void Info() 

  { 

 

   Console.WriteLine(this.ToString()); 

  } 



144 Klassendefinition 

 

  #endregion 

 } 

} 

14.2 Instanzierung mit dem Operator new 

Eine Klasse wird mit dem Operator new instanziiert. Eine passende Objektvariable ist vorab zu 

deklarieren. 

Person p; 

… 

p = new Person(); 

Wenn man eine Variablendeklaration und die Zuweisung in eine Zeile schreibt, ist im Standard der 

Klassenname zweimal zu verwenden: 

Person p = new Person(); 

Mit dem Einsatz des Schlüsselwortes var (seit C# 3.0) bzw. dem Sprachfeature "Target-Typed New 

Expression" (seit C# 9.0) kann man dies verkürzen.  

14.2.1 Angabe der Konstruktorparameter 

In runden Klammern gibt der Nutzer der Klasse die Konstruktorparameter an.  

Person p = new Person(123, "Schwichtenberg", "Holger"); 

Da es nur einen parameterlosen Konstruktor gibt, ist eine Instanziierung ohne Parameter mit new() 

möglich. 

Person p = new Person(); 

Das folgende Listing zeigt Beispiele. 

Listing: Verwendung des Operators new 
// Person instanziieren mit parameterlosem Konstruktor (ohne 

Konstruktorparameter) 

Person p1 = new Person(); 

p1.Vorname = "Holger"; 

p1.Nachname = "Schwichtenberg"; 

 

Console.WriteLine(p1.GanzerName); 

Console.WriteLine(p1.ToString()); 

Console.WriteLine(p1); // entspricht ToString() 

 

// Person instanziieren mit Konstruktorparametern 

Person p2 = new Person(123, "Schwichtenberg", "Holger"); 

 

Console.WriteLine(p2.GanzerName); 

Console.WriteLine(p2.ToString()); 

Console.WriteLine(p2); // entspricht ToString() 

14.2.2 Schlüsselwort var 

Seit C# 3.0 gilt es durch die Verwendung des Schlüsselwortes var vor dem Variablennamen den 

Instanzierungsausdruck zu verkürzen: 

var p2 = new Person(123, "Holger", "Schwichtenberg"); 

Wichtig: Das C#-Schlüsselwort var darf nicht mit dem Datentyp "Variant" in Visual Basic 

.NET verwechselt werden! "var" in C# ist kein eigener Datentyp, sondern bedeutet, dass der 

Compiler den Datentyp für die Variable aus dem Ergebnis der Zuweisung wählt. Für den 



Klassendefinition  145 

 

Compiler sind die Ausdrücke Person p1 = new Person(); und var p1 = new Person(); daher 

gleichbedeutend. Der Einsatz von var erspart dem Entwickler etwas Tipparbeit. Der Einsatz von 

var ist in vielen Entwicklungsteams umstritten. 

14.2.3 Verwendung des Operators new ohne Typangabe (Target-
Typed New Expression ) 

Seit C# 9.0 bietet Microsoft in der Sprachsyntax eine andere Verkürzung an, die das Potential hat, 

weniger umstritten zu sein. Man kann nun nach dem Operator new den Klassennamen weglassen, 

wenn man Deklaration und Initialisierung in eine Zeile schreibt und der Typ instanziiert wird, der 

durch die Deklaration vorgegeben wurde. Voraussetzung ist natürlich, man will die Klasse 

instanziieren, die der Deklaration entspricht und nicht etwa eine abgeleitete Klasse. 

Der Entwickler kann also statt 

Person p = new Person(); 

Person hs = new Person(123, "Holger", "Schwichtenberg"); 

oder 

var p = new Person(); 

var hs = new Person(123, "Holger", "Schwichtenberg"); 

nun auch schreiben: 

Person p = new(); 

Person hs = new(123, "Holger", "Schwichtenberg"); 

Auch mit generischen Typen ist dies möglich, also statt 

List<Person> personList = new List<Person>(); 

oder 

var personList = new List<Person>(); 

nun zu schreiben: 

List<Person> personList = new(); 

Im Gegensatz zu var kann man Target-Typed New Expression auch in Klassenmitgliedern, z.B. 

bei der Initialisierung von Properties und Fields einsetzen: 

class Person 

{ 

   public int ID { get; init; } 

   public string Firstname { get; set; } 

   public string Surname { get; set; } 

   public Adresse Adresse { get; set; } = new(); 

   … 

} 

Auch im Programmablauf kann man Datenmitglieder (Properties und Fields) seit C# 9.0 durch 

new() ohne Angabe des Klassennamens befüllen, da der Klassenname ja durch die Deklaration 

bereits feststeht: 

Person p4 = new() { Vorname = "Holger", Nachname = "Schwichtenberg" }; 

p4.Adresse = new() { Ort = "Essen", Land = "DE" }; 

Selbst eine Übergabe als Methodenparameter ist ohne Klassennamen möglich, wenn sich dieser 

aus dem erwarteten Parameter ergibt: 

public void Umziehen(Adresse adresse) 

{ 



146 Klassendefinition 

 

    this.Adresse = adresse; 

} 

… 

p4.Umziehen(new() { Ort = "Essen", Land = "DE" }); 

Hinweis: Diese letzten hier gezeigten Anwendungsgebiete (Werte von Datenmitgliedern von 

außen setzen und Werte für Parameter) haben wieder das Potential zu Diskussionen in den 

Entwicklungsteams, denn man sieht dabei ja nicht auf den ersten Blick, welche Klasse hier 

instanziiert wird. 

 
Abbildung: Abstimmungsergebnis auf Twitter zum Einsatz von new() ohne Typangabe 

[twitter.com/jeremybytes/status/1458105599623761929] 

14.3 Objektinitialisierung  

Ursprünglich konnte man Objekte nur prägnant und elegant bei der Instanziierung initialisieren, 

sofern die Klassen entsprechende Parameter im Konstruktor anboten. 

Seit C# 3.0 und Visual Basic .NET 9.0 kann nun jedes öffentliche Attribut (egal ob Field oder 

Property) bei der Instanziierung initialisiert werden. C# bietet dazu eine Schreibweise mit 

geschweiften Klammern an, Visual Basic .NET das Schlüsselwort with (In Visual Basic .NET ist 

außerdem zu beachten, dass immer dem Attributnamen ein Punkt voranzustellen ist, in C# jedoch 

nicht!) 

Hinweis: Man kann nur öffentliche und beschreibbare Attribute der Klasse von außen 

initialisieren. Man muss keineswegs alle Attribute initialisieren. Man darf aber jedes Attribut 

nur einmal initialisieren. 

Listing: Initialisierung von Objekten bei der Instanziierung (C# seit Version 3.0) 
Vorstandsmitglied MM = new Vorstandsmitglied() { Name = "Max Müller", 

Aufgabengebiet = "Flugbetrieb", Alter = 33 }; 

Vorstandsmitglied HM = new Vorstandsmitglied() { Name = "Hans Meier", 

Aufgabengebiet = "Personal", Alter = 42 }; 

Vorstandsmitglied HS = new Vorstandsmitglied() { Name = "Hubert Schmidt", 

Aufgabengebiet = "Marketing",Alter = 35, Ort = "Essen" }; 

Hinweis: Man kann die Objektinitialisierung auch zusätzlich verwenden, wenn es einen 

parameterbehafteten Konstruktor gibt, z.B.  

Vorstandsmitglied HS = new Vorstandsmitglied("Hubert Schmidt") { Aufgabengebiet = 

"Marketing", Alter = 35, Ort = "Essen" }; 



Klassendefinition  147 

 

Man kann die Objektinitialisierung seit C# 9.0 auch mit dem Feature "Target Type New" 

verwenden, also den Klassennamen nach new weglassen: 

Vorstandsmitglied HS = new("Hubert Schmidt") { Aufgabengebiet = "Marketing", Alter = 35, 

Ort = "Essen" }; 

14.4 Geschachtelte Klassen (eingebettete Klassen) 

Klassendefinitionen können Klassendefinitionen (innere Klassen) enthalten. 

class PersonMitAdresseClient 

 { 

  public static void Run() 

  { 

   var p = new PersonMitAdresse(); 

   p.Adresse = new PersonMitAdresse.AdressKlasse(); 

   p.Name = "Holger Schwichtenberg"; 

   p.Adresse.Ort = "Essen"; 

 

  } 

 

 } 

 /// <summary> 

 /// Äußere Klasse 

 /// </summary> 

 class PersonMitAdresse 

 { 

  public class AdressKlasse 

  { 

   public string Strasse { get; set; } 

   public string PLZ { get; set; } 

   public string Ort { get; set; } 

  } 

 

  public int ID { get; set; } 

  public string Name { get; set; } 

  public AdressKlasse Adresse { get; set; } 

 } 

} 

14.5 Sichtbarkeiten/ Zugriffsmodifizierer für Klassen 
und Klassenmitglieder 

Die Zugriffsmöglichkeiten auf Klassen und Klassenmitglieder wird durch sogenannte 

Zugriffsmodifizierer gesteuert. 

Für Klassen gilt, 

▪ Eine Klasse ist im Standard internal, d.h. sie sind nur in ihrem Projekt sichtbar, aber nicht in 

Projekten, die das Projekt referenzieren.  

▪ Wenn das Kompilat des Projekts in anderen Projekten referenziert wird und die Klasse 

verwendbar sein soll, muss der Modifizierer public vor die Klasse geschrieben werden: 
public class Person {  … } 



148 Klassendefinition 

 

▪ Seit C# 11.0 gibt es auch den Modifizierer file, d.h. die Klasse kann nur innerhalb der Datei 

verwendet werden, in der sie sich befindet. 

Für eine innere Klasse (eine in eine andere Klasse eingebettete Klasse) kann man auch anwenden: 

▪ private: Die Klasse kann nur innerhalb der äußeren Klasse verwendet werden 

▪ internal: Die Klasse kann innerhalb der gleichen Assembly verwendet werden. 

▪ public: Die Klasse kann auch in referenzierenden Assemblies verwendet werden. 

Klassenmitglieder können folgende Sichtbarkeiten besitzen: 

▪ private: Das Mitglied kann nur innerhalb der Klasse genutzt werden 

▪ protected: Das Mitglied kann innerhalb der Klasse und in abgeleiteten Klassen genutzt 

werden 

▪ private protected: Seit C# 7.2 (wie in Visual Basic .NET seit Version 15.5) möglich für 

Klassenmitglieder in einer abgeleiteten Klasse in der gleichen Assembly verwendet zu 

werden, nicht aber in anderen Assemblies. 

▪ internal: Das Mitglied kann in allen Klassen innerhalb der Assembly genutzt werden 

▪ public: Das Mitglied kann in allen Klassen auch in referenzierenden Assemblys genutzt 

werden 

Hinweis: Visual Basic .NET und C# unterscheiden sich bei den Klassendefinitionen außer bei 

friend/internal nur hinsichtlich der Groß-/Kleinschreibung der Schlüsselwörter. In C# 

müssen die Schlüsselwörter klein geschrieben werden. In Visual Basic .NET ist dies egal, der 

Editor schreibt die Wörter allerdings automatisch groß. 

14.6 File-local Types (seit C# 11.0) 

Als letztes neues Sprachfeature, kurz vor dem Erscheinen von C# 11.0, hat Microsoft einen neuen 

Zugriffsmodifizierer für Typen eingeführt, um deren Sichtbarkeit auf die Dateiebene zu 

beschränken. 

Seit C# 11.0 gibt es auch die Sichtbarkeit (Scope) file (neben den bisher bekannten public, 

private, protected, internal, protected internal und private protected). 

Mit file deklarierte Schnittstellen, Klassen, Strukturen, Enumerationen, Delegates und Records 

sind nur innerhalb der Datei sichtbar, in der sie deklariert werden. Eingebettete Typen können nicht 

mit file versehen werden. 

Hinweis: Jetzt wird vielen Lesern als erster Gedanke kommen: In C# ist doch "Best Practice" 

pro Datei nur einen einzigen Typ zu deklarieren. Wenn man diesen einen Typ dann mit file 

deklariert, ist er ja nicht sinnvoll, weil er nirgendwo anders sichtbar ist. Da sieht man wieder 

einmal, wie es mit "Best Practices" ist: Sie gelten eben nicht immer und überall          

In der Praxis kann es aber durchaus Sinn machen, mehrere kleinere Typen in einer Datei zu 

deklarieren, z.B. weil eine Klasse eine eigene, persönliche, d.h. nur für die Klasse geltende 

Datenstrukturen in Form einer anderen Klasse oder eines Record-Typen erhält. Tatsächlich 

eingeführt hat Microsoft den Scope file für die Source Generatoren: Sie sollen Hilfsklassen 

erzeugen können ohne in Konflikt mit anderen Generatoren zu geraten.  

In den Programmcodebeispielen zu diesem Buch macht der neue Scope file auch durchaus 

Sinn: Jede Datei behandelt ein Sprachfeature. Als Beispiel wird oft der Typname Person 



Klassendefinition  149 

 

verwendet, aber immer wieder anders implementiert. Die bisherige Trennung der verschiedenen 

Person-Implementierungen in verschiedene Namensräume kann nun entfallen. 

Das folgende Listing zeigt den Inhalt einer Datei, die drei Typen deklariert: 

▪ Schnittstelle IPerson mit Scope public 

▪ Klasse Person, die IPerson implementiert, mit Scope file 

▪ Klasse PersonManager mit Scope public 

Das Listing zeigt: PersonManager kann durchaus eine Instanz von Person an die Außenwelt (Code 

in anderen Dateien) liefern, denn diese können die Instanz ja über Schnittstelle IPerson 

verwenden. Die Außenwelt kann aber keine Instanz von Person hineinreichen, weil sie diese 

Klasse nicht kennt. 

Listing: C11_FileScope.cs 
namespace NET7Console; 

  

public interface IPerson 

{ 

 public int ID { get; set; } 

 public string? Name { get; set; } 

 public string GetInfo(); 

} 

  

file class Person : IPerson 

{ 

 public int ID { get; set; } 

 public string? Name { get; set; } 

 public string GetInfo() => $"{this.GetType().FullName} {this.ID}: {this.Name}"; 

} 

  

public class PersonManager  

{ 

 public int ID { get; set; } 

 public string? Name { get; set; } 

  

 public string GetInfoFromTestPerson() 

 { 

  Person p = new(); 

  return p.GetInfo(); 

 } 

  

 public IPerson CreatePerson()  

 { 

  return new Person(); 

 } 

  

 // Nicht möglich: File-

local type 'Person' cannot be used in a member signature in non-file-

local type 'PersonManager'.  

 //public int GetInfo(Person p)  

 //{ 

 // return p.GetInfo(); 

 //} 



150 Klassendefinition 

 

} 

Hinweise: Typen mit file-Scope bekommen einen vom Compiler vergebenen Namenszusatz, 

der sie eindeutig macht. Der Namensaufbau ist:  

<Dateiname>HEX-ZAHL__Typname z.B. 

NET7Console.<C11_FileScope>FA5B2AEDF9084311D7828CE3F0191286CC8A2A06CFD7

ACD9E4A15DDB99FB91671__Person 

Warnung: Ein Typ mit Scope file kann einen anderen Typen, der übergeordnet sichtbar ist, 

verdecken. Beispiel: Wenn es neben einer Klasse Person in der Datei Person.cs, die internal 

oder public ist, noch einen Klasse file class Person in Test.cs gibt, ist innerhalb dieser Datei 

Test.cs der Typ Person aus Person.cs nicht sichtbar! 

14.7 Statische Klassen 

An die Stelle des Visual Basic .NET-Schlüsselworts Module tritt in C# seit Version 2005 das 

Konstrukt static class. Eine solche Klasse darf nur statische Mitglieder besitzen. Die Klasse kann 

nicht von einer anderen .NET-Klasse explizit erben; sie erbt automatisch von System.Object.. 

Listing:Beispiel für eine statische Klasse in C# 
static class StatischeKlasse 

 { 

  public static void StatischesMitglied() { … } 

  // Nicht erlaubt: Instanzmitglied 

  // public void InstanzMitglied(); 

 } 

Eine statische Klasse kann nicht instanziiert werden, weil der Konstruktor automatisch als private 

deklariert ist. Dies ist also nicht erlaubt: 

StatischeKlasse obj = new StatischeKlasse (); 

Die statische Klasse kann nur über die Klasse selbst verwendet werden: 

StatischeKlasse.StatischesMitglied(); 

Eine häufig verwendete statische Klasse aus der .NET-Klassenbibliothek ist System.Environment. 

Console.WriteLine(Environment.OSVersion); 

Console.WriteLine(Environment.UserName); 

foreach (string s in Environment.GetLogicalDrives()) 

 { 

  Console.WriteLine(s); 

 } 

 



Datenmitglieder / Attribute (Fields und Properties)  151 

 

15 Datenmitglieder / Attribute (Fields und 
Properties) 
Attribute sind in der objektorientierten Lehre Datenmitglieder (alias Merkmal, Kennzeichen, 

Informationsdetail) einer Klasse (vgl. de.wikipedia.org/wiki/Attribut_(Objekt)). Microsoft kennt in 

der Programmiersprache C# und anderen .NET-Sprachen zwei Arten von Attributen und spricht 

von 

▪ Feldern (engl. Fields) und  

▪ Eigenschaften (engl. Properties) 

Praxishinweis: Sie sollten grundsätzlich Properties für öffentliche Attribute bevorzugen, da 

einige Bibliotheken (insbesondere GUI-Bibliotheken) Properties für die Datenbindung 

erfordern. Für private Klassenmitglieder können auch Fields in Frage kommen. 

15.1 Abweichungen von der Lehre 

Leider weicht Microsoft bei C# von den Begriffen von der objektorientierten Lehre erheblich ab: 

▪ Attribute einer Klasse nennt Microsoft Felder und Properties 

▪ Attribute sind bei Microsoft hingegen Metadaten (in anderen Sprachen besser "Annotationen" 

bezeichnet).  

 
Abbildung: Microsofts Definition von "Attribute"  [learn.microsoft.com/de-

de/dotnet/csharp/programming-guide/concepts/attributes/] 

 

 

https://de.wikipedia.org/wiki/Attribut_(Objekt)


152 Datenmitglieder / Attribute (Fields und Properties) 

 

 
Abbildung: Microsofts Definition von "Feld" [learn.microsoft.com/de-

de/dotnet/csharp/programming-guide/classes-and-structs/fields] 

Hinweise: In diesem Buch werden – im Einklang mit der objektorientierten Lehre – die 

Datenmitglieder einer Klasse als "Attribute" bezeichnet. Was Microsoft "Attribut" nennt, finden 

Sie hier im Kapitel "Annotationen".  

Felder sind in der Informatik eine Menge gleichartiger Daten (vgl. 

[de.wikipedia.org/wiki/Feld_(Datentyp)]). Hier bleibt das Buch aber bei der Verwendung des 

Begriffs 

15.2 Felder (Field-Attribute) 

Attribute (Daten) einer Klasse ohne Codehinterlegung werden – im Sprachjargon von Microsoft – 

durch "Felder" (engl. Fields) erzeugt.  

15.2.1 Deklaration von Feldern 

Felder können public (sichtbar für die Klasse und alle Nutzer), private (sichtbar nur für die Klasse) 

oder protected (sichtbar für die Klasse und geerbte Klassen) sein. In C# werden die 

Sichtbarkeitsmodifizierer vor den Field-Namen vorangestellt. Mehrere Fields gleichen Typs 

können durch ein Komma getrennt werden. Fields können bei der Deklaration explizit initialisiert 

werden durch eine Zuweisung. Wenn sie nicht explizit initialisiert werden, erhalten sie den 

Standardwert des Datentyps (z.B. 0 bei Zahlen, null bei Zeichenketten, false bei Boolean und den 

1.1.0001 bei DateTime). 

private string PersonalausweisNr; 

public string Vorname, Nachname; 

Protected System.DateTime Geburtstag; 

Protected string Geburtsort = "unbekannt"; 

15.2.2 Felder mit readonly 

Fields können auch mit dem Zusatz readonly deklariert werden. An ein readonly-Field kann man 

Werte nur in der Deklaration und letztmalig (!) im Konstruktor zuweisen. Danach sind sie 

unveränderlich. 

https://de.wikipedia.org/wiki/Feld_(Datentyp)


Datenmitglieder / Attribute (Fields und Properties)  153 

 

Hinweis: Auch in einem Objekt-Initialisierer ist das Field dann nicht mehr änderbar! Dies ist 

ein Unterschied zu einem Property mit Init Only Setter. Ein Property mit Init Only Setter kann 

auch in einem Objekt-Initialisierer noch geändert werden! 

public class Person 

{ 

 #region Fields 

  // Normales Fields ohne Initialiserung 

  public DateTime ZuletztGeaendert; 

  // Readonly Fields mit Initialiserung 

  public readonly DateTime AngelegtAm = DateTime.Now; 

 #endregion 

  

 #region Konstruktoren 

 public Person() 

 { 

  // letztmalige Änderungsmöglichkeit für das readonly field! 

  this.AngelegtAm = DateTime.Now; 

 } 

… 

} 

 

15.3 Eigenschaften (Property-Attribute) 

Ein Property dient dazu, ein Attribut (Datenmitglied) einer .NET-Klasse zu deklarieren, bei dem 

Programmcode sowohl beim Setzen des Werts als auch beim Lesen des Werts ausgeführt wird. Ein 

Property ist somit eine Mischung aus einem Attribut und einer Methode: Der Aufrufer sieht das 

Property als Attribut, die Klasse intern besitzt jedoch eine oder zwei Methoden: Die Get-Methode 

(alias Getter) zum Lesen und/oder die Set-Methode (alias Setter) zum Schreiben des Attributs. 

Getter und Setter können unterschiedliche Sichtbarkeiten besitzen (public, private, protected). Der 

Standard ist public. 

In der deutschen Dokumentation verwendet Microsoft den Begriff "Eigenschaft" als Übersetzung 

für "Property", im Gegensatz zu den normalen (einfachen) Attributen, die Microsoft "Field" bzw. 

"Feld" nennt. 

Was tatsächlich in Getter und Setter ausgeführt wird, ist dem Entwickler überlassen. Typische 

Beispiele für die Nutzung von Properties sind: 

▪ Im Getter wird ein Wert berechnet, statt ihn aus dem Speicher zu lesen. Der Setter fehlt, weil 

es keinen Sinn macht, einen berechneten Wert zu speichern (z.B. Alter: Diese Property würde 

im Getter das Alter aus Geburtstag und aktuellem Datum errechnen. Einen Setter gäbe es nur 

für Geburtstag, aber nicht für Alter). 

▪ Im Setter wird geprüft, ob der Wert Sinn macht (z.B. Geburtstag darf nicht in Zukunft liegen) 

▪ Man darf einen Wert setzen, aber nicht wieder auslesen (z.B. Kennwort) 

Architekturhinweis: Der Programmcode in Getter und Setter sollte nicht zu umfangreich 

werden. Er sollte nicht lang dauern und auch nichts unerwartetes tun, z.B. externe Ressourcen 

ansprechen. Aktionen, die länger dauern, sollten in Methoden implementiert werden. 

Ursprünglich gab es nur explizite Properties. Seit C# 2008 gibt es auch automatische Properties. 



154 Datenmitglieder / Attribute (Fields und Properties) 

 

15.3.1 Explizite Properties mit Field 

Explizite Properties (ausformulierte Properties) sind der Grundtypus, bei dem man für Getter und 

Setter jeweils einen eigenen Programmcodeblock { … } schreibt. Dabei definiert man 

typischerweise ein zugehöriges privates Field als Datenspeicher.  

Hinweis: Das zu einem Property gehörige explizite Field kann der Entwickler beliebig 

benennen. Üblich ist aber, entweder den Namen des Properties (z.B. Flugstunden) mit kleinem 

Anfangsbuchstaben (flugstunden) zu verwenden oder aber dem Namen einen Unterstrich 

voranzustellen (_Flugstunden). Oft vereinbaren Entwicklungsteams dazu interne Konventionen. 

Das folgende Property enthält noch keinen Programmcode außer dem Setzen und dem Lesen des 

privaten Fields. 

Listing: Ein Property mit zugehörigem Field in expliziter Schreibweise 
private long _Flugstunden; 

public long Flugstunden 

{ 

 get 

 { 

  return this._Flugstunden; 

 } 

 protected set 

 { 

  this._Flugstunden = value; 

 } 

} 

Die folgende Variante enthält im Setter eine Validierung. 

Listing: Ein Property mit zugehörigem Field in expliziter Schreibweise und Validierung im Setter 
private long _Flugstunden; 

public long Flugstunden 

{ 

 get 

 { 

  return this._Flugstunden; 

 } 

  

 protected set 

 { 

  if (value < 0) throw new ApplicationException("Ungültiger Wert"); 

  this._Flugstunden = value; 

 } 

Seit C# 7.0 kann Properties auch verkürzt per Lambda-Expression implementieren.  

Listing: Ein Property mit zugehörigem Field in expliziter Schreibweise per Lambda 
private long _FlugStunden; 

public long Flugstunden 

{ 

 get => this._Flugstunden; 

 protected set => this._Flugstunden = value; 

} 



Datenmitglieder / Attribute (Fields und Properties)  155 

 

Man kann die Lambda-Schreibweise für Getter und Setter getrennt wählen. So ist es z.B. möglich, 

in dem Setter noch Programmcode zu hinterlegen (z.B. zur Validierung), während der Getter 

prägnant per Lambda-Ausdruck nur den Wert des privaten Fields abruft. 

private long _FlugStunden; 

public long Flugstunden 

{ 

 get => this._Flugstunden; 

 protected set 

 { 

  if (value < 0) throw new ApplicationException("Ungültiger Wert"); 

  this._Flugstunden = value; 

 } 

} 

Hinweis: Bei ausformulierten Properties kann man get weglassen, wenn der Lesezugriff nur 

über das korrespondiere Field erfolgen soll. Auch das Field ist optional; man kann den Wert 

auch woanders speichern. Theoretisch kann man ein Property auch wie eine Methode mit einem 

Parameter verwenden. Dies ist aber kein guter Programmierstil. 

15.3.2 Automatische Properties 

Die automatischen Eigenschaften (engl. Automatic Property) machen die Syntax prägnanter für 

solche Property-Attribute, die nichts anderes tun als ein privates Field-Attribut zu lesen und zu 

beschreiben. In diesem Fall kann man sich die explizite Definition des privaten Field-Attributs 

sparen und die Erzeugung dem Compiler überlassen. Damit verkürzt sich auch die Schreibweise 

von Getter und Setter radikal. Automatische Eigenschaften gibt es in C# seit Version 3.0 und in 

Visual Basic seit Version 2010. Seit C# 6.0 und Visual Basic 14 kann man automatische Properties 

auch direkt bei der Deklaration initialisieren. 

Ein Property in C# mit zugehörigem Field als automatisches Property deklariert man so: 

public long Flugstunden { get; set; } 

Getter und Setter können unterschiedliche Sichtbarkeiten besitzen: 

public long Flugstunden { get; protected set; } 

Hinweis: Eine Validierung oder andere Logik ist bei automatischen Properties nicht möglich. 

Bei einer automatischen Property erzeugt der Compiler ein privates Field, dessen Namen der 

Entwickler nicht kennt und nicht sieht. Er kann es nicht ansprechen, d.h. alle Zugriffe laufen 

über das Property. Erst ab 7.3 kann man Annotationen für diese automatisch generierten privaten 

Fields setzen. 

Wenn keine Validierung oder andere Logik notwendig ist, sollte man für öffentliche 

Klassenmitglieder dennoch immer ein automatisches Property realisieren und nicht der 

Versuchung verfallen, ein Field anzulegen. Einige Bibliotheken wie die Windows Presentation 

Foundation (WPF) erfordern Properties für die Datenbindung. 

Seit C# 6.0 kann man automatische Properties, für die es keine explizite Felddeklaration gibt, direkt 

im Rahmen der Deklaration mit einem Wert initialisieren und auch automatische Properties 

schaffen, die nach ihrer Initialisierung unveränderbar sind, indem sie nur einen Getter besitzen. 

Lediglich im Konstruktor der Klasse kann der Entwickler solche Eigenschaften dann noch 

letztmalig ändern. Eine normale Methode oder der Nutzer des Objekts kann das Property nicht 

verändern. 



156 Datenmitglieder / Attribute (Fields und Properties) 

 

Hinweis: Man darf den Setter bei automatischen Properties weglassen, aber es muss immer 

einen Getter geben! 

Listing: Automatische Properties mit Initialisierung und optional auch ohne Setter 
public class Kontakt  

 { 

  // Automatic Properties mit Initialisierung 

  public string Land { get; set; } = "Deutschland"; 

  // Automatic Properties mit Initialisierung und ohne Setter 

  public DateTime ErzeugtAm { get; } = DateTime.Now; 

 

  public Kontakt(DateTime erzeugtAm) 

  { 

   // Getter Only Auto Property im Konstruktor setzen 

   ErzeugtAm = DateTime.Now; 

  } 

} 

15.3.3 Properties, die nach Initialisierung unveränderlich sind (Init 
Only Properties) 

Seit C# 9.0 gibt es zusätzlich auch automatische Properties, deren Werte nur bei der 

Objektinitialisierung (Konstruktionsphase) gesetzt werden können und die danach unveränderlich 

sind. Man nennt diese Properties "Init Only Property" und sie werden mit dem "Init Only Setter" 

deklariert. Man kann Init Only Properties in Klassen, Strukturen und Record-Typen verwenden. 

Ein solcher "Init Only Setter" verwendet das Schlüsselwort init anstelle von set: 

class Person 

{ 

   public int ID { get; init; } 

… 

} 

Dies geht bei automatischen Properties ebenso wie bei ausformulierten Properties: 

private int id; 

public int ID 

{ 

 get { return id; } 

 init { id = value; } 

} 

und auch Properties in der Lambda-Schreibweise: 

private int id; 

public int ID 

{ 

 get => id; 

 init => id = value; 

} 

Hinweis: init und set dürfen nicht beide verwendet werden. Bei ausformulierten Properties kann 

man get weglassen; bei automatischen Properties nicht. 

Das Init Only Property kann ein Softwareentwickler nur noch bei der Objektinitialisierung 

(Konstruktionsphase) eines Objekts setzen, also an zwei Stellen: 



Datenmitglieder / Attribute (Fields und Properties)  157 

 

▪ Konstruktor der Klasse 

public Person(int ID)  

{ 

   this.ID = ID; 

} 

… 

Person hs1 = new Person(123); 

▪ Objekt-Initialisier direkt bei der Instanziierung 

Person hs2 = new Person() { ID = 123 } ; 

Bei der Instanziierung ist auch möglich, den Wert sowohl per Konstruktorparameter zu setzen als 

auch per Objekt-Initialisier einen (ggf. abweichenden) Wert zu setzen. 

Person hs3 = new Person(123) { ID = 456 }; 

Das folgende Listing zeigt ein komplettes Beispiel für die Klasse mit zwei Properties mit Init Only 

Setters. Der Nutzer der Klasse darf nach der Instanziierung nur noch den Nachnamen (Surname) 

verändern, aber nicht den Vornamen und die ID der Person. 

Hinweis: Auch innerhalb der Klasse können die Properties mit Init Only Setters nicht mehr 

verändert werden. Eine Methode ChangeID() ist nicht erlaubt! 

public static void InitOnlysetters() 

  { 

   Person p1 = new Person(123, "Susanne", "Müller"); 

   Person p2 = new Person("Susanne", "Müller") { ID = 123 } ; 

   Person p3 = new Person(123, "Susanne", "Müller") { ID = 456 }; 

 

   p3.Surname = "Schulze"; 

   // p3.Firstname = "Marianne";// verboten durch "Init Only Setter"! 

   // p3.ID = 456; // verboten durch "Init Only Setter"! 

  } 

 

  class Person 

  { 

   public int ID { get; init; } 

   public string Firstname { get; init; } 

   public string Surname { get; set; } 

 

   public Person() 

   {   } 

   public Person(int ID)  

 

   { 

    this.ID = ID; 

   } 

 

   public Person(string firstname, string surname) : this() 

   { 

    this.Firstname = firstname; 

    this.Surname = surname; 

   } 

 

   public Person(int id, string firstname, string surname) : this(id) 

   { 



158 Datenmitglieder / Attribute (Fields und Properties) 

 

    this.Firstname = firstname; 

    this.Surname = surname; 

   } 

 

   public override string ToString() 

   { 

    return this.Firstname.ToUpper() + " " + this.Surname.ToUpper(); 

   } 

 

   // verboten durch "Init Only Setter"! 

   //public void ChangeID(int newID) 

   //{ 

   // this.ID = newID; 

   //} 

  } 

15.3.4 Init Only Setters in .NET Framework und .NET Standard 

Bei der Verwendung von Init Only Setters in Projekten, die auf .NET Framework oder .NET 

Standard basieren, kommt es zur Fehlermeldung "Error CS0518: Predefined type 

'System.Runtime.CompilerServices.IsExternalInit' is not defined or imported".  

 

Abbildung: Fehlermeldung bei einem Init Only Setter 

Das passiert selbst nach der Erhöhung der <LangVersion> auf eine Zahl >= 9, weil es die Klasse 

System.Runtime.CompilerServices.IsExternalInit im klassisches .NET Framework und .NET 

Standard nicht gibt. 

Allerdings kann man dies mit einem Trick lösen: Diese Klasse ist eine Annotation (.NET-

Attribute), das man selbst implementieren kann. Man fügt folgenden Programmcode einfach in 

jedes Projekt ein. 

Listing: Hack für die Verwendung von C# >= 9 in .NET Standard und .NET Framework 
using System.ComponentModel; 

 

namespace System.Runtime.CompilerServices 

{ 

 [EditorBrowsable(EditorBrowsableState.Never)] 

 public class IsExternalInit { } 

} 

15.3.5 Zusammenfassung zu Properties 

Das folgende Listing zeigt alle Spielarten von Properties im Vergleich. 

public class Person 

 { 

…  

  #region Properties 



Datenmitglieder / Attribute (Fields und Properties)  159 

 

  // Automatisches Property mit öffentlichem Getter und Setter 

  public string Name { get; set; } 

  // Automatisches Property mit öffentlichem Getter und privatem Setter und Initi

alisierung 

  public char Geschlecht { get; private set; } = '?'; 

  // Explizites Property mit privatem Field und öffentlichem Getter und Setter 

  private string _Vorname; 

  public string Vorname 

  { 

   get { return _Vorname; } 

   set 

   { 

    if (String.IsNullOrEmpty(value)) throw new ApplicationException("Vorname darf

 nicht leer sein"); 

    if (value.Length>50) _Vorname = value.Substring(0,50); 

    else _Vorname = value; 

   } 

  } 

  // Explizites Property nur mit Getter (berechnetes Property) 

  public string GanzerName 

  { 

   get { return $"{Vorname} {Name}"; } 

  } 

  // Explizites Property nur mit Getter (berechnetes Property),Lambda-Syntax 

  public string GanzerNameMitGeschlecht => $"{Vorname} {Name} ({Geschlecht})"; 

  // Explizites Property nur mit Setter 

  private string _KennwortHash; 

  public string Kennwort 

  { 

   set { _KennwortHash = value.GetHashCode().ToString(); } 

  } 

  #endregion 

 } 

15.4 Pflichtmitglieder (Required Members) 

Seit C# 11.0 gibt es ein neues Schlüsselwort required für Fields und Properties. Wenn ein 

Datenmitglied einer Klasse diesen Zusatz erhält, dann ist zwingend erforderlich, dass dieses 

Datenmitglied entweder im Konstruktor oder Objekt-Initialisierer vom Nutzer der Klasse gesetzt 

wird. Ein Konstruktor ist mit [SetsRequiredMembers] annotierbar, was dem Compiler anzeigt, 

dass er alle erforderlichen Mitglieder belegt. 

Hinweis: Der Zusatz required ist erlaubt bei Datenmitgliedern in Klassen, Strukturen und 

Record-Typen, aber nicht in Schnittstellen. 

Beispiel: Die Klasse im folgenden Listing deklariert ein Field und zwei Properties mit required 

sowie eine weitere Property ohne diesen Zusatz. Zudem gibt es neben dem parameterlosen 

Konstruktor zwei weitere Konstruktoren mit Parametern, die beide mit [SetsRequiredMembers] 

annotiert sind; allerdings setzt nur einer von beiden alle drei der erforderlichen Mitglieder auf 

belegt.  

Achtung: Der Code kompiliert auch, wenn [SetsRequiredMembers] gar nicht alle 

erforderlichen Mitglieder setzt, siehe zweiter Konstruktor im folgenden Listing. Es gibt auch 

keine Warnung! Das heißt: Der Compiler verlässt sich auf die Angabe [SetsRequiredMembers] 



160 Datenmitglieder / Attribute (Fields und Properties) 

 

des Entwicklers! Es gab den Plan, dass der Compiler das tatsächliche Setzen aller 

Pflichtmitglieder validiert; er wurde jedoch verworfen. Es gab beim C#-Entwicklungsteam den 

Plan, dass man einzelne Mitglieder ein- und ausschließen kann. Auch dies ist Stand C# 11.0 

nicht möglich. 

"An earlier version of this proposal had a larger metalanguage around initialization, allowing 

adding and removing individual required members from a constructor, as well as validation that 

the constructor was setting all required members. This was deemed too complex for the initial 

release, and removed. We can look at adding more complex contracts and modifications as a 

later feature." [https://learn.microsoft.com/en-us/dotnet/csharp/language-

reference/proposals/csharp-11.0/required-members] 

Listing: CS11_Required.cs 
public class Consultant 

{ 

 public Consultant() { } 

  

 [SetsRequiredMembers] 

 public Consultant(int id, string name, DateTime created) => (ID, Name, Created) 

= (id, name, created); 

 [SetsRequiredMembers] 

 public Consultant(int id, string name) => (ID, Name) = (id, name); 

  

 public required int ID; // Required Field 

 public required string Name { get; init; } // Required Property 

 public required DateTime Created { get; init; } = DateTime.Now; // Required Prop

erty 

  

 public string? City { get; set; } // nicht "required"! 

} 

Diese Klasse ist nun wie folgt instanziierbar. 

1. Aufruf des Konstruktors mit allen drei erforderlichen Angaben: 

var p1 = new Consultant(1, "Dr. Holger Schwichtenberg", DateTime.Now); 

2. Aufruf des Konstruktors mit nur zwei der drei Pflichtangaben: 

var p2 = new Consultant(2, "Dr. Joachim Fuchs"); 

3. Aufruf des parameterlosen Konstruktors und Initialisierung aller drei Angaben im Objekt-

Initialisierer: 

var p3 = new Consultant() { ID = 3, Name = "Dr.habil. Klaus Schmaranz",  

                            Created = DateTime.Now  }; 

Nicht erlaubt ist hingegen: 

▪ Parameterloser Konstruktor ohne Objekt-Initialisierer 

 

▪ Parameterloser Konstruktor mit unvollständigem Objekt-Initialisierer 



Datenmitglieder / Attribute (Fields und Properties)  161 

 

 

Praxishinweis: Das Beispiel zeigt auch: Es reicht nicht, dass das Property Created eine 

Standardwertzuweisung in der Klasse besitzt. Der Aufrufer muss trotzdem Created belegen. 

Visual Studio zeigt übrigens in den Tooltips deutlich an, wenn das Setzens eines Mitglieds 

erforderlich ist. 

 



162 Methoden 

 

16 Methoden 
Methoden sind Operationen in Klassen, die innerhalb der Klasse oder von Nutzern aufgerufen 

werden können. Methoden können einen Rückgabewert liefern. Parameter von Methoden können 

optional sein. Weggelassene Parameter werden durch Vorgabewerte ersetzt, die in der 

Methodendeklaration stehen müssen. Der Aufrufer gibt in der Regel die Parameter in der 

Deklaration vorgegebenen Reihenfolge an. Durch eine spezielle Syntax kann man aber die 

Parameter in einer beliebigen Reihenfolge angeben. Optionale Parameter dürfen Wertelose 

Wertetypen (Nullable Types) sein. 

16.1 Methodendefinition und Rückgabewerte 

In C# beginnt eine Methodendefinition mit der Sichtbarkeit. Danach folgt der Datentyp des 

Rückgabewerts. In C# gibt es kein direktes Schlüsselwortpendant zum Sub und Function aus 

Visual Basic .NET. Methoden ohne Rückgabewerte werden durch den Datentyp void signalisiert.  

Der Rückgabewert wird in C# wie in Visual Basic .NET mit return festgelegt. 

public class MethodenDemo 

 { 

  /// <summary> 

  /// Methode ohne Rückgabewert 

  /// </summary> 

  public void DruckeUhrzeit() 

  { 

   Console.WriteLine("Aktuelle Uhrzeit: " + DateTime.Now.ToShortTimeString()); 

  } 

 

  /// <summary> 

  /// Methode mit Zeichenkette als Rückgabewert 

  /// </summary> 

  public string GetUhrzeit() 

  { 

  return (DateTime.Now.ToShortTimeString()); 

  } 

} 

Beim Methodenaufruf sind immer runde Klammern zu verwenden, auch wenn es keine Parameter 

gibt! 

DruckeUhrzeit(); 

var Uhrzeit = GetUhrzeit(); 

Console.WriteLine(Uhrzeit); 

16.2 Methodenparameter  

Eine Methode kann eine Parameterliste besitzen, wobei der Typ – wie bei Variablendeklarationen  

– auch hier jeweils vor dem Parameternamen genannt wird.  

  /// <summary> 

  /// Methode mit Parametern 

  /// </summary> 

  public double Berechnen(int a, int b, double c) 

  { 

   return (a + b) / Math.Pow(c, 2); 



Methoden  163 

 

  } 

16.3 Methodenüberladungen 

Methoden können überladen sein, d.h. der gleiche Methodenname darf mehrfach mit 

verschiedenen Parameterlisten verwendet werden, sofern beim Aufruf die Zuordnung zu einer der 

Überladungen noch eindeutig ist. Für überladene Methoden gibt es kein Schlüsselwort in C#, 

während Visual Basic .NET dafür Overloads verwendet.  

  /// <summary> 

  /// Überladene Methode mit Parametern 

  /// </summary> 

  public double Berechnen(double a, double b, double c) 

  { 

   return (a + b) / Math.Pow(c, 2); 

  } 

Bei den folgenden Aufrufen geht der erste Aufruf an die erste Variante mit den zwei Int-Werten in 

den ersten Parametern, während der zweite Aufruf die Überladung mit den double-Werten aufrufen 

muss, da 2.8 nicht in int a passen würde. Dass der zweite Parameterwert hier kein double ist, stört 

nicht. Der Compiler konvertiert automatisch die 3 in 3.0. 

Console.WriteLine(Berechnen(2,3, 4.456)); // Ruft die erste Überladung 

Console.WriteLine(Berechnen(2.8, 3, 4.456)); // Ruft die zweite Überladung 

Hinweis: Überladungen müssen sich hinsichtlich der Parameteranzahl und Parametertypen 

unterscheiden. Nicht gültig ist, wenn sich zwei Methodendeklarationen nur hinsichtlich des 

Rückgabetyps oder den Zusätzen out und ref zu den Parametern unterscheiden. 

16.4 Prioritäten für Methodenüberladungen (ab C# 13.0) 

Die in C# 13.0 und .NET 9.0 neu eingeführte Annotation [OverloadResolutionPriority] im 

Namensraum System.Runtime.CompilerServices bietet eine bedeutende Verbesserung für 

Überladungen von Methoden: Diese Annotation ermöglicht es, die Priorität von Überladungen 

explizit festzulegen, um die Entscheidung, welche Methodenüberladung der Compiler aufrufen 

soll, gezielt zu steuern. 

 

Mit [OverloadResolutionPriority] können Entwicklerinnen und Entwickler festlegen, dass 

bestimmte Überladungen bei der Entscheidung, welche Überladung verwendet werden soll, eine 

höhere Priorität erhalten sollen. Dies hilft zum Beispiel, wenn mit [Obsolet] annotierte 

Überladungen einer Methode existieren. Bei der neuen Annotation [OverloadResolutionPriority] 

gibt man eine Integer-Zahl an: Je höher die in der Annotation angegebene Zahl ist, je höher 

die Priorität. 

 

Das folgende Listing zeigt ein Beispiel: Der Aufruf von Print() mit einer Zeichenkette würde ohne 

[OverloadResolutionPriority] immer zur Implementierung von Print() mit einem String-Parameter 

gehen, auch wenn diese Überladung als [Obsolete] gekennzeichnet ist. Durch das Einfügen von 

[OverloadResolutionPriority] kann man den Compiler auf eine andere Implementierung umlenken. 

Würde man in dem Beispiel sowohl der Implementierung mit Parametertyp object als auch 

ReadOnlySpan<char> den gleichen Prioritätswert geben, wüsste der Compiler nicht, welche 

Konvertierung er machen soll und verweigert die Übersetzung: 



164 Methoden 

 

The call is ambiguous between the following methods or properties: 

'CS13_OverloadResolutionPriority.Print(object, ConsoleColor)' and 

'CS13_OverloadResolutionPriority.Print(ReadOnlySpan<char>, ConsoleColor)' 

Mit einem abweichenden Prioritätswert kann man den Compiler zu der einen oder der anderen 

Implementierung lenken, hier im Listing mit Wert 10 zu public void Print(ReadOnlySpan<char> 

text, ConsoleColor color). 

Die Implementierung public void Print(object text, ConsoleColor color) kommt aber weiterhin 

zum Einsatz für alle anderen Datentypen, zum Beispiel Zahlen wie 42, denn diese kann der 

Compiler nicht automatisch in ReadOnlySpan<char> konvertieren. 

Listing: Einsatz der neuen Annotation [OverloadResolutionPriority] 
using System.Runtime.CompilerServices; 

  

namespace NET9_Console.CS13; 

  

public class CS13_OverloadResolutionPriority 

{ 

 public void Run() 

 { 

  CUI.Demo(nameof(CS13_OverloadResolutionPriority)); 

  

  // verwendet Print(ReadOnlySpan<char> text) 

  ReadOnlySpan<char> span = "www.IT-Visions.de".AsSpan(); 

  Print(span); 

  

  // verwendet Print(ReadOnlySpan<char> text) wegen OverloadResolutionPriority(10

) 

  Print("Dr. Holger Schwichtenberg"); 

  

  // verwendet public void Print(object obj) 

  Print(42); 

  

 } 

  

 [Obsolete] 

 //[OverloadResolutionPriority(10)] 

 public void Print(string text) 

 { 

  // Set the console color 

  Console.ForegroundColor = ConsoleColor.Red; 

  

  // Print the text 

  Console.WriteLine("string: " + text); 

  

  // Reset the console color 

  Console.ResetColor(); 

 } 

  

 [OverloadResolutionPriority(1)] 

 public void Print(object obj) 

 { 

  // Set the console color 



Methoden  165 

 

  Console.ForegroundColor = ConsoleColor.Yellow; 

  

  // Print the text 

  Console.WriteLine("Object: " + obj.ToString()); 

  

  // Reset the console color 

  Console.ResetColor(); 

 } 

  

 [OverloadResolutionPriority(10)] 

 public void Print(ReadOnlySpan<char> text) 

 { 

  // Set the console color 

  Console.ForegroundColor = ConsoleColor.Green; 

  

  // Print the text 

  Console.WriteLine("ReadOnlySpan<char>: " + text.ToString()); 

  

  // Reset the console color 

  Console.ResetColor(); 

 } 

  

} 

 

Abbildung: Ausgabe des Listings 

Würde man bei public void Print(string text, ConsoleColor color) auch eine Overload Resolution 

Priority von mindestens 10 setzen 

 [Obsolete] 

[OverloadResolutionPriority(10)] 

public void Print(string text, ConsoleColor color) 

{ 

 // Set the console color 

 Console.ForegroundColor = color; 

  

 // Print the text 

 Console.WriteLine("string: " + text); 

  

 // Reset the console color 

 Console.ResetColor(); 

} 

dann wird bei 

Print("Dr. Holger Schwichtenberg", ConsoleColor.Yellow); 

die Überladung mit string-Parameter genommen, auch wenn diese mit [Obsolete] markiert ist. 



166 Methoden 

 

16.5 Optionale und benannte Parameter 

Seit C# 4.0 gibt es optionale und benannte Parameter. Zuvor musste man optionale Parameter durch 

Methodenüberladung nachbilden. Optionale Parameter werden in C# durch einen Vorgabewert in 

dem Methodenkopf angezeigt. Optionale Parameter dürfen nur am Ende der Parameterliste 

erscheinen. 

Listing: Methode mit zwei optionalen Parametern 
/// <summary> 

/// Methode mit zwei optionalen Parametern 

/// </summary> 

public void Print(string text, ConsoleColor Farbe = ConsoleColor.Gray, bool Datum

 = false) 

  { 

   if (Datum) text = DateTime.Now.ToShortTimeString() + ": " + text; 

   ConsoleColor bisherigeFarbe = Console.ForegroundColor; 

   Console.ForegroundColor = Farbe; 

   Console.WriteLine(text); 

   Console.ForegroundColor = bisherigeFarbe; 

  } 

Die obige Methode kann man wie folgt aufrufen: 

CS10_Parameter obj = new CS10_Parameter(); 

obj.Print("Ausgabe ohne spezielle Farbe und ohne Datum."); 

obj.Print("Ausgabe in grün und ohne Datum.", ConsoleColor.Green); 

obj.Print("Ausgabe in grün und mit Datum.", ConsoleColor.Green, true); 

Benannte Parameter erlauben die Angabe der Parameter in beliebiger Reihenfolge unabhängig von 

der Reihenfolge in der Deklaration. Ein benannter Parameter ist allein Sache des Aufrufers, d.h. 

hierzu sind keine Änderungen in der Deklaration notwendig. Der Aufrufer gibt durch 

Parametername und Doppelpunkt an, welchen Parameter er übergeben will. 

obj.Print(text: "Ausgabe ohne spezielle Farbe und mit Datum.", Datum: true); 

Von C# 4.0 bis C# 7.1 konnte man zwar benannte Parameterwerte und unbenannte Parameterwerte 

mischen in einem Aufruf, aber es galt die Regel, dass unbenannte Parameterwerte nur am Anfang 

vor dem ersten benannten Parameterwert verwendet werden dürfen. Dies wurde erst in C# 7.2 

aufgehoben ("Non-trailing named arguments"). 

// Aufruf gemischt mit unbenannten und benannten Parametern 

obj.Print("Ausgabe ohne spezielle Farbe und mit Datum.", Datum: true); 

obj.Print("Ausgabe ohne spezielle Farbe und mit Datum.", ConsoleColor.Green, Datu

m: true); 

obj.Print("Ausgabe ohne spezielle Farbe und mit Datum.", Farbe: ConsoleColor.Gree

n, Datum: true); 

  

// erst ab C# 7.2 möglich: Benannte und unbenannte Parameter an beliebiger Stelle 

obj.Print(text: "Ausgabe ohne spezielle Farbe und mit Datum.", ConsoleColor.Green

, true); 

Achtung: Wenn man das Kompilat eines optionalen Parameteraufrufs mit einem Decompiler 

betrachtet, wird man überrascht: Die Aufrufe erfolgen gar nicht mit weniger Parametern, 

vielmehr werden die Vorgabewerte mit in den Aufruf hineinkompiliert. Das gilt sowohl für C# 

als auch Visual Basic.   



Methoden  167 

 

  
Abbildung: Dekompilat mit ILSpy [github.com/icsharpcode/ILSpy] 

In der Verwendung optionaler Parameter besteht also eine Gefahr: Wenn die optionale Methode in 

einer anderen Assembly als der Aufrufer ist und diese beiden Assemblys unabhängig voneinander 

kompiliert werden (also nicht in einer Projektmappe sind), dann kann es zu Inkonsistenzen 

kommen. Nach einer Änderung der Vorgabewerte würden nicht erneut kompilierte Aufrufer 

weiterhin die alten Werte verwenden. 

16.6 Parametermodifizierer in, ref und out 

Mit dem Zusatz in bei einem Parameter deklariert eine Methode, dass sie den übergebenen 

Parameter nur lesen, aber nicht verändern wird. 

Für die Übergaberichtung der Parameter vom Aufrufer an eine Methode gibt es in C# für den Call-

by-Value-Fall (Übergabe als Wert) kein Schlüsselwort und für den Call-by-Reference-Fall 

(Übergabe eines Zeigers) zwei Wörter: 

▪ Der Zusatz ref vor einem Parameter (entspricht ByRef in Visual Basic .NET) bedeutet, dass 

der Wert bzw. das Objekt von außen hereingegeben wird und innerhalb der Methode verändert 

werden darf. Seit C# 12.0 gibt es auch ref readonly. Mit diesem Zusatz darf die Methode den 

empfangenen Wert bzw. die empfangene Objektreferenz nicht ändern. Bei der Übergabe von 

Referenztypen per ref readonly kann die Methode aber weiterhin die einzelnen Objektinhalte 

ändern. 

▪ Der Zusatz out vor einem Parameter bedeutet, dass der Aufrufer nur leeren (nicht 

initialisierten) Speicherplatz hereingibt. Der Wert muss zwangläufig von der Methode selbst 

gesetzt werden und wird dann dem Aufrufer geliefert. 

Hinweise: Wichtig ist, dass man nicht nur in der Methodensignatur selbst out und ref verwenden 

muss, sondern auch beim Aufruf der Methode. 

Zudem ist zu beachten, dass keine Properties als Zeiger übergeben werden können! 

Referenztypen werden immer als Zeiger übergeben! Wenn ein Referenztyp übergeben wird, 

kann die aufgerufene Methode immer die Daten im Objekt ändern. Die Modifizierer verhindern 

dann ggf. nur, dass ein anderes Objekt zugewiesen wird! 

Wichtig für das Verhalten ist, ob als Parameter ein Wertetyp oder ein Referenztyp übergeben wird, 

siehe Tabelle. 

 Parameter ist 

Wertetyp 

Parameter ist Referenztyp 

 Methode kann 

Wert ändern 

Methode kann einzelne 

Werte im übergebenen 

Objekt ändern 

Methode kann neues 

Objekt zuweisen 

Übergabe ohne 

Modifizierer 

Ja, aber Aufrufer 

bekommt den 

neuen Wert nicht 

Ja Ja, aber Aufrufer 

bekommt das neue 

Objekt nicht 

Übergabe mit in Nein Ja Nein 



168 Methoden 

 

 Parameter ist 

Wertetyp 

Parameter ist Referenztyp 

 Methode kann 

Wert ändern 

Methode kann einzelne 

Werte im übergebenen 

Objekt ändern 

Methode kann neues 

Objekt zuweisen 

Übergabe mit ref Ja Ja Ja 

Übergabe mit ref 

readonly (seit C# 

12.0) 

Nein Ja Nein 

Übergabe mit out Ja Ja Ja 

Tabelle: Unterschiedliche Auswirkungen der Parametermodifizierer bei Übergabe von 

Wertetypen und Referenztypen 

Die folgenden drei Listings zeigen dazu Beispiele inklusive eines Screenshots der jeweiligen 

Bildschirmausgaben. 

Listing: Wirkung der Parametermodifizierer, wenn Parameter Wertetyp ist 
/// <summary> 

/// Wertetypen an Methode übergeben 

/// </summary> 

public void ParameterValueTypes() 

 { 

  CUI.H2(nameof(ParameterValueTypes)); 

  #region  

  int a = 10; 

  int b = 20; 

  int c = 30; 

  int d = 40; 

  int e = 50; 

  CUI.H3("Der Aufrufer hat vorher folgende Werte:"); 

  Console.WriteLine(a + ";" + b + ";" + c + ";" + d + ";" + e);  

  string r = ParameterDemoValueTypes(a, b, ref c, ref d, out e); 

  CUI.H3("Die Methode hat folgende Werte:"); 

  Console.WriteLine(r); // 11;20;31;40 

  CUI.H3("Der Aufrufer hat nachher folgende Werte:"); 

  Console.WriteLine(a + ";" + b + ";" + c + ";" + d + ";" + e); 

  #endregion 

 } 

 

public string ParameterDemoValueTypes(int WertValue, in int WertIn, ref int 

WertRef, ref readonly int WertRefRO, out int WertOut) 

{ 

  WertValue++; 

  // nicht erlaubt, da in-Wert: WertIn++; 

  WertRef++; 

  // WertRefRO++; // nicht erlaubt, da readonly 

  // nicht erlaubt, da noch nicht initialisiert: WertOut++; 

  WertOut = 41; 

  return WertValue.ToString() + ";" + WertIn.ToString() + ";" + 

WertRef.ToString() + ";" + WertOut.ToString(); 



Methoden  169 

 

} 

 

Abbildung: Ausgabe des vorherigen Listings 

Listing: Parameter ist Referenztyp (class Counter). Methode ändert Wert im Objekt 
class Counter 

{ 

 public string Name { get; set; } 

 public int Value { get; set; } 

 public override string ToString() => Name + "=" + Value; 

} 

 

/// <summary> 

/// Referenztypen an Methode übergeben, die Wert in dem Objekt ändert 

/// </summary> 

public void ParameterReferenceType1() 

{ 

  CUI.H2(nameof(ParameterReferenceType1)); 

  Counter a = new Counter() { Name = "a", Value = 10 }; 

  Counter b = new Counter() { Name = "b", Value = 20 }; 

  Counter c = new Counter() { Name = "c", Value = 30 }; 

  Counter d = new Counter() { Name = "d", Value = 40 }; 

  Counter e = new Counter() { Name = "e", Value = 50 };  

  CUI.H3("Der Aufrufer hat vorher folgende Werte:"); 

  Console.WriteLine(a); 

  Console.WriteLine(b); 

  Console.WriteLine(c); 

  Console.WriteLine(d); 

  Console.WriteLine(e); 

  string r = ParameterDemoRef1(a, b, ref c, ref d, out e); 

  CUI.H3("Die Methode hat folgende Werte:"); 

  Console.WriteLine(r); 

  CUI.H3("Der Aufrufer hat nachher folgende Werte:"); 

  Console.WriteLine(a); 

  Console.WriteLine(b); 

  Console.WriteLine(c); 

  Console.WriteLine(d); 

  Console.WriteLine(e); 

} 

 

public string ParameterDemoRef1(Counter WertValue, in Counter WertIn, ref Counter 

WertRef, ref readonly Counter WertRefRO, out Counter WertOut) 

 { 

  WertValue.Value++; 



170 Methoden 

 

  WertIn.Value++; 

  WertRef.Value++; 

  WertRefRO.Value++; 

  WertOut = new Counter { Name = "d", Value = 41 }; 

  return WertValue.ToString() + ";" + WertRef.ToString() + ";" + 

WertIn.ToString() + ";" + WertOut.ToString(); 

 } 

 

Abbildung: Ausgabe des vorherigen Listings 

Listing: Parameter ist Referenztyp (class Counter). Methode ändert Objektreferenz 
class Counter 

{ 

 public string Name { get; set; } 

 public int Value { get; set; } 

 public override string ToString() => Name + "=" + Value; 

} 

 

/// <summary> 

/// Referenztypen an Methode übergeben, die neues Objekt zuweist ändert 

/// </summary> 

public void ParameterReferenceType2() 

 { 

  CUI.H2(nameof(ParameterReferenceType2)); 

  Counter a = new Counter() { Name = "a", Value = 10 }; 

  Counter b = new Counter() { Name = "b", Value = 20 }; 

  Counter c = new Counter() { Name = "c", Value = 30 }; 

  Counter d = new Counter() { Name = "d", Value = 40 }; 

  Counter e = new Counter() { Name = "e", Value = 50 };  

  CUI.H3("Der Aufrufer hat vorher folgende Werte:"); 

  Console.WriteLine(a); 

  Console.WriteLine(b); 

  Console.WriteLine(c); 



Methoden  171 

 

  Console.WriteLine(d); 

  Console.WriteLine(e); 

  string r = ParameterDemoRef2(a, b, ref c, ref d, out e); 

  CUI.H3("Die Methode hat folgende Werte:"); 

  Console.WriteLine(r); 

  CUI.H3("Der Aufrufer hat nachher folgende Werte:"); 

  Console.WriteLine(a); 

  Console.WriteLine(b); 

  Console.WriteLine(c); 

  Console.WriteLine(d); 

  Console.WriteLine(e); 

} 

 

public string ParameterDemoRef2(Counter WertValue, in Counter WertIn, ref Counter 

WertRef, ref readonly Counter WertRefRO, out Counter WertOut) 

{ 

  WertValue = new Counter { Name = "a*", Value = 101 }; 

  // WertIn = new Counter { Name = "b*", Value = 100 }; // nicht erlaubt 

  WertRef = new Counter { Name = "c*", Value = 102 }; 

  // WertRefRO = new Counter { Name = "c*", Value = 103 }; // nicht erlaubt, da 

readonly 

  WertOut = new Counter { Name = "d*", Value = 104 }; 

  return WertValue.ToString() + ";" + WertRef.ToString() + ";" + 

WertIn.ToString() + ";" + WertOut.ToString(); 

 } 

 

 
Abbildung: Ausgabe des vorherigen Listings 

Für die Deklaration von out-Variablen gibt es seit C# 7.0 eine verkürzte Syntax, bei der die 

Deklaration der Variablen im Aufruf selbst erfolgt (siehe folgendes Listing).  

Auch neu in C# 7.0 ist das Konstrukt out _. Der Unterstrich ist die Discard-Variable und bedeutet, 

dass das Ergebnis verworfen wird.  



172 Methoden 

 

Listing: In den Aufruf eingebettete Deklaration von out-Variablen 
// alt 

int zahl; 

string eingabe = "123"; 

if (int.TryParse(eingabe, out zahl)) 

    Console.WriteLine("Zahl=" + zahl); 

else 

    Console.WriteLine("Fehler!"); 

 

// neu 

string eingabe2 = "123"; 

if (int.TryParse(eingabe2, out int zahl2)) 

    Console.WriteLine("Zahl=" + zahl2); 

else 

    Console.WriteLine("Fehler!"); 

 

// neu: _ = Wert ignorieren 

string eingabe3 = "123"; 

if (int.TryParse(eingabe3, out _)) 

    Console.WriteLine("Ist eine Zahl!"); 

16.7 Parameterlisten 

Seit der ersten Version von C# gibt es Parameter-Arrays für sogenannte variadische Parameter 

(vgl. https://de.wikipedia.org/wiki/Variadische_Funktion), mit denen eine Methode eine beliebig 

lange Liste von Parametern eines Typs empfangen kann, wenn dies mit dem Schlüsselwort params 

eingeleitet wird. 

Beispiel: 

public void MethodeMitBeliebigVielenParametern_Alt(string text, params int[] args

) 

{ 

 CUI.H2(nameof(MethodeMitBeliebigVielenParametern_Alt)); 

 CUI.Print(text + ": " + args.Length); 

 foreach (var item in args) 

 { 

  CUI.LI(item); 

 } 

} 

Diese Methode kann man beispielsweise so aufrufen: 

MethodeMitbeliebigVielenParametern_Alt("Anzahl Zahlen", 1, 2, 3); 

MethodeMitbeliebigVielenParametern_Alt("Number of numbers", 1, 2, 3, 4); 

Neu seit C# 13.0 ist, dass statt eines Arrays bei den Parametern auch generische Mengentypen 

verwendet werden dürfen, z.B. List<T>: 

public void MethodeMitBeliebigVielenParametern_Neu(string text, params List<int> 

args) 

{ 

 CUI.H2(nameof(MethodeMitBeliebigVielenParametern_Neu)); 

 CUI.Print(text + ": " + args.Count);  // statt args.Length 

 foreach (var item in args) 

 { 

  CUI.LI(item); 

https://de.wikipedia.org/wiki/Variadische_Funktion


Methoden  173 

 

 } 

} 

Analog ist der Aufruf dann genauso flexibel möglich wie beim Parameter-Array: 

MethodeMitBeliebigVielenParametern_Neu("Anzahl Zahlen", 1, 2, 3); 

MethodeMitBeliebigVielenParametern_Neu("Number of numbers", 1, 2, 3, 4); 

Dann sind diese generischen Mengentypen bei params in C# 13.0 erlaubt: 

▪ System.Collections.Generic.IEnumerable<T> 

▪ System.Collections.Generic.IReadOnlyCollection<T> 

▪ System.Collections.Generic.IReadOnlyList<T> 

▪ System.Collections.Generic.ICollection<T> 

▪ System.Collections.Generic.IList<T>  

▪ Alle Klassen, die System.Collections.Generic.IEnumerable<T> implementieren 

▪ System.Span<T> 

▪ System.ReadOnlySpan<T>  

16.8 Statische Methoden als globale Funktionen 

In C# 6.0 hat Microsoft eingeführt, was in Visual Basic .NET schon seit der ersten Version möglich 

ist: statische Klassen mit using so einzubinden, dass man auf die einzelnen Klassenmitglieder nun 

ohne Verwendung des Klassennamens zugreifen darf: 

 // bisherige Schreibweise 
 Console.WriteLine(Environment.UserDomainName + @"\" + Environment.UserName); 

 

 // neu seit C# 6.0 

using static System.Console; 

using static System.Environment; 

… 

 WriteLine(UserDomainName + @"\" + UserName); 

Dieses Sprachfeature ist jedoch umstritten, weil hier die Lesbarkeit des Programmcodes zugunsten 

einer ersparten Tipparbeit geopfert wird. 

16.9 Lokale Funktion (seit C# 7.0) 

C# 7.0 unterstützt lokale Funktionen, die in andere Methoden eingebettet und nur dort sichtbar 

sind. Lokale Funktionen können über mehrere Ebenen geschachtelt sein und die Variablen der 

äußeren Ebenen (der umgebende Klasse und Funktion) verwenden (siehe folgendes Listing). Solch 

ein Einbetten ist auch in Getter- und Setter-Routinen erlaubt. 

Hinweis: Seit C# 9.0 können lokale Funktionen auch Annotation mit .NET-Attributen besitzen, 

z.B. [Obsolete]. 

Listing: Eingebettete Funktionen haben Zugriff auf die Variablen der äußeren Funktionen. 
  public static void LocalFunctionDemo() 

  { 

   var count = 0; 

   CUI.Headline(nameof(LocalFunctionDemo)); 

 

   PrintWithTime("Rom"); 



174 Methoden 

 

   PrintWithTime("Paris"); 

   PrintWithTime("Essen"); 

 

   // Funktion ist Teil der Funktion, möglich in Methoden, Getter und Setter 

   void PrintWithTime(string s) 

   { 

    void Print(string s2) 

    { 

     // innere Funktion kann Variablen der äußeren nutzen 

     count++; 

     Console.WriteLine(count + ": " + s2); 

    } 

    Print($"{DateTime.Now.ToShortTimeString()}: {s}"); 

    } 

  } 

16.10 Statische lokale Funktionen (seit C# 8.0) 

Die in C# 8.0 neu eingeführten statischen lokalen Funktionen können im Gegensatz zu den in C# 

7.0 eingeführten nicht-statischen lokalen Funktionen NICHT auf Variablen der äußeren Ebenen 

(der umgebende Klasse und Funktion) zugreifen. 

Listing: Eingebettete statische Funktionen haben keinen Zugriff auf die Variablen der äußeren 

Funktionen. 
using System; 

  

namespace CS80 

{ 

 class StaticLocalFunctionsDemo 

 { 

  int field = 42; 

  public int prop { get; set; } = 42; 

  public void Run() 

  { 

   int x = 42; 

  

   NonStaticLocalFunc(x); 

   StaticLocalFunc(x); 

  

   // seit C# 7.0: Nicht-

statische lokale Funktion kann umgebende Variablen nutzen! 

   int NonStaticLocalFunc(int p) 

   { 

    int y = 42; 

    int x = 43;                // verdeckt x aus Run() 

    Console.WriteLine(x);      // OK 

    Console.WriteLine(prop);   // OK 

    Console.WriteLine(field);  // OK 

    Console.WriteLine(y);      // OK 

    return p; 

   } 

  

   // ----> seit C# 8.0: Kann umgebende Variablen NICHT sehen! 



Methoden  175 

 

   static int StaticLocalFunc(int p) 

   { 

    int y = 42; 

    int x = 43;                  // verdeckt x aus Run() 

    Console.WriteLine(x);        // lokales x 

    //Console.WriteLine(field);  // nicht erlaubt, weil static 

    //Console.WriteLine(prop);   // nicht erlaubt, weil static 

    Console.WriteLine(y);        // Ok, weil lokal 

    return p; 

   } // Ende der statischen lokalen Funktion 

  } // Ende der Methode Run() 

 } // Ende der Klasse 

} 

16.11 Caller-Info-Annotationen 

Seit Version C# 5.0 (auch in Visual Basic .NET seit Version 11.0) bieten die Compiler sogenannte 

Caller-Info.Annotationen  

▪ [CallerFilePath] 

▪ [CallerLineNumber] 

▪ [CallerMemberName] 

mit denen man Methodenparameter annotieren kann. Dadurch erhält die gerufene Methode 

Informationen über den Aufrufer (vgl. __FILE__ und __LINE__ in C++).   

Listing: Nutzung der Caller-Info-Annotationen 
  public void Run() 

  { 

   var Ergebnis = Berechnen(10); 

   Console.WriteLine("Berechnungsergebnis: " + Ergebnis); 

   Run2(); 

  } 

 

  public int Berechnen(int Wert, 

        [CallerMemberName] string memberName = "", 

        [CallerFilePath] string filePath = "", 

        [CallerLineNumber] int lineNumber = 0) 

  { 

   // Ausgabe hier zu Anschauungszwecken an der Konsole 

   Console.ForegroundColor = ConsoleColor.Yellow; 

   Console.WriteLine("Routine Berechnung() wurde aufgerufen!"); 

   Console.WriteLine("Aus diesem Quellcodepfad: " + filePath); 

   Console.WriteLine("Von diesem Mitglied: " + memberName); 

   Console.WriteLine("In dieser Zeilennummer: " + lineNumber); 

   Console.ForegroundColor = ConsoleColor.Gray; 

   // Eigentlicher Inhalt der Berechnung 

   Console.WriteLine("Hier tue ich was..."); 

   return 10 * Wert; 

  } 



176 Methoden 

 

 
Abbildung:  Ausgabe des obigen Listings 

Insbesondere [CallerMemberName] ist sehr hilfreich, um die Schnittstelle 

INotifyPropertyChanged zu realisieren, die einige GUI-Frameworks (z.B. Windows Forms, WPF) 

in .NET für Datenbindungsmechanismen erfordern. Ohne [CallerMemberName] müsste man beim 

Aufruf NotifyPropertyChanged() den Namen des Properties manuell als Zeichenkette übergeben: 

NotifyPropertyChanged("Wert"), was fehleranfällig ist. Erst seit C# 7.0 kann man auch schreiben: 

NotifyPropertyChanged(nameof(Wert)), was aber immer noch mehr Tipparbeit ist als der Einsatz 

von [CallerMemberName]. 

 
Listing: Elegante Realisierung von INotifyPropertyChanged mit [CallerMemberName] 
class DatenobjektDemo 

 { 

  public static void Run() 

  { 

   CUI.Headline(nameof(DatenobjektDemo)); 

   var d = new Datenobjekt(); 

   d.PropertyChanged += (x, args) => 

   { 

    Console.WriteLine("DatenobjektDemo: Property " + args.PropertyName + " hat 

sich geändert!"); 

   }; 

   d.Wert = 123; 

  } 

 } 

 

 class Datenobjekt : System.ComponentModel.INotifyPropertyChanged 

 { 

  public event System.ComponentModel.PropertyChangedEventHandler PropertyChanged; 

 

  /// <summary> 

  /// Realisierung mit expliziter Übergabe des Property-Namens 

  /// </summary> 

  /// <param name="propertyName"></param> 

  private void NotifyPropertyChangedAlt(String propertyName = "") 

  { 

   Console.WriteLine("Datenobjekt: Property " + propertyName + " hat sich 

geändert!"); 

   if (PropertyChanged != null) 

   { 

    PropertyChanged(this, new 

System.ComponentModel.PropertyChangedEventArgs(propertyName)); 

   } 

  } 

 

  /// <summary> 

  /// Realisierung ohne dass der Aufrufer den Property-Namen übergeben muss 

  /// </summary> 

  /// <param name="propertyName"></param> 

  private void NotifyPropertyChanged([CallerMemberName] String propertyName = "") 



Methoden  177 

 

  { 

   Console.WriteLine("Datenobjekt: Property " + propertyName + " hat sich 

geändert!"); 

   if (PropertyChanged != null) 

   { 

    PropertyChanged(this, new 

System.ComponentModel.PropertyChangedEventArgs(propertyName)); 

   } 

  } 

 

  private int wert; 

 

  public int Wert 

  { 

   get { return wert; } 

   set { wert = value; NotifyPropertyChanged(); } 

  } 

 } 

16.12 Caller Argument Expressions 

Zusätzlich zu schon in C# 5.0 eingeführten Caller-Info-Annotationen [CallerFilePath], 

[CallerLineNumber] und [CallerMemberName] gibt es seit C# 10.0 nun auch Caller Argument 

Expressions, mit denen eine Methode die Information erhält, welche Ausdrücke (Variablennamen 

bzw. Formeln) hinter den vom Aufrufer übergebenen Werten stehen.  

Dafür kann der Entwickler in der Parameterliste die Annotation 

System.Runtime.CompilerServices. CallerArgumentExpressionAttribute einsetzen, die es seit 

.NET Core 3.0 gibt. Die folgende Methode besitzt sechs Parameter: drei "echte Parameter" und 

drei Caller Argument Expressions für die ersten drei Parameter. Die Caller Argument Expressions 

beziehen sich auf den Namen der Parameter.  

Hinweis: Leider muss man die Parameter als Zeichenkette angeben: der Operator nameof() 

funktioniert hier nicht. 

Listing: Einsatz von Caller Argument Expressions 
public static class Validation 

{ 

 public static void CheckRange(int value, int minValue, int maxValue, 

 [CallerArgumentExpression("value")] string? valueExpression = null, 

 [CallerArgumentExpression("minValue")] string? minValueExpression = null, 

 [CallerArgumentExpression("maxValue")] string? maxValueExpression = null) 

 { 

  if (value > maxValue) 

  { 

   throw new ArgumentOutOfRangeException(nameof(value), 

     $"{value} ({valueExpression}) muss zwischen {minValue} 

({minValueExpression}) und {maxValue} ({maxValueExpression}) liegen!"); 

 

  } 

 } 

} 

Beim Aufruf der Methode werden nur die ersten drei Parameter erwartet: 

var a = 5; 

var max = Convert.ToInt32(Math.Floor(Math.PI)); 

Validation.CheckRange(a * 2, 0, max); 



178 Methoden 

 

Die übrigen drei füllt der Compiler automatisch. Der folgende Screenshot zeigt, dass die Methode 

für den ersten Parameter die Information erhält, dass sich 10 aus a * 2 zusammensetzt. Der zweite 

Parameter war ein Zahlenliteral (0), der dritte Parameter eine Variable. 

 

Abbildung: Wirkung der Caller Argument Expressions 

Hinweis: Die Caller Argument Expressions können bei der Protokollierung und in 

Fehlermeldungen helfen. Sie bergen aber auch die Gefahr, dass fremder Programmcode an 

Informationen (Variablenname oder Formeln) kommt, die er nicht bekommen sollte. Daher 

sieht der Aufrufer die Caller Argument Expressions im Editor. 

 

 

 



Konstruktoren und Destruktoren (Finalizer)  179 

 

17 Konstruktoren und Destruktoren 
(Finalizer) 
Ein Konstruktor ist eine Methode, die beim Instanziieren einer .NET-Klasse aufgerufen wird. In 

ihm kann man das Objekt initialisieren. Ein Desktruktor wird bei der Vernichtung eines Objekts 

aufgerufen. 

Konstruktoren besitzen den Namen der Klasse und haben keinen Rückgabetyp (auch nicht void). 

Der Bezeichner für den Finalizer besteht aus ~, gefolgt vom Klassennamen. Es kann nur höchstens 

einen Finalizer geben, aber beliebig viele überladene Konstruktoren. Diese können sich gegenseitig 

mit dem : this() aufrufen (ggf. unter Angabe der Parameter). Das : this() muss vor der öffnenden 

geschweiften Klammer stehen.  

Echte Destruktoren, die beim Löschen eines Objekts aufgerufen werden, kennt .NET hingegen 

nicht. Der Aufruf des Destruktors ist in .NET nicht deterministisch, weil er erst bei einer 

Speicherbereinigung (Garbage Collection) erfolgt oder ggf. ganz ausbleibt, wenn das Programm 

vorher endet. Daher spricht man oft auch von Finalizern statt von Destruktoren. 

17.1 Klasse mit Konstruktoren und Finalizer 

Die Klasse im folgenden Listing besitzt drei überladene Konstruktoren und einen Finalizer. Die 

Konstruktoren rufen sich gegenseitig auf. Im parameterlosen Konstruktor wird das private statische 

Attribut Count hochgezählt, sodass jede Instanz innerhalb eines Programmlaufs eine eindeutige ID 

erhält. 

Listing: Klasse mit Konstruktoren und Finalizer 
/// <summary> 

/// Klasse mit Konstruktoren und Finalizer 

/// </summary> 

class Dozent 

 { 

  private static int Count = 0; 

 

  // Konstruktor mit einem Parameter 

  public Dozent(string Name) : this(Name, null) 

  { 

  } 

 

  // Weiterer Konstruktor mit zwei Parametern 

  public Dozent(string name, string themen) : this() 

  { 

   this.Name = name; 

   this.Themen = themen; 

  } 

 

  // Konstruktor ohne Parameter 

  public Dozent() 

  { 

   Count++; 

   this.ID = Dozent.Count; 

   CUI.Print("Dozent #" + this.ID + " wurde instanziiert!", ConsoleColor.Cyan); 

  } 

 

  // Finalizer 

  ~Dozent() 

  { 

   CUI.Print("Dozent #" + this.ID + " wurde vernichtet!", ConsoleColor.Cyan); 

  } 



180 Konstruktoren und Destruktoren (Finalizer) 

 

 

  // Automatisches Property 

  public int ID { get; set; } 

  // Automatisches Property 

  public string Themen { get; set; } 

 

  // Property mit explizitem Field 

  string name; 

  public string Name 

  { 

   get { return name; } 

   set { name = value; } 

  } 

 }  

Achtung: Ein parameterloser Konstruktor, der nichts tut, scheint auf den ersten Blick 

überflüssig zu sein. Sofern kein parameterbehafteter Konstruktor vorhanden ist, generiert der 

Compiler – sowohl von C# als auch von Visual Basic .NET – automatisch einen parameterlosen 

Konstruktor. Wird jedoch ein parameterbehafteter Konstruktor explizit implementiert, so wird 

der parameterlose Konstruktor nicht automatisch erzeugt. Wenn dieser benötigt wird, ist er also 

ebenfalls explizit zu implementieren. 

Wie in Visual Basic .NET wird der parameterlose Konstruktor in C# nur dann automatisch 

erzeugt, wenn kein anderer Konstruktor explizit implementiert wird. 

17.2 Aufruf von Konstruktoren 

Der folgende Programmcode nutzt obige Klasse Dozent, indem er eine Instanz erzeugt und 

verwendet. Nach der Verwendung wird die Objektvariable auf null gesetzt, d.h. es gibt nun keinen 

Verweis mehr auf die Instanz. Der Garbage Collector von .NET wird bei nächster 

Speicherbereinigung den Finalizer aufrufen. In diesem Fall wird zu Demonstrationszwecken die 

Garbage Collection mit dem Aufruf System.GC.Collect() erzwungen. Die Garbage Collection läuft 

aber asynchron in einem Hintergrundthread, d.h. die nach Collect() folgenden Befehle werden vor 

der Garbage Collection ausgeführt wie man in der folgenden Abbildung erkennen kann, dass die 

Ausgabe "Routine fertig" vor der Ausgabe des Finalizers erscheint. 

Listing: Nutzung der Klasse Dozent 
   CUI.Headline("Beispiel für Konstruktur und Destruktor"); 

 

   Console.WriteLine("Dozent wird erzeugt..."); 

   var d = new Dozent("Holger Schwichtenberg", ".NET, PowerShell, JavaScript"); 

 

   Console.WriteLine("Dozent wird verwendet..."); 

   d.Themen += ", C#, TypeScript, Entity Framework, ASP.NET"; 

   Console.WriteLine("Dozent " + d.ID + " (" + d.Name + ")  hat folgende Themen: 

"); 

   foreach (string t in d.Themen.Split(',')) 

   { 

    Console.WriteLine("- " + t.Trim()); 

   } 

 

   Console.WriteLine("Dozent wird nicht mehr benötigt..."); 

   d = null; 

 

   Console.WriteLine("Garbage Collection wird erzwungen..."); 

   System.GC.Collect(); // läuft asynchon 

   Console.WriteLine("Routine fertig!"); 

   Console.ReadLine();  



Konstruktoren und Destruktoren (Finalizer)  181 

 

 

Abbildung:  Ausgabe des obigen Listings 

Info: Die Laufzeitumgebung Common Language Runtime (CLR) von .NET (alle Varianten) 

enthält einen Garbage Collector (GC), der im Hintergrund (in einem System-Thread) arbeitet 

und den Speicher aufräumt. Der Speicher wird allerdings nicht sofort nach dem Ende der 

Verwendung eines Objekts freigegeben, sondern zu einem nicht festgelegten Zeitpunkt bei 

Bedarf (Lazy Resource Recovery). Beim Aufräumen des Speichers erzeugt der Garbage 

Collector einen Baum aller Objekte, auf die es aktuell einen Objektverweis gibt. Der Speicher 

aller nicht mehr erreichbaren Objekte wird freigegeben. 

Der Garbage Collector kann von einer Anwendung nur bedingt beeinflusst werden. Die 

Anwendung kann mit dem Befehl System.GC.Collect() dem Garbage Collector den Auftrag 

geben, tätig zu werden. Eine Anwendung eine Speicherbereinigung temporär mit 

GC.TryStartNoGCRegion() unterdrücken. 

Der Garbage Collector ruft die Destruktoren (alias Finalizer) der .NET-Objekte auf. Die 

Reihenfolge des Aufrufs und ob der Finalizer überhaupt aufgerufen wird, ist jedoch nicht 

deterministisch, d. h., es kann sein, dass ein Finalizer nicht aufgerufen wird. Beim Schließen 

einer .NET-Anwendung werden die Finalizer der verbliebenen Objekte nicht aufgerufen. 

17.3 Primärkonstruktoren (seit C# 12.0) 

Die bedeutendste Neuerung in C# 12.0 sind Primärkonstruktoren für Klassen. Alte Hasen unter 

den C#-Entwicklern werden sich erinnern, dass dieses Sprachfeature bereits im Jahr 2014 als 

Prototyp für C# 6.0 verfügbar war, dann aber doch gestrichen wurde 

www.heise.de/developer/artikel/Microsoft-streicht-Sprachfeatures-aus-C-6-0-und-Visual-Basic-

2015-2432073.html].  

Nun, sechs C#-Versionen weiter, kommt Microsoft in C# 12.0 darauf zurück, auch vor dem 

Hintergrund der Record-Typen, die es seit C# 9.0 mit Primärkonstruktoren gibt: 

public record Person(int ID, string Name, string Website = ""); 

Ein Primärkonstruktor ist eine Parameterliste direkt hinter dem Typnamen. Seit C# 12.0 ist das 

auch für Klassendefinitionen möglich: 

public class Person(int ID, string Name, string Website = ""); 

Solch eine Klasse kann ohne Inhaltsbereich (also geschweifte Klammern) existieren, ist aber 

wertlos. Anders als bei den in C# 9.0 eingeführten Record-Typen erstellt der Primärkonstruktor 

nämlich keine öffentlichen Properties in der Klasse, sondern nur private Fields. Wenn man diese 

Klasse mit Primärkonstruktor in einem Decompiler betrachtet, sieht man zunächst überhaupt keine 

Verarbeitung der Parameter im Primärkonstruktor: 

https://www.heise.de/developer/artikel/Microsoft-streicht-Sprachfeatures-aus-C-6-0-und-Visual-Basic-2015-2432073.html
https://www.heise.de/developer/artikel/Microsoft-streicht-Sprachfeatures-aus-C-6-0-und-Visual-Basic-2015-2432073.html


182 Konstruktoren und Destruktoren (Finalizer) 

 

public class Person 

{ 

    public Person(int ID, string Name, string Website = "") 

    { 

    } 

} 

Das liegt daran, dass die Primärkonstruktorparameter gar nicht verwendet werden. Wir müssen die 

Klasse z.B. um ToString() erweitern, siehe Listing.  

Listing: Klasse mit Primärkonstruktor und Methode ToString() 
public class Person(int id, string name, string Website = "") 

{ 

 public string Name { get; set; } = name; 

 public string Website { get; set; } = website; 

  

 public override string ToString() 

 { 

  return $"Person #{ID}: {Name} -> {Website}"; 

 } 

} 

Nun sehen wir im Decompiler, dass ein privates Feld für den Konstruktorparameter id entstanden 

ist, aber nicht für name und website, da mit diesen lediglich ein Property initialisiert wurde und 

kein direkter Zugriff mehr auf die Namen aus dem Primärkonstruktor (name und website mit 

kleinem Anfangsbuchstaben!) erfolgt. 

Hinweis: Es entsteht kein privates Field, wenn man einen Konstruktorparameter nur für eine 

Initialisierung verwendet! 

Listing: Dekompilat des vorherigen Listings mit ILSpy  
public class Person 

{ 

    [CompilerGenerated] 

    [DebuggerBrowsable(DebuggerBrowsableState.Never)] 

    private int <id>P; 

 

    public string Name { get; set; } 

 

    public string Website { get; set; } 

 

    public Person(int ID, string name, string website = "") 

    { 

        <id>P = ID; 

        Name = name; 

        Website = website; 

        base..ctor(); 

    } 

 

    public override string ToString() 

    { 

        return $"Person #{<id>P}: {Name} -> {Website}"; 

    } 

} 

Um öffentlich auf die im Primärkonstruktor übergebenen Daten zugreifen zu können, muss man 

die Konstruktorparameter für Zuweisungen verwenden, siehe Name und Website im nächsten 

Listing.  

Zu beachten ist, dass Entwicklerinnen und Entwickler nun in der Implementierung von ToString() 

auf das Property Name und nicht mehr auf den Primärkonstruktorparameter name zugreifen 



Konstruktoren und Destruktoren (Finalizer)  183 

 

sollten, denn sonst würde man nachträgliche Namensänderungen (Zuweisungen an das Property 

Name) nicht bei ToString(). Der C#-Compiler denkt mit und wirft in Fall der Verwendung von 

name bei ToString() die Warning "CS9124" aus: Parameter 'string name' is captured into the state 

of the enclosing type and its value is also used to initialize a field, property, or event.". Diese 

Fehlermeldung gibt es aber nicht bei der Verwendung in ToString(), sondern bei der Initialisierung 

des Properties: 

public string Name { get; set; } = name; 

Auch abgeleitete Klassen dürfen Primärkonstruktoren besitzen. Im nächsten Listing gibt es neben 

der Klasse Person eine zweite, abgeleitete Klasse Autor mit Primärkonstruktor.  

Listing: Primärkonstruktorbeispiel mit und ohne Zuweisung der Primärkonstruktorparameter an 

öffentliche Properties und Vererbung 
namespace NET8Konsole.CS12; 

  

/// <summary> 

/// Klasse mit Primärkonstruktor  

/// </summary> 

public class Person(Guid id, string name) 

{ 

 public string Name { get; set; } = name; 

 public Person() : this(Guid.Empty, "") {   } 

 public override string ToString() 

 { 

  // Hier Property Name statt Primärkonstruktorparameter name verwenden!  

  // Man würde sonst Namensänderungen nicht sehen! 

  return $"Person {id}: {Name}"; 

 } 

} 

  

/// <summary> 

/// Abgeleitete Klasse mit Primärkonstruktor  

/// </summary> 

public class Autor(Guid id, string name, string website) : Person(id, name) 

{ 

 public string Website { get; set; } = website; 

  

 

 public override string ToString() { 

  return $"Autor {id}: {Name} -> {Website}"; 

 } 

} 

  

internal class CS12_PrimaryConstructors_Demo 

{ 

 public void Run() 

 { 

  var p = new Person(); 

  Console.WriteLine(p.Name); 

  Console.WriteLine(p.ToString()); 

  var a = new Autor(Guid.NewGuid(), "Dr. Holger Schwichtenberg", "www.IT-

Visions.de"); 

  Console.WriteLine(a.Name); 



184 Konstruktoren und Destruktoren (Finalizer) 

 

  Console.WriteLine(a.Website); 

  Console.WriteLine(a.ToString()); 

 } 

} 

Hinweis: Leider gibt es in C# in Primärkonstruktoren nicht wie TypeScript-Konstruktoren die 

Möglichkeit, durch die Sichtbarkeiten public und private zu steuern (vgl. 

https://kendaleiv.com/typescript-constructor-assignment-public-and-private-keywords/), 

welche Sichtbarkeit die resultierenden Datenmitglieder der Klasse erhalten sollen. Ebenso ist 

keine Einschränkung readonly möglich, die verhindert, dass Programmcode in der Klasse den 

übergebenen Wert verändert. 

https://kendaleiv.com/typescript-constructor-assignment-public-and-private-keywords/


Aufzählungstypen (Enumeration)  185 

 

18 Aufzählungstypen (Enumeration) 
Ein Aufzählungstyp legt unter einem Oberbegriff mehrere Namen fest. Den Namen werden intern 

Zahlen zugeordnet.  

public enum Kenntnisse 

{ 

Befriedigend=3,Gut=2,SehrGut=1 

} 

Wenn keine Zahlen im der Typdefinition benannt sind, beginnt die Zählung automatisch bei 0, was 

in diesem Beispiel nicht so viel Sinn machen würde, in anderen Fällen können die Werte aber aus 

Entwicklersicht irrelevant sein. 

public enum Kenntnisse 

{ 

Befriedigend,Gut,SehrGut 

} 

Das folgende Listing zeigt die Verwendung dieses Aufzählungstypen inklusive der Umwandlung 

zwischen Aufzählungswertname und dem Zahlenwert. 

   Kenntnisse meineCSharpKenntnisse = Kenntnisse.SehrGut; 

 

   // Umwandlung Aufzählungswert in Zahl 

   int note = (int)meineCSharpKenntnisse; // = 1  

 

   Console.WriteLine($"Meine C#-Kenntnisse sind {meineCSharpKenntnisse}, in 

Noten: {note}!"); // "SehrGut" 1 

 

   // Umwandlung Zahl in Aufzählungswerz 

   Kenntnisse noteAlsText = (Kenntnisse) note; // wandelt 1 in Kenntnisse.SehrGut 

 

   if (noteAlsText == Kenntnisse.SehrGut) { Console.WriteLine("Meine Kenntnisse 

sind weiterhin sehr gut!"); }; 

 

   switch (noteAlsText) 

   { 

    case Kenntnisse.Befriedigend: 

     Console.WriteLine("Meine Kenntnisse sind noch befriedigend"); break; 

    case Kenntnisse.Gut: 

     Console.WriteLine("Meine Kenntnisse sind immer noch gut!"); break; 

    case Kenntnisse.SehrGut: 

     Console.WriteLine("Meine Kenntnisse sind immer noch sehr gut!"); break; 

   } 

   

Hinweis: Weder C#-Compiler noch Laufzeitumgebung beschweren sich, wenn man zahlen in 

einem Enumerationswert konvertiert, die es nicht gibt. Beispiel: 

Kenntnisse unsinnigeNote = (Kenntnisse)42; 

Nun liefert ein Zugriff auf unsinnigeNote den Wert 42. 



186 Expression-bodied Members 

 

19 Expression-bodied Members 
Expression-bodied Members sind neu seit C# 6.0 – es gibt sie nicht in Visual Basic .NET. 

Methoden und nicht beschreibbare Properties, die nur einen einzigen Ausdruck zurückliefern, kann 

der C#-Entwickler nun verkürzt unter Einsatz des Lambda-Operators => einen sogenannten 

Expression Body statt eines Blocks in geweiften Klammern (Block Body) schreiben: 

public string GanzerName => this.Vorname + " " + this.Nachname; 

public decimal NeuerEinkauf(decimal wert) => this.Umsatz += wert; 

public override string ToString() => this.GanzerName + ": " + this.KontaktStatus; 

Mit C# 6.0 hatte Microsoft sogenannte "Expression-bodied Members" eingeführt, die bei 

einzeiligen Methoden und read-only Properties eine verkürzte Lambda-Schreibweise erlauben. 

Seit C# 7.0 ist dies nun ausgeweitet auf Konstruktoren, Finalizer sowie Getter-, Setter- und 

Indexer-Routinen. Seit C# 8.0 sind Expression Bodies genauso wie Block Bodies auch in 

Standardimplementierungen in Schnittstellen (Interfaces) erlaubt. 

class Dozent 

  { 

   public int ID { get; set; } 

   public string Name { get; set; } 

   public bool DOTNETExperte { get; set; } 

 

   public Dozent()  {   } 

 

   // Expression-bodied Constructor 

   public Dozent(int ID) => this.ID = ID; 

 

   // Expression-bodied Finalizer 

   ~Dozent() => Console.Error.WriteLine("Finalized!"); 

   // Expression-bodied Getter und Setter 

   private Decimal? honorar2; 

   public Decimal? Honorar2 

   { 

    get => this.honorar; 

    set => this.honorar = value ?? 1000.00m; 

   } 

 

} 



Behandlung von null  187 

 

20 Behandlung von null 
Zu den häufigsten Fehlern, die Softwareentwickler in C# machen, zählt die fehlende 

Berücksichtigung, dass Variablen und Klassenattribute den Wert null annehmen können und man 

auf einem null-Wert keine Objektoperationen ausführen kann. Dann kommt es zum Laufzeitfehler 

NullReferenceException. 

20.1 NullReferenceException 

Eine NullReferenceException entsteht sofort, wenn man von einer Objektvariable, die null ist, 

einen Attributwert abrufen will, einen Attributwert setzen will oder eine Methode aufrufen will: 

 
Auch ein Aufruf einer Methode auf einer Zeichenkette, die null ist, führt zur 

NullReferenceException: 

string eingabe = null; 
string eingabeInKleinbuchstaben = eingabe.ToLower(); 

Auch Wertetypen können null sein, wenn man sie als Nullable Value Type (NVT) in die 

Datenstruktur Nullable<T> verpackt. Hier kommt es beim Versuch, eine Rechenoperation auf 

einem null-Wert auszuführen zum Laufzeitfehler: System.InvalidOperationException: 'Nullable 

object must have a value.'. 

 

20.2 Null-Prüfung und Toleranz gegenüber Null 

Zur Vermeidung der NullReferenceException ist es wichtig, immer vor dem Zugriff auf ein 

Attribut oder auf eine Methode bzw. vor einer Rechenoperation mit einer Variablen, die null 

annehmen kann, sicherzustellen, dass die Variable auf ein Objekt verweist und nicht null ist: 

// hier kann man sich NICHT sicher sein, dass p nicht null ist 

Person p = GetPerson(123); 

if (p != null) 

{ 

    Console.WriteLine(p2.Nachname); 

}     



188 Behandlung von null 

 

Dies gilt auch für die Weiterverarbeitung einzelner Attribute der Klasse. Angenommen, die 

Klassendefinition sei: 

public class Person 

 { 

  public int ID { get; set; } 

  public string Vorname { get; set; } 

  public string Nachname { get; set; } 

  public string Ort { get; set; } 

  public DateTime Geburtstag { get; set; } 

  public DateTime? Einstellungsdatum { get; set; } 

  public decimal Gehalt { get; set; } 

 

  public Person(int id) 

  { 

   this.ID = id; 

  } 

 } 

Hier ist zu beachten, dass Geburtstag ein normaler Wertetyp ist (also nicht null annehmen kann), 

aber Einstellungsdatum ein Nullable Value Type (NVT) ist. Geburtstag wird im Standard mit dem 

1.1.0001 initialisiert, aber das Einstellungsdatum mit null. Der Abruf des Attributs Year aus dem 

Geburtstag ist daher eine sichere Operation, das gleiche auf Einstellungsdatum kann aber zur 

NullReferenceException führen.  

Das folgende Listing zeigt fünf Optionen der Behandlung des null-Falls: 

▪ Prüfung mit == null 

▪ Prüfung mit is null 

▪ Weiterreichen des null-Wertes mit ?. (Null-propagating Operator) 

▪ Umwandeln des null-Wertes in einen anderen Wert der gleichen Klasse mit ?? 

▪ Umwandeln des null-Wertes in einen beliebigen anderen Wert mit ? … : … 

Person p2 = GetPerson(123); 

if (p2 != null) 

   { 

    Console.WriteLine(p2.Nachname); 

 

    // Geburtstag ist DateTime, daher kein nicht null als Wert vorkommen 

    Console.WriteLine("Geboren im Jahr: " + p2.Geburtstag.Year); 

 

    // Einstellungsdatum ist aber Nullable<DateTime>, daher droht hier ein 

Laufzeitfehler 

    Console.WriteLine("Eingestellt im Jahr: " + p2.Einstellungsdatum.Value.Year); 

 

    // Richtige Variante 1a mit null-Prüfung 

    if (p2.Einstellungsdatum != null) 

    { 

     Console.WriteLine("Eingestellt im Jahr: " + 

p2.Einstellungsdatum.Value.Year); 

    } 

    // Richtige Variante 1b mit null-Prüfung 

    if (!(p2.Einstellungsdatum is null)) 

    { 



Behandlung von null  189 

 

     Console.WriteLine("Eingestellt im Jahr: " + 

p2.Einstellungsdatum.Value.Year); 

    } 

 

    // Richtige Variante 2 mit ?. 

    Console.WriteLine("Eingestellt im Jahr: " + p2.Einstellungsdatum?.Year); 

 

    // Richtige Variante 3 mit ?? 

    Console.WriteLine("Eingestellt im Jahr: " + (p2.Einstellungsdatum ?? 

default(DateTime))); 

 

    // Richtige Variante 4 mit ? : 

    Console.WriteLine("Eingestellt im Jahr: " + (p2.Einstellungsdatum != null ? 

p2.Einstellungsdatum.Value.ToString() : "Kein Datum")); 

} 

Eine weitere Behandlung des null-Falls ist in C# 8.0 hinzugekommen in Form des Operators "Null 

Coalescing Assignment" mit ??=. Mit diesem Zuweisungsoperator kann der C#-

Softwareentwickler eine Zuweisung ausführen, wenn eine Variable den Wert null hat. 

Statt 

p = p ?? new Person() { ID = 1, Name = "Holger Schwichtenberg" }; 

oder 

if (p == null) p = new Person() { ID = 1, Name = "Holger Schwichtenberg" };  

kann man nun auch prägnanter schreiben: 

p ??= new Person() { ID = 1, Name = "Holger Schwichtenberg" }; 

20.3 Null-Referenz-Prüfung / Non-Nullable Reference 
Types (C# 8.0) 

Bereits im September 2017 [www.heise.de/developer/meldung/Programmiersprachen-C-8-soll-

Fehler-mit-null-verhindern-3835949.html] hatte Microsoft für C# 8.0 angekündigt: Referenztypen 

sollen nicht mehr automatisch "nullable" sein; die Möglichkeit, den Wert null zuzuweisen soll der 

Entwickler explizit deklarieren müssen.  

Nach einiger Diskussion hat sich Microsoft aber zunächst entschlossen, diese Neuerung nicht zum 

Standard, sondern zu einer Option des C#-Compilers zu machen. In den Projektvorlagen für neue 

.NET-Projekte ab .NET 6.0 bzw. Visual Studio 2022 sind die Nullable Reference Types im 

Standard aktiv! 

Achtung: Die Namensgebung des in C# 8.0 eingeführten Features ist nicht glücklich gewählt 

von Microsoft. Microsoft nennt das Feature offiziell "Nullable Reference Types" und die 

Einstellung heißt <nullable>enable</nullable> bzw. #nullable enable. Allerdings waren 

Referenztypen schon vor C# 8.0 immer "nullable" und dies es auch in den aktuellen C#-

Versionen im Standard immer noch – das steht auch im ersten Satz der Dokumentation (siehe 

Abbildung). "nullable enable" ist also sehr missverständlich, denn dies schaltet den Standard 

aus. Richtig ist, bei dem neuen Feature von "Non-Nullable Reference Types" zu sprechen, wie 

dieses Kapitel daher auch heißt. 

 

 

https://www.heise.de/developer/meldung/Programmiersprachen-C-8-soll-Fehler-mit-null-verhindern-3835949.html
https://www.heise.de/developer/meldung/Programmiersprachen-C-8-soll-Fehler-mit-null-verhindern-3835949.html


190 Behandlung von null 

 

 

Abbildung: Unglückliche Namensgebung für das neue Feature bei Microsoft 

[learn.microsoft.com/en-us/dotnet/csharp/nullable-references] 

Praxishinweis: Die neue Null-Referenz-Prüfung des C# 8.0-Compilers ist ein sinnvolles 

Instrument, um Null-Referenz-Fehler zur Laufzeit zu verhindern. Die Aktivierung dieser neuen 

Prüfung für bestehenden Programmcode ist aber ein größeres Projekt, denn die meisten 

Softwareentwickler wird der C# 8.0-Compiler mit sehr vielen Warnungen konfrontieren. Es ist 

daher sinnvoll, dieses neue Konzept erstmal an einzelnen Bibliotheken oder Programmteilen zu 

erproben. 

Seit .NET 6 aktiviert Microsoft in allen Projektvorlagen im Standard die Nicht-Nullbaren-

Referenztypen, siehe Zeile 7 im nachstehender Bildschirmabbildung einer .csproj-Datei. Der 

Entwickler kann dies aber wieder auf "disable" setzen oder die Zeile einfach löschen. 

 

Abbildung: Eine C#-Projektdatei, die mit der .NET 6-Projektvorlage für Konsolenanwendungen 

erzeugt wurde und <Nullable>enable</Nullable> enthält 

20.3.1 Neue Compiler-Features 

Der C#-Compiler bringt seit der Sprachversion 8.0 zur Vermeidung der häufigen Null-Referenz-

Laufzeitfehler (Null Reference Exception) drei neue sogenannte Kontexte mit sich. Ein Kontext 

ist ein Bereich im C#-Programmcode. Ein Kontext kann sich über einzelne Zeilen, ausgewählte 

Klassen oder auch das ganze Projekt erstrecken. 

 

Bisher galt in C# der Standardkontext mit folgender Bedeutung für Variablen, Fields und 

Properties: 

• Variablen, Fields und Properties, die mit Wertetypen (z.B. int, DateTime, bool) deklariert 

wurden, können im Standard nicht den Wert Null annehmen. Sie können seit C# 2.0 mit 

Nullable<T> (bzw. die äquivalent prägnantere Form mit Fragezeichen, z.B. int? oder 

bool?) "nullable" gemacht werden. 

• Variablen, Fields und Properties, die mit Referenztypen (string und eigene Klassen) 



Behandlung von null  191 

 

deklariert wurden, können immer Null annehmen. 

 

Die drei neuen Kontexte in C# 8.0 sind: 

▪ Nullable Warning Context: Der Compiler warnt vor dem Auftreten von Null-Reference-

Laufzeitfehlern bei allen Zugriffen auf Variablen, bei denen möglich / nicht sichergestellt ist, 

dass sie nicht null enthalten bzw. bei denen der null-Fall nicht abgefangen ist. 

▪ Nullable Annotation Context: Referenztypen (string, eigene Klassen) sind im Standard nicht 

mehr nullable (fähig, den null-Wert anzunehmen). Wenn null-Werte explizit gewünscht sind, 

ist dies mit dem Fragezeichen bei der Typdeklaration anzuzeigen, z.B. string? und Klasse? 

(Nicht aber erlaubt: Nullable<string> und Nullable<Klasse> wie bei den Nullable Value 

Types!) 

▪ Nullable Context: Allgemein als "Nullable Context" wird ein Kontext bezeichnet, der sowohl 

Nullable Warning Context als auch Nullable Annotation Context ist, also die Funktionen 

beider Kontexte in sich vereint. 

Hinweis: Ein Kontext ist ein Bereich in Ihrem Programmcode. Ein Kontext kann sich über 

einzelne Zeilen, ausgewählte Klassen oder auch das ganze Projekt erstrecken. 

Die folgende Tabelle stellt die drei Kontextarten gegenüber. 

 Nullable 

Annotation 

Context 

Nullable 

Warning  

Context 

Nullable Context  

(= Annotation Context + 

Warning Context) 

Bedeutung der 

Deklaration 

Klasse k; 

Non-Nullable Nullable Non-Nullable 

Bedeutung der 

Deklaration 

Klasse? k; 

Nullable Nicht erlaubt 

(führt zur 

Warnung) 

Nullable 

Warnung vor 

Null-Reference-

Laufzeitfehlern 

Nein Ja Ja 

Aktivierung auf 

Projektebene in 

der .csproj-Datei 

<Nullable> 

annotations 

</Nullable> 

 

<Nullable>  

warnings 

</Nullable> 

 

<Nullable> 

enable 

</Nullable> 

 

Aktivierung in 

C#-

Programmcodedat

ei (.cs) für die 

folgenden Zeilen 

#nullable enable  

annotations 

 

#nullable enable 

warnings 

 

#nullable enable  

 

Deaktivierung in 

C#-

Programmcodedat

ei (.cs) für die 

folgenden Zeilen 

#nullable disable 

annotations 

 

#nullable disable 

warnings 

 

#nullable disable 

 

Zurücksetzung 

der C#-

#nullable restore 

annotations 

#nullable restore 

warnings 

#nullable restore 



192 Behandlung von null 

 

 Nullable 

Annotation 

Context 

Nullable 

Warning  

Context 

Nullable Context  

(= Annotation Context + 

Warning Context) 

Programmdatei 

für die folgenden 

Zeilen auf die 

Einstellung auf 

Projektebene 

 Tabelle: Drei neue Kontextarten in C# 8.0 

Das folgende Listing zeigt an Beispielen die Auswirkungen der drei neuen Kontextarten. 

Listing: Basiswissen zu den Nullable-Kontexten 
// Normaler Kontext 

string name1 = null; 

Experte e1 = null; 

int id1 = 1; 

int? plz1 = null; 

  

// Nullable Context einschalten 

#nullable enable  

string name2 = null; // Non-Nullable Reference Type -> Warnung! 

string? name3 = null; // Nullable Reference Type 

Experte e2 = null;// Non-Nullable Reference Type -> Warnung! 

Experte? e3 = null;  // Nullable Reference Type 

int id2 = 1; // keine Auswirkung auf Value Types! 

int? plz2 = null; // keine Auswirkung auf Value Types! 

Console.WriteLine(name2.Trim()); // Warnung: Dereference of a possibly null refer

ence 

Console.WriteLine(name3.Trim()); // Warnung: Dereference of a possibly null refer

ence 

Console.WriteLine(plz2.ToString()); // keine Warnung 

  

// Nullable Context wieder ausschalten 

#nullable disable 

name2 = null; // keine Warnung 

string? name4 = null; // Warnung bei ? 

  

// nur Nullable Annotations Context einschalten 

#nullable enable annotations 

string name5 = null; // Nullable Reference Type, keine Warnung! 

string? name6 = null; // Nullable Reference Type 

Console.WriteLine(name5.Trim()); // keine Warnung 

Console.WriteLine(name6.Trim()); // keine Warnung 

#nullable disable annotations 

  

// nur Nullable Warning Context einschalten 

#nullable enable warnings 

string name7 = null; // Nullable Reference Type, keine Warnung! 

string? name8 = null; // Warnung bei ?, Nullable Reference Type nicht erlaubt 

Console.WriteLine(name7.Trim()); // Warnung: Dereference of a possibly null refer

ence 



Behandlung von null  193 

 

Console.WriteLine(name8.Trim()); // Warnung: Dereference of a possibly null refer

ence 

#nullable disable warnings 

20.3.2 Compiler erkennt die Programmierfehler nicht 

Zum Praxistest wird das Programm im nachstehenden Listing verwendet. Der C#-Compiler 

übersetzt den Programmcode fehlerfrei und ohne Warnungen. 

Einwandfrei funktionieren kann der Programmcode freilich nicht: Bei der Ausführung sieht man 

direkt zweimal den Laufzeitfehler "NullReferenceException: Object reference not set to an 

instance of an object." 

Hier müsste man null-Prüfungen oder eine Toleranz gegenüber null einbauen. 

Listing: Ein Programm mit NullReference-Fehlern 
using ITVisions; 

using System; 

 

namespace CS80 

{ 

 class NullableRefTypes 

 { 

  public static void Run() 

  { 

   CUI.MainHeadline(nameof(NullableRefTypes) + ": 1. String"); 

   try 

   { 

    string Name = null; 

    Print("Guten Tag, " + Name); 

    Console.WriteLine($"Ihr Name ist {Name.Length} Zeichen lang!"); 

   } 

   catch (System.Exception ex) 

   { 

    CUI.PrintError("ERROR: " + ex.Message); 

   } 

 

   CUI.MainHeadline(nameof(NullableRefTypes) + ": 2. Person"); 

   try 

   { 

    Person p1 = new Person() { ID = 123, Surname = "Schwichtenberg" }; 

    PrintPerson(p1); 

    Person p2 = null; 

    PrintPerson(p2); 

 

    p1.Firstname = null; 

    string name = p1.Firstname.ToUpper(); 

    Console.WriteLine(name); 

   } 

   catch (System.Exception ex) 

   { 

    CUI.PrintError("ERROR: " + ex.Message); 

   } 

  } 



194 Behandlung von null 

 

 

  static void Print(string s) 

  { 

   Console.WriteLine(s.Trim()); 

  } 

 

  static void PrintPerson(Person p) 

  { 

   Console.WriteLine($"{p.ID}: {p.ToString()}"); 

  } 

 

 class Person 

 { 

  public int ID { get; set; } 

  public string Firstname { get; set; }  

  public string Surname { get; set; } 

 

  public Person() 

  {  } 

 

  public Person(int ID) : this() 

  { 

   this.ID = ID; 

  } 

 

  public override string ToString() 

  { 

   return this.Firstname.ToUpper() + " " + this.Surname.ToUpper(); 

  } 

 } 

} 

} 

 
Abbildung: Ausgabe des obigen Programms 

20.3.3 Aktivieren der Null-Referenz-Prüfung 

Seit C# 8.0 gibt es die optionale strengere Null-Referenz-Prüfung. Den Nullable Kontext (mit 

Annotation Context und Warning Context) aktiviert man in einer Programmcodedatei mit 



Behandlung von null  195 

 

#nullable enable // Nullable check for Reference Types 

Man kann diese Prüfung auch jederzeit wieder deaktivieren mit 

#nullable disable // Nullable check for Reference Types wieder aus 

Man kann diese Prüfung auch für ein ganzes Projekt aktivieren. Dies erfolgt in der Projektdatei 

(.csproj) per: 

  <PropertyGroup> 

   <Nullable>true</Nullable> 

   … 

  </PropertyGroup> 

Auch eine auf Projektebene gesetzte Prüfung kann der Entwickler im Programmcode jederzeit 

deaktivieren. Der Ausdruck 

#nullable restore  

bedeutet, dass die Einstellung auf Projektebene wieder gelten soll. 

Hinweis: Diese neue Option ist möglich in .csproj-Dateien sowohl für das klassische .NET 

Framework als auch in den kompakteren .NET Core-Projektdateien. 

Mit der strengeren Null-Referenz-Prüfung kommt es in dem obigen Listing zu neun Warnungen. 

Da es nur Warnungen sind, kompiliert das Programm weiterhin und es kommt immer noch zu den 

Laufzeitfehlern. 

 

Abbildung: Warnungen bei aktivierter Null-Referenz-Prüfung 

Praxistipp: Durch einen Eintrag in der Projektdatei kann man ausgewählte Warnungen zu 

Fehlern hochstufen, z.B. <WarningsAsErrors>CS8600;CS8602;CS8603;CS8604;CS8625 

</WarningsAsErrors> 

20.3.4 Verbessertes Programm 

Das nächste Listing zeigt das verbesserte Programm, das nun alle strengeren Null-Reference-

Prüfung besteht. 

In dem Listing wurde geändert: 

▪ Variablen für Referenztypen, die null erlauben sollen, wurden explizit mit einem Fragezeichen 

versehen, also zu Nullable Reference Types gemacht, z.B. string? und Person? 

▪ Es wurden Null-tolerierende Operatoren eingebaut, z.B. mit den Operatoren ?? und ?. 

▪ Es wurden Null-Prüfungen eingebaut, z.B. if (p == null) { … } 

▪ Es wurden Initialisierungen ergänzt, z.B.  Firstname = ""; Surname = "";  



196 Behandlung von null 

 

▪ Es wurde der neue sogenannte Null Forgiveness-Operator eingebaut: 

this.Firstname!.ToUpper() + " " + this.Surname!.ToUpper(); 

Hinweis: Nullable Reference Types darf man anders als Nullable Values Types nicht mit 

System.Nullable<T> deklarieren. Erlaubt ist nur die Schreibweise string?, nicht 

Nullable<string>. 

Listing: Verbessertes Programm ohne NullReference-Fehler 
using ITVisions; 

using System; 

#nullable enable // Nullable check for Reference Types 

 

namespace CS80 

{ 

 class NullableRefTypesMitPrüfungen 

 { 

  public static void Run() 

  { 

   CUI.MainHeadline(nameof(NullableRefTypes) + ": 1. String"); 

   try 

   { 

    string? Name = null; 

    Print("Guten Tag, " + Name); 

    Console.WriteLine($"Ihr Name ist {Name?.Length ?? 0} Zeichen lang!"); 

   } 

   catch (System.Exception ex) 

   { 

    CUI.PrintError("ERROR: " + ex.Message); 

   } 

 

   CUI.MainHeadline(nameof(NullableRefTypes) + ": 2. Person"); 

   try 

   { 

    Person p1 = new Person() { ID = 123, Surname = "Schwichtenberg" }; 

    PrintPerson(p1); 

    Person? p2 = null; 

    PrintPerson(p2); 

 

    p1.Firstname = null; 

    string name = p1.Firstname!.ToUpper(); 

    Console.WriteLine(name); 

   } 

   catch (System.Exception ex) 

   { 

    CUI.PrintError("ERROR: " + ex.Message); 

   } 

  } 

 

  static void Print(string s) 

  { 

   Console.WriteLine(s.Trim()); 

  } 

 



Behandlung von null  197 

 

  static void PrintPerson(Person? p) 

  { 

   if (p == null) { Console.WriteLine("Person ist leer!"); return; } 

   // oder: null coalescing assignment ("compound assigment") 

   //p ??= new Person() { ID = -1 }; 

   Console.WriteLine($"{p.ID}: {p.ToString()}"); 

  } 

 

  class Person 

  { 

   public int ID { get; set; } 

   public string? Firstname { get; set; } 

   public string? Surname { get; set; } 

 

   public Person() 

   { 

    Firstname = ""; Surname = ""; 

   } 

 

   public Person(int ID) : this() 

   { 

    this.ID = ID; 

   } 

 

   public override string ToString() 

   { 

    // Null Forgiveness-Operator zur als Beispiel 

    return this.Firstname!.ToUpper() + " " + this.Surname!.ToUpper(); 

    // besser wäre eine Null-tolerierende Lösung: 

    return this.Firstname?.ToUpper() + " " + this.Surname?.ToUpper(); 

   } 

  } 

 } 

} 

20.3.5 Null Forgiveness-Operator 

Der Null Forgiveness-Operator (!.) unterdrückt Warnungen der  Null-Referenz-Prüfung. Er stellt 

ein Risiko dar, den man nur als letztens Mittel einsetzen sollte, wenn man ganz sicher ist, dass Null 

nicht vorkommen kann. 

In den meisten Fällen sollte der Null Forgiveness-Operator nicht notwendig sein. 

Statt 

   public override string ToString() 

   { 

    // Null Forgiveness-Operator zur als Beispiel 

    return this.Firstname!.ToUpper() + " " + this.Surname!.ToUpper(); 

   } 

Besser wäre eine Null-tollerierende Lösung: 

   public override string ToString() 

   { 

    return this.Firstname?.ToUpper() + " " + this.Surname?.ToUpper(); 



198 Behandlung von null 

 

   } 

Oder ein Beheben des Problems: 

   public override string ToString() 

   { 

    if (this.Firstname == null) this.Firstname = ""; 

    if (this.Surname == null) this.Surname = ""; 

    return this.Firstname.ToUpper() + " " + this.Surname.ToUpper(); 

 

    // Null Forgiveness-Operator zur als Beispiel 

    return this.Firstname!.ToUpper() + " " + this.Surname!.ToUpper(); 

    // besser wäre eine Null-Toleranz: 

    return this.Firstname?.ToUpper() + " " + this.Surname?.ToUpper(); 

   } 

In allen drei o.g. Fällen kommt es zu keiner Compiler-Warnung. 



Partielle Klassen, Methoden, Properties und Indexer  199 

 

21 Partielle Klassen, Methoden, Properties 
und Indexer 
Mit dem Schlüsselwort partial kann man Aufspaltungen von Code vornehmen, was in der Regel 

genutzt wird, um Code auf mehrere Dateien zu verteilen: 

▪ Klassen lassen sich aufteilen, indem ein einige Mitglieder in einem Teil liegen und andere 

Mitglieder in dem anderen Teil 

▪ Bei Methoden, Properties und Indexer kann man die Deklaration von der Implementierung 

trennen. 

21.1 Partielle Klassen 

Partielle Klasse gibt es in C# schon sehr lange: seit .NET Framework 2.0 und C# 2.0 (Jahr 2005).  

Partielle Klassen erlauben dem Entwickler den Programmcode einer Klasse auf mehrere einzelne 

Klassendefinitionen aufzuteilen. Dabei können die partiellen Klassendefinitionen auch in 

verschiedenen Dateien existieren. Die verschiedenen Klassendefinitionen werden von dem 

Compiler zu einer Klasse vereint. Dies bedeutet, dass alle Klassenmitglieder, auch wenn sie in 

verschiedenen Dateien liegen, sich gegenseitig sehen und nutzen können. 

Partielle Klassen erlauben, dass verschiedene Entwickler an einer Klasse arbeiten können bzw. 

dass ein Teil einer Klasse automatisch durch ein Werkzeug generiert wird, während andere Teile 

händisch codiert werden. Partielle Klassen werden von verschiedenen Werkzeugen in Visual 

Studio verwendet, um generierten Programmcode von eigenem Programmcode zu trennen (z.B. in 

Windows Forms, ASP.NET Webforms, typisierten DataSets, Entity Framework, ASP.NET Core 

Blazor).  

Entwickler können partielle Klassen auch dazu verwenden, den eigenen Code übersichtlicher zu 

halten. Allerdings gibt es Verfechter der Regel, dass eine Klassendefinition nicht so lang sein 

sollte, dass man eine Aufteilung auf mehrere Dateien überhaupt in Betracht ziehen müsste (vgl. 

[dzone.com/articles/rule-30-%E2%80%93-when-method-class-or]). Demnach sollte man in 

solchen Fällen die Funktionalität der großen Klasse nach inhaltlichen Kriterien auf mehrere 

Klassen aufteilen. 

Hinweis: Über das Schlüsselwort partial verbunden werden können auf diese Weise aber nur 

Klassen im Quellcode und innerhalb einer Assembly. Sie können also keine Klasse in einer 

referenzierten Assembly erweitern. Letzteres ist nur mit Vererbung möglich (sofern die Klasse 

es erlaubt). 

Es gelten folgende Bedingungen für den Einsatz des Schlüsselwortes partial: 

▪ partial muss klein geschrieben werden 

▪ partial muss hinter den Sichtbarkeitsmodifizierern der Klasse stehen 

▪ partial muss bei allen Teilklassen angegeben werden 

Listing: Datei PartielleKlasse_Teil1.cs 
namespace CS20 

{ 

 public partial class Buch 

 { 

  public Buch(string titel, string ISBN) 

  { 

https://dzone.com/articles/rule-30-%E2%80%93-when-method-class-or


200 Partielle Klassen, Methoden, Properties und Indexer 

 

   this.ISBN = ISBN; 

   // kann Property aus Teil 2 der Klasse verwenden! 

   this.Titel = titel; 

  } 

  public string ISBN; 

 } 

} 

Listing: Datei PartielleKlasse_Teil2.cs 
namespace CS20 

{ 

 public partial class Buch 

 { 

  public string Titel; 

  

  public override string ToString() 

  { 

   // kann Property aus Teil 1 der Klasse verwenden! 

   return "Buch '" + this.Titel + "' (ISBN " + this.ISBN + ")"; 

  } 

 } 

} 

21.2 Partielle Methoden 

Partielle Methoden gibt es seit C# 3.0. Im Rahmen von C# 9.0 wurden sie erweitert. 

Im Rahmen eines Teils einer partiellen Klasse kann man eine Methode deklarieren (ohne 

Implementierung). Im Rahmen eines anderen Teils kann man die Implementierung liefern. So 

lassen sich die Deklaration und die Implementierung trennen. Die partielle Methode kann 

gleichwohl in dem Teil, in dem sie nur deklariert ist, aufgerufen werden. Wenn es keine 

Implementierung in einem anderen Teil gibt, kommt es aber nicht zu einem Fehler. Der Compiler 

wird vielmehr alle Aufrufe entfernen. Damit kann man partielle Methoden als Hooks einsetzen, 

um sich in Programmcode einzuklinken. Gerne wird dies benutzt bei Programmcode, der von 

einem Codegenerator (Assistenten oder Designer) erzeugt wurde. Zum ersten Mal eingesetzt 

wurde diese Vorgehensweise im LINQ to SQL-Designer. 

Hinweis: Partielle Attribute (Properties) gibt es leider bisher nicht. 

Es galten folgende Bedingungen für partielle Methoden in C# 3.0 bis 8.0: 

▪ Die Methode darf keinen Rückgabewert (void) haben. 

▪ Beide Teile müssen partial verwenden. 

▪ Die Methode ist automatisch private. Sie dürfen nicht öffentlich sein. 

▪ Eine Sichtbarkeit darf nicht angegeben sein (also auch nicht private). 

▪ Parameter mit out sind nicht erlaubt. 

▪ Sie können statisch sein. 

Listing: Beispiel für eine partielle Methode in C# seit Version 3.0 
 

public partial class Vorstandsmitglied 

 { 

  // Automatic Properties 

  public string Name { get; set; } 



Partielle Klassen, Methoden, Properties und Indexer  201 

 

  public string Aufgabengebiet { get; set; } 

  public int Alter { get; set; } 

  public string Ort; 

 

  public override string ToString() 

  { 

   // Partielle Methode - Verwendung 

   OnToString(); 

   return Name; 

  } 

 

  // Partielle Methode - Deklaration 

  partial void OnToString(); 

 } 

 

 public partial class Vorstandsmitglied 

 { 

  // Partielle Methode - Implementierung 

  partial void OnToString() 

  { 

   Console.WriteLine("ToString aufgerufen!"); 

  } 

 } 

Seit C# 9.0 sind einige dieser Restriktionen gelockert: Rückgabewerte, Sichtbarkeitsangabe und 

out-Parameter sind erlaubt. Allerdings muss es bei Verwendung dieses Features dann auch 

zwingend eine Implementierung geben! 

Listing: Partielle Methoden alten vs. neuen Typs / Erster Teil der partiellen Klasse: 
partial class MeineKlasse 

 { 

  // partielle Methode alten Typs --> keine Implementierung erforderlich! 

  partial void M1(); 

 

  // partielle Methode neuen Typs, da "private" --> Implementierung erforderlich! 

  private partial void M2(); 

 

  // partielle Methode neuen Typs, da "int" --> Implementierung erforderlich! 

  public partial int M3(); 

 } 

 

Listing: Partielle Methoden alten vs. neuen Typs / Zweiter Teil der partiellen Klasse 
partial class MeineKlasse 

 { 

  private partial void M2() { } 

  public partial int M3() { return 42; } 

 } 

In diesem Beispiel käme es zu Compilerfehlern, wenn: 

▪ Die Implementierung von M2() oder M3() fehlt: "Partial method xy must have an 

implementation part because it has accessibility modifiers." 

▪ Bei M3() kein Sichtbarkeitsangabe festgelegt ist: "Partial method xy must have accessibility 

modifiers because it has a non-void return type. 

▪ Der Rückgabetyp von Deklaration und Implementierung nicht übereinstimmen: "Both partial 

method declarations must have the same return type." 



202 Partielle Klassen, Methoden, Properties und Indexer 

 

▪ Die Sichtbarkeitsangabe von Deklaration und Implementierung nicht übereinstimmen: "Both 

partial method declarations must have identical accessibility modifiers." 

21.3 Partielle Properties und partielle Indexer (ab C# 
13.0) 

Eine wichtige Neuerung in C# 13.0 sind partielle Properties und Indexer. Auf dieses Sprachfeature 

warten viele Entwicklerinnen und Entwickler bereits seit der Einführung der partiellen Methoden 

in C# 3.0. Das C#-Schlüsselwort partial gibt es sogar bereits seit C# 2.0 für Klassen. 

Mit partiellen Klassen kann man den Programmcode einer einzigen Klasse auf mehrere Code-

Dateien aufspalten - ohne dafür Vererbung zu nutzen. Das ist nicht nur sinnvoll für mehr 

Übersichtlichkeit bei umfangreichen Klassen, sondern wird vor allem verwendet, wenn ein Teil 

der Klasse automatisch generiert und der andere Teil der Klasse manuell geschrieben wird. Diese 

Vorgehensweise kommt in .NET zum Beispiel bei GUI-Bibliotheken wie ASP.NET Webforms 

und Blazor, beim Reverse Engineering von Datenbanken mit Entity Framework und Entity 

Framework Core sowie bei Source-Generatoren (z.B. für reguläre Ausdrücke und JSON-

Serialisierung) zum Einsatz.  

Nun in C# 13.0 können Entwicklerinnen und Entwickler auch Property-Definitionen und Indexer-

Definition sowie deren Implementierung mit partial in zwei Dateien trennen. Dabei müssen beide 

Teile jeweils die gleiche Kombination von Getter und Setter mit den gleichen Sichtbarkeiten 

realisieren. Ein konkretes Beispiel: Wenn in einem Teil der Klasse ein Property sowohl einen 

öffentlichen Getter als auch einen öffentlichen Setter besitzt, müssen diese auch im anderen Teil 

vorhanden und öffentlich sein. Aber während in einem Teil ein automatisches Property verwendet 

wird, kann im anderen Teil eine explizite Implementierung vorhanden sei.  

Die folgenden drei Listings zeigen ein Beispiel einer aufgeteilten Klasse mit partieller Methode 

und partiellem Property sowie einem partieller Indexer. 

Listing: Erster Teil der partiellen Klasse nur mit Definitionen von ID und Print() 
/// <summary> 

/// Erster Teil der partiellen Klasse nur mit Definitionen von ID, Indexer und Pr

int() 

/// </summary> 

public partial class PersonWithAutoID 

{ 

 // NEU: Partielles Property --> kein "Convert to Full Property" 

 public partial int ID { get; set; } 

 // NEU: Indexer 

 public partial string this[int index] { get; } 

 // "Normales Property" 

 public string Name { get; set; } 

 // Partielle Methode 

 public partial void Print(); 

} 

Listing: Im zweiten Teil der partiellen Klasse werden Getter und Setter für ID sowie die Methode 

Print() implementiert 
/// <summary> 

/// Im zweiten Teil der Klasse werden Getter und Setter für ID, der Getter für de

n Indexer sowie die Methode Print() implementiert 

/// </summary> 

public partial class PersonWithAutoID 



Partielle Klassen, Methoden, Properties und Indexer  203 

 

{ 

 int counter = 0; 

  

 // Implementierung des Partial Property 

 private int iD; 

  

 public partial int ID 

 { 

  get 

  { 

   if (iD == 0) iD = ++counter; 

   return iD; 

  } 

  set 

  { 

   if (ID > 0) throw new ApplicationException("ID ist bereits gesetzt"); 

   iD = value; 

  } 

 } 

  

 // Implementierung des Partial Indexer 

 public partial string this[int index] 

 { 

  get 

  { 

   return index switch 

   { 

    0 => ID.ToString(), 

    1 => Name, 

    _ => throw new IndexOutOfRangeException() 

   }; 

  } 

 } 

  

 // Implementierung der Partial Method 

 public partial void Print() 

 { 

  Console.WriteLine($"{this.ID}: {this.Name}"); 

 } 

} 

Listing: Nutzer der zusammengesetzten Klasse PersonWithAutoID 
 

/// <summary> 

/// Client-Klasse für die Demo 

/// </summary> 

public class CS13_PartialPropertyAndIndexerDemoClient 

{ 

 public void Run() 

 { 

  CUI.Demo(nameof(CS13_PartialPropertyAndIndexerDemoClient)); 

  CS13.PersonWithAutoID p = new() { Name = "Holger Schwichtenberg" }; 

  p.Print(); // 1: Holger Schwichtenberg 

  CUI.H2("Versuch, die ID neu zu setzen, führt zum Fehler:"); 



204 Partielle Klassen, Methoden, Properties und Indexer 

 

  try 

  { 

   p.ID = 42; 

  } 

  catch (Exception ex) 

  { 

   CUI.Error(ex); // System.ApplicationException: ID ist bereits gesetzt 

  } 

  CUI.Print($"Nutzung des Indexers: {p[0]}: {p[1]} "); 

 } 

} 



Erweiterungsmethoden (Extension Methods)  205 

 

22 Erweiterungsmethoden (Extension 
Methods) 
Eine Erweiterungsmethode ermöglicht einer Klasse, extern eine Methode anzuheften. Extern heißt, 

dass dies nicht im Rahmen der Klassendefinition selbst erfolgt, sondern in einer anderen Klasse. 

Damit ist es möglich, Klassen zu erweitern, die man selbst nicht geschrieben hat (z.B. Klassen der 

.NET-Klassenbibliothek FCL). Ein solches Konzept ist bereits aus JavaScript vielen Entwicklern 

bekannt. Zu beachten ist, dass die Methoden gemäß dem Prinzip der Kapselung nur auf die 

öffentlichen Attribute und Methoden der Klasse zugreifen können. Durch Einsatz von Reflection 

(Metadatennutzung) kann diese Beschränkung jedoch umgangen werden (durch Reflection kann man 

immer auch auf private Mitglieder zugreifen!). Erweiterungen können nur Methoden sein; Fields und 

Properties können leider nicht nachträglich ergänzt werden. 

Tipp: Erweiterungsmethoden können auch auf Schnittstellen angewendet werden, sodass man 

auf einfache Weise alle Klassen erweitern kann, die eine bestimmte Schnittstelle anbieten. 

Microsoft hat dies im Rahmen von Language Integrated Query auf die Schnittstelle 

IEnumerable angewendet, um alle Objektmengenklassen »LINQ-fähig« zu machen. 

 

Hinweis: Mit den Erweiterungsmethoden hat man eine dritte syntaktische Möglichkeit, 

bestehende Klassen zu erweitern: 

1. Vererbung: Möglich seit .NET 1.0, aber nur für Klassen, die Vererbung zulassen (also nicht 

sealed bzw. NotInheritable sind) 

2. Partielle Klassen: Möglich seit .NET 2.0, aber nur für Klassen im gleichen Projekt, die als 

Partiell gekennzeichnet sind 

3. Erweiterungsmethoden: Möglich seit .NET 3.5, für alle Klassen und auch anwendbar auf 

Schnittstellen 

22.1 Entwicklung von Erweiterungsmethoden 

Um in C# eine Erweiterungsmethode zu entwickeln, schreibt man: 

▪ eine statische Klasse 

▪ mit einer statischen Methode 

▪ die mindestens einen Parameter besitzt 

▪ der mit this beginnt 

▪ und den Typ der zu erweiternden Zielklasse besitzt 

Hinweise: 

1. Der Name der Klasse, in der die Erweiterungsmethode implementiert wird, ist im Übrigen 

egal. Auf diese Weise ist die Anzahl der Erweiterungsmethoden für eine Klasse nicht 

räumlich und der Menge nach beschränkt. Erweiterungsmethoden können überladen 

werden, wobei hier die gleichen Bedingungen wie bei normalen Methoden gelten. 

Erweiterungsmethoden müssen keinen Rückgabewert haben (d. h. void bzw. Sub sind 

erlaubt). 

2. Eine Erweiterungsmethode darf nicht in einer eingebetteten Klasse definiert werden. 



206 Erweiterungsmethoden (Extension Methods) 

 

3. Die Verwendung von this ist leider wenig intuitiv, zumal this schon mehrere andere 

Bedeutungen in C# hat. Außerdem muss die Erweiterungsmethode statisch deklariert sein, 

wenngleich sie nachher eine Instanzmethode ist. Ebenso muss die Klasse statisch sein. 

4. Falls Sie von Visual Basic .NET kommen: Die dort übliche Verwendung der Annotation 

System.Runtime.CompilerServices.ExtensionAttribute funktioniert in C# nicht! 

Das folgende Beispiel zeigt die Implementierung einer Erweiterungsmethode Print() für die 

Schnittstelle IEnumerable. Dadurch erhalten alle Objektmengenklassen in .NET die Methode 

Print(), die alle enthaltenen Objekte in einer bestimmten Farbe an der Konsole ausgibt (die 

Ausgabe erfolgt mit ToString() und ist daher darauf angewiesen, dass ToString() in den Objekten 

sinnvoll implementiert wurde. 

Listing: Implementierung der Erweiterungsmethode Print() für die Schnittstelle IEnumerable (in 

C#) 
using System.Runtime.CompilerServices; 

using System; 

using System.Collections; 

 

namespace ITVisions 

{ 

 public static class ITVisionsCollectionExtensions 

 { 

  // --- Erweiterungsmethode für IEnumerable 

  public static void Print(this IEnumerable Menge, ConsoleColor Farbe) 

  { 

   ConsoleColor VorherigeFarbe = Console.ForegroundColor; 

   Console.ForegroundColor = Farbe; 

   foreach (object o in Menge) 

    Console.WriteLine(o.ToString()); 

   Console.ForegroundColor = VorherigeFarbe; 

  } 

 } 

} 

 

22.2 Nutzung von Erweiterungsmethoden 

Wichtig ist, dass in der Klasse, in der die Erweiterungsmethode verwendet wird, der Namensraum 

der Klasse, in der die Erweiterungsmethode implementiert wurde, durch using bzw. imports 

eingebunden wird. Sonst kann die Erweiterungsmethode vom Compiler nicht gefunden werden. 

Dies ist auch der Grund dafür, dass LINQ-Abfrageausdrücke nur dann zur Verfügung stehen, wenn 

der Namensraum System.Linq eingebunden wurde! 

Listing: Anwendung der Methode Print() auf eine Menge, die mit der generischen Mengenklasse 

List erzeugt wurde (in C#) 
Imports de.WWWings.Library 

… 

List<Vorstandsmitglied> Vorstandsmitglieder = new List<Vorstandsmitglied> { HS, 

HM, MM }; 

 

// Verwendung einer Erweiterungsmethode 

Vorstandsmitglieder.Print(ConsoleColor.DarkYellow); 

 



Erweiterungsmethoden (Extension Methods)  207 

 

22.3 Praxisbeispiele: Erweiterungsmethoden für die 
Datentypkonvertierung 

Mit ein Erweiterungsmethoden kann man die Konvertierung von elementaren Datentypen 

wesentlich schöner gestalten. 

Motivation: Die Konvertierung zwischen elementaren Datentypen gehört zum Alltag eines 

jeden Softwareentwicklers, denn nicht immer kommen Daten in dem gewünschten Typ im 

eigenen Programmcode an. Datenbankzugrifftechniken wie DataReader und das untypisierte 

DataSet liefern Daten aus Datenbankspalten in Form des allgemeinen .NET-Basistyps 

System.Object. Beim Auslesen einer Textdatei bekommt man alle Daten als Zeichenketten. 

Ebenso liefern Texteingabefelder in grafischen Benutzeroberflächen üblicherweise 

System.String. Auch in Verbindung mit dem Netzwerkprotokoll HTTP hantiert man meist mit 

Zeichenketten. 

22.3.1 Eingebaute Konvertierungsfunktionen 

Nehmen wir als Beispiel mal eine Zechenkette mit Inhalt "42" 

string input = "42"; 

Diese Zeichenkette möchte in eine Integer-Zahl umwandeln. Ein einfacher Typecast in C# ist hier 

nicht die Lösung 

int x = (int)input; 

"Cannot onvert type 'string' to 'int'", sagt der Compiler dazu nur. 

Es ist die Hilfe der .NET-Klassenklassenbibliothek notwendig, z.B. 

▪ System.Int32.Parse() 

▪ System.Int32.TryParse() 

▪ System.Convert.ToInt32() 

▪ System.Convert.ChangeType() 

Das nächste Listing zeigt diese vier Möglichkeiten im Rahmen von Unit Tests. Variante 2 ist 

eindeutig die beste Lösung, denn bei Variante 1, 3 und 4 kommt es im Fall, dass die Zeichenkette 

kein gültiger Ganzzahlwert ist zu einem Laufzeitfehler vom Typ System.FormatException ("Input 

string was not in a correct format."). Wenn die Zeichenkette den Wert null hat, gibt es den 

Laufzeitfehler vom Typ System.InvalidCastException ("Null object cannot be converted to a value 

type") bzw. System.ArgumentNullException ("Value cannot be null.").  

Diese Fehlerfälle müsste man also explizit abfangen. Man sollte aber das Auftreten einer 

Ausnahme in .NET wenn immer möglich vermeiden, da Ausnahmen viel Zeit kosten. Diese Zeit 

fällt zwar kaum ins Gewicht, wenn man Eingaben eines Benutzers in einer Bildschirmmaske prüft. 

Die Zeit für das Abfangen der Laufzeitfehler ist aber relevant, wenn man einen Datenimport mit 

500.000 Datensätzen aus einer Textdatei implementiert und es häufig fehlerhafte Daten gibt. 

Listing: In .NET eingebaute Möglichkeiten der Konvertierung zwischen einer Zeichenkette und 

einer Zahl 
using System; 

using Microsoft.VisualStudio.TestTools.UnitTesting; 

  

namespace DNP.Kolumne.Folge152.UnitTests 

{ 



208 Erweiterungsmethoden (Extension Methods) 

 

 [TestClass] 

 public class StringConversionTests 

 { 

 

[TestMethod] 

public void StandardKonvertierungen_Parse() 

{ 

 string input = "42"; 

 int x = System.Int32.Parse(input); 

 Assert.AreEqual(42, x); 

} 

  

[TestMethod] 

public void StandardKonvertierungen_TryParse() 

{ 

 string input = "42"; 

 bool success = System.Int32.TryParse(input, out int x); 

 if (success) 

 { 

  Assert.AreEqual(42, x); 

 } 

 else 

 { 

  // Konvertierung fehlgeschlagen 

 } 

} 

  

[TestMethod] 

public void StandardKonvertierungen_Convert() 

{ 

 string input = "42"; 

 int x = System.Convert.ToInt32(input); 

 Assert.AreEqual(42, x); 

} 

  

[TestMethod] 

public void StandardKonvertierungen_ChangeType() 

{ 

 string input = "42"; 

 int x = (int)System.Convert.ChangeType(input, typeof(int)); 

 Assert.AreEqual(42, x); 

} 

 } 

} 

22.3.2 Erweiterungsmethoden zum Konvertieren 

Der eine oder andere erinnert sich vielleicht noch an die Version Beta 1 von .NET Framework 1.0 

im Jahr 2000 – das ist zugegebener Maßen lange her. Einige der heutigen .NET-Entwickler waren 

da noch nicht geboren. In dieser Beta-Version gab es Konvertierungsmethoden direkt in der 

System.String-Klasse: ToInt32(), ToDateTime(), ToDecimal() usw. Leider haben es diese 

Konvertierungsmethoden bis heute in keine einsatzreife Version von .NET geschafft. Mit ein klein 



Erweiterungsmethoden (Extension Methods)  209 

 

wenig Zutun können diese Konvertierungsmethoden aber selbst erschaffen werden,  als eine 

elegantere Lösung um die Methode TryParse() herum. 

 

Das folgende Listing zeigt die Methoden ToInt32() und ToInt32OrNull(). Beides sind 

Erweiterungsmethoden für die Klasse System.String. Beide sind daher statische Methoden in einer 

statischen Klasse und haben ein "this" vor dem ersten Parametertyp – das alles gehört zu den 

Voraussetzungen für Erweiterungsmethoden in C#. Beide Methoden kapseln den Aufruf von 

System.Int32.TryParse(). Beide Methoden erlauben die optionale Angabe eines Parameters mit 

einem Wert, der verwendet wird für den Fall, dass eine Konvertierung in eine Zahl nicht möglich 

war. Während bei ToInt32() immer eine Zahl zurückkommt (man muss sich also überlegen, was 

im Fehlerfall eine Zahl ist, an der man erkennt, dass die Konvertierung nicht geklappt hat), erlaubt 

ToInt32OrNull() die Rückgabe von null. Daher definiert ToInt32() als Rückgabewert System.Int32 

und ToInt32OrNull() liefert System.Nullable<System.Int32> alias Int32?. 

Listing: Erweiterungsmethoden ToInt32() und ToInt32OrNull() 
namespace ITVisions 

{ 

 public static class StringExtensions 

 { 

 

/// <summary> 

  /// Konvertiert eine Zeichenkette nach Int32 oder in NULL-Wert 

  /// </summary> 

  /// <param name="obj">Zielobjekt</param> 

  /// <param name="defaultValue">Rückgabestandardwert für den Fall, das Konvertie

rung nicht erfolgreich ist- Ohne Angabe ist der Rückgabestandardwert NULL.</param

> 

  /// <returns>Nullable Int32</returns> 

  public static Int32? ToInt32OrNull(this string obj, Int32? defaultValue = null) 

  { 

   int i; 

   if (Int32.TryParse(obj, out i)) return i; 

   return defaultValue; 

  } 

  

  /// <summary> 

  /// Konvertiert eine Zeichenkette nach Int32,  

  /// </summary> 

  /// <param name="obj">Zielobjekt</param> 

  /// <param name="defaultValue">Rückgabestandardwert für den Fall, das Konvertie

rung nicht erfolgreich ist. Ohne Angabe ist der Rückgabestandardwert 0.</param> 

  /// <returns>Int32</returns> 

  public static Int32 ToInt32(this string obj, Int32 defaultValue = 0) 

  { 

   int i; 

   if (Int32.TryParse(obj, out i)) return i; 

   return defaultValue; 

  } 

} 

Das nächste Listing zeigt die Nutzung obiger Erweiterungsmethoden. Wichtig ist dabei   

using ITVisions; 



210 Erweiterungsmethoden (Extension Methods) 

 

Erst durch diesen Namensraumimport werden alle Erweiterungsmethoden in statischen Klassen in 

diesem Namensraum eingebunden. Die Erweiterungsmethoden funktionieren beide auch für den 

Null-Fall, wie die Unit Tests im nächsten Listing beweisen. Normale Instanzmethoden in einer 

Klasse würden hier versagen, denn auf einem Objektverweis, der auf null steht, könnte man keine 

Methode aufrufen. Erweiterungsmethoden können damit aber umgehen, da sie das Objekt als 

Parameter erhalten. 

Listing: Unit Tests für ToInt32() und ToInt32OrNull() 
using System; 
using ITVisions; 
using Microsoft.VisualStudio.TestTools.UnitTesting; 
  
namespace ITV.AppUtil.UnitTests 
{ 
  
 [TestClass] 
 public class StringConversionTests 
 { 
 
  [TestMethod] 
  public void ToInt32_Valid() 
  { 
   string input = "42"; 
   int? x1 = input.ToInt32OrNull(); 
   Assert.AreEqual(42, x1); 
  
   int x2 = input.ToInt32(); 
   Assert.AreEqual(42, x2); 
  
   int x3 = input.ToInt32(-1); 
   Assert.AreEqual(42, x3); 
  } 
  
  [TestMethod] 
  public void ToInt32_NotValid() 
  { 
   string input = "abc"; 
   int? x1 = input.ToInt32OrNull(); 
   Assert.AreEqual(null, x1); 
  
   int x2 = input.ToInt32(); 
   Assert.AreEqual(0, x2); 
  
   int x3 = input.ToInt32(-1); 
   Assert.AreEqual(-1, x3); 
  } 
  
  [TestMethod] 
  public void ToInt32_Null() 
  { 
   string input = null; 
   int? x1 = input.ToInt32OrNull(); 



Erweiterungsmethoden (Extension Methods)  211 

 

   Assert.AreEqual(null, x1); 
  
   int x2 = input.ToInt32(); 
   Assert.AreEqual(0, x2); 
  
   int x3 = input.ToInt32(-1); 
   Assert.AreEqual(-1, x3); 
  } 
  
 } 
} 

22.3.3 Erweiterungsmethoden für Zeichenketten mit null 

Diese Anwendbarkeit von Erweiterungsmethoden auf null-Verweise kann man sich auch zu Nutze 

machen für weitere elegante Erweiterungsmethoden, die null-Fälle in Zeichenketten abhandeln, 

siehe nächstes Listing.  

Listing: Erweiterungsmethoden für die String-Klasse zur Prüfung und Behandlung von null-

Werten 
namespace ITVisions 

{ 

 public static class StringExtensions2 

 { 

  

  public static bool IsNullOrEmpty(this string s) 

  { 

   return (String.IsNullOrEmpty(s)); 

  } 

  

  public static bool IsNotNullOrEmpty(this string s) 

  { 

   return (!String.IsNullOrEmpty(s)); 

  } 

  

  public static string NotNull(this string s, string altString = "") 

  { 

   if (String.IsNullOrEmpty(s)) return altString; 

   return s;  

  } 

} 

Mit der hier realisierten Erweiterungsmethode IsNullOrEmpty() kann man anstelle der Nutzung 

der statischen Methode IsNullOrEmpty() in der Klasse System.String  

bool b1 = String.IsNullOrEmpty(input); 

nun deutlich prägnanter schreiben: 

bool b1 = input.IsNullOrEmpty(); 

Ebenso statt 

bool b2 = !String.IsNullOrEmpty(input); 

nun 

bool b2 = input.IsNotNullOrEmpty(); 



212 Erweiterungsmethoden (Extension Methods) 

 

Mit der dort realisierten Erweiterungsmethode NotNull() kann man statt 

string output1 = input ?? ""; 

auch schreiben 

string output1 = input.NotNull(); 

Das sind auf den ersten Blick mehr Zeichen, aber die IntelliSense-Eingabeunterstützung im Editor 

sorgt dafür, dass man den Erweiterungsmethodenaufruf schneller eingeben kann, denn für ?? "" 

muss man (inklusive der Leerzeichen) sechs Tasten tippen, vier davon mit gedrückter Shift-Taste. 

Für .NotNull() reichen drei Tastaturanschläge: Punkt, N und Tabulator-Taste. Noch besser wird 

das Tastaturanschlagsanzahlverhältnis, wenn man danach noch weitere Methoden aufrufen will, 

was beim Operator ?? eine Klammerung erfordert: 

int len1 = (input ?? "").Length; 

daraus wird nun schneller eingebbar: 

int len1 = input.NotNull().Length; 

Die Erweiterungsmethode NotNull() unterstützt dabei auch alternative Texte, z.B. 

string output = input.NotNull("- keine Angabe -"); 

22.3.4 Erweiterungsmethoden für beliebige null-Verweise 

Die null-Prüfung kann man leicht auf beliebige Objekte ausdehnen (siehe Listing).  

Listing: Erweiterungsmethoden für System.Object zur Prüfung von null-Werten 
namespace ITVisions 

{ 

  

 public static class ObjectExtensions 

 { 

  public static bool IsNull(this object o) 

  { 

   return (o == null); 

  } 

  

  public static bool IsNotNull(this object o) 

  { 

   return (o != null); 

  } 

  

  public static object NotNull(this object o, object defaultObject) 

  { 

   if (o is null) return defaultObject; 

   return o; 

  } 

 

} 

Nun gibt es ja schon mehrere eingebaute Möglichkeiten zur null- bzw. nicht-null-Prüfung in C#: 

▪ bool b1 = input == null; (seit C# 1.0) 

▪ bool b2 = input != null; (seit C# 1.0) 

▪ bool b3 = input is null; (seit C# 7.0) 

▪ bool b4 = input is not null; (seit C# 9.0) 



Erweiterungsmethoden (Extension Methods)  213 

 

Mit den Erweiterungsmethoden aus obigem Listing kann man nun allerdings mit besserer 

Eingabeunterstützung schreiben: 

▪ bool b1 = input.IsNull(); 

▪ bool b2 = input.IsNotNull(); 

Das ist aus der Sicht des Autors dieses Buchs auch besser lesbar. Über "bessere Lesbarkeit" kann 

man aber streiten. Es gibt verschiedene Wahrnehmungstypen unter den Menschen. 

Das obige Listing beinhaltet auch zwei Erweiterungsmethoden NotNull() für System.Object. 

Damit geht nun statt 

(input ?? new DirectoryInfo(@"t:\download")).CreateIfNotExists(); 

auch dieser Aufruf: 

input.NotNull(new DirectoryInfo(@"t:\download")).CreateIfNotExists(); 

In diesem Fall kann man jetzt durchaus auch darüber streiten, was eleganter und schneller 

eingebbar ist. 

22.3.5 Universelle Erweiterungsmethode To<T> 

Die ADO.NET-Datenzugriffsklassen System.Data.Common.DbDataReader (und die 

Abkömmlinge wie der SqlDataReader) und System.Data.DataRow (als Teil des DataSet) 

signalisieren NULL-Spalten in einem Datenbankmanagementsystem nicht als null-Wert in C# 

bzw. nothing in Visual Basic .NET sondern mit einer Instanz der Klasse System.DBNull. 

Auf der Suche nach einer komfortableren Lösung kommt man auf die generische Methode 

To<T>() in nächsten Listing als Erweiterungsmethode für System.Object. Die Methode prüft 

zunächst auf DBNull und liefert in diesem Fall null oder einen anderen als optionalen per 

Parameter defaultValue übergebenen Standardwert zurück. Die Rückgabe von null wird 

verweigert, wenn der übergebene generische Typ T nicht nullable ist. 

Wenn kein DBNull übergeben wurde, dann holt sich die Implementierung der Methode To<T>() 

über die Klasse System.ComponentModel.TypeDescriptor zunächst einen Konverter von dem 

Quellobjekttyp in den Zieltyp (Variable targettype) zur Ausführung von ConvertTo(). Wenn es 

keinen Konverter dafür gibt, versucht die Methode To<T>() es beim Gegenpart, also beim Zieltyp 

einen Konverter zu bekommen, der ConvertFrom() unterstützt. 

Listing: To<T> bietet eine universelle Konvertierung   
public static T To<T>(this object obj, object defaultValue = null) 

 { 

  if (obj != null) 

  { 

   Type targetType = typeof(T); 

  

   // Zieltyp ist gleich dem Quelltyp 

   if (obj.GetType() == targetType) 

   { 

    return (T)obj; 

   } 

  

   // DBNull? Dann null zurückgeben 

   if (obj == DBNull.Value) 

   { 



214 Erweiterungsmethoden (Extension Methods) 

 

    if (defaultValue == null && targetType != typeof(string) && (!targetType.IsGe

nericType || targetType.GetGenericTypeDefinition() != typeof(Nullable<>))) 

    { 

     throw new InvalidOperationException("Cannot convert DBNull to " + targetType

.ToString() + " because it is a non-nullable value type"); 

    } 

    return defaultValue.To<T>(); 

   } 

  

   // Konvertierung über TypeConverter für aktuelles Objekt 

   TypeConverter converter = TypeDescriptor.GetConverter(obj); 

   if (converter != null) 

   { 

    if (converter.CanConvertTo(targetType)) 

    { 

     return (T)converter.ConvertTo(obj, targetType); 

    } 

   } 

  

   // Konvertierung über TypeConverter für Zieltyp 

   converter = TypeDescriptor.GetConverter(targetType); 

   if (converter != null) 

   { 

    if (converter.CanConvertFrom(obj.GetType())) 

    { 

     return (T)converter.ConvertFrom(obj); 

    } 

   } 

  } 

  

  return (T)obj; 

 } 

Mit To<T> kann man viele Konvertierungsfälle abdecken. Beispiele zeigen die Unit Tests im 

folgenden Listing.  

Listing: Eine Auswahl der Unit Tests für die Konvertierungsmethode To<T> 
[TestMethod] 

 public void ToT_Int16() 

 { 

  string value = "42"; 

  string nullValue = null; 

  object DBNullValue = DBNull.Value; 

  

  var result1 = value.To<Int16>(); 

  var result2 = value.To<Int16?>(); 

  var result3 = nullValue.To<Int16?>(); 

  var result4 = DBNullValue.To<Int16?>(); 

  var result5 = DBNullValue.To<Int16>(42); 

  

  Assert.AreEqual(42, result1); 

  Assert.AreEqual(42, result2.Value); 

  Assert.IsNull(result3); 

  Assert.IsNull(result4); 



Erweiterungsmethoden (Extension Methods)  215 

 

  Assert.AreEqual(42, result5); 

 } 

  

 [TestMethod] 

 public void ToT_Bool() 

 { 

  string nullValue = null; 

  string value = "true"; 

  object DBNullValue = DBNull.Value; 

  

  var result1 = value.To<Boolean>(); 

  var result2 = value.To<Boolean?>(); 

  var result3 = nullValue.To<Boolean?>(); 

  var result4 = DBNullValue.To<Boolean?>(); 

  var result5 = DBNullValue.To<Boolean>(false); 

  

  Assert.AreEqual(true, result1); 

  Assert.AreEqual(true, result2.Value); 

  Assert.IsNull(result3); 

  Assert.IsNull(result4); 

  Assert.AreEqual(false, result5); 

 } 

  

 [TestMethod] 

 public void ToT_String() 

 { 

  string nullValue = null; 

  object value = "Holger Schwichtenberg"; 

  object DBNullValue = DBNull.Value; 

  

  var result1 = value.To<string>(); 

  var result2 = value.To<string>(); 

  var result3 = nullValue.To<string>(); 

  var result4 = DBNullValue.To<string>(); 

  var result5 = DBNullValue.To<string>("Max Mustermann"); 

  

  Assert.AreEqual(value.ToString(), result1); 

  Assert.AreEqual(value, result2); 

  Assert.IsNull(result3); 

  Assert.IsNull(result4); 

  Assert.AreEqual("Max Mustermann", result5); 

 } 

22.4 Sammlungen von Erweiterungsmethoden 

Es gibt im Internet Sammlungen von Erweiterungsmethoden, in denen sie ähnliche 

Konvertierungsmethoden und andere Erweiterungsmethoden finden: 

1. GitHub-Projekt: Z.ExtensionMethods 

https://github.com/zzzprojects/Z.ExtensionMethods  

2. extensionmethod.net 

https://github.com/zzzprojects/Z.ExtensionMethods


216 Erweiterungsmethoden (Extension Methods) 

 

https://extensionmethod.net  

 

https://extensionmethod.net/


Annotationen (.NET-Attribute)  217 

 

23 Annotationen (.NET-Attribute) 
Der Entwickler selbst kann Komponenten, Klassen und Klassenmitglieder mit zusätzlichen 

Informationen (Metadaten) versehen, die entweder während der Kompilierung oder zur Laufzeit 

der Anwendung ausgewertet werden können. Typische Beispiele für derartige 

Zusatzinformationen sind: 

▪ Die Komponente hat die Version x (AssemblyVersionAttribute) 

▪ Instanzen einer Klasse sind serialisierbar (SerializableAttribute) 

▪ Instanzen der Klasse sollen Teil einer Transaktion sein (TransactionAttribute) 

▪ Ein Mitglied einer Klasse ist aus Kompatibilitätsgründen zwar noch vorhanden, sollte aber 

nicht mehr verwendet werden, weil ein anderes, besseres Mitglied zur Verfügung steht 

(ObsoleteAttribute) 

Leider verwendet Microsoft für diese Metadaten eine stark von der objektorientierten Lehre 

abweichende Begriffswelt: Die Firma nennt eine derartige Auszeichnung Attribut (engl. Attribute), 

was einen Namenskonflikt zu dem Begriff Attribut, also dem Datenmitglied einer Klasse darstellt 

(vgl. für den deutschen Sprachraum [Oesterreich, B.: Objektorientierte Softwareentwicklung, 

München, Wien: Oldenburg Verlag, 1997, S. 157] und [Schneider, U.; Werner, D.: Taschenbuch 

der Informatik, München: Fachbuchverlag Leipzig, 2004, S. 277] und für den englischen 

Sprachraum [Oxford Dictionary of Computing, New York: Oxford University Press, 1997, S. 

243]). Die Datenmitglieder einer Klasse heißen bei Microsoft Felder (engl. Fields) und 

Eigenschaften (engl. Properties). Dabei denkt man doch bei Feldern eher an Arrays. Ein klarer Fall 

von MINFU (siehe Fussnote 1) der sich in der deutschen Übersetzung besonders schlimm auswirkt. 

Hinweis: Mittlerweile verwendet Microsoft auch häufiger den Begriff Annotationen (wie in 

Java seit Version 5.0). Dieses Buch verwendet ebenfalls Annotation für diese Meta-Daten, 

während mit "Attribut" ein Datenmitglied einer Klasse bezeichnet wird. 

Annotationen werden in Form von Klassen implementiert, die von der Basisklasse 

System.Attribute abgeleitet sind. Sie haben Namen, die auf Attribute enden, wobei bei ihrer 

Verwendung das Wort Attribute weggelassen werden kann (z.B. System.ObsoleteAttribute → 

[Obsolete]). Jeder Entwickler kann eigene Annotationen definieren. Annotationen können ein 

Verhalten besitzen; sie werden aber erst verarbeitet, wenn ein Typ explizit von einem Host (z.B. 

einer Entwicklungsumgebung) oder einem anderen Typ via Reflection nach Annotationen gefragt 

wird. 

23.1 Annotationen verwenden 

Annotationen können in C# den Typen und den Typmitgliedern in eckigen Klammern vorangestellt 

werden.  

In dem folgenden Beispiel wird die vordefinierte Annotation System.Obsolete einer Methode 

zugewiesen. System.Obsolete sorgt dafür, dass der Compiler den Entwickler warnt, wenn er eine 

derart deklarierte Methode aufruft.  

Listing: Beispiel für die Anwendung der Annotation System.Obsolete in Visual Basic .NET 
using System; 

 

1 Auf Basis der Erkenntnis, dass Microsoft regelmäßig Probleme mit der Bezeichnung der 

eigenen Produkte und Konzepte hat, schuf der amerikanische Autor David S. Platt ein neues Wort: 

MINFU. Dies ist eine Abkürzung für MIcrosoft Nomenclature Foul-Up. 



218 Annotationen (.NET-Attribute) 

 

 

namespace CSharpSprachsyntax.CS10_NET10_2002 

{ 

 public class Annotationen 

 { 

 

  public void Run() 

  { 

   Print("Start"); 

  } 

   

  [Obsolete("Verwenden Sie bitte Log()!")] 

  void Print(string s) 

  { 

   Console.WriteLine(s); 

  } 

 

  void Log(string s, bool mitZeit = false) 

  { 

   Console.WriteLine((mitZeit ? System.DateTime.Now.ToString() + ": " : "") + s); 

  } 

 

 } 

} 

 

Abbildung: Der Compiler warnt, wenn Sie ein mit [Obsolete] annotierter Methode aufrufen 

Das zweite Beispiel zeichnet die Klasse Passagier als serialisierbar aus, d. h., ihre Instanzen können 

persistiert oder in einen anderen Prozess übertragen werden. 

[System.Serializable()] 

public class Passagier : de.WWWings.Person 

{…} 

 

Seit C# 3.0 gibt es sogenannte automatische Properties, bei denen der Compiler selbständig ein 

unsichtbares "Backing Field" für ein Property beim Kompilieren anlegt: 

public int ID { get; set; } 

public string Name { get; set; } 

 

Vor C# 7.3 hatte ein Entwickler keine Möglichkeit, Annotationen für das automatisch generierte 

Backing Field zu vergeben. Das erlaubt C# Version 7.3, indem der Entwickler zwischen die 

öffnende eckige Klammer und den Namen der Annotation "field:" schreibt, z.B.  



Annotationen (.NET-Attribute)  219 

 

[field: NonSerialized] 

Dies ist sinnvoll, da man einige Annotationen wie z.B. [NonSerialized] nicht auf Properties 

anwenden darf. 

Die folgende Listing zeigt ein Anwendungsbeispiel dazu. 

Listing: Annotationen für unsichtbare Backing Fields 
[Serializable] 

 public class Autor 

 { 

  [field: NonSerialized] 

  public int AutorenID { get; set; } 

  public string Name { get; set; } 

  public string Themen; 

 } 

23.2 Annotationen selber schreiben 

Eine Annotation schreibt man selbst, indem man eine Klasse implementiert, die von der 

Basisklasse System.Attribute erbt. Eine Annotationsklasse muss keine Mitglieder besitzen.  

Eine leere Annotationsklasse ist eine "Markierungsklasse", mit der man eine Typ oder ein Mitglied 

eines Typs markiert, für einen bestimmten Zweck. Es gibt dann nur Ja (Markierung ist vorhanden) 

oder Nein (Markierung ist nicht vorhanden). Durch Hinzufügen eines Konstruktors mit Parametern 

kann man der Annotationsklasse Daten übergeben und damit weitere Informationen transportieren. 

Bei der Deklaration einer Annotationsklasse kann man die Annotation [AttributeUsage] 

verwenden und damit festlegen,  

▪ bei welchen Sprachkonstrukten die Annotation eingesetzt werden kann (Assembly, Klasse, 

Struktur, Enumeration, Methode, Property, Field, Event, Parameter, Rückgabewert, 

Generischer Parameter). Durch All gibt es keine Einschränkung. 

▪ Mit AllowMultiple legt man fest, ob die Annotation mehrfach bei ein und demselben 

Sprachkonstrukt erscheinen darf 

▪ Mit Inherited legt man fest, ob die Annotation an abgeleitete Klassen weitervererbt wird. 

Beispiel: Die folgende, selbstdefinierte Annotation ProgVersion ist auf jedem Sprachkonstrukt 

erlaubt und dient dazu, festzuhalten, mit welcher Programmversion der Code eingeführt wurde. 

Listing: Eigene Annotationen implementieren 
[AttributeUsage(AttributeTargets.All, AllowMultiple = false, Inherited = false)] 

public class ProgVersion : System.Attribute 

{ 

 public int Versionsnummer { get; } 

 public string Notiz { get; } 

  

 public ProgVersion(int versionsnummer, string notiz = "") 

 { 

  Versionsnummer = versionsnummer; 

  Notiz = notiz; 

 } 

} 

 

 



220 Annotationen (.NET-Attribute) 

 

Die Annotation ProgVersion wird in folgendem Beispiel angewendet auf C#-Sprachkonstrukte: 

Properties in der klassischen Schreibweise gibt es seit C# 1.0, automatische Properties erst seit C# 

3.0 

Listing: Eigene Annotationen verwenden 
 public class EigeneAnnotationenAnwenden 

 { 

  string nachname; 

  

  [ProgVersion(1, "Klassische Property-Deklaration")] 

  public string Nachname 

  { 

   get 

   { 

    return nachname; 

   } 

  

   set 

   { 

    nachname = value; 

   } 

  } 

  

  [ProgVersion(3, "Automatisches Property")] 

  public string Vorname { get; set; } 

 } 

} 

Eigene Annotationen haben weder für den Compiler noch die Laufzeitumgebung eine Bedeutung. 

Entwickler müssen selbst Code schreiben, um die Annotationen per Reflection auszuwerten. 

Listing: Eigene Annotationen auswerten 
public class AnnotationenAuswerten 

{ 

 public static void Run() 

 { 

  CUI.H1("Auswertung der Annotation auf den Properties"); 

  var typ = typeof(EigeneAnnotationenAnwenden); 

  Console.WriteLine("Klasse: " + typ.FullName); 

  var properties = typ.GetProperties(); 

  foreach (var prop in properties) 

  { 

   CUI.H3("Property " + prop.Name + ": "); 

   if (Attribute.IsDefined(prop, typeof(ProgVersion))) 

   { 

    foreach (var a in prop.GetCustomAttributesData()) 

    { 

     Console.WriteLine("- " + a.AttributeType.FullName); 

     // Schleife über alle Parameter des Konstruktors 

     foreach (var arg in a.ConstructorArguments) 

     { 

      Console.WriteLine("  " + arg.ArgumentType + " = " + arg.Value); 

     } 



Annotationen (.NET-Attribute)  221 

 

     // Alternative: Gezielt die Annotation holen und mit Type Cast das Annotatio

nsobjekt erhalten 

     var pv = (ProgVersion)prop.GetCustomAttribute(typeof(ProgVersion), false); 

     CUI.Print("  Eingeführt in " + pv.Versionsnummer + ": " + pv.Notiz, ConsoleC

olor.Yellow); 

    } 

   } 

  } 

 } 

} 

 
Abbildung: Ausgabe der Auswertung der Annotationen auf dem Typ "Beispiel" 

23.3 Annotationen mit Typparametern 

Neu in C# 11.0 ist, dass .NET-Attribute (alias "Annotationen") generische Parameter ("Generic 

Attributes") enthalten dürfen. Man schreibt eine generische Klasse und lässt diese – wie bei 

Attributen üblich – von System.Attribute erben: 

public class GenericAttribute<T>  

: System.Attribute  

{  

… 

} 

Damit kann ein Entwickler dann bei der Attribuierung einer Klasse oder Methode einen 

Typparameter als generischen Parameter angeben: 

[GenericAttribute<Person>()] 

class CS11_GenericAttribute_Demo 

{ 

  

public Person p { get; set; } 

 

… 

  

 [GenericAttribute<Person>()] 

 public string Print() 

 { 

  string s = DateTime.Now + ": " + p.ToString(); 

  Console.WriteLine(s); 

  return s; 



222 Annotationen (.NET-Attribute) 

 

 } 

} 

Es ist aber nicht erlaubt, dass ein generischer Typparameter einer Klasse wieder bei einem 

generischen Attribut eingesetzt wird. Es dürfen beim generischen Attribut nur konkrete Typen 

genannt werden. 

public class GenericType<T> 

{ 

 [GenericAttribute<T>()] // nicht erlaubt :-( 

 public string Method() => default; 

} 

Hinweis: Als Typparameter hier nicht erlaubt sind: dynamic, Nullable Reference Types, Tupel 

in C#-Syntax (ValueTupel<T,T> ist aber erlaubt!) 

Vor C# 11.0 konnte man einen Typ an ein Attribut nur als normalen Parameter im Konstruktor 

übergeben: 

public class TypeAttribute : Attribute 

{ 

 public TypeAttribute(Type t) => ParamType = t; 

  

 public Type ParamType { get; } 

} 

Die Nutzung sah dann so aus: 

[TypeAttribute(typeof(Person))] 

class CS11_TypeAttribute_Demo 

{ 

  

 public Person p { get; set; } 

  

 [TypeAttribute(typeof(Person))] 

 public string Print1() 

 { 

  string s = DateTime.Now + ": " + p.ToString(); 

  Console.WriteLine(s); 

  return s; 

 } 

 } 

 



Generische Klassen  223 

 

24 Generische Klassen 
Generische Klassen (Generics) erlauben es, einen oder mehrere Typen, die die Klasse intern 

verarbeitet, variabel zu halten (Typparameter). Ein typischer Einsatzfall sind generische 

Objektmengen (siehe Klassen wie List<T> im Namensraum System.Collections.Generic in der 

.NET-Klassenbibliothek). Generische Objektmengen ermöglichen es, dass der Entwickler einen 

allgemeinen Mengentyp so prägt, dass die Menge nur Mitglieder einer bestimmten Klasse 

akzeptiert und dafür eine Typprüfung bereits zur Entwicklungszeit stattfindet. 

Neben den in der FCL implementierten generischen Objektmengen kann man in Visual Basic .NET 

und C# auch selbst generische Klassen erzeugen. In diesem Kapitel wird die Definition und 

Verwendung eigener generischer Klassen besprochen. 

24.1 Definition einer generischen Klasse 

Die Unterstützung für generische Klassen wurde in C# ebenso wie in Visual Basic .NET im 

Rahmen von .NET 2.0 hinzugefügt. Wie in vielen anderen Punkten auch, ist der Unterschied rein 

syntaktisch: An die Stelle des Of-Operators in runden Klammern tritt ein Klammernpaar aus 

spitzen Klammern. Die Bedingungen für die generischen Typparameter (Generic Constraints) 

definiert man mit dem Schlüsselwort where. 

Listing: Implementierung einer generischen Klasse in C# 
public class Mitarbeiterzuordnung<ChefTyp, AssistentTyp> 

  where ChefTyp : Mitarbeiter 

  where AssistentTyp : Mitarbeiter 

 { 

  ChefTyp Chef; 

  AssistentTyp Assi; 

 

  public Mitarbeiterzuordnung(ChefTyp Chef, AssistentTyp Assi) 

  { 

   this.Chef = Chef; 

   this.Assi = Assi; 

  } 

} 

24.2 Verwendung einer generischen Klasse 

Bei der Verwendung einer generischen Klasse müssen sowohl bei der Deklaration der 

Objektvariablen als auch bei der Instanziierung in spitzen Klammern <…> die zu gebrauchenden 

Typen angegeben werden. In dem folgenden Beispiel wird ein Team aus zwei Piloten gebildet. 

In C# kommen anstelle von runden Klammen und dem Schlüsselwort Of die spitzen Klammen 

zum Einsatz, um die von der Klasse erwarteten Typparameter anzugeben. 

Listing: Nutzung einer generischen Klasse in C# 
Mitarbeiterzuordnung<Pilot,Pilot> CockpitTeam; 

Pilot Pilot1 = new Pilot("Müller", "Max") 

Pilot Pilot2 = new Pilot("Meier", "Hans"); 

CockpitTeam = new Mitarbeiterzuordnung<Pilot, Pilot>(Pilot1, Pilot2); // OK! 

Passagier Pass1 = new Passagier("Schwichtenberg", "Holger") 

' Fehler: CockpitTeam = new Mitarbeiterzuordnung<Pilot, Pilot>(Pilot1, Pass1); 



224 Generische Klassen 

 

24.3 Einschränkungen für generische Typparameter 
(Generic Constraints) 

Ein Problem verbleibt bei der Nutzung generischer Typen: Bei der Deklaration einer Variablen für 

einen generischen Typ könnte ein Entwickler (versehentlich) Typparameter angeben, für die die 

Klasse gar nicht vorgesehen ist, beispielsweise ein File-Objekt und ein Directory-Objekt bei der 

Klasse Mitarbeiterzuordnung.  

// Das ist Unsinn: 

Mitarbeiterzuordnung<System.IO.FileInfo, System.IO.DirectoryInfo> DateiTeam; 

Um dies zu verhindern, können Bedingungen für die Typparameter (so genannte Generic 

Constraints) definiert werden. In Visual Basic erfolgt die Festlegung solcher Generic Constraints 

mit dem Schlüsselwort As hinter dem Typparameternamen in der Of-Deklaration. Nach dem As 

dürfen in geschweiften Klammern beliebig viele Schnittstellennamen, aber maximal ein 

Klassenname genannt werden, da die angegebenen Namen additiv wirken und eine Klasse maximal 

eine Basisklasse besitzen darf. In C# verwendet man das Schüsselwort where. 

Listing: Deklaration einer generischen Klasse in C# mit Generic Constraints 
public class Mitarbeiterzuordnung<ChefTyp, AssistentTyp> where ChefTyp: 

Mitarbeiter, new() 

                                                         where AssistentTyp: 

Mitarbeiter, new() 

{ 

  public ChefTyp Chef; 

  public AssistentTyp Assi; 

  public Mitarbeiterzuordnung(ChefTyp Chef, AssistentTyp Assi, 

de.WWWings.Flug flug) 

  { 

   this.Chef = Chef; 

   this.Assi = Assi; 

  } 

} 

In Generic Constraints sind folgende Angaben erlaubt: 

▪ eine oder mehrere Schnittstellen 

▪ eine Basisklasse 

▪ Schlüsselwort new (steht für Typen mit parameterlosem Konstruktor) 

▪ Schlüsselwort class (steht für Referenztypen) 

▪ Schlüsselwort structure (steht für Wertetypen) 

24.4 Kovarianz für Typparameter 

In C# 4.0 hat Microsoft die sogenannte Kovarianz für generische Typen eingeführt. Sie erlaubt es, 

dass bei einem Typparameter anstelle der eigentlich in einem Methodenparameter genannten 

Klasse auch eine abgeleitete Klasse übergeben werden kann. Dies deklariert der Entwickler einer 

generischen Schnittstelle mit dem Schlüsselwort out vor dem Typparameter. 

Den Typparameter der Schnittstelle IEnumerable<T> hat Microsoft bereits so deklariert in der 

.NET-Klassenbibliothek: 

public interface IEnumerable<out T> : IEnumerable 

 { … } 

 

 



Generische Klassen  225 

 

In dem folgenden Listing wird eine Klasse Person implementiert und zwei davon abgeleitete 

Klassen Professor und Student. Danach werden drei generischen Listen mit der Klasse List<T> 

erzeugt:  

▪ Eine Liste nur mit Professoren 

▪ Eine Liste nur mit Studenten 

▪ Eine Liste mit Professoren und Studenten, die aus den ersten beiden Listen mit AddRange() 

zusammengesetzt wird. 

Danach werden die drei Listen mit der Methode Print() ausgeben. Print() erwartet als zweiten 

Parameter IEnumerable<Person>. 

Die Kovarianz von IEnumerable wirkt hier in zwei Fällen: 

▪ Das von Microsoft implementierte AddRange() auf List<Person> erwartet  

IEnumerable<Person>. Dank der von Microsoft deklarierten Kovarianz funktioniert auch die 

Übergabe einer List<Student> und List<Professor>. 

▪ Das selbst implementierte Print() erwartet  IEnumerable<Person>. Dank der von Microsoft 

deklarierten Kovarianz funktioniert auch die Übergabe einer List<Student> und 

List<Professor>. 

Listing: Kovarianz 
class Person 

 { 

  public int ID { get; set; } 

  public string Name { get; set; } 

 } 

 

 class Professor : Person 

 { 

  public string Fachbereich { get; set; } 

 } 

 

 class Student : Person 

 { 

  public int MatrikelNummer { get; set; } 

 } 

 

 class CollectionVarianzDemo_Uni 

 { 

   

 public static void Run() 

  { 

   var hh = new Professor() { ID = 1, Name = "Harald Hastig", Fachbereich = 

"Physik" }; 

   var tl = new Professor() { ID = 2, Name = "Theodor Langweilig", Fachbereich = 

"Mathematik" }; 

   var hs = new Student() { ID = 2, Name = "Hans Streber", MatrikelNummer=123456 

}; 

   var mf = new Student() { ID = 2, Name = "Max Faul", MatrikelNummer = 567890 }; 

 

   var ProfListe = new List<Professor>() { hh, tl }; 

   var StudentenListe = new List<Student>() { hs, mf }; 

   var AlleUniAngeoerigen = new List<Person>(); 



226 Generische Klassen 

 

 

   AlleUniAngeoerigen.AddRange(ProfListe); 

   AlleUniAngeoerigen.AddRange(AlleUniAngeoerigen); 

 

   Print("Alle", AlleUniAngeoerigen); 

   Print("Professoren", ProfListe); // möglich Dank Kovarianz für IEnumerable<T> 

   Print("Studenten", StudentenListe); // möglich Dank Kovarianz für 

IEnumerable<T> 

   

  } 

 

  // Kovarianz für IEnumerable<T>; geht nicht mit List<Person> 

  public static void Print(string headline, IEnumerable<Person> personen)  

  { 

   CUI.Headline(headline); 

   foreach (var p in personen) 

   { 

    Console.WriteLine(p.GetType().Name + " #" + p.ID + " heißt " + p.Name); 

   } 

  } 

 } 

 

Kovarianz für generische Typparameter wird in Schnittstellendefinitionen festgelegt. Die 

Kovarianz bezieht sich dann aber auch nur auf die Schnittstellen. Klassen, die diese Schnittstelle 

implementieren, erhalten nicht diese Kovarianz. Daher kann man in obigem Beispiel bei der 

Methode Print() den zweiten Parameter nicht mit List<Person> deklarieren, auch wenn List<T> 

die Schnittstelle IEnumerable<T> implementiert. 

 

Ein zweites Kovarianz-Beispiel zeigt das folgende Listing mit primitiven Typen: Hier kann die 

Methode Print(IEnumerable<object> c) auch eine List<string> ausgeben. 

Listing: Kovarianz 
/// <summary> 

 /// Kontra-Varianz bei Collections  

 /// </summary> 

 class CollectionVarianzDemo_ObjectString 

 { 

  /// <summary> 

  /// Diese Methode erwartet eine Menge von Objekten 

  /// </summary> 

  public static void Print(IEnumerable<object> c) 

  { Console.WriteLine("Anzahl: " + c.Count()); } 

 

  public static void Run() 

  { 

   List<string> Namen = new List<string> { "Müller", "Meier", "Schulze" }; 

   // Die Methode erhält eine Menge von Strings 

   // Bisher war das nicht möglich, weil Enumerable<T> 

   // nicht Kontra-Varianz untersützte! 

   Print(Namen); 

  } 



Generische Klassen  227 

 

 } 

24.5 Generische Mathematik 

Generische Mathematik umfasst eine Reihe von Schnittstellen in .NET im 

Basisklassennamensraum System.Numerics, die es erlauben, mathematische Operationen so zu 

implementieren, dass sie für beliebige Zahlentypen (Ganzzahlen und gebrochene Zahlen beliebiger 

Bit-Länge funktionieren).  

Die in .NET 6.0 als experimentelles Feature [https://devblogs.microsoft.com/dotnet/preview-

features-in-net-6-generic-math] enthaltene generischen Mathematikoperationen (INumber<T>, 

INumberBase<T>, IComparisonOperators<T, T>, IAdditionOperators<T, T, T>, 

IMultiplyOperators<T, T, T>, ISubtractionOperators<T, T, T> usw.) haben seit .NET 7.0 die 

Produktionsreife erlangt.  

Das nächste Listing zeigt ein aussagekräftiges Beispiel für eine generische mathematische 

Berechnung in der Mehode Calc() und ein generisches Extrahieren einer Zahl aus einer 

Zeichenkette in ParseNumber().  

Diese beiden generischen mathematischen Methoden werden in der Methode Run() mit vielen 

verschiedenen Ganz- und Fließkommazahlentypen getestet u.a. mit den .NET 7.0 neu eingeführten 

Zahlentypen System.Int128 (Ganzzahl, 16 Bytes) und System.Half (Fließkommazahl, 2 Bytes) 

zum Einsatz. 

Listing: Generische Mathematik 
using System.Globalization; 

using System.Numerics; 

  

namespace CS11; 

  

public class CS11_GenericMath 

{ 

  

 /// <summary> 

 /// Generische mathematische Berechnung 

 /// </summary> 

 T Calc<T>(T x, T y) 

  where T : INumber<T> // INumber<T> ist ein neues Interface mit static abstract 

Members! 

 { 

  Console.WriteLine($"Calc {x.GetType().ToString()}/{y.GetType().ToString()}"); 

  if (x == T.Zero || y <= T.Zero) return T.One; 

  return (x + y) * T.CreateChecked(42.24); 

 } 

  

 /// <summary> 

 /// Generisches Konvertieren einer Zeichenkette in einen beliebigen Zahlentyp 

 /// </summary> 

 T ParseNumber<T>(string s) 

     where T : IParsable<T> // IParsable<T> ist ein neues Interface mit static ab

stract Members! 

 { 

  return T.Parse(s, CultureInfo.InvariantCulture); 

 } 

https://devblogs.microsoft.com/dotnet/preview-features-in-net-6-generic-math
https://devblogs.microsoft.com/dotnet/preview-features-in-net-6-generic-math


228 Generische Klassen 

 

  

 public void Run() 

 { 

  CUI.H2("Calc mit 1 und 2"); 

  Console.WriteLine($"Ergebnis mit System.Byte: {Calc((byte)1, (byte)2)}"); // 12

6 

  Console.WriteLine($"Ergebnis mit System.Int32: {Calc(1, 2)}"); // 126 

  Console.WriteLine($"Ergebnis mit System.Int128: {Calc((Int128)1, (Int128)2)}");

 // 126 

  Console.WriteLine($"Ergebnis mit System.Single: {Calc((Single)1.0, (Single)2.0)

}"); // 126,72 

  Console.WriteLine($"Ergebnis mit System.Double: {Calc(1.0d, 2.0d)}"); // 126,72 

  Console.WriteLine($"Ergebnis mit System.Decimal: {Calc(1.0m, 2.0m)}"); // 126,7

20 

  Console.WriteLine($"Ergebnis mit System.Half: {Calc((Half)1.0m, (Half)2.0m)}");

 // 126,75 

  

  CUI.H2("ParseNumber 1.00 und 2.00"); 

  var x = ParseNumber<float>("1.00"); 

  var y = ParseNumber<float>("2.00"); 

  

  Console.WriteLine($"Ergebnis mit System.Single: {Calc(x, y)}"); // 3,6000001 

  Console.WriteLine($"Ergebnis mit System.Int32: {Calc(0, 1)}"); // 1 

 } 

} 

Der Beitrag der Programmiersprache C# ist an dieser Stelle die Möglichkeit, statische abstrakte 

Mitglieder in Schnittstellen zu definieren (was seit C# 10.0 experimentell möglich war und seit C# 

11.0 offiziell zur Sprachsyntax gehört). Diesen Modifizierer verwendet Microsoft in den 

Basisklassen wie INumberBase<T>. 

Listing: Ausschnitt aus INumberBase<T> 
public interface INumberBase<TSelf> 

        : IAdditionOperators<TSelf, TSelf, TSelf>, 

          IAdditiveIdentity<TSelf, TSelf>, 

          IDecrementOperators<TSelf>, 

          IDivisionOperators<TSelf, TSelf, TSelf>, 

          IEquatable<TSelf>, 

          IEqualityOperators<TSelf, TSelf, bool>, 

          IIncrementOperators<TSelf>, 

          IMultiplicativeIdentity<TSelf, TSelf>, 

          IMultiplyOperators<TSelf, TSelf, TSelf>, 

          ISpanFormattable, 

          ISpanParsable<TSelf>, 

          ISubtractionOperators<TSelf, TSelf, TSelf>, 

          IUnaryPlusOperators<TSelf, TSelf>, 

          IUnaryNegationOperators<TSelf, TSelf> 

        where TSelf : INumberBase<TSelf>? 

    { 

/// <summary>Gets the value <c>1</c> for the type.</summary> 

static abstract TSelf One { get; } 

 

/// <summary>Gets the value <c>0</c> for the type.</summary> 

static abstract TSelf Zero { get; } 

… 



Generische Klassen  229 

 

 

/// <summary>Tries to parses a string into a value.</summary> 

static abstract bool TryParse([NotNullWhen(true)] string? s, NumberStyles style, 

IFormatProvider? provider, out TSelf result); 

} 



230 Objektmengen (Arrays und Collections) 

 

25 Objektmengen (Arrays und Collections) 
Es gibt drei Arten von Objektmengen in C# und Visual Basic .NET: 

▪ Einfache Arrays (typisiert) 

▪ Untypisierte Objektmengen 

▪ Typisierte Objektmengen 

25.1 Einfache Arrays 

Einfache Arrays sind Instanzen der Klasse System.Array. Alle Arrays sind nun dynamisch 

bezüglich der Größe, jedoch muss man sie explizit erweitern. Die Anzahl der Dimensionen muss 

bei der Deklaration festgelegt werden. 

Tipp: Die Handhabung der Objektmengen aus dem Namensraum System.Collections ist 

einfacher als die Verwendung von Arrays. Jedoch erwarten einige Methoden in der .NET-

Klassenbibliothek Arrays als Parameter. Man kann aber alle Objektmengen in Arrays 

umwandeln und so mit Objektmengen arbeiten bis zur Parameterübergabe. 

Während man in Visual Basic .NET Arrays mit runden Klammern kennzeichnet, kommen in C# 

eckige Klammern zum Einsatz. Die Initialisierung erfolgt ebenso wie in Visual Basic .NET mit 

geschweiften Klammern. In .NET-Arrays beginnt die Zählung der Elemente immer bei 0. Einen 

wichtigen Unterschied gibt es jedoch zwischen Visual Basic .NET und C#: In C# ist in der 

Deklaration die Anzahl der Elemente zu nennen, in Visual Basic .NET der höchste Index (also 

Anzahl – 1). Erlaubte und gleichwertige Deklarationen sind: 

byte[] lottozahlen1 = new byte[7] { 23, 48, 3, 19, 20, 6, 9 }; 

byte[] lottozahlen2 = new byte[] { 23, 48, 3, 19, 20, 6, 9 }; 

byte[] lottozahlen3 = { 23, 48, 3, 19, 20, 6, 9 }; 

Seit C# 12.0 gibt es eine alternative Syntax mit eckigen Klammern (siehe Unterkapitel zu 

"Collection Expression"): 

byte[] lottozahlen3 = [23, 48, 3, 19, 20, 6, 9]; 

Microsoft empfiehlt in Coderegel IDE0300 https://learn.microsoft.com/de-

de/dotnet/fundamentals/code-analysis/style-rules/ide0300 den Einsatz dieser neuen Syntax. Dies 

ist aber keineswegs eine Pflicht! 

Tipp: Da es für die VB.NET-Schlüsselwörter ReDim und Preserve kein Äquivalent in C# gibt, 

muss man in C# auf die .NET-Klassenbibliothek zurückgreifen: 

Array.Resize<byte>(ref lottozahlen3, 20); 

25.2 Untypisierte Collections  

Neben den einfachen Arrays kennt .NET das Konzept der Collections im Namensraum 

System.Collections, die einfacher zu bedienen bzw. mächtiger sind.  

Ursprünglich gab es in .NET Framework 1.0 und 1.1 nur untypisierte Objektmengen wie 

System.Collections.ArrayList und System.Collections.HashTable. Hier konnte man jeweils ein 

Objekt eines beliebigen Typs aufnehmen (die Elemente der Liste wurden mit dem allgemeinen 

Typ System.Object verwaltet), was die Gefahr von Laufzeitfehlern barg. Dennoch wurden Klassen 

wie ArrayList häufig eingesetzt, da die Verwendung komfortabler als ein einfaches Array war, da 

man bei den Objektmengen Elemente hinzufügen und entfernen kann, ohne die Größe der Menge 

https://learn.microsoft.com/de-de/dotnet/fundamentals/code-analysis/style-rules/ide0300
https://learn.microsoft.com/de-de/dotnet/fundamentals/code-analysis/style-rules/ide0300


Objektmengen (Arrays und Collections)  231 

 

explizit anpassen zu müssen. Die Objektmengen in System.Collections werden nicht durch 

spezielle Schlüsselwörter in den Sprachen unterstützt. 

Während die ursprünglich in .NET 1.0 eingeführten Objektmengen alle untypisiert waren und 

dadurch konnte es Typfehler geben, hat Microsoft mit .NET 2.0 so genannte generische 

Objektmengen eingeführt, die typisiert sind. Sie können nur Objekte des im Typparameter 

genannten Typs aufnehmen. 

Praxishinweis: Diese untypisierten Klassen sind seit der Einführung der typisierten 

Objektmengen in .NET Framework 2.0 quasi bedeutungslos, aber weiterhin auch in allen .NET-

Implementierungen enthalten. 

25.3 Typisierte Collections  

Generische Mengentypen sind neu seit .NET Framework 2.0 (Jahr 2005) und bieten gegenüber den 

untypisierten Mengentypen den Vorteil, dass eine generische Objektmenge bereits zur 

Entwicklungszeit auf einen bestimmten Inhaltstyp geprägt werden kann, sodass der Compiler 

schon feststellt, wenn der Menge Objekte falschen Typs hinzugefügt werden. 

Die typisierten Objektmengen (Namensraum System.Collections.Generic) basieren auf 

generischen Klassen. Bei den generischen Objektmengen wird durch einen Typparameter bei 

Deklaration bzw. Instanziierung festgelegt, was die Menge aufnehmen darf. Bei generischen 

Dictionaries gibt es zwei Typparameter: einen für den Schlüssel und einen für den Wert. 

Beispiele: 

▪ List<string>: Eine Liste von Zeichenketten 

▪ Stack<int>: Eine LIFO-Struktur (First in, First out) für Ganzzahlen 

▪ SortedList<int, Person>: Ein Verzeichnis von Personen, die über eine Zahl identifiziert 

werden. 

▪ List<object>: Eine Liste beliebiger Objekte, entspricht ArrayList. 

Mengentyp Untypisiert 

(System.Collection) 

Typisiert, generisch  

(System.Collection.Generic),  

seit .NET Framework 2.0 

FIFO-Struktur (First-In-

First-Out) 

Queue Queue<Typ> 

FIFO-Struktur (First-In-

First-Out) mit Prioritäten 

– PriorityQueue<Typ>  

(seit .NET 6.0) 

LIFO-Struktur (Last-In-First-

Out) 

Stack Stack<Typ> 

Dynamische Menge für 

beliebige Objekte, Zugriff 

über Position, doppelte 

Elemente erlaubt 

ArrayList List<Typ> 

Dynamische Menge für Bit-

Werte 

BitArray – 



232 Objektmengen (Arrays und Collections) 

 

Mengentyp Untypisiert 

(System.Collection) 

Typisiert, generisch  

(System.Collection.Generic),  

seit .NET Framework 2.0 

Schlüssel-Wert-Paare 

(Zugriff nur per Schlüssel, 

keine doppelten Werte 

erlaubt) 

HashTable Dictionary<Schlüsseltyp,Wertty

p> 

Schlüssel-Wert-Paare 

(Zugriff per Schlüssel oder 

Index, keine doppelten 

Werte erlaubt) 

SortedList SortedList<Schlüsseltyp,Wertty

p> 

Doppelt verkettete Liste – LinkedList<Typ> 

Schlüssel-Wert-Paare 

(Zugriff per Schlüssel oder 

Index, keine doppelten 

Werte erlaubt) mit speziellen 

Mengenoperationen (z. B. 

IntersectWith(), 

ExceptWith(), UnionWith() 

und IsSubsetOf()) 

– HashSet<Typ> 

(seit .NET Framework 3.5) 

Sortiertes Hashset 

 

– SortedSet<Typ> 

(seit .NET Framework 4.0) 

Tabelle: Wichtige Objektmengentypen in .NET und .NET Core 

Das folgende Beispiel zeigt, dass der Compiler bei untypisierten Mengentypen nicht feststellt, wenn 

in eine Liste von Kunden versehentlich eine Instanz der Klasse Lieferant aufgenommen wird. Für 

den generischen Mengentyp akzeptiert der Compiler hingegen nur Instanzen der Klasse Kunde und 

von ihr abgeleitete Klassen (hier: StammKunde).  

Listing: Typisierte vs. untypisierte Objektmenge 
// Untypisierter Mengentyp 

System.Collections.Queue Kunden1 = new System.Collections.Queue(); 

Kunden1.Enqueue(new Kunde()); 

Kunden1.Enqueue(new StammKunde()); 

Kunden1.Enqueue(new Lieferant()); 

 

// Generischer Mengentyp 

System.Collections.Generic.Queue<Kunde> Kunden2 = new 

System.Collections.Generic.Queue<Kunde>(); 

Kunden2.Enqueue(new Kunde()); 

25.4 Collection Initializer  

Mengen werden häufig durch die Methode Add() befüllt. C# seit 2008 und Visual Basic seit 2010 

bieten hier eine verkürzte Schreibweise mit geschweiften Klammern wie bei einfachen Arrays an 

(Collection Initializer). Diese Verkürzung funktioniert nur, wenn es eine Add()-Methode in der 

Mengenklasse gibt! 

Initialisierung und Verwendung einer List<string> 
  List<string> beliebteVornamen = new List<string>() 



Objektmengen (Arrays und Collections)  233 

 

    {"Leon", "Hannah", "Lukas", "Anna", "Leonie", "Marie", "Niklas", "Sarah", 

"Jan", "Laura", "Julia", "Lisa", "Kevin"}; 

 

   Console.WriteLine("Anzahl Vornamen: " + beliebteVornamen.Count); 

   // Kevin ist nun doppelt, das ist nicht verboten in einer Liste 

   beliebteVornamen.Add("Kevin"); 

   Console.WriteLine("Anzahl Vornamen: " + beliebteVornamen.Count); 

 

   // der erste gefundene Kevin wird entfernt 

   beliebteVornamen.Remove("Kevin"); 

 

   Console.WriteLine("Anzahl Vornamen: " + beliebteVornamen.Count); 

 

   foreach (string vorname in beliebteVornamen) 

   { 

    Console.WriteLine(vorname); 

   } 

 

   // Das ist nicht möglich, Datentyp stimmt nicht 

   //beliebteVornamen.Add(123); 

   //beliebteVornamen.Add(DateTime.Now); 

 

   // Das ist möglich, auch wenn inhaltlich unsinnig 

   beliebteVornamen.Add(123.ToString()); 

   beliebteVornamen.Add(DateTime.Now.ToString()); 

25.5 Objektmengen-Initialisierung mit Index  

Bisher schon konnte eine Initialisierung von Mengen (z.B. Arrays) mit Indexer [x] = y erfolgen. In 

C# 13.0 ist eine Objektmengen-Initialisierung auch mit Index vom Ende [^x] = y möglich mit dem 

Index-Operator ^, den es seit C# 8.0 gibt. Das folgende Listing zeigt Beispiele. 

Die neue Syntax ist allerdings nur bei der Objektmengen-Initialisierung möglich, nicht bei anderen 

Zuweisungen. 

Listing: Objektmengen-Initialisierung mit Index von vorne [x] und vom Ende [^x] 
class Daten 

 { 

  public int[] Zahlen = new int[10]; 

 } 

 
public void ImplicitIndexAccess() 

{ 

 CUI.Demo(nameof(ImplicitIndexAccess)); 

 

 CUI.H2("Array-Initialisierung mit Indexer von vorne nach hinten"); 

 var dAlt = new Daten() 

 { 

  Zahlen = { 

       [0] = 0, 

       [1] = 1, 

       [2] = 2, 

       [3] = 3, 



234 Objektmengen (Arrays und Collections) 

 

       [4] = 4, 

       [5] = 5, 

       [6] = 6, 

       [7] = 7, 

       [8] = 8, 

       [9] = 9, 

   } 

 }; 

 

 foreach (var z in dAlt.Zahlen) 

 { 

  Console.WriteLine(z); 

 } 

 

 CUI.H2("NEU: Array-Initialisierung mit Indexer von hinten nach vorne"); 

 var dNeu = new Daten() 

 { 

  Zahlen = { 

        [^1] = 0, 

        [^2] = 1, 

        [^3] = 2, 

        [^4] = 3, 

        [^5] = 4, 

        [^6] = 5, 

        [^7] = 6, 

        [^8] = 7, 

        [^9] = 8, 

        [^10] = 9 

  } 

 }; 

 

 foreach (var z in dNeu.Zahlen) 

 { 

  Console.WriteLine(z); 

 } 

 

 // erstelle ein Array von int mit 10 Elementen 

 int[] array1 = new int[10] { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 

 Console.WriteLine(array1.Length); 

 

 // das geht nicht 

 //array1 = { 

 //       [^1] = 0, 

 //       [^2] = 1, 

 //       [^3] = 2, 

 //       [^4] = 3, 

 //       [^5] = 4, 

 //       [^6] = 5, 

 //       [^7] = 6, 

 //       [^8] = 7, 

 //       [^9] = 8, 

 //       [^10] = 9 

 // } 



Objektmengen (Arrays und Collections)  235 

 

 

 foreach (var item in array1) 

 { 

  CUI.LI(item); 

 } 

} 

25.6 Dictionary Initializer  

Auch Dictionary-Klassen (Mengenklassen mit Name-Wert-Paaren) kann man in verkürzter 

Schreibweise erstellen. Alternative zu Aufrufen von Add() kann man wahlweise verschachtelte 

geschweifte Klammern verwenden oder aber innerhalb der geschweiften Klammen die Name-

Wert-Zuweisung per [Name] = Wert erledigen. 

Listing: Initialisierung von Dictionary-Objekten 
// Initialisierung mit Add() 

SortedDictionary<int, string> dic0 = new(); 

dic0.Add(10, "www.dotnet-doktor.de"); 

dic0.Add(21, "www.dotnetframework.de"); 

dic0.Add(42, "www.dotnet8.de"); 

 

// Initialisierung mit geschweiften Klammern 

SortedDictionary<int, string> dic1 = new()  

{ 

  { 10, "www.dotnet-doktor.de" },  

  { 21, "www.dotnetframework.de" },   

  { 42, "www.dotnet8.de" }  

}; 

 

// Initialisierung mit geschweiften und eckigen Klammern (schon vor C# 12.0 

möglich) 

SortedDictionary<int, string> dic2 = new() 

{ 

   [10] = "www.dotnet-doktor.de", 

   [21] = "www.dotnetframework.de", 

   [42] = "www.dotnet8.de" 

}; 

25.7 Vereinfachte Initialisierung und Zuweisung für 
Mengen (Collection Expressions) (seit C# 12.0) 

Eine sehr schöne syntaktische Neuerung seit C# 12.0 ist die vereinfachte Syntax für die 

Initialisierung von Arrays und Listen. Microsoft nannte dieses Sprachfeature ursprünglich 

Collection Literals, jetzt aber Collection Expressions. 

Hinweis: Collection Expressions sind bisher (Stand C# 13.0) nicht für Dictionary-Objekte 

möglich. Es gibt aber für die Zukunft auch eine Idee, Dictionary Expressions einzuführen, siehe 

https://github.com/dotnet/csharplang/blob/main/proposals/dictionary-expressions.md  

Mit dieser neuen Syntaxform kann man die bisher sehr heterogene Initialisierungsformen von 

Objektmengen stark vereinheitlichen im Stil von JavaScript, also mit den Werten in eckigen 

Klammern, getrennt durch Kommata (siehe Tabelle). 

https://github.com/dotnet/csharplang/blob/main/proposals/dictionary-expressions.md


236 Objektmengen (Arrays und Collections) 

 

Bisherige Initialisierung Nun auch möglich 

int[] a = new int[3] { 1, 2, 3 }; int[] a = [1,2,3];      

Span<int> b = stackalloc[] { 1, 2, 3 }; Span<int> b = [1,2,3];   

ImmutableArray<int> c = ImmutableArray.Create(

1, 2, 3); 

ImmutableArray<int> c = [1,2,3]; 

List<int> d = new() { 1, 2, 3 }; List<int> d = [1,2,3];    

IList<int> e = new List<int>() { 1, 2, 3 }; IList<int> e = [1, 2, 3]; 

IEnumerable<int> f = new List<int>() { 1, 2, 3 }; IEnumerable<int> f = [1,2,3];    

Es entsteht dabei aber ein Objekt 

vom Typ ReadOnlyArray<int>! 

Tabelle: Variableninitialisierung mit Collection Expressions seit C# 12.0 

Nicht erlaubt ist eine Initialisierung einer Variable die mit var deklariert ist, denn damit ist der 

Zieltyp nicht klar: 

// nicht erlaubt 

var x = [1, 2, 3]; // Error(active) CS9176 There is no target type for the collec

tion expression 

Es gibt aber Überlegungen, dies in Zukunft zu ermöglichen und daraus (in diesem Fall) ein 

List<int> oder Int-Array zu machen, siehe "Natural Element Type" im Dokument 

https://github.com/dotnet/csharplang/blob/main/proposals/collection-expressions-next.md  

Die Syntax mit den eckigen Klammern ist nicht nur bei der Erstinitialisierung, sondern auch bei 

späteren Zuweisungen von Mengen möglich: 

List<string> sites1, sites2 = ["www.IT-Visions.de"], sites3; 

sites1 = ["www.dotnetframework.de", "www.dotnet8.de", "dotnet-lexikon.de", 

"www.dotnet-doktor.de"]; 

sites3 = []; // leere Liste 

Mit dem Spread-Operator .. kann man im Rahmen der Initialisierung Mengen in andere Mengen 

integrieren. Der Spread-Operator sorgt dafür, dass keine verschachtelte, sondern eine flache Liste 

entsteht! 

// Array aus den Elementen der Arrays erstellen mit Spread Operator 

string[] allSitesAsArray = [.. sites1, .. sites2, "dotnettraining.de", .. 

sites3]; 

// Liste aus den Elementen der Arrays erstellen mit Spread Operator 

List<string> allSitesAsList = [.. sites1, .. sites2, "dotnettraining.de", .. 

sites3]; 

 

// Liste noch mal erweitern 

allSitesAsList = [.. allSitesAsList, "powershell-schulungen.de"]; 

 

// Auflisten: 7 Sites sind nun in der Liste 

foreach (var site in allSitesAsList) 

{ 

 Console.WriteLine(site); 

} 

Es entsteht eine Menge mit diesen sieben Websites, denn neben den fünf in den Variables sites1, 

sites2 und sites3 enthaltenen Websites wurde noch eine zwei weitere Domainnamen hinzugefügt. 

https://github.com/dotnet/csharplang/blob/main/proposals/collection-expressions-next.md


Objektmengen (Arrays und Collections)  237 

 

 
Abbildung: Ausgabe des obigen Listings 

Bei Dictionary-Objekten kann man (wie vor C# 12.0) die Initialisierung wahlweise über 

verschachtelte geschweifte Klammern verwenden oder aber innerhalb der geschweiften Klammen 

die Name-Wert-Zuweisung per [Name] = Wert erledigen. 

Listing: Initialisierung von Dictionary-Objekten 
  // Initialisierung mit Add() 

  SortedDictionary<int, string> dic0 = new(); 

  dic0.Add(10, "www.dotnet-doktor.de"); 

  dic0.Add(21, "www.dotnetframework.de"); 

  dic0.Add(42, "www.dotnet8.de"); 

 

  // Initialisierung mit geschweiften Klammern 

  SortedDictionary<int, string> dic1 = new() { 

   { 10, "www.dotnet-doktor.de" },  

   { 21, "www.dotnetframework.de" },   

   { 42, "www.dotnet8.de" }  

  }; 

 

  // Initialisierung mit geschweiften und eckigen Klammern (schon vor C# 12.0 

möglich) 

  SortedDictionary<int, string> dic2 = new() 

  { 

   [10] = "www.dotnet-doktor.de", 

   [21] = "www.dotnetframework.de", 

   [42] = "www.dotnet8.de" 

  }; 

25.8 Typparameter 

Der Typparameter kann auch ein komplexer Typ sein, z.B. die Klasse "Vorstandsmitglied". 

Listing: Initialisierung einer typisierten Objektmenge in C# mit vier Objekten, davon drei als 

Collection Initializer 
// Collection Initializer 

List<Vorstandsmitglied> Vorstandsmitglieder = new List<Vorstandsmitglied> { HS, 

HM, MM }; 

Vorstandsmitglieder.Add(HP); 

Der Typparameter kann auch object sein. Generische Objektmengen werden zu untypisierten 

Mengen, wenn man als Typparameter object angibt. Dann ist List<T> gleichbedeutend mit 

ArrayList. 

Listing: Eine untypisierte Liste mit der generischen Klasse List<T> 
List<object> liste = new List<object>(); 

liste.Add(123); 



238 Objektmengen (Arrays und Collections) 

 

liste.Add("Holger"); 

liste.Add(DateTime.Now); 

liste.Add(new System.IO.FileInfo(@"c:\temp\log.txt")); 

25.9 Indexer 

Ein Indexer erlaubt einem Softwareentwickler selbst eine Klasse zu schreiben, die sich verhält wie 

ein Dictionary, also eine beliebige Menge an Name-Wert-Paaren speichert. Dabei sind Datentyp 

von Namen und Wert beliebig. Man kann für den Namen auch Zahlen verwendet, um ein 

klassisches Array zu ermöglichen. Indexer sind eine gute Möglichkeit, Klassen erweiterbar zu 

machen. 

Einen Indexer deklariert man wie ein Property, aber mit dem feststehenden Ausdruck this[]: 

public Typ this[Typ propName] 

Danach folgen Getter und Setter: 

  public object this[string propName] 

  { 

   get => _additionaldata[propName]; 

   set => _additionaldata[propName] = value; 

  } 

Im folgenden Beispiel wird der Indexer intern auf SortedDictionary<string, object> abgebildet. 

Hier sind beliebige andere Speicher denkbar. 

Listing: Einsatz von Indexern 
using ITVisions; 

using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Text; 

using System.Threading.Tasks; 

  

namespace CSharpSprachsyntax 

{ 

  

 class FlexPerson 

 { 

  public int ID { get; set; } 

  public string Name { get; set; } 

  public DateTime Geburtstag { get; set; } 

  

  private SortedDictionary<string, object> _additionaldata = new SortedDictionary

<string, object>(); 

  

  public object this[string propName] 

  { 

   get => _additionaldata[propName]; 

   set => _additionaldata[propName] = value; 

  } 

 } 

  

 class IndexerClient 

 { 



Objektmengen (Arrays und Collections)  239 

 

  

  public static void Run() 

  { 

  

   CUI.Headline("Indexer Demo"); 

   var p = new FlexPerson() 

   { 

    ID = 123, 

    Name = "Holger Schwichtenberg", 

    // Geburtstag bleibt unbelegt :-) 

    ["Ort"] = "Essen", 

    ["Firma"] = "www.IT-Visions.de", 

    ["Raucher"] = false 

   }; 

  

   Console.WriteLine(p.ID + ": " + p.Name); 

   Console.WriteLine("arbeitet bei Firma " + p["Firma"] + " in " + p["Ort"]); 

  } 

 } 

} 

 



240 Implementierungsvererbung 

 

26 Implementierungsvererbung 
Anders als in C++, aber wie in Java und C# / Visual Basic ist die Mehrfachvererbung, also die 

gleichzeitige Ableitung einer Klasse von mehreren anderen Klassen, nicht möglich. Die 

Implementierungsvererbung stellt alle Attribute, Methoden und Ereignisse auch für die erbende 

Klasse bereit. Nicht vererbt werden jedoch die Konstruktoren. Zirkuläres Erben (class A : B … 

class B : A) ist nicht sinnvoll und daher auch nicht erlaubt. 

Die Implementierungsvererbung wird angezeigt durch einen Doppelpunkt nach dem 

Klassennamen. Der Doppelpunkt dient auch der Anzeige von Schnittstellenvererbung, entspricht 

also sowohl dem Visual Basic .NET-Schlüsselwort Inherits als auch Implements. 

Zum Dritten wird der Doppelpunkt eingesetzt, um in einem Konstruktor einen anderen Konstruktor 

aufzurufen. Nach dem Doppelpunkt kann auf this (aktuelle Klasse) und base (Basisklasse) Bezug 

genommen werden. Durch diese Syntaxform wird sichergestellt, dass der Aufruf des anderen 

Konstruktors immer der erste Befehl in einem Konstruktor ist. Die Anforderung, dass der Aufruf 

eines anderen Konstruktors der erste Befehl sein muss, existiert auch in C#; dort jedoch gibt es 

dafür keine spezielle Syntax, sondern die Befehlsreihenfolge wird durch den Compiler geprüft. 

Sowohl auf Klassen als auch auf Mitgliederebene kann eine Klasse steuern, wie man von ihr erben 

kann. Im Standard kann man von einer Klasse erben, man muss es aber nicht. Auf Klassenebene 

bedeutet abstract (Visual Basic .NET: MustInherit), dass eine Klasse nicht direkt verwendet 

werden kann, sondern nur der Vererbung dient. sealed (Visual Basic .NET: NotInheritable) 

bedeutet, dass ein Erben nicht möglich ist. 

Für Methoden gelten etwas andere Spielregeln: virtual (Visual Basic .NET: Overridable) legt fest, 

dass eine Unterklasse eine Methode überschreiben (also reimplementieren) darf (siehe Methode 

Info() im Listing). abstract (Visual Basic .NET: MustOverride) bedeutet, dass die Unterklasse die 

Methode überschreiben muss (abstrakte Methode). sealed (Visual Basic .NET: 

NotOverridable) legt fest, dass eine Methode versiegelt ist, also nicht überschrieben werden kann. 

Da dies die Grundeinstellung ist, müssen sealed bzw.  NotOverridable nicht explizit genannt 

werden. 

Listing: Implementierung der Klasse Person in C# 
namespace de.WWWings 

{ 

 public class Person 

 { 

  // ========== Attribute (Fields) 

  public string PersonalausweisNr; 

  public string Vorname; 

  public string Nachname; 

  //  ========== Errechnete Attribute (Properties) 

  public string GanzerName 

  { 

   get 

   {    return this.Vorname + " " + this.Nachname;   } 

  } 

  // ========== Konstruktoren 

  public Person()  {  } 

  public Person(string Nachname, string Vorname) 

  { 

   this.Vorname = Vorname; 

   this.Nachname = Nachname; 

  } 

  // ========== Methoden 

  public virtual void Info() 

  {   Console.WriteLine("Person: " + this.GanzerName);  } 



Implementierungsvererbung  241 

 

 } 

} 

Listing: Implementierung der Klasse Passagier in C#, die von Person erb 
#region Using directives 

using System; 

using System.Collections.Generic; 

using System.Text; 

using de.WWWings.PassagierSystem; 

using de.WWWings; 

#endregion 

 

namespace de.WWWings.PassagierSystem 

{ 

 public class Passagier : de.WWWings.Person 

 { 

  // ========== Klassenmitglieder 

  public static de.WWWings.PassagierSystem.Passagiere Passagiere = new 

Passagiere(); 

  // ========== Attribute (Fields) 

  public de.WWWings.Fluege Fluege = new de.WWWings.Fluege(); 

  public readonly long PID; 

  private de.WWWings.Flug _AktuellerFlug; 

  //  ========== Errechnete Attribute (Properties) 

  public Flug AktuellerFlug 

  { 

   get 

   {    return this._AktuellerFlug;   } 

  } 

  // ========== Konstruktoren 

  public Passagier(string Name, string Vorname) : base(Name, Vorname) 

  { 

   this.PID = Passagier.Passagiere.Add(this); 

  } 

  // ========== Methoden 

  public void Buchen(de.WWWings.Flug flug) 

  {   this.Fluege.Add(flug.FlugNr, flug);  } 

  public void Buchen(string Flugnummer) 

  { 

   if (!(Flug.Fluege.ContainsKey(Flugnummer))) 

   { 

    throw new de.NETFly.PassagierSystem.FalscheFlugnummer(this.PID + "/" + 

Flugnummer); 

   } 

   else 

   {    this.Buchen(de.WWWings.Flug.Fluege[Flugnummer]);   } 

  } 

  public Flug CheckIn(string Flugnummer) 

  { 

   if (!(this.Fluege.ContainsKey(Flugnummer))) 

   { 

    throw new de.NETFly.PassagierSystem.PassagierNichtAufFlugGebucht(this.PID + 

"/" + Flugnummer); 

   } 

   else 

   {    return this.Fluege[Flugnummer];   } 

  } 

  public override void Info() 

  {    

  Console.WriteLine("Passagier: " + this.GanzerName); 

  } 

 } 

} 



242 Schnittstellen (Interfaces) 

 

27 Schnittstellen (Interfaces) 
Während .NET nur die einfache Implementierungsvererbung unterstützt, gibt es 

Mehrfachvererbung für Schnittstellen, d. h., eine Klasse kann optional eine oder mehrere 

Schnittstellen implementieren. Eine Schnittstelle kann auch von mehreren anderen Schnittstellen 

erben. 

27.1 Deklaration einer Schnittstelle 

Eine Schnittstelle wird in C# durch einen interface-Block deklariert und darf sowohl Attribute 

(Properties, aber keine Fields!) als auch Methoden enthalten. Konstruktoren sind nicht erlaubt. 

Modifizierer hinsichtlich der Sichtbarkeit (public, protected, private, private protected etc.) sind 

ebenfalls nicht erlaubt. 

Ausnahme: Standardimplementierungen für Methoden seit C# 8.0, siehe weitere Unterkapitel. 

Listing: Definition der Schnittstelle IPilot in C# 
interface IPilot 

 { 

  // ====== Attribute 

  DateTime FlugscheinSeit { get; set; } 

  string FlugscheinTyp { get; set; } 

  long Flugstunden { get; set; } 

  // ====== Methoden 

  void FlugZuweisen(de.WWWings.Flug Flug); 

 } 

} 

Listing: Definition der Schnittstelle IPerson in C# 
interface IPerson 

 { 

  // ====== Attribute 

  string Vorname { get; set; } 

  string Name { get; set; } 

  long ID { get; set; } 

  // ====== Methoden 

  void Print(); 

 } 

} 

27.2 Verwendung von Schnittstellen 

Eine Klasse zeigt durch einen Doppelpunkt hinter dem Namen an, dass sie eine Schnittstelle imple-

mentieren will. 

public class Pilot : IPilot 

Während immer nur eine Implementierungsvererbung möglich ist, können in einer Klasse mehrere 

Schnittstellen realisiert werden: 

public class Pilot : IPilot, IPerson 

Hinweis: Strukturen, die immer auf dem Stack leben (Schlüsselwort ref struct), konnten vor C# 

13.0 keine Schnittstellen realisieren. 

Eine Klasse kann gleichzeitig eine Implementierungsvererbung und eine 

Schnittstellenimplementierung mit dem Doppelpunkt angeben. 

public class Pilot : Mitarbeiter, IPilot 



Schnittstellen (Interfaces)  243 

 

Eine Klasse kann gleichzeitig eine Implementierungsvererbung und mehrere 

Schnittstellenimplementierung mit dem Doppelpunkt angeben. 

public class Pilot : Mitarbeiter, IPilot, IPerson 

 

Hinweis: Der Compiler unterscheidet dabei automatisch, ob der Bezeichner nach dem 

Doppelpunkt eine Klasse oder eine Schnittstelle ist.  

27.3 Standardimplementierungen in Schnittstellen 

Seit C# 8.0 ist in Schnittstellen erlaubt, was es in der Programmiersprache Java auch schon seit 

Version 8 (erschienen im Jahr 2014) gibt: Schnittstellen dürfen nun auch Implementierungen 

enthalten (Default Interface Members). Diese Implementierungen werden automatisch an alle 

Klassen weitergegeben, die die Schnittstelle verwenden. 

Hinweis: Standardimplementierungen in Schnittstellen funktionieren nur in .NET Core seit 

Version 3.0. Sie werden nicht unterstützt im klassischen .NET Framework. Es kommt zum 

Kompilierungsfehler: "CS8701 Target runtime doesn't support default interface 

implementation." 

Praxistipp: Das Einsatzgebiet dieser Sprachfunktion ist die Weiterentwicklung von 

Schnittstellen (Interface Evolution) für bereits bestehende Klassen, ohne diese Klassen ändern 

zu müssen. In der Vergangenheit hat man Erweiterungsmethoden für diesen Zweck eingesetzt, 

vgl. die Erweiterungsmethoden wie Where(), GroupBy() und Select() für die Schnittstelle 

IEnumerable<T>, die in .NET Framework 3.5 eingeführt wurden.  

27.3.1 Realisierung einer Standardimplementierung in einer 
Schnittstelle 

Die Standardimplementierungen in Schnittstellen erfolgen syntaktisch wie die Implementierungen 

von Methoden in Klassen auch, also mit Sichtbarkeitsmodifizierer (private, protected, internal, 

public, virtual, abstract, sealed, static, extern und partial) und einem Codeblock in geschweiften 

Klammern (Block Body) oder einem Lambda-Ausdruck (Expression Body). Im Standard sind die 

Implementierung virtual, daher auch der alternative Name für Standardimplementierungen in 

Interfaces: Virtual Extension Methods. 

Neben Instanzmethoden können Schnittstellen auch statische Methoden sowie statische Properties 

und Fields enthalten. 

27.3.2 Einfaches Beispiel 

Gegeben ist folgende Schnittstelle ILogger. 

Listing: Erste Version der Schnittstelle 
interface ILogger 

 { 

  string Prefix { get; set; } 

  long Count { get; set; } 

  // Methode ohne Implementierung 

  void Log(LogLevel level, string message); 

 } 

Dazu passend die Implementierung dieser Schnittstelle in der Klasse ConsoleLogger. 



244 Schnittstellen (Interfaces) 

 

Listing: Klasse, die Schnittstelle realisiert  
class ConsoleLogger : ILogger 

 { 

 

  public string Prefix { get; set; } = "LOG:"; 

  public long Count { get; set; } = 0; 

  public void Log(LogLevel level, string message) 

  { 

   Count++; 

   if (level == LogLevel.Info) Console.ForegroundColor = ConsoleColor.White; 

   if (level == LogLevel.Warning) Console.ForegroundColor = ConsoleColor.Yellow; 

   if (level == LogLevel.Error) Console.ForegroundColor = ConsoleColor.Red; 

 

   Console.WriteLine($"{Prefix} {Count:000} {level}: {message}"); 

   Console.ResetColor(); 

  } 

 } 

Diese Klasse ConsoleLogger kann man wie folgt nutzen: 

Listing: Erste Version des Nutzers der Klasse 
  public static void Run() 

  { 

   ILogger l = new ConsoleLogger(); 

   l.Log(LogLevel.Info, "C# 8.0 läuft!"); 

  } 

Nun könnte man später auf die Idee kommen, dass auch die direkte Übergabe eines Exception-

Objekts an die Logger-Klasse eine gute Idee wäre, um im Fehlerfall etwas Programmcode 

einzusparen. Mit den neuen Standardimplementierungen kann man dies nachträglich realisieren, 

indem man die Schnittstelle ILogger erweitert. 

Listing: Zweite Version der Schnittstelle 
interface ILogger 

 { 

  string Prefix { get; set; } 

  long Count { get; set; } 

  // Methode ohne Implementierung 

  void Log(LogLevel level, string message); 

 

  // Methode mit Implementierung mit Block Body 

  public void Log(Exception ex) 

  { 

   Log(LogLevel.Error, ex.Message); 

  } 

 

  // Methode mit Implementierung mit Expression Body 

  public void LogDetails(Exception ex) 

=> Log(LogLevel.Error, ex.ToString()); 

 } 

Die Klasse ConsoleLogger muss man nicht verändern. Dennoch stehen die neuen 

Komfortfunktionen den Nutzern der Klasse nun zur Verfügung. 

Listing: Zweite Version des Nutzers der Klasse 
  public static void Run() 



Schnittstellen (Interfaces)  245 

 

  { 

   ILogger l = new ConsoleLogger(); 

 

   l.Log(LogLevel.Info, "C# 8.0 läuft!"); 

 

   var ex = new ApplicationException("Ein Test-Fehler!"); 

   l.Log(ex); 

   l.LogDetails(ex); 

  } 

Zu beachten ist, dass die Methoden Log(Exception) und LogDetails(Exception) auf der Variablen 

l nur zugänglich sind, weil die Variable auf ILogger und nicht auf ConsoleLogger typisiert wurde. 

27.3.3 Überschreiben der Implementierung 

Eine Klasse, die eine Schnittstelle mit Implementierung realisiert, kann jede der implementierten 

Methoden auch wieder anders realisieren, also überschreiben. In der folgenden Variante werden 

Exception-Objekte nicht als Error, sondern als Warnung ausgegeben. 

Listing: Überschreiben der Standardimplementierung einer Schnittstelle in der Klasse 
class ConsoleLogger : ILogger 

 { 

  public ConsoleLogger() 

  { 

   ILogger.Prefix = "LOG: "; 

  } 

 

  public void Log(LogLevel level, string message) 

  { 

   // verwendet statische Properties und Methoden der Schnittstelle 

   if (ILogger.Count == 0) Console.WriteLine("Protokoll beginnt: " + 

DateTime.Now); 

   ILogger.Count++; 

 

   if (level == LogLevel.Info) Console.ForegroundColor = ConsoleColor.White; 

   if (level == LogLevel.Warning) Console.ForegroundColor = ConsoleColor.Yellow; 

   if (level == LogLevel.Error) Console.ForegroundColor = ConsoleColor.Red; 

 

   Console.WriteLine(ILogger.GetLogText(level, message)); 

   Console.ResetColor(); 

  } 

 

  // Klasse kann Implementierung überschreiben! 

  public void Log(Exception ex) 

  { 

   Log(LogLevel.Warning, ex.Message); 

  } 

 } 

27.3.4 Komplexeres Beispiel 

In dem komplexeren Beispiel wird wieder eine ILogger-Schnittstelle geschrieben, dieses Mal aber 

auch mit statischen Properties und statischen Methoden, die Funktionen für die Implementierung 

anbieten. Dies ist kein Beispiel für Interface Evolution, denn die Klasse ConsoleLogger greift in 



246 Schnittstellen (Interfaces) 

 

der Log()-Implementierung bewusst auf Implementierungen (ILogger.Count und 

ILogger.GetLogText()) der Basisschnittstelle zurück.  

Hinweise: Die Klasse kann nur auf Implementierungen der Basisschnittstelle zurückgreifen, 

wenn diese als static deklariert sind. Bei der Verwendung muss der Name der Schnittstelle 

(ILogger) vorangestellt werden, also ILogger.Count. Diese Verzahnung zwischen Klasse und 

Schnittstelle ist möglich in C# 8.0, man sollte aber überdenken, ob dies nicht besser ein 

Anwendungsfall für abstrakte Klassen ist, die es seit C# 1.0 gibt.  

Listing: Komplexeres Beispiel für Standardimplementierungen 
using ITVisions; 

using System; 

 

/// <summary> 

/// Standardimplementierungen für Methoden in Schnittstellen, komplexeres 

Beispiel 

/// </summary> 

class InterfacesDemo 

 { 

 

  public static void Run() 

  { 

   CUI.MainHeadline("Standardimplementierungen für Methoden in Schnittstellen 

(komplexeres Beispiel)"); 

   ILogger l = new ConsoleLogger(); 

 

   l.Log(LogLevel.Info, "C# 8.0 läuft!"); 

 

   var ex = new ApplicationException("Ein Test-Fehler!"); 

   l.Log(ex); 

   l.LogDetails(ex); 

  } 

 } 

 

 enum LogLevel { Info, Warning, Error } 

 

 interface ILogger 

 { 

  // Methode ohne Implementierung 

  void Log(LogLevel level, string message); 

 

  // Methode mit Implementierung mit Block Body 

  public void Log(Exception ex) 

  { 

   Log(LogLevel.Error, ex.Message); 

  } 

 

  // Methode mit Implementierung mit Expression Body 

  public void LogDetails(Exception ex) 

=> Log(LogLevel.Error, ex.ToString()); 

 

  // statische Methode  mit Implementierung 

  protected static string GetLogText(LogLevel level, string message) 

  { 



Schnittstellen (Interfaces)  247 

 

   return $"{Prefix}{ILogger.Count:000} {level}: {message}"; 

  } 

 

  // Properties mit Implementierung 

  public static string Prefix { get; set; } 

  public static int Count { get; set; } = 0; 

 } 

 

 class ConsoleLogger : ILogger 

 { 

  public ConsoleLogger() 

  { 

   ILogger.Prefix = "LOG: "; 

  } 

 

  public void Log(LogLevel level, string message) 

  { 

   // verwendet statische Properties und Methoden der Schnittstelle 

   if (ILogger.Count == 0) Console.WriteLine("Protokoll beginnt: " + 

DateTime.Now); 

   ILogger.Count++; 

 

   if (level == LogLevel.Info) Console.ForegroundColor = ConsoleColor.White; 

   if (level == LogLevel.Warning) Console.ForegroundColor = ConsoleColor.Yellow; 

   if (level == LogLevel.Error) Console.ForegroundColor = ConsoleColor.Red; 

 

   Console.WriteLine(ILogger.GetLogText(level, message)); 

   Console.ResetColor(); 

  } 

 } 

} 

27.4 Statische abstrakte Properties und Methoden in 
Schnittstellen 

Seit C# 11.0 sind in Schnittstellen Deklarationen von Properties und Methoden mit static abstract 

und static virtual erlaubt (in C# 10.0 war dies schon experimentell möglich). 

Beispiel: Es gibt zwei Schnittstellen. IObjectWithID gibt ein statisches Property vom Typ Integer 

mit Namen ID vor. Die darauf aufbauende Schnittstelle IAbc gibt drei weitere Mitglieder vor: 

▪ Ein formale abstrakte Instanzmethode GetA() 

▪ Eine statische Methode GetB() mit Implementierung 

▪ Eine statische abstrakte Methode GetC() 

interface IObjectWithID 

{ 

 static abstract int ID { get; set; } // NEU 

} 

  

interface IAbc : IObjectWithID 

{ 

 string GetA(); 



248 Schnittstellen (Interfaces) 

 

 static string GetB() => "B"; 

 static abstract string GetC(); // NEU 

} 

Dazu zeigt folgende Implementierung der Klasse Abc auf Basis von Schnittstelle IAbc, dass man 

die als static abstract deklarierten Mitglieder nun als statische Mitglieder implementieren muss: 

class Abc : IAbc 

{ 

 #region Vorgaben der Interfaces 

 public string GetA() => "A"; // muss nicht-

statische Implementierung für GetA() liefern 

 public static string GetC() => "C"; // muss statische Implementierung für GetC()

 liefern 

 public static int ID { get; set; } // muss statische Implementierung für Propery

 ID liefern 

 #endregion 

  

 #region zusätzliche Properties 

 public static string Text1 { get; set; } = "ABC"; // zusätzliches statisches Mit

glied, nicht aus Interface 

 public string Text2 { get; set; } = "ABC"; // zusätzliches Instanzmitglied, nich

t aus Interface 

 #endregion 

} 

Dann sind diese Verwendungen möglich: 

class AbcClient 

{ 

 public static void Run() 

 { 

  var obj = new Abc(); 

  Console.WriteLine(obj.GetA()); // Instanzmitglied 

  Console.WriteLine(IAbc.GetB()); // statisches Mitglied direkt im Interface 

  Console.WriteLine(Abc.ID); // statisches Mitglied - Nutzung via Klassenname 

  Console.WriteLine(Abc.GetC()); // statisches Mitglied - Nutzung via Klassenname 

  Console.WriteLine(Abc.Text1); // statisches Mitglied  

  Console.WriteLine(obj.Text2); // Instanzmitglied 

 } 

} 

Randbemerkung: An diesem Sprachfeature hat Microsoft laut Aussage von Microsoft Program 

Manager Mads Torgersen mehr als 10 Jahre gearbeitet. Erst die Möglichkeit, die Runtime von 

.NET zu verändern im modernen .NET hat die Umsetzung dann zur Produktreife gebracht 

(Quelle: .NET Conf 2022, 9.11.2022). 

Veränderungen der Runtime wurden im klassischen .NET Framework wegen möglicher 

Breaking Changes nicht oder nur in kleinen Dosen umgesetzt. 

Dieses Sprachfeatures funktioniert nicht in älteren .NET-Versionen. Es kommt die 

Fehlermeldung "Target runtime doesn't support static abstract members in interfaces.". 

 



Namensräume (Namespaces)  249 

 

28 Namensräume (Namespaces) 
Namensräume dienen der hierarchischen Benennung von Typen (Klassen, Strukturen und 

Enumerationen). 

Typen werden in .NET nicht mehr wie in COM durch GUIDs, sondern durch Zeichenketten 

eindeutig benannt. Diese Zeichenketten sind hierarchische Namen, die aus einem Namensraum 

(engl. Namespace) und einem Typnamen bestehen. Ein Namensraum kann aus mehreren 

Hierarchieebenen bestehen. Zur Bildung eines voll qualifizierten .NET-Typnamens werden sowohl 

Namensraum und Typname als auch die Ebenen innerhalb eines Namensraums durch Punkte 

getrennt. Über alle Namensräume hinweg kann der Typname mehrfach vorkommen, vergleichbar 

mit gleichnamigen Dateien in verschiedenen Ordnern in einem Dateisystem. 

 

 

 

 

 

Abbildung: Beispiel für einen voll qualifizierten .NET-Typnamen  

28.1 Softwarekomponenten versus Namensräume 

Eine einzelne .NET-Softwarekomponente kann beliebig viele Namensräume umfassen und ein 

Namensraum kann sich über beliebig viele Softwarekomponenten erstrecken. Die Auswahl der 

Typen, die zu einem Namensraum gehören, sollte nach logischen oder funktionellen Prinzipien 

erfolgen. Im Gegensatz dazu sollte die Zusammenfassung von Typen zu einer 

Softwarekomponente gemäß den Bedürfnissen zur Verbreitung der Klassen (Deployment) 

erfolgen. 

de.ITVisions.NetCrashkurs.Autor

Namensraum

Typname



250 Namensräume (Namespaces) 

 

Abbildung: Namensräume versus Softwarekomponenten am Beispiel ausgewählter Teile der 

.NET-Klassenbibliothek 

In .NET können beliebig viele Namensraumhierarchien parallel existieren. Es gibt keinen 

gemeinsamen Wurzelnamensraum und keine zentrale Registrierung der Namensräume. Die .NET-

Klassenbibliothek besitzt zwei Wurzelnamensräume, System und Microsoft. 

Da kein globales Verzeichnis aller Namensräume auf einem System existiert, gibt es nicht wie in 

COM eine einfache Möglichkeit, alle auf einem System vorhandenen .NET-Klassen aufzulisten. 

Möglich wäre aber die Suche nach .dll- bzw. .exe-Dateien im Dateisystem und eine Einzelprüfung 

dieser Dateien daraufhin, ob sie .NET-Typen enthalten. 

28.2 Vergabe der Namensraumbezeichner 

Da keine zentrale Stelle existiert, die die Namensraumbezeichner vergibt, besteht natürlich 

grundsätzlich die Gefahr, dass zwei Softwareentwickler gleiche Typnamen festlegen. Im CLI-

Standard (CLI = Common Language Infrastructure) ist daher vorgesehen, dass der Namensraum 

mit dem Firmennamen beginnt. Noch eindeutiger wird der Name jedoch, wenn man anstelle des 

Firmennamens den Internet-Domänennamen verwendet, z.B. de.ITVisions.NetCrashkurs.Autor 

statt ITVisions.NetCrashkurs.Autor.  

Diese Konvention schützt natürlich nicht vor mutwilligen Doppelbenennungen. Für .NET-

Anwendungen und -Softwarekomponenten ist deshalb vorgesehen, dass diese digital signiert 

werden können.  

mscorlib.dll system.dll system.web.dll

Namensraum „System“

Namensraum 

„System.Reflection“

Namensraum „System.IO“

Namensraum „System.Web“

Namensraum 

„System.Runtime“

Namensraum „System.Threading“

© Holger Schwichtenberg 2005



Namensräume (Namespaces)  251 

 

28.3 Vergabe der Typnamen 

Auch für die Namensgebung von Typen in der .NET-Klassenbibliothek gibt es Regeln, die im CLI-

Standard manifestiert sind. Die Namen für Klassen, Schnittstellen und Attribute sollen Substantive 

sein. Die Namen für Methoden und Ereignisse sollen Verben sein. 

Für die Groß-/Kleinschreibung gilt grundsätzlich PascalCasing, d. h., ein Bezeichner beginnt 

grundsätzlich mit einem Großbuchstaben und jedes weitere Wort innerhalb des Bezeichners 

beginnt ebenfalls wieder mit einem Großbuchstaben. Ausnahmen gibt es lediglich für 

Abkürzungen, die nur aus zwei Buchstaben bestehen. Diese dürfen komplett in Großbuchstaben 

geschrieben werden (z.B. UI und IO). Alle anderen Abkürzungen werden entgegen ihrer normalen 

Schreibweise in Groß-/Kleinschreibung geschrieben (z.B. Xml, Xsd und W3c). Attribute, die 

geschützt (Schlüsselwort Protected) sind, und die Namen von Parametern sollen in camelCasing 

(Bezeichner beginnt mit einem Kleinbuchstaben, aber jedes weitere Wort innerhalb des 

Bezeichners beginnt mit einem Großbuchstaben) geschrieben werden. 

Einige Programmiersprachen (wie beispielsweise C#) erlauben, dass sich zwei Bezeichner nur 

hinsichtlich der Groß- und Kleinschreibung unterscheiden können. Es wäre in C# also gültig zu 

definieren: 

public class Autor 

{ 

  public string Name; 

  public string name; 

} 

Jedoch ist diese Vorgehensweise nicht CTS-konform, weil eine andere, nicht zwischen Groß- und 

Kleinschreibung unterscheidende (case-sensitive) Sprache diese beiden Attribute nicht 

unterscheiden könnte. Ein Client in Visual Basic würde nur das erste Mitglied Name sehen; das 

zweite name bliebe verdeckt. CTS-konform ist jedoch folgende Deklaration, weil in diesem Fall 

das zweite Attribut nicht nach außen angeboten wird: 

public class Autor 

{ 

  public string Name; 

  private string name; 

} 

28.4 Namensräume deklarieren 

Die Deklaration eines Namensraums dient dazu, einen Typ einem Namensraum zuzuordnen. Jeder 

Typ gehört nur zu genau einem Namensraum. 

Die Festlegung des Namensraums für eine Klasse erfolgt in C# seit Version 1.0 durch den Code-

Block namespace Name { … }. In einem Namensraum können beliebig viele Typen enthalten sein. 

Ein Namensraum kann sich über mehrere Dateien und auch mehrere Assemblies erstrecken. Der 

Namensraum muss aber zu Beginn jeder Datei in jedem Projekt erneut deklariert werden. 

namespace de.WWWings.PassagierSystem 

{ 

 public class Passagier : de.WWWings.Person 

 { … } 

 

 public class Buchgung  

 { … } 

} 

Seit C# 10.0 gibt es alternativ zu diesem Block-Stil auch Namensraumdeklaration auf Dateiebene 

(engl. File-Scoped Namespace). Dabei schreibt man nur noch namespace Name; ohne geschweifte 



252 Namensräume (Namespaces) 

 

Klammern. Auch hier muss der Namensraum aber zu Beginn jeder Datei in jedem Projekt erneut 

deklariert werden. Die Namensraumdeklaration auf Dateiebene muss vor allen Typdeklarationen 

erscheinen. 

namespace de.WWWings.PassagierSystem; 

public class Passagier : de.WWWings.Person 

{ … } 

public class Buchgung  

{ … } 

 

Diese Namensraumdeklaration gilt dann für die gesamte Datei. Geschweifte Klammern und 

Einrückung sind nicht mehr notwendig. 

Hinweis: Diese in C# 10.0 eingeführte Vereinfachung basiert auf dieser Erkenntnis des C#-

Entwicklungsteams: "Measuring an even broader set of millions of C# files on GitHub shows 

literally 99.99% of files have just one namespace in them." 

[github.com/dotnet/csharplang/blob/main/meetings/2021/LDM-2021-01-13.md#file-scoped-

namespaces]  

 

Abbildung: Einstellung der präferierten Verwendung von Namensraumdeklaration auf 

Dateiebene (File Scoped) oder mit geschweiften Klammern (Block Style) in den Einstellungen 

von Visual Studio  

Hinweis: Anders als bei Visual Basic-Projekten kann man in Visual Studio für C#-Projekte in 

den Projekteigenschaften keinen Wurzelnamensraum definieren, der allen 

Namensraumdeklarationen automatisch vorangestellt wird. Der im Tag <RootNamespace> in 

einer .csproj-Datei wird automatisch bei neu angelegten Klassen als expliziter Namensraum in 

der Datei eingetragen. Nur in Blazor-Projekten bei Razor Component wird der 

<RootNamespace> automatisch vorangestellt. 



Namensräume (Namespaces)  253 

 

28.5 Import von Namensräumen 

Im Normalfall müssen Klassen in .NET immer mit ihrem vollen Namensraum genannt werden. 

Das optionale Importieren von Namensräumen hat das Ziel, einen Klassennamen mit verkürztem 

oder ganz ohne Namensraum zu verwenden. 

Das Importieren von Namensräumen erfolgt in C# mit dem Schlüsselwort using. Dabei ist es 

möglich, einen Alias-Namen für einen Namensraum zu vergeben. 

using System.Collections.Generic; 

using GenCol = System.Collections.Generic; 

 

Import-Anweisung Typnutzung 

Ohne System.Collections.Generic.SortedList<string

, Flug> 

using System.Collections.Generic; SortedList<string, Flug> 

using GenCol = System.Collections.Generic; GenCol.SortedList<string, Flug> 

Tabelle: Beispiele für den Einsatz von Import 

Hinweis: Das Schlüsselwort using hat in C# eine Doppelbedeutung. Es wird auch für Using-

Blöcke beim IDisposable-Muster verwendet (siehe Kapitel "IDisposable / Using-Blöcke"). 

Seit C# 10.0 gibt es globale Namensraumimporte über globale Using-Direktiven (engl. Global 

Using Directives). Der Zusatz static (vgl. statische Methode als globale Funktionen seit C# 6.0) ist 

auch bei global using möglich. Ebenso sind Aliase erlaubt.   

global using System; 

global using static System.Console; 

global using IS = System.Runtime.InteropServices; 

Eine solche globale Using-Direktive gilt für alle Dateien in einem Projekt. Somit entfällt es, immer 

wieder zu Beginn jeder Datei den Namensraum zu importieren.  

Hinweis: Ein globaler Namensraumimport darf nicht innerhalb eines mit Block-Syntax 

deklarierten Namenraums erfolgen (Regel CS8914: "A global using directive cannot be used in 

a namespace declaration.") 

Ein Entwickler kann die globalen Namensraumimporte auch in eine separate Datei auslagern und 

die Importe damit ganz aus dem aktiven Sichtfeld verbannen. Alternativ dazu kann man 

Namensräume auch in der Projektdatei .csproj global importieren mit dem Tag <Using> in einer 

<ItemGroup>, optional auch mit dem Zusatz Static="True" für einen statischen Import (siehe 

Kapitel "Statische Methode als globale Funktionen"): 

<Project Sdk="Microsoft.NET.Sdk"> 

 … 

 <ItemGroup> 

  <Using Include="System.Runtime.InteropServices" /> 

  <Using Include="System.Console" Static="True"/> 

  <Using Include="BO" /> 

  <Using Include="BL" /> 

 </ItemGroup> 

 

</Project> 



254 Namensräume (Namespaces) 

 

Auf C# 10.0 (oder höher) basierende Projekte haben zudem eine Reihe von Namensräumen, die 

automatisch importiert werden und nicht mehr explizit importiert werden müssen ("Implizite 

Namensräume"). Welche dies sind, zeigt die folgende Abbildung abhängig vom aktiven .NET 

SDK. 

 

Abbildung: Liste der automatischen Namensaum-Importe (Quelle: learn.microsoft.com/en-

us/dotnet/core/compatibility/sdk/6.0/implicit-namespaces) 

ACHTUNG: Implizite Namensräume können Probleme verursachen, wenn die Klassennamen 

in mehreren Namensräumen vorkommen. Wenn Sie zum Beispiel die Klasse 

Microsoft.Build.Utilities.Task oder MiracleList.BO.Task verwenden und dafür einen expliziten 

Namensraumimport einbinden, wird der C#-Compiler seit C# 10.0 meckern: "'Task' is an 

ambiguous reference". In diesem Fall müssen Sie entweder den Klassennamen vollständig mit 

Namensraum angeben oder die impliziten Namensräume deaktivieren.  

Während vor .NET 6 RC1 die impliziten Namensräume im Standard automatisch aktiv waren 

und mit <DisableImplicitNamespaceImports>true</DisableImplicitNamespaceImports> erst 

deaktiviert werden mussten, was auch alle bestehenden Projekte betraf, hat sich Microsoft nun 

eines Besseren besonnen: Die impliziten Namensräume sind nur noch aktiv, wenn in der 

Projektdatei in einer <PropertyGroup> das Tag <ImplicitUsings>enable</ImplicitUsings> 

vorkommt. Dies ist nur bei mit .NET 6 in Visual Studio 2022 neu angelegten Projekten der Fall; 

ältere Projekte, die auf .NET6 hochgestuft werden, erhalten das Tag nicht. 

In neuen Projekten kann man die impliziten Namensräume durch Löschen des Tags bzw. mit 

<ImplicitUsings>disable</ImplicitUsings> deaktivieren. Alternativ können Sie auch einzelne 

implizite Namensräume deaktivieren: 

<ItemGroup> 

Kommentiert [DF1]: Satzsinn bzw. Formulierung ok? 



Namensräume (Namespaces)  255 

 

  <Using Remove="System.Threading.Tasks" /> 

</ItemGroup> 

 

 
Abbildung: Implizite Namensräume in der .csproj-Datei 

28.6 Verweis auf Wurzelnamensräume  

Wurzelnamensräume sollten eindeutig sein. Deshalb ist es empfehlenswert, dem Namensraum die 

Internet-Domain voranzustellen (z.B. de.WWWings.PassagierSystem). Dabei sollte man 

Namensdopplungen auch für untergeordnete Namensräume vermeiden, weil es sonst unter 

bestimmten Bedingungen zweideutige Interpretationen einer Anweisung geben könnte. 

Insbesondere sollte man die Begriffe System und Microsoft vermeiden, weil damit die FCL-

Namensräume verdeckt werden. 

Beispiel 

Wenn man »versehentlich« einen Namensraum wie de.WWWings.System definiert hat, kann man 

aus diesem Namensraum heraus nicht mehr auf den FCL-Namensraum System zugreifen (siehe 

Abbildung), 

 

Abbildung: Der FCL-Namensraum System ist durch den Namensraum  

CS20.GlobalDemo.System verdeckt 

Das Schlüsselwort global:: übernimmt seit C# 2.0 die gleiche Funktion wie global ab Visual Basic 

2005: Mit diesem dem Namensraum vorangestellten Schlüsselwort adressiert man einen 

Wurzelnamensraum, wenn dieser durch einen untergeordneten Namensraum verdeckt ist. 



256 Namensräume (Namespaces) 

 

using System; 

using System.Collections.Generic; 

using System.Text; 

using System.IO; 

 

namespace CS20.GlobalDemo.System.IO 

{ 

 class FileInfo 

 { 

  public string Name; 

 } 

 class FileInfoTest 

 { 

  public static void Run() 

  { 

   System.IO.FileInfo f = new System.IO.FileInfo(); 

   f.Name = @"c:\test.txt"; 

 

 

   global::System.IO.FileInfo f2 = new 

global::System.IO.FileInfo(@"c:\temp\daten.txt"); 

  } 

 } 

} 



Anonyme Typen  257 

 

29 Anonyme Typen  
Neu seit C# 3.0 und Visual Basic .NET 9.0 ist, dass man Objekte ohne eine explizite 

Klassendefinition erzeugen kann. Solche Klassen erhalten automatisch einen Klassennamen von 

dem Compiler. Dieser Name ist recht kompliziert und nicht zur Verwendung durch den Entwickler 

gedacht.  

Ein anonymer Typ entsteht in C# durch Verwendung von new ohne Klassennamen und in Visual 

Basic .NET durch New With. 

Listing: Anonyme Typen in C# 3.0 
// Anonyme Typen 

var Fluggesellschaft1 = new { Name = "World Wide Wings", 

                                 Gruendungsdatum = new DateTime(2005, 01, 01), 

                                 Vorstand = PersonenListe }; 

Console.WriteLine(Fluggesellschaft1.GetType().FullName); 

 

// 2., gleich aufgebauter anonymer Typ 

var Flugzeugbauer = new { Name = "Never Come Back Airline", 

                             Gruendungsdatum = new DateTime(1972, 08, 01), 

                             Vorstand = new List<Person>() }; 

Console.WriteLine(Flugzeugbauer.GetType().FullName); 

 

// sind die Typen gleich? 

var TypenGleich = Flugzeugbauer.GetType() == Fluggesellschaft1.GetType(); 

Console.WriteLine("Typen gleich? " +  TypenGleich); 

Durch die obigen Listings entsteht ein anonymer Typ mit diesem Namen: 

<>f__AnonymousType0`3[[System.String, mscorlib, Version=2.0.0.0, Culture=neutral 

, PublicKeyToken=b77a5c561934e089],[System.DateTime, mscorlib, Version=2.0.0.0, 

Culture=neutral, PublicKeyToken=b77a5c561934e089],[System.Collections.Generic.Li 

st`1[[NET3.SpracheCSharp.Demo_Sprachfeatures.Vorstandsmitglied, WWWings.Verschie 

deneDemos, Version=0.5.0.0, Culture=neutral, PublicKeyToken=null]], mscorlib, Ve 

rsion=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089]] 

Hinweis: Bei anonymen Typen ist Folgendes zu beachten: 

Die Initialisierung kann mit statischen Werten oder Variablen erfolgen. 

Zwei auf die o. g. Weise instanziierte Objekte gehören zur gleichen Klasse, wenn sie die gleiche 

Anzahl und Reihenfolge von Attributen bei der Instanziierung besitzen. 

Auf diese Weise instanziierte Objekte können nicht mehr verändert werden, weil alle Property-

Attribute nur für den Lesezugriff erzeugt werden. 

Auf diese Weise instanziierte Objekte sind nicht serialisierbar, weil es keinen parameterlosen 

Standardkonstruktor gibt. 

Der Name eines anonymen Typen wird bei jedem Kompilierungsvorgang neu vergeben. Man 

darf sich daher nicht auf das Ergebnis von GetType() verlassen. 

Man kann komplexe anonyme Typen durch Verschachtelung erzeugen. 

Man kann auch ein Array aus anonymen Typen bilden und – mit einem hier aus Platzgründen 

nicht gezeigten Trick – auch anonyme Typen in andere Objektmengen aufnehmen. 

Anonyme Typen sind nur für lokale Variablen erlaubt. Sie sind nicht einsetzbar als 

Klassenmitglieder, Parameter von Methoden und Rückgabewerte von Methoden. 

Anonyme Typen kann man seit C# 10.0 mit With-Ausdrücken klonen (siehe dazu Kapitel 

"Strukturen/With-Ausdrücke"). 



258 Operatorüberladung 

 

30 Operatorüberladung 
Operatorüberladung bedeutet, einem der Standardoperatoren wie +, -, * und = im Zusammenhang 

mit selbstdefinierten Klassen eine neue Bedeutung zu geben, z.B. ein Flug-Objekt und ein 

Passagier-Objekt zu addieren, um daraus ein neues Objekt des Typs Buchung zu gewinnen. 

Wichtig: Zum Thema Operatorüberladung gibt es geteilte Meinungen. Von einigen 

Entwicklern wird sie geliebt wegen der Prägnanz. Von anderen Entwicklern wird sie gehasst 

wegen der Mehrfachbedeutung der Operatoren, die die Lesbarkeit des Programmcodes 

erschwert. Festzuhalten ist auf jeden Fall, dass man Operatorüberladung nicht zwingend 

braucht; alles was Operatorüberladung kann, kann man auch durch eine Methode mit einem 

sprechenden Namen ausdrücken. 

C# bietet seit seiner ersten Version eine prägnante Syntax für die Definition einer 

Operatorüberladung. 

Listing: Beispiel für Operatorüberladung in C# 
namespace de.WWWings 

{ 

  

 public partial class Flug  

 { 

  … 

  

  /// <summary> 

  /// Operatorüberladung für die Buchung eines Flugs durch Addition eines Flug- u

nd eines Passagier-Objekts. 

  /// </summary> 

  /// <param name="flug">Flugobjekt</param> 

  /// <param name="pass">Passagierobjekt</param> 

  /// <returns>Flugobjekt mit hinzugefügten Passagier</returns> 

  public static Flug operator +(Flug flug, PassagierSystem.Passagier pass) 

  { 

   pass.Buchen(flug); 

   return flug; 

  } 

  

 } 

} 

Seit C# 11.0 besteht auch die Möglichkeit, solch eine Operatorüberladung in einer Schnittstelle zu 

definieren, um eine Vorgabe bzw. Gemeinsamkeit für alle Implementierungen zu erschaffen, denn 

erst seit C# 11.0 ist "static abstract" in Schnittstellen erlaubt. 

Eine Schnittstelle mit einer Operatorüberladung könnte so aussehen: 

Listing: Operatorüberladung in einer Schnittstelle (ab C# 11.0) 
namespace de.WWWings; 

  

public interface IFlug<TSelf> where TSelf : IFlug<TSelf> 

{ 

 string AbflugOrt { get; set; } 

 double Auslastung { get; } 

 DateTime Datum { get; set; } 

 long FlugNr { get; set; } 



Operatorüberladung  259 

 

 short FreiePlaetze { get; set; } 

 bool Nichtraucherflug { get; set; } 

 short Plaetze { get; set; } 

 string Route { get; } 

 string ZielOrt { get; set; } 

  

 public static abstract Flug operator +(TSelf flug, de.WWWings.PassagierSystem.Pa

ssagier pass); 

} 

Hinweis: Der ein oder andere wird sich sicherlich fragen, warum die Schnittstelle generisch 

sein muss. Der Grund dafür ist einfach: Man will am Ende ja ein Flug-Objekt einfach mit + zu 

einem Passagier addieren können. Ohne die generische Implementierung könnte man nur eine 

Variable vom Typ IFlug zum Passagier addieren. 

Die Implementierung der Klasse muss sodann um die Schnittstellenimplementierung 

: IFlug<Flug>  

ergänzt werden. 

Listing: Beispiel für Operatorüberladung in C# 
namespace de.WWWings 

{ 

  

 public partial class Flug : IFlug<Flug> 

 { 

  … 

  

  /// <summary> 

  /// Operatorüberladung für die Buchung eines Flugs durch Addition eines Flug- u

nd eines Passagier-Objekts. 

  /// </summary> 

  /// <param name="flug">Flugobjekt</param> 

  /// <param name="pass">Passagierobjekt</param> 

  /// <returns>Flugobjekt mit hinzugefügten Passagier</returns> 

  public static Flug operator +(Flug flug,PassagierSystem.Passagier pass) 

  { 

   pass.Buchen(flug); 

   return flug; 

  } 

  

 } 

} 

 



260 Strukturen 

 

31 Strukturen 
Strukturen mit dem Schlüsselwort struct anstelle von class sind eine besondere Form von Klassen. 

Die .NET-Laufzeitumgebung behandelt diesen Typen als Wertetypen und verwaltet sie im 

Hauptspeicher auf dem Stack-Speicher (mit First-In-First-Out-Methodik) statt auf dem Heap-

Speicher. Der Heap wird in .NET auch "Managed Heap" genannt.  

31.1 Wertetyp versus Referenztyp 

Grundsätzlich sind alle Typen in .NET echte Klassen, d.h. .NET ist also komplett objektorientiert, 

weil auch einfache Datentypen wie Zahlen als Objekte aufgefasst werden, auf denen man 

Methoden ausführen kann. So sind z.B. 5.ToString() und (123.45).ToString() gültige Ausdrücke. 

Klassen sind üblicherweise Referenztypen, d.h., im Stack wird ein Zeiger auf einen Speicherplatz 

im Heap vorgehalten. 

Für einfache Datentypen ist diese Zwischenstufe jedoch sehr ineffizient. Microsoft hat daher in 

.NET auch Wertetypen (alias Strukturen) vorgesehen, deren Inhalt direkt auf dem Stack abgelegt 

werden kann.  

 

Abbildung: Wertetyp versus Referenztyp im Hauptspeicher 

Auch Wertetypen sind als Klassen implementiert und können daher die gleichen Mitglieder wie 

Klassen besitzen. Ihre Besonderheit besteht jedoch darin, dass sie von System.ValueType erben. 

Die folgende Tabelle zeigt die Unterschiede zwischen Wertetyp und Referenztyp. Besonders zu 

erwähnen ist noch die Klasse System.String. Diese Klasse gehört zwar zu den Referenztypen, 

verhält sich aber beim Kopieren wie ein Wertetyp. 

 



Strukturen  261 

 

 Reference Typen 

(Referenztyp) 

Value Type  

(Wertetyp/ 

Strukturen) 

Nullable Value 

Type 

(Werteloser 

Wertetyp/ 

Strukturen) 

Verfügbar seit  .NET 1.0 .NET 1.0 .NET 2.0 

Standard-Speicherort 

der Werte 

Heap Stack (können aber in 

einigen Fällen auch auf 

dem Heap leben, außer 

bei ref struct) 

Stack (können 

aber in einigen 

Fällen auch auf 

dem Heap leben) 

Basisklasse Direktes oder 

indirektes Erben von 

System.Object 

Direktes oder 

indirektes Erben von 

System.ValueType 

Nullable<T> 

C#-Sprachkonstrukt 

zur Definition 

class 

seit C# 9.0 auch 

record 

seit C# 10.0 auch mit 

record class 

struct 

seit C# 10.0 auch mit 

record struct 

struct 

Standardwert null Abhängig vom 

Datentyp, 0 bei Zahlen, 

false bei Boolean und 

1.1.0001 bei DateTime 

null 

Setzen auf null 

möglich 

Ja (bei Aktivierung 

von Nullable 

Reference Types ab 

C# 8 nur bei 

Verwendung von ? 

im Typ z.B. string?) 

Nein Möglich 

Parameterloser 

Konstruktor 

Möglich Nicht möglich bis C# 

9.0, möglich seit C# 10 

Nicht möglich bis 

C# 9.0, möglich 

seit C# 10 

Initialisierung von 

Fields und Properties 

mit Werten 

Möglich Nicht möglich bis C# 

9.0, möglich seit C# 10 

Nicht möglich bis 

C# 9.0, möglich 

seit C# 10 

Vererbung von 

anderen Typen 

Ja Nein  Nein  

Implementierung von 

Schnittstellen 

Ja Ja Ja 

Zirkuläre Referenzen Ja Nein Nein 

Abonnement von 

Ereignissen 

Ja Nein Nein 



262 Strukturen 

 

 Reference Typen 

(Referenztyp) 

Value Type  

(Wertetyp/ 

Strukturen) 

Nullable Value 

Type 

(Werteloser 

Wertetyp/ 

Strukturen) 

Instanziierung Pflicht Optional, 

Instanziierung führt zu 

Initialisierung 

Optional, 

Instanziierung 

führt zu 

Initialisierung 

Vergleich Referenzvergleich, 

Bei Record-Typen: 

Wertvergleich 

Wertvergleich Wertvergleich 

Kopie Referenzkopie 

(flache Wertkopie 

optional mit 

MemberwiseClone(), 

tiefe Kopie muss 

selbst entwickelt 

werden) 

Wertkopie Wertkopie 

Tabelle: Wertetyp versus Referenztyp 

 

Abbildung: Typen von Objektkopien 

Buch

BuchAutorAutor

B1

Ausgangszustand

Buch

BuchAutorAutor

B1

Referenzkopie

B2

Buch

BuchAutorAutor

B1

Seichte Kopie

B2Buch

Autor

Buch

BuchAutorAutor

B1

Tiefe Kopie

B2Buch

Autor BuchAutor

(C) Holger@Schwichtenberg.de 2002



Strukturen  263 

 

Obige Tabelle enthält die allgemeinen Regeln, von denen es aber Ausnahmen gibt. So leben 

statische Variablen immer auf dem Heap. Auch wird eine Struktur, die Teil einer Klasse ist, auf 

dem Heap gespeichert. Auch durch das sogenannte Boxing wird eine Struktur auf den Heap 

gespeichert. 

31.2 Deklaration von Strukturen 

Eine Struktur wird in C# deklariert mit dem Sprachkonstrukt  

struct { …. } 

Eine Struktur kann – wie eine Klasse – Daten (in Form von Fields und Properties), Methoden, 

Ereignisse, Konstruktoren, Operatoren und auch eingebettete Typen enthalten.  

Während Klassen in C# schon immer einen parameterlosen Konstruktor besitzen konnten, ist dies 

für Strukturen erst seit C# 10.0 erlaubt. Der Entwickler kann den parameterlosen Konstruktor 

Strukturen seit C# 10.0 selbst definieren. Alternativ erzeugt der Compiler selbst einen 

parameterlosen Konstruktor, wenn der Entwickler eine Initialisierung von Fields und Properties 

bei der Deklaration in Strukturen vornimmt. Vor C# 10.0 waren solche Initialisierung in Strukturen 

verboten! 

Listing: Beispiel für eine Struktur 
struct Experte 

 { 

  public int ID; 

  public string Name { get; set; } 

  public List<String> Themen { get; set; } = new List<string>(); // Diese Initial

isierung zieht nach sich, dass es einen Konstruktor in der Struktur geben muss, s

onst Fehler CS8983. 

  

  // erlaubt 

  public List<Experte> MitarbeiterTeam { get; set; } = new List<Experte>(); 

  // nicht erlaubt: 

  //public Experte Vorgesetzter { get; set; } //  Error CS0523 Struct member 'Exp

erte.Vorgesetzter' of type 'Experte' causes a cycle in the struct layout  

  

  struct Adresse 

  { 

   public string Strasse { get; set; } 

   public string PLZ { get; set; } 

   public string Ort { get; set; } 

  } 

 

  public Experte() 

  { 

   ID = 0; 

   Name = "unbekannt"; 

  } 

 

  public Experte(int id, string name) 

  { 

   ID = id; 

   Name = name; 

  } 

 



264 Strukturen 

 

  public int ThemenAnzahl { get { return this.Themen.Count; } } 

  public string GetThemenString() 

  { 

   return String.Join(", ", this.Themen); 

  } 

 } 

Bis einschließlich C# 10.0 gilt, dass ein Konstruktor alle Properties, die keinen 

Standardwertzuweisung innerhalb der Deklaration, explizit initialisieren muss. 

 
Abbildung: Dieser Konstruktor initialisiert das Property Name nicht, welches hier keine 

Vorbelegung besitzt 

Ein parameterloser Konstruktor in einer Struktur musste vor C# 11.0 alle nicht in der Deklaration 

initialisierten Fields und Properties explizit mit einem Wert belegen, z.B. 

public Experte() 

{ 

 ID = 0; 

 Name = "unbekannt"; 

} 

Das hat sich seit C# 11.0 geändert: Die Datenmitglieder (Fields und Properties) von Strukturen 

müssen seit C# 11.0 in eigenen Konstruktoren nicht mehr explizit initialisiert werden, wenn diese 

keine Initialisierungswerte bei der Deklaration besitzen. Seit C# 11.0 werden alle nicht explizit 

initialisierten Felder und Properties automatisch mit ihren Standardwerten initialisiert! Microsoft 

nennt das Feature Auto-Default Structs. 

Ab C# 11.0 kann also die obige Struktur auch einen parameterlosen Konstruktor ohne Code 

enthalten und auch Konstruktoren, die nicht alle Fields und Properties initialisieren. 

Listing: Struktur in C# seit Version 11.0 mit Konstruktoren, die nicht alle Datenmitglieder 

initialisieren 
struct Experte 

{ 

 public int ID; 

 public string Name { get; set; } 

 public List<String> Themen { get; set; } = new List<string>(); 

  

 public Experte() 

 { 

 } 

  

 public Experte(int id) 

 { 

  ID = id; 

 } 

  



Strukturen  265 

 

 public Experte(int id, string name) 

 { 

  ID = id; 

  Name = name; 

 } 

  

 public int ThemenAnzahl { get { return this.Themen.Count; } } 

 public string GetThemenString() 

 { 

  return String.Join(", ", this.Themen); 

 } 

} 

Auch in der aktuellen C#-Version gilt aber noch, dass Initialisierungen von Fields und Properties 

bei der Deklaration in Strukturen nur möglich sind, wenn man auch einen Konstruktor schreibt, 

siehe nächste Abbildung. 

 

 
Abbildung: Fehlermeldung, weil ID, Namen und Themen initialisiert sind, aber es keinen 

Konstruktor gibt 

31.3 Verwendung von Strukturen 

Das folgende Beispiel zeigt sehr eindrucksvoll den Charakter einer Struktur im Vergleich zu einer 

Klasse. Es wird eine Instanz der Struktur Experte erzeugt und befüllt. 

Es wird eine Kopie der Instanz angelegt. Dass dies eine Wertkopie und keine Referenzkopie ist, 

sieht man bei der Veränderung des Namens in der ursprünglichen Variablen. Die Kopie behält den 

alten Wert in dem Attribut Name. 

Allerdings wirkt sich das Hinzufügen eines Themas zur Eigenschaft Themen auf beide Experten 

aus, auf das Original und die Kopie. Das liegt daran, dass List<string> ein Referenztyp ist. Bei 

dem Kopieren der Struktur wird also nur die Referenz auf die Themenliste kopiert. 

Listing: Deklaration und Nutzung einer Struktur 
Experte hs = new Experte(); 

hs.ID = 1; 

hs.Name = "Holger Schwichtenberg"; 

hs.Themen = new List<string>(); 

hs.Themen.Add(".NET"); 

hs.Themen.Add("Web"); 

hs.Themen.Add("PowerShell"); 

hs.Themen.Add("Data Access"); 

  

Console.WriteLine(hs.Name + " ist Experte für " + hs.ThemenAnzahl + " Themen!"); 

  

Experte hs_Klon = hs; // Wertkopie! 

Console.WriteLine(hs_Klon.Name + " ist Experte für " + hs_Klon.ThemenAnzahl + " T

hemen!"); 



266 Strukturen 

 

  

Console.WriteLine("Namensergänzung"); 

hs.Name = "Dr. " + hs.Name; 

Console.WriteLine(hs.Name + " ist Experte für " + hs.ThemenAnzahl + " Themen!"); 

// mit Dr. 

Console.WriteLine(hs_Klon.Name + " ist Experte für " + hs_Klon.ThemenAnzahl + " T

hemen!"); // weiterhin kein Dr.! 

  

Console.WriteLine("Themenergänzung"); 

hs.Themen.Add("Cloud & Docker"); 

Console.WriteLine(hs.Name + " ist Experte für " + hs.ThemenAnzahl + " Themen!"); 

// 5 Themen! 

Console.WriteLine(hs_Klon.Name + " ist Experte für " + hs_Klon.ThemenAnzahl + " T

hemen!"); // 5 Themen! 

 
Abbildung:  Ausgabe des obigen Listings 

31.4 Initialisieren einer Struktur mit default 

Auch eine Struktur kann man mit der Zuweisung an default initialisieren.  

Experte StandardExperte = default; 

Während eine Variable für eine Klasse bei einer Zuweisung an default den Wert null erhält, 

entsteht bei einer Struktur eine Instanz, bei der alle Mitglieder mit Standardwerten belegt sind 

(siehe Abbildung). ThemenAnzahl liefert dabei einen Laufzeitfehler, denn die Liste Themen ist 

null und es wird versucht, auf die Anzahl zuzugreifen! 

 
Abbildung: Initialisieren einer Struktur mit default 

31.5 Strukturen mit Readonly (seit C# 7.2) 

Seit C# 7.2 kann man Strukturdeklarationen mit dem Schlüsselwort readonly versehen. Damit 

erhält man eine unveränderliche Struktur (Immutable Struct). Damit man eine Struktur aber 

überhaupt mit Werten befüllen kann, gilt die Unveränderlichkeit erst nach Ende der 

Konstruktormethode, d.h. im Konstruktor kann man Werte setzen und ändern. 

Listing: Deklaration der Readonly-Struktur 
/// <summary> 

/// Struktur, bei der alle Mitglieder Readonly sein müssen 

/// </summary> 



Strukturen  267 

 

public readonly struct AppInfo 

  { 

   // Setzen und Ändern der Werte nur im Konstruktor erlaubt 

   public AppInfo(string name, Version version, DateTime? datum) 

   { 

    this.Name = name; 

    this.Version = version; 

    this.Datum = datum; 

    this.ObjektErstelltAm = DateTime.Now; 

    if (this.Datum == null) this.Datum = this.ObjektErstelltAm; 

   } 

   // Readonly-Properties: nur Getter 

   public string Name { get; } 

   public Version Version { get; } 

   public DateTime? Datum { get; } 

   // Readonly-Fields 

   private readonly DateTime ObjektErstelltAm; 

   public void IncreaseVersion() 

   { 

    // nicht erlaubt: this.Version = new Version(this.Version.Major + 1, 0, 0, 

0); 

   } 

  } 

Listing: Verwendung der Readonly-Struktur 
var appInfo = new AppInfo("MiracleList", new Version(0, 6, 3, 0), new 

DateTime(2017, 11, 10)); 

Console.WriteLine($"Version {appInfo.Version.ToString()} vom {appInfo.Datum}"); 

// verboten: appInfo.Version = new Version(0, 6, 4, 0); 

31.6 Readonly für einzelne Mitglieder einer Struktur 
(seit C# 8.0) 

Seit C# 8.0 kann der Softwareentwickler in Strukturen das readonly-Schlüsselwort auch auf 

einzelne Mitglieder anwenden.  

Der Zusatz readonly bedeutet: 

▪ Für automatische Properties nur mit Getter, dass der Entwickler nur im Konstruktor der Klasse 

einen Wert setzen kann. Der Zusatz readonly ist nicht erlaubt, wenn es auch einen Setter gibt. 

▪ Für explizite Properties nur mit Getter, dass der Getter den Zustand des Objekts nicht 

verändern kann (d.h. keine Properties oder Fields verändern) 

▪ Für Methoden, dass die Methode den Zustand des Objekts nicht verändern kann (d.h. keine 

Properties oder Fields verändern) 

Hinweis: Readonly ist nicht erlaubt bei dem Konstruktor! 

Bisher hat man als "Readonly Property" solche Properties bezeichnet, die nur einen Getter besitzen, 

z.B.: 

// Properties nur mit Getter 

public string Name { get;   } 

DateTime? _Datum; 

public DateTime? Datum 

  { 



268 Strukturen 

 

   get 

   { 

    if (_Datum == null) Version = new Version(1, 0, 0, 0); 

    return _Datum; 

   } 

  } 

Diese Sprechweise ist seit C# 8.0 nicht mehr ganz korrekt, weil Properties nun zusätzlich auch 

noch explizit als readonly deklariert werden können. Die Konsequenz des Zusatzes readonly ist, 

dass nun im Getter des "Datum"-Properties ein Schreibzugriff auf das Property "Version" nicht 

mehr erlaubt ist. 

// Property mit Getter und Setter 

public Version Version { get; set; } 

// NEU: readonly Auto Property --> Zuweisung nur im Konstruktor! 

public readonly string Name { get; } 

  

DateTime? _Datum; 

// NEU: readonly --> Darf Zustand des Objekts nicht ändern 

public readonly DateTime? Datum 

{ 

 get 

 { 

  // Zuweisung an Version nicht erlaubt: 

  // Version = new Version(1, 0, 0, 0); 

  //_Datum ??= DateTime.Now; 

  return _Datum; 

 } 

} 

Es folgt ein komplettes Beispiel, in dem auch eine Methode mit readonly gezeigt wird. 

Listing: Struktur mit einzelnen Readonly-Mitgliedern 
using System; 

  

namespace CSharpSprachsyntax.CS80_Sep2019 

{ 

 class ReadonlyStructMembersDemo 

 { 

  

  public static void Run() 

  { 

   var appInfo = new AppInfo("MiracleList", new Version(0, 6, 3, 0), new DateTime

(2017, 11, 10)); 

   Console.WriteLine($"Version {appInfo.Version.ToString()} vom {appInfo.Datum}")

; 

  } 

 } 

  

 /// <summary> 

 /// Struktur, mit einzelnen Readonly-Mitgliedern 

 /// </summary> 

 public struct AppInfo 

 { 

  

  public AppInfo(string name, Version version, DateTime? datum) 



Strukturen  269 

 

  { 

   this.Name = name; // readonly --> Zuweisung nur im Konstruktor 

   this.Version = version; 

   this._Datum = datum; 

   this.ObjektErstelltAm = DateTime.Now; 

   if (this.Datum == null) this._Datum = this.ObjektErstelltAm; 

  } 

  

  // Readonly-Fields 

  private readonly DateTime ObjektErstelltAm; 

  

  // Property mit Getter und Setter 

  public Version Version { get; set; } 

  // NEU: readonly Auto Property --> Zuweisung nur im Konstruktor! 

  public readonly string Name { get; } 

  

  DateTime? _Datum; 

  // NEU: readonly --> Darf Zustand des Objekts nicht ändern 

  public readonly DateTime? Datum 

  { 

   get 

   { 

    // Zuweisung grundsätzlich nicht erlaubt, da Methode readonly 

    // Version =?? new Version(0, 0, 0, 0); 

    return _Datum; 

   } 

  } 

  

  // NEU: readonly --> Darf Zustand des Objekts nicht ändern 

  public readonly int GetMinorVersion() 

  { 

   // nicht erlaubt: if (Version == null) Version = new Version(0, 0, 0, 0); 

   return this.Version.Minor; 

  } 

  

  public int GetMajorVersion() 

  { 

   // nicht erlaubt, da Name readonly     

  // this.Name = ""; 

   if (_Datum == null) Version = new Version(0, 0, 0, 0); 

   return this.Version.Major; 

  } 

 } 

} 

31.7 With-Ausdrücke 

Mit einem With-Ausdruck erstellt man eine Wertkopie (Klon) eines Objekts und kann dabei neue 

Werte initialisieren. With-Ausdrücke wurden in C# 9.0 für Record-Typen (damals waren Record-

Typen immer Klassen) eingeführt. Seit C# 10.0 kann man With-Ausdrücke in folgenden Fällen 

einsetzen: 

▪ Record-Klassen (Typdefinition mit record oder record class) 



270 Strukturen 

 

▪ Record-Strukturen (Typdefinition mit record struct oder readonly record struct) 

▪ Normale Strukturen (Typdefinition mit struct) 

▪ Anonyme Typen (keine Typdefinition) 

Achtung: With-Ausdrücke erzeugen eine flache Kopie des Objekts, d.h. es werden alle 

Attribute des Objekts kopiert, also auch Zeiger. Der Inhalt, auf den der Zeiger zeigt, wird aber 

nicht kopiert. Beispiel: Wenn ein Objekt X, das auf ein anderes Objekt Y zeigt, kopiert wird, 

dann zeigt die Kopie X' auf das gleiche Objekt Y. Y wird also nicht auch geklont! Wenn Y aber 

eine Struktur ist, dann erhält X' ein Y'. 

Solche "With Expressionens" funktionieren aber nicht mit normalen Klassen, da diese eine 

Referenzsemantik und keine Wertesemantik haben. 

Das folgende Listing zeigt ein aussagekräftiges Beispiel zu With-Ausdrücken. Mit Hilfe der .NET-

Klasse System.Runtime.Serialization.ObjectIDGenerator wird eine eindeutige ID für jedes Objekt 

ermittelt. Daran sieht man, ob man eine Wertkopie oder eine Zeigekopie erhalten hat. 

With wird mit Record-Struktur, normaler Struktur und anonymen Typ gezeigt. Die Objekt-ID ist 

nach dem Klonen jeweils anders, d.h. es wurde wirklich von with immer eine Wertkopie erzeugt.  

Jeweils verweisen die drei Objekte auf jeweils ein Universitaet- und ein Firma-Objekt. Wie die 

Ausgabe der Objekt-IDs zeigt, klont With das Firma-Objekt mit, weil es ein Record-Typ ist. Alle 

geklonten Objekte verweisen aber auf immer das gleiche Universitaet-Objekt (ID 2). 

Listing: Einsatz von With-Ausdrücken 
namespace CS10; 

  

internal class CS10_WithExpressions 

{ 

  

 public record struct Firma(int ID, string Vorname) 

 { 

 } 

  

 public class Universitaet 

 { 

  public string Name { get; set; } 

 } 

  

 public readonly record struct PersonR(int ID, string Vorname, string Name, Firma

 Firma, Universitaet Universitaet, string Status = "unbekannt") 

 { 

  public int Alter { get; init; } = 0; 

 } 

  

 public struct PersonS 

 { 

  public int ID = 0; 

  public string Vorname = ""; 

  public string Name = ""; 

  public Firma? Firma = null; 

  public Universitaet Universitaet = null; 

  public string Status = "unbekannt"; 

  public int Alter { get; init; } = 0; 



Strukturen  271 

 

  

   /// <summary> 

   ///  "A 'struct' with field initializers must include an explicitly  

   /// declared constructor" 

   /// </summary> 

   public PersonS()  { } 

  

  public override string ToString() 

  { 

   return $"{ID}: {Vorname} {Name} {Status}"; 

  } 

 } 

  

 public static void Run() 

 { 

  CUI.H1(nameof(CS10_WithExpressions)); 

  

  var oidg = new System.Runtime.Serialization.ObjectIDGenerator(); 

  

  void Print(Object obj) 

  { 

  

   Console.WriteLine($"Objekt #{oidg.GetId(obj, out _)}:{obj.ToString()}"); 

   Console.WriteLine($" - zeigt auf Universität {oidg.GetId(((dynamic)obj).Univer

sitaet, out bool _)}"); 

   Console.WriteLine($" - zeigt auf Firma {oidg.GetId(((dynamic)obj).Firma, out b

ool _)}"); 

  } 

  

  var ITVisions = new Firma(1, "www.IT-Visions.de"); 

  var UniEssen = new Universitaet() { Name = "Universität Duisburg-Essen" }; 

  

  CUI.H2("With bei record struct"); 

  var person1 = new PersonR() 

  { 

   ID = 123, 

   Vorname = "Holger", 

   Name = "Schwichtenberg", 

   Status = "hält Schulung", 

   Firma = ITVisions, 

   Universitaet = UniEssen 

  }; 

  Print(person1); 

  var person2 = person1 with { Vorname = "Dr. " + person1.Vorname }; 

  Print(person2); 

  

  CUI.H2("With bei normaler struct"); 

  var person3 = new PersonS() 

  { 

   ID = 123, 

   Vorname = "Holger", 

   Name = "Schwichtenberg", 

   Status = "hält Schulung", 



272 Strukturen 

 

   Firma = ITVisions, 

   Universitaet = UniEssen 

  }; 

  Print(person3); 

  var person4 = person3 with { Vorname = "Dr. " + person3.Vorname }; 

  Print(person4); 

  

  CUI.H2("With bei anonymen Typ"); 

  var person5 = new 

  { 

   ID = 123, 

   Vorname = "Holger", 

   Name = "Schwichtenberg", 

   Status = "hält Schulung", 

   Firma = ITVisions, 

   Universitaet = UniEssen 

  }; 

  Print(person5); 

  var person6 = person5 with { Vorname = "Dr. " + person5.Vorname }; 

  Print(person6); 

 } 

} 

 
Abbildung: Ausgabe des obigen Listings 

31.8 Boxing und Unboxing 

Ein Wertetyp kann explizit als ein Referenztyp behandelt werden. Dazu muss der Wertetyp in ein 

Objekt verpackt werden. Dieser Vorgang wird als Boxing bezeichnet. Der gegensätzliche Vorgang 

heißt Unboxing. 

In C# geschieht Boxing, wenn ein Wertetyp (wie eine Struktur) in einen Objekttyp (wie object) 

umgewandelt werden muss. Der Boxing-Vorgang führt dazu, dass der Wertetyp auf dem Heap 

gespeichert wird, anstatt auf dem Stack, um mit dem Objekttyp kompatibel zu sein. 

Listing: Boxing und Unboxing 
/// <summary> 

/// Struktur für Boxing-/Unboxing-Demo 

/// </summary> 

struct Koordinate 

{ 

 public int X; 

 public int Y; 

 public Koordinate(int x, int y) 

 { 

  this.X = x; 



Strukturen  273 

 

  this.Y = y; 

 } 

 public override string ToString() 

 { 

  return "x=" + X + " y=" + Y; 

 } 

} 

… 

var i = new Koordinate(42,50); // Value Typ auf Stack 

   Console.WriteLine(i); // 42/50 

  

   // Boxing --> Heap 

   object oi = i; 

   Console.WriteLine(oi); // 42/50 

  

   // Unboxing --> Stack 

   Koordinate i2 = (Koordinate)oi; 

  

   Console.WriteLine(i); // 42/50 

   Console.WriteLine(oi); // 42/50 

   Console.WriteLine(i2); // 42/50 

  

   // Ausgangswert verändern 

   i = new Koordinate(100, 200); 

  

   Console.WriteLine(i); // 100/200 

   Console.WriteLine(oi); // 42/50, weil Zeiger auf den ursprünglichen Wert 

   Console.WriteLine(i2); // 42/50, weil Zielwert von dem Zeiger beim Unboxing 

  

   // Kopieroperationen  

   Koordinate i3 = i; // Kopiert die Werte 100/200 

   object oi3 = oi; // Kopiert den Zeiger auf 42/50  

   Console.WriteLine(i3); // 100/200 

   Console.WriteLine(oi3); // 42/50  

  

   i.X += 1; // das verändert nur den Speicher von i, aber nicht i3 

   ((dynamic)oi3).X += 1; // das verändert den Speicher, auf den oi und oi3 zeige

n! 

  

   Console.WriteLine(i); // 100/200 

   Console.WriteLine(i3); // 101/200 

   Console.WriteLine(oi); // 43/50  

   Console.WriteLine(oi3); // 43/50  

31.9 Strukturen ausschließlich auf dem Stack (ref 
struct) 

Seit C# 7.2 gibt es auch Strukturen, die immer auf dem Stack leben und niemals auf den Heap 

wandern können: ref struct. Dieses Verhalten macht ref struct besonders nützlich für 

leistungskritische Szenarien, da der Overhead der Speicherzuweisung im Heap und die Garbage 

Collection vermieden werden. Viele Anwendungsentwickler werden aber niemals selbst einen 



274 Strukturen 

 

Typen mit ref struct implementieren, aber von Microsoft in der Basisklassenbibliothek 

bereitgestellte Implementierungen nutzen. 

31.9.1 Einsatz von ref struct 

Wenn man einen Typen als ref struct deklariert, ist ein Boxing nicht mehr möglich. Der Einsatz 

von ref struct ist daher begrenzt, z.B. kann man kein Array und keine List<T> etc. daraus erzeugen.  

Andere Beschränkungen von ref struct-Typen wurden in C# 13.0 aufgehoben, d.h. Microsoft den 

Einsatz von ref struct erweitert. Solche Typen mit können nun: 

▪ Schnittstellen implementieren (Allerdings gilt die Einschränkung, dass die Struktur nicht in 

den Schnittstellentyp konvertiert werden kann) 

▪ als Typargument genutzt werden (Allerdings muss dazu der generische Typ bzw. die 

generische Methode where T : allows ref struct verwenden). 

▪ in Iteratoren verwendet werden. 

▪ in synchronen Methoden, die Task oder Task<T> liefern, genutzt werden. 

Listing: Beispiel für einen eigenen Typen mit ref struct, der eine Schnittstelle implementiert 
internal interface IPerson 

 { 

  int ID { get; set; } 

  int Name { get; set; } 

 } 

  

ref struct Person : IPerson // NEU seit C# 13.0: ref struct kann Schnittstelle im

plementieren 

 { 

  public int ID { get; set; } 

  public int Name { get; set; } 

  // ToString() 

  public override string ToString() 

  { 

   return "Person #" + ID + " " + Name; 

  } 

 } 

} 

  

class Client 

{ 

 public void Run() 

 { 

  Person p = new Person(); 

  p.ID = 1; 

  p.Name = 2; 

  Console.WriteLine(p.ID); 

  Console.WriteLine(p.Name); 

  

  // Das ist alles nicht erlaubt! 

  // IPerson i = p; // Casting auf Schnittstelle 

  // List<Person> PersonList = new(); // List<T> 

  // PersonList[] PersonArray = new Person[10]; // Array 



Strukturen  275 

 

 } 

} 

31.9.2 Einsatz von ref struct in der .NET-Basisklassenbibliothek 

Zwei wichtige generische Typen, die Microsoft in .NET Core 2.0 eingeführt hat zur Performance-

Optimierung, sind als ref struct implementiert: System.Span<T> und  System.ReadOnlySpan<T>. 

Microsoft hat seit .NET Core 2.0 die Einsatzgebiete dieser Typen kontinuierlich erweitert, z.B. in 

.NET 9.0: 

▪ Microsoft hat zahlreiche Klassen aus der .NET-Klassenbibliothek, die Parameter-Arrays 

entgegennehmen (z.B. String.Format(), String.Join(), Console.WriteLine(), APIs im 

Namensraum System.Drawing), mit zusätzlichen Methodenüberladungen für 

ReadOnlySpan<T> ausgestattet. Dies vermeidet die bei Arrays üblichen, langsameren 

impliziten Heap-Allokationen, da ReadOnlySpan<T> auf dem Stack lebt.  

▪ Die Klasse Regex bietet nun eine Methode EnumerateSplits(). Dazu gibt es ein eigenes 

Unterkapitel weiter oben. 

▪ In der System.IO.File-Klasse können Entwicklerinnen und Entwickler nun direkt mit 

WriteAllText() Zeichenketten in Form von ReadOnlySpan<char> persistieren. 

▪ Analog gibt es bei WriteAllBytes() eine neue Überladung für Bytefolgen, die als 

ReadOnlySpan<byte> vorliegen.  

▪ ReadOnlySpan<T> bietet nun die Methoden StartsWith() und EndWith() wie die Klasse 

System.String. 

 

 

 



276 Record-Typen 

 

32 Record-Typen 
Record-Typen sind ein neuer Untertypus von Klassen. Record-Typen sind Referenztypen (also 

nicht zu verwechseln mit Strukturen), die aber eine Wertesemantik besitzen. Sie sind ein 

Zwischending zwischen normalen Klassen und Strukturen. 

Record-Typen können auf einfache Weise als unveränderbare Instanzen (Immutable) deklariert 

werden. Aber nicht jeder Record-Typ ist automatisch unveränderbar. 

Hinweis: Immutable Objects sind automatisch immer thread-safe, d.h. sie können beim Multi-

Threading gleichzeitig in mehreren Threads verwendet werden ohne die Gefahr von 

Seiteneffekten (Race Conditions). 

Vererbung von anderen Record-Typen ist möglich (aber nicht von normalen, mit "class" 

definierten Klassen). Die Vererbung kann mit sealed unterbunden werden.  

Record-Typen kann man mit With-Ausdrücken klonen. 

Tipp: Record-Typen kann man auch in .NET Framework und .NET Standard verwenden. Dazu 

ist der im Kapitel "Init Only Setters in .NET Framework und .NET Standard" beschriebene 

Trick bezüglich der Init Only Setter notwendig. Ohne dies meckert der Compiler bei 

Verwendung des Schlüsselwortes record, dass er die Klasse 

System.Runtime.CompilerServices.IsExternalInit nicht finden können. 

32.1 Records deklarieren 

Record-Typen werden mit dem Schlüsselwort "record" eingeleitet. In einem frühen Entwurf von 

C# 9.0 hatte Microsoft hier "data class" verwendet. Dies ist aber in der endgültigen Version von 

C# 9.0 nicht mehr erlaubt. Seit C# 10.0 ist alternativ und synonym zu "record" auch "record class" 

möglich. 

Das folgende Listing zeigt einen Record-Typen "Person" und einen abgeleiteten Record-Typen 

"Dozent". 

Praxistipp: Wie bei Klassen, kann auch bei Records mit dem Zusatz "sealed" eine Vererbung 

verhindert werden. 

Listing: Records seit C# 9.0 
record Person 

  { 

   private int ID { get; init; } 

   public string Vorname { get; set; } 

   public string Name { get; set; } 

   public string Status = "unbekannt"; 

   public Person() 

   { 

 

   } 

   public Person(int id, string vorname, string name) 

   { 

    this.ID = id; 

    this.Vorname = vorname; 

    this.Name = name; 

   } 

  } 



Record-Typen  277 

 

 

  record Dozent : Person 

  { 

   public List<string> Themen { get; set; } = new(); 

   public Dozent(int id, string vorname, string name) : base(id, vorname, name) {     

} 

} 

Das folgende Listing zeigt, was der C#-Compiler daraus erzeugt. Man sieht, dass zu beiden 

Record-Typen erheblicher Programmcode dazu generiert wird. Insbesondere wurde erzeugt: 

▪ Eine C#-Klasse mit vier Init Only Properties. 

▪ Ein Konstruktor mit vier Parametern mit Zuweisung an die Properties.  

▪ Die Protected-Methode PrintMembers(), die den Inhalt des Objekts in einem StringBuilder 

liefert (ohne dabei Reflection einzusetzen!). Es wird aber nur die oberste Ebene der 

öffentlichen Attribute (Field und Properties) ausgegeben (keine Unterobjekte)! 

▪ Das Überschreiben von ToString(), das den Klassennamen und den Inhalt des Objekts via 

Aufruf von PrintMembers() liefert. 

▪ Die Impementierung der Operatorüberladung für Gleichheit (==) und Ungleichheit (!=) sowie 

der Methode Equals(). Es findet ein flacher Vergleich (nur die oberste Ebene) statt. 

▪ Die Implementierung einer öffentlichen Methode Clone(), die eine Inhaltskopie erstellt (auch 

hier flache Kopie ohne Einsatz von Reflection). 

Hinweis: Dieser Record-Typ ist nicht immutable. Er würde immutable, indem man Init Only-

Properties verwendet (get; init; statt get; set;). 

Listing: Dekompilat des Record-Typen "Person" mit ILSpy 
// CS90.CS90_Records.Person 

using System; 

using System.Collections.Generic; 

using System.Runtime.CompilerServices; 

using System.Text; 

 

private class Person : IEquatable<Person> 

{ 

 protected virtual Type EqualityContract 

 { 

  [System.Runtime.CompilerServices.NullableContext(1)] 

  [CompilerGenerated] 

  get 

  { 

   return typeof(Person); 

  } 

 } 

 

 public int ID 

 { 

  get; 

  init; 

 } 

 

 public string Vorname 

 { 



278 Record-Typen 

 

  get; 

  set; 

 } 

 

 public string Name 

 { 

  get; 

  set; 

 } 

 

 public string Status 

 { 

  get; 

  set; 

 } 

 

 public Person() 

 { 

  Status = "unbekannt"; 

  base..ctor(); 

 } 

 

 public Person(int id, string vorname, string name) 

 { 

  Status = "unbekannt"; 

  base..ctor(); 

  ID = id; 

  Vorname = vorname; 

  Name = name; 

 } 

 

 public override string ToString() 

 { 

  StringBuilder stringBuilder = new StringBuilder(); 

  stringBuilder.Append("Person"); 

  stringBuilder.Append(" { "); 

  if (PrintMembers(stringBuilder)) 

  { 

   stringBuilder.Append(" "); 

  } 

  stringBuilder.Append("}"); 

  return stringBuilder.ToString(); 

 } 

 

 protected virtual bool PrintMembers(StringBuilder builder) 

 { 

  builder.Append("Vorname"); 

  builder.Append(" = "); 

  builder.Append((object?)Vorname); 

  builder.Append(", "); 

  builder.Append("Name"); 

  builder.Append(" = "); 

  builder.Append((object?)Name); 



Record-Typen  279 

 

  builder.Append(", "); 

  builder.Append("Status"); 

  builder.Append(" = "); 

  builder.Append((object?)Status); 

  return true; 

 } 

 

 [System.Runtime.CompilerServices.NullableContext(2)] 

 public static bool operator !=(Person? r1, Person? r2) 

 { 

  return !(r1 == r2); 

 } 

 

 [System.Runtime.CompilerServices.NullableContext(2)] 

 public static bool operator ==(Person? r1, Person? r2) 

 { 

  return (object)r1 == r2 || (r1?.Equals(r2) ?? false); 

 } 

 

 public override int GetHashCode() 

 { 

  return 

(((EqualityComparer<Type>.Default.GetHashCode(EqualityContract) * -1521134295 + 

EqualityComparer<int>.Default.GetHashCode(ID)) * -1521134295 + 

EqualityComparer<string>.Default.GetHashCode(Vorname)) * -1521134295 + 

EqualityComparer<string>.Default.GetHashCode(Name)) * -1521134295 + 

EqualityComparer<string>.Default.GetHashCode(Status); 

 } 

 

 public override bool Equals(object? obj) 

 { 

  return Equals(obj as Person); 

 } 

 

 public virtual bool Equals(Person? other) 

 { 

  return (object)other != null && EqualityContract == 

other!.EqualityContract && EqualityComparer<int>.Default.Equals(ID, other!.ID) && 

EqualityComparer<string>.Default.Equals(Vorname, other!.Vorname) && 

EqualityComparer<string>.Default.Equals(Name, other!.Name) && 

EqualityComparer<string>.Default.Equals(Status, other!.Status); 

 } 

 

 public virtual Person <Clone>$() 

 { 

  return new Person(this); 

 } 

 

 protected Person(Person original) 

 { 

  ID = original.ID; 

  Vorname = original.Vorname; 

  Name = original.Name; 

  Status = original.Status; 



280 Record-Typen 

 

 } 

} 

 

Listing: Dekompilat des Record-Typen "Dozent" mit ILSpy 
// CS90.CS90_Records.Dozent 

using System; 

using System.Collections.Generic; 

using System.Runtime.CompilerServices; 

using System.Text; 

 

private class Dozent : Person, IEquatable<Dozent> 

{ 

 protected override Type EqualityContract 

 { 

  [System.Runtime.CompilerServices.NullableContext(1)] 

  [CompilerGenerated] 

  get 

  { 

   return typeof(Dozent); 

  } 

 } 

 

 public List<string> Themen 

 { 

  get; 

  set; 

 } 

 

 public Dozent(int id, string vorname, string name) 

 { 

  Themen = new List<string>(); 

  base..ctor(id, vorname, name); 

 } 

 

 public override string ToString() 

 { 

  StringBuilder stringBuilder = new StringBuilder(); 

  stringBuilder.Append("Dozent"); 

  stringBuilder.Append(" { "); 

  if (PrintMembers(stringBuilder)) 

  { 

   stringBuilder.Append(" "); 

  } 

  stringBuilder.Append("}"); 

  return stringBuilder.ToString(); 

 } 

 

 protected override bool PrintMembers(StringBuilder builder) 

 { 

  if (base.PrintMembers(builder)) 

  { 

   builder.Append(", "); 



Record-Typen  281 

 

  } 

  builder.Append("Themen"); 

  builder.Append(" = "); 

  builder.Append(Themen); 

  return true; 

 } 

 

 [System.Runtime.CompilerServices.NullableContext(2)] 

 public static bool operator !=(Dozent? r1, Dozent? r2) 

 { 

  return !(r1 == r2); 

 } 

 

 [System.Runtime.CompilerServices.NullableContext(2)] 

 public static bool operator ==(Dozent? r1, Dozent? r2) 

 { 

  return (object)r1 == r2 || (r1?.Equals(r2) ?? false); 

 } 

 

 public override int GetHashCode() 

 { 

  return base.GetHashCode() * -1521134295 + 

EqualityComparer<List<string>>.Default.GetHashCode(Themen); 

 } 

 

 public override bool Equals(object? obj) 

 { 

  return Equals(obj as Dozent); 

 } 

 

 public sealed override bool Equals(Person? other) 

 { 

  return Equals((object?)other); 

 } 

 

 public virtual bool Equals(Dozent? other) 

 { 

  return base.Equals(other) && 

EqualityComparer<List<string>>.Default.Equals(Themen, other!.Themen); 

 } 

 

 public override Person <Clone>$() 

 { 

  return new Dozent(this); 

 } 

 

 protected Dozent(Dozent original) 

  : base(original) 

 { 

  Themen = original.Themen; 

 } 

} 



282 Record-Typen 

 

32.2 Record-Typen mit Primärkonstruktor 

Eine Besonderheit von Record-Typen ist, dass man die Deklaration radikal verkürzen kann. 

Anstelle des oben geschriebenen Programmcodes, kann man die beiden Record-Typen "Person" 

und "Dozent" auch in einer einzigen Programmcodezeile erzeugen. Syntaktisch schreibt man dabei 

nur einen Konstruktor mit vorangestelltem Schlüsselwort record. Man nennt diesen Konstruktor 

den Primärkonstruktor. 

public record Person(int ID, string Vorname, string Name, string Status = 

"unbekannt"); 

 

public record Dozent(int ID, string Vorname, string Name, string Status = 

"unbekannt", List<string> Themen = null) : Person(ID, Vorname, Name, Status);  

Wie man sieht, ist dabei auch Vererbung möglich! Die erbende Record-Klasse nimmt nach dem 

Doppelpunkt Bezug auf den Konstruktor des gewünschten Basis-Record-Typs. 

Hierbei stehen in "Person" automatisch vier Properties und ein Konstruktor. In "Dozent" steht ein 

Property und ein Konstruktor (siehe folgendes Listing des Dekompilats). 

Der Unterschied zur expliziten Langdeklaration ist aber, dass nun  

▪ ID ein öffentliches Property ist 

▪ Alle Properties mit Init Only Setter deklariert sind, d.h. die Werte nach der Konstruktionsphase 

nicht mehr änderbar (immutable) sind! Das Verändern eines Objekts beim Klonen mit with-

Ausdruck ist aber weiterhin möglich, weil dies zu Konstruktionsphase des neuen Objekts 

zählt. 

▪ Als Standardwert eines Konstruktorparameters kann nur ein statischer Wert verwendet 

werden, der zur Kompilierungszeit ausgewertet werden kann. Ein Wert, der erst zur Laufzeit 

entsteht (z.B. DateTime.Now) ist nicht möglich ("CS1736 Default parameter value for XY 

must be a compile-time constant"). 

▪ Es gibt eine Methode Deconstruct(), die den Zustand des Objekts in Einzelvariablen zerlegt. 

Die Einzelvariablen werden in der gleichen Reihenfolge wie im Konstruktor zurückgegeben. 

Das Deconstruct()-Verfahren wurde im Zusammenhang mit Tupeln in C# 7.0 eingeführt. Die 

Dekonstruktion verwendet man so (mit dem Unterstrich übergeht der Entwickler Werte, die 

ihn nicht interessieren): 

// Nutzung von Deconstruct() 

var (_, v, _, s) = hs; 

Console.WriteLine("Vorname: " + v + " Status: " + s); 

Hinweis: Record-Typen rein in der Kurzschreibweise sind automatisch immutable, da alle 

Properties mit Init-Only-Setter angelegt werden. 

Listing: Dekompilat mit ILSpy 
// CS90.CS90_Records.Person 

using System; 

using System.Collections.Generic; 

using System.Runtime.CompilerServices; 

using System.Text; 

 

public class Person : IEquatable<Person> 

{ 

    protected virtual Type EqualityContract 

    { 

        [System.Runtime.CompilerServices.NullableContext(1)] 

        [CompilerGenerated] 

        get 



Record-Typen  283 

 

        { 

            return typeof(Person); 

        } 

    } 

 

    public int ID 

    { 

        get; 

        init; 

    } 

 

    public string Vorname 

    { 

        get; 

        init; 

    } 

 

    public string Name 

    { 

        get; 

        init; 

    } 

 

    public string Status 

    { 

        get; 

        init; 

    } 

 

    public Person(int ID, string Vorname, string Name, string Status = 

"unbekannt") 

    { 

        this.ID = ID; 

        this.Vorname = Vorname; 

        this.Name = Name; 

        this.Status = Status; 

        base..ctor(); 

    } 

 

    public override string ToString() 

    { 

        StringBuilder stringBuilder = new StringBuilder(); 

        stringBuilder.Append("Person"); 

        stringBuilder.Append(" { "); 

        if (PrintMembers(stringBuilder)) 

        { 

            stringBuilder.Append(" "); 

        } 

        stringBuilder.Append("}"); 

        return stringBuilder.ToString(); 

    } 

 

    protected virtual bool PrintMembers(StringBuilder builder) 

    { 

        builder.Append("ID"); 

        builder.Append(" = "); 

        builder.Append(ID.ToString()); 

        builder.Append(", "); 

        builder.Append("Vorname"); 

        builder.Append(" = "); 

        builder.Append((object?)Vorname); 

        builder.Append(", "); 

        builder.Append("Name"); 

        builder.Append(" = "); 



284 Record-Typen 

 

        builder.Append((object?)Name); 

        builder.Append(", "); 

        builder.Append("Status"); 

        builder.Append(" = "); 

        builder.Append((object?)Status); 

        return true; 

    } 

 

    [System.Runtime.CompilerServices.NullableContext(2)] 

    public static bool operator !=(Person? r1, Person? r2) 

    { 

        return !(r1 == r2); 

    } 

 

    [System.Runtime.CompilerServices.NullableContext(2)] 

    public static bool operator ==(Person? r1, Person? r2) 

    { 

        return (object)r1 == r2 || (r1?.Equals(r2) ?? false); 

    } 

 

    public override int GetHashCode() 

    { 

        return (((EqualityComparer<Type>.Default.GetHashCode(EqualityContract) * 

-1521134295 + EqualityComparer<int>.Default.GetHashCode(ID)) * -1521134295 + 

EqualityComparer<string>.Default.GetHashCode(Vorname)) * -1521134295 + 

EqualityComparer<string>.Default.GetHashCode(Name)) * -1521134295 + 

EqualityComparer<string>.Default.GetHashCode(Status); 

    } 

 

    public override bool Equals(object? obj) 

    { 

        return Equals(obj as Person); 

    } 

 

    public virtual bool Equals(Person? other) 

    { 

        return (object)other != null && EqualityContract == 

other!.EqualityContract && EqualityComparer<int>.Default.Equals(ID, other!.ID) && 

EqualityComparer<string>.Default.Equals(Vorname, other!.Vorname) && 

EqualityComparer<string>.Default.Equals(Name, other!.Name) && 

EqualityComparer<string>.Default.Equals(Status, other!.Status); 

    } 

 

    public virtual Person <Clone>$() 

    { 

        return new Person(this); 

    } 

 

    protected Person(Person original) 

    { 

        ID = original.ID; 

        Vorname = original.Vorname; 

        Name = original.Name; 

        Status = original.Status; 

    } 

 

    public void Deconstruct(out int ID, out string Vorname, out string Name, out 

string Status) 

    { 

        ID = this.ID; 

        Vorname = this.Vorname; 

        Name = this.Name; 

        Status = this.Status; 



Record-Typen  285 

 

    } 

} 

Ein Record-Typ in der Kurzschreibweise mit Primärkonstruktor darf durchaus auch noch einen 

normalen Klassenblock mit weiteren Properties, Fields und Methoden beinhalten. Auch ein 

weiterer Konstruktor ist möglich; dieser muss aber dann den automatisch generierten Konstruktor 

mit this(parameterliste) aufrufen. Auch die Implementierung von Schnittstellen (z.B. IDisposable) 

ist möglich. 

Hinweis: Record-Typen in der Kurzschreibweise können die Immutability verlieren, wenn der 

Entwickler Properties mit normalen Settern oder beschreibbare Fields ergänzt, wie man dies im 

folgenden Listing sieht.  

Eine weitere Einschränkung ist, dass die Dekonstruktion nur für Properties, die in 

Kurzschreibweise erschaffen wurden in der Reihenfolge wie im Konstruktor funktioniert. 

Listing: Kurzschreibweise eines Record-Typs: Primärkonstruktor + eigene Zusätze 
  public record Person(int ID, string Vorname, string Name, string Status = 

"unbekannt") : IDisposable 

  { 

   public Geschlecht Geschlecht { get; set; } 

   public int Alter { get; set; } 

   public Firma Firma { get; set; } 

 

   /// <summary> 

   /// Eigener Konstruktur muss generierten Konstruktor mit this() aufrufen! 

   /// </summary> 

   /// <param name="ID"></param> 

   public Person(int ID) : this(ID, "unbekannt", "unbekannt") 

   { 

   } 

 

   public string GetAnrede() => Geschlecht switch 

   { 

    Geschlecht.f => "Sehr geehrte Frau " + Name, 

    Geschlecht.m => "Sehr geehrter Herr " + Name, 

    _ => "Hallo " + Name 

   }; 

 

   public void Dispose() 

   { 

    Console.WriteLine("Dispose!"); 

   } 

  } 

In diesem Fall kann man die Zusatzproperties Geschlecht und Alter nicht im Konstruktor, aber via 

Objektinitialisierung in geschweiften Klammern befüllen: 

Person hs1d = new Person(123, "Holger", "Schwichtenberg", "verheiratet") { Alter 

= 48, Geschlecht = Geschlecht.m }; 

Diese Properties Alter und Geschlecht sind auch später noch änderbar, weil sie als normale 

Properties mit get; set; deklariert sind. 

32.3 Records verwenden 

Das folgende Listing zeigt einen Nutzer der beiden Record-Typen: 



286 Record-Typen 

 

▪ Es wird eine Instanz des Record-Typen "Person" erstellt. 

▪ Die Instanz wird mit Hilfe von ToString() und Console.WriteLine() ausgeben. 

▪ Es wird eine Instanz des Record-Typen "Dozent" erstellt. 

▪ Der Objektverweis wird kopiert durch die Zuweisung dozent = hs. Dies ist eine Referenzkopie 

wie bei Instanzen von Klassen üblich. 

▪ Einer der Objektverweise wird verändert (das ist nur möglich, wenn der Record in der 

Langschreibweise und nicht mit Init Only Setter geschrieben wurde) 

▪ Die Ausgaben für beide Objektverweise sind gleich. Dies belegt, dass dozent und hs auf die 

gleiche Speicherstelle verweisen. 

▪ Nun wird der Dozent-Record geklont mit with ohne Veränderung (via sogenanntem "With-

Ausdruck"). Dies ist eine Wertkopie. 

▪ Die Ausgaben sind gleich. 

▪ Nun wird der Dozent-Record geklont mit with mit Veränderung von Status und Themen 

(wieder eine Wertkopie). 

▪ Die Ausgaben sind nicht mehr gleich. 

Listing: CS90_Records.cs 
public static void CS90Records_Client() 

  { 

   CUI.MainHeadline(nameof(CS90Records_Client)); 

 

   CUI.Headline("Record-Instanz von 'Person' erstellen"); 

   Person mm = new Person(123, "Max", "Müller"); 

   if (mm != null) CUI.PrintSuccess("OK!"); 

   CUI.Headline("ToString()"); 

   var ausgabe = mm.ToString(); 

   Console.WriteLine(ausgabe); 

   // oder direkt: 

   Console.WriteLine(mm); 

 

   CUI.Headline("Record-Instanz von 'Dozent' erstellen"); 

   Dozent hs = new Dozent(123, "Holger", "Schwichtenberg"); 

   hs.Themen.Add(".NET"); 

   hs.Themen.Add("C#"); 

   hs.Themen.Add("JavaScript/TypeScript"); 

   hs.Themen.Add("DevOps"); 

   if (hs != null) CUI.PrintSuccess("OK!"); 

 

   CUI.Headline("Kopie des Objektverweises erstellen"); 

   var dozent = hs; 

   hs.Status = "Original"; 

   hs.Themen.Add("PowerShell"); 

   Console.WriteLine(hs); 

   Console.WriteLine(dozent); 

   if (dozent == hs) CUI.PrintSuccess("Dozent und hs haben gleiche Inhalte!"); 

   else CUI.PrintWarning("Dozent und hs haben NICHT gleiche Inhalte!"); 

 

   CUI.Headline("Kopie der Instanz erstellen mit with"); 

   Dozent hsKlon1 = hs with { }; 



Record-Typen  287 

 

   // Person hsKlon = hs.Clone(); // geht nicht, Clone() wird erst durch Compiler 

erzeugt!!! 

   Console.WriteLine(hs); 

   Console.WriteLine(hsKlon1); 

   if (hsKlon1 == hs) CUI.PrintSuccess("Klon1 ist exakt gleich"); 

   else CUI.PrintWarning("Klon2 ist verändert!"); 

 

   CUI.Headline("Kopie der Instanz erstellen mit with und Veränderung"); 

   Dozent hsKlon2 = hs with { Status = "geklont" }; 

   hsKlon2.Themen.Add("Java"); 

   Console.WriteLine(hs); 

   Console.WriteLine(hsKlon2); 

   if (hsKlon2 == hs) CUI.PrintSuccess("Klon2 ist exakt gleich"); 

   else CUI.PrintWarning("Klon2 ist verändert!"); 

  }  

 

Abbildung: Ausgabe des obigen Listings 

32.4 Überschreiben von ToString() 

Bereits in C# 9.0 war es möglich, auch in einem Record-Typen Methoden zu überschreiben, auch 

wenn diese Methoden Teil der automatischen Codegenerierung für den Record waren, z.B. 

ToString(). Damit wurde die automatische Implementierung außer Kraft gesetzt.  

Seit C# 10.0 ist es nun, aber ausschließlich bei ToString(), erlaubt, dass dabei das Schlüsselwort 

"sealed" eingesetzt wird. Das bedeutet, dass ein Record-Typ verhindern kann, dass davon erbende 

Record-Typen ToString() wieder überschreiben mit der automatischen Implementierung. Folglich 

gilt eine sealed ToString()-Implementierung auch für alle abgeleiteten Record-Typen. 

Hinweis: Dieses Sprachfeature funktioniert nur bei Record-Klassen, nicht bei Record-

Strukturen, da Record-Strukturen nicht erben können! 

Listing: Record-Typ mit überschriebenen ToString() mit Zusatz "sealed" 
public record class Person(int ID, string Vorname, string Name, string Status = 

"unbekannt") : IDisposable 

  { 

   public Geschlecht Geschlecht { get; set; } 

   public int Alter { get; set; } 

   public Firma Firma { get; set; } 

 

   // Eigene ToString()-Implementierung möglich 

   // erst seit C# 10.0 kann die auch sealed sein und gilt dann auch für 

abgeleitete Klasse "Dozent" 

   public sealed override string ToString() 



288 Record-Typen 

 

   { 

    return $"Person #{ID}: {Vorname} {Name}";  
   } 

} 

Wenn nun Dozent von Person erbt 

public record Dozent(int ID, string Vorname, string Name, string Status = 

"unbekannt", List<string> Themen = null) : Person(ID, Vorname, Name, Status); 

Dann wird auch eine Instanz von Dozent immer ToString() in Person aufrufen. 

Dozent hs = new Dozent(123, "Holger", "Schwichtenberg") { Themen = new 

List<string>() }; 

Console.WriteLine(hs); 

Die letzte Zeile gibt also aus: 

Person #123: Holger Schwichtenberg 

32.5 Record Structs 

Ein Record in C# 9 ist immer eine Klasse. Seit C# 10.0 drei Arten von Record-Typen: 

▪ record class: Dies ist gleichbedeutend mit der Verwendung von record ohne Zusatz. Es 

entsteht wie bisher eine Klasse, also ein Referenztyp auf dem Heap. Alle per 

Primärkonstruktor erzeugten Properties haben einen Init Only Setter, d.h. das entstehende 

Objekt ist immutable (sofern nicht explizit Properties mit Setter hinzugefügt wurden). 

▪ record struct: Hier entsteht eine Struktur, also ein Wertetyp auf dem Stack (implizit erbend 

von System.ValueType). Anders bei einer record class haben alle per Primärkonstruktor 

erzeugten Properties einen normalen Setter, d.h. das Objekt ist mutable. 

▪ readonly record struct: Auch hier entsteht eine Struktur, also ein Wertetyp auf dem Stack 

(implizit erbend von System.ValueType). Alle per Primärkonstruktor erzeugten Properties 

haben einen Init Only Setter, d.h. das Objekt ist immutable. 

Hinweis: Im Gegensatz zu einer Record-Klasse kann eine Record-Struktur nicht erben! Auch 

gibt es keinen EqualityContract und keine Null-Prüfungen im generierten Code einer Record-

Struktur. 

Name Struktur Record-

Struktur 

Record-

Klasse 

Klasse 

Seit C#-

Version (Jahr) 

1.0 (2001) 10.0 (2021) 9.0 (2020) 1.0 (2001) 

Typart Wertetyp Wertetyp Referenztyp Referenztyp 

Zuweisungsse

mantik 

Wert Wert Wert Referenz 

Speicherort Stack  

 

Stack  

 

Heap Heap 

Primärkonstru

ktor möglich 

Nein Ja Ja Nein 

Codegenerieru

ng für 

ToString(), 

Dekonstruktio

Nein Ja Ja Nein 



Record-Typen  289 

 

Name Struktur Record-

Struktur 

Record-

Klasse 

Klasse 

n und 

Vergleich 

Vererbung Nicht möglich Nicht möglich Möglich Möglich 

Veränderbar/

Mutable 

struct xy record struct 

xy 

record class xy  

oder 

record xy 

(sofern kein 

Primärstruktur 

verwendet 

wird und keine 

Init-Only-

Setter) 

class xy  

 

Unveränderbar

/Immutable 

readonly struct 

xy 

(geht auch 

ohne 

"readonly, 

wenn alle 

Properties mit 

Init-Only-

Setter 

deklariert 

werden) 

readonly 

record struct 

xy 

record class xy  

oder 

record xy 

(sofern 

Primärstruktur 

verwendet 

wird oder alle 

Properties mit 

Init-Only-

Setter 

deklariert 

werden) 

class xy  

(sofern alle Properties 

mit Init-Only-Setter 

deklariert werden) 

Tabelle 1: Klassen und Strukturen: Übersicht über die verschiedenen Typ-Arten in C# 

Aus dieser Deklaration einer record struct  

public record struct Person(int ID, string Vorname, string Name, string Status = 

"unbekannt") 

  { 

   public int Alter { get; set; } = 0; 

  } 

wird der nachstehend abgedruckte Programmcode mit Properties mit Getter und Init-Only-Setter 

inklusive Equals()-Implementierung, Operator-Überladung für == und !=, Ausgabe aller 

Datenmitglieder bei ToString() sowie Deconstruct()-Implementierung. 

Hinweis: Zu beachten ist, dass grundsätzlich in einer Record-Struktur die zusätzliche Fields 

und Properties mit primitiven Typen, die nicht Teil des Primärkonstruktors sind, explizit 

initialisiert werden müssen, vgl. C#-Regeln CS0171 (für Fields) bzw. CS0843 (für Properties): 

"must be fully assigned before control is returned to the caller".   

Bei einer readonly Record-Struktur müssen alle zusätzlichen Properties Init Only Properties 

(get; init;) sein. Die Regel CS8341 ("Auto-implemented instance properties in readonly structs 

must be readonly.") ist etwas fehlleitend, den der Zusatz "readonly" ist zwar möglich, hilft 

alleine aber nicht. Dies sieht man bei den Properties Alter und Wohnort. "Readondly" müsste 

in diesem Fall zwingend bei Fields deklariert werden. Weiterhin gilt jedoch die 



290 Record-Typen 

 

Initialisierungspflicht. Da für Fields gleichzeitig die Regel CS0191 "A readonly field cannot be 

assigned to" gilt, kriegt man den Einsatz von Fields und Primärkonstruktor nicht in Einklang. 

Listing: Generierter Programmcode aus einer record struct 
// CS10.CS10_RecordTypen.Person 

using System; 

using System.Collections.Generic; 

using System.Text; 

 

public struct Person : IEquatable<Person> 

{ 

    public int ID { get; set; } 

 

    public string Vorname { get; set; } 

 

    public string Name { get; set; } 

 

    public string Status { get; set; } 

 

    public int Alter { get; set; } 

 

    public Person(int ID, string Vorname, string Name, string Status = 

"unbekannt") 

    { 

        this.ID = ID; 

        this.Vorname = Vorname; 

        this.Name = Name; 

        this.Status = Status; 

        Alter = 0; 

    } 

 

    public override string ToString() 

    { 

        StringBuilder stringBuilder = new StringBuilder(); 

        stringBuilder.Append("Person"); 

        stringBuilder.Append(" { "); 

        if (PrintMembers(stringBuilder)) 

        { 

            stringBuilder.Append(' '); 

        } 

        stringBuilder.Append('}'); 

        return stringBuilder.ToString(); 

    } 

 

    private bool PrintMembers(StringBuilder builder) 

    { 

        builder.Append("ID = "); 

        builder.Append(ID.ToString()); 

        builder.Append(", Vorname = "); 

        builder.Append((object?)Vorname); 

        builder.Append(", Name = "); 

        builder.Append((object?)Name); 

        builder.Append(", Status = "); 

        builder.Append((object?)Status); 

        builder.Append(", Alter = "); 

        builder.Append(Alter.ToString()); 

        return true; 

    } 

 

    public static bool operator !=(Person left, Person right) 

    { 

        return !(left == right); 

    } 

 



Record-Typen  291 

 

    public static bool operator ==(Person left, Person right) 

    { 

        return left.Equals(right); 

    } 

 

    public override int GetHashCode() 

    { 

        return (((EqualityComparer<int>.Default.GetHashCode(ID) * -1521134295 + 

EqualityComparer<string>.Default.GetHashCode(Vorname)) * -1521134295 + 

EqualityComparer<string>.Default.GetHashCode(Name)) * -1521134295 + 

EqualityComparer<string>.Default.GetHashCode(Status)) * -1521134295 + 

EqualityComparer<int>.Default.GetHashCode(Alter); 

    } 

 

    public override bool Equals(object obj) 

    { 

        return obj is Person && Equals((Person)obj); 

    } 

 

    public bool Equals(Person other) 

    { 

        return EqualityComparer<int>.Default.Equals(ID, other.ID) && 

EqualityComparer<string>.Default.Equals(Vorname, other.Vorname) && 

EqualityComparer<string>.Default.Equals(Name, other.Name) && 

EqualityComparer<string>.Default.Equals(Status, other.Status) && 

EqualityComparer<int>.Default.Equals(Alter, other.Alter); 

    } 

 

    public void Deconstruct(out int ID, out string Vorname, out string Name, out 

string Status) 

    { 

        ID = this.ID; 

        Vorname = this.Vorname; 

        Name = this.Name; 

        Status = this.Status; 

    } 

} 

Hingegen entsteht aus 

public readonly record struct Person2(int ID, string Vorname, string Name, string

 Status = "unbekannt") 

{ 

 //Regel CS0843: Auto-

implemented property  must be fully assigned before control is returned to the ca

ller 

 public int Alter { get; init; } = 0; 

} 

dann der nachstehende Code mit Init Only Setter-basierten Properties (auch mit Equals()-

Implementierung sowie Operator-Überladung für == und !=). 

Listing: Generierter Programmcode aus einer readonly record struct 
using System; 

using System.Collections.Generic; 

using System.Text; 

 

public readonly struct Person2: IEquatable<Person_ImmutableRecordStructs> 

{ 

    public int ID { get; init; } 

 

    public string Vorname { get; init; } 

 

    public string Name { get; init; } 



292 Record-Typen 

 

 

    public string Status { get; init; } 

 

    public int Alter { get; init; } 

 

    public Person_ImmutableRecordStructs(int ID, string Vorname, string Name, 

string Status = "unbekannt") 

    { 

        this.ID = ID; 

        this.Vorname = Vorname; 

        this.Name = Name; 

        this.Status = Status; 

        Alter = 0; 

    } 

 

    public override string ToString() 

    { 

        StringBuilder stringBuilder = new StringBuilder(); 

        stringBuilder.Append("Person_ImmutableRecordStructs"); 

        stringBuilder.Append(" { "); 

        if (PrintMembers(stringBuilder)) 

        { 

            stringBuilder.Append(' '); 

        } 

        stringBuilder.Append('}'); 

        return stringBuilder.ToString(); 

    } 

 

    private bool PrintMembers(StringBuilder builder) 

    { 

        builder.Append("ID = "); 

        builder.Append(ID.ToString()); 

        builder.Append(", Vorname = "); 

        builder.Append((object?)Vorname); 

        builder.Append(", Name = "); 

        builder.Append((object?)Name); 

        builder.Append(", Status = "); 

        builder.Append((object?)Status); 

        builder.Append(", Alter = "); 

        builder.Append(Alter.ToString()); 

        return true; 

    } 

 

    public static bool operator !=(Person2left, Person2right) 

    { 

        return !(left == right); 

    } 

 

    public static bool operator ==(Person2left, Person2right) 

    { 

        return left.Equals(right); 

    } 

 

    public override int GetHashCode() 

    { 

        return (((EqualityComparer<int>.Default.GetHashCode(ID) * -1521134295 + 

EqualityComparer<string>.Default.GetHashCode(Vorname)) * -1521134295 + 

EqualityComparer<string>.Default.GetHashCode(Name)) * -1521134295 + 

EqualityComparer<string>.Default.GetHashCode(Status)) * -1521134295 + 

EqualityComparer<int>.Default.GetHashCode(Alter); 

    } 

 

    public override bool Equals(object obj) 

    { 



Record-Typen  293 

 

        return obj is Person2&& Equals((Person_ImmutableRecordStructs)obj); 

    } 

 

    public bool Equals(Person2other) 

    { 

        return EqualityComparer<int>.Default.Equals(ID, other.ID) && 

EqualityComparer<string>.Default.Equals(Vorname, other.Vorname) && 

EqualityComparer<string>.Default.Equals(Name, other.Name) && 

EqualityComparer<string>.Default.Equals(Status, other.Status) && 

EqualityComparer<int>.Default.Equals(Alter, other.Alter); 

    } 

 

    public void Deconstruct(out int ID, out string Vorname, out string Name, out 

string Status) 

    { 

        ID = this.ID; 

        Vorname = this.Vorname; 

        Name = this.Name; 

        Status = this.Status; 

    } 

} 

 



294 Immutable Objects 

 

33 Immutable Objects 
Als Immutable Object wird in der objektorientierten Lehre ein Objekt bezeichnet, dessen Zustand 

nach der Erzeugung nicht mehr verändert werden kann. Normalweise sind alle Objekte in C# 

veränderbar (mutable). 

Hinweis: Immutable Objects sind automatisch immer thread-safe, d.h. sie können beim Multi-

Threading in mehreren Threads verwendet werden ohne die Gefahr von Seiteneffekten (Race 

Conditions). 

In C# kann man Immutable Objects auf folgende Weisen erstellen: 

▪ Klassen mit Readonly Fields 

▪ Klassen mit Properties mit Init Only Setter 

33.1 Immutable Objects auf Basis von Readonly Fields 

Das Listing zeigt ein Immutable Object "ImmutablePerson" auf Basis von Fields mit Zusatz 

"readonly". Dies ist möglich seit C# 1.0. 

Die Werte des Objekts können bei der Field-Deklaration und im Konstruktor gesetzt werden.  

Listing: ImmutableObjects_Fields.cs  
using ITVisions; 

using System; 

 

namespace Immutable_Fields 

{ 

 class ImmutablePerson 

 { 

  private readonly int id; 

  private readonly string name; 

  public readonly DateTime AngelegtAm = DateTime.Now; 

 

  public ImmutablePerson(int id, string name) 

  { 

   this.id = id; 

   this.name = name; 

  } 

 

  public int ID 

  { 

   get { return this.id; } 

  } 

 

  public string Name 

  { 

   get { return this.Name; } 

  } 

 

  public override string ToString() 

  { 

   return "Person " + this.id + ": " + this.Name; 

  } 



Immutable Objects  295 

 

 } 

 

 class ImmutablePersonClient 

 { 

  public static void Run() 

  { 

   CUI.Headline(nameof(ImmutablePersonClient)); 

   var hs = new ImmutablePerson(123, "Dr. Holger Schwichtenberg"); 

   Console.WriteLine(hs); 

   // nicht möglich: hs.Name = "xy"; 

  } 

 } 

} 

33.2 Immutable Objects auf Basis von Properties mit 
Init Only Setter 

Das Listing zeigt ein Immutable Object "ImmutablePerson" auf Properties mit Init Only Setter.  

Dies ist möglich seit C# 9.0.  

Die Werte des Objekts können nur bei der Property-Deklaration, im Konstruktor und der Objekt-

Initialisierung gesetzt werden.  

Listing: ImmutableObjects_Properties.cs 
using ITVisions; 

using System; 

 

namespace Immutable_Properties 

{ 

 class ImmutablePerson 

 { 

  private int id { get; init; } 

  private string name { get; init; } 

  public DateTime AngelegtAm { get; init; } = DateTime.Now; 

 

  public ImmutablePerson(int id, string name) 

  { 

   this.id = id; 

   this.name = name; 

  } 

 

  public int ID 

  { 

   get { return this.id; } 

  } 

 

  public string Name 

  { 

   get { return this.Name; } 

  } 

 

  public override string ToString() 

  { 



296 Immutable Objects 

 

   return "Person " + this.id + ": " + this.Name; 

  } 

 } 

 

 class ImmutablePersonClient 

 { 

  public static void Run() 

  { 

   CUI.Headline(nameof(ImmutablePersonClient)); 

   var hs = new ImmutablePerson(123, "Dr. Holger Schwichtenberg") { AngelegtAm = 

DateTime.Now }; 

   Console.WriteLine(hs); 

   // nicht möglich: hs.Name = "xy"; 

  } 

 } 

} 

33.3 Immutable Objects auf Basis von Records 

Die kürzeste Variante zur Deklaration eines Immutable Objects ist seit C# 9.0 die Deklaration eines 

Record-Typen in Kurzschreibweise, dann erstellt der Compiler automatisch Properties mit Init 

Only Setter.  

Dabei ist es allerdings nicht möglich, die Eigenschaft AngelegtAm innerhalb des Record-Typen im 

Standard mit DateTime.Now zu belegen, da nur statische Werte als Standardwert in einem 

Konstruktor erlaubt sind. 

Listing: ImmutableObjects_Records.cs 
using ITVisions; 

using System; 

 

namespace Immutable_Records 

{ 

 record ImmutablePerson(int id, string name, DateTime AngelegtAm ); 

 

 class ImmutablePersonClient 

 { 

  public static void Run() 

  { 

   CUI.Headline(nameof(ImmutablePersonClient)); 

   var hs = new ImmutablePerson(123, "Dr. Holger Schwichtenberg",DateTime.Now); 

   Console.WriteLine(hs); 

   // nicht möglich: hs.Name = "xy"; 

  } 

 } 

} 

 

 

 

 



Immutable Objects  297 

 

33.4 Praxisbeispiel: Immutable Objects mit Record-
Typen beim Flux-/Redux-Pattern 

Das Flux-Pattern ist eine Variante des Observer-Pattern, die in von der Firma Facebook im Jahr 

2014 veröffentlicht wurde. Redux ist eine modifizierte Implementierung von Flux, die 2015 

erschienen ist (vgl. [redux.js.org/understanding/history-and-design/prior-art]). 

Redux verwendet "Pure Funktionen" (Pure Functions) im sogenannten "Reducer", die einen 

Zustand nicht modifizieren, sondern einen neuen Zustand erzeugen (Immutable Objects). 

Ohne Record-Typen sieht die Implementierung eines Zustands für einen einfachen Zähler und 

eines Reducers zum Ändern des Zählers in C# so aus: 

public class CounterState 

{ 

  public int ClickCount { get; } 

 

  public CounterState(int clickCount) 

  { 

   ClickCount = clickCount; 

  } 

 } 

 

public static class Reducers 

 { 

  [ReducerMethod] 

  public static CounterState ReduceIncrementCounterAction(CounterState state, 

IncrementCounterAction action) => 

   new CounterState(state.ClickCount + 1); 

  [ReducerMethod] 

  public static CounterState ReduceDecrementCounterAction(CounterState state, 

IncrementCounterAction action) => 

 new CounterState(state.ClickCount - 1); 

 } 

Mit Record-Typen ist dies wesentlich prägnanter implementierbar: 

public record CounterState(int ClickCount); 

 

public static class Reducers1 

 { 

  [ReducerMethod] 

  public static CounterState ReduceIncrementCounterAction(CounterState state, 

IncrementCounterAction action) => 

      state with { ClickCount = state.ClickCount + 1 }; 

 

  [ReducerMethod] 

  public static CounterState ReduceDecrementCounterAction(CounterState state, 

DecrementCounterAction action) => 

      state with { ClickCount = state.ClickCount - 1 }; 

 } 

Weitere Teile des Redux-Patterns (Feature, Actions) sind hier nicht wiedergegeben, da sie sich 

durch den Einsatz von Record-Typen nicht ändern. Siehe dazu die Bibliothek Fluxor, die Redux 

für .NET realisiert: github.com/mrpmorris/Fluxor  

https://redux.js.org/understanding/history-and-design/prior-art
https://github.com/mrpmorris/Fluxor


298 Tupel 

 

34 Tupel 
Die größte syntaktische Erweiterung in C# 7.0 betrifft Tupel. Tupel, also "Listen endlich vieler, 

nicht notwendigerweise voneinander verschiedener Objekte" [de.wikipedia.org/wiki/Tupel]. Tupel 

haben den Vorteil, dass man eine Datenstruktur definieren und mit Werten befüllen kann, ohne 

dafür extra eine Klasse oder eine Struktur zu deklarieren. So kann zum Beispiel eine Methode mit 

einem Tupel mehrere Werte zurückliefern, ohne ref oder out in der Parameterliste zu verwenden 

und ohne extra eine Klasse oder Struktur für den Rückgabetyp zu schreiben. 

Hinweis: Tupel sind Werttypen (wie Strukturen). 

34.1 Alte Tupelimplementierung mit 
System.Collections.Tupel 

Tupel können C#-Entwickler seit .NET Framework 4.0 durch die generische .NET-Klasse 

System.Collections.Tupel verwenden. Diese Klasse unterstützt Tupel mit bis zu acht Elementen 

(also Oktupel), die über die Field-Attribute Item1, Item2 bis Item8 abgerufen werden können. 

Tuple<int, string, bool> dozent = new Tuple<int, string, bool>(1, "Holger 

Schwichtenberg", true); 

Console.WriteLine($"Dozent mit der ID{dozent.Item1}: {dozent.Item2} {( 

dozent.Item3 ? "ist ein .NET-Experte!": "")}"); 

34.2 Neue Tupelimplementierung in der Sprachsyntax 

In C# 7.0 hat sich Microsoft entschlossen, die Tupel-Unterstützung direkt in der Sprachsyntax zu 

verankern. Ein Tupel deklariert der Entwickler mit runden Klammern bei der Zuweisung zu einer 

Variablen: 

var dozent2 = (1, "Holger Schwichtenberg", true); 

Die Datentypen der Elemente ergeben sich hier aus den zugewiesenen Werten. In diesem Fall sind 

die Elemente weiterhin Item1, Item2 bis Item8 benannt. Der Entwickler kann aber in der 

Deklaration auch sprechende Namen angeben und diese dann verwenden: 

var dozent3 = (ID: 1, Name: "Holger Schwichtenberg", DOTNETExperte: true); 

Console.WriteLine($"Dozent mit der ID{dozent3.ID}: {dozent3.Name} 

{(dozent3.DOTNETExperte ? "ist ein .NET-Experte!" : "")}"); 

Auch hier erfolgt die Typvergabe durch Typableitung aus den angegebenen Werten. Wer explizit 

Kontrolle über die Typen der Tupelelemente möchte, kann die folgende Syntax nutzen: 

 (int ID, string Name, bool DOTNETExperte) dozent4 = (ID:1, Name:"Holger 

Schwichtenberg", DOTNETExperte:true); 

Im Zuweisungsteil (rechts des Gleichheitszeichens) ist die Wiederholung der Namen optional. Ein 

Tupel kann an allen Stellen zum Einsatz kommen, wo Typnamen erlaubt sind, also auch bei 

Attributen einer Klasse und Rückgabewerten einer Methode.  Die maximale Anzahl der Elemente 

pro Tupel ist nicht dokumentiert [learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-

7#tuples]. Im Test funktionierte ein Tupel mit 50 Elementen, was hinsichtlich der Übersichtlichkeit 

schon grenzwertig ist. 

Hinweis: Für die Realisierung der Tupel benötigt der C#-Compiler eine .NET-Klasse mit 

Namen System.ValueTuple. Diese ist in .NET Framework seit Version 4.7 bzw. .NET Core seit 

Version 2.0 enthalten. Ältere .NET-Versionen müssen ein NuGet-Paket 

[packages.nuget.org/packages/System.ValueTuple] installieren. Ohne dies kommt es zum 

Kompilerfehler "Predefined type 'System.ValueTuple is not defined or imported". Der Name 

https://de.wikipedia.org/wiki/Tupel
https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-7%23tuples
https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-7%23tuples
https://packages.nuget.org/packages/System.ValueTuple


Tupel  299 

 

"ValueTuple" weist darauf hin, dass die neuen Tupel als Value Types auf dem Stack gespeichert 

werden, während die alten Tupel (System.Collections.Tupel) als Reference Types im Heap 

residieren. 

34.3 Tupel-Dekonstruktion 

Tupel lassen sich in ihre Einzelelemente via Dekonstruktion zerlegen. Das nächste Listing zeigt 

vier Varianten der Dekonstruktion des Rückgabewertes der Methode GetDozent(), die ein 

dreiteiliges Tupel liefert. In den ersten drei Fällen entstehen jeweils drei einzelne Variablen. Im 

vierten Fall kommt die Discard-Variable, deren Namen nur aus dem Unterstrich _ besteht, zum 

Einsatz. Sie zeigt an, dass ein Element verworfen werden soll, d.h. zur Weiterverarbeitung nicht 

bereitsteht. 

Listing: Vier Varianten der Dekonstruktion eines Tupels 
 

   // Dekonstruktion eines Tupel 

   (int ID1, string Name1, bool DOTNETExperte1) = GetDozent(); 

   Console.WriteLine(ID1); 

   Console.WriteLine(Name1); 

   Console.WriteLine(DOTNETExperte1); 

 

   // Dekonstruktion eines Tupel: var möglich 

   (var ID2, var Name2, var DOTNETExperte2) = GetDozent(); 

   Console.WriteLine(ID2); 

   Console.WriteLine(Name2); 

   Console.WriteLine(DOTNETExperte2); 

 

   // Dekonstruktion eines Tupel: verkürzte Form des Einsatzes von var 

   var (ID3, Name3, DOTNETExperte3) = GetDozent(); 

   Console.WriteLine(ID3); 

   Console.WriteLine(Name3); 

   Console.WriteLine(DOTNETExperte3); 

 

   // Dekonstruktion eines Tupel: Werte ignorieren mit _ 

   var (_, Name4, DOTNETExperte4) = GetDozent(); 

   Console.WriteLine(Name4); 

   Console.WriteLine(DOTNETExperte4); 

 

… 

 

  static (int ID, string Name, bool DOTNETExperte) GetDozent() 

  { 

   return (ID: 1, Name: "Holger Schwichtenberg", DOTNETExperte: true); 

  } 

Die Dekonstruktion ist auch auf Instanzen von Klassen anwendbar, wenn diese eine Methode 

Deconstruct() anbieten, siehe Listing.  

Listing: Klassendekonstruktion 
class Dozent 

  { 

   public int ID { get; set; } 

   public string Name { get; set; } 

   public bool DOTNETExperte { get; set; } 



300 Tupel 

 

 

   public void Deconstruct(out int ID, out string Name, out bool DOTNETExperte) 

   { 

    ID = this.ID; 

    Name = this.Name; 

    DOTNETExperte = this.DOTNETExperte; 

   } 

 

   public Dozent()  {   } 

 

   // Expression-bodied Constructor 

   public Dozent(int ID) => this.ID = ID; 

 

   // Expression-bodied Finalizer 

   ~Dozent() => Console.Error.WriteLine("Finalized!"); 

 

   // Expression-bodied Getter und Setter 

   private Decimal? honorar2; 

   public Decimal? Honorar2 

   { 

    get => this.honorar; 

    set => this.honorar = value ?? 1000.00m; 

   } 

 

   private Decimal? honorar; 

   public Decimal? Honorar 

   { 

    get => this.honorar; 

 

    // throw ist nun an Stellen erlaubt, wo Ausdrücke erwartet werden, z.B. ?? 

und Expression Lambdas 

    set => this.honorar = value ?? 

        throw new ArgumentNullException(nameof(value), "Kein Honorar nicht 

erlaubt!"); 

   } 

 

  public static void ClassDeconstruction() 

  { 

   CUI.Headline(nameof(ClassDeconstruction)); 

   // Dozent ist dekonstruierbare Klasse mit Deconstruct() 

   var d = new Dozent() { ID = 1, Name = "Holger Schwichtenberg", DOTNETExperte = 

true }; 

   (var ID, var Name, var DOTNETExperte) = d; 

   Console.WriteLine(ID); 

   Console.WriteLine(Name); 

   Console.WriteLine(DOTNETExperte); 

  } 

Seit C# 10.0 gibt es als neues Feature "Mixed Deconstruction". Dies bedeutet, dass man reine 

Zuweisungen an bestehende Variablen und neue Variablendeklarationen mit Initialisierung in einer 

Zeile gemischt kann. 

 

  // Tupel deklarieren 



Tupel  301 

 

  var point = (x: 100, y: 200); 

 

  // schon vor C# 10.0 möglich: Dekonstruktion mit zwei 

Deklarationen+Initialisierung für neue Variablen 

  (int x, int y) = point; 

 

  // schon vor C# 10.0 möglich: Dekonstruktion mit Zuweisung zu zwei bestehenden 

Variablen 

  int x1 = 0; 

  int y1 = 0; 

  (x1, y1) = point; 

 

  // seit C# 10: Dekonstruktion mit Zuweisung und Initialisierung gemischt 

möglich 

  int x2 = 0; 

  (x2, int y2) = point; 

34.4 Serialisierung von Tupeln 

Bei der Serialisierung von Tupeln (siehe folgendes Listing) wird man feststellen, dass die im 

Programmcode vergebenenen Elementnamen nicht serialisiert werden, sondern nur als "Item1", 

"Item2", "Item3" usw. dort erscheinen. 

Listing: JSON-Serialisierung eines Tupel 

 

Grund dafür ist, dass die Elementnamen nur "syntaktischer Zucker" des C#-Compilers sind. In 

Wirklichkeit besitzt die Klasse ValueTupel nur die Elementnamen mit "ItemX". Dies sieht man 

auch, wenn man den ILSpy [github.com/icsharpcode/ILSpy] zum Dekompilieren einsetzt. 

 

Abbildung: Obiger Programmcode mit dem ILSpy dekompiliert 

34.5 Vergleich von Tupeln (C# 7.3) 

In C# 7.0 hatte Microsoft ValueTupel als leichtgewichtige, unbenannte Datenstruktur eingeführt, 

die sich auf dem Stack speichert - im Gegensatz zu dem in .NET Framework 4.0 eingeführten 

Referenztyp System.Collections.Tupel. Nun erst, in C# 7.3, erlaubt die Programmiersprache auch 

den direkten Vergleich zweier Tupel mit den Vergleichsoperatoren == und !=. 

var p = (ID: 1, Name: "H. Schwichtenberg", DOTNETExperte: true); 

// ... 

https://github.com/icsharpcode/ILSpy


302 Tupel 

 

if (p == (1, "H. Schwichtenberg", true)){ Console.WriteLine("Er ist es :-)"); } 

if (p != (1, "H. Schwichtenberg", true)){ Console.WriteLine("Er ist nicht :-(");} 

Nicht lediglich eine Variable und ein Tupelausdruck, sondern auch zwei Tupelausdrücke sind jetzt 

direkt vergleichbar. So kann man nun anstelle von 

if (x == 1 && y == 2) { Console.WriteLine("x ist 1 und y ist 2!"); } 

auch formulieren: 

if ((x, y) == (1, 2)) { Console.WriteLine("x ist 1 und y ist 2!"); } 



Typaliase (seit C# 12.0)  303 

 

35 Typaliase (seit C# 12.0) 
Seit C# 12.0 gibt es mit Typaliasen die Möglichkeit, für einen Typen einen alternativen Namen zu 

definieren. Ein Alias ist möglich für C#-Typen (z.B. Arrays und Tupel), .NET-Basisklassen/-

Strukturen oder eigene Klassen/Strukturen. 

Einmal mehr kommt dabei das Schlüsselwort using zum Einsatz. 

Wenn Sie schreiben  

using Numbers = int[]; 

können Sie fortan Numbers anstelle von int[] bei Typdeklarationen verwenden: 

Numbers numbers = new int[10]; 

Allerdings darf man den Alias NICHT bei der Instanziierung verwenden: 

Numbers numbers = new Numbers;  

Auch kann man leider keinen Alias definieren mit Hilfe eines Aliases. Das geht also auch nicht: 

using DbIntList = List<DbInt>; 

Zweites Beispiel: DbInt als Alias für ein int? bzw. Nullable<int>: 

using DbInt = int?; 

Danach ist möglich: 

Listing: Verwendung des Alias DbInt 
public DbInt LoadNumberFromDatabase() 

{ 

 try 

 { 

  … 

 } 

 catch (Exception) 

 { 

  return null; 

 } 

} 

 

DbInt n; 

n = LoadNumberFromDatabase(); 

Console.WriteLine(n == null ? "null" : n); 

Drittes Beispiel: Typalias für ein Tupel 

using Measurement = (string Units, int Distance); 

Danach ist möglich: 

Listing: Verwendung des Alias Measurement 
public Measurement Add(Measurement m1, Measurement m2) 

{ 

 if (m1.Units == m2.Units) 

 { 

  return (m1.Units, m1.Distance + m2.Distance); 

 } 

 else 

 { 

  throw new Exception("Units do not match!"); 



304 Typaliase (seit C# 12.0) 

 

 } 

} 

… 

Measurement m1 = ("m", 100); 

Console.WriteLine(m1.Distance + " " + m1.Units); 

  

Measurement m2 = ("m", 42); 

Console.WriteLine(m2.Distance + " " + m2.Units); 

  

Measurement m3 = Add(m1, m2); 

Console.WriteLine(m3); 

Viertes Beispiel: Auch können Entwicklerinnen und Entwickler Typaliase für .NET-Klassen 

definieren, unabhängig davon, ob diese aus der .NET-Basisklassenbibliothek oder einem NuGet-

Paket stammen bzw. selbst definiert sind, z.B. 

using MyPerson = BO.Person; 

Anders als beim Int-Array-Alias numbers ist mit einem Klassenaliase auch eine Verwendung bei 

der Instanziierung gestattet: 

MyPerson p = new MyPerson(); 

MyPerson[] pArray = new MyPerson[10]; 

Ein Typalias muss am Beginn einer Datei außerhalb von allen Typimplementierungen (Klassen, 

Strukturen) stehen. Der Typalias darf vor oder nach den using-Anweisungen für 

Namensraumimporte und vor oder nach der Namensraumdeklaration stehen. Ausnahme: Wenn der 

Typalias nicht nur für eine Datei, sondern alle Dateien im Projekt gelten soll, dann muss der Alias 

vor dem Namensraum stehen und zusätzlich das Schlüsselwort global besitzen. Ein Typalias kann 

nicht für andere Projekte exportiert werden. Er muss in jedem .NET-Projekt einmal deklariert sein, 

wenn er verwendet wird. 

Listing: Globale Typaliase müssen am Anfang einer Datei stehen. Auf die aktuelle Datei 

beschränkte Typaliase dürfen auch innerhalb eines Namensraums vorkommen. 
global using Measurement = (string Units, int Distance); 

using BO; 

 

namespace BL; 

 

// Typaliase dürfen im Namensraum stehen 

using Numbers = int[]; 

using DbInt = int?; 

using MyPerson = Person; 

  

class MeineKlasse 

{ 

… 

} 

 



Funktionale Programmierung in C# (Delegates / Lambdas)  305 

 

36 Funktionale Programmierung in C# 
(Delegates / Lambdas) 
C# unterstützt funktionale Programmierung insbesondere durch Delegates (seit C# 1.0) und 

Lambda-Ausdrücke (seit C# 3.0). 

36.1 Delegates 

Delegaten (engl. Delegates) sind typsichere Zeiger auf Funktionen (Funktionszeiger). Durch 

Delegaten kann der aufzurufende Code variabel gehalten werden. Sie kommen insbesondere zum 

Einsatz für die Ereignisbehandlung und für asynchrone Methodenaufrufe. Ein Delegat kann auf 

mehrere Funktionen zeigen (Multicast Delegate). Beim Aufruf des Delegaten werden alle an den 

Delegaten gebundenen Funktionen aufgerufen. 

C# unterstützt die Definition dieser .NET-Funktionszeiger seit Version 1.0 durch das 

Schlüsselwort delegate. In dem folgenden Listing wird zunächst ein Delegate GrussFunktion 

definiert, der zwei Zeichenkettenparameter erwartet und eine Zeichenkette zurückliefert. Danach 

folgen zwei Funktionsimplementierung für den Delegate GrussFunktion, die nacheinander dem 

Delegate zugewiesen und genutzt werden. 

Eine Funktionsimplementierung nimmt – anders als die Vererbung unter Klassen, die man mit dem 

Doppelpunkt ausdrückt – nicht expliziten Bezug auf den zu implementierenden Delegate. Eine 

Funktion ist eine gültige Implementierung eines Delegates schon dann, wenn die 

Methodensignatur (Anzahl und Typ der Parameter) übereinstimmt (in der Fachsprache: Duck 

Typing oder: "Wenn es quarkt wie eine Ente und watschelt wie eine Ente, dann ist es eine Ente!"). 

Wichtig: Bei der Zuweisung einer Funktionsimplementierung zu einem Delegate dürfen hinter 

dem Methodennamen keine runden Klammern verwendet werden und auch keine Parameter 

angegeben werden. Die runden Klammern bedeuten, die Methoden soll aufgerufen werden. Die 

Zuweisung einer Funktionsimplementierung soll noch keinen Aufruf der Implementierung 

darstellen!  

Listing: Eigene Delegate mit zwei Implementierungen 
public class DelegateBeispiel1a 

 { 

  // Delegate definieren 

  public delegate string GrussFunktion(string name, string vorname); 

 

  static void Run_EigeneDelegates() 

  { 

   string e; // Ergebnis 

   // Zuweisung einer Implementierung an den Delegate 

   GrussFunktion g = Hallo; 

   // Aufruf der Funktion, die hinter dem Delegate steht 

   e = g("Schwichtenberg", "Holger"); 

   Console.WriteLine(e); 

   // Zuweisung einer anderen Implementierung an den Delegate 

   g = GutenTag; 

   // Aufruf der Funktion, die jetzt hinter dem Delegate steht 

   e = g("Schwichtenberg", "Holger"); 

   Console.WriteLine(e); 

  } 



306 Funktionale Programmierung in C# (Delegates / Lambdas) 

 

 

  // Implementierng #1 Delegate GrussFunktion<T,T> 

  static public string Hallo(string name, string vorname) 

  { 

   return "Hallo " + vorname + " " + name + "!"; 

  } 

 

  // Implementierng #2 Delegate GrussFunktion<T,T> 

  static public string GutenTag(string name, string vorname) 

  { 

   return "Guten Tag " + vorname + " " + name + "!"; 

  } 

} 

In dem vorhergehenden Beispiel wird zwar die Syntax für Delegates deutlich, aber das gleiche 

Ergebnis hätte man leichter erzielen können, indem man die Funktionen Hallo() und GutenTag() 

direkt aufgerufen hätte. 

Ein Delegate kann Methodenparameter sein. Das nächste Listing macht das vorherige Beispiel 

etwas eindruckvoller, indem hier eine Methode DruckeGruss() exisitiert, die Name, Vorname und 

einen Funktionszeiger vom Typ GrussFunktion erwartet. So kann man im Hauptprogramm immer 

einfach DruckeGruss() aufrufen mit ganz unterschiedlichen Logiken der Grußerzeugung. 

Listing: Eigene Delegate als Methodenparameter 
public class DelegateBeispiel1b 

 { 

  // Delegate definieren 

  public delegate string GrussFunktion(string name, string vorname); 

 

  static void Run_DelegateAlsParameter() 

  { 

   DruckeGruss("Schwichtenberg", "Holger", Hallo); 

   DruckeGruss("Schwichtenberg", "Holger", GutenTag); 

  } 

 

  // Funktion, die eine Funktion vom Typ GrussFunktion erwartet 

  public static void DruckeGruss(string name, string vorname, GrussFunktion 

grussfunktion) 

  { 

   var grussText = grussfunktion(name, vorname); 

   Console.WriteLine(grussText); 

  } 

 

  // Implementierng #1 Delegate GrussFunktion<T,T> 

  static public string Hallo(string name, string vorname) 

  { 

   return "Hallo " + vorname + " " + name + "!"; 

  } 

 

  // Implementierng #2 Delegate GrussFunktion<T,T> 

  static public string GutenTag(string name, string vorname) 

  { 

   return "Guten Tag " + vorname + " " + name + "!"; 

  } 



Funktionale Programmierung in C# (Delegates / Lambdas)  307 

 

} 

36.2 Vordefinierte Delegates Action<T> und Func<T> 

Die .NET-Klassenbibliothek bietet im Namensraum System, in dem alle Basisdatentypen enthalten 

sind, insgesamt 32 vordefinierte generische Delegate-Typen. 

16 Delegate-Typen ohne Rückgabewert mit 

Action<T> 

16 Delegate-Typen mit Rückgabewert mit 

Func<T> 

  

Tabelle: Vordefinierte generische Delegate-Typen in der .NET-Klassenbibliotek 

Das folgende Listing verzichtet auf eine eigene Delegate-Definition und verwendet stattdessen 

zwei Varianten des vordefinierten Delegate Action und eine Variante von Func. 

Listing: Vordefinierte Delegates 
public class DelegateBeispiel1c 

 { 

 

  public static void VordefinierterDelegate() 

  { 

   Action<string> log = LogToConsole; 

   log("Start..."); 

   // ... 

   log("Läuft..."); 

   // ... 

   log("Erfolgreich!"); 

 

   Action<int, string, bool> log2 = LogToConsole2; 



308 Funktionale Programmierung in C# (Delegates / Lambdas) 

 

 

   log2(1, "Start...", true); 

   // ... 

   log2(2, "Läuft...", false); 

   // ... 

   log2(3, "Erfolgreich!", true); 

 

 

   Func<string, string, string> gruss = Hallo; 

   gruss("Schwichtenberg", "Holger"); 

 

   gruss = GutenTag; 

   gruss("Schwichtenberg", "Holger"); 

  } 

 

  // Implementierung des Delegate Action<T> 

  public static void LogToConsole(string text) 

  { 

   Console.WriteLine($"LOG {DateTime.Now.ToShortTimeString()}: {text}"); 

  } 

   

  // Implementierung des Delegate Action<T> 

  public static void LogToConsole2(int ID, string text, bool withTime) 

  { 

   Console.WriteLine($"LOG {(withTime ? DateTime.Now.ToShortTimeString() : "")}: 

{ID:0000}: {text} "); 

  } 

 

  // Implementierng #1 Delegate GrussFunktion<T,T> 

  static public string Hallo(string name, string vorname) 

  { 

   return "Hallo " + vorname + " " + name + "!"; 

  } 

 

  // Implementierng #2 Delegate GrussFunktion<T,T> 

  static public string GutenTag(string name, string vorname) 

  { 

   return "Guten Tag " + vorname + " " + name + "!"; 

  } 

 } 

Wichtig: Zu beachten ist, dass die Definitionen eines eigenen Delegates  

public delegate string GrussFunktion(string name, string vorname);  

und die Nutzung eines vordefinierten Delegatetypen 

Func<string, string, string> GrussFunktionVordefiierterDelegate; 

nicht kompatibel sind, da es sich um verschiedene Typen handelt, auch wenn Parameteranzahl, 

Parametertypen und Rückgabetyp kompatibel ist. 



Funktionale Programmierung in C# (Delegates / Lambdas)  309 

 

36.3 Prädikate mit Predicate<T> 

Neben Action<T> und Func<T> gibt es auch noch den vordefinierten Delegattypen Predicate<T> 

aus Zeiten von .NET 1.0. Ein Prädikat ist ein Funktionszeiger (Delegat) auf eine Methode, die true 

oder false liefert. Predicate<T> entspricht also System.Func<T, bool>. 

Prädikate werden zur Auswahl von Elementen in Listen verwendet. Die Objektmengenklassen in 

der FCL stellen aus historischen Gründen Methoden bereit, die Predicate<T> erwarten, z.B. die 

Filter-Funktionen der Array-Klasse wie Find(), FindAll(), FindIndex() und FindLast(). 

Listing: Einsatz von Predicate<T> 

// Predicate ist .NET 1.x-Stil: System.Predicate<T> _= _System.Func<T, 
bool>  

  bool FilterZahlenKleiner10(int x) 

  { 

   Console.WriteLine("Prüfe Zahl: " + x); 

   return x < 10; 

  } 

 

  public void PredidateDemo() 

  { 

   // Datenmenge 

   int[] Zahlen = { 1, 30, 5, 10, 15, 20, 3, 9 }; 

   // Verwendung Lambda-Ausdruck 

   Predicate<int> filter = FilterZahlenKleiner10; 

   var Ergebnis = Array.FindAll(Zahlen, filter); 

   // Ausgabe 

   foreach (object Zahl in Ergebnis) 

   { 

    Console.WriteLine(Zahl); 

   } 

  } 

36.4 Lambdas 

Ein Lambda ist seit C# 3.0 ist eine stark verkürzte Schreibweise für eine anonyme Methode. 

Technisch gesehen handelt es sich bei den Lambdas um einen Funktionszeiger (Delegates) und 

zugleich um anonyme Delegaten, da kein expliziter Name für die Delegate-Klasse vergeben wird. 

Die Namensvergabe erledigt, wie bei anonymen Typen, der Compiler. 

Praxishinweis: Lambda-Ausdrücke sind eine elegante Möglichkeit, Code zu schreiben, der 

kurz und prägnant ist, insbesondere in Situationen, in denen Sie eine schnelle und einfache 

Funktion benötigen, ohne eine separate Methode zu definieren. Lambdas sind in den letzten 

Jahren an immer mehr Stellen vorgerückt, an denen zuvor Methoden geschrieben wurden. 

Der Rumpf eines Lambdas wird durch den Operator => knapp gehalten. Der Operator => wird 

gelesen: "abgebildet auf". 



310 Funktionale Programmierung in C# (Delegates / Lambdas) 

 

Lambdas gibt es in zwei Formen: Einzeilige Lambdas mit nur einem Ausdruck nach dem => 

(Expression Lambda) und mehrzeilige Lambdas mit einem Befehlsblock in geschweiften 

Klammern nach dem => (Statement Lambda). 

36.4.1 Einzeilige Lambda-Ausdrücke 

Das folgende Listing zeigt eine Reihe von einzeiligen Lambda-Ausdrücken, die nur einen Wert 

zurückliefern. 

Hinweis: Lambda-Ausdrücke, die einen Typ auf einem anderen Typ abbilden (also Beispiele 2 

bis 4 in dem folgenden Listing), nennt man eine Projektion. 

Listing: Beispiele für einzeilige Lambda-Ausdrücke in C#  
// Lambda-Ausdrücke deklarieren 

Func<int> f0 = () => DateTime.Now.Hour; 

Func<int, int> f1 = x => x + 1; 

Func<string, string> f2 = s => s.ToUpper(); 

Func<string, int> f3 = s => s.Length; 

Func<string, int, string> f4 = (s, i) => s.Substring(0, i); 

 

// Lambda-Ausdrücke verwenden 

Console.WriteLine(f0()); // ergibt 42 

Console.WriteLine(f1(10)); // ergibt 11 

Console.WriteLine(f2("World Wide Wings")); // ergibt WORLD WIDE WINGS 

Console.WriteLine(f3("World Wide Wings")); // ergibt 16 

Console.WriteLine(f4("World Wide Wings", 10)); // ergibt "World Wide" 

Seit C# 10.0 gibt es für die Deklaration von Funktionen auf Basis von Lambda-Ausdrücken 

abgekürzte Syntaxformen auf Basis von Typherleitung. Dabei gibt der Softwareentwickler nur 

noch den Typ der Parameter an. Der Rückgabetyp ergibt sich aus dem Code. 

Die folgenden Programmzeilen zeigen die verkürzte Variante der mit Lambda-Ausdrücken oben 

deklarierten Funktionen F0 bis f4. 

Listing: Lambda-Ausdrücke deklarieren seit C# 10.0 mit Typherleitung 
var f0b = () => DateTime.Now.Second; 

var f1b = (int x) => x + 1; 

var f2b = (string s) => s.ToUpper(); 

var f3b = (string s) => s.Length; 

var f4b = (string s, int i) => s.Substring(0, i); 

Es ist möglich den Rückgabetyp des Lambda-Ausdrucks ("Lambda Return Type") explizit 

anzugeben. Dies ist zwar in allen obigen Fällen nicht erforderlich, aber einige Entwickler 

präferieren explizitere Codierung. 

Listing: Lambda-Ausdrücke deklarieren seit C# 10.0 mit explizitem Rückgabetyp 
var f0c = int () => DateTime.Now.Second; 

var f1c = int  (int x) => x + 1; 

var f2c = string (string s) => s.ToUpper(); 

var f3c = int (string s) => s.Length; 

var f4c = string (string s, int i) => s.Substring(0, i); 

Der explizite Rückgabetyp ist nur erforderlich, wenn man einen bestimmten Rückgabetyp 

erzwingen will, z.B. hier. 

Listing: Explicit Lambda Return Type 
var f10 = byte () => 42; // Rückgabetyp wäre sonst int 

var f11 = FileSystemInfo () => new DirectoryInfo(@"c:\Windows"); // wäre sonst Di

rectoryInfo 

Console.WriteLine(f10()); 



Funktionale Programmierung in C# (Delegates / Lambdas)  311 

 

Console.WriteLine(f11().FullName); 

 

 

Seit C# 10.0 kann man einem Lambda-Ausdruck auch Annotationen/Attribute für Parameter und 

Rückgabewert geben: 

var f12 = [return:NotNull] ([SensitiveData] string name) => "Hallo " + name; 

36.4.2 Einsatzbeispiele für Lambda-Ausdrücke 

Ein Lambda-Ausdruck kann einen vordefiniertem Delegate oder einen eigenen Delegate 

realisieren. 

Listing: Expression Lambda vs. Statement Lambda 
public delegate string GrussFunktion(string name, string vorname); 

public delegate DateTime Berechnung(int type, byte stunden); 

 

public static void LambdaArten() 

  { 

   // Beispiel für Expression Lambda mit vordefiniertem Delegate 

   Func<string, string, string> expressionLambda1 = (name, vorname) 

    => $"Guten Morgen {vorname} {name}!"; 

   // Beispiel für Expression Lambda mit vordefiniertem Delegate 

   Func<int, byte, DateTime> expressionLambda2 = (tage, stunden) 

    => DateTime.Now.AddDays(tage).AddHours(stunden); 

   // Beispiel für Expression Lambda mit eigenem Delegate 

   GrussFunktion expressionLambda3 = (name, vorname) 

 => $"Guten Morgen {vorname} {name}!"; 

   // Beispiel für Expression Lambda mit eigenem Delegate 

   Berechnung expressionLambda4 = (tage, stunden) 

 => DateTime.Now.AddDays(tage).AddHours(stunden); 

   // Beispiel für Statement Lambda mit vordefiniertem Delegate 

   Func<string, string, string> statementLambda1 = (name, vorname) => 

   { 

    return $"Guten Tag {vorname} {name}!"; 

   }; 

   // Beispiel für Statement Lambda mit vordefiniertem Delegate 

   Func<int, byte, DateTime> statementLambda2 = (tage, stunden) => 

   { 

    return DateTime.Now.AddDays(tage).AddHours(stunden); 

   }; 

   // Beispiel für Statement Lambda mit eigenem Delegate 

   GrussFunktion statementLambda3 = (name, vorname) => 

   { 

    return $"Guten Tag {vorname} {name}!"; 

   }; 

   // Beispiel für Statement Lambda mit vordefiniertem Delegate 

   Berechnung statementLambda4 = (tage, stunden) => 

   { 

    return DateTime.Now.AddDays(tage).AddHours(stunden); 

   }; 

 



312 Funktionale Programmierung in C# (Delegates / Lambdas) 

 

   Func<string, string, string> statementLambda5 = (name, vorname) => 

   { 

    Trace.WriteLine("GutenTag() wurde aufgerufen!"); 

    return $"Guten Tag {vorname} {name}!"; 

   }; 

  } 

Listing: Delegate-Beispiel mit Lambda-Ausdruck 
 

// Deklaration Delegate GrussFunktion(string,string) -> string 

public delegate string GrussFunktion(string name, string vorname); 

  

public static void EigenerDelegate() 

{ 

  

 // Implementierung des Delegate GrussFunktion(string,string) als Statement Lambd

a 

 GrussFunktion GutenTag = (name, vorname) => 

 { 

  Trace.WriteLine("GutenTag() wurde aufgerufen!"); 

  return $"Guten Tag {vorname} {name}!"; 

 }; 

 // Übergabe des Expression Lambda 

 DruckeGruss("Schwichtenberg", "Holger", GutenTag); 

} 

 

Ein Lambda-Ausdruck muss keinen Namen besitzen, wenn er als Parameter an eine Funktion 

übergeben wird. In diesem Fall spricht man von einer anonymen Funktion. 

Listing: Beispiel für benannte und unbenannte Lambda-Ausdrücke 
public static void Run() 

{ 

 // Deklaration Lambda-Ausdruck 

 Func<string, string, string> gutenMorgen = (name, vorname) => $"Guten Morgen {vo

rname} {name}!"; 

 // Nutzung des benannten Lambda-Ausdrucks 

 DruckeGrussFunc("Schwichtenberg", "Holger", gutenMorgen); 

 // Unbenannter Lambda-Ausdruck (anonyme Funktion) 

 DruckeGrussFunc("Schwichtenberg", "Holger", (name, vorname) => $"Guten Abend {vo

rname} {name}!"); 

} 

  

// Funktion, die eine Funktion (string,string) -> string erwartet 

public static void DruckeGrussFunc(string name, string vorname, Func<string, stri

ng, string> grussfunktion) 

{ 

 var grussText = grussfunktion(name, vorname); 

 Console.WriteLine(grussText); 

} 

Eine anonyme Funktion kann auf alle Variablen der umgebenden Funktion zugreifen. Seit C# 9.0 

kann man dies unterbinden mit dem Zusatz static. Der Entwickler kann sich mit dem Zusatz static 

davor schützen, versehentlich auf Daten der Umgebung zuzugreifen. 

Listing: Nicht-statische vs. statische anonyme Funktionen 
public static void StatischeAnonymeFunktionen() 

  { 

   string vorname = "Holger"; 

   string name = "Schwichtenberg"; 



Funktionale Programmierung in C# (Delegates / Lambdas)  313 

 

   // normale anonyme Funktion: vorname und name sind nutzbar 

   DruckeGrussFunc("Guten Abend", (gruss) => $"{gruss} {vorname} {name}!"); 

   // statische anonyme Funktion: vorname und name sind NICHT nutzbar 

  // DruckeGrussFunc("Guten Abend", static (gruss) => $"{gruss} {vorname} 

{name}!"); 

  } 

 

// Funktion, die eine Funktion (string,string) -> string erwartet 

public static void DruckeGrussFunc(string Gruss, Func<string, string> 

formatGruss) 

  { 

   var grussText = formatGruss(Gruss); 

   Console.WriteLine(grussText); 

  } 

Seit C# 9.0 ist es in Lambda-Ausdrücken auch erlaubt, mit der Discard-Variable _ anzuzeigen, 

dass man einen Parameter nicht verwenden will. 

DruckeGrussFunc("Guten Abend", (_) => $"Hallo {vorname} {name}!"); 

Ein weiteres Einsatzbeispiel für Lambda-Ausdrücke ist der Einsatz als Prädikat (Predicate<T>). 

Das folgende Listing zeigt drei verschiedene Schreibweisen, um alle Vorstandsmitglieder aus einer 

Liste zu filtern, die eine bestimmte Bedingung erfüllen; die letzte Schreibweise mit Lambda-

Ausdrücken ist die kürzeste und eleganteste.  

Listing: Prädikate in C# 
… 

// Prädikate klassische Schreibweise 

List<Vorstandsmitglied> JungeVorstandsmitglieder1 = 

Vorstandsmitglieder.FindAll(AuswahlJunge); 

Console.WriteLine("Junge Vorstandsmitglieder: " + 

JungeVorstandsmitglieder1.Count); 

 

// Prädikate mit anonymen Methoden 

List<Vorstandsmitglied> JungeVorstandsmitglieder2 = 

Vorstandsmitglieder.FindAll(delegate(Vorstandsmitglied v) { return v.Alter < 40;  

}); 

Console.WriteLine("Junge Vorstandsmitglieder: " + 

JungeVorstandsmitglieder2.Count); 

 

// Prädikate mit Lambda-Ausdruck 

List<Vorstandsmitglied> JungeVorstandsmitglieder3 = Vorstandsmitglieder.FindAll(v 

=> v.Alter < 40); 

Console.WriteLine("Junge Vorstandsmitglieder: " + 

JungeVorstandsmitglieder3.Count); 

} 

 

// gehört zu Prädikat klassische Schreibweise! 

static public bool AuswahlJunge(Vorstandsmitglied v) 

{ 

   return (v.Alter < 40); 

} 

 

36.4.3 Mehrzeilige Lambdas 

Die folgenden Listings zeigen Beispiele für mehrzeilige Lambdas. Man spricht bei den 

mehrzeiligen Lambdas von "Statement Lambdas" – im Kontrast zu den "Expression Lambdas", 

die aus einer Zeile bestehen nur einen Wert zurückliefern. 



314 Funktionale Programmierung in C# (Delegates / Lambdas) 

 

Listing: Beispiel für einen mehrzeiligen Lambda-Ausdruck mit Rückgabewert in C#  
 Predicate<int> ZahlenKleiner10 = x => 

   { 

    Console.WriteLine("Prüfe Zahl: " + x); 

    return x < 10; 

   }; 

  

  

   // Datenmenge 

   int[] Zahlen = {1,30, 5, 10, 15, 20, 3, 9}; 

   // Verwendung Lambda-Ausdruck 

   var Ergebnis = Array.FindAll(Zahlen, ZahlenKleiner10); 

   // Ausgabe 

   foreach (object Zahl in Ergebnis) 

   { 

    Console.WriteLine(Zahl); 

   } 

Listing: Beispiel für einen mehrzeiligen Lambda-Ausdruck ohne Rückgabewert in C#  
   // Deklaration Lambda-Ausdruck ohne Rückgabewert 

   Action<int> Ausgabe = x => 

    { 

     Trace.WriteLine(x); 

     Console.WriteLine(x); 

    }; 

   // Datenmenge 

   int[] ZahlenReihe = {1,30, 5, 10, 15, 20, 3, 9}; 

   // Verwendung Lambda-Ausdruck 

   Array.ForEach(ZahlenReihe, Ausgabe); 

36.4.4 Optionale Lambda-Parameter (seit C# 12.0) 

Lambdas erlaubten vor C# 12.0 keine optionalen Parameter. Das hat sich in C# 12.0 geändert. 

Anstelle dieser Funktion mit optionalem Parameter z 

public decimal Calc(decimal x, decimal y, decimal z = 1) 

{ 

 return (x + y) * z; 

} 

kann ein Entwickler in C# 12.0 nun auch diesen Lambda-Ausdruck schreiben: 

var calc = (decimal x, decimal y, decimal z = 1) => (x + y) * z; 

Das geht auch mit Statement Lambdas. Anstelle dieser Methode mit optionalem Parameter color 

public void Print(object text, ConsoleColor? color = null) 

{ 

 if (color != null) Console.ForegroundColor = color.Value; 

 Console.WriteLine(text); 

 if (color != null) Console.ResetColor(); 

} 

kann nun dieses Statement Lambda treten: 

var Print = (object text, ConsoleColor? color = null) => 

{ 

 if (color != null) Console.ForegroundColor = color.Value; 

 Console.WriteLine(text); 

 if (color != null) Console.ResetColor(); 

}; 

 



Funktionale Programmierung in C# (Delegates / Lambdas)  315 

 

 



316 Ereignisse 

 

37 Ereignisse 
Klassen oder einzelne Objekte können Ereignisse auslösen, die von anderen abonniert werden 

können. Zu einem Ereignis kann es beliebig viele Abonnenten in beliebig vielen Objekten geben. 

In diesem Fall ruft das Objekt Unterroutinen in allen Abonnenten auf, wenn eine bestimmte 

Situation eintritt. 

Die Definition und die Behandlung von Ereignissen ist in C# komplizierter im Vergleich zu der 

Vorgehensweise in Visual Basic.  

37.1 Definition von Ereignissen 

Ein Ereignis ist ein Klassenmitglied, das mit event deklariert wird und sich auf einen Delegaten 

bezieht, entweder einen selbstdefinierten Delegaten oder einen vordefinierten Delegaten wie 

Action<T> oder EventHandler<T>. Ereignisse können Instanzen zugeordnet sein (nicht statisch) 

oder der Klasse zugeordnet sein (statisch). Das folgende Beispiel zeigt drei statische Ereignisse der 

Klasse Passagier. 

public class Passagier  

{ 

  public delegate void CheckInStartHandler(Passagier p); 

… 

  // Ereignis für selbtsdefinierten Delegaten 

  public static event CheckInStartHandler CheckInStart; 

  // Ereignis für vordefinierten Delegaten 

  public static event EventHandler<Passagier> CheckInErfolg; 

  // Ereignis für vordefinierten Delegaten 

  public static event Action<Passagier, string> CheckInFehler; 

… 

} 

Tipp: Eine Vereinfachung bei der Deklaration von Ereignissen ist möglich durch die generische 

Klasse System.EventHandler<T>. EventHandler<T> steht für einen Delegat mit zwei 

Eingabeparametern: object sender und einem zweiten Parameter vom dem angegebenen Typ T. 

Die nicht generische Variante System.EventHandler erwartet als zweiten Parameter einen von 

System.EventArgs abgeleiteten Typen. 

37.2 Ereignis auslösen 

Ein spezielles Schlüsselwort zum Auslösen eines Ereignisses (wie RaiseEvent in Visual Basic 

.NET) existiert in C# nicht. Zum Auslösen des Ereignisses kann das Ereignis wie eine Methode 

aufgerufen werden. 

if (CheckInStart != null)  { CheckInStart(this);  } 

Wichtig: Man muss zuvor immer prüfen, ob überhaupt jemand für das Ereignis registriert ist, 

sonst kommt es zum Laufzeitfehler "System.NullReferenceException: 'Object reference not set 

to an instance of an object." 

Seit C# 6.0 ist die verkürzte Syntax mit Fragezeichen-Punkt-Operator möglich. Auch hier wird ein 

Absturz vermieden, wenn es keinen Nutzer des Ereignisses gibt. 

CheckInStart?.Invoke(this);  



Ereignisse  317 

 

37.3 Ereignisbehandlung 

Auch für die Ereignisbehandlung existieren in C# keine speziellen Schlüsselwörter wie 

AddHandler, WithEvents und Handles in Visual Basic .NET. In C# muss der Delegat instanziiert 

werden mit der Ereignisbehandlungsroutine als Parameter und diese so gebildete Instanz muss der 

Ereignisvariablen der Klasse mit dem Operator + hinzugefügt werden. 

// Ereignisbehandlung mit explizitem Delegaten  

Passagier.CheckInStart += new Passagier.CheckInStartHandler(CheckInGestartet); 

… 

static void CheckInGestartet(Passagier pass) 

{  Demo.Print("Check-In beginnt... für " + pass.GanzerName); } 

C# unterstützt seit Version 2.0 zur Ereignisbehandlung auch anonyme Methoden, mit denen 

Programmcode direkt einem Delegaten zugewiesen werden kann. Anstelle des Verweises auf eine 

entsprechende Ereignisbehandlungsroutine kann der Entwickler mit dem Schlüsselwort delegate 

nun direkt einen Codeblock (anonyme Methode) binden. Wenn mehrere Ereignisse den gleichen 

Code ausführen sollen, ist die Implementierung der anonymen Methode auf den Aufruf einer 

Methode zu beschränken. 

// Ereignisbehandlung mit anonymer Methode  

Passagier.CheckInErfolg +=  

    delegate (object sender, Passagier p) { 

    CUI.PrintWarning("Passagier Check-In OK: " + p.ToString()); 

   };    
Seit C# 3.0 sind Lambda-Ausdrücke zur Ereignisbehandlung möglich. 

// Ereignisbehandlung mit Statement Lambda 

Passagier.CheckInFehler +=  

(p, text) => { 

    CUI.PrintWarning("Passagier Check-In Fehler: " + p.ToString() + " Fehler: " + 

text) 

} 



318 IDisposable / Using-Blöcke 

 

38 IDisposable / Using-Blöcke 
IDisposable ist eine zentrale Schnittstelle in .NET seit .NET Framework Version 1.0. Sie dient 

dazu, ein Standardverfahren anzubieten, bei dem von einem Objekt verwendete Ressourcen 

aufgeräumt werden. Man spricht vom IDisposable-Muster (Pattern). Mit Using-Blöcken deklariert 

man einen Bereich, in dem das Objekt und seine Ressourcen benötigt werden. 

38.1 Hintergründe zur Speicher- und 
Ressourcenverwaltung in .NET 

Im Gegensatz zu COM verfügt .NET über eine automatische Speicherverwaltung, die in der 

Common Language Runtime (CLR) implementiert ist. Die CLR enthält einen Garbage Collector 

(GC), der im Hintergrund (in einem System-Thread) arbeitet und den Speicher aufräumt. Der 

Speicher wird allerdings nicht sofort nach dem Ende der Verwendung eines Objekts freigegeben, 

sondern zu einem nicht festgelegten Zeitpunkt bei Bedarf (Lazy Resource Recovery). Beim 

Aufräumen des Speichers erzeugt der Garbage Collector einen Baum aller Objekte, auf die es 

aktuell einen Objektverweis gibt. Der Speicher aller nicht mehr erreichbaren Objekte wird 

freigegeben. 

Der Garbage Collector kann von einer Anwendung nur bedingt beeinflusst werden. Die 

Anwendung kann mit dem Befehl System.GC.Collect() dem Garbage Collector den Auftrag geben, 

tätig zu werden. Eine Anwendung kann jedoch eine Speicherbereinigung nicht verhindern. Der 

Garbage Collector ruft die Destruktoren (alias Finalizer) der .NET-Objekte auf. Die Reihenfolge 

des Aufrufs und ob der Destruktor überhaupt aufgerufen wird, ist jedoch nicht deterministisch, 

d.h., es kann sein, dass ein Destruktor nicht aufgerufen wird. Beim Schließen einer .NET-

Anwendung werden die Destruktoren der verbliebenen Objekte nicht aufgerufen. Um sich von den 

deterministischen Destruktoren der Sprache C++ abzuheben, spricht man in .NET von 

Finalisierung statt von Destruktion. 

Es gibt aber Klassen, die nicht nur von der CLR verwalteten Speicher verwenden, sondern auch 

noch weitere ("externe") Ressourcen, die nicht zum Garbage Collector aufgeräumt werden. Dies 

sind zum Beispiel: 

▪ Unverwalteter Speicher (z.B. in verwendeten COM-Objekten) 

▪ Geöffnete Dateien 

▪ Geöffnete Netzwerkverbindindungen 

38.2 Schnittstelle IDisposable 

Klassen, bei denen der Aufruf des Destruktors wichtig ist, weil dabei externe Ressourcen 

freigegeben werden, müssen dem Disposable-Muster folgen und die Schnittstelle 

System.IDisposable mit der Methode Dispose() implementieren. In Dispose() sind alle externen 

Ressourcen freizugeben. 

Der Nutzer der Klasse muss am Ende der Verwendung der Methode Dispose() aufrufen. 

Listing: Deklaration einer Klasse mit IDisposable 
using ITVisions; 

using System; 

using System.Collections.Generic; 

using System.Text; 

 



IDisposable / Using-Blöcke  319 

 

 

namespace CS10 

{ 

 class Dateisystemzugriff : IDisposable 

 { 

  System.IO.StreamWriter writer = null; 

  bool disposed = false; 

  string filepath = ""; 

  public Dateisystemzugriff(string filePath) 

  { 

   this.filepath = filepath; 

   Console.WriteLine($"Ich öffne die Datei {filePath} im Konstruktor..."); 

   writer = new System.IO.StreamWriter(filePath, true); 

  } 

 

  public void Log(string s) 

  { 

   writer.WriteLine($"{DateTime.Now}: {s}"); 

  } 

 

  ~Dateisystemzugriff() 

  { 

   Console.WriteLine($"Finalizer für Instanz 

{nameof(DateisystemClient)}#{filepath}..."); 

   Dispose(); 

  } 

 

  public void Dispose() 

  { 

   Console.WriteLine($"Dispose für Instanz 

{nameof(DateisystemClient)}#{filepath}..."); 

   if (disposed) return; 

 

   // Hier externe Ressourcen freigeben 

   writer.Close(); 

   disposed = true; 

   GC.SuppressFinalize(this); 

  } 

 } 

} 

 

Listing: Verwendung einer Klasse mit IDisposable ohne Using-Block 
 class DateisystemClient 

 { 

  public void Run() 

  { 

 

   CUI.MainHeadline("Verwendung ohne Using Block"); 

   Dateisystemzugriff d1 = new Dateisystemzugriff(@"c:\temp\csharplog.txt"); 

   for (int a = 1; a < 10; a++) 

   { 

    d1.Log("Meldung # " + a); 

    Console.Write("."); 



320 IDisposable / Using-Blöcke 

 

    System.Threading.Thread.Sleep(10); 

   } 

   Console.WriteLine(); 

   d1.Dispose(); 

  } 

 } 

38.3 Using-Blöcke 

Der Aufruf von Dispose() kann leicht von dem Softwareentwickler vergessen werden. Die 

Programmiersprachen C# und Visual Basic unterstützen daher ein Programmblockkonstrukt mit 

Namen Using-Block. Der Using-Block wird eingeleitet durch das Schlüsselwort using. Während 

es in Viusal Basic .NET ein "End Using" gibt, wird in C# der Block durch geschweifte Klammern 

begrenzt. Am Ende eines Using-Blocks wird für die im Kopf des Blocks angegebenen Variablen 

automatisch die Dispose()-Methode aufgerufen. 

Hinweis: Das Schlüsselwort using hat in C# eine Doppelbedeutung. Es wird auch für 

Namensraum-Importe verwendet (siehe Kapitel "Namensräume (Namespaces)"). 

Listing: Verwendung einer Klasse mit IDisposable mit Using-Block 
class DateisystemClient 

 { 

  public void Run() 

  { 

   CUI.MainHeadline("Verwendung mit Using Block"); 

   using (Dateisystemzugriff d2 = new 

Dateisystemzugriff(@"c:\temp\csharplog.txt")) 

   { 

    for (int a = 1; a < 10; a++) 

    { 

     d2.Log("Meldung # " + a); 

     Console.Write("."); 

     System.Threading.Thread.Sleep(10); 

    } 

    Console.WriteLine(); 

   } 

  } 

 } 

} 

38.4 Vereinfachte Using-Deklarationen (C# 8.0) 

Seit C# 8.0 ist es möglich, das Schlüsselwort using für Klassen mit IDisposable-Schnittstelle auch 

zu verwenden ohne einen expliziten Codeblock mit geschweiftem Klammern { … }. In diesem 

Fall ist die nach using deklarierte Variable gültig bis zum Ende des umgebenden Blocks; erst wenn 

dieser endet, erfolgt der automatische Aufruf von Dispose(). 

   try 

   { 

    CUI.MainHeadline("Verwendung mit Using-Deklaration"); 

    using Dateisystemzugriff d3 = new 

Dateisystemzugriff(@"c:\temp\csharplog.txt"); 

    for (int a = 1; a < 10; a++) 

    { 



IDisposable / Using-Blöcke  321 

 

     d3.Log("Meldung # " + a); 

     Console.Write("."); 

     System.Threading.Thread.Sleep(10); 

    } 

    // d3 ist hier noch gültig 

    d3.Log("Ende!"); 

   }// d3 ist ab jetzt ungültig, d3.Dispose() wird aufgerufen 

   catch (Exception ex) 

   { 

    Console.WriteLine(ex); 

   } 

38.5 IDispose für Strukturen auf dem Stack 

Seit C# 8.0 können nicht nur Klassen (Schlüsselwort class) und normale Strukturen (Schlüsselwort 

struct), sondern auch Strukturen, die nur auf dem Stack leben (Schlüsselwort ref struct) das 

IDisposable-Pattern realisieren. Allerdings nicht mit Verweis auf die Schnittstelle IDisposable, 

denn Strukturen auf dem Stack können keine Schnittstellen implementieren. In Strukturen auf dem 

Stack schreibt man einfach eine Dispose()-Methode. Diese lose Dispose()-Implementierung ruft 

die .NET-Laufzeitumgebung am Ende von using-Blöcken genauso wie die implementierten 

Dispose()-Methoden der expliziten IDisposable-Schnittstelle. 

Listing: Pattern based Disposable / Disposable ref structs 
public ref struct Ressource  // immer am Stack, nie am Heap 

{ 

 // C# 8.0: Ableiten von IDisposable nicht möglich für structs 

 public void Dispose() 

 { 

  Console.WriteLine("Ressource Dispose"); 

 } 

 

} 



322 Exklusive Zugriffe auf Ressourcen mit lock() 

 

39 Exklusive Zugriffe auf Ressourcen mit 
lock() 
Wenn Sie mit paralleler Codeausführung/Multi-Threading arbeiten, werden Sie eine Möglichkeit 

benötigen, die parallele Ausführung bestimmter Codeteile zu unterbinden, in denen die paralleler 

Codeausführung zu unerwünschten Ergebnissen führen könnte. Für exklusive Zugriffe gibt es seit 

der ersten C#-Version das Schlüsselwort lock(). 

Bei lock() muss man ein Objekt angeben. Dies sollte keins der Datenobjekte sein, die der Code 

verändern will, sondern ein Objekt das nur zum Zwecke des Sperrvorgangs existiert. Vor C# 13.0 

wurde bei lock() üblicherweise ein Objekt des Types System.Object verwendet: 

public class Counter 

{ 

    private int count = 0; 

    private readonly object lockObject = new object(); 

 

    public void Increment() 

    { 

        lock (lockObject)  // Acquire a lock on lockObject 

        { 

            count++; 

        } // Release the lock when the block is exited 

    } 

 

    public int GetCount() 

    { 

        lock (lockObject) 

        { 

            return count; 

        } 

    } 

} 

Seit .NET 9.0/C# 13.0 gibt es für das Sperren von Codeblöcken vor dem Zugriff durch weitere 

Threads eine neue Klasse System.Threading.Lock, die man nun im Standard in Verbindung mit 

dem lock-Statement in C# verwenden sollte, "for best Performance" wie Microsoft in der 

Dokumentation https://learn.microsoft.com/en-us/dotnet/csharp/language-

reference/statements/lock schreibt.  

Das nächste Listing zeigt ein Beispiel mit dem Schlüsselwort lock und der Klasse 

System.Threading.Lock.  

Listing: Ein lock in C# 13.0 mit der neuen Klasse System.Threading.Lock (Quelle des Beispiels: 

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/statements/lock) 
using System; 

using System.Threading.Tasks; 

 

namespace NET9_Console.CS13; 

 

public class Account 

{ 

 // Vor C# 13.0 wurde hier System.Object verwendet statt System.Threading.Lock  

 private readonly System.Threading.Lock _balanceLock = new(); 

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/statements/lock
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/statements/lock


Exklusive Zugriffe auf Ressourcen mit lock()  323 

 

 private decimal _balance; 

  

 public Account(decimal initialBalance) => _balance = initialBalance; 

  

 public decimal Debit(decimal amount) 

 { 

  if (amount < 0) 

  { 

   throw new ArgumentOutOfRangeException(nameof(amount), "The debit amount cannot

 be negative."); 

  } 

  

  decimal appliedAmount = 0; 

  lock (_balanceLock) 

  { 

   if (_balance >= amount) 

   { 

    _balance -= amount; 

    appliedAmount = amount; 

   } 

  } 

  return appliedAmount; 

 } 

  

 public void Credit(decimal amount) 

 { 

  if (amount < 0) 

  { 

   throw new ArgumentOutOfRangeException(nameof(amount), "The credit amount canno

t be negative."); 

  } 

  

  lock (_balanceLock) 

  { 

   _balance += amount; 

  } 

 } 

  

 public decimal GetBalance() 

 { 

  lock (_balanceLock) 

  { 

   return _balance; 

  } 

 } 

} 

  

class AccountTest 

{ 

 static async Task Main() 

 { 

  var account = new Account(1000); 

  var tasks = new Task[100]; 



324 Exklusive Zugriffe auf Ressourcen mit lock() 

 

  for (int i = 0; i < tasks.Length; i++) 

  { 

   tasks[i] = Task.Run(() => Update(account)); 

  } 

  await Task.WhenAll(tasks); 

  Console.WriteLine($"Account's balance is {account.GetBalance()}"); 

  // Output: 

  // Account's balance is 2000 

 } 

  

 static void Update(Account account) 

 { 

  decimal[] amounts = [0, 2, -3, 6, -2, -1, 8, -5, 11, -6]; 

  foreach (var amount in amounts) 

  { 

   if (amount >= 0) 

   { 

    account.Credit(amount); 

   } 

   else 

   { 

    account.Debit(Math.Abs(amount)); 

   } 

  } 

 } 

} 

Der C#-Compiler übrigens dann aus  

lock (_balanceLock) 

{ 

  _balance += amount; 

} 

einen Aufruf der EnterScope()-Methode in der Klasse System.Threading.Lock: 

using (balanceLock.EnterScope()) 

{ 

  _balance += amount; 

} 

 



Laufzeitfehler  325 

 

40 Laufzeitfehler 
Das Erzeugen und Behandeln von Ausnahmen ist in der Common Language Runtime (CLR), der 

Laufzeitumgebung von .NET verankert und daher für alle .NET-Sprachen gleich. Exceptions 

(Ausnahmen) sind .NET-Objekte, wobei es verschiedene Klassen von Ausnahmen geben kann, die 

in einer Vererbungshierarchie zueinander stehen. Basisklasse ist System.Exception. Jede 

Ausnahme stellt Informationen wie eine Fehlerbeschreibung (Message) und die Aufrufliste der 

Methoden (StackTrace) bereit. 

Achtung: Eine .NET-Klasse kann – anders als in Java – nicht deklarieren, welche Fehlertypen 

sie erzeugt und welche vom Nutzer abgefangen werden müssen (Konzept der Checked 

Exceptions). Der .NET-Entwickler kann Wissen über mögliche Fehlerarten nur aus der 

Dokumentation entnehmen. 

40.1 Fehler abfangen 

C# unterstützt das Konstrukt try...catch...finally, um Laufzeitfehler abzufangen. Dabei kann es 

mehrere Catch-Blöcke mit unterschiedlichen Ausnahmeklassen geben. Ein catch (Exception ex) 

fängt alle Fehler ab, weil System.Exception die Oberklasse aller Ausnahmen ist. 

Listing: Fehlerbehandlung in C# 
public static void Run() 

  { 

   IEnumerable<string> inhalt = null; 

   var filename = @"c.\temp\daten.txt"; 

   try 

   { 

    inhalt = System.IO.File.ReadLines(filename); 

   } 

   catch (ArgumentException)  

   { 

    Console.WriteLine("Ungültiger Dateiname!"); 

   } 

   catch (NotSupportedException ex) when (ex.Message.Contains("format")) 

   { 

    Console.WriteLine("Ungültiges Format!"); 

   } 

   catch (NotSupportedException ex) 

   { 

    Console.WriteLine("Nicht unterstützt: " + ex.Message); 

   } 

   catch (Exception ex) 

   { 

    Console.WriteLine("Anderer Fehler: " + ex.Message); 

   } 

 

   // Inhalt verarbeiten... 

 

  } 

In C# gibt es seit Version 6.0 auch Exception Filter, mit denen der C#-Entwickler nun zusätzlich 

zu den Exception-Klassen in den catch-Blöcken mit dem Schlüsselwort when zwischen 



326 Laufzeitfehler 

 

verschiedenen Fällen differenzieren kann (siehe Listing). Diese Spracheigenschaft gibt es in Visual 

Basic .NET schon seit dem Jahr 2002. 

Listing: Exception Filter in C# 6 
    try 

    { 

     var datei = System.IO.File.ReadLines(filename); 

    } 

    catch (ArgumentException) when (filename == "") 

    { 

     Console.WriteLine("Ohne Dateiname macht diese Aktion keinen Sinn!"); 

    } 

    catch (ArgumentException ex) when (ex.Message.Contains("Illegales")) 

    { 

     Console.WriteLine("Ungültige Zeichen im Dateinamen: " + filename); 

    } 

    catch (ArgumentException ex) 

    { 

     Console.WriteLine("Ungültige Angabe: " + filename + ":" + ex.Message); 

    } 

    catch (NotSupportedException ex) when (ex.Message.Contains("format")) 

    { 

     Console.WriteLine("Ungültiges Format!"); 

    } 

    catch (NotSupportedException ex) 

    { 

     Console.WriteLine("Nicht unterstützt: " + ex.Message); 

    } 

     catch (FileNotFoundException ex) 

    { 

     Console.WriteLine("Datei " + filename + " nicht gefunden"); 

    } 

    catch (Exception ex) 

    { 

     Console.WriteLine("Anderer Fehler: " + ex.Message); 

    } 

40.2 Fehler auslösen 

Die Anweisung throw ExceptionKlasse erzeugt eine Ausnahme. Neben den in der .NET-

Klassenbibliothek vordefinierten Ausnahmen (z.B. System.ArithmeticException, 

System.ArgumentException, System.FormatException) können eigene anwendungsspezifische 

Ausnahmeklassen durch Ableitung von System.ApplicationException erzeugt werden.  

Seit C# 7.0 ist der Einsatz von throw jetzt auch an Stellen erlaubt, an denen Ausdrücke erwartet 

werden, z.B. nach dem doppelten Fragezeichen und in Lambda-Ausdrücken. 

   private Decimal? honorar; 

   public Decimal? Honorar 

   { 

    get => this.honorar; 

 

    // throw ist nun an Stellen erlaubt, wo Ausdrücke erwartet werden, z.B. ?? 

und Expression Lambdas 



Laufzeitfehler  327 

 

    set => this.honorar = value ?? 

        throw new ArgumentNullException(nameof(value), "Kein Honorar nicht 

erlaubt!"); 

   } 

40.3 Eigene Fehlerklassen 

In C# kann man auch eigene Fehlerklasse definieren, die dann bei throw verwendet werden dürfen. 

public class FalscheFlugnummer : System.ApplicationException 

 { 

  public FalscheFlugnummer(string Beschreibung) : base(Beschreibung) { } 

 } 

 public class PassagierNichtAufFlugGebucht : FalscheFlugnummer 

 { 

  public PassagierNichtAufFlugGebucht(string Beschreibung) : base(Beschreibung) { 

} 

 } 



328 Modul-Initialisierer 

 

41 Modul-Initialisierer 
Ein Modul-Initialisierer (engl. Module Initializer) ist eine Methode, die beim Laden eines .NET-

Moduls (entspricht einer .NET-Assembly) von der .NET-Laufzeitumgebung automatisch 

aufgerufen wird. Der Aufruf erfolgt vor allen anderen Codeausführungen. Dies bedeutet, dass bei 

einem Startmodul ein Modul-Initialisierer vor Main() ausgeführt wird. Bei einem DLL-Modul wird 

der Modul-Initialisierer vor der ersten Methode, die in der DLL aufgerufen wird, ausgeführt. 

Ein Modul-Initialisierer ist eine Methode, die folgende Voraussetzungen erfüllen muss: 

▪ kompiliert mit C# 9.0 oder höher 

▪ Runtime .NET 5.0 oder höher 

▪ Methode ist in einer Klasse, die public oder internal ist 

▪ Methode ist public oder internal 

▪ Methode ist statisch (static) 

▪ Methode ist parameterlos 

▪ Methode ist hat keinen Rückgabewert (void) 

▪ Methode ist nicht-generisch  

▪ Methode ist annotiert mit [System.Runtime.CompilerServices.ModuleInitializerAttribute] 

Es darf mehr als einen Modul-Initialisierer in einer Assembly geben! Alle Modul-Initialisierer 

werden in der Reihenfolge aufgerufen, wie die Runtime sie im Kompilat findet! 

Er folgt ein Beispiel. 

Listing: Beispiel für einen Modul-Intialisierer 
public class ModuleInitializerClass 

 { 

  [ModuleInitializer] 

  public static void ModuleInitializer() 

  { 

   var ass = System.Reflection.Assembly.GetExecutingAssembly().GetName(); 

   CUI.Print("Modul wird geladen: " + ass.Name + " v" + ass.Version.ToString(), 

ConsoleColor.Cyan); 

  } 

 } 

Listing: Hauptprogamm im Hauptmodul 
class Program 

 { 

  static void Main(string[] args) 

  { 

   CUI.H1("C# 9.0 Demos"); 

 

Console.WriteLine(System.Runtime.InteropServices.RuntimeInformation.FrameworkDesc

ription + " on " + 

System.Runtime.InteropServices.RuntimeInformation.OSDescription); 

 

   Console.WriteLine("Ergebnis: " + new Hilfsklassen.Util().GetValue()); 

 

   CUI.H1("Fertig!"); 

  } 

 } 



Modul-Initialisierer  329 

 

Listing: Klassen im Modul Hilfsklassen.dll inklusive zwei Modul-Initialisierern 
using ITVisions; 

using System; 

using System.Runtime.CompilerServices; 

 

namespace Hilfsklassen 

{ 

 public class Util 

 { 

  public int GetValue() 

  { 

   return 42; 

  } 

 } 

 public class ModuleInitializerClass2 

 { 

  [ModuleInitializer] 

  public static void ModuleInitializer() 

  { 

   var ass = System.Reflection.Assembly.GetExecutingAssembly().GetName(); 

   CUI.Print("ModuleInitializerClass2: Modul wird geladen: " + ass.Name + " v" + 

ass.Version.ToString(), ConsoleColor.Cyan); 

  } 

 } 

 public class ModuleInitializerClass 

 { 

  [ModuleInitializer] 

  public static void ModuleInitializer() 

  { 

   var ass = System.Reflection.Assembly.GetExecutingAssembly().GetName(); 

   CUI.Print("ModuleInitializerClass1: Modul wird geladen: " + ass.Name + " v" + 

ass.Version.ToString(), ConsoleColor.Cyan); 

  } 

 } 

} 

In der folgenden Ausgabe des Beispiels sieht man: 

▪ Der Modul-Initialisierer im Hauptmodul wird vor Main() aufgerufen 

▪ Die beiden Modul-Initialisierer im Modul Hilfsklassen.dll werden erst aufgerufen, wenn das 

Hauptprogramm erstmals auf etwas in der DLL zugreift, also die Methode Util.GetValue() 

aufruft. 

 
Abbildung: Ausgabe des obigen Beispiels 



330 Kommentare und XML-Dokumentation 

 

42 Kommentare und XML-Dokumentation 
C# unterstützt drei Arten von Kommentaren: 

▪ Zeilenkommentare, bei denen jede Zeile mit einem // eingeleitet wird 

▪ Blockkommentare, bei denen der Codeblock in /* … */ eingerahmt wird 

▪ XML-Kommentare, bei denen jede Zeile mit /// beginnt.  

/// <summary> 

 /// erbende Klasse 

 /// </summary> 

 class Experte : Person 

 { 

 

  /// <summary> 

  /// Kenntnisstand 

  /// </summary> 

  public Kenntnisse Kenntnisse { get; set; } = Kenntnisse.SehrGut; 

  /// <summary> 

  /// Themenliste 

  /// </summary> 

  public List<string> Themen = new List<string>() { ".NET", "C#" }; 

 

  /// <summary> 

  /// Konstruktor mit Delegation an Basisklasse 

  /// </summary> 

  /// <param name="name">Name des Experten</param> 

  /// <param name="erzeugtAm">Datum der Datensatzerstellung</param> 

  /// <param name="kenntnisse">Kenntnisstand</param> 

  public Experte(string name, DateTime erzeugtAm, Kenntnisse kenntnisse) : 

base(name, erzeugtAm) 

  { 

   this.Kenntnisse = kenntnisse; 

  } 

 

  /// <summary> 

  /// Überschriebene Methode zu Ausdruck des Experten 

  /// </summary> 

  /// <param name="details">Ausdruck von Details</param> 

  public override void Drucke(bool details = false) 

  { 

   base.Drucke(details); 

   if (details) 

   { 

    Console.WriteLine($"Experte für: {String.Join(",", this.Themen)}."); 

   } 

  } 

Abbildung: Beispiel für XML-Codekommentare in C# 

 



Kommentare und XML-Dokumentation  331 

 

 

Abbildung: Visual Studio verwendet die XML-Kommentare bei der Eingabehilfe 

Praxistipp: Weitere Verwendungsmöglichkeiten der XML-Kommentare ist die Generierung 

von Hilfedokumenten mit dem Sandcastle Help File Builder (SHFB) 

[github.com/EWSoftware/SHFB] oder die Nutzung in Hilfedokumentation von WebAPIs mit 

Swagger Open API [learn.microsoft.com/de-de/aspnet/core/tutorials/web-api-help-pages-

using-swagger?tabs=visual-studio]. 

https://github.com/EWSoftware/SHFB
https://docs.microsoft.com/de-de/aspnet/core/tutorials/web-api-help-pages-using-swagger?tabs=visual-studio
https://docs.microsoft.com/de-de/aspnet/core/tutorials/web-api-help-pages-using-swagger?tabs=visual-studio


332 Asynchrone Ausführung mit async und await 

 

43 Asynchrone Ausführung mit async und 
await 
In C# 5.0 gab es zwei neue Schlüsselwörter (async und await), die die asynchronen 

Programmierung erheblich vereinfachen. Eine Methode kann mit async deklarieren, dass sie plant, 

im Laufe ihrer Ausführung asynchron (ggf. in einem eigenen Thread) weiterzuarbeiten und die 

Kontrolle an den Aufrufer zurückzugeben. Eine solche asynchrone Methode muss dann ein Task-

Objekt (aus der in .NET Framework 4.0 eingeführten Task Parallel Library (TPL)) zurückliefern. 

Innerhalb der asynchronen Methode wird die Kontrolle dann genau nach dem ebenfalls neuen 

Schlüsselwort await an den Aufrufer zurückgegeben.  

43.1 Verwendung von async und await mit der .NET-
Klassenbibliothek 

Das nächste Listing zeigt das Beispiel eines asynchronen Datenbankzugriffs mit Connection, 

Command und DataReader aus ADO.NET. In diesen Klassen gibt es nun zusätzlich zu den 

bisherigen synchronen Methoden auch asynchrone Methoden. In dem Beispiel ruft das 

Hauptprogramm Run() eine selbst erstellte asynchrone Methode ReadDataAsync(). In dieser 

Methode kommen die von der seit ADO.NET 4.5 bereitgestellten asynchronen Methoden 

OpenAsync() und ExecuteReaderAsync() zum Einsatz, die jeweils mit await aufgerufen werden. 

Es ist dabei eine Konvention, aber keine Pflicht, dass der Name einer asynchronen Methode auf 

„async“ endet. Die Ausgabe der Thread-Nummern im Listing dient lediglich dazu, die asynchrone 

Ausführung in verschiedenen Threads zu belegen (siehe Abbildung). 

Listing: Asynchrone Datenbankoperationen mit ADO.NET seit Version 4.5 
  public static void run() 

  { 

   Console.WriteLine("Run() #1: Aufruf wird initiiert: Thread=" + 

System.Threading.Thread.CurrentThread.ManagedThreadId); 

   ReadDataAsync(); 

   Console.WriteLine("Run() #2: Aufruf ist erfolgt: Thread=" + 

System.Threading.Thread.CurrentThread.ManagedThreadId); 

  } 

 

 

  /// <summary> 

  /// Asynchroner Download (Rückgabe: nichts) 

  /// </summary> 

  static private async void ReadDataAsync() 

  { 

   // Datenbankverbindung asynchron aufbauen 

   SqlConnection conn = new SqlConnection(@"data source=.;initial 

catalog=WWWings;integrated 

security=True;MultipleActiveResultSets=True;App=ADONETClassic"); 

   await conn.OpenAsync(); 

   Console.WriteLine("Nach Open Async: Thread=" + 

System.Threading.Thread.CurrentThread.ManagedThreadId); 

   // Daten asynchron abrufen 

   SqlCommand cmd = new SqlCommand("select top(10) * from flug", conn); 

   var reader = await cmd.ExecuteReaderAsync(); 

   Console.WriteLine("Nach ExecuteReaderAsync: Thread=" + 

System.Threading.Thread.CurrentThread.ManagedThreadId); 



Asynchrone Ausführung mit async und await  333 

 

   // Daten ausgeben 

   while (reader.Read()) 

   { 

    Console.ForegroundColor = ConsoleColor.Yellow; 

    Console.WriteLine(reader["Abflugort"]); 

    Console.ForegroundColor = ConsoleColor.Gray; 

   } 

 

   // Verbindung beenden 

   conn.Close(); 

  } 

 } 

 
Abbildung: Ausgabe des obigen Listings als Beleg für die asynchrone Ausführung in 

verschiedenen Thread 

43.2 Verwendung von async und await mit eigenen 
Threads 

Das zweite Beispiel zeigt async und await im Einsatz mit der Ausführung einer Aufgabe in einem 

separaten Thread mithilfe der Task-Klasse von .NET. 

public async Task<int> MachWasAsync() 

{ 

 Console.WriteLine("MachWasAsync - Start"); 

 var t = new Task<int>(MachWasIntern); 

 t.Start(); 

  var r = await t; 

 Console.WriteLine("MachWasAsync - Ende"); 

 return r; 

} 

  

private int MachWasIntern() 

{ 

 int sum = 0; 

 for (int i = 0; i < 10; i++) 

 { 

  Console.WriteLine(i.ToString()); 

  sum += i; 

 } 

 return sum; 

} 



334 Asynchrone Ausführung mit async und await 

 

43.3 Weitere Möglichkeiten mit async und await 

Seit C# 6.0 darf ein C#-Entwickler die Schlüsselwörter async und await auch in catch- und finally-

Blöcken verwenden. Dies ist für Visual Basic .NET nicht vorgesehen. 

Asynchrone Methoden, die bisher auf die Rückgabe von Task, Task<T> oder void beschränkt 

waren, können seit C# 7.0 auch andere Typen zurückgeben, die eine GetAwaiter()-Methode 

implementieren, die ein Objekt mit der Schnittstelle   

System.Runtime.CompilerServices.ICriticalNotifyCompletion  

liefert. So kann ein Entwickler nun zum Beispiel den Typ ValueTask<T> aus dem NuGet-Paket 

System.Threading.Tasks.Extensions 

[https://nuget.org/packages/System.Threading.Tasks.Extensions] als Rückgabewert verwenden 

mit dem Vorteil, dass dies ein Value Typ auf dem Stack statt ein Reference Type auf dem Heap 

ist. 

Seit C# 7.1 darf auch die Main()-Routines eines C#-Programms mit async deklariert werden. 

Folgenden Signaturen sind insgesamt nun bei Main() erlaubt [https://learn.microsoft.com/en-

us/dotnet/csharp/fundamentals/program-structure/main-command-line]: 

▪ public static void Main() { } 

▪ public static int Main() { } 

▪ public static void Main(string[] args) { }  

▪ public static int Main(string[] args) { }  

▪ public static async Task Main() { }  

▪ public static async Task<int> Main() { }  

▪ public static async Task Main(string[] args) { }  

▪ public static async Task<int> Main(string[] args) { } 

Seit C# 13 können asynchrone Methoden lokale ref-Variablen oder lokale Variablen eines ref 

struct-Typs deklarieren. 

 

https://nuget.org/packages/System.Threading.Tasks.Extensions
https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/program-structure/main-command-line
https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/program-structure/main-command-line


Iteratoren  335 

 

44 Iteratoren 
Iteratoren sind ein .NET-Entwurfsmuster zur Erzeugung aufzählbarer Objektmengen, die mit 

foreach sequentiell vorwärts durchlaufen werden können. Die einfachste Möglichkeit zur 

Schaffung einer aufzählbaren Menge sind die Collections (siehe Kapitel "Objektmengen"). 

Darüberhinaus kann der Entwickler eigene aufzählbare Typen mit der Iterator-Implementierung 

schaffen, was in diesem Kapitel thematisiert ist.  

Hinweis: Normale Schleifen mit for(…) und while verwenden keine Iteratoren. Sie greifen auf 

die Elemente einer Menge über einen Indexer zu. 

44.1 Iterator-Implementierung mit yield (Yield 
Continuations) 

Das in C# 2.0 eingeführte Schlüsselwort yield vereinfacht die Iterator-Implementierung erheblich. 

Yield liefert ähnlich wie return einen Wert an den Aufrufer zurück. Anders als beim Einsatz von 

return beginnt die CLR beim nächsten Aufruf der Methode nicht am Anfang der Routine, sondern 

setzt die Bearbeitung nach dem yield fort. Das nächste Listing zeigt eine einfache Iterator-Klasse, 

die die deutschen Bundeskanzler aufzählt. Sinn macht ein solcher Iterator, wenn zwischen den 

Schritten irgendeine Art von Verarbeitung stattfindet, wenn z.B. die Daten aus einem 

Datenspeicher geholt oder dynamisch berechnet werden. 

Listing: Iterator-Implementierung und -Nutzung 
public class KanzlerListe : IEnumerable 

 { 

  public IEnumerator GetEnumerator() 

  { 

   // Logik !!! 

   yield return "Adenauer"; 

   // Logik !!! 

   yield return "Erhard"; 

   // Logik !!! 

   yield return "Kiesinger "; 

   // Logik !!! 

   yield return "Brandt"; 

   // Logik !!! 

   yield return "Schmidt"; 

   // Logik !!! 

   yield return "Kohl"; 

   // Logik !!! 

   yield return "Schröder"; 

   // Logik !!! 

   yield return "Merkel"; 

   // Ende 

   yield break; 

  } 

 } 

class Iteratoren 

 { 

public static void run() 

  { 

   KanzlerListe k2 = new KanzlerListe(); 

   foreach (string s in k2) 

   {    Console.WriteLine(s);   } 

  } 

 } 



336 Iteratoren 

 

Seit C# 13.0 ist in Methoden, die yield return verwenden, auch die Verwendung von unsafe und 

ref-Variablen erlaubt. 

44.2 Praxisbeispiel für yield 

Das vorstehende Beispiel ist nur ein Lernbeispiel. Eine Schleife über eine Menge von 

Zeichenketten hätte man auch einfacher realisieren können. Ein echtes Praxisbeispiel für den 

Einsatz von yield finden Sie in der nachstehenden Klasse FlugMengePaging. Diese Klasse 

implementiert IEnumerable<Flug>, um die in der Datenbank vorhandenen Flüge seitenweise aus 

der Datenbank auszulesen, wobei die Seitengröße definierbar ist. Der Client soll von dem Paging 

nichts mitbekommen, wenn er nicht will: Der Client kann mit einer ganz normalen foreach-Schleife 

über die Datensätze iterieren. Optional kann der Client das Ereignis SeitenWechsel(), das die 

Klasse FlugMengePaging auslöst, abonnieren und damit über den Seitenwechsel informiert 

werden. 

 
Abbildung: Nutzung der Klasse FlugMengePaging 

Das folgende Listing zeigt die Implementierung der Klasse FlugMengePaging, die zwei 

Generische Klassen der .NET-Klassenbibliothek verwendet: 

▪ Zum einen die generische Variante von IEnumerable: IEnumerable<Flug> 

▪ Zum anderen die generische Klasse EventHandler<> zur Deklaration eines Ereignisses. 

Listing: Praxisbeispiel zum Einsatz von Yield, Ereignissen und Generics 
/// <summary> 

/// Klasse für Ereignisparameter beim Paging in der Geschäftslogik 

/// </summary> 

public class PagingInfo : System.EventArgs 

 { 

  public long AnzahlObjekteGesamt; 

  public long SeitenGroesse; 

  public long AnzahlSeiten; 

  public long AktuelleSeite; 

  public long AnzahlObjekteInAktuellerSeite; 

 

  public PagingInfo(long AnzahlObjekteGesamt, long AnzahlSeiten, long 

SeitenGroesse, long AktuelleSeite, long AnzahlInAktuellerSeite) 

  { 

   this.AnzahlObjekteGesamt = AnzahlObjekteGesamt; 



Iteratoren  337 

 

   this.AnzahlSeiten = AnzahlSeiten; 

   this.SeitenGroesse = SeitenGroesse; 

   this.AnzahlObjekteInAktuellerSeite = AnzahlInAktuellerSeite; 

   this.AktuelleSeite = AktuelleSeite; 

  } 

 } 

 

 /// <summary> 

 /// FlugMenge ist die typisierte Menge von Flug-Objekten, die mithilfe der 

Klasse  

 /// <see cref="System.Collections.Generic.List"/> implementiert ist. Diese 

Variante holt immer  

 /// nur eine definierbare Menge (Attribut SeitenGroesse) aus der Datenbank. 

 /// </summary> 

 public class FlugMengePaging : IEnumerable<Flug> 

 { 

  private int _SeitenGroesse = 10; 

  /// <summary> 

  /// Maximale Anzahl von Objekten, die in einer Datenseite abgeholt werden 

  /// </summary> 

  public int SeitenGroesse 

  { 

   get { return _SeitenGroesse; } 

   set { _SeitenGroesse = value; } 

  } 

  // Ereignis beim Wechsel der Datenseite 

  public event EventHandler<PagingInfo> SeitenWechsel; 

  public FlugMengePaging(int SeitenGroesse) 

  { 

   this.SeitenGroesse = SeitenGroesse; 

  } 

  #region IEnumerable<Flug> Members 

  public IEnumerator<Flug> GetEnumerator() 

  { 

   int Anzahl = new FlugBLManager().Count(); 

   int Seiten = Anzahl / SeitenGroesse; 

 

   for (int i = 0; i < Seiten; i++) 

   { 

    // Nächste Datenseite aus Datenbank abholen 

    FlugMenge ff = FlugBLManager.HoleAlle(SeitenGroesse, i * SeitenGroesse + 1); 

    // Ereignis auslösen 

    if (SeitenWechsel != null) SeitenWechsel(this, new PagingInfo(Anzahl, Seiten,  

                                             SeitenGroesse, i + 1, ff.Count)); 

    // Elemente der aktuellen Seite in einer Schleife zurückgeben 

    foreach (Flug f in ff) 

    {     yield return f;    } 

   } 

   yield break; 

  } 

 

44.3 Asynchrone Streams / await foreach (seit C# 8.0) 

Seit C# 8.0 kann der Softwareentwickler asynchrone Iteratoren mit der Schnittstelle 

System.Collections.Generic.IAsyncEnumerable<T> schaffen und darüber mit await foreach(…) 

iterieren. Das Beispiel zeigt: 

▪ GetDataSteam(): Simuliert eine datensendende Messstelle; sendet kontinuierlich und endlos 

alle 250 Millisekunden eine Zahl (hier Zufallszahl). Wie bei synchronen Iteratoren kommt 

yield zum Einsatz. 



338 Iteratoren 

 

▪ PrintData(): Gibt die eingehenden Zahlen der Messstelle aus. Prüft, ob Abbruch via 

CancellationTokenSource gefordert wird. 

▪ Main(): Hauptprogramm, das den Datenempfang startet und dann darauf wartet, dass ein 

Benutzer die EINGABE-Taste bedient, was den Abbruch auslöst. 

Listing: Asynchroner Stream 
using ITVisions; 

using System; 

using System.Collections.Generic; 

using System.Threading; 

using System.Threading.Tasks; 

 

namespace CS80 

{ 

 class AsyncStreamDemos 

 { 

  public async void Main() 

  { 

   CUI.Headline(nameof(AsyncStreamDemos)); 

   CancellationTokenSource cts = new CancellationTokenSource(); 

   await PrintData(cts); 

 

   CUI.Print("---> Hauptprogramm wartet auf RETURN", ConsoleColor.Yellow); 

   Console.ReadLine(); 

 

   CUI.Print("Hauptprogramm lößt Abbruch des Datenempfangs aus...", 

ConsoleColor.Yellow); 

   cts.Cancel(); 

 

   CUI.Headline("Hauptprogramm endet!"); 

  } 

 

 

  /// <summary> 

  /// Empfang der Daten von Stream und Ausgabe 

  /// </summary> 

  /// <param name="cts">Abbruchoption</param> 

  public async Task PrintData(CancellationTokenSource cts) 

  { 

   // NEU in C# 8.0: await foreach! 

   await foreach (var nextValue in GetDataStream()) 

   { 

    CUI.Print($"{nextValue:000000}", ConsoleColor.Cyan); 

    if (cts.IsCancellationRequested) 

    { 

     CUI.PrintError("!!!Abruch der Messdatenausgabe!!!"); 

     return; 

    } 

   } 

  } 

 

  /// <summary> 

  /// Simuliert den Empfang von Daten von einer Messstelle 



Iteratoren  339 

 

  /// Erzeugt dafür 100 Zufallszahlen als Stream, alle 250ms eine neue Zahl 

  /// </summary> 

  static async IAsyncEnumerable<int> GetDataStream() 

  { 

   try 

   { 

    for (; ; ) 

    { 

     await Task.Delay(250); 

     yield return new System.Random().Next(1000000); 

    } 

   } 

   finally 

   { 

    Console.WriteLine("GetDataStream: Finally"); 

   } 

  } 

 } 

} 

 
Abbildung: Ausgabe des obigen Listings. Der Benutzer hat nach kurzer Zeit EINGABE gedrückt. 



340 Zeigerprogrammierung 

 

45 Zeigerprogrammierung  
Für die Zeigerprogrammierung bietet C# seit Version 1.0 das Schlüsselwort unsafe. Seit C# 7.0 

gibt es eine sicherere Option (Managed Pointer). 

45.1 Zeigerprogrammierung mit unsafe 

Niemand möchte unsicheren Code schreiben, doch die Programmiersprache C# kennt eine 

gleichnamige Option (unsafe). Innerhalb von unsicherem Code können in C# Zeiger und 

Zeigerarithmetik verwendet werden. Diese Operationen werden dann nicht von der Common 

Language Runtime verifiziert und können zu Programmabstürzen führen. Bei Visual Basic .NET 

gibt  es keine in die Sprachsyntax eingebaute Möglichkeit, Zeiger und Zeigerarithmetik zu nutzen. 

Das wäre nur über Umwege über die Klassenbibliothek möglich. Wenn Sie derartige Low-Level-

Funktionen wirklich nutzen wollten, sollten Sie C# oder C++ / CLI verwenden. 

Achtung: Es gibt nur wenige sinnvolle Einsatzgebiete für Zeigerarithmetik in .NET. Ein solcher 

Fall liegt bei sehr umfangreichen Array-Operationen vor. Da die CLR bei jedem Array-Zugriff 

die Array-Grenzen prüft, kann durch Einsatz von Zeigerarithmetik ein erheblicher 

Leistungsgewinn erzielt werden – allerdings auf Kosten der Zuverlässigkeit der Anwendung. 

Mit dem Schlüsselwort unsafe können ganze Unterroutinen markiert werden; es besteht auch die 

Möglichkeit, einen unsafe-Block innerhalb einer Unterroutine zu erzeugen. Voraussetzung für die 

Kompilierung einer Anwendung mit unsicherem Code ist die Verwendung der Compiler-Option 

/unsafe.  

 

Abbildung: Einstellen der Compileroption "unsafe" in den Projekteigenschaften in Visual Studio 

Listing: Unsicherer Code in C# 
class Zeiger 

 { 

  unsafe static void ZeigerTest(int* x) // x ist ein Zeiger auf ein Integer32 

  { 

   int* y; // y ist ein Zeiger auf ein Integer32 

   int z = 10; // z ist ein Integer32 

   y = &z; // y zeigt auf den Speicherplatz von z 

   *x = *x * *y; // Der Platz, auf den x zeigt, soll mit dem Ergebnis des 

Produktes aus dem Inhalt von x und y gefüllt werden 

   int* r; // r ist ein Zeiger auf ein Integer32 

   // Achtung: Das produziert Unsinn! 

   r = y + 1;  // r soll nun auf den Speicherplatz zeigen, der 4 Plätze hinter y 

liegt 

   Demo.Print(*r); // gebe den Inhalt aus, auf den r zeigt 

  } 

  public static void run() 



Zeigerprogrammierung  341 

 

  { 

   int i = 5; 

   unsafe 

   { 

    ZeigerTest(&i); // Rufe ZeigerTest mit einem Zeiger auf den Speicherplatz von 

i auf 

   } 

   Demo.Print(i); 

  } 

Auch für unsafe-Blöcke hat Microsoft Verbesserungen in C# 7.3 eingebaut. Die Allokierung von 

Speicher auf dem Stack mit stackalloc war bisher nicht möglich in Verbindung mit einer 

prägnanten Array-Initialisierung. Erst seit C# 7.3 kann man schreiben: 

   unsafe 

   { 

    var a2 = stackalloc int[3] { 45, 2, 57 }; // seit C# 7.3 

    var a3 = stackalloc int[] { 45, 2, 57 }; // seit C# 7.3 

    var a4 = stackalloc[] { 45, 2, 57 }; // seit C# 7.3 

     } 

Zuvor musste man die Array-Elemente mühsam einzeln initialisieren: 

  unsafe 

   { 

    var a1 = stackalloc int[3];    // bisher schon erlaubt 

    a1[0] = 45; 

    a1[1] = 2; 

    a1[2] = 57; 

     } 

Die verkürzte Array-Initialisierung kann nun auch außerhalb von unsafe-Blöcken in Verbindung 

mit den in C# 7.2 eingeführten Typ Span<T> [msdn.microsoft.com/de-

de/magazine/mt814808.aspx] zum Einsatz kommen: 

Span<int> a5 = stackalloc[] { 1, 2, 3 }; // seit C# 7.3 

Schon seit der ersten Version von C# gibt es mit "fixed" deklarierte Variaben, die nicht vom 

Garbage Collector verschoben werden können und nur in Strukturen (struct { }), nicht in Klassen 

(class { }) vorkommen dürfen. Als "Indexing movable fixed Buffers" bezeichnet Microsoft die 

Möglichkeit, dass mit "fixed" deklarierte Variablen einfacher zu handhaben sind. 

Das Befüllen und Auslesen eines Fixed Array erforderte in C# bis einschließlich Version 7.2 immer 

einen zusätzlichen fixierten Zeiger, wie das nächste Listing.  

Listing: Alte Handhabung fixierter Arrays mit fixierten Zeigern (vor C# 7.3) 
  unsafe struct Daten 

  { 

   public fixed int Zahlen[7]; 

  } 

 

  /// <summary> 

  /// vor C# 7.2 

  /// </summary> 

  class BerechnungAlt 

  { 

   static Daten s = new Daten(); 

 

   unsafe public void Berechnen() 

   { 



342 Zeigerprogrammierung 

 

    fixed (int* ptr = s.Zahlen) 

    { 

     for (int i = 0; i < 7; i++) 

     { 

      ptr[i] = new System.Random().Next(1, 49); 

     } 

 

     int p1 = ptr[5]; 

     Console.WriteLine(p1); 

    } 

   } 

  } 

Seit C# 7.3 kann man darauf verzichten, siehe nächstes Listing. 

Listing: Vereinfachte Handhabung fixierter Arrays seit C# 7.3 
   /// <summary> 

   /// Ab C#7.3 

   /// </summary> 

   class BerechnungNeu 

   { 

    static Daten s = new Daten(); 

 

    unsafe public void Berechnen() 

    { 

     for (int i = 0; i < 7; i++) 

     { 

      s.Zahlen[i] = new System.Random().Next(1, 49);  // geht nicht vor C# 7.3 

     } 

 

     int p2 = s.Zahlen[5];   // geht nicht vor C# 7.3 

     Console.WriteLine(p2); 

    } 

   } 

45.2 Zeigerprogrammierung mit ref (Managed Pointer) 

Zeigerprogrammierung war in C# lange nur bei Methodenparametern und im Rahmen sogenannter 

unsafe-Blöcke möglich. Das bisher bei den Methodenparametern verwendete ref-Schlüsselwort 

dehnt Microsoft in C# 7.0 auch auf lokale Variablen und Methodenrückgabewerte aus. Dabei 

verwendet man das Schlüsselwort ref sowohl bei der Deklaration des Zeigers ref typ name (vgl. in 

C++: Typ*) als auch um einen Zeiger auf eine Variable zu erhalten: ref name (vgl. C++: & name). 

Im Untergrund arbeiten sogenannte Managed Pointer. 

Das folgende Beispiel zeigt aber, dass im Gegensatz zu C++ in C# eine kontrollierte Variante der 

Zeigerprogrammierung zum Einsatz kommt. Während eine vergleichbare Befehlsfolge in C++ den 

Zeiger z im Speicher verschieben würde, wirkt das +=10 in C# 7.0 sich auf den Inhalt statt dem 

Zeiger aus. Die Variable z enthält danach einen Zeiger auf den Wert 42. 

int i = 32; 

ref int z = ref i; 

z+=10; 

Das nächste Listing zeigt den Einsatz von ref bei dem Rückgabewert einer Methode. Die Methode 

GetExperte() erhält ein Array und liefert ein Element als Zeiger zurück. Der Aufrufer ändert bei 



Zeigerprogrammierung  343 

 

der Verwertung des Rückgabewertes also das Array. Eine Methode kann aber nicht einen Zeiger 

auf eine lokale Variable innerhalb der Methode zurückgeben. 

Hinweis: Solche Zeiger mit ref sind auch nicht anwendbar bei der Deklaration von 

Klassenattributen als Fields und Properties, in asynchronen und anonymen Methoden, 

Iteratoren, Lambda- und LINQ-Ausdrücken.  

Listing: Einsatz von Zeigern als Rückgabewert einer Methode 
  /// <summary> 

  /// Diese Funktion liefert die Speicherstelle eines Array-Elements, nicht den 

Wert! 

  /// </summary> 

  static public ref string GetReiseziel(string[] namen, int position) 

  { 

   if (namen.Length > 0) return ref namen[position]; 

   throw new IndexOutOfRangeException($"Experte #{nameof(position)} nicht 

gefunden."); 

  } 

 

 

  /// <summary> 

  /// nutzt die Funktion GetReiseziel() 

  /// </summary> 

  static public void DemoRefReturns2() 

  { 

   string[] orte = { "Rom", "Paris", "Oslo", "Istanbul", "Moskau" }; 

   ref string ort4 = ref GetReiseziel(orte, 3); 

   Console.WriteLine("Ort vorher: {0}", ort4); // --> "Istanbul" 

   // ändert das Array, da ref!     

   ort4 = "Athen"; 

   Console.WriteLine("Ort nun: {0}", orte[3]); // --> "Athen" 

  } 

 

 

In C# 7.0 bis 7.2 ist es nicht möglich, einen Managed Pointer, der ja immer bei der Deklaration 

schon eine Zuweisung braucht, nachträglich auf eine andere Speicherstelle zu verschieben. Erst C# 

7.3 unterstützt das Ref Local Reassignment.  

int i = 32; 

int k = 42; 

ref int z = ref i; 

Console.WriteLine("z=" + z); 

z += 5; 

Console.WriteLine("z=" + z); 

 

Die Ausgabe ist erst z=32 und dann z=37, da  z+=5 nicht den Zeiger verschiebt, sondern den Wert 

ändert. Bisher nicht erlaubt war, einen bestehenden Zeiger an eine andere Speicherstelle neu 

zuzuweisen. Folglich bemängelte der Compiler nachstehende Ergänzung in C# 7.0 bis 7.2: 

z = ref k;  

Console.WriteLine("z=" + z); 

 

Das ist aber in Version 7.3 nun möglich unter dem Namen "Ref Local Reassignment", sodass die 

dritte Ausgabe z=42 lautet. 



344 Zeigerprogrammierung 

 

 



Abfrageausdrücke / Language Integrated Query (LINQ)  345 

 

46 Abfrageausdrücke / Language Integrated 
Query (LINQ) 
46.1 Einführung und Motivation 

Language Integrated Query (LINQ) ist eine allgemeine Such- / Abfragesprache, die schon seit dem 

.NET Framework 3.5 in der .NET-Klassenbibliothek und der Sprachsyntax der Sprachen C# (seit 

Version 3.0) und Visual Basic .NET (seit Version 9.0) verankert ist.  

Das Problem, das LINQ zu lösen versucht, lässt sich so beschreiben: Jede Art von Datenspeicher 

(z.B. Objektmengen im Hauptspeicher, Datenbanktabellen, XML-Dokumente, 

Verzeichnisdienste) besitzt eine Möglichkeit zur Suche nach Elementen. Bei Datenbanken ist dies 

in der Regel die Sprache Structured Query Language (SQL), bei XML-Dokumenten XPath oder 

XQuery und bei Verzeichnisdiensten LDAP. Für Objektmengen im Hauptspeicher gibt es keinen 

Standard oder De-Facto-Standard. Innerhalb der .NET-Klassenbibliothek findet man 

unterschiedliche Such- und Abfragemöglichkeiten, z.B. DataView-Objekte für DataTable-

Objekte. Auch die Methoden Find() und FindAll(), mit denen man unter Angabe eines Prädikats 

in Objektmengen aus dem Namensraum System.Collections suchen kann, lassen sich dabei als eine 

Abfragesprache bezeichnen. Alle diese Abfragesprachen unterscheiden sich hinsichtlich ihrer 

Mächtigkeit und auch hinsichtlich ihrer Syntax, sodass man für diese verschiedenen Datenspeicher 

unterschiedliche Befehlssätze beherrschen muss. Erinnert sei an dieser Stelle auch noch daran, dass 

es zwar einen Standard für SQL gibt, aber es dennoch Unterschiede zwischen der SQL-Syntax 

verschiedener Datenbankmanagementsysteme gibt. 

LINQ tritt an, eine allgemeine Such- und Abfragesyntax für alle Arten von Datenspeichern zu 

definieren. Unterhalb der LINQ-Abfrageebene werden die Abfragen durch LINQ-Provider in 

andere Sprachen (z.B. SQL, XPath oder LDAP) übersetzt oder direkt auf dem Datenspeicher 

ausgeführt. 



346 Abfrageausdrücke / Language Integrated Query (LINQ) 

 

 
Abbildung: Architektur von LINQ 

Neben der Vereinheitlichung der Sprachen bietet LINQ noch einen Vorteil: Während bisher 

Sprachen wie SQL, XPath und LDAP aus der Sicht des Sprachcompilers nur Zeichenkettenliterale 

waren, ist die Abfragesyntax nun in der Sprachsyntax bzw. Klassenbibliothek verankert. Der große 

Vorteil von LINQ ist, dass die Sprachcompiler die Syntax prüfen können und die 

Entwicklungsumgebung IntelliSense-Unterstützung anbieten kann. Dies ist mit »externen« 

Suchsprachen, die der Compiler nur als Zeichenkette sieht, nicht möglich. 

46.2 LINQ-Provider 

Dieser Abschnitt dokumentiert die zum Redaktionsschluss verfügbaren und dem Autor bekannten 

LINQ-Provider. 

Hinweis: LINQ-Provider haben meistens einen Namen, der mit LINQ to … beginnt (z.B. LINQ 

to XML). Einige wenige Provider verwenden noch die alte Benennungsweise mit einem 

vorangestellten Kürzel (z.B. hieß LINQ to XML früher XLINQ).  

46.2.1 LINQ-Provider von Microsoft im .NET  

Microsoft bietet seit .NET Framework 3.5 die Möglichkeit zur Abfrage von 

▪ .NET-Objektmengen, die die Schnittstelle IEnumerable unterstützen (LINQ to Objects) 

▪ Microsoft SQL Server-Datenbanken (LINQ to SQL, früher: DLINQ),  

▪ ADO.NET-DataSets (LINQ to DataSet) und 

▪ XML-Daten (LINQ to XML, früher: XLINQ).  

Seit .NET Framework 3.5 Service Pack 1 liefert Microsoft noch zusätzlich: 

▪ LINQ to Entities im Entity Framework: Abfrage von relationalen Datenbanken (nicht nur 

Microsoft SQL Server wie bei LINQ to SQL) 

▪ LINQ to DataService: Steuerung von WCF-Datendiensten  mit Open Data Protocol (OData) 

Objektmenge (IEnumerable)

Microsoft

SQL Server

LINQ-Programmierschnittstelle

LINQ-to-Entities

Provider
LINQ-to-Objects LINQ-to-XML

C#-LINQ-Syntax

LINQ-to-SQL

Provider

C#-Code

VB.NET-LINQ-

Syntax

Andere 

Sprachsyntax

VB.NET-Code Anderer Code

ObjektObjektObjektObjekt Andere

Datenbanken

Entity Model

LINQ-to-...

?
XML-

Dokument

SQL

SQL SQL

eSQL

XPath

Andere

Abfragesprache

Prädikate



Abfrageausdrücke / Language Integrated Query (LINQ)  347 

 

▪ In Entity Framework Core liefert Microsoft ebenfalls einen LINQ-Provider mit. 

In diesem Buch werden nur LINQ-to-Objects und Parallel-LINQ behandelt. Die anderen LINQ-

Varianten setzen umfangreiche Kenntnisse zu den entsprechenden Klassenbibliotheken voraus, 

die außerhalb des Fokus dieses Buchs liegen. 

46.2.2 Andere LINQ-Provider 

Mittlerweise gibt es neben den im .NET Framework mitgelieferten Providern eine Reihe von 

Anbietern (kommerzielle und Open Source), so genannte LINQ-Provider für verschiedene 

Datenquellen.  

46.2.3 Formen von LINQ 

Es gibt zwei grundsätzliche Formen der LINQ-Unterstützung: 

▪ Abfrage über Mengen, die IEnumerable unterstützen: Diese Abfragen fallen alle unter LINQ 

to Objects und werden von LINQ im RAM ausgeführt. 

▪ Abfrage über Mengen, die IQueryable unterstützen: Diese Abfrage werden von einer 

datenquellenspezifischen LINQ-Implementierung ausgeführt. LINQ übergibt dieser 

Implementierung die Abfrage in Form eines Ausdrucksbaums (Expression Tree). Es ist der 

Implementierung überlassen, wie die Abfrage erfolgt (z.B. Umsetzung in SQL oder XPath 

oder Aufruf eines Webservices). Der Einsatz von  

IQueryable ist wesentlich komplexer als der Einsatz von IEnumerable, denn bei IQueryable 

werden die LINQ-Abfragen zunächst in einen Ausdrucksbaum (Expression Tree) 

umgewandelt. Dieser sprachneutrale Ausdrucksbaum wird dann an den LINQ-Provider 

übergeben, der diesen Baum in die jeweilige providerspezifische Anfragesyntax übersetzt. 

46.2.4 Einführung in die LINQ-Syntax 

Es gibt zwei Syntaxformen für LINQ: Die Abfragesyntax (Originalbezeichnung: Query Expression 

Syntax) und die Methodensyntax (Originalbezeichnung: Extension Method Syntax). Die 

Abfragesyntax ist eleganter, in der Praxis muss man in vielen Fällen beide Syntaxformen mischen, 

denn viele Befehle sind nur in der Methodensyntax verfügbar. 

LINQ-Abfragesyntax 

Die Grundstruktur eines LINQ-Befehls in der Abfragesyntax ist 

from... where... orderby ... select... 

Die Syntax von LINQ ist an die Datenbankabfragesprache SQL angelehnt, allerdings wird das 

from immer vorangestellt. Der Grund für diese Abweichung von SQL liegt darin, dass 

Entwicklungsumgebungen in der Lage sein sollen, dem Entwickler Hilfen bei der Eingabe 

(IntelliSense) zu geben. Dies kann eine Entwicklungsumgebung aber nur, wenn zu Beginn klar ist, 

auf welche Menge sich die Abfrage bezieht. Dies ist aber nicht die einzige Abweichung von der 

SQL-Syntax. 

Die folgende Beschreibung liefert eine komplette formale Definition der LINQ-Abfragesyntax. 

Alle diese hier genannten Begriffe (außer den Platzhaltern id, expr, source, key, query, condition 

und ordering) sind Schlüsselwörter der Sprache C# (seit 3.0) bzw. Visual Basic (seit 9.0) und 

werden von der Entwicklungsumgebung Visual Studio (seit 2008) auch wie Sprachschlüsselwörter 

eingefärbt. 



348 Abfrageausdrücke / Language Integrated Query (LINQ) 

 

Listing: Syntaxbeschreibung für die LINQ-Abfragesyntax (C#) 
from id in source 

{ from id in source | 

  join id in source on expr equals expr [ into id ] | 

  let id = expr | 

  where condition | 

  orderby ordering, ordering, … } 

  select expr | group expr by key 

[ into id query ] 

Listing: Syntaxbeschreibung für die LINQ-Abfragesyntax (Visual Basic .NET) 
From id In source 

{ from id In source | 

  Join id in source On expr Equals expr [ Into id ] | 

  Let id = expr | 

  Where condition | 

  Take x |  

  Skip x | 

  Order By ordering, ordering, … } 

  Select expr | Group expr By key 

  Aggregate x in source 

[ Into id query ] 

  Distinct  

An den obigen Syntaxbeschreibungen wird deutlich, dass gar nicht alle Sprachelemente von SQL 

in der LINQ-Abfragesyntax (d. h. durch eigene Sprachelemente) unterstützt werden. 

Beispielsweise fehlen in C# DISTINCT und TOP. Dies bedeutet aber nicht, dass diese 

Funktionalität in LINQ-Abfragen nicht verfügbar wäre. Es bedeutet nur, dass sie in der LINQ-

Abfragesyntax nicht verfügbar sind. Es gibt aber noch eine LINQ-Methodensyntax. In Visual 

Basic existieren mehr Befehle in der Abfragesyntax. 

Beispiele 

Vor der Diskussion der Methodensyntax sollen zunächst zwei Beispiele (jeweils in C# und Visual 

Basic) gezeigt werden. 

Beispiel: Abfrage einer Menge von Zeichenketten 

In diesem ersten Beispiel werden aus einer Liste von Monaten diejenigen Monate gefiltert, deren 

Namen vier Zeichen lang sind. Von den Monatsnamen werden nur die ersten drei Zeichen 

weiterverarbeitet. Die Liste wird lexikalisch aufsteigend sortiert. Das Ergebnis ist also Jul, Jun und 

Mär. 

Listing: Filtern in einer Liste von Zeichenketten (C#) 
  public static void Beispiel1() 

  { 

   // Datendefinition (=Datenquelle) 

   string[] AlleMonate = { "Januar", "Februar", "März", "April", "Mai", "Juni", 

"Juli", "August", "September", "Oktober", "November", "Dezember" }; 

   

   // LINQ-Abfrage 

   IEnumerable<string> Monate4 = from Monat in AlleMonate 

                 where Monat.Length == 4 

                 orderby Monat 

                 select Monat.Substring(0, 3); 

 

   // Nutzung des Abfrageergebnisses 

   foreach (string Monat in Monate4) 

   { 

    Console.WriteLine(Monat); 

   } 

  } 



Abfrageausdrücke / Language Integrated Query (LINQ)  349 

 

Listing: Filtern in einer Liste von Zeichenketten (Visual Basic .NET) 
Public Sub Beispiel1() 

  ' Datendefinition (=Datenquelle) 

  Dim AlleMonate As String() = {"Januar", "Februar", "März", "April", "Mai", 

"Juni", "Juli", "August", 

                                "September", "Oktober", "November", "Dezember"} 

 

  ' LINQ-Abfrage 

  Dim Monate4 As IEnumerable(Of String) = From Monat In AlleMonate _ 

   Where Monat.Length = 4 _ 

   Order By Monat _ 

   Select Monat.Substring(0, 3) 

 

  ' Nutzung des Abfrageergebnisses 

  For Each Monat As String In Monate4 

   Console.WriteLine(Monat) 

  Next 

 End Sub 

Beispiel: Abfrage einer Menge von Objekten des Typs Process 

Im zweiten Beispiel werden aus der Liste der laufenden Prozesse diejenigen herausgefiltert, die 

weniger als 700.000 Bytes Speicher benötigen. Die Datenmenge wird in diesem Fall von der 

statischen Methode GetProcesses() in der FCL-Klasse System.Diagnostics.Process geliefert. Von 

den gefilterten Prozessen wird der Name und die Speichermenge ausgegeben. 

Listing: Filtern der Prozessliste (C#) 
  public static void Beispiel2() 

  { 

   // LINQ-Abfrage 

   var Prozesse = 

   from p in System.Diagnostics.Process.GetProcesses() 

   where p.WorkingSet64 < 700000 

   select new { p.ProcessName, p.WorkingSet64 }; 

 

   // Nutzung des Abfrageergebnisses 

   foreach (var Prozess in Prozesse) 

   { 

    Console.WriteLine(Prozess.ProcessName + ": " + Prozess.WorkingSet64); 

   } 

  } 

Listing:Filtern der Prozessliste (Visual Basic .NET) 
Public Sub Beispiel2() 

  'LINQ-Abfrage 

  Dim Prozesse = _ 

   From p In System.Diagnostics.Process.GetProcesses() _ 

   Where (p.WorkingSet64 < 700000) _ 

   Select New With {p.ProcessName, p.WorkingSet64} 

 

  ' Nutzung des Abfrageergebnisses 

  Dim Prozess 

  For Each Prozess In Prozesse 

   Console.WriteLine(Prozess.ProcessName & ": " & Prozess.WorkingSet64) 

  Next 

 End Sub 

Hinweis: In dem zweiten Beispiel ist der Einsatz des Schlüsselwortes var anstelle eines 

konkreten Typnamens bzw. Dim ohne Datentyp zu beachten. Der Grund dafür ist, dass durch 

die Reduktion der Prozessliste auf die Attribute ProcessName und WorkingSet64 ein anonymer 

Typ entsteht. 

 



350 Abfrageausdrücke / Language Integrated Query (LINQ) 

 

Wichtig: Es gibt eine wichtige Voraussetzung, damit die LINQ-Abfragesyntax in MSIL (alias 

CIL) übersetzt werden kann: Der Namensraum System.Linq muss importiert sein, also in C#: 

using System.Linq; 

Häufig wird diese Bedingung übersehen. Dies erkennt man an der Fehlermeldung »Could not 

find an implementation of the query pattern for source type '…'«.  

Da select, where, from, etc. ja Schlüsselwörter der Programmiersprachen C# und Visual Basic 

sind, stellt sich der kritische Leser sicherlich die Frage, warum dieser Import notwendig erfüllt 

sein muss. Vor .NET Framework 3.5 gab es keine Schlüsselwörter, die von Referenzen und 

Importanweisungen abhängig waren. Der Grund liegt in diesem Fall darin, dass der Compiler 

die LINQ-Abfragesyntax in einem ersten Übersetzungsschritt in LINQ-Methodensyntax 

übersetzt. Diese Methoden sind Erweiterungsmethoden für bestehende Typen. Wenn diese 

Erweiterungsmethoden aber nicht verfügbar sind, schlägt die Übersetzung fehl. 

LINQ-Methodensyntax 

Wie bereits im vorangegangenen Abschnitt erwähnt, sind alle LINQ-Anweisungen intern als 

Methodenaufrufe realisiert. So wird z.B. das Schlüsselwort where der Abfragesyntax auf die 

Erweiterungsmethode Where() abgebildet, orderby ist realisiert durch OrderBy() und select durch 

Select(). Durch die Aneinanderreihung der Methodenaufrufe können komplexe Abfragen definiert 

werden. 

Abfragesyntax Methodensyntax 

// LINQ-Abfrage in Abfragesyntax 

IEnumerable<string> Monate4 =  

 from Monat in AlleMonate 

 where Monat.Length == 4 

 orderby Monat 

 select Monat.Substring(0, 3); 

 

// LINQ-Abfrage in Methodensyntax 

IEnumerable<string> Monate4 =  

AlleMonate 

.Where(Monat => Monat.Length == 4) 

.OrderBy(Monat => Monat) 

.Select(Monat => Monat.Substring(0,3)); 

Tabelle: Vergleich von Abfragesyntax und Methodensyntax an einem Beispiel 

Tatsächlich existiert nur für einen sehr kleinen Teil der Möglichkeiten von LINQ eine 

Repräsentation in der Abfragesyntax. Viele Möglichkeiten sind – insbesondere in C# – nur in der 

Methodensyntax verfügbar, z.B. Top(), Skip(), Distinct(), Min(), Average() etc. 

Um die Monate 6 bis 8 in der Liste zu ermitteln, kann man mit Skip() die ersten fünf überspringen 

und dann mit Take() die nächsten drei auswählen. 

Listing: Beispiel in Methodensyntax 
// LINQ-Abfrage in Methodensyntax 

IEnumerable<string> SommerMonate = 

    AlleMonate 

    .Select(Monat => Monat.Substring(0, 3)) 

    .Skip(5).Take(3); 

Die Methodensyntax ist nicht so elegant wie die Abfragesyntax. Der Entwickler kann aber die 

beiden Syntaxformen miteinander kombinieren, indem er den Ausdruck in Abfragesyntax in 

runden Klammern einschließt und auf diesem Ausdruck dann die Erweiterungsmethoden 

anwendet. 

Listing: Beispiel in gemischter Syntax 
// LINQ-Abfrage in gemischter Syntax 

IEnumerable<string> SommerMonate = 



Abfrageausdrücke / Language Integrated Query (LINQ)  351 

 

    (from Monat in AlleMonate 

    select Monat.Substring(0, 3)) 

    .Skip(5).Take(3); 

Hinweis: In Visual Basic ist die Abfragesyntax umfangreicher als in C#. In C# kann man aber 

auch alle LINQ-Befehle nutzen, zum Teil ist die Anwendung aber wesentlich uneleganter als in 

Visual Basic. 

Es gibt zur Laufzeit keinen Unterschied zwischen den beiden Syntaxformen. Auch die 

Mischung der Syntaxformen hat keinen Nachteil, denn die Klammerung sorgt nicht dafür, dass 

der Teilausdruck vorher ausgewertet wird. LINQ-Ausdrücke werden immer erst bei ihrer 

Verwendung ausgeführt (verzögerte Ausführung). Eine Ausnahme bilden die 

Konvertierungsmethoden ToArray(), ToDictionary(), ToList() und ToLookup(). Diese vier 

Methoden sorgen allerdings dafür, dass der davorstehende LINQ-Befehl sofort ausgeführt wird. 

Übersicht über die LINQ-Befehle 

Die folgende Tabelle zeigt die Liste aller in .NET 3.5 / 4.0 verfügbaren LINQ-Befehle. LINQ-

Befehle werden auch LINQ-Operatoren genannt. 



352 Abfrageausdrücke / Language Integrated Query (LINQ) 

 

Methodenna

me 

Schlüsselwort 

in der 

Abfragesynta

x (C#) 

Schlüsselwort in 

der Abfragesyntax 

(Visual Basic) 

Beschreibung Äquivalent 

in SQL 

Aggregate   Eigene 

Aggregatfunktionen  

– 

All  Aggregate … In … 

Into All() 

Liefert true, wenn 

alle Elemente einer 

Menge die 

angegebene 

Bedingung erfüllen 

– 

Any  Aggregate … In … 

Into Any() 

Liefert true, wenn 

mindestens ein 

Element der Menge 

die angegebene 

Bedingung erfüllt 

EXISTS 

Average   Mittelwert 

(arithmetischer 

Durchschnitt)  

AVG 

Cast from Typ x in 

Menge 

From … As … Typumwandlung 

aller Elemente der 

Menge 

– 

Concat   Vereinigungsmeng

e zweier Mengen 

UNION 

Contains   Prüft, ob die 

Menge ein 

bestimmtes 

Element enthält 

IN 

Count  Aggregate … In … 

Into Count() 

Liefert die Anzahl 

der Elemente in der 

Menge in Form 

einer 32-Bit-

Ganzzahl (Typ 

Int32) 

COUNT 

Distinct  Distinct Entfernt alle 

doppelten Elemente 

in der Liste 

DISTINCT 

ElementAt   Liefert das Element 

in der Menge an 

einer bestimmten 

Stelle (Index) 

– 

 

  



Abfrageausdrücke / Language Integrated Query (LINQ)  353 

 

Methodenna

me 

Schlüsselwort 

in der 

Abfragesynta

x (C#) 

Schlüsselwort in 

der Abfragesyntax 

(Visual Basic) 

Beschreibung Äquivalent 

in SQL 

ElementAtOr

Default 

  Liefert das Element 

in der Menge an 

einer bestimmten 

Stelle (Index) oder 

einen Standardwert, 

wenn der Index 

negativ oder größer 

als die Anzahl der 

Elemente ist 

– 

Empty   Erstellt eine leere 

Menge vom 

angegebenen Typ 

– 

Except   Vergleicht zwei 

Mengen und liefert 

nur diejenigen 

Elemente, die in 

der ersten Menge 

(die Menge, auf die 

die Methode 

angewendet wird), 

aber nicht in der 

zweiten Menge (die 

Menge, die als 

Parameter 

angegeben wird) 

vorhanden sind 

– 

First   Das erste Element 

einer Menge. Wenn 

mehrere Elemente 

in der Menge sind, 

werden alle 

anderen bis auf das 

erste verworfen. 

Wenn es kein 

Element gibt, tritt 

ein Laufzeitfehler 

auf. 

– 



354 Abfrageausdrücke / Language Integrated Query (LINQ) 

 

Methodenna

me 

Schlüsselwort 

in der 

Abfragesynta

x (C#) 

Schlüsselwort in 

der Abfragesyntax 

(Visual Basic) 

Beschreibung Äquivalent 

in SQL 

FirstOrDefault   Das erste Element 

einer Menge oder 

ein Standardwert 

(bei Referenztypen 

null bzw. Nothing), 

wenn die Menge 

leer ist. Wenn 

mehrere Elemente 

in der Menge sind, 

werden alle 

anderen bis auf das 

erste verworfen. 

– 

GroupBy group … by 

… into … 

Group … By … 

Into … 

Gruppiert eine 

Menge nach dem 

angegebenen 

Kriterium 

GROUP 

BY 

GroupJoin join … in … 

on … equals 

… into … 

Group Join … In … 

On … 

Verbindet zwei 

Mengen durch 

einen OUTER 

JOIN 

JOIN 

Intersect   Liefert die 

Schnittmenge 

zweier Mengen 

– 

Join join … in … 

on … equals 

… 

Join … In … On … 

Equals … 

Verbindet zwei 

Mengen durch 

einen INNER JOIN 

JOIN 

Last   Liefert das letzte 

Element einer 

Menge 

– 

LastOrDefault   Liefert das letzte 

Element einer 

Menge oder einen 

Standardwert, 

wenn die Menge 

leer ist 

– 

 

 

  

LongCount  Aggregate … In … 

Into LongCount() 

Liefert die Anzahl 

der Elemente in der 

Menge in Form 

einer 64-Bit 

Ganzzahl (Typ 

Int64) 

COUNT 



Abfrageausdrücke / Language Integrated Query (LINQ)  355 

 

Methodenna

me 

Schlüsselwort 

in der 

Abfragesynta

x (C#) 

Schlüsselwort in 

der Abfragesyntax 

(Visual Basic) 

Beschreibung Äquivalent 

in SQL 

Max  Aggregate … In … 

Into Max() 

Ermittelt den 

maximalen Wert 

einer Menge 

MAX 

Min  Aggregate … In … 

Into Min() 

Ermittelt den 

minimalen Wert 

einer Menge 

MIN 

OfType   Liefert alle 

Elemente einer 

Menge, die 

Instanzen einer 

bestimmten Klasse 

sind 

– 

OrderBy orderby Order By Sortiert eine Menge 

aufsteigend 

ORDER 

BY 

OrderByDesce

nding 

orderby … 

descending 

Order By … 

Descending 

Sortiert eine Menge 

absteigend 

ORDER 

BY DESC 

Range   Erzeugt eine 

Menge mit den 

numerischen 

Werten von n bis m 

– 

Repeat   Erzeugt eine 

Menge mit n-Mal 

dem gleichen 

Element 

– 

Reverse   Umkehren der 

Reihenfolge 

 

Select select Select Bestimmt die 

Daten und bildet 

die Elemente, die 

aus einer Menge 

erstellt werden 

SELECT 

SelectMany   Durchläuft 

Mengen, die selbst 

Mitglieder anderer 

Mengen sind und 

liefert eine flache 

Liste 

– 



356 Abfrageausdrücke / Language Integrated Query (LINQ) 

 

Methodenna

me 

Schlüsselwort 

in der 

Abfragesynta

x (C#) 

Schlüsselwort in 

der Abfragesyntax 

(Visual Basic) 

Beschreibung Äquivalent 

in SQL 

SequenceEqua

l 

  Prüft, ob zwei 

Mengen identisch 

sind hinsichtlich 

der Anzahl, 

Reihenfolge und 

Inhalt der Elemente 

– 

Single   Das erste Element 

einer Menge. Wenn 

es kein Element 

gibt oder wenn 

mehrere Elemente 

in der Menge sind, 

tritt ein 

Laufzeitfehler auf. 

– 

 

 

 

 

  

SingleOrDefa

ult 

  Das erste Element 

einer Menge. Wenn 

es kein Element 

gibt, wird der 

Standardwerte (bei 

Referenztypen null 

oder Nothing) 

geliefert. Wenn 

mehrere Elemente 

in der Menge sind, 

tritt ein 

Laufzeitfehler auf. 

– 

Skip  Skip Überspringt die 

ersten n Elemente 

einer Menge und 

liefert den Rest 

– 

SkipWhile  Skip While Überspringt so 

lange Elemente, 

wie eine 

Bedingung erfüllt 

wird und liefert den 

Rest 

– 

Sum  Aggregate … In … 

Into Sum() 

Summiert die 

Elemente einer 

Menge 

SUM 

Take  Take Liefert die ersten x 

Elemente einer 

Menge 

TOP 



Abfrageausdrücke / Language Integrated Query (LINQ)  357 

 

Methodenna

me 

Schlüsselwort 

in der 

Abfragesynta

x (C#) 

Schlüsselwort in 

der Abfragesyntax 

(Visual Basic) 

Beschreibung Äquivalent 

in SQL 

TakeWhile  Take While Liefert so lange 

Elemente, wie eine 

Bedingung erfüllt 

wird 

– 

ThenBy orderby …, … Order By …, … Angabe eines 

weiteren 

aufsteigenden 

Ordnungskriterium

s bei einer 

Sortierung 

ORDER 

BY  

ThenByDesce

nding 

orderby …, … 

descending 

Order By …, … 

Descending 

Angabe eines 

weiteren 

absteigenden 

Ordnungskriterium

s bei einer 

Sortierung 

ORDER 

BY  

ToArray   Konvertiert eine 

Menge zu einem 

Array 

– 

ToDictionary   Konvertiert eine 

Menge zu einer 

generischen 

Dictionary<K,T>-

Menge 

– 

ToList   Konvertiert eine 

Menge zu einer 

generischen 

List<T>- Menge 

– 

ToLookup   Konvertiert eine 

Menge zu einer 

generischen Look-

up<K,T>-Menge. 

– 

Union   Vereint zwei 

Mengen zu einer 

UNION 

Where where Where Filtern der 

Eingabemenge 

WHERE 

Tabelle: LINQ-Befehle 

Neben den LINQ-Befehlen kann man auch die Methoden der .NET-Klassenbibliothek in LINQ-

Abfragen verwenden. Sinnvoll sind z.B. die Methoden der Klassen System.String (z.B. 

StartsWith()),  System.DateTime (z.B. AddYears() und System.Math (z.B. Round()). Mit LINQ to 



358 Abfrageausdrücke / Language Integrated Query (LINQ) 

 

Objects kann man prinzipiell alle Methoden der .NET Klassenbibliothek und auch eigene 

Methoden in eigenen Geschäftsobjekten nutzen. Mit anderen LINQ-Providern ist dies nur dann 

möglich, wenn es für die Methode eine Entsprechung in der Basissyntax gibt. Dies gilt bei LINQ 

to SQL im Wesentlichen nur für einige Methoden der Klassen System.String, System.Math und 

System.DateTime. Andere Methoden und selbstdefinierte Methoden haben keine Entsprechung in 

SQL und können daher auch nicht in LINQ to SQL genutzt werden. 

Achtung: Ob die Reihenfolge der Befehle entscheidend ist, hängt von dem LINQ-Provider ab. 

Bei LINQ to Objects ist 

from x in Zahlen where x < 50 orderby x  select x 

viel schneller als 

from x in Zahlen orderby x where x < 50 select x 

Bei LINQ to Entities gibt es keinen Unterschied, denn die zugrundeliegende Datenbank wird 

dies optimieren. 

46.3 LINQ to Objects 

Mit LINQ to Objects wird die Abfrage von Objektmengen im Hauptspeicher bezeichnet. Abgefragt 

werden können alle Objektmengen, die entweder die Schnittstelle IEnumerable oder ihr 

generisches Pendant IEnumerable<T> unterstützen. Dies sind also die Klassen in 

System.Collections (z.B. ArrayList, Hashtable, Queue und Stack), die Klassen in 

System.Collections.Generic (z.B. List<T>, SortedDictionary<T>, Queue<T> und Stack<T>), die 

Klasse System.Array sowie spezielle Mengen wie DataRowCollection, DataColumnCollection, 

DirectoryEntries und ManagementObjectCollection. Da IEnumerable bzw. IEnumerable<T> 

Voraussetzungen für das Funktionieren der foreach-Schleife sind, besitzt praktisch jede Menge in 

der .NET-Klassenbibliothek eine der beiden Schnittstellen. Für LINQ to Objects ist es unerheblich, 

ob die Menge vom .NET Framework erzeugt wird oder von eigenem Programmcode. 

46.3.1 LINQ to Objects mit elementaren Datentypen 

Am Beispiel einer Menge von Zahlen in Form eines Arrays vom Typ Int32 soll die Anwendung 

von LINQ-Befehlen auf elementaren Datentypen gezeigt werden. 

Gegeben sind zwei Zahlenmengen: 

Listing: Definition der Zahlenmenge 
int[] Zahlen1 = { 15, 4, 11, 3, 19, 8, 16, 7, 12, 5, 9, 20, 1, 4, 8, 13, 14, 4, 1 

}; 

int[] Zahlen2 = { 12, 5, 31, 24, 29, 20, 13, 31 }; 

Das folgende Listing enthält zahlreiche Fragestellungen in Bezug auf diese beiden Zahlenmengen 

und den Weg, die Lösung mit LINQ zu ermitteln. Das jeweilige Ergebnis wird aus Platzgründen 

hier nicht abgedruckt. Durch den Programmcode zu diesem Buch können Sie dies jedoch selbst 

ausprobieren. 

Listing: Anwendungsbeispiele von LINQ to Objects auf Zahlenmengen 
  private static void Demo_LTO_Zahlen() 

  { 

   int i; 

   double d; 

 

   string s = "Geben Sie die Zahlen aus, die kleiner als 10 sind."; 

   var Ergebnis = 

       from n in Zahlen1 

       where n < 10 



Abfrageausdrücke / Language Integrated Query (LINQ)  359 

 

       select n; 

   Print(Ergebnis, s); 

 

   s = "Geben Sie die Zahlen, die kleiner als 10 sind, aufsteigend sortiert 

aus."; 

   Ergebnis = 

       from n in Zahlen1 

       where n < 10 

       orderby n // optional 

       select n; 

   Print(Ergebnis, s); 

 

   s = "Geben Sie die Zahlen, die kleiner als 10 sind, absteigend sortiert aus."; 

   Ergebnis = 

       from n in Zahlen1 

       where n < 10 

       orderby n descending 

       select n; 

   Print(Ergebnis, s); 

 

   s = "Geben Sie die Zahlen, die kleiner als 10 sind, absteigend sortiert aus." 

+  

       "Eliminieren Sie alle Duplikate."; 

   Ergebnis = 

       (from n in Zahlen1 

        where n < 10 

        orderby n descending 

        select n).Distinct(); 

   Print(Ergebnis, s); 

 

   s = "Geben Sie die vierte bis achte Zahl aus."; 

   Ergebnis = 

       (from n in Zahlen1 

        where n < 10 

        select n).Skip(3).Take(4); 

   Print(Ergebnis, s); 

 

   s = "Geben Sie die erste Zahl aus!"; 

   i = 

      (from n in Zahlen1 

       select n).First(); 

   Print(i, s); 

 

   s = "Geben Sie die letzte Zahl aus!"; 

   i = 

      (from n in Zahlen1 

       select n).Last(); 

   Print(i, s); 

 

   s = "Geben Sie die 10. Zahl aus!"; 

   i = 

      (from n in Zahlen1 

       select n).ElementAt(9); 

   Print(i, s); 

 

   s = "Geben Sie die 50. Zahl aus! (Fangen Sie den Fehler ab!)"; 

   i = 

      (from n in Zahlen1 

       select n).ElementAtOrDefault(49); 

   Print(i, s); 

 

   s = "Geben Sie die Anzahl der Zahlen aus."; 

   i = 

      (from n in Zahlen1 



360 Abfrageausdrücke / Language Integrated Query (LINQ) 

 

       select n).Count(); 

   Print(i, s); 

 

   s = "Geben Sie nur die niedrigste Zahl aus."; 

   i = 

      (from n in Zahlen1 

       select n).Min(); 

   Print(i, s); 

 

   s = "Geben Sie nur die höchste Zahl aus."; 

   i = 

     (from n in Zahlen1 

      select n).Max(); 

   Print(i, s); 

 

   s = "Geben Sie den Durchschnitt aus."; 

   d = 

     (from n in Zahlen1 

      select n).Average(); 

   Print(d, s); 

 

   s = "Geben Sie die Summe aus."; 

   d = 

     (from n in Zahlen1 

      select n).Sum(); 

   Print(d, s); 

 

   s = "Geben Sie das Produkt aller Werte aus."; 

   d = 

     (from n in Zahlen1 

      select n).Aggregate((summe, wert) => summe *= wert); 

   Print(d, s); 

 

   s = "Gruppieren Sie die Werte."; 

   IEnumerable<IGrouping<int, int>> GruppeErgebnis = 

       (from n in Zahlen1 

        group n by n); 

   Print(GruppeErgebnis, s); 

 

   s = "Geben Sie die Häufigkeit eines jeden Werts aus!"; 

   IDictionary<int, int> GruppeHaeufigkeit = 

         (from n in Zahlen1 

          group n by n into g 

          select new { Wert = g.Key, Anzahl = g.Count() } 

          ).ToDictionary(y => y.Wert, y => y.Anzahl); 

   Print(GruppeHaeufigkeit, s); 

 

   s = "Verbinden Sie die Zahlenmengen 1 und 2:"; 

   Ergebnis = (from n in Zahlen1 select n).Union(from n2 in Zahlen2 select n2); 

   Print(Ergebnis, s); 

 

   s = "Verbinden Sie die Zahlenmengen 1 und 2 und sortieren Sie das Ergebnis:"; 

   Ergebnis = (from n in Zahlen1 select n).Union(from n2 in Zahlen2 select 

n2).OrderBy(n => n); 

   Print(Ergebnis, s); 

 

   s = "Bilden Sie die Schnittmenge aus den Zahlenmengen 1 und 2."; 

   Ergebnis = (from n in Zahlen1 select n).Intersect(from n2 in Zahlen2 select 

n2).OrderBy(n => n); 

   Print(Ergebnis, s); 

 

   s = "Schließen Sie die Zahlen aus Zahlenmengen 2 in Menge 1 aus."; 

   Ergebnis = (from n in Zahlen1 select n).Except(from n2 in Zahlen2 select 

n2).OrderBy(n => n); 



Abfrageausdrücke / Language Integrated Query (LINQ)  361 

 

   Print(Ergebnis, s); 

 

   s = "Prüfen Sie, ob die Zahlenmenge 1 und 2 die gleichen Zahlen in der 

gleichen Reihenfolge enthalten."; 

   bool Erfuellt = (from n in Zahlen1 select n).SequenceEqual(from n2 in Zahlen2 

select n2); 

   Print(Erfuellt, s); 

 

   s = "Prüfen Sie, ob die Zahl 20 in der Menge vorkommt."; 

   Erfuellt = 

       (from n in Zahlen1 

        orderby n descending 

        select n).Contains(20); 

   Print(Erfuellt, s); 

 

   s = "Prüfen Sie, ob Zahlen größer als 20 in der Menge vorkommen."; 

   Erfuellt = 

       (from n in Zahlen1 

        orderby n descending 

        select n).Any(n => n > 20); 

   Print(Erfuellt, s); 

 

   s = "Prüfen Sie, ob alle Zahlen kleiner 20 sind."; 

   Erfuellt = 

       (from n in Zahlen1 

        orderby n descending 

        select n).All(n => n < 20); 

   Print(Erfuellt, s); 

 

   s = "Filtern Sie alle Integer-Werte heraus!"; 

   Ergebnis = 

   (from n in Zahlen1 select n).OfType<int>(); 

 

   Print(Ergebnis, s); 

 

   s = "Wandeln Sie alle Zahlen in Byte-Werte um!"; 

   var kleineZahlen = 

     (from n in Zahlen1 select n).Cast<byte>(); 

   foreach (var x in kleineZahlen) 

   { 

    Console.WriteLine(x); 

   } 

   Print(kleineZahlen, s); 

  } 

Das obige Listing nutzt zur Ausgabe die selbstdefinierte Methode Print(). Es muss aber mehrere 

Überladungen von Print() geben, da die LINQ-Abfragen unterschiedliche Ergebnisse liefern 

können: 

▪ Viele der obigen LINQ-Abfragen liefern wieder eine Zahlenmenge zurück. Der konkrete 

Datentyp, der zurückgeliefert wird, ist von den eingesetzten Methoden abhängig. Alle diese 

Klassen besitzen jedoch die Schnittstelle IEnumerable<int>. Zum Durchlaufen des 

Ergebnisses ist eine einfache Schleife ausreichend. 

▪ Durch das Gruppieren von Elementen ohne das Schlüsselwort into entstehen zwei 

verschachtelte Objektmengen des Typs IEnumerable<IGrouping<int, int>>. Die obere Menge 

repräsentiert dabei die Gruppen, die untergeordnete Menge die Elemente in jeder Gruppe. Zum 

Durchlaufen des Ergebnisses ist eine geschachtelte Schleife notwendig. Diese Form des 

Gruppierens bezeichnet man als hierarchisches Gruppieren. 

▪ Durch das Gruppieren von Elementen mit dem Schlüsselwort into entsteht ein neuer anonymer 

Typ, der das Gruppierungskriterium und die zusammengefassten Daten anderer Mitglieder des 



362 Abfrageausdrücke / Language Integrated Query (LINQ) 

 

Ausgangstyps enthält. Das Ergebnis ist ein Dictionary-Objekt mit zwei Int32-Werten: 

IDictionary<int, int>. Diese Form des Gruppierens entspricht dem flachen Gruppieren aus 

SQL. Trotz der Verwendung von into kann man hierarchisches Gruppieren erreichen, wenn 

man in dem anonymen Typ auf die Gruppe selbst verweist, z.B. from p in 

System.Diagnostics.Process.GetProcesses group p by p.ProcessName into g select new { 

Name = g.Key, Anzahl = g.Count(), Max = g.Max(p => p.WorkingSet64), 

ProzesseInDieserGruppe = g }; 

Listing: Ausgaberoutinen für die Ergebnisse der LINQ-Abfragen (Auswahl) 
priate static void Print(IEnumerable<int> Nums, string s) 

  { 

   HeadLine(s); 

   foreach (int x in Nums) 

   { 

    Console.WriteLine(x); 

   } 

  } 

 

  private static void Print(IDictionary<int, int> gruppe, string s) 

  { 

   HeadLine(s); 

   foreach (var x in gruppe) 

   { 

    Console.WriteLine(x.Key + ": " + x.Value); 

   } 

  } 

 

  private static void Print(IEnumerable<IGrouping<int, int>> Gruppen, string s) 

  { 

   HeadLine(s); 

   foreach (IGrouping<int, int> x in Gruppen) 

   { 

    Console.WriteLine("---- " + x.Key); 

    foreach (int i in x) 

    { 

     Console.WriteLine(i); 

    } 

   } 

  } 

46.3.2 LINQ to Objects mit komplexen Typen des .NET Framework 

Die Anwendung von LINQ to Objects auf komplexe Datentypen unterscheidet sich von der 

Anwendung auf elementare Datentypen wie folgt: 

▪ Bei LINQ to Objects mit elementaren Datentypen wurde die in dem from-Ausdruck 

deklarierte Laufvariable selbst für Bedingungen, Sortierungen und Berechnungen verwendet. 

Bei komplexen Datentypen muss mithilfe der Laufvariablen Bezug auf ein Mitglied des 

Objekts genommen werden. 

▪ LINQ to Objects mit elementaren Datentypen liefert in der Regel eine Menge des Eingabetyps 

zurück. Bei komplexen Datentypen kann alternativ ein anonymer Typ zurückgegeben werden, 

der nur eine Teilmenge der Mitglieder des Ausgangstyps enthält. Dies nennt man eine 

Projektion. 

Beispiel 

In dem folgenden Beispiel werden LINQ-Befehle auf einer Menge von Objekten des Typs 

System.Diagnostics.Process angewendet. Die statische Methode GetProcesses() der Klasse 



Abfrageausdrücke / Language Integrated Query (LINQ)  363 

 

System.Diagnostics.Process liefert eine Liste der laufenden Prozesse auf einem System in Form 

eines Arrays mit Instanzen von System.Diagnostics.Process. 

Listing: Anwendungsbeispiele von LINQ to Objects auf eine Menge von Objekten des Typs 

System.Diagnostics.Process 
private static void Demo_LTO_Prozesse() 

  { 

   Process[] Prozesse = Process.GetProcesses(); 

 

   Process p; 

   long i; 

   double d; 

 

   string s = "Geben Sie alle Prozesse aus, die weniger als 3.000.000 Bytes 

Speicher verbrauchen."; 

   var Ergebnis = 

       from n in Prozesse 

       where n.WorkingSet64 < 3000000 

       select n; 

   Print(Ergebnis, s); 

 

   s = "Geben Sie alle Prozesse aus, die weniger als 3.000.000 Bytes Speicher 

verbrauchen. Sortieren Sie die Liste aufsteigend nach Speicherverbrauch."; 

   Ergebnis = 

   from n in Prozesse 

   where n.WorkingSet64 < 3000000 

   orderby n.WorkingSet64 // optional 

   select n; 

   Print(Ergebnis, s); 

 

   s = "Geben Sie alle Prozesse aus, die weniger als 3.000.000 Bytes Speicher 

verbrauchen. Sortieren Sie die Liste absteigend nach Speicherverbrauch."; 

   Ergebnis = 

   from n in Prozesse 

   where n.WorkingSet64 < 3000000 

   orderby n.WorkingSet64 descending // optional 

   select n; 

   Print(Ergebnis, s); 

    

   s = "Geben Sie die Prozesse aus. Eliminieren Sie alle Duplikate."; 

   Ergebnis = 

       (from n in Prozesse 

        select n).Distinct(); 

   Print(Ergebnis, s); 

 

   s = "Geben Sie den vierten bis achten Prozess aus in der nach 

Speicherverbrauch aufsteigend sortierten Liste aller Prozesse, die mehr als 

1.000.000 Bytes verbrauchen."; 

   Ergebnis = 

       (from n in Prozesse 

        where n.WorkingSet64 > 1000000 

        orderby n.WorkingSet64 

        select n).Skip(3).Take(4); 

   Print(Ergebnis, s); 

 

   s = "Geben Sie den ersten Prozess aus in der nach Speicherverbrauch 

aufsteigend sortierten Liste aller Prozesse, die mehr als 1.000.000 Bytes 

verbrauchen."; 

   p = 

      (from n in Prozesse 

       where n.WorkingSet64 > 1000000 

       orderby n.WorkingSet64 

       select n).First(); 



364 Abfrageausdrücke / Language Integrated Query (LINQ) 

 

   Print(p, s); 

 

   s = "Geben Sie den letzten Prozess aus in der nach Speicherverbrauch 

aufsteigend sortierten Liste aller Prozesse, die mehr als 1.000.000 Bytes 

verbrauchen."; 

   p = 

      (from n in Prozesse 

       where n.WorkingSet64 > 1000000 

       orderby n.WorkingSet64 

       select n).Last(); 

   Print(p, s); 

 

   s = "Geben Sie den 10. Prozess aus in der nach Speicherverbrauch aufsteigend 

sortierten Liste  

aller Prozesse, die mehr als 1.000.000 Bytes verbrauchen."; 

   p = 

      (from n in Prozesse 

       where n.WorkingSet64 > 1000000 

       orderby n.WorkingSet64 

       select n).ElementAt(9); 

   Print(p, s); 

 

   s = "Geben Sie den 150. Prozess aus! (Fangen Sie den Fehler ab!)"; 

   p = 

      (from n in Prozesse 

       select n).ElementAtOrDefault(149); 

   Print(p, s); 

 

   s = "Geben Sie die Anzahl der Prozesse aus (mit einem LINQ-Statement!)"; 

   i = 

      (from n in Prozesse 

       select n).Count(); 

   Print(i, s); 

 

 

   s = "Geben Sie nur den niedrigsten Speicherverbrauch aus"; 

   i = 

      (from n in Prozesse 

       select n).Min(n => n.WorkingSet64); 

   Print(i, s); 

 

   s = "Geben Sie nur den höchsten Speicherverbrauch aus"; 

   i = 

      (from n in Prozesse 

       select n).Max(n => n.WorkingSet64); 

   Print(i, s); 

    

   s = "Geben Sie den durchschnittlichen Speicherverbrauch aus"; 

   d = 

      (from n in Prozesse 

       select n).Average(n => n.WorkingSet64); 

   Print(i, s); 

 

   s = "Geben Sie die Summe des Speicherverbrauchs aus"; 

   i = 

      (from n in Prozesse 

       select n).Sum(n => n.WorkingSet64); 

   Print(i, s); 

    

   s = "Gruppieren Sie die Prozesse nach Namen."; 

   IEnumerable<IGrouping<string, Process>> GruppeErgebnis = 

       (from n in Prozesse 

        group n by n.ProcessName); 

   Print(GruppeErgebnis, s); 



Abfrageausdrücke / Language Integrated Query (LINQ)  365 

 

 

   s = "Geben Sie die Häufigkeit eines jeden Prozessnamens aus!"; 

   IDictionary<string, int> GruppeHaeufigkeit = 

         (from n in Prozesse 

          group n by n.ProcessName into g 

          select new { Name = g.Key, AnzProzess = g.Count() } 

          ).ToDictionary(y => y.Name, y => y.AnzProzess); 

   Print(GruppeHaeufigkeit, s); 

    

   s = "Starten Sie einen neuen Prozess (Notepad) und ermitteln Sie, durch einen 

Vergleich der Prozessliste vorher und nachher, welche Prozesse neu hinzugekommen 

sind. (Geben Sie die Process-ID und den Prozessnamen aus!)"; 

   Process neupro = Process.Start(@"C:\Windows\notepad.exe"); 

   neupro.WaitForInputIdle(); 

   Process[] Prozesse2 = Process.GetProcesses(); 

 

   //Print((from p1 in Prozesse where p1.ProcessName=="notepad" select p1), 

"Test"); 

   //Print((from p2 in Prozesse2 where p2.ProcessName=="notepad" select p2), 

"Test"); 

   IEnumerable<int> ProzessListe = (from n2 in Prozesse2 select 

n2.Id).Except(from n in Prozesse select n.Id); 

   Print(ProzessListe, s); 

 

   //var ProzessListe2 = from p in System.Diagnostics.Process.GetProcesses() 

select p.ProcessName; 

 

   s = "Listen Sie die Prozesse mit ihren Threads auf."; 

   var ProzesseMitThreads = 

      (from n in Prozesse 

       select new { n, n.Threads } 

       ); 

   HeadLine(s); 

   foreach (var x in ProzesseMitThreads) 

   { 

    Console.WriteLine(x.n); 

    try 

    { 

     foreach (ProcessThread y in x.Threads) 

     { 

      Console.WriteLine(y.StartTime); 

      } 

    } 

    catch (Exception) 

    { 

    } 

   } 

 

   s = "Geben Sie zu jedem Prozess die Anzahl der Threads aus!"; 

   var ProzesseMitThreadCount = 

    (from n in Prozesse 

     where n.Id > zehn 

     select new { n, n.Threads.Count } 

     ); 

   HeadLine(s); 

   foreach (var m in ProzesseMitThreadCount) 

   { 

    Console.WriteLine(m.n + ":" + m.Count); 

   } 

 

   s = "Geben Sie die Prozesse aus, die mehr als 10 Threads haben!"; 

   Ergebnis = 

      (from n in Prozesse 

       where n.Threads.Count > 10 



366 Abfrageausdrücke / Language Integrated Query (LINQ) 

 

       select n); 

   Print(Ergebnis, s); 

 

   s = "Geben Sie den/die Prozess(e) aus, der/die die meisten Threads hat!"; 

   Ergebnis = (from n in Prozesse where n.Threads.Count == Prozesse.Max(x => 

x.Threads.Count) select n); 

   Print(Ergebnis, s); 

  } 

46.3.3 LINQ to Objects mit eigenen Geschäftsobjekten  

LINQ-Abfragen können auch über eigene (Geschäfts-)Objektmengen gestellt werden, egal ob 

diese direkt durch Implementierung von IEnumerable/IEnumerable<T> oder durch Ableiten von 

einer der vordefinierten Mengenklassen implementiert wurden. Das folgende Objektmodell zeigt 

drei Mengen (FlugMenge, PassagierMenge und BuchungsMenge), die jeweils durch Ableiten von 

der Klasse System.Collections.Generic.List<T> realisiert wurden. 

 
Abbildung: Objektmodell für die folgenden Beispiele 

Beispiel 

Das folgende Listing zeigt zahlreiche Beispiele zur Abfrage der Mengen in dem oben dargestellten 

Objektmodell. Das Listing setzt voraus, dass die Mengen vorher mit Daten gefüllt wurden. Diese 

Befüllung wird hier aus Platzgründen nicht abgedruckt, ist jedoch in den Codebeispielen zu diesem 

Buch enthalten. 

Listing: Anwendungsbeispiele von LINQ to Objects auf verschiedene selbstdefinierte 

Geschäftsobjektmengen 
private static void Demo_LTO_Objektmodell() 

  { 

   // Initialisiere das Objektmodell 

   BO_Init.Init(); 

   string s; 



Abfrageausdrücke / Language Integrated Query (LINQ)  367 

 

   long i; 

   Flug flug; 

   double d; 

 

   s = "Geben Sie alle Flüge von Rom abgehend aus!"; 

   var Ergebnis = 

    from f in Flug.AlleFluege 

    where f.AbflugOrt == "Rom" 

    select f; 

   Print(Ergebnis, s); 

 

   s = "Geben Sie alle Flüge aus, die weniger als 100 freie Plätze haben."; 

   Ergebnis = 

      from n in Flug.AlleFluege 

      where n.FreiePlaetze < 100 

      select n; 

   Print(Ergebnis, s); 

 

   s = "Geben Sie alle Flüge aus, die weniger als 100 freie Plätze haben. 

Sortieren Sie die Liste aufsteigend nach Platzanzahl."; 

   Ergebnis = 

   from n in Flug.AlleFluege 

   where n.FreiePlaetze < 100 

   orderby n.FreiePlaetze 

   select n; 

   Print(Ergebnis, s); 

 

   s = "Geben Sie alle Flüge aus, die weniger als 100 freie Plätze haben. 

Sortieren Sie die Liste absteigend nach Platzanzahl."; 

   Ergebnis = 

   from n in Flug.AlleFluege 

   where n.FreiePlaetze < 100 

   orderby n.FreiePlaetze descending 

   select n; 

   Print(Ergebnis, s); 

 

   s = "Geben Sie Flug 101 aus."; 

   flug = (from f in Flug.AlleFluege 

           where f.FlugNr == 101 

           select f).SingleOrDefault(); 

   Print(flug, s); 

 

   s = "Geben Sie die Flüge aus, aber jede Strecke nur einmal!"; 

   var Strecken = 

        (from n in Flug.AlleFluege 

         select new { n.AbflugOrt, n.ZielOrt }).Distinct(); 

   HeadLine(s); 

 

   foreach (var f in Strecken) 

   { 

    Console.WriteLine(f.AbflugOrt + " -> " + f.ZielOrt); 

   } 

 

   s = "Geben Sie alle Ziele aus, die von Rom aus erreichbar sind."; 

   var Ziele = 

        (from n in Flug.AlleFluege 

         where n.AbflugOrt == "Rom" 

         select n.ZielOrt).Distinct(); 

   HeadLine(s); 

 

   foreach (string f in Ziele) 

   { 

    Console.WriteLine(f); 

   } 



368 Abfrageausdrücke / Language Integrated Query (LINQ) 

 

 

   s = "Geben Sie den vierten bis achten Flug aus in der nach freien Plätzen 

aufsteigend sortierten Liste aller Flüge, die in Berlin landen."; 

   Ergebnis = 

       (from n in Flug.AlleFluege 

        where n.ZielOrt == "Berlin" 

        orderby n.FreiePlaetze 

        select n).Skip(3).Take(4); 

   Print(Ergebnis, s); 

 

   s = "Geben Sie den ersten Flug aus in der nach freien Plätzen aufsteigend 

sortierten Liste aller Flüge, die in Berlin landen."; 

   flug = 

      (from n in Flug.AlleFluege 

       where n.ZielOrt == "Berlin" 

       orderby n.FreiePlaetze 

       select n).First(); 

   Print(flug, s); 

 

   s = "Geben Sie den letzten Flug aus in der nach freien Plätzen aufsteigend 

sortierten Liste aller Flüge, die in Berlin landen."; 

   flug = 

      (from n in Flug.AlleFluege 

       where n.ZielOrt == "Berlin" 

       orderby n.FreiePlaetze 

       select n).Last(); 

   Print(flug, s); 

 

   s = "Geben Sie den 10. Flug aus in der nach freien Plätzen aufsteigend 

sortierten Liste aller Flüge, die in Berlin landen."; 

   flug = 

      (from n in Flug.AlleFluege 

       where n.ZielOrt == "Berlin" 

       orderby n.FreiePlaetze 

       select n).ElementAt(9); 

   Print(flug, s); 

 

   s = "Geben Sie den 150. Flug aus in der nach freien Plätzen aufsteigend 

sortierten Liste aller Flüge, die in Berlin landen."; 

   flug = 

      (from n in Flug.AlleFluege 

       where n.ZielOrt == "Berlin" 

       orderby n.FreiePlaetze 

       select n).ElementAtOrDefault(149); 

   Print(flug, s); 

 

   s = "Geben Sie Anzahl der Flüge aus (mit einem LINQ-Statement!)"; 

   i = 

      (from n in Flug.AlleFluege 

       select n).Count(); 

   Print(i, s); 

 

   s = "Geben Sie die geringste freie Platzanzahl aus."; 

   i = 

      (from n in Flug.AlleFluege 

       select n).Min(n => n.FreiePlaetze); 

   Print(i, s); 

 

   s = "Geben Sie die höchste freie Platzanzahl aus."; 

   i = 

      (from n in Flug.AlleFluege 

       select n).Min(n => n.FreiePlaetze); 

   Print(i, s); 

 



Abfrageausdrücke / Language Integrated Query (LINQ)  369 

 

   s = "Geben Sie die durchschnittliche freie Platzanzahl aus."; 

   d = 

      (from n in Flug.AlleFluege 

       select n).Average(n => n.FreiePlaetze); 

   Print(d, s); 

 

   s = "Geben Sie Summe aller freien Plätze aus."; 

   i = 

      (from n in Flug.AlleFluege 

       select n).Sum(n => n.FreiePlaetze); 

   Print(i, s); 

 

   s = "Gruppieren Sie die Flüge nach Abflugorten."; 

   IEnumerable<IGrouping<string, Flug>> GruppeErgebnis = 

       (from n in Flug.AlleFluege 

        group n by n.AbflugOrt); 

   Print(GruppeErgebnis, s); 

 

   s = "Geben Sie die Häufigkeit eines jeden Abflugortes aus!"; 

   IDictionary<string, int> GruppeHaeufigkeit = 

         (from n in Flug.AlleFluege 

          group n by n.AbflugOrt into g 

          select new { Name = g.Key, AnzFlug = g.Count() } 

          ).ToDictionary(y => y.Name, y => y.AnzFlug); 

   Print(GruppeHaeufigkeit, s); 

 

   s = "Erstellen Sie eine gruppierte Liste aller Passagiere mit ihren 

Buchungen!"; 

   var pass2 = from p in Passagier.AllePassagiere 

               orderby p.GanzerName 

               select new { p.GanzerName, p.Buchungen }; 

   foreach (var p in pass2) 

   { 

    Console.WriteLine(p.GanzerName); 

    foreach (Buchung b in p.Buchungen) 

     Console.WriteLine("\t" + b.Buchungscode); 

   } 

 

   s = "Erstellen Sie die Liste der zehn Passagiere mit den meisten Buchungen."; 

   var pass = (from p in Passagier.AllePassagiere 

               orderby p.Buchungen.Count descending 

               select p).Take(10); 

   Print(pass, s); 

 

   s = "Erstellen Sie die Liste des/der Passagier(e) mit den meisten Buchungen."; 

   pass = (from n in Passagier.AllePassagiere where n.Buchungen.Count == 

Passagier.AllePassagiere.Max(x => x.Buchungen.Count) select n); 

   Print(pass, s); 

 

   s = "Finden Sie alle Passagiere, die nach Rom fliegen."; 

   pass = (from p in Passagier.AllePassagiere 

           where p.Buchungen.Any(b => b.Flug.ZielOrt == "Rom") 

           select p); 

   Print(pass, s); 

 

   s = "Finden Sie alle Passagiere, die genauso viele Buchungen haben wie ein 

Flug freie Plätze."; 

   var joinpass = (from p in Passagier.AllePassagiere 

                   join f in Flug.AlleFluege 

                   on p.Buchungen.Count equals f.FreiePlaetze 

                   select new { p.GanzerName, f.FlugNr, p.Buchungen.Count, 

f.FreiePlaetze }); 

   HeadLine(s); 

   foreach (var j in joinpass) 



370 Abfrageausdrücke / Language Integrated Query (LINQ) 

 

   { 

    Console.WriteLine(j.GanzerName + " und Flug " + j.FlugNr + " haben die 

gleiche Zahl: " + j.Count + " / " + j.FreiePlaetze); 

   } 

 

   s = "Geben Sie alle Passagiere aus und optional dazu einen Flug, der 

genausoviele freie Plätze hat wie der Passagier Buchungen hat."; 

   var joinpass2 = (from p in Passagier.AllePassagiere 

                    join f in Flug.AlleFluege 

                    on p.Buchungen.Count equals f.FreiePlaetze 

                    into Fluege 

                    select new { p.GanzerName, Fluege }); 

   HeadLine(s); 

   foreach (var j in joinpass2) 

   { 

    Console.WriteLine(j.GanzerName + " hat " + j.Fluege.Count() + " 

korrespondierende Flüge!"); 

   } 

 

   s = "Geben Sie alle Passagiere aus, die älter als 50 Jahre sind!"; 

   pass = (from p in Passagier.AllePassagiere 

           where p.Geburtsdatum.AddYears(50) < DateTime.Now 

           select p); 

   Print(pass, s); 

 

   s = "Geben Sie alle Flüge aus, mit Passagieren älter als 50 Jahre !"; 

   Ergebnis = (from p in Passagier.AllePassagiere 

               where p.Geburtsdatum.AddYears(50) < DateTime.Now 

               from b in p.Buchungen 

               select b.Flug).Distinct(); 

   Print(Ergebnis, s); 

 } 

46.4 Parallel LINQ (PLINQ) 

Parallel LINQ (PLINQ, früher auch LINQ to Parallel) ist neu ab .NET 4.0. Es ermöglicht die 

Parallelisierung von LINQ to Objects-Abfragen auf mehrere Prozessoren / Prozessorkerne. 

Dadurch kann (!) sich eine Beschleunigung ergeben.  

PLINQ ist realisiert in Form der Erweiterungsmethode AsParallel(), die auf einfache Weise in 

LINQ to Objects-Abfragen integriert werden kann.  

Das folgende Beispiel zeigt eine einfache Abfrage mit Filtern (where) und Sortieren (orderby) über 

eine Zahlenreihe mit Einsatz von AsParallel(). 

Listing: Eine Abfrage ohne und mit PLINQ 
  /// <summary> 

  /// Massendaten filtern und sortieren mit PLINQ 

  /// </summary> 

  public static void LTOMassendaten_mit_PLINQ() 

  { 

  

   long AnzZahlen = 1000000; 

   System.Random rnd = new Random(DateTime.Now.Year); 

   List<long> Zahlen = new List<long>(); 

   for (int i = 1; i <= AnzZahlen; i++) Zahlen.Add(rnd.Next(100)); 

  

   long Summe = 0; 

   Stopwatch t = new Stopwatch(); 

   t.Start(); 

   for (int w = 1; w <= 20; w++) 

   { 



Abfrageausdrücke / Language Integrated Query (LINQ)  371 

 

    var q = (from x in Zahlen.AsParallel() where x < 50 orderby x select x).ToLis

t(); 

    Summe += q.Count(); 

   } 

   t.Stop(); 

   Console.WriteLine("Summe: " + Summe); 

   Console.WriteLine("Mit PLINQ  = " + t.ElapsedMilliseconds); 

  

  } 

Die folgende Tabelle zeigt Messergebnisse, auch im Vergleich, wenn man AsParallel() weglassen 

würde. 

Anzahl Zahlen Ohne PLINQ – ohne 

AsParallel() 

Mit PLINQ – mit 

AsParallel() 

10000 50 Millisekunden 76 Millisekunden 

100000 441 Millisekunden 190 Millisekunden 

1000000 5132 Millisekunden 1532 Millisekunden 

Tabelle: Ausführungsdauer von LINQ to Objects ohne und mit PLINQ, jeweils auf dem gleichen 

Rechner mit Intel Core I7 mit acht Prozessorkernen 

Achtung: Man sieht: Erst bei größeren Grundmengen lohnt der mit der Parallelisierung 

verbundene Zusatzaufwand! 

 
Abbildung: Auslastung von acht Kernen bei einer Abfrage ohne PLINQ 

 
Abbildung: Auslastung von acht Kernen bei einer Abfrage mit PLINQ 

Achtung: PLINQ bessert auch Reihenfolgefehler aus. Dort ist 

from x in Zahlen orderby x where x < 50 select x 

genauso schnell wie 

from x in Zahlen where x < 50 orderby x  select x 

Ohne PLINQ dauert die erste LINQ to Objects-Abfrage bei 10000 Zahlen etwa doppelt so lange 

wie die zweite! 

 

Tipp: Bei Bedarf kann das Verhalten von PLINQ durch den Einsatz weiterer 

Erweiterungsmethoden beeinflusst werden. Wird zum Beispiel mit AsOrdered() festgelegt, dass 

die Sortierreihenfolge aus der Quelle erhalten bleiben soll, bringt dies im Zuge einer parallelen 

Abfrage etwas Mehraufwand mit sich und muss deswegen mit dieser Methode bei Bedarf 

angefordert werden. Mittels WithCancellation() wird darüber hinaus ein CancellationToken an 

die Abfrage übergeben, sodass deren Ausführung später abgebrochen werden kann. 



372 Abfrageausdrücke / Language Integrated Query (LINQ) 

 

WithDegreeOfParallelism() gibt an, wie viele Tasks maximal für diese Anfrage verwendet 

werden dürfen. Standardmäßig werden so viele Tasks wie Kerne verwendet, die dann im 

Idealfall alle genutzt werden können. Kommt PLINQ zur Entscheidung, dass das Parallelisieren 

einer Abfrage nicht sinnvoll ist, so wird diese sequenziell ausgeführt. Dieses Verhalten kann 

allerdings mittels WithExecutionMode() beeinflusst werden. Im betrachteten Listing wird damit 

beispielsweise eine Parallelisierung erzwungen. Die letzte der verwendeten Optionen, 

WithMergeOptions(), legt fest, wie die Ergebnisse der unterschiedlichen Tasks kombiniert 

werden sollen. Mit FullyBuffered wird zum Beispiel erreicht, dass jeder Task sämtliche 

Ergebnisse in einen eigenen Buffer ablegt, wobei diese erst zum Schluss zur Ergebnismenge 

zusammengefügt werden. 

Lesen Sie unbedingt »When To Use Parallel.ForEach and When to Use PLINQ?« 

[download.microsoft.com/download/B/C/F/BCFD4868-1354-45E3-B71B-

B851CD78733D/WhenToUseParallelForEachOrPLINQ.pdf]. 

http://download.microsoft.com/download/B/C/F/BCFD4868-1354-45E3-B71B-B851CD78733D/WhenToUseParallelForEachOrPLINQ.pdf
http://download.microsoft.com/download/B/C/F/BCFD4868-1354-45E3-B71B-B851CD78733D/WhenToUseParallelForEachOrPLINQ.pdf


Source-Generatoren  373 

 

47 Source-Generatoren 
Eine weitere größere Neuerung seit C# 9.0 sind Source Generators (anfangs auch Source Code 

Generators genannt), mit denen ein Entwickler zusätzlichen Programmcode zur Kompilierungszeit 

erzeugen kann, der zusammen mit dem eigentlichen Programmcode kompiliert wird (siehe 

Abbildung). Damit kann man z.B. Annotationen eine Bedeutung geben im Sinne aspektorientierter 

Programmierung (AOP). Für Microsoft sollen die neuen Generatoren den Weg zu einem 

allgemeinen Ahead-of-Time-Compiler ebnen, der in sowohl in .NET 5.0 als auch .NET 6.0 noch 

fehlt.  

Hinweis: Ein Source Generator kann zusätzlichen Programmcode erzeugen, nicht aber wie 

Werkzeuge zum "IL Enhancement" (z.B. PostSharp) bestehenden Programmcode verändern. 

 

Abbildung: Funktion eines Source Code Generators (Quelle: Microsoft) 

47.1 Aufbau eines Source-Generators 

Ein Source-Generator ist eine .NET-Klasse, die die Schnittstelle 

Microsoft.CodeAnalysis.ISourceGenerator mit diesen beiden Methoden realisiert: 

▪ void Initialize(GeneratorInitializationContext context) 

▪ void Execute(GeneratorExecutionContext context) 

Das nächste Listing zeigt einen Generator, der eine Klasse HelloWorld erzeugt. 

Listing: Ein ganz einfacher Source-Generator  

[CSharpSourceCodeGenerators/HelloWorldGenerator.cs] 
using System; 

using System.Collections.Generic; 

using System.Text; 

using Microsoft.CodeAnalysis; 

using Microsoft.CodeAnalysis.Text; 

  

namespace SourceGeneratorSamples 

{ 

  

 [Generator] 

 public class HelloWorldGenerator : ISourceGenerator 

 { 

  



374 Source-Generatoren 

 

  public void Execute(GeneratorExecutionContext context) 

  { 

   var source = @" 

using System; 

namespace HelloWorldGenerated 

{ 

    public static class HelloWorld 

    { 

        public static void SayHello()  

        { 

            Console.WriteLine(""Hallo aus der Assembly "" + System.Reflection.Ass

embly.GetExecutingAssembly().GetName().Name); 

        } 

    } 

}"; 

  

   // Code wird injiziert 

   context.AddSource("helloWorldGenerator", SourceText.From(source, Encoding.UTF8

)); 

  } 

  

  /// <param name="context"></param> 

  public void Initialize(GeneratorInitializationContext context) 

  { 

  } 

 } 

} 

Diese Generator-Klasse muss in eine DLL-Assembly kompiliert werden und benötigt Verweise 

auf die NuGet-Pakete "Microsoft.CodeAnalysis.Csharp" und 

"Microsoft.CodeAnalysis.Analyzers". 

<Project Sdk="Microsoft.NET.Sdk"> 

  

 <PropertyGroup> 

  <TargetFramework>netstandard2.0</TargetFramework> 

  <LangVersion>13.0</LangVersion> 

 </PropertyGroup> 

  

 <ItemGroup> 

  <PackageReference Include="Microsoft.CodeAnalysis.CSharp" Version="3.8.0-

3.final" PrivateAssets="all" /> 

  <PackageReference Include="Microsoft.CodeAnalysis.Analyzers" Version="3.0.0" Pr

ivateAssets="all" /> 

 </ItemGroup> 

  

</Project> 

Diese DLL kann der Entwickler dann in einem anderen Projekt wie einen Rosyln-Analyzer 

einbinden. Notwendig bei der <ProjectReference> sind die die Zusatzattribute 

OutputItemType="Analyzer" ReferenceOutputAssembly="false". 

<Project Sdk="Microsoft.NET.Sdk"> 

  … 

  <ItemGroup> 

   <ProjectReference  



Source-Generatoren  375 

 

    Include="..\CSharpSourceCodeGenerators\CSharpSourceCodeGenerators.csproj" 

    OutputItemType="Analyzer" 

    ReferenceOutputAssembly="false" /> 

   </ItemGroup> 

 … 

</Project> 

Man sieht den generierten Quellcode dann in Visual Studio im Ast "Dependencies/Analyzers" 

unter dem Namen der Assembly. Der Quellcode wird also nicht in dem Projekt, der den Generator 

implementiert, sondern in dem nutzenden Projekt erzeugt. 

 

Abbildung: Generierter Quellcode von einem Source-Generator im nutzenden Projekt 

Danach steht innerhalb dieses Projekts die Klasse HelloWorld zur Verfügung: 

HelloWorldGenerated.HelloWorld.SayHello(); 

Mit der Taste F12 ("Go to Definition") kann man den generierten Code direkt anspringen. 

Verweis: Da dies ein sehr umfangreiches Thema ist, sei hier auf die Einträge "Introducing C# 

Source Generators" [devblogs.microsoft.com/dotnet/introducing-c-source-generators] und 

"New C# Source Generator Samples" [devblogs.microsoft.com/dotnet/new-c-source-generator-

samples] im .NET-Blog sowie die Dokumentation auf GitHub 

[github.com/dotnet/roslyn/blob/master/docs/features/source-generators.md] verwiesen. 

47.2 Praxisbeispiel 

Ein Praxisbeispiel für den Einsatz eines Source Code-Generators ist die Generierung einer C#-

Funktion, die Informationen liefert, zu welchem Zeitpunkt und von wem eine Assembly übersetzt 

wurde. Dies müsste der Entwickler normalerweise jeweils händisch im Code hinterlegen oder man 

müsste über einen Pre-Build-Schritt den Quellcode modifizieren. Hier hilft ein Source Code-

Generator, der jeweils beim Übersetzen eine entsprechende Funktion erzeugt. 

Listing: [CSharpSourceCodeGenerators/CompileInfoGenerator.cs] 
using Microsoft.CodeAnalysis; 

using Microsoft.CodeAnalysis.Text; 

using System; 

using System.Text; 

 

namespace ITVisions.CodeGenerators 

{ 

 [Generator] 

 public class CompileInfoGenerator : ISourceGenerator 

https://devblogs.microsoft.com/dotnet/introducing-c-source-generators
https://devblogs.microsoft.com/dotnet/new-c-source-generator-samples
https://devblogs.microsoft.com/dotnet/new-c-source-generator-samples
https://github.com/dotnet/roslyn/blob/master/docs/features/source-generators.md


376 Source-Generatoren 

 

 { 

 

  public void Execute(GeneratorExecutionContext context) 

  { 

   System.Diagnostics.Trace.WriteLine("=== HelloWorldGenerator.Execute"); 

 

   // Source wird erzeugt 

   var source = @" 

using System; 

namespace ITVisions { 

    public static class CompileInfo { 

        public static string GetInfo()  

        { 

           return ""Assembly wurde kompiliert am [NOW] von [USER]""; 

        } 

    } 

}"; 

   source = source.Replace("[NOW]", DateTime.Now.ToString()); 

   // hier vier Backslash notwendig, da im generierten Code \\ stehen muss! 

   source = source.Replace("[USER]", System.Environment.UserDomainName + "\\\\" + 

System.Environment.UserName); 

 

   // neuer Code wird injeziert 

   context.AddSource("CompileInfoGenerator", SourceText.From(source, 

Encoding.UTF8)); 

  } 

 

  /// <summary> 

  /// In diesem Fall ohne Funktion 

  /// </summary> 

  public void Initialize(GeneratorInitializationContext context) 

  { 

   System.Diagnostics.Trace.WriteLine("=== HelloWorldGeneratorInitialize"); 

  } 

 } 

} 

Nach der Einbindung der generierten Assembly als <ProjectReference> kann man im Quellcode 

den generierten Code verwenden, z.B. 

Console.WriteLine(ITVisions.CompileInfo.GetInfo());  



Performanceoptimierungen  377 

 

48 Performanceoptimierungen 
Dieses Kapitel erörtert Themen zur Leistungssteigerung von C#-basierten Anwendungen. Dabei 

geht es hier – wie im gesamtem Buch – ausschließlich um Leistungssteigerungen auf Ebene des 

Compilers. Leistungstipps in Bezug auf die Verwendungen von .NET-Klassen sind nicht Thema 

des Buchs. 

48.1 x64 versus x86 

Grundsätzlich sollte man .NET-Anwendungen immer im Modus "AnyCPU" kompilieren. Damit 

laufen diese sowohl auf 32-Bit-Betriebssystemen als auch auf 64-Bit-Betriebssystemen jeweils in 

der entsprechenden Bit-Anzahl.  

Wenn man eine .NET-Anwendung im "x86"-Modus kompiliert, läuft sie auch auf einem 64-Bit-

Betriebssystem, dort aber im Emulator (unter Windows heißt dieser Windows on Windows 64, 

kurz WOW64). Die Performanz ist dann schlechter als wenn diese als 64-Bit-Anwendung laufen 

würde. 

Gründe für die bessere Performance von 64-Bit-Anwendungen sind:  

▪ Durch die längeren CPU-Register kann die Verarbeitung von Zahlen schneller erfolgen (32-

Bit-Anwendungen brauchen 2 Register, wo 64-Bit-Anwendungen mit einem auskommen) 

▪ Die 64-Bit-.NET-CLR ist optimiert gegenüber der 32-Bit-.NET-CLR. 

▪ Der Emulator entfällt. 

Hinweis: Eine im "x64"-Modus kompilierte Anwendung läuft nur auf 64-Bit-Betriebssystemen. 



378 Performanceoptimierungen 

 

 
Abbildung: Eine Anwendung im x86-Modus auf einem 64-Bit-Windows 

 

Abbildung: Die gleiche Anwendung im x64-Modus auf einem 64-Bit-Windows ist schneller 

48.2 Debug versus Release 

Eine .NET-Anwendung, die im Release-Modus kompiliert wurde, läuft schneller als nach dem 

Kompilieren im Debug-Modus. Zur Betriebszeit sollte eine Anwendung daher als "Release" 

kompiliert werden. 



Performanceoptimierungen  379 

 

 
Abbildung: Eine Anwendung im Debug-Modus kompiliert 

 

Abbildung: Die gleiche Anwendung im Release-Modus kompiliert ist schneller 

48.3 Vermeidung von Laufzeitfehlern (Exceptions) 

Vermeiden Sie das Auslösen und Abfangen von Laufzeitfehlern (Exceptions), wo immer möglich, 

durch aktive Prüfung und Fallunterscheidungen. Das Auslösen von Exceptions ist in der .NET-

Laufzeitumgebung eine recht "teure" Operation. 

  
Abbildung: Verlangssamung durch Exceptions 

Listing: Programmcode zu obiger Ausgabe 
using ITVisions; 

using System; 

using System.Diagnostics; 

 

namespace CSharpSyntaxNET5 

{ 

 public class Performance 

 { 

  public void ExceptionPerformance() 



380 Performanceoptimierungen 

 

  { 

   CUI.H1(nameof(ExceptionPerformance)); 

 

   int anz = 1000000; 

   int x = 1; 

   int y = 0; 

 

   #region Abfangen einer Exception 

   var sw1 = new Stopwatch(); 

   sw1.Start(); 

   for (int i = 0; i < anz; i++) 

   { 

    int z; 

    try 

    { 

     z = x / y; 

    } 

    catch (Exception) 

    { 

     z = Int32.MinValue; 

    } 

   } 

   sw1.Stop(); 

   Console.WriteLine("Mit " + anz + " Exception: " + sw1.ElapsedMilliseconds + 

"ms"); 

   #endregion 

 

   #region Vermeidung einer Exception 

   var sw2 = new Stopwatch(); 

   sw2.Start(); 

   for (int i = 0; i < anz; i++) 

   { 

    int z; 

 

    if (y == 0) z = Int32.MinValue; 

    else z = x / y; 

   } 

   sw2.Stop(); 

   Console.WriteLine("Ohne " + anz + " Exception: " + sw2.ElapsedMilliseconds + 

"ms"); 

   #endregion 

  } 

 } 

} 

48.4 Ahead-of-Timer-Compiler (Native AOT) 

Schon seit dem Jahr 2016 arbeitet Microsoft als Alternative zu dem Just-in-Time-Compiler (JIT) 

an einem Ahead-of-Timer-Compiler (AOT), der direkt Machinencode erzeugt und damit .NET-

Anwendungen schneller starten lässt. Dieses Projekt lief zunächst als "CoreRT" 

[github.com/dotnet/corert] und sollte schon in .NET 5.0, dann später in .NET 6.0 erscheinen. 

Stattdessen aber wurden die Arbeiten in das Projekt "Native AOT" 

https://github.com/dotnet/corert
https://github.com/dotnet/corert


Performanceoptimierungen  381 

 

[github.com/dotnet/runtimelab/tree/feature/NativeAOT] überführt und .NET 6.0 lieferte AOT 

lediglich für Blazor WebAssembly. 

In .NET 7.0 hat Microsoft den Native AOT-Code in das offizielle GitHub-Repository 

"dotnet/runtime" [https://github.com/dotnet/runtime] überführt und bot eine erste Version von 

Native AOT in .NET 7.0. In .NET 8.0 gab es eine Erweiterung. 

Native AOT verkleinert das Deployment-Paket erheblich (es findet ein Application Trimming, 

alias Tree Shaking, statt) und beschleunigt den Anwendungsstart. 

 
Abbildung: Der Native AOT-Compiler im Vergleich zu anderen Compile-Verfahren in .NET 

48.4.1 Native AOT in .NET 7.0 

Die erste Version von Native AOT war sehr eingeschränkt, denn sie funktioniert nur für 

Konsolenanwendungen und auch dort gibt es Einschränkungen. Nicht möglich mit dem AOT-

Compiler sind: 

▪ Funktionen, die auf Laufzeitcodegenerierung basieren (Reflection Emit) 

▪ Dynamisches Nachladen von Assemblies (Add-Ins/Plug-Ins) 

▪ Funktioniert nicht mit C++/CLI 

▪ Die Nutzung von Komponenten des Component Object Models (COM), z.B. zur Steuerung 

von Microsoft Office, ist nicht möglich 

▪ Auch die Programmierschnittstellen der Windows Runtime Library (WinRT) sind nicht 

nutzbar 

Den AOT-Compiler aktiviert man durch eine Einstellung in der Projektdatei:  

 <!--für AOT --> 

 <PropertyGroup> 

  <PublishAot>true</PublishAot> 

 </PropertyGroup> 

https://github.com/dotnet/runtimelab/tree/feature/NativeAOT
https://github.com/dotnet/runtime


382 Performanceoptimierungen 

 

Hinweis: Seit .NET 8.0 kann man diese Einstellung direkt beim Anlegen eines Projekts 

vorsehen durch das Häkchen "Enable native AOT publish" bzw. an der Kommandozeile via 

Option --aot, z.B. dotnet new console –aot 

In .NET 8.0 ist die AOT-Kompilierung möglich für folgende Projekttypen: console, api, grpc 

und worker. 

Die Einstellung wirkt aber nur, wenn man die Anwendung veröffentlicht, also z.B. per 

Kommandozeile 

dotnet publish -r win-x64 -c Release  

Dann sieht man den Kompilierungsvorgang, der ab der Ausgabe "Generating native code" einige 

Zeit braucht. Das Ergebnis eine einzige ausführbare Datei im Projektunterordner 

/bin/Release/[DOTNETVERSION]/win-x64/native. Das Ergebnis ist ein "Self-Contained 

Executable", läuft also ohne dass vorher eine .NET Runtime installiert werden musste. Die 

notwendigen Teile der Runtime sind schon enthalten! So gesehen ist diese Datei sehr klein! 

 
Abbildung: Ergebnis der AOT-Kompilierung 

Die folgenden Abbildungen zeigt eine Konsolenanwendung, die mit JIT und AOT kompiliert 

wurden. 



Performanceoptimierungen  383 

 

 

Abbildung: JIT-Kompilierte Konsolenanwendungen 



384 Performanceoptimierungen 

 

 

 

Abbildung: AOT-kompilierte Konsolenanwendungen 

Die wesentlichen Erkenntnisse aus den beiden Bildern sind: 

▪ Wie oben erwähnt, funktioniert die Laufzeitcodegenerierung mit Reflection Emit und das 

dynamische Nachladen von Assemblies nicht bei AOT. 

▪ Das Deploymentpaket bei AOT ist sehr wesentlich kleiner: 6,65 MB vs. 65,78 MB. 

▪ Entsprechend ist der RAM-Bedarf bei Anwendungsstart bei AOT geringer: 4,97 MB vs. 8,84 

MB. 

▪ Aber: die Rechenzeit für eine Zahlenreihe von 42 Millionen zahlen dauert bei Native-AOT 

doppelt so lange: 787 ms vs. 1519 ms. 

Die offizielle Dokumentationsseite zu Native AOT verschweigt [https://learn.microsoft.com/en-

us/dotnet/core/deploying/native-aot/], dass es Einstellungen für den AOT-Compiler gibt. Erste 

beim Wühlen in GitHub findet man eine weitere Dokumentationsseite 

[https://github.com/dotnet/runtime/blob/main/src/coreclr/nativeaot/docs/optimizing.md] mit der 

https://learn.microsoft.com/en-us/dotnet/core/deploying/native-aot/
https://learn.microsoft.com/en-us/dotnet/core/deploying/native-aot/
https://github.com/dotnet/runtime/blob/main/src/coreclr/nativeaot/docs/optimizing.md


Performanceoptimierungen  385 

 

Zusatzoption   <IlcOptimizationPreference>Speed</IlcOptimizationPreference>. Damit kommt 

ein AOT-Kompilat heraus, dass nur wenige Kilobyte größer ist (6.84 MB), aber die Berechnung 

mit 612 Millisekunden noch schneller als der Just-in-Time-Compiler ausführt! 

 

Abbildung: AOT-kompilierte Konsolenanwendungen mit Optimierung auf Leistung 

Zu Windows Forms mit Native AOT gibt es von Microsoft Stand .NET 9.0 diese Aussagen: 

▪ "you could run a Windows Forms application under native AOT" 

▪ "This work is still highly experimental, and some scenarios are rough and require manual 

work." 

Quelle: https://devblogs.microsoft.com/dotnet/winforms-enhancements-in-dotnet-7  

48.4.2 Native AOT in .NET 8.0 

Der "Native AOT" genannte Compiler konnte in .NET 7.0 nur Konsolenanwendungen übersetzen. 

Seit .NET 8.0 sind nun zusätzlich auch folgende Anwendungsarten beim AOT-Compiler möglich: 

▪ Hintergrunddienste (Worker Services) 

▪ gRPC-Dienste  

https://devblogs.microsoft.com/dotnet/winforms-enhancements-in-dotnet-7/


386 Performanceoptimierungen 

 

▪ WebAPIs mit Einschränkungen: Bei den WebAPIs ist lediglich das "Minimal WebAPI" 

genannte Modell möglich mit JSON-Serialisierung via System.Text.Json im Source 

Generator-Modus. Weitere Einschränkungen siehe folgende Abbildung. 

Hinweis: Native AOT funktioniert also weiterhin dort nicht, wo es am nötigsten wäre, die 

Startzeit und den RAM-Bedarf zu verringern: Windows Forms und WPF. 

Den Source Generator in System.Text.Json hat Microsoft dazu ausgebaut, sodass er nun fast alle 

Konfigurationsoptionen wie der Reflection-basierte Modus kennt. Zudem funktioniert der Source 

Generator jetzt zusammen mit den Init-Only-Properties aus C# 9.0 und den Required Properties 

aus C# 11.0. Den alten Reflection-Modus kann man durch eine Projekteinstellung komplett 

deaktivieren. Den Modus prüfen Entwicklerinnen und Entwickler mit der Bedingung if 

(JsonSerializer.IsReflectionEnabledByDefault) { … }. 



Performanceoptimierungen  387 

 

 
Abbildung: Unterstützte ASP.NET Core-Features in Native AOT 8.0 (Bildquelle: 

https://learn.microsoft.com/en-us/aspnet/core/fundamentals/native-aot?view=aspnetcore-

8.0&tabs=netcore-cli) 

48.4.3 Native AOT in .NET 9.0 

In .NET 9.0 sind folgende Erweiterungen des AOT-Compilers enthalten: 

▪ ASP.NET Core SignalR-Hubs können mit Native AOT kompiliert werden 

▪ .NET für iOS / macOS: Trimming bei Native AOT 

▪ Swashbuckle.AspNetCore (für OAS) funktioniert mit NativeAOT seit Version 6.6 

▪ AOT für WinUI 3-Oberflächen seit Windows-App-SDK 1.6  

Das Entwicklungsteam von WinUI hat auf der Microsoft BUILD-Konferenz 2024 in einem 

Vortrag https://build.microsoft.com/en-US/sessions/11626139-a9d0-4f8c-b664-

https://learn.microsoft.com/en-us/aspnet/core/fundamentals/native-aot?view=aspnetcore-8.0&tabs=netcore-cli
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/native-aot?view=aspnetcore-8.0&tabs=netcore-cli
https://build.microsoft.com/en-US/sessions/11626139-a9d0-4f8c-b664-3f3436cea50a


388 Performanceoptimierungen 

 

3f3436cea50a angekündigt, dass man ab Version 1.6 des Windows App SDK, die im 

September 2024 erscheinen soll, die Native AOT-Kompilierung von WinUI 3-XAML und 

Code-Behind-Code für WinUI 3-Anwendungen erlauben wird. Zunächst wird man den Native 

AOT-Compiler aus .NET 8.0 unterstützen, später dann .NET 9.0. Die WinUI 3-Bibliotheken 

selbst sind ja bereits Native Code, müssen also nicht erneut übersetzt werden. Das Team 

verspricht 45% kleinere Deployment-Pakete und einen um die Hälfte der Zeit beschleunigten 

Anwendungsstart. Eine gut funktionierende AOT-Kompilierung mit den genannten Vorteilen 

wäre ein wesentliches Argument für den Einsatz von WinUI 3 statt WPF. 

▪ Entity Framework Core soll leider nur experimentell in .NET 9.0 laufen auf Basis von 

statischer Codeanalyse und C#-Interceptoren. Es wird nur für statische LINQ-Abfragen 

funktionieren. 

Hinweis: Native AOT funktioniert also weiterhin dort nicht, wo es am nötigsten wäre, die 

Startzeit und den RAM-Bedarf zu verringern: Windows Forms und WPF. 

48.4.4 Neue Native AOT-Option in Projektvorlagen 

Neu seit .NET 8.0 ist, dass es bei einigen Projektvorlagen nun direkt eine Möglichkeit gibt, den 

AOT-Compiler zu aktivieren mit der Kommandozeilenoption --aot bzw. mit einem Häkchen in 

Visual Studio: 

▪ Konsolenanwendung  
dotnet new console --aot 

▪ Worker Service  
dotnet new worker --aot 

▪ gRPC  
dotnet new grpc –-aot 

 

Abbildung: Native AOT-Option bei der Projektvorlage für gRPC-Dienste in Visual Studio  

 

https://build.microsoft.com/en-US/sessions/11626139-a9d0-4f8c-b664-3f3436cea50a


Performanceoptimierungen  389 

 

Abbildung: Option --aot bei dotnet new 

Bei der Projektvorlage für ASP.NET Core WebAPIs (Kurzname: "webapi") gibt es keine Option -

-aot und kein Häkchen in Visual Studio. Hier hat sich Microsoft entschlossen, eine eigene 

Projektvorlage zu bauen "ASP.NET Core WebAPI (native AOT)" mit Kurznamen "webapiaot". 

Diese verwendet auch nicht das bisher in der WebAPI-Projektvorlage übliche Beispiel von 

Wetterdaten, sondern eine Aufgabenliste. 



390 Performanceoptimierungen 

 

 
Abbildung: WebAPI-Projektvorlagen in Visual Studio  

48.4.5 Warnungen bei nicht kompatiblem Code 

Entwickler(innen), die den AOT-Compiler für ein ASP.NET Core-Projekt aktivieren, erhalten nun 

Warnungen, falls sie Methoden aufrufen, die nicht kompatibel mit dem AOT-Compiler sind (siehe 

Abbildung). 

 

Abbildung: Warnung, dass der Aufruf AddControllers() zum Aktivieren des Model-View-

Controller-Frameworks nicht beim Ahead-of-Timer-Compiler möglich ist. 

48.4.6 Mögliche und nicht mögliche Operationen bei Native AOT 

Datenbankzugriffe sind beim AOT-Compiler allerdings weiterhin nicht mit dem Objekt-

Relationalen Mapper Entity Framework Core möglich, da dieser immer noch 

Laufzeitkompilierung verwendet. Gleiches gilt für den zweitwichtigsten OR-Mapper der .NET-

Welt, den Micro-ORM Dapper https://github.com/DapperLib/Dapper. In AOT-kompilierten 

Anwendungen können Entwicklerinnen und Entwickler derzeit nur DataReader, DataSet und 

https://github.com/DapperLib/Dapper


Performanceoptimierungen  391 

 

Command-Objekte aus ADO.NET oder das GitHub-Projekt NanORM 

https://github.com/DamianEdwards/Nanorm verwenden. 

Das ist mit Native AOT auch in .NET 8.0 nicht möglich, selbst wenn man eine der o.g. 

Anwendungsarten erstellt: 

▪ Laufzeitcodegenerierung (Reflection Emit) 

▪ dynamisches Nachladen von Assemblies (Add-Ins/Plug-Ins) 

▪ COM-Interop 

▪ WinRT-APIs 

▪ Windows Management Instrumentation 

▪ Zugriff auf Active Directory Services 

▪ C++/CLI 

▪ AOT mit WebAPIs im IIS  

▪ Entity Framework Core 

▪ Dapper 

▪ JSON-Serialisierung mit JSON.NET (Newtonsoft JSON) 

▪ AutoMapper und viele andere Drittanbieterbibliotheken 

Beispiel, was möglich ist, sind: 

▪ Reguläre Ausdrücke 

▪ Dateisystemzugriffe 

▪ JSON-Serialisierung mit System.Text.Json 

▪ ADO.NET 

▪ NanORM 

▪ Dependency Injection mit Microsoft Dependency Injection-Container 

(Microsoft.Extensions.DependencyInjection) und AutoFac 

48.4.7 Performance bei Native AOT 

Für .NET 8.0 hat Microsoft Zahlen herausgegeben, weil Auswirkungen der Native AOT-Compiler 

auf WebAPIs hat. Man sieht in der folgenden Grafik: 

▪ Größe des Kompilats, RAM-Bedarf (insbes. auf Linux) und Startdauer werden wesentlich 

geringer. 

▪ Die Ausführungsgeschwindigkeit sinkt aber leider auch etwas, denn der Native-AOT-

kompilierte Code schafft weniger "Requests per Second" (RPS). 

https://github.com/DamianEdwards/Nanorm


392 Performanceoptimierungen 

 

 
Abbildung: Quelle: Microsoft 

 

 



Anhang: Syntaxreferenz: C# versus Visual Basic .NET  393 

 

49 Anhang: Syntaxreferenz: C# versus 
Visual Basic .NET  
Für Umsteiger von Visual Basic .NET zu C# stellen nachfolgende Tabellen die wichtigsten 

syntaktischen Konstrukte direkt gegenüber. 

Typdefinitionen C#  Visual Basic  

Namensraumfestlegung für einen 

Block  

namespace de.ITVisions { … } Namespace de.ITVisions 

 …  

End Namespace 

Namensraumfestlegung auf 

Dateiebene 

namespace de.ITVisions --- 

Namensraumimport auf 

Dateiebene 

using de.ITVisions; Imports de.ITVisions 

Namensraumimport mit Alias using ITV = de.ITVisions; Imports ITV = de.ITVisions 

Namensraumimport global für 

Projekt im Code 

global using de.ITVisions; -- 

Namensraumimport global für 

Projekt in Projektdatei 

<ItemGroup> 

  <Using 

     Include="de.ITVisions"/> 

<ItemGroup> 

  <Import Include="de.ITVisions" 

/> 

Implizite Namensräume <PropertyGroup> 

  <ImplicitUsings>enable 

  </ImplicitUsings> 

--- 

 

Typdefinitionen C#  Visual Basic .NET 

Klasse (Referenztyp) class Klasse { … } Class Klasse 

…  

End Class 

Struktur (Wertetyp) struct Strukturname { … } Structure Strukturname 

…  

End Structure  

Struktur (Wertetyp), die nur auf 

dem Stack lebt 

ref struct Strukturname { … } --- 

Klasse mit Wertesemantik  record Name { … } 

oder 

record class Name { … } 

--- 

Struktur mit Record-

Eigenschaften 

record struct Name { … } --- 

Öffentliche Klasse public class Klasse { … } Public Class Klasse 

…  

End Class 

Klasse nur innerhalb der 

Assembly sichtbar 

internal class Klasse { … } Friend Class Klasse 

…  

End Class  

Partielle Klasse partial class Klasse { … } Partial Class Klasse 

…  

End Class 



394 Anhang: Syntaxreferenz: C# versus Visual Basic .NET 

 

Typdefinitionen C#  Visual Basic .NET 

Statische Klasse (nur statische 

Mitglieder) 

static class Klasse { … } Module Klasse 

…  

End Module 

Generische Klasse public class Klasse<T1, T2> Public Class Klasse(Of T1, T1) 

Implementierungsvererbung class C1 : C2 Inherits 

Abstrakte Klasse abstract MustInherit 

Finale Klasse sealed NotInheritable 

Deklaration einer Schnittstelle interface IXyz Interface IXyz 

Schnittstellenvererbung class C2 : C1 Class C2 Implements C1 

Anonymer Typ var obj = new { Name = 

"World Wide Wings",                             

Gruendungsdatum = new 

DateTime(2005, 01, 01),  

Vorstand = Vorstandsmitglieder 

}; 

Dim obj = New With {.Name = 

"World Wide Wings",                        

.Gruendungsdatum = New 

DateTime(2005, 1, 1), .Vorstand = 

Vorstandsmitglieder}  

Tupel var dozent = (ID: 1, Name: 

"Holger Schwichtenberg", 

DOTNETExperte: true); 

Dim dozent = (ID:=1, 

Name:="Holger Schwichtenberg", 

DOTNETExperte:=True) 

Array byte[] x; Dim x as Byte() 

Array-Größenveränderung Array.Resize() ReDim Preserve 

Array initialisieren string[] WebSites1 = new 

string[] { "www.dotnet-

doktor.de", "www.dotnet-

lexikon.de" }; 

oder ab C# 12.0: 

string[] WebSites2 = 

["www.dotnet-doktor.de", 

"www.dotnet-lexikon.de"]; 

Dim WebSites As String() = 

{"www.dotnet-doktor.de", 

"www.dotnet-lexikon.de"} 

Enumeration enum name { a, b, c } 

enum name { a = 10, b = 20, 

c } 

Enum name 

a  

b 

End Enum 

 

Variablen und 

Literale 

C#  Visual Basic .NET 

Wertlose Werttypen Typ? Oder 

Nullable<Typ> 

Nullable(Of Typ) 

Variablendeklaration/ 

Attributdefinition als Field 

Typ x Dim x as Typ 

Implizit typisierte Variable  var x = Wert Dim x = Wert 

Zeichenketten mit Escape-

Sequenz 

"Er sagte:\r\n\"Hallo Welt!\""; "Er sagte:" & vbCrLf & """Hallo 

Welt!""" 

Zeichenketten ohne Escape-

Sequenz 

@"c:\temp\daten.txt" "c:\temp\daten.txt" 

Einzelne Zeichen char Wichtigkeit = 'A'; Dim Wichtigkeit As Char = "A" 

String Interpolation $"Er sagte am {Zeitpunkt:d}:\n\r $"Er sagte am {Zeitpunkt:d}:{vbLf} 



Anhang: Syntaxreferenz: C# versus Visual Basic .NET  395 

 

Variablen und 

Literale 

C#  Visual Basic .NET 

{seineAussage}"; {seineAussage}!" 

Zahlenliterale byte z1 = 123; 

short z2 = 123; 

int z3 = 123; 

long z4 = 123; 

float z5 = 123.45f; 

double z6 = 123.45d; 

decimal z7 = 123.45m; 

Dim z1 As Byte = 123 

Dim z2 As Short = 123 

Dim z3 As Integer = 123 

Dim z4 As Long = 123 

Dim z5 As Single = 123.45 

Dim z6 As Double = 123.45 

Dim z7 As Decimal = 123.45 

Datumsliterale new DateTime(2014,12,24) #12/24/2014# 

XML-Literale --- Dim x As XElement = _ 

<Flug ID="347"> 

<Abflugort>Madrid</Abflugort> 

<Zielort>Paris</Zielort> 

</Flug> 

Zeilenumbruch 

(Zeilenvorschubzeichen ASCII-

Code 10 & Wagenrücklauf 

ASCII-Code 13) 

"\n\r" vbCrLf 

Zeigerprogrammierung 

(unsafe) 

unsafe, &x, *x 

 

--- 

Zeigerprogrammierung (safe) ref int z = ref i; 

 

--- 

 

Typmitglieder C#  Visual Basic .NET 

Attributdefinition als Property 

mit expliziten Field  

private string x; 

public string X 

  { 

   get { return x; } 

   set { x = value; } 

  } 

 

Private _X as String 

Property X() As String 

   Get 

    Return _X 

   End Get 

   Set(ByVal value As String) 

    _X = value 

   End Set 

End Property 

Attributdefinition als 

automatisches Property 

(Automatic Properties/Auto-

Implemeted Properties) 

public Type Name { get; set; } Public Property X As String 

Methode ohne Parameter und 

ohne Rückgabetyp 

void f() 

{ 

… 

} 

Sub f()  

… 

End Sub 



396 Anhang: Syntaxreferenz: C# versus Visual Basic .NET 

 

Typmitglieder C#  Visual Basic .NET 

Methode mit Parametern aber 

ohne Rückgabetyp 

void f(string s, int i) 

{ 

… 

} 

Sub f(ByVal s As String, ByVal i As 

Integer) 

... 

End Sub 

 

Methode mit Parametern und 

mit Rückgabewert 

Typ f(string s, int i) 

{ 

Typ t = new Typ(); 

… 

return t; 

} 

Function f(ByVal s As String, ByVal i 

As Integer) as Typ 

Dim t as Typ 

… 

Return t 

End Function 

Überladene Methode keine Zusatzangabe Overloads 

Methode verlassen return Return 

Methode verlassen und beim 

nächsten Aufruf danach fortsetzen 

yield Yield 

Bezug auf Basisklasse base MyBase 

Bezug auf aktuelle Klasse Name der Klasse MyClass 

Bezug auf das aktuelle Objekt this Me 

Konstantes Mitglied const  Const 

Methoden ohne Rückgabewert void Sub 

Statisches Mitglied static Shared 

Überschreiben einer Methode override Overrides 

Abstrakte Methode  abstract MustOverride 

Versiegelte Methode sealed NotOverridable 

Überschreibbare Methode virtual Overridable 

Verdeckendes Mitglied keine Zusatzangabe Shadows 

Konstruktor public Klassenname()  { … } Sub New() … End Sub 

Primärkonstruktor public Klassenname(int a, string b)  

{  

public int A { get; init; } = a; 

public string B { get; set; } = b; 

…  

} 

--- 

Desktruktor/Finalizer ~Person() { … } 

 

Sub Finalize() … End Sub 

Referenz auf eine Methode delegate Delegate 

Mitglied mit Ereignissen --- WithEvents 

Bindung einer 

Ereignisbehandlungsroutine 

+= 

-= 

Handles 

AddHandler 

RemoveHandler 

Partielle Methode (Deklaration) public partial void f(); Partial Public Sub f() 

End Sub 



Anhang: Syntaxreferenz: C# versus Visual Basic .NET  397 

 

Typmitglieder C#  Visual Basic .NET 

Partielle Methode 

(Implementierung) 

public partial void f() 

 { 

  … 

 } 

Partial Public Sub f() 

   …. 

End Sub 

Partielles Property (Deklaration) public partial int x { get; set; } --- 

Partielles Property 

(Implementierung) 

public partial int x 

{ 

  get 

  { 

   … 

  } 

  set 

  { 

   … 

  } 

} 

--- 

 

Typen verwenden C#  Visual Basic .NET 

Programm-Einsprungpunkt static void Main(string[] args) Sub Main(ByVal args() As String) 

Klasse instanzieren new Klasse() New Klasse 

Generische Klasse instanzieren new Klasse<Typ>() New Klasse(of Typ) 

Anonyme Methoden += delegate(){ … } --- 

LINQ-Abfrageausdruck  (from m in Menge where m.Feld 

< 1000 select 

m).Skip(1200).Take(10) 

From m In Menge Where m.Feld < 

1000 Select m Skip 1200 Take 10; 

Lambda-Ausdruck Func<string, int> f3 = s => 

s.Length; 

Dim f3 As Func(Of String, Integer) 

= Function(s) s.Length 

Blockbildung für Objekte --- With obj … End With 

 

Datentyp C#  Visual Basic .NET 

Ganzzahl / 1 Byte byte Byte 

Ganzzahl / Boolean bool Boolean 

Ganzzahl / 2 Bytes short Short 

Ganzzahl / 4 Bytes int Integer 

Ganzzahl / 8 Bytes long Long  

Zahl / 4 Bytes float Single 

Zahl / 8 Bytes double Double 

Zahl / 12 Bytes decimal Decimal  

Zeichen / 1 Byte oder 2 Bytes char Char 

Zeichenkette string String  

Datum/Uhrzeit DateTime Date  

 



398 Anhang: Syntaxreferenz: C# versus Visual Basic .NET 

 

Operatoren 

Zeichenketten  

C#  Visual Basic .NET 

Zeichenkettenverbindung + & 
 

Operatoren 

Mathematik  

C#  Visual Basic .NET 

Addition + + 

Subtraktion – – 

Multiplikation * * 

Division / / 

Ganzzahldivision / \ 

Modulus  % Mod 

Potenz Math.Pow(x,y) ^ 

Negation ~ Not 

Inkrement ++ --- 

Dekrement - - --- 
 

Operatoren 

Zuweisung  

C#  Visual Basic .NET 

Einfache Zuweisung = = 

Addition + = + =  

Subtraktion - = - =  

Multiplikation *= *=  

Division /= /=  

Ganzzahl-Division /=  \=  

Zeichenkettenverbindung += &=  

Modulo (Divisionsrest) %= --- 

Bit-Verschiebung nach links << = << =  

Bit-Verschiebung nach rechts >> = >> =  

Bit-weises UND &= --- 

Bit-weises XOR ^= --- 

Bit-weises OR |= --- 
 

Operatoren Vergleich  C#  Visual Basic .NET 

Kleiner  < < 

Kleiner gleich < = < = 

Größer > > 

Größer gleich > = > = 

Gleich = = = 

Nicht gleich != < > 

Objektvergleich = = Is 



Anhang: Syntaxreferenz: C# versus Visual Basic .NET  399 

 

Objektvergleich (negativ) != IsNot 

Objekttypvergleich x is Klasse  TypeOf x Is Klasse 

Zeichenkettenvergleich = =  = 

Zeichenkettenverbindung + & 
 

Operatoren Logik  C#  Visual Basic .NET 

UND && And 

ODER || Or 

NICHT ! Not 

Short-circuited UND  && AndAlso 

Short-circuited ODER || OrElse 
 

Operatoren Bit  C#  Visual Basic .NET 

Bit-weises UND & And 

Bit-weises XOR ^ Xor 

Bit-weises OR | Or 

Bit-Verschiebung nach links << <<  

Bit-Verschiebung nach rechts >> >>  
 

Bedingungs-

operatoren 

C#  Visual Basic .NET 

Bedingungsoperator Bedingung ? wert1 : wert2 IIF-Funktion und If-Operator 

NULL-Sammeloperator Objekt ?? wert1 : wert2 --- 

NULL-Bedingungsoperator obj?.mitglied obj?.mitglied 
 

Typoperatoren  C#  Visual Basic .NET 

Typermittlung typeof(obj) 

obj.GetType() 

obj.GetType() 

Typvergleich k1 is Kunde TypeOf k1 Is Kunde 

Typkonvertierung x as Klasse oder 

((Klasse) x) 

CType(x,Klasse) 

Namensoperator nameof(x) NameOf(x) 

 

Bedingungen  C#  Visual Basic .NET 

Einfache Bedingung if (Bedingung) {…}  

else {…}  

 

If Bedingung Then …  

Else … 

End If 

Mehrfachverzweigung switch (a) 

{ 

case 1: … break; 

case 2: … break; 

case 3: … break; 

Select Case a 

   Case 1: … 

   Case 2: … 

   Case 3: … 

   Case Else: … 



400 Anhang: Syntaxreferenz: C# versus Visual Basic .NET 

 

Bedingungen  C#  Visual Basic .NET 

default: … break;      

} 

End Select 

 

Schleifen  C#  Visual Basic .NET 

Kopfgeprüfte bedingte Schleife 

 

while (c < 10)  {  c++;   } 

 

While c < 10 

   c += 1 

End While 

Fußgeprüfte bedingte Schleife 

 

do   {    d++; 

   } while (d < 10); 

 

Do 

   d += 1 

Loop While d < 10 

Zählschleifen for (int a = 1; a <= 10; a++)   

{    …   } 

 

For a As Integer = 1 To 10 Step 1 

  … 

Next 

Schleifen über Mengen foreach (int e in zahlen) {  

…  

} 

For Each x As Integer In y 

… 

Next 

 



Anhang: Neuerungen in früheren Versionen  401 

 

50 Anhang: Neuerungen in früheren 
Versionen 
Diese Kapitel bleibt auch in der C# 12.0-Version des Buchs als Anhang erhalten, weil viele 

Unternehmen erst jetzt vom klassischen .NET Framework mit C# 7.3 auf die moderne .NET-Welt 

mit C# 12.0 umsteigen, auf offiziellen Support von Microsoft Wert legen und die neueren 

Versionen erst damit nutzen können. 

50.1 Neuerungen in C# 8.0 

Die fertige Version von C# 8.0 ist am 23.09.2019 im Rahmen von .NET Core 3.0 und Visual Studio 

2019 v16.3 erschienen. 

Die wichtigsten Neuerungen in C# 8.0 sind: 

▪ Nullable Reference Types string? und Null-Forgiveness-Operator  !.  

→ Kapitel "Behandlung von null/Null-Referenz-Prüfung / Nullable Reference Types"   

▪ Standardimplementierungen in Schnittstellen (*)  

→ Kapitel "Schnittstellen/Standardimplementierungen in Schnittstellen" 

▪ Index ^ und Range .. (*)  

→ Kapitel "Operatoren/Index und Range" 

▪ Switch Expressions  

→ Kapitel "Verzweigungen/Switch Expressions" 

Weitere Neuerungen in C# 8.0 sind: 

▪ Null Coalescing Assignment ??= 

→ Kapitel "Operatoren/Null Coalescing Assignment" 

▪ Alternative für Verbatim Interpolated Strings: @$ zusätzlich zu $@ 

→ Kapitel "Datentypen/Konsolenausgabenformatierung mit ANSI-Codes 

Mit den uralten VT100/ANSI-Codes (siehe https://en.wikipedia.org/wiki/ANSI_escape_code) 

kann man auch heute noch in Konsolenanwendungen zahlreiche Formatierungen auslösen, z.B. 

24-Bit-Farben, Fettschrift, Unterstreichen, Durchstreichen, Blinken usw. Die VT100/ANSI-Codes 

werden durch das ESCAPE-Zeichen (ASCII-Zeichen 27, hexadezimal: 0x1b) eingeleitet.  

Vor C# 13.0 konnte man dieses ESCAPE-ASCII-Zeichen 27 in .NET-Konsolenanwendungen bei 

Console.WriteLine() nur umständlich ausdrücken über \u001b, \U0000001b oder \x1b, wobei 

letzteres nicht empfohlen ist: "Wenn Sie die Escapesequenz \x verwenden, weniger als vier 

Hexadezimalziffern angeben und es sich bei den Zeichen, die der Escapesequenz unmittelbar 

folgen, um gültige Hexadezimalziffern handelt (z. B. 0–9, A–F und a–f), werden diese als Teil der 

Escapesequenz interpretiert. \xA1 erzeugt beispielsweise "¡" (entspricht dem Codepunkt U+00A1). 

Wenn das nächste Zeichen jedoch "A" oder "a" ist, wird die Escapesequenz stattdessen als \xA1A 

interpretiert und der Codepunkt "ਚ" erzeugt (entspricht dem Codepunkt U+0A1A). In solchen 

Fällen können Fehlinterpretationen vermieden werden, indem Sie alle vier Hexadezimalziffern (z. 

B. \x00A1) angeben." [https://learn.microsoft.com/de-de/dotnet/csharp/programming-

guide/strings/]. 

Hinweis: ਚ ist ein Panjabi-Schriftzeichen. Panjabi ist eine in Pakistan und Indien gesprochene 

Sprache. 



402 Anhang: Neuerungen in früheren Versionen 

 

Typischerweise sahen Ausgaben mit VT100/ANSI-Escape-Codes dann aus wie im nächsten 

Listing.  

Listing: Bisherige VT100/ANSI-Escape-Codes 
Console.WriteLine("This is a regular text"); 

Console.WriteLine("\u001b[1mThis is a bold text\u001b[0m"); 

Console.WriteLine("\u001b[2mThis is a dimmed text\u001b[0m"); 

Console.WriteLine("\u001b[3mThis is an italic text\u001b[0m"); 

Console.WriteLine("\u001b[4mThis is an underlined text\u001b[0m"); 

Console.WriteLine("\u001b[5mThis is a blinking text\u001b[0m"); 

Console.WriteLine("\u001b[6mThis is a fast blinking text\u001b[0m"); 

Console.WriteLine("\u001b[7mThis is an inverted text\u001b[0m"); 

Console.WriteLine("\u001b[8mThis is a hidden text\u001b[0m"); 

Console.WriteLine("\u001b[9mThis is a crossed-out text\u001b[0m"); 

Console.WriteLine("\u001b[21mThis is a double-underlined text\u001b[0m"); 

Console.WriteLine("\u001b[38;2;255;0;0mThis is a red text\u001b[0m"); 

Console.WriteLine("\u001b[48;2;255;0;0mThis is a red background\u001b[0m"); 

Console.WriteLine("\u001b[38;2;0;0;255;48;2;255;255;0mThis is a blue text with a 

yellow background\u001b[0m"); 

Seit C# 13.0 gibt es nun \e als Kurzform für das ESCAPE-Zeichen ASCII 27 ein, sodass die 

Zeichenfolgen deutlich kompakter und übersichtlicher werden (siehe nächstes Listings).  

Listing: Etwas übersichtlichere VT100/ANSI-Escape-Codes mit der neuen Abkürzung \e in C# 

13.0 
Console.WriteLine("This is a regular text"); 

Console.WriteLine("\e[1mThis is a bold text\e[0m"); 

Console.WriteLine("\e[2mThis is a dimmed text\e[0m"); 

Console.WriteLine("\e[3mThis is an italic text\e[0m"); 

Console.WriteLine("\e[4mThis is an underlined text\e[0m"); 

Console.WriteLine("\e[5mThis is a blinking text\e[0m"); 

Console.WriteLine("\e[6mThis is a fast blinking text\e[0m"); 

Console.WriteLine("\e[7mThis is an inverted text\e[0m"); 

Console.WriteLine("\e[8mThis is a hidden text\e[0m"); 

Console.WriteLine("\e[9mThis is a crossed-out text\e[0m"); 

Console.WriteLine("\e[21mThis is a double-underlined text\e[0m"); 

Console.WriteLine("\e[38;2;255;0;0mThis is a red text\e[0m"); 

Console.WriteLine("\e[48;2;255;0;0mThis is a red background\e[0m"); 

Console.WriteLine("\e[38;2;0;0;255;48;2;255;255;0mThis is a blue text with a yell

ow background\e[0m"); 

Die Abbildung zeigt das Ergebnis, das sowohl beide Listings produziert. 



Anhang: Neuerungen in früheren Versionen  403 

 

 
Abbildung: Die Ausgabe der beiden vorherigen Listings sieht gleich aus. 

So gibt man ein Farbraster mit den neuen Escape-Codes aus (das war mit den alten Escape-Codes 

natürlich auch schon möglich, es ist jetzt nur prägnanter): 

Console.WriteLine("\n\nFarbraster:"); 

for (int i = 0; i < 16; i++) 

{ 

 for (int j = 0; j < 16; j++) 

 { 

  Console.Write("\e[48;5;" + (i * 16 + j) + "m" + (i * 16 + j).ToString().PadLeft

(4)); 

 } 

 Console.WriteLine("\e[0m"); 

} 

 

Abbildung: Farbraster in der Konsole mit ANSI-Codes 

▪ String Interpolation" 

▪ Asynchrone Streams und await foreach (*) 

→ Kapitel "Iteratoren/Asynchrone Streams" 

▪ Static Local Functions 

→ Kapitel "Methoden/Statische lokale Funktionen (seit C# 8.0) " 



404 Anhang: Neuerungen in früheren Versionen 

 

▪ Using Declarations ohne Blöcke 

→ "IDisposable/Vereinfachte Using-Deklarationen " 

▪ Unmanaged Constructed Types 

▪ Readonly-Mitglieder in einer Struktur 

→ Kapitel "Strukturen/Readonly für einzelne Mitglieder einer Struktur " 

▪ Dispose() für ref structs (Strukturen auf dem Stack) 

→ Kapitel "IDisposable/IDispose für Strukturen auf dem Stack" 

(*) Die mit Stern markierten Sprachfeatures erfordert .NET Standard 2.1, d.h. nur für .NET 

Core, Xamarin, Mono und Unity.  Diese Sprachefeatures sind also im klassischen .NET 

Framework nicht verfügbar und Microsoft plant auch nicht, diese dort noch einzubauen. 

50.2 Neuerungen in C# 9.0 

Die fertige Version von C# 9.0 ist am 10.11.2020 im Rahmen von .NET 5.0 und Visual Studio 

2019 v16.8 erschienen. 

Hinweise: C# 9.0 wird offiziell von Microsoft nur ab .NET 5.0 unterstützt ("C# 9.0 is supported 

only on .NET 5 and newer versions." [learn.microsoft.com/en-us/dotnet/csharp/language-

reference/configure-language-version]. Man kann allerdings die meisten (aber nicht alle!) C# 

9.0-Sprachfeatures auch in .NET Core, .NET Framework und Xamarin nutzen. Dazu muss man 

die <LangVersion> in der Projektdatei erhöhen. Dies wird im Kapitel "Erste C#-

Schritte/Festlegen der Compilerversion" beschrieben.  

Notwendige Visual Studio-Version für C# 9.0 ist Visual Studio 2019 v16.8 oder höher. 

 
Abbildung: Übersicht über die Neuerungen in C# 9.0 

Quelle: Microsoft  

[github.com/dotnet/csharplang/blob/main/Language-Version-History.md] 

Die wichtigsten Neuerungen in C# 9.0 sind: 

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
https://github.com/dotnet/csharplang/blob/main/Language-Version-History.md


Anhang: Neuerungen in früheren Versionen  405 

 

▪ Record-Typen → siehe Kapitel "Record-Typen" 

▪ Programme ohne Main() → Siehe Kapitel "Top-Level Statements" 

▪ Properties, die nach Initialisierung unveränderlich sind (Init Only Properties mit Init Only 

Setters) → Siehe Kapitel "Attribute/Properties, die nach Initialisierung unveränderlich sind" 

▪ Verwendung des Operators new ohne Typangabe (Target-Typed New Expression) → Siehe 

Kapitel "Klassendefinition/Instanzierung mit dem Operator new") 

▪ Aufhebung der Restriktionen für partielle Methoden → Siehe Kapitel "Partielle Methoden" 

▪ Statische anonyme Funktionen und Discard-Variablen in Lambdas → Siehe Kapitel "Lambda-

Ausdrücke" 

▪ Annotationen auf lokale Funktionen → Siehe Kapitel "Lokale Funktion" 

▪ Erweiterung des Pattern Matching → Siehe Kapitel "Verzweigungen/Pattern Matching" 

▪ Modul-Initialisierer → Siehe Kapitel "Modul-Initialisierer". 

▪ Source Code-Generatoren: Mit diesen neuen Code-Generatoren kann ein Entwickler 

zusätzlichen Programmcode zur Kompilierungszeit erzeugen, der zusammen mit dem 

eigentlichen Programmcode kompiliert wird. Damit kann man z.B. Annotationen eine 

Bedeutung geben. → Siehe Kapitel "Source Code-Generatoren". 

50.3 Neuerungen in C# 10.0 

C# 10.0 ist zusammen mit Visual Studio 2022 und .NET 6.0 am 8.11.2021 erschienen. 

Hinweise: C# 10.0 wird offiziell von Microsoft erst ab .NET 6.0 unterstützt ("C# 10.0 is 

supported only on .NET 6 and newer versions." [learn.microsoft.com/en-

us/dotnet/csharp/language-reference/configure-language-version]. Man kann allerdings die 

meisten (aber nicht alle!) C# 11.0-Sprachfeatures auch in älteren .NET-Versionen einschließlich 

.NET Framework, .NET Core und Xamarin nutzen. Dazu muss man die <LangVersion> in der 

Projektdatei auf "10.0" erhöhen. Dies wird im Kapitel "Erste C#-Schritte/Festlegen der 

Compilerversion" beschrieben. 

Notwendige Visual Studio-Version für C# 10.0 ist Visual Studio 2022 v17.0 oder höher. Eine 

Verwendung von C# 10.0 sowohl mit Visual Studio for Mac 2022 als auch einer aktuellen 

Version von Visual Studio Code und anderen OmniSharp-kompatiblen Editoren 

[www.omnisharp.net] ist möglich. 

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
http://www.omnisharp.net/


406 Anhang: Neuerungen in früheren Versionen 

 

 
Abbildung: Übersicht über die Neuerungen in C# 10.0 | Quelle: Microsoft  

[github.com/dotnet/csharplang/blob/main/Language-Version-History.md] 

Das folgende Bild realisiert das kleine Kunststück, fast alle neuen C# 10.0-Sprachfeatures in zwei 

überschaubare und kommentierte Listings unterzubringen, die zusammen auch noch Sinn machen. 

Verstehen Sie dies als Kurzreferenz. Natürlich finden Sie eine ausführliche Beschreibung in den 

verschiedenen Kapiteln dieses Buchs. 

 
Abbildung: Fast alle neuen C# 10.0-Features auf einen Blick. 

Sie finden in diesem Buch: 

▪ Kapitel "Datentypen": Neuerungen zu Interpolated Strings 

▪ Kapitel "Verzweigungen/ Pattern Matching": Neuerungen zum Pattern Matching 

▪ Kapitel "Methoden": Caller Argument Expressions 

https://github.com/dotnet/csharplang/blob/main/Language-Version-History.md


Anhang: Neuerungen in früheren Versionen  407 

 

▪ Kapitel "Namensräume": Alle Neuerungen zu den Namensräumen (File-Scoped 

Namespaces, Global Using Directives, Implicit Using Directives) 

▪ Kapitel "Record-Typen": Alle Neuerungen zu Record-Typen (record class, record struct, 

sealed ToString()) 

▪ Kapitel "Strukturen/With-Ausdrücke": Einsatz von Klonen mit with bei Strukturen und 

anonymen Typen. 

▪ Kapitel "Strukturen/Strukturen mit parameterlosem Konstruktor": Strukturen mit 

parameterlosem Konstruktor 

▪ Kapitel "Tupel": Mixed Deconstruction 

▪ Kapitel "Funktionale Programmierung/Lambda-Ausdrücke": Typherleitung, explizite 

Rückgabetypen und Annotationen/Attribute für Lambda-Ausdrücke 

50.4 Neuerungen in C# 11.0 

C# 11.0 ist zusammen mit Visual Studio 2022 Version 17.4 und .NET 7.0 am 8.11.2022 erschienen. 

Wie schon bei .NET 6.0/C# 10.0 verwendet Microsoft bei .NET 7.0/C# 11.0 an vielen, aber nicht 

allen Stellen die Versionsnummer ohne ".0". Hier wird einheitlich die Schreibweise mit ".0" 

verwendet. Anders als .NET 6.0 besitzt die 7.0-Version keinen "Long-Term-Support", sondern nur 

"Standard Support" (früher "Current Version", zwischenzeitlich auch "Short-Termin-Support 

(STS)" genannt). Dafür gibt es also Unterstützung und Updates für 18 Monate, also von November 

2022 bis Mai 2023. 

Hinweise: C# 11.0 wird offiziell von Microsoft erst ab .NET 7.0 unterstützt ("C# 11.0 is 

supported only on .NET 7 and newer versions." [learn.microsoft.com/en-

us/dotnet/csharp/language-reference/configure-language-version]. Man kann allerdings die 

meisten (aber nicht alle!) C# 11.0-Sprachfeatures auch in älteren .NET-Versionen einschließlich 

.NET Framework, .NET Core und Xamarin nutzen. Dazu muss man die <LangVersion> in der 

Projektdatei auf "11.0" erhöhen. Dies wird im Kapitel "Erste C#-Schritte/Festlegen der 

Compilerversion" beschrieben.  

Notwendige Visual Studio-Version für C# 11.0 ist Visual Studio 2022 v17.4 oder höher. Eine 

Verwendung von C# 11.0 ist sowohl mit Visual Studio for Mac 2022 als auch einer aktuellen 

Version von Visual Studio Code und anderen OmniSharp-kompatiblen Editoren 

[www.omnisharp.net] ist möglich. 

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
http://www.omnisharp.net/


408 Anhang: Neuerungen in früheren Versionen 

 

 
Abbildung: Übersicht über die Neuerungen in C# 11.0 | Quelle: Microsoft  

[github.com/dotnet/csharplang/blob/main/Language-Version-History.md] 

Sie finden in diesem Buch: 

▪ Kapitel "Grundkonzepte": Warnungen bei Typnamen komplett in Kleinbuchstaben 

▪ Kapitel "Datentypen": Datentypen nint und nuint, Zeilenumbrüche innerhalb von 

Interpolationsausdrücken, Raw Literal Strings und UTF-8-Zeichenkettenliterale  

▪ Kapitel "Operatoren": Erweiterte Einsatzgebiete von nameof() 

▪ Kapitel "Verzweigungen": Pattern Matching für Listen und Teilmengen (List Pattern und 

Slice Pattern) 

▪ Kapitel "Klassendefinition": File-local Types 

▪ Kapitel "Datenmitglieder / Attribute": Pflichtmitglieder (Required Members) 

▪ Kapitel "Schnittstellen": Statische abstrakte Properties und Methoden in Schnittstellen 

▪ Kapitel "Annotationen (.NET-Attribute)": Annotationen mit Typparametern 

▪ Kapitel "Generische Klassen":  Generische Mathematik 

▪ Kapitel "Strukturen": Auto-Defaults Structs  

▪ Kapitel "Operatorüberladungen": Operatorüberladungen in Schnittstellen mit Hilfe von 

statischen abstrakten Methoden 

▪ Kapitel "Performanceoptimierungen": Ahead-of-Timer-Compiler (Native AOT) 

 

https://github.com/dotnet/csharplang/blob/main/Language-Version-History.md


Anhang: Quellen im Internet  409 

 

51 Anhang: Quellen im Internet 
 

Neuerungen in C# 13.0  

https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-13 

Breaking Changes in C# 13.0  

https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/breaking-

changes/compiler%20breaking%20changes%20-%20dotnet%209  

Projekt für das Design der Programmiersprache C# 

https://github.com/dotnet/csharplang 

Projekt für die Implementierung des neuen C#-Compilers 

https://github.com/dotnet/roslyn 

Versionsgeschichte der C#-Sprachsyntax 

https://github.com/dotnet/csharplang/blob/master/Language-Version-History.md 

Versionsgeschichte des neuen C#-Compilers 

https://github.com/dotnet/roslyn/blob/master/docs/wiki/NuGet-packages.md 

Language Feature Status 

https://github.com/dotnet/roslyn/blob/master/docs/Language%20Feature%20Status.md 

C# ECMA Standard 

https://www.ecma-international.org/publications-and-standards/standards/ecma-334/  

Weiterentwicklung des C# ECMA Standards 

https://github.com/dotnet/csharpstandard  

NuGet-Paket des C#-Compilers 

https://www.nuget.org/packages/Microsoft.Net.Compilers 

.NET-Entwickler-Lexikon 

https://www.dotnet-lexikon.de 

Website zu .NET 9.0 

https://www.dotnet9.de 

 

 

 

 

 

https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-13
https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/breaking-changes/compiler%20breaking%20changes%20-%20dotnet%209
https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/breaking-changes/compiler%20breaking%20changes%20-%20dotnet%209
https://github.com/dotnet/csharplang
https://github.com/dotnet/roslyn
https://github.com/dotnet/csharplang/blob/master/Language-Version-History.md
https://github.com/dotnet/roslyn/blob/master/docs/wiki/NuGet-packages.md
https://www.ecma-international.org/publications-and-standards/standards/ecma-334/
https://github.com/dotnet/csharpstandard
http://www.dotnet-lexikon.de/
http://www.dotnet9.de/


410 Anhang: Versionsgeschichte dieses Buchs 

 

52 Anhang: Versionsgeschichte dieses 
Buchs 
Die folgende Tabelle zeigt die Versionen, die von diesem Fachbuch erschienen sind, sowie die 

darin besprochenen Blazor-Versionen.  

Hinweis: Diese Tabelle ist eine wichtige Referenz für die Leser, die sich aktuelle Versionen des 

Buchs beschaffen (z.B. über das PDF-Abo) und wissen wollen, was sich geändert hat. Wenn 

Sie das Buch erstmalig lesen, können Sie dieses Kapitel überspringen. 

Die Behandlung einer neuen Versionsnummer des Produkts und die daraus resultierende Änderung 

des Buchtitels erfordert gemäß Amazon-Richtlinien ein neues Buchprojekt. In diesem Fall wird 

die Versionsnummer des Buchs an der ersten Stelle hochgezählt (z.B. 1.4 auf 2.0). 

Eine Änderung der Versionsnummer an der zweiten Stelle (z.B. 1.3 auf 1.4) sind Aktualisierungen 

oder Erweiterungen, die keine Titeländerung erfordern.  

Ergänzungen der Versionsnummer an der dritten Stelle (z.B. 1.2.2 auf 1.2.3) sind kleine 

Korrekturen im Buch, die nicht explizit in dieser Versionstabelle erscheinen. Das 

Erscheinungsdatum auf der Titelseite entspricht dem Erscheinungsdatum der Unterversion, kann 

also von dem in der Tabelle genannten Erscheinungsdatum der übergeordneten Version 

abweichen. 

Leider sind Preiserhöhungen mit steigendem Buchumfang notwendig, da der Arbeitsaufwand der 

ständigen Aktualisierungen dieses Buchs sehr hoch ist. 

Buchversion 

Datum 

 

Umfang C#-

Version 

Bemerkung 

13.0 

01.11.2024 

421 

Seiten 

13.0 ▪ Basisversion des Buchs 

  



Stichwortverzeichnis (Index)  411 

 

53 Stichwortverzeichnis (Index) 
Es sind hier jeweils nur die zentralen Stellen im Buch verlinkt. Um alle Vorkommnisse eines 

Begriffs zu finden, nutzen Sie bitte die Volltextsuche im PDF, das Sie als Käufer des gedruckten 

Buchs kostenfrei bekommen (siehe Kapitel "Über dieses Fachbuch"). 

&&  135 

.csproj  74 

.NET  31 

.NET Compact Framework  31 

.NET Core  31 

.NET Fiddle  91 

.NET Framework  31, 87 

.NET Framework Design Guidelines  55 

.sln  74 

||  135 

=>  310 

Abfrageausdruck  346 

abstract  241 

Action<T>  308, 315 

Active Data Objects .NET  37 

AddYears()  358 

Aggregate  353 

All  353 

and  135 

Anders Hejlsberg  31 

Annotation  218, 222 

Anonyme Funktion  313 

Anonymer Typ  271 

ANSI  99, 402 

Any  353 

args  78 

Array  231, 341 

Array.Resize()  231 

ArrayList  231, 232, 359 

as  111 

AsOrdered()  372 

ASP.NET  74, 80 

AsParallel()  371 

Assembly  149, 168, 200 

async  333 

Asynchroner Stream  338 

ATOM  47 

Attribut  143, 218, 222 

Aufzählungstypen siehe Enumeration  186 

Ausnahme  326 

Auto-Default Struct  265 

Automatic Property  156 

Average  351, 353 

await  333 

await foreach  338 

Bezeichner  54 

Blazor  200 

Block  55 

Block Body  187, 244 

Blockkommentar  331 

bool  95 

Boxing  264, 273 

Brackets  47 

Break  130 

byte  95, 96 

C#  394 

versus Visual Basic .NET  394 

C# 10.0  406 

C# 11.0  48, 408 

C# 8.0  402 

C# 9.0  405 

C# Dev Kit  47 

C++  31, 37, 53, 97 

C++/CLI  32, 37 



412 Stichwortverzeichnis (Index) 

 

Caller Argument Expression  178, 179 

CallerFilePath  176, 178 

Caller-Info-Annotation  176 

CallerLineNumber  176, 178 

CallerMemberName  176, 178 

Camel Casing  55 

camelCasing  252 

Cast  353 

char  95 

ChatGPT  90 

Checked Exception  326 

class  225, 241 

Clone()  278 

CLR siehe Common Language Runtime  326 

CodeDOM  58, 62 

Code-Generator  406 

CodeRush  90 

Co-Evolution  38 

Collect()  182 

Collection  231 

Collection Expression  236, 237 

Collection Initializer  233 

Collection Literal  236 

Common Intermediate Language  36 

Common Language Infrastructure  36, 37 

Common Language Runtime  182, 326, 341 

Community  46 

Compiler  37, 58 

Component Object Model  250, 251 

Concat  353 

Console  24 

Contains  353 

ConvertFrom()  214 

ConvertTo()  214 

Cool  31 

Copilot  90 

Count  353 

csc.exe  37, 58, 61 

CSCodeProvider  58 

CUI  24 

DataRow  214 

DataSet  200, 347 

DataTable  346 

DataView  346 

Dateisystem  251 

Datenbank  347 

Datenbankschnittstelle  37 

Datentyp  94 

Datentypkonvertierung  208 

DateTime  95 

Datumsliteral  108 

DbDataReader  214 

DBNull  214 

Debug  380 

Debugging  78 

decimal  95 

Decompiler  183 

Deconstruct()  283 

default  267 

Dekompilat  183, 283 

Dekonstruktion  50 

Delegate  306, 310, 318 

descending  356 

Destruktor  180, 182 

Developer Express  90 

Dictionary  233, 239, 363 

Dictionary Expression  236 

DisableImplicitNamespaceImports  255 

Discard  111, 130, 172, 300, 314, 406 

Discard-Variable  172 

Dispose()  319, 322 

Distinct  353 

Distrinct()  351 

dotnet.exe  79 

double  95 

Duck Typing  306 



Stichwortverzeichnis (Index)  413 

 

dynamic  112 

Editor  118, 241, 346 

Eigenschaft 

automatisch  156 

Eingabeunterstützung  47 

ElementAt  353 

ElementAtOrDefault  354 

Emacs  47 

Empty  354 

EndWith()  276 

Entity Framework  200 

Entity Framework Core  348 

EnumerateSplits()  276 

Enumeration  186 

Equals()  278 

Ereignis  143, 317 

Ereignisbehandlung  318 

Erweiterungsmethode  206, 208 

European Computer Manufacturers 

Association  36 

EventHandler  317, 337 

EventHandler<T>  317 

Except  354 

Exception  326, 380 

Execute()  374 

Expression Body  187, 244 

Expression Tree  348 

Expression-bpdied Member  187 

extension  50 

Extension Method  206 

Extension Type  50 

Facebook  298 

Fehlerbehandlung  326 

Fehlerbeschreibung  326 

Feld  153 

Field  153 

file  149 

File-local Type  149 

Finalizer  180, 182 

Find()  346 

FindAll()  346 

First  354 

FirstOrDefault  355 

fixed  342 

Fließkommazahl  96 

float  95 

Flux  298 

Fluxor  298 

for  127 

For  127 

foreach  127, 359 

Framework Class Library  36, 224 

friend  149 

From  351 

FullyBuffered  373 

Func<T>  308 

Function  143, 163 

Funktion 

anonym  313 

Funktional  306 

Funktionszeiger  306, 310 

Ganzzahl  95, 96 

Garbage Collection  182 

Garbage Collector  181, 182, 342 

Generic Attribute  222 

Generic Constraint  224, 225 

Generics  224 

Getter  154 

GetType()  109, 258 

GitHub  90 

Glaubenskrieg  32 

Gleichheit  278 

Global  256 

Global Unique Identifier  96 

Global Using Directive  254 

Glühbirne  90 



414 Stichwortverzeichnis (Index) 

 

GroupBy  355 

GroupJoin  355 

Gültigkeit  109 

Hashtable  233, 359 

Heap  262 

Hello World  58 

Hooks  201 

IAsyncEnumerable<T>  31, 338 

IDisposable  254, 286, 319, 322 

IEnumerable  127, 206, 207, 337, 348, 362, 

367 

IEnumerable<T>  31, 225, 359 

if  129 

IL Enhancement  374 

ILSpy  21, 183 

immutable  289 

Immutable Object  277, 295, 296, 297, 298 

Implementierungsvererbung  241 

Import  254 

Index  124 

Indexer  239 

init  157 

Init Only Property  157, 278 

Init Only Property siehe Init Only Properties  

406 

Init Only Setter  154, 283, 289, 406 

Init Only Setters  157 

Initialize() siehe ISourceGenerator  374 

InlineArray  50 

Innere Klasse  149 

int  95 

Int32  363 

IntelliCode  88 

IntelliSense  47, 88 

interface  243 

internal  149 

International .NET Association  18 

International Standardization Organization  

36 

InterpolatedStringHandler  102 

Intersect  355 

InvalidCastException  111 

IQueryable  348 

IronPython  111 

IsExternalInit  159, 277 

ISourceGenerator  374 

Iterator  336, 338 

ITV.AppUtil  24 

IT-Visions  16, 17 

Java  53, 218, 241 

JetBrains  90 

Join  355 

Kapselung  206 

Klasse  143 

generisch  224 

partiell  200 

Klassenbibliothek  206 

Klassendefinition  143 

Kommandozeilenparameter  58, 63 

Kommentar  331 

XML  331 

Konsolenausgabe  24 

Konstruktor  151, 180, 181, 241 

Konvertierungsfunktion  208 

Kovarianz  225, 227 

Lambda  53, 306, 310, 311, 315, 408 

Lambda-Ausdruck  310 

Language Integrated Query  Siehe LINQ 

LangVersion  86, 87, 159 

Last  355 

LastOrDefault  355 

Laufzeitcodegenerierung  21, 385 

Laufzeitfehler  326, 380 

Lazy Resource Recovery  182 

LDAP  346, 347 



Stichwortverzeichnis (Index)  415 

 

LinkedList  233 

LINQ  207, 346, 347, 348, 358 

Provider  347 

Syntax  348 

LINQ to DataService  347 

LINQ to DataSet  347 

LINQ to Entities  347, 359 

LINQ to Objects  347, 359, 363, 371 

LINQ to SQL  201, 347 

LINQ to XML  347 

Linux  47 

List  207, 232 

List Pattern  137 

List<T>  359, 367 

Literal  97, 107 

lock()  323 

long  95 

LongCount  355 

macOS  47 

Mads Torgersen  38 

Main()  58, 329, 330 

Managed C++  37 

Managed Extensions  37 

Managed Pointer  341, 343 

ManagementObjectCollection  359 

Mathematik  228 

Max  356 

Mehrfachvererbung  243 

MemberWiseClone()  263 

Metadaten  206, 218 

Methode  143, 163 

partiell  201, 406 

Microsoft Certified Solution Developer  17 

Microsoft.VisualBasic.dll  56 

Min  356 

Min()  351 

ModuleInitializer  329 

Modul-Initialisierer  329, 406 

Mono  31, 37 

Most Valuable Professional  17 

msbuild.exe  74, 79 

Multi-Paradigmen  53 

Multi-Threading  277, 295 

MustInherit  241 

mutable  289 

Namenskonvention  54 

Namensraum  127, 241, 242, 250, 252, 253, 

254 

Global siehe  254 

Implizit siehe  255 

Namensregel  54 

nameof()  121, 122, 123 

Namespace  Siehe Namensraum, Siehe 

Namensraum 

Name-Wert-Paar  239 

NET SDK  255 

new  145, 146, 225 

nint  409 

NotInheritable  206, 241 

NuGet.config  24 

nuint  96, 409 

null  120, 188, 189, 190, 194, 214 

Null Coalescing Assignment  190 

Null Coalescing Assignment Operator  120 

Null Coalescing Operator  120 

Null Conditional Operator  121 

Null Forgiveness-Operator  198 

Nullable Annotation Context  192 

Nullable Context  192 

Nullable Reference Type  190, 196, 197 

Nullable Value Type  112 

Nullable Warning Context  192 

NullReferenceException  188, 194 

Null-Referenz-Prüfung  190 

Objektinitialisierung  147 

Objektmenge  231 



416 Stichwortverzeichnis (Index) 

 

Objektorientierung  53 

Obsolete  218 

Of  225 

OfType  356 

OmniSharp  47, 48, 406, 408 

Open Source  37, 46 

OpenAI  90 

Operator  116 

Operatorüberladung  259, 278 

or  135 

orderby  351, 356, 371 

out  111, 172 

OverloadResolutionPriority  164 

Overloads  164 

packageSource  24 

Parallel LINQ  Siehe PLINQ, Siehe PLINQ 

Parameter  167 

benannt  167 

optional  167, 168 

Parität  38 

partial  201 

Pascal Casing  55 

PascalCasing  252 

Pattern Matching  133, 134, 182, 406 

Liste  137 

Teilmenge  137 

PLINQ  371 

AsOrdered  372 

CancellationToken  372 

FullyBuffered  373 

WithCancellation()  372 

WithExecutionMode  373 

WithMergeOptions()  373 

PostSharp  374 

Prädikat  314 

Predicate<T>  310, 314, 315 

Preserve  231 

Primärkonstruktor  182, 283, 289 

PrintMembers()  278 

PriorityQueue  232 

private  149, 201, 243 

Process  350 

Produktmanager  38 

Projektion  311 

Property  154 

Partiell  203 

Property Pattern  136 

protected  149, 243 

Prozess  350 

public  149, 243 

Pure Function  298 

Queue  232, 359 

Queue<T>  359 

Race Condition  277, 295 

Range  124, 356 

Raw Literal String  104 

Readonly  267 

readonly record struct  289 

ReadOnlySpan<byte>  276 

ReadOnlySpan<char  276 

Record  270, 277 

record class  289 

record struct  289 

ReDim  231 

Reducer  298 

Redux  298 

ref  335, 343 

Ref Local Reassignment  344 

ref readonly  168 

ref struct  243, 262, 335 

Refactoring  90 

Referenztyp  113, 261, 262, 273 

Reflection  206, 218 

Reflection Emit  385 

Registrierung  251 

Regular String  104 



Stichwortverzeichnis (Index)  417 

 

Relational Pattern  135 

Release  380 

Repeat  356 

required  160 

ReSharper  90 

Reverse  356 

Rider  47 

Roslyn  37 

Rotor  37 

Round()  358 

RuntimeBinderException  111 

Sandcastle Help File Builder  332 

sbyte  96 

Schleife  127 

Schlüsselwort  53 

Schnittstelle  127, 243, 244, 286 

Schwichtenberg, Holger  17 

sealed  241, 277, 288 

select  356 

Select  351 

SelectMany  356 

Semi-Auto-Property  50 

Semikolon  55 

SequenceEqual  357 

set  157 

SetsRequiredMembers  160 

Setter  154 

Shared Source  37 

short  95 

Sichtbarkeit  148 

Sichtbarkeiten  148 

Sichtbarkeitsmodifizierer  200 

Single  357 

SingleOrDefault()  357 

Skip  357 

Skip()  351 

SkipWhile  357 

SlashData  45 

Slice Pattern  137, 139 

Softwarekomponente  250, 251 

SortedDictionary  239 

SortedDictionary<T>  359 

SortedList  233 

Source-Generator  374 

Spread-Operator  237 

SQL  346, 347 

SqlDataReader  214 

Stack  232, 261, 262, 359 

Stack<T>  359 

Stackoverflow  40, 43, 44 

StackTrace  326 

StartsWith()  276, 358 

static  329 

static abstract  248 

string  95, 113 

String Interpolation  101 

String.Concat()  102 

String.Format()  102 

StringBuilder  102 

struct  261, 342 

structure  225 

Struktur  261 

Sub  143, 163, 206 

Sublime  47 

Sum  357 

Swagger Open API  332 

switch  129, 130, 134 

Switch Expression  130 

System.Array  359 

System.Attribute  220, 222 

System.Boolean  95 

System.Byte  95 

System.Char  95 

System.Collection  232 

System.Collection.Generic  232 

System.Collections  224, 231, 346 



418 Stichwortverzeichnis (Index) 

 

System.Collections.Generic  232 

System.DateTime  95, 359 

System.Decimal  95 

System.Diagnostics  350 

System.Double  95 

System.Exception  326 

System.Half  95 

System.Index  124 

System.Int128  95, 228 

System.Int16  95 

System.Int32  95 

System.Int64  95 

System.IntPtr  95 

System.IO.File  276 

System.Linq  207, 351 

System.Math  359 

System.Nullable  112 

System.Numerics  228 

System.Object  109, 231, 262 

System.Obsolete  218 

System.Range  124 

System.Single  95 

System.String  95, 113, 276, 358, 359 

System.Threading.Lock  323 

System.ValueType  261, 289 

Take  351, 357 

TakeWhile  358 

Target-Typed New Expression  146, 406 

ThenBy  358 

ThenByDescending  358 

Thread  277, 295 

thread-safe  277, 295 

Tiobe  38 

To<T>()  214 

ToArray()  358 

ToDictionary  358 

ToList()  358 

ToLookup()  358 

Top-Level Statement  81 

ToString()  207, 278, 288 

Transaktion  218 

try...catch  326 

Try...catch  326 

TryStartNoGCRegion()  182 

Tupel  50, 137, 299 

Tupel Pattern  137 

Typ 

anonym  258 

Typableitung  108, 109 

Typalias  304 

Type Cast siehe Typkonvertierung  110 

Type Inference  Siehe Typableitung 

Type Pattern  135 

TypeDescriptor  214 

typeof()  109 

Typherleitung  408 

Typinitialisierung  96 

Typkonvertierung  110 

Typname  250, 252 

Typparameter  224 

Typprüfung  109 

Überladung  164 

Unboxing  273 

Ungleichheit  278 

unint  96 

Union  358 

Universal Windows Platform  31 

Unix  36, 37 

unsafe  341, 342 

Unsafe  341 

using  254 

Using-Block  321 

UTF-16  107 

UTF-8  107 

ValueTupel  302 

var  237 



Stichwortverzeichnis (Index)  419 

 

Variable  96 

Variant  111 

Verbatim String  98, 104 

Verzweigung  129 

Vim  47 

Virtual Extension Method  244 

Visual Basic .NET  32, 38, 53, 56, 231, 306, 

341, 394 

versus C#  394 

Visual Studio  46, 61, 67, 143, 200 

Visual Studio 2019  68 

Visual Studio 2022  190 

Visual Studio Code  21, 47, 67 

Visual Studio for Mac  46 

void  163, 201, 206, 329 

VT100  99, 402 

WCF  347 

Webforms  200 

Wertetyp  112, 113, 163, 261, 262, 263, 273 

where  225, 351, 358, 371 

While  127 

Windows  47 

Windows Forms  37, 74 

Windows on Windows 64  378 

Windows Presentation Foundation  74 

Windows Runtime  31 

with  147, 283, 287 

With-Ausdruck  258, 270, 277, 287 

WithExecutionMode()  373 

WOW64  378 

WriteAllBytes()  276 

WriteAllText()  276 

www.IT-Visions.de  18 

Xamarin  31, 74, 80 

XML  331, 347 

XML Schema Definition Language  252 

XML-Kommentar  331 

XNA  31 

XPath  346, 347 

XQuery  346 

yield  336, 337, 338 

Yield Continuations  336 

Zahlenliteral  107 

Zeigerprogrammierung  341 

Zeilenkommentar  331 

Zugriffsmodifizierer  148 

 



420 Werbung in eigener Sache 

 

54 Werbung in eigener Sache ☺ 

54.1 Dienstleistungen 

 



Werbung in eigener Sache  421 

 

54.2 Aktion "Buch für Buchrezension" 

Ich möchte Sie animieren, eine Rezension dieses Fachbuchs bei Amazon.de zu schreiben. Als Dank 

dafür erhalten Sie kostenlos ein weiteres E-Book (PDF) aus meiner Buchreihe (wenn Sie dieses 

Buch als gedrucktes Buch gekauft haben, können Sie auch das PDF des selben Buchs erhalten!). 

So geht es: 

▪ Sie schreiben bei Amazon.de eine Rezension zu diesem Fachbuch. 

▪ Nach dem Erscheinen der Rezension besuchen Sie die Webadresse  

www.IT-Visions.de/Buchrezension 

▪ Füllen Sie bitte das Formular aus. Geben Sie dabei in den Details insbesondere den 

Buchwunsch und Ihren Rezensionstext an, damit wir dies auf Amazon.de überprüfen können. 

Sie müssen nicht Ihr Amazon-Konto angeben! 

▪ Das www.IT-Visions.de-Kundenteam sendet Ihnen nach der Überprüfung das E-Book (PDF-

Format) des gewünschten Buchs per E-Mail. 

 
Abbildung: Webformular für die Aktion "Buch für Buchrezension" 

 

http://www.it-visions.de/Buchrezension


422 Werbung in eigener Sache 

 

54.3 Angebot "PDF-Buch-Abo" 

Sie zahlen einen einmaligen Preis (ab 99 € zzgl. 7% MwSt) und erhalten für die Dauer des Abos: 

▪ alle meine aktuellen .NET- und Web-Bücher  

▪ in der jeweils aktuellen Version 

▪ inklusive Zugriff auf alle früheren Ausgaben 

▪ als PDF-E-Book zum Download 

▪ alle 1-3 Monate die neusten Auflagen mit inhaltlichen Updates 

▪ inklusive Neuausgaben, die im Abozeitraum erscheinen werden 

▪ Zahlung auf Rechnung ohne Risiko 

▪ ohne automatische Verlängerung!  

(Sie entscheiden selbst nach Laufzeitende, ob Sie das Abo fortsetzen wollen) 

Enthalten sind folgende aktuelle Fachbücher: 

▪ .NET 9.0 Update (~175 Seiten, Wert ~14,99 €)  

▪ C# 13.0 Crashkurs (~420 Seiten, Wert ~29,99 €)  

▪ Moderne Datenzugriffslösungen mit Entity Framework Core 9.0 (~824 Seiten, Wert: 49,99 €) 

▪ Moderne Datenzugriffslösungen mit Entity Framework 6.x (287 Seiten, Wert: 24,99 €) 

▪ Blazor 9.0 (~824 Seiten, Wert 49,99 €)  

▪ Vue.js 3 (~260 Seiten, Wert ~19,99 €) 

Die .NET-Bücher werden im Abstand von einigen Wochen aktualisiert, jeweils bis zum Erscheinen 

des Nachfolgebuchs. Die Nachfolgebücher, die im November 2025 erschienen werden, sind 

ebenfalls enthalten, sofern das Ihr Abo dann noch aktiv ist: 

▪ .NET 10.0 Update 

▪ C# 14.0 Crashkurs 

▪ ASP.NET Core Blazor 10.0 

▪ Moderne Datenzugriffslösungen mit Entity Framework Core 10.0 

Ebenfalls im Buch-Abo enthalten sind alle vorherige Ausgaben zu C# 8.0 bis C# 12.0, ASP.NET 

Core Blazor 3.1 bis 8.0 sowie Entity Framework Core 3.1 bis 8.0. 

Preise (jeweils zzgl. 7% Mehrwertsteuer): 

▪ Einzelperson, 1 Jahr: 129 € 

▪ Einzelperson, 2 Jahre: 218 € umgerechnet 109 € pro Jahr (15% Ersparnis)  

▪ Einzelperson, 3 Jahre: 297 € umgerechnet 99 € pro Jahr (23% Ersparnis)  

▪ Firmenlizenz bis zu 15 Personen, 1 Jahr: 399 €  

▪ Firmenlizenz bis zu 50 Personen, 1 Jahr: 699 €  

▪ Firmenlizenz bis zu 1000 Personen, 1 Jahr: 999 €  

Weitere Informationen und Bestellung: 

www.IT-Visions.de/BuchAbo 

http://www.it-visions.de/Buecher/Abo

