Dr. Holger Schwichtenberg

C# 13.0 Crashkurs

Die Syntax der Programmiersprache C#
fur die Softwareentwicklung
in .NET Framework und .NET bis einschlieBlich Version 9.0

pi:] ~ public partial class PersonW

thBalance

T
12 // WEU: Partielles Praperty
public partial int ID { get; set; }
// "Normales Property"
public string Name { get; set; }
// WEU: Partial Indexer
public partial string this[int index] { get; }
// Partielle Methode. NEU: params List<int> statt params int[]
public partial veid Print(params List<string> args);
¥

+ public partial class PersonWithBalance
i
private decimal _balance;

// NEU: Lock-Klasse fiir Lock

private readonly Syste ling.Lock _balancelLock = new();

'gs)

i
int farbe = 8
~ foreach (var item in args)
i

Console.Write($"\e[1m\c[38;2;0;0;255;u8;2;255;255; {farbe += 50}n"); // NEU: ANSI-Codes mit \e
Console.Write(item + " ");

Console.Write(*\e[6m");

¥

Console.WriteLine($"{ JID: f Name}");

// NEU: Implementierung des Partial Property
private int iD;

~ public partial int ID
i

get { return iD; }
b set
{

if (ID > 8) throw new ApplicationException("ID ist bereits gesetzt");
iD = value;

3

¥

——oww.IT-Visions.de

Dr. Holger Schwichtenberg

Inhaltsverzeichnis (Hauptkapitel)

Buchversion/Auflage:

Verlag:

Sprachliche Korrektur:

ISBN:

Bezugsquellen:

13.0.0 vom 01.11.2024

www.|T-Visions.de, Fahrenberg 40b, D-45257 Essen
Matthias Bloch, Heike Rickert, Dorothea Fleischer
978-3-934-27944-5
www.IT-Visions.de/Buch/CS13

/www._l?-w

Dr. Holger Schwichtenberg

http://www.it-visions.de/Buch/CS13

Inhaltsverzeichnis (Hauptkapitel) 3

1

© N N L AW N =

—_ = = = =
B W NN = O

15

Inhaltsverzeichnis (Hauptkapitel)

Inhaltsverzeichnis (Hauptkapitel)ccooccueieiiieiniiiiiniiciicieiicece e 3
Inhaltsverzeichnis (DEtails).........evrueuerieieirieiee ettt ettt enen 5
VOTWOTT ..ottt s e e 15
Uber den Autor 17
UDEr dHESES BUCK ..ovvvireievnriircireies sttt sttt et 19
FaKLen ZU CH ..o ettt s 31
Grundkonzepte von C# e 53
Der C#-Compiler

Erste C#-Schritte mit Visual Studio 67
DIAEIEYPEIL ...ttt ettt ettt ettt et bttt n s 94
OPCTALOTEIN ...ttt ettt ettt ettt ettt ettt et ettt ettt ettt s e ebe et ese e b besenens 116
Schleifen 127
VETZWEIZUNZEI ...ttt ettt ettt ettt et ettt ettt et b et tese s eaese st ebeneeneneas 129
Klassendefinition 143
Datenmitglieder / Attribute (Fields und Properties)..........coceeeeverenneciniienineinncenieeneenens 152
Methoden 163
Konstruktoren und Destruktoren (FInaliZer)coceeirieireenie e e 180
Aufzihlungstypen (ENUMEration)c.ccceueiuiurinieeioieiiieiniceeiiieseeeeee seieeeneiesenessenes 186
Expression-bodied Member: 187
Behandlung von null.........c.coceiiiiiiiiiiccec e e 188
Partielle Klassen, Methoden, Properties und Indexer 200
Erweiterungsmethoden (Extension Methods)206
Annotationen (.NET-Attribute)... ..218
Generische Klassen 224
Objektmengen (Arrays Und ColleCtions)........c.eeeueueririeierinuit ettt e 231
Implementierungsvererbung 241
Schnittstellen (INTErfaces)coveviireiririeiiei et ettt e 243
Namensraume (NAMESPACES)cuerueueuieieuirieieietieieteiiietet ettt et et etee e ese e 250
Anonyme Typen 258
Operatoriiberladungc.coeeriiuiiiiiin it ettt e 259
SHUKLUTCIL ...t st 261

RECOTA-TYPEIN ..ttt ettt ettt et eb e ene e 277

Inhaltsverzeichnis (Hauptkapitel)

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Immutable Object: 295
Tupel.

Typaliase (SEit CH 12.0)....cucueuiuiieiiiiiiiieee ettt et e 304
Funktionale Programmierung in C# (Delegates / Lambdas)cccoeeerniirneiinenneens 306
ETCIGIESSE vttt ettt ettt b bbbt ehe bbbttt 317
IDisposable / Using-Blocke 319
Exklusive Zugriffe auf Ressourcen mit lock().....ccoveverireeiniiuinnentinieininieiecseceneeee e 323
Laufzeitfehler 326
MOAUI-INTHALISIEICT ...t s 329
Kommentare und XML-Dokumentation 331
Asynchrone Ausflihrung mit async und await...........ooeeverreeerieeeneceeeeeeeeee e 333
TEEIALOTEI ... s 336
Z@IGETPIOZIAMIMICTUNGevevvveteeeteteueteneae ceeseatataesesestt et sttt st seesese s et sessesesesetesesenenbenenene 341
Abfrageausdriicke/Language Integrated Query (LINQ)c.ccouovueueiniiieininic s 346
Source-Generatoren 374

Performanceoptimierungen

Anhang: Syntaxreferenz: C# versus Visual Basic .NET ..

Anhang: Neuerungen in fritheren Versionen

Anhang: Quellen im Internet 410
Anhang: Versionsgeschichte dieses BUChS.........c.cccciviiiininirinniniercee s 411
Stichwortverzeichnis (INAEX)........c.eoivueiriiuiieieint ettt 412

Werbung in eigener Sache © 421

Inhaltsverzeichnis (Details) 5
2 Inhaltsverzeichnis (Details)
1 Inhaltsverzeichnis (Hauptkapitel)ccoccceueiiuciniis it e 3
2 Inhaltsverzeichnis (DEtails)........cceirirueuieeeirieis ettt ettt enas 5
3 VOTIWOIT o s 15
4 Uber den Autor 17
5 UDEE dESES BUCK ...veevveeeierccieiice et eees ettt st 19
5.1 Versionsgeschichte dieses BUChSc.cciiiiiiiiiiiiiicceeee s 19
5.2 Hinweis zu den Vertriebswegen 19
53 Bezugsquelle des PDF-E-Books fiir Amazon-Kunden ..
5.4 Bezugsquelle fir Aktualisierungen 20
5.5 Hinweise zur Breite und Tiefe dieses Buchs — Sie haben Einfluss!cc...co...... 20
5.6 Geplante TREMENc.ceueuiuiiiiiiiie sttt ettt shebesenes 20
5.7 Programmcodebeispiele zu diesem BUuCh..........ccccoveveviieiiiiiiciiiicecccccceccee e 21
5.8 Hilfsklasse zur Konsolenausgabe (CUT)ccoovveuiriniiiniiiiiniiieininiecneceeccneeenns 24
5.9 Qualititssicherung der Programmcodebeispiele 29
5.10 Thre Belohnung, wenn Sie helfen, dieses Buch zu verbessern!cccocecevvcnnnnens 30
6 Fakten zu C# 31
6.1 Der Name C# 31
6.2 UISPrilnge VON CHoviiiiiiiiiiiiicic s s s 31
6.3 NET als Basis fiir C# .31
6.4 Status der Programmiersprache C#ccooeeuviiinint e e 32
6.5 Dokumentation zu C# 12.0 34
6.6 VersionsgeSChiChte........coiiiiiiiici e e 35
6.7 Standardisierung....
6.8 Implementierung des C#-Compilers 37
6.9 OPCI SOUICTE ...ttt ettt et b et es et es et e s et es et st es e e ebenea sbesteteseneeeenen 37
6.10 Paritit und Co-Evolution mit Visual Basic NET 38
6.11 PoPUlaritit VON CH#c.ooiiuiiiiiiiiiciiee ettt ettt e 38
6.12 Editoren fUr CH........cc.oiiiiiiiiiiiiicicei e st 46
6.13 Neuerungen in C# 13.0 .47
6.14 Vertagte neue Sprachfeatures............cccoveiririeirietoieieiriceeese e et 50
6.15 Vorschldge fiir kommende Sprachfeatures .51
7 GrundKonzepte VON CHccooueiriiiiiriiiiieie ittt ettt ceebe ettt et se et ceaenees 53

6 Inhaltsverzeichnis (Details)

7.1 Sprachtypus 53
7.2 GroB- und Kleinschreibung .53
73 Schliisselworter der Sprache 53
7.4 Namensregeln und NamensKonventionenc.coeeoveeriereseereeneeeneneeneeseneneee seeee 54
7.5 Blockbildung und Umbriiche 55
7.6 Hello World 56
7.7 Eingebaute FUNKONENc.ciiiiiiiiiiiiiieit ettt ettt 56
8 DRl CH-COMPILET ...ttt ettt ettt s bbb senes 58
8.1 Der urspriingliche (alte) CH#-Compiler.........cococveuiiriinne o e 58
8.1.1 Kompilierung mit csc.exe 58
8.1.2 Kommandozeilenparameter 58
8.2 Der aktuelle (neue) CH-COMPIIETcccueuiiiiniiiiiiiicicece e e 61
8.2.1 Versionsnummern des COMPILErS.......c.c.cvviriiriririnieie st 62
822 Kommandozeilenparametercccecueiiieininiciniiienieeeiee st 63

9 Erste C#-Schritte mit Visual Studio 67
9.1 Visual Studio versus Visual Studio Code..........cccooviriiiiiiniiiiicicccceic e 67
9.2 Visual Studio-Versionen... .67
9.3 Hello World mit dem klassischen .NET Framework 68
9.4 Hello World mit modernem .NET 74
9.5 Programme ohne Main() (Top-Level Statements) 81
9.6 Festlegung der COmpilerversion...........c.vcerieuirieieintieininieieeeresieeeere e e 84
9.7 Eingabeunterstiitzung in Visual StUdIocccceueviviieiiiiie i 88
9.7.1 INEEILISENSE ... e 88
9.7.2 INEEIICOAE ...vvviiicicc e s 88
9.7.3 COPILOL 1.ttt et ettt ettt 90
9.8 Refactoring in Visual StUAIOc.co.eveieiiiriiciiniiiee e e s 90
9.9 NET FIddIe ..o st 91
10 Datentypen 94
10.1 Uberblick tiber die DAtentyPencoveveerverieereeeveesiesieessesessessesa s svesesssessessessaens 94
10.2 Variablendeklarationen .96
103 TypinitialiSIerUNgcc.ceviuiiiiiiiiciiiiieieieeee e s e 96

10.4 Literale fiir Zeichen und Zeichenketten

10.5 Konsolenausgabenformatierung mit ANSI-Codes 99

Inhaltsverzeichnis (Details) 7
10.6 String INtErPOlationc.c.ceiieeeiiriis ettt sttt beneaea e 101
10.7 Raw Literal Strings (seit C# 11.0). ... 104
10.8 UTF-8-Zeichenkettenliterale (seit C# 11.0) 107
109 Zahlenliteralecoooiiiiiiiiiis i s 107
10.10 Datumsliterale 108
10.11 Lokale Typableitung (Local Variable Type Inference) 108
10.12 Giiltigkeit von Variablen..........c..cccoueuiirieiiiniiiinieiieteeeceei et et seeeenes 109
10,13 TYPPITUIUNGEN....vviiiiiicieieieieiet ettt ettt st enebenes 109
10.14 TYPKONVETLIETUNG.....c.cveviuieteniieiiiiteie sttt ettt et st ebe et se et ebeaeneseene saenene 110
10.15 Dynamische Typisierung 111
10.16 Wertelose Wertetypen (Nullable Value Types) 112

T1 OPEIALOTEN ...t s 116
11.1 Uberblick iiber die Operatoren 116
11.2 UBErlaufPrilfing......c.c.vveieriiniireeiss et ss sttt 118
11.3 Null Coalescing Operator ?? 120
11.4 Null Coalescing Assignment ??= 120

11.5 Null Conditional Operator ?...

11.6 Operator NAMEOT()c.ceueueuruiuieiriiiis ettt sttt beaes eaenes 121
11.6.1 Neuerungen fiir nameof() seit C# 11.0......cceveiiiiiiiiieeccciecceene 122
11.6.2 Neuerungen fiir nameof() seit C# 12.0 123

11.7 Index und Range (C# 8.0) 124
TL7.1 INACX ottt et e 124
11.7.2 Range 124
11.7.3 Weltere BeiSPIClecvvuiuiieriiieiieici e et 125
11.74 Einschrinkungen 126

12 SChICHEN ..o s 127
13 Verzweigungen 129

13.1 Einfache Verzweigungen mit if...€1Sec.cccceveiiiiiiiiniiiicrrreeeer s 129

13.2 Mehrfachverzweigungen mit SWItChcccouvieirieriiiniie vt e 130

13.3 Switch Expressions (seit C# 8.0) 130

13.4 Pattern MatChiNgcccoviuiiiiiiiieiiie it s 133
13.4.1 Pattern Matching in Bedingungen mit is und is not 133
13.42 Pattern Matching bei switch 134

Inhaltsverzeichnis (Details)

13.43 Pattern Matching fiir Typen 135
13.4.4 Pattern Matching mit GroBenvergleichen... . 135
13.4.5 Pattern Matching mit logische Operatoren 135
13.4.6 Pattern Matching fiir Daten in einem Objekt (Property Pattern)cocceu.... 136
13.4.7 Pattern Matching fiir Listen und Teilmengen (List Pattern und Slice Pattern)... 137
14 Klassendefinition 143
14,1 Klassendefinitionencocoeiiiiiiriiiiiiniicis et e 143
142 Instanzierung mit dem OPErator MEW...........ovueueuevruerererereceeiereieieseeeseieresesesesesesenenesenes 145
14.2.1 Angabe der KonstruKtorparameter............c.eccovverirueuineeeueiereinieeerinneenseseeneecees 145
1422 Schliisselwort var 145
1423 Verwendung des Operators new ohne Typangabe (Target-Typed New Expression)
146

143 Objektinitialisierung147
14.4 Geschachtelte Klassen (eingebettete Klassen).... ...148
14.5 Sichtbarkeiten/ Zugriffsmodifizierer fiir Klassen und Klassenmitglieder.................... 148
14.6 File-local Types (seit C# 11.0) 149
14.7 Statische KIASSeNccuiiiieiiiiiiiiit it e s 151
15 Datenmitglieder / Attribute (Fields und Properties) 152
15.1 Abweichungen von der Lehre 152
152 Felder (Field-Attribute) 153
15.2.1 Deklaration von Felderncocoooviiiiiiiiiiniiiiiicncccec s 153
15.2.2 Felder mit readonly 153
15.3 Eigenschaften (Property-Attribute) 154
15.3.1 Explizite Properties mit Fieldccooeiiiinniiiniiiceece e 155
15.3.2 Automatische Properties 156
15.3.3 Properties, die nach Initialisierung unverénderlich sind (Init Only Properties).. 157
15.3.4 Init Only Setters in NET Framework und .NET Standard.............coceeverrrurnenes 159
15.3.5 Zusammenfassung zu PrOPertiescceeeueceiie e s 159
15.4 Pflichtmitglieder (Required Members)..........cccoevueuiririeiniie e 160
16 Methoden 163
16.1 Methodendefinition und Rickgabewerte............c.coevuiueiriiieriniicieinicieeiceeceeee e 163
162 MethOdeNParametervoveveveereeeieeeieiee ettt ebebebea bbb es et seas 163
16.3 Methodeniiberladungenccccceeveeeeennne 164

16.4 Priorititen fir Methodeniiberladungen..............cccoeveeinicc e 164

Inhaltsverzeichnis (Details) 9

16.5 Optionale und benannte Parameter 167
16.6 Parametermodifizierer in, ref und OULc.cc.oeiiieiniiiiins e s 168
16.7 Parameterlisten 173
16.8 Statische Methoden als globale Funktionen...........ccccoveiininnicinncineinncnecee 174
16.9 Lokale Funktion (SEit C# 7.0)c.eeueueeeueuiueieieieiinieiereieieieieeeeeee st s 174
16.10 Statische lokale Funktionen (seit C# 8.0) ... 175
16.11 Caller-Info- ANNOLAtIONEN..........cvviiiiiiiieiice e s 176
16.12 Caller Argument EXPreSSIONSc.ceeueueuiueueieiemiueeieseieieieseseseteeseseseses eesesssssssssssenns 178
17 Konstruktoren und Destruktoren (Finalizer)coccoceeerncinniennccinieinnccreccse e 180
17.1 Klasse mit Konstruktoren und Finalizer............ccccocccvieiiiiiiiiiniiiiicsiciee e 180
172 Aufruf von Konstruktoren 181
17.3 Primdrkonstruktoren (s€it C# 12.0)ccccceuviiuiriiniiieiniieieiiceicceeeeeeee e 182
18 Aufzéhlungstypen (Enumeration) 186
19 Expression-bodied MEMDEIS............cccvuiiuiiiiiiriiieiiicieieieece e 187
20 Behandlung vOn MUIL........coooviieieiiiiiicieiet e ettt e 188
20.1 NullReferenceException 188
20.2 Null-Priifung und Toleranz gegeniiber Null... ... 188
20.3 Null-Referenz-Priifung / Non-Nullable Reference Types (C# 8.0)..... ... 190
20.3.1 Neue Compiler-Featuresccccceiiiiiiiiiiiiiiiiieereseeies e 191
20.3.2 Compiler erkennt die Programmierfehler nicht 194
20.3.3 Aktivieren der Null-Referenz-Prifung.........c..cccoeuecineenne e 195
20.3.4 Verbessertes Programmcccceeiiieiitcieriieeeeeecees st st 196
20.3.5 Null Forgiveness-Operator 198

21 Partielle Klassen, Methoden, Properties und IndeXercocoeveuiineinscenniccnieecncens 200
211 Partielle KIASSEI........couiuiuiiiiiiiii sttt 200
21.2 Partielle Methodenccoouoiiiiiiiiiiiiiiiic 201
21.3 Partielle Properties und partielle Indexer203
22 Erweiterungsmethoden (Extension Methods)cccccoeiiviinininiei v e 206
22.1 Entwicklung von Erweiterungsmethodenc.cocceoeeinicniincinincnicnncieeeeee 206
222 Nutzung von Erweiterungsmethodencovveieieiririririee v e 207
22.3 Praxisbeispiele: Erweiterungsmethoden fiir die Datentypkonvertierung 208
22.3.1 Eingebaute Konvertierungsfunktionen 208

2232 Erweiterungsmethoden zum Konvertieren 209

10 Inhaltsverzeichnis (Details)

22.33 Erweiterungsmethoden fiir Zeichenketten mit null

22.3.4 Erweiterungsmethoden fiir beliebige null-Verweise ..

22.3.5 Universelle Erweiterungsmethode To<T>

22.4 Sammlungen von Erweiterungsmethodencccoeevvieiniiiniieenniccnnccnecneee e 216
23 Annotationen (.NET-Attribute) 218
23.1 Annotationen verwenden 218
23.2 Annotationen selber schreiben..............ccoooiiiii i 220
23.3 Annotationen mit Typparametern 222
24 Generische KIaSSENccoouiiiiiiiiiiitiiecc 224
24.1 Definition einer generischen Klasse 224
242 Verwendung einer generischen KIasseccoeeuieeeuieciieeiceiecececeeee e 224
24.3 Einschrankungen fiir generische Typparameter (Generic Constraints) 225
244 Kovarianz fiir Typparameter 225
24.5 Generische MathematiK...........ccccouieiiiiiiiiiiiiiiicece e 228
25 Objektmengen (Arrays und Collections) 231
25.1 Einfache Arrays 231
25.2 Untypisierte Collections231
25.3 Typisierte Collections 232
25.4 Collection Initializer ..233
25.5 Objektmengen-Initialisierung mit INAEX........ccoeeuriimeirinieeenricieiees s 234
25.6 Dictionary INTHAlIZET.......c.coveuiiriiiiiiiie e ettt e 236
25.7 Vereinfachte Initialisierung und Zuweisung fiir Mengen (Collection Expressions) (seit
C# 12.0) ...236
25.8 TYPPATAIMELETcveuiiteiiteiiieteiiet ettt ettt et ettt et ettt s et esese st s et eseneesesessesenen 238
25.9 Indexer 239
26 ImplementierungSVererDUNGc.cciviiuiiriitiieteis ettt ettt sreseetese st eee e eseneee 241
27 Schnittstellen (Interfaces) ...243
27.1 Deklaration einer Schnittstelle 243
27.2 Verwendung von SchnittStellen..........c.cccoeirimiiiriit et 243
27.3 Standardimplementierungen in Schnittstellen 244
27.3.1 Realisierung einer Standardimplementierung in einer Schnittstelle 244
27.3.2 Einfaches Beispiel 244
27.3.3 Uberschreiben der Implementierung .. 246

27.3.4 Komplexeres Beispiel..........ccccviiuiuriniiiiiiviiiiiiiieiiicieicei e 246

Inhaltsverzeichnis (Details) 11

27.4

28 Namensraume (Namespaces)..

Statische abstrakte Properties und Methoden in Schnittstellencoovveeiennnene 248

28.1 Softwarekomponenten versus Namensrdume 250
28.2 Vergabe der NamensraumbezeiChnerc.cccveerirueiniet e v 251
28.3 Vergabe der Typnamen 252
28.4 Namensraume deklarieren 252
28.5 Import von NamenSIAUMETL.......cc.eeirieuirieiiirieieeteteeereeeseeeeststeeete e vt eeeseeseseneenens 254
28.6 Verweis auf Wurzelnamensraumeccocuvecucieiniiieiiicieiniccsicceeci s 256
29 ANONYME TYPCI...uiuiiiiiiiiiiieiieieiei ettt ettt ettt sttt ettt be et b e b ot ebenensesentene 258
30 Operatoriiberladung 259
31 Strukturen 261
31.1 Wertetyp versus REfErenztypcccoucueuriiicieiniieieiiicisiieeieicieieicesoeeienensieneneae 261
31.2 Deklaration von Strukturen 264
31.3 Verwendung von StruKtuUrenccooeuiueviiiiiiiiiiiiiiccccs s 266
31.4 Initialisieren einer Struktur mit default.............cccooooiiiiiiiiiiiiice 267
31.5 Strukturen mit Readonly (seit C# 7.2)
31.6 Readonly fiir einzelne Mitglieder einer Struktur (seit C# 8.0)
31.7 With-Ausdriicke
31.8 Boxing und Unboxing
31.9 Strukturen ausschlieflich auf dem Stack (ref struct) 274
32 RECOTA-TYPOI ..ttt sttt ettt bttt st ese et eenen 277
321 Records deKIarieren...........c.ocuiiuciiiici it 277
322 Record-Typen mit Primarkonstruktorcooveveveirininieeis s e 283
323 Records VEIWENAENcuiuiiiiiiiciei s e 286
32.4 Uberschreiben von TOSHING().........ovuevverveeeresieeeeesseseeessessesssesseesssesns oo seeeeon 288
32,5 RECOTd SHIUCES ...cooviiiiiiiiiciicci s s 289
33 IMMULADIE OBJECLSuvveeeirieieieieieieiet ettt ettt st sebebetas 295
33.1 Immutable Objects auf Basis von Readonly Fields 295
33.2 Immutable Objects auf Basis von Properties mit Init Only Setterc.cocccevererennne 296
33.3 Immutable Objects auf Basis von Records .297
33.4 Praxisbeispiel: Immutable Objects mit Record-Typen beim Flux-/Redux-Pattern..... 298
34 Tupel ...299
34.1 Alte Tupelimplementierung mit System.Collections.Tupel ..

12

Inhaltsverzeichnis (Details)

34.3 Tupel-Dekonstruktion....

344 Serialisierung von Tupeln

35 Typaliase (seit C# 12.0)

36.4 Lambdas

37 Ereignisse

342 Neue Tupelimplementierung in der Sprachsyntax 299
...300

302

34.5 Vergleich von Tupeln (CH 7.3) oottt e 302
....................................... 304

36 Funktionale Programmierung in C# (Delegates / Lambdas) 306
30.1 DEIEZALES ...ttt ettt ettt ettt 306
36.2 Vordefinierte Delegates Action<T> und Func<T>cccecerurrirrennrinenieiccrerenenes 308
36.3 Pridikate mit Predicate<T>...........ccccooooiiimiiiiiiiniinic e 310
310

36.4.1 Einzeilige Lambda-Ausdriickeccoccceeiinioieineioiriiniireerseee e s 311
36.42 Einsatzbeispiele fiir Lambda-Ausdriicke............occceeinieivinie v 312
36.4.3 Mehrzeilige Lambdas 314
36.44 Optionale Lambda-Parameter (seit C# 12.0)ccccceuviiueinnicnnicnriceeeees 315
317

317

37.1 Definition von Ereignissen

37.2 Ereignis auslosen....

37.3 Ereignisbehandlungcocoeirieieieiciiici et et s 318
38 IDisposable / Using-Blocke 319
38.1 Hintergriinde zur Speicher- und Ressourcenverwaltung in NET........ccccoeevnnnennnne 319
38.2 Schnittstelle IDISPOSADIEcc.cueiriiiiieiiiriet et et 319
38.3 USING-BIOCKE. ... cuiuiuiuiiiiiiiiit ettt sttt bbb 321
38.4 Vereinfachte Using-Deklarationen (C# 8.0) 321
38.5 IDispose fiir Strukturen auf dem Stack..........ccoevveveriierniniinicec s 322
39 Exklusive Zugriffe auf Ressourcen mit IoCK().......oeeveueueueueuireieee e e 323
40 Laufzeitfehlercoooiiiiiiiii e 326
40.1 Fehler abfangen 326
40.2 Fehler auslosen 327
40.3 Eigene Fehlerklassencooiciiiiiniriiinie ittt ettt e 328
41 Modul-Initialisierer 329
42 Kommentare und XML-DOKUMENTAtIONco.cuviiieieiiiiieisiieieiiicieieicieieisieiess e 331
43 Asynchrone Ausflihrung mit async und await...........cooeeeeeeriririeier e e 333
43.1 Async und await mit der NET-Klassenbibliothek 333

Inhaltsverzeichnis (Details) 13

43.2 Async und await mit eigenen Threads ...t s 334

43.3 Weitere Moglichkeiten mit async und await..

44 Iteratoren 336
44.1 Iterator-Implementierung mit yield (Yield Continuations)c.coceeevueeereeveenevencneens 336
44.2 Praxisbeispiel fir YIeld........cccceriiiiiiiniiis i e 337
44.3 Asynchrone Streams / await foreach (seit C# 8.0) 338

45 ZeigerproZrammMUCTUIEc.eeueuereuererterentestentesesetetesessesentesesessessestesestesesestasesessesentesesneesene 341
45.1 Zeigerprogrammierung mit UNSAfe..........cceeeueueuiieiiiiieieeeeceeeeeesees s 341
452 Zeigerprogrammierung mit ref (Managed Pointer).........c.cccccvecnnecineioinvennccnnne. 343

46 Abfrageausdriicke/Language Integrated Query (LINQ) 346
46.1 Einfiihrung und Motivation 346
46.2 LINQ-PrOVIAETceoveieiiiiiiieieieteieieie sttt sttt s eee 347

46.2.1 LINQ-Provider von Microsoft im .NET 347
46.2.2 Andere LINQ-ProvIiderccccoveerimiiiiniiiniieiiniecieietsieeereeee et 348
46.2.3 Formen von LINQ 348
46.2.4 Einfithrung in die LINQ-SyntaX.......cccccovvvieniiiiieriieeeeeceeeeeeeee e 348

Ubersicht iiber die LINQ-Befehle..
46.3 LINQ to Objects

46.3.1 LINQ to Objects mit elementaren Datentypen 359
46.3.2 LINQ to Objects mit komplexen Typen des .NET Frameworkcccoeeeveenene 363
46.3.3 LINQ to Objects mit eigenen Geschaftsobjekten..........cceovveeveirncinccnnecne 367
46.4 Parallel LINQ (PLINQ)......ccccouiiuiiiiiiiiiii sttt e 371
47 Source-Generatoren 374
47.1 Aufbau eines SOUrce-GeNErators.cceurueueireueis et 374
472 PraxiSDEISPICLvoveveveiriicicieieieici sttt e 376
48 PerformanceoptimiCIUNZENc.coueueirieuiriereireecetrteteteteiestetetrtetestere ceeerentstese st ebesesseseeneenes 378
48.1 x64 versus x86 378
48.2 Debug versus Release .379
48.3 Vermeidung von Laufzeitfehlern (EXCEPions)ccoeveivveinincoeniieeninnenniecnniccee 380
48.4 Ahead-of-Timer-Compiler (Native AOT) ...381
48.4.1 Native AOT in NET 7.0 ..couiiiiiiiiiiiiiici et s 382

48.42 Native AOT in .NET 8.0

48.43 Neue Native AOT-Option in Projektvorlagen..

14 Inhaltsverzeichnis (Details)

48.44 Warnungen bei nicht kompatiblem Code 391
.. 391

48.4.5 Mogliche und nicht mégliche Operationen bei Native AOT ...

48.4.6 Performance bei Native AOT 392

49 Anhang: Syntaxreferenz: C# versus Visual Basic NETc.cocccviiineinnicnniieenne 394
50 Anhang: Neuerungen in friheren Versionencccoeeueeeeeueueieeecueiereueueeeeseeceeene e 402
50.1 Neuerungen in C# 8.0 402
50.2 Neuerungen in CH# 9.0cooueuiiiiiiniiiiiet ettt ettt eae et en e 405
50.3 Neuerungen in C# 10.0 406
50.4 Neuerungen in CH# 11.0 ..ot ettt 408
51 Anhang: Quellen im Internet 410
52 Anhang: Versionsgeschichte dieses BUCHS............ooeieiiiiiieiiiiieiccececcceceee e 411
53 Stichwortverzeichnis (INAEX)..........ccceueiriuiiririiieiiriiieiiceiceecee e 412
54 Werbung in eigener Sache © 421
54.1 DienStICISTUNZEN ...ttt sttt e e 421
54.2 Aktion "Buch fiir Buchrezension" 422

54.3 Angebot "PDF-Buch-Abo" 423

Vorwort 15

3 Vorwort

Liebe Leserinnen und Leser,

der "C# Crashkurs" ist ein prignanter Uberblick iiber die Syntax der Programmiersprache C# in
der aktuellen Version 13.0, die zusammen mit .NET 9.0 am 12. November 2024 erschienen ist.

Dieses Buch ist geeignet fiir Softwareentwickler, die von einer anderen objektorientierten
Programmiersprache (z.B. C++, Java, JavaScript, Visual Basic .NET, Delphi oder PHP) auf
C# umsteigen wollen oder bereits C# einsetzen und ihr Wissen erweitern, insbesondere die
neusten Sprachfeatures kennenlernen wollen. Wir schulen bei www.IT-Visions.de jedes Jahr
hunderte Entwickler auf C# bzw. die neuste Version der Sprache um. Da es viele Umsteiger von
Visual Basic NET zu C# gibt, werden hier die Unterschiede von C# gegeniiber Visual Basic NET
an einigen Stellen im Buch hervorgehoben.

Fiir Neueinsteiger, die mit C# erstmals iiberhaupt eine objektorientiere Programmiersprache (OOP)
erlernen wollen, ist dieses Werk hingegen nicht geeignet, denn es werden die OO-Grundkonzepte
nicht erklért, da die meisten Softwareentwickler heutzutage diese aus anderen Sprachen kennen
und das Buch nicht mit diesen Grundlagen unnétig in die Lange gezogen werden soll.

Dieser Crashkurs erhebt nicht den Anspruch, alle syntaktischen Details zu C# aufzuzeigen, sondern
nur die in der Praxis wichtigsten Sprachkonstrukte.

In diesem Buch werden bewusst alle Syntaxbeispiele anhand von Konsolenanwendungen gezeigt.
So brauchen Sie als Leser kein Wissen iiber irgendeine (manchmal kurzlebige) GUI-Bibliothek
und die Beispiele sind priagnant fokussiert auf die Syntax.

Dieses Buch wird vertrieben:

= PDF-E-Book bei Leanpub.com ab 29,99 Dollar (der Autor erhilt 19,99 Dollar):
www.leanpub.com/CSharpl3

= Gedruckt (Print-on-Demand) bei Amazon.de fiir 39,99 Euro (der Autor erhilt 15,38 Euro):
www.amazon.de/exec/obidos/ASIN/3934279449/itvisions-21

= Kindle-E-Book bei Amazon.de fiir 29,99 Euro (der Autor erhalt 9,81 Euro):
www.amazon.de/exec/obidos/ASIN/BOCMA47LGYS8/itvisions-21

= Als Teil des E-Book-Buch-Abos zusammen mit anderen aktuellen Fachbiichern ab 99,00
Euro im Jahr inkl. aller Updates (der Autor erhélt den kompletten Preis):
www.IT-Visions.de/BuchAbo

Tipp: Kéufer bei Leanpub.com kénnen jederzeit Aktualisierungen des PDF-Buchs (gleiche
Hauptversion) kostenfrei dort beziehen. Kdufer bei Amazon erhalten die PDF-Ausgabe
einmalig kostenfrei (siche Kapitel "Uber dieses Fachbuch"). E-Book-Abonnenten haben
jederzeit Zugriff auf alle aktuellsten Ausgaben der Fachbiicher von Dr. Holger Schwichtenberg.

Da solch niedrige Preise leider nicht nennenswert dazu beitragen konnen, den Lebensunterhalt
meiner Familie zu bestreiten, ist dieses Projekt ein Hobby. Dementsprechend kann ich nicht
garantieren, wann es Updates zu diesem Buch geben wird. Ich werde dann an diesem Buch
arbeiten, wenn ich neben meinem Beruf als Softwarearchitekt, Berater und Dozent und meinen
sportlichen Betdtigungen noch etwas Zeit fiir das Fachbuchautorenhobby iibrig habe.

Falls mir in diesem Buch oder den zugehdrigen Downloads menschliche Fehler passiert sind,
mochte ich mich dafiir schon jetzt in aller Form entschuldigen bei Ihnen. Bitte geben Sie mir einen
freundlichen, genau beschriebenen Hinweis auf meine Fehler. Ich freue mich immer {iber

http://www.leanpub.com/CSharp13
http://www.amazon.de/exec/obidos/ASIN/3934279449/itvisions-21
http://www.amazon.de/exec/obidos/ASIN/B09G2RG7JB/itvisions-21
http://www.it-visions.de/BuchAbo

16 Vorwort

konstruktives Feedback und Verbesserungsvorschldge. Bitte verwenden Sie dazu das
Kontaktformular: www.dotnet-doktor.de/Leserfeedback

Tipp: Ich belohne Sie mit E-Books fiir gemeldete Fehler, siche Kapitel
"Uber dieses Buch / Thre Belohnung, wenn Sie helfen, dieses Buch zu verbessern".

Ich helfe Thnen gerne, Thren eigenen Programmcode zu schreiben, aber ich hoffe, Sie verstehen,
dass ich dies nicht ehrenamtlich tun kann. Wenn Sie technische Hilfe zu Entity Framework und
Entity Framework Core oder anderen Themen rund um die Entwicklung und den Betrieb von
Anwendungen (Desktop, Web und Mobile) sowie Server und Cloud bendétigen, stehe ich Thnen
im Rahmen meiner beruflichen Tatigkeit fiir die Firma www./T-Visions.de (Beratung, Schulung,
Support, Softwareentwicklung) gerne zur Verfiigung. Bitte wenden Sie sich fiir ein Angebot an
das jeweilige Kundenteam. Bitte kontaktieren Sie die Firmen aber nicht fiir Feedback und
Verbesserungsvorschldge zu diesem Buch, da dieses Buch reine Privatsache ist.

Auf der von mir ehrenamtlich betriebenen Leser-Website unter www./T-Visions.de/Leser, konnen
Sie die Beispiele zu diesem Buch herunterladen. Dort miissen Sie sich registrieren. Bei der
Registrierung wird ein Losungswort abgefragt. Bitte geben Sie dort bei der Registrierung das
Losungswort AWAY ein.

Herzliche Griiie aus Essen, dem Herzen der Metropole Ruhrgebiet

Holger Schwichtenberg

http://www.dotnet-doktor.de/Leserfeedback
http://www.it-visions.de/
http://www.it-visions.de/Leser

Uber den Autor 17

4 Uber den Autor

= Studienabschluss Diplom-Wirtschaftsinformatik an der Universitét
Essen

= Promotion an der Universitdt Essen im Fachgebiet
komponentenbasierter Softwareentwicklung

= Seit 1996 in der IT titig als Softwareentwickler, Softwarearchitekt,
Berater, Dozent und Fachjournalist

= Fachlicher Leiter des Expertenteams bei www./T-Visions.de in Essen

= Uber 95 Fachbiicher bei verschiedenen Verlagen, u.a. Carl Hanser

Verlag, O'Reilly, APress, Microsoft Press und Addison Wesley /ﬁw—lﬁw
sowie im Selbstverlag Dr. Holger Schwichtenbera

= Mehr als 1500 Beitridge in Fachzeitschriften und Online-Portalen

= Gutachter in den Wettbewerbsverfahren der EU vs. Microsoft (2006-2009)

= Stindiger Mitarbeiter der Zeitschriften iX (seit 1999), dotnetpro (seit 2000) und Windows
Developer (seit 2010) sowie beim Online-Portal heise.de (seit 2008)

= RegelmaBiger Sprecher auf nationalen und internationalen Fachkonferenzen (z.B. BASTA!,
Developer Week, .NET Developer Conference, MD DevDays, Microsoft TechEd, Microsoft
Summit, Microsoft IT Forum, OOP, NET Architecture Camp, IT Tage, enter]S, Advanced
Developers Conference, DOTNET Cologne, iterate=>ruhr, Community in Motion,
DOTNET-Konferenz, VS One, NRW.Conf, Windows Forum, Container Conf)

= Auszeichnungen und Zertifikate von Microsoft:
o Microsoft Most Valuable Professional (MVP), ununterbrochen ausgezeichnet seit 2004
o Microsoft Certified Solution Developer (MCSD)

= Thematische Schwerpunkte:
o Softwarearchitektur, mehrschichtige Softwareentwicklung, Softwarekomponenten

o Visual Studio, Continous Integration (CI) und Continous Delivery (CD) mit Azure
DevOps

Microsoft .NET (.NET Framework, .NET Core, modernes .NET), C#, Visual Basic
NET-Architektur, Auswahl von .NET-Techniken
Einfiihrung von .NET, Migration auf NET

Webanwendungsentwicklung und Cross-Plattform-Anwendungen mit HTML/CSS,
JavaScript/ TypeScript und C# sowie Webframeworks wie Angular, Vuejs, Svelte,
ASP.NET (Core) und Blazor

o Verteilte Systeme/Webservices mit .NET, insbesondere WebAPI, gRPC und
WCF/CoreWCF

Relationale Datenbanken, XML, Datenzugriffsstrategien

Objekt-Relationales Mapping (ORM), insbesondere ADO.NET Entity Framework und
Entity Framework Core

PowerShell
Architektur- und Code-Reviews

Performance-Analysen und -Optimierung

O O O O

[e]

O O O O

Entwicklungsrichtlinien

http://www.it-visions.de/

Uber den Autor

Ehrenamtliche Community-Tétigkeiten:
o Vortragender fiir die International NET Association (INETA) und .NET Foundation
o Betrieb diverser Community-Websites:
www.dotnet-lexikon.de
www.dotnetframework.de
www.windows-scripting.de
www.aspnetdev.de
ua.

Firmenwebsite: www./T-Visions.de

Weblog: www.dotnet-doktor.de

Kontakt fiir Anfragen zu Schulung und Beratung sowie Softwareentwicklungsprojekten:
E-Mail kundenteam@IT-Visions.de

Telefon 0201 /64 95 90 — 50

Kontakt fiir Feedback zu diesem Buch:

www.dotnet-doktor.de/Leserfeedback

http://www.dotnet-lexikon.de/
http://www.dotnetframework.de/
http://www.windows-scripting.de/
http://www.it-visions.de/
http://www.dotnet-doktor.de/

Uber dieses Buch 19

5 Uber dieses Buch

5.1 Versionsgeschichte dieses Buchs

Die Versionsgeschichte dieses Buch finden Sie in einem eigenen Kapitel am Ende des Buchs.

Hinweis: Die Versionsgeschichte ist eine wichtige Referenz fiir die Leser, die sich aktuelle
Versionen des Buchs beschaffen (z.B. iiber Leanpub.com) und wissen wollen, was sich gedndert
hat. Wenn Sie das Buch erstmalig lesen, miissen Sie die Versionsgeschichte nicht lesen.

5.2 Hinweis zu den Vertriebswegen

Dieses Fachbuch wird vertrieben auf folgenden Wegen (Ich nenne neben dem Verkaufspreis auch, wie
viel — bzw. wenig — ich als Autor von den jeweiligen Héndlern erhalte. Der Rest ist Gewinn der
Handler):

= Gedruckt (Print-on-Demand) bei Amazon.de fiir 39,99 Euro (der Autor erhélt 15,38 Euro):
www.amazon.de/exec/obidos/ASIN/3934279449/itvisions-21

= Kindle-E-Book bei Amazon.de fiir 29,99 Euro (der Autor erhalt 9,81 Euro):
www.amazon.de/exec/obidos/ASIN/BOCM47LGY8/itvisions-21

= PDF-E-Book inkl. aller Buch-Updates bei Leanpub.com ab 29,99 Dollar (der Autor erhélt
19,99 Dollar):
www.leanpub.com/CSharpl3

= Als Teil des E-Book-Buch-Abos zusammen mit anderen aktuellen Fachbiichern ab 99,00

Euro im Jahr inkl. aller Buch-Updates (der Autor erhilt den kompletten Preis):
www.IT-Visions.de/BuchAbo

Hinweise: Ich habe mich fiir den Vertriecbsweg des gedruckten Buchs iiber Amazon
entschieden, weil ich dort stindig Updates zu dem Buch einreichen kann. Per Print-on-Demand
erhalten Leser dann immer das topaktuelle Buch. Oft liefert Amazon dennoch am Tag nach der
Bestellung das Buch schon aus. Der Vertrieb dieses Buch tiber klassische IT-Verlage, die leider
heutzutage immer noch groBere Auflagen vorproduzieren, ist fiir ein sehr agiles
Softwareprodukt wie C# keine Alternative mehr.

Ich nenne dabei auch den Erlds fiir den Autor, weil ich sehr hdufig Leser treffe, die
falschlicherweise denken, der wesentliche Teil des Buchpreises komme dem Autor zu Gute.
Das ist leider nicht so, aufler bei Leanpub.com oder eigenen Vertriebswegen wie meinem
Buchabo. Daher denke ich, dass es sinnvoll ist, dies transparent zu machen.

5.3 Bezugsquelle des PDF-E-Books fiir Amazon-
Kunden

Wenn Sie dieses Buch in gedruckter Form oder als Kindle-Ausgabe bei Amazon erworben haben,
konnen Sie zusitzlich eine PDF-Version des Buchs kostenfrei erhalten.

Leiten Sie dazu Thren Kaufbeleg von Amazon an folgende E-Mail-Adresse weiter:
PDFBuchZugabe@dotnet-doktor.de

Geben Sie dabei bitte Vorname, Name, Firma und E-Mail-Adresse an.

http://www.amazon.de/exec/obidos/ASIN/3934279449/itvisions-21
http://www.amazon.de/exec/obidos/ASIN/B09G2RG7JB/itvisions-21
http://www.leanpub.com/CSharp13
http://www.it-visions.de/BuchAbo
mailto:PDFBuchZugabe@dotnet-doktor.de

20 Uber dieses Buch

Sie erhalten dann binnen 1-2 Wochen das auf Sie personalisierte PDF-Dokument. Dieses Angebot
gilt innerhalb von 6 Monaten nach dem Kauf des Buchs bei Amazon.

5.4 Bezugsquelle fiir Aktualisierungen

Sie konnen jederzeit Aktualisierungen des PDF-Buchs (gleiche Hauptversion!) kostenfrei bei
Leanpub.com beziehen.

Kéufer der Kindle- oder Druck-Version konnen die aktuelle PDF-Version zum Preis von 9,99
Dollar (zzgl. 7% Mehrwertsteuer) unter folgender Webadresse beziehen:

https://leanpub.com/CSharp13/c/AWAY

Hinweise: Leider erlauben Amazon u.a. Buchhéndler aufgrund der Buchpreisbindungsgesetze
in Deutschland den Autoren grundsitzlich nicht, dass Leser eine Aktualisierung im Kindle-
Format oder in gedruckter Form vergiinstigt erhalten.

Bitte beachten Sie auch, dass die ISBN-Regularien erfordern, dass man bei einer Titeldnderung
bei neuer Produktversion eine neue ISBN vergeben und damit auch ein neues Buchprojekt bei
Amazon und Leanpub erstellt werden muss.

5.5 Hinweise zur Breite und Tiefe dieses Buchs — Sie
haben Einfluss!

Ein Fachbuch, das ein riesengrofies Themengebiet wie C# behandelt, kann nicht jedes Teilgebiet
und jeden Aspekt der Programmiersprache behandeln, zumindest nicht in gleicher Tiefe. Dann
wiirde solch ein Fachbuch iiber eintausend Seiten, in einigen Féllen sogar mehrere tausend Seiten
umfassen.

Ich denke, dass ich nach aktuellem Stand der Technik und meinem Wissenstand etwa 1.000 Seiten
zur C#-Syntax und -Tools sowie 3.000 Seiten zu den C#-Bibliotheken schreiben konnte. Wiirden
Sie so ein dickes (und entsprechend teures) Buch kaufen und lesen wollen?

Wie jeder Fachautor lese auch ich immer wieder Kritik, dass ein Leser ein bestimmtes Thema nicht
oder nicht in ausreichender Tiefe behandelt sei in dem Buch. Das ist aus der Sicht des einzelnen
Lesers sicherlich gerechtfertigt, aber wie jeder Fachautor muss ich eben zwingend eine Auswahl
der Themen treffen. Gerne dokumentiere ich hier, wie ich personlich diese Auswahl fiir meine
Biicher treffe:

= [ch behandele im Buch die Themen, die wir in unserer Firma selbst in der Praxis brauchen.

= Ich behandele zusitzlich die Themen, die unsere Kunden in Beratungsgesprachen behandelt
haben mochten.

Folglich sind die Themen, die ich im Buch nicht oder nur kurz behandele, fiir uns und unsere

Kunden nicht relevant bzw. so selbsterkldrend, dass es keine Fragen dazu gibt.

Natiirlich kann das fiir Sie anders sein. Sie konnen mir immer gerne schreiben, wenn Sie ein Thema
im Buch behandelt haben mochten. Ich sammele diese Anregungen und wenn es mehrere
Zuschriften zu einem Thema gibt, dann kommt das Thema weit oben auf die Priorititenliste. Ich
denke, das ist ein faires Verfahren.

5.6 Geplante Themen

Folgende Themen sind fiir kommenden Ausgaben dieses Buchs geplant:

https://leanpub.com/CSharp13/c/AWAY
https://leanpub.com/CSharp13/c/AWAY

Uber dieses Buch 21

= Aliase fiir referenzierte Assemblies

= Checked Operators (seit C# 11.0)

= Covariant Return Types (seit C# 9.0)

= Dekompilierung mit ILSpy u.a. [Attps.://blog.ndepend.com/in-the-jungle-of-net-decompilers]

= Deployment von modernen .NET-Anwendungen mit dotnet publish

= Extension Method GetEnumerator() (seit C# 9.0)

= Implicit Cast Operator [learn.microsoft.com/dotnet/csharp/language-
reference/keywords/implicit]

= Inkrementelle Source-Generatoren (seit C# 10.0)

= Interceptoren (experimentell seit C# 12.0)

= Operatoren fiir Unsigned Right Shift >>> und >>>= (seit C# 11.0)

= Laufzeitcodegenerierung / Refection Emit

= Nullable-Annotationen wie [AllowNull], [DisallowNull], [return: NotNullIfNotNull("xy")],
[DoesNotReturn], [return: MaybeNull], MaybeNullWhen(bool), NotNullWhen(bool)

= Ref Fields und ref scoped (seit C# 11.0)

= Span<T>/Memory<T> (seit C# 7.2)

= Statische Codeanalyse

= Unmanaged Constructed Types (seit C# 8.0)

= Visual Studio Code als Alternative zu Visual Studio

Eventuell, wenn der Autor die Zeit findet, kommen irgendwann auch diese iiber die Sprachsyntax

und den Compiler hinausgehenden Themen hinzu:

= Clean Code-Programmierung mit C#

= Design Pattern in C#

5.7 Programmcodebeispiele zu diesem Buch

Die Programmcodebeispiele zu diesem Buch konnen Sie auf der auf der von mir ehrenamtlich
betriebenen Leserwebsite www./T-Visions.de/Leser herunterladen. Dort miissen Sie sich
registrieren. Bei der Registrierung wird ein Losungswort abgefragt. Bitte geben Sie dort das
Losungswort AWAY ein.

Alle Programmbeispiele aus diesem Buch sind in einer Visual Studio 2022-Projektmappe mit zwei
Projekten enthalten. Es muss seit C# 8.0 zwei Projekte geben, weil einige Sprachfeatures von C#
8.0 nicht mehr im klassischen NET Framework laufen und C# seit Version 9.0 gar nicht mehr dort
lauft. Die beiden Projekte enthalten:

= CSharpSprachsyntax_NETClassic (NET Framework 4.8): Alle Sprachfeatures von C# 1.0 bis
7.3 und solche von C# 8.0, die auch auf klassischen .NET Framework laufen

= CSharpSprachsyntax_NET (.NET 6.0): Alle Sprachfeatures von C# 8.0, die NICHT auf .NET
Framework laufen sowie alle Sprachfeatures ab C# 9.0

Die Beispiele sind in Unterordnern nach Sprachversionen aufgeteilt. Dies heifit, dass Sie zum
Beispiel Sprachfeatures von C# 12.0 im Ordner CS120 finden bzw. C# 11.0 in CS110.

https://blog.ndepend.com/in-the-jungle-of-net-decompilers/
https://docs.microsoft.com/de-de/dotnet/csharp/language-reference/keywords/implicit
https://docs.microsoft.com/de-de/dotnet/csharp/language-reference/keywords/implicit

22 Uber dieses Buch

Wie im Vorwort bereits erwahnt handelt es sich um den Anwendungstyp "Konsolenanwendung".
So brauchen Sie als Leser kein Wissen iiber irgendeine GUI-Bibliothek und die Beispiele sind
pragnant fokussiert auf die Syntax. Bitte beachten Sie das nachste Kapitel zum Hilfsklasse "CUI".

Uber dieses Buch 23

tion Explorer v X
2 o-08 [#=R

Search Solution Explorer (Ctrl+0) P~

B3 solution ‘CSharpSprachsyntax’ (5 of 5 projects)
B3 Solution Items

3

b [0 Sonstiges

4 CSharpSourceCodeGeneratars

4 [CSharpSprachsyntax_NET
b &8 Dependencies
b B8 CS080_Sep2019
b [CS090_Nov2020
b B9 CS100 Nov2021
b B8 CS110_Nov2022
4 [C5120_Nov2023

2_AllFeatur

b
b €= CS12 CollectionExpressions.cs

P €# CS12 Lambda.cs

b C# CS12_NameOfExtension.cs

b C# €512 Others.cs

P C® CS12 PrimaryConstructors EN (less content).cs

b C# CS12_PrimaryConstructors.cs

b €= CS12_PrimaryConstructors_Simple.cs

b c® CS12_TypeAliases.cs

P % NotDefaultcs

B3 ImmutableObjects

[Objektmodell Fluggesellschaft mit aktuelleren Sprachelementen
#> CSharpSprachsyntax_NET.csproj.vspscc

c# LiveCoding.cs

€= Performance.cs

€= Program.cs

v v

v v v

C# TopLevelStatements.cs
[& CsharpSprachsyntax NETClassic
A Properties
&8 References
[0 CS-Poster 2015 (zu CS60)
B9 C510_NET10_2002
B3 ¢5110_Nov2022
B9 CS120_Nov2023
B9 €520 NET20 2005
[€530 NET35 2008
3 CS40_NET40_2010
[CS50_MET45_2012
[CS60_NET46_2015
[CS70_NET46 2017
B9 C571_Aug2017
B9 572 Nov2017

b BN C573_Aug2018

Abbildung: Programmcodebeispiele zu diesem Buch in zwei Visual Studio-
Konsolenanwendungen (EXE) plus Hilfsbibliotheken (DLLs)

[

v Y T YT YUYV VTV VYT

24 Uber dieses Buch

5.8 Hilfsklasse zur Konsolenausgabe (CUI)

Fiir die Bildschirmausgabe an der Konsole wird in diesem Buch oft nicht nur Console. WriteLine()
verwendet, sondern auch Hilfsroutinen kommen zur Anwendung, die farbige Bildschirmausgaben
erzeugen. Diese Hilfsroutinen sind in der Klasse [TVisions.CUI (CUI besteht dabei fiir
Commandline User Interface) implementiert. Diese Klasse ist Teil des NuGet-Pakets
ITV.AppUtil...nupkg, welches bei den herunterladbaren Projekten zu diesem Buch in Form
mitgeliefert und via <packageSource> in der Datei NuGet.config einbezogen wird.

Diese wichtigsten Hilfsroutinen in der Klasse CUI sind im Folgenden zum besseren Versténdnis
abgedruckt.

Listing: Klasse CUI mit Hilfsroutinen fiir die Bildschirmausgabe an der Konsole
using System;

using System.Runtime.InteropServices;

using System.Web;

using ITVisions.UI;
using System.Diagnostics;

namespace ITVisions

{

/// <summary>

/// Helper utilities for console Uls

/// (C) Dr. Holger Schwichtenberg 2002-2018
/// </summary>

public static class CUI

{
public static bool IsDebug = false;
public static bool IsVerbose = false;

#region Print only under certain conditions
public static void PrintDebug(object s)

{

PrintDebug (s, System.Console.ForegroundColor) ;

}

public static void PrintVerbose (object s)
{
PrintVerbose (s, System.Console.ForegroundColor) ;
}
#endregion

#region Issues with predefined colors
public static void MainHeadline (string s)
{

Print (s, ConsoleColor.Black, ConsoleColor.Yellow) ;

}
public static void Headline(string s)
{
Print(s, ConsoleColor.Yellow) ;
}

public static void HeaderFooter (string s)

Uber dieses Buch 25

{

Console.ForegroundColor = ConsoleColor.Green;
Console.WriteLine(s) ;

Console.ForegroundColor = ConsoleColor.Gray;

}

public static void SubHeadline(string s)
{
Print (s, ConsoleColor.White) ;

}

public static void PrintSuccess (object s)
{
Print (s, ConsoleColor.Green) ;

}

public static void Hl(string s)
{
MainHeadline(s) ;

}

public static void H2(string s)
{
Headline(s) ;

}

public static void H3(string s)
{

SubHeadline (s) ;

}

public static void PrintGreen(string s)
{
Print (s, ConsoleColor.Green) ;

}

public static void PrintYellow(string s)
{
Print (s, ConsoleColor.Yellow) ;

}

public static void PrintRed(string s)
{
Print(s, ConsoleColor.Red) ;

}

public static void PrintSuccess (object s)
{
Print (s, ConsoleColor.Green) ;

}

public static void PrintStep (object s)
{

26 Uber dieses Buch

Print(s, ConsoleColor.Cyan) ;

}

public static void PrintDebugSuccess (object s)
{

PrintDebug (s, ConsoleColor.Green) ;
}

public static void PrintVerboseSuccess (object s)
{
PrintVerbose (s, ConsoleColor.Green) ;

}

public static void PrintWarning(object s)
{
Print (s, ConsoleColor.Cyan) ;

}

public static void PrintDebugWarning(object s)
{

PrintDebug (s, ConsoleColor.Cyan) ;
}

public static void PrintVerboseWarning(object s)
{
PrintVerbose (s, ConsoleColor.Cyan) ;

}

public static void PrintError (object s)
{
Print (s, ConsoleColor.White, ConsoleColor.Red) ;

}

public static void PrintDebugError (object s)

{
PrintDebug(s, ConsoleColor.White, ConsoleColor.Red) ;

}

public static void PrintVerboseError (object s)

{

Print(s, ConsoleColor.White, ConsoleColor.Red) ;
}

public static void Print(object s)
{
PrintInternal (s, null);
}
#endregion

#region Print with selectable color

public static void Print(object s, ConsoleColor farbe, ConsoleColor?
hintergrundfarbe = null)

Uber dieses Buch 27

{

PrintInternal (s, farbe, hintergrundfarbe) ;

}

public static void PrintDebug(object s, ConsoleColor farbe, ConsoleColor?
hintergrundfarbe = null)

{

if (IsDebug || IsVerbose) PrintDebugOrVerbose(s, farbe, hintergrundfarbe) ;

}

public static void PrintVerbose (object s, ConsoleColor farbe)
{

if (!IsVerbose) return;

PrintDebugOrVerbose (s, farbe) ;

}

#endregion

#region Print with additional data

/// <summary>

/// Print with Thread-ID

/// </summary>

public static void PrintWithThreadID(string s, ConsoleColor c =
ConsoleColor.White)

{

var ausgabe = String.Format("Thread #{0:00} {1:}: {2}",
System.Threading.Thread.CurrentThread.ManagedThreadId,
DateTime.Now.ToLongTimeString(), s);

CUI.Print(ausgabe, c);
}

/// <summary>

/// Print with time

/// </summary>

public static void PrintWithTime (object s, ConsoleColor c = ConsoleColor.White)
{

CUI.Print(DateTime.Now.Second + "." + DateTime.Now.Millisecond + ":" + s);

}

private static long count;

/// <summary>

/// Print with counter

/// </summary>

private static void PrintWithCounter (object s, ConsoleColor farbe,
ConsoleColor? hintergrundfarbe = null)

{

count += 1;

s = $"{count:0000}: {s}";

CUI.Print(s, farbe, hintergrundfarbe) ;

}

#endregion

#region internal helper routines

28 Uber dieses Buch

private static void PrintDebugOrVerbose (object s, ConsoleColor farbe,
ConsoleColor? hintergrundfarbe = null)

{

count += 1;

s = $"{count:0000}: {s}";

Print(s, farbe, hintergrundfarbe) ;

Debug.WriteLine(s) ;

Trace.WritelLine(s) ;

Trace.Flush() ;

/// <summary>

/// Output to console, trace and file

/// </summary>

/// <param name="s"></param>

[DebuggerStepThrough()]

private static void PrintInternal (object s, ConsoleColor? farbe = null,
ConsoleColor? hintergrundfarbe = null)

{

if (s == null) return;
if (HttpContext.Current null)
{
try
{
if (farbe null)

{
HttpContext.Current.Response.Write ("<span style='color:" +

farbe.Value.DrawingColor () .Name + "'>");

}

if ('HttpContext.Current.Request.Url.ToString() .ToLower () .Contains(".asmx")
&& 'HttpContext.Current.Request.Url.ToString() .ToLower () .Contains(".svc") &&
'HttpContext.Current.Request.Url.ToString() . ToLower () .Contains ("/api/"))
HttpContext.Current.Response.Write (s.ToString() + "
");

if (farbe !'= null)
{
HttpContext.Current.Response.Write ("") ;

}

}

catch (Exception)

{

}
}
else
{

object x = 1;

lock (x)

{

ConsoleColor alteFarbe = Console.ForegroundColor;

ConsoleColor alteHFarbe = Console.BackgroundColor;

if (farbe != null) Console.ForegroundColor = farbe.Value;

Uber dieses Buch 29

null) Console.BackgroundColor =

if (hintergrundfarbe
hintergrundfarbe.Value;

//if (farbe.ToString().Contains("Dark")) Console.BackgroundColor =
ConsoleColor.White;
//else Console.BackgroundColor = ConsoleColor.Black;

Console.WriteLine (s) ;
Console.ForegroundColor = alteFarbe;
Console.BackgroundColor = alteHFarbe;
}
}
}

#endregion

#region Set the position of the console window
[D1llImport("kernel32.dll", ExactSpelling = true)]
private static extern IntPtr GetConsoleWindow() ;
private static IntPtr MyConsole = GetConsoleWindow() ;

[DllImport("user32.dll", EntryPoint = "SetWindowPos")]
public static extern IntPtr SetWindowPos (IntPtr hWnd, int hWndInsertAfter, int
x, int ¥, int cx, int cy, int wFlags);

// Set the position of the console window without size
public static void SetConsolePos(int xpos, int ypos)

{

const int SWP_NOSIZE = 0x0001;

SetWindowPos (MyConsole, 0, xpos, ypos, 0, 0, SWP_NOSIZE) ;
}

// Set the position of the console window with size
public static void SetConsolePos (int xpos, int ypos, int w, int h)
{
SetWindowPos (MyConsole, 0, xpos, ypos, w, h, 0);
}
#endregion
}
}

5.9 Qualitiatssicherung der Programmcodebeispiele

Ich versichere Thnen, dass die Programmcodebeispiele auf zwei meiner Entwicklungssysteme
kompilierten und liefen, bevor ich sie per Kopieren & Einfiigen in das Manuskript zu diesem Buch
iibernommen habe und auf der Leser-Website zum Download verdffentlicht habe.

Dennoch gibt es leider Griinde, warum die Beispiele bei Thnen als Leser nicht laufen:

= Eine abweichende Systemkonfiguration (in der heutigen komplexen Welt der vielen Varianten
und Versionen von Betriebssystemen und Anwendungen nicht unwahrscheinlich). Es ist
einem Autor nicht moglich, alle Konfigurationen durchzutesten.

30 Uber dieses Buch

= Anderungen, die sich seit der Erstellung der Beispiele ergeben haben (von den vielen Breaking
Changes, die die neueren .NET-Versionen immer wieder durch Microsoft erhalten, kénnen
auch Beispiele betroffen sein, was nicht immer leicht zu entdecken ist)

= SchlieBlich sind auch menschliche Fehler des Autors moglich. Bitte bedenken Sie, dass das
Fachbuchschreiben — wie im Vorwort erwdhnt — nur ein Hobby ist. Es gibt nur sehr wenige
Menschen in Deutschland, die hauptberuflich als Fachbuchautor arbeiten und so professionell
Programmcodebeispiele erstellen und testen konnen wie kommerziellen (bezahlten)
Programmcode.

Falls dennoch Beispiele bei Thnen nicht laufen, kontaktieren Sie mich bitte unter
www.dotnet-doktor.de/Leserfeedback

mit einer sehr genauen Fehlerbeschreibung. Ich bemiihe mich, Thnen binnen zwei Wochen zu
antworten. Im Einzelfall kann es wegen dienstlicher oder privater Abwesenheit aber auch langer
dauern.

5.10 lhre Belohnung, wenn Sie helfen, dieses Buch zu
verbessern!

Wenn Sie Fehler in diesem Buch finden, bin ich Thnen nicht nur wirklich sehr dankbar, sondern
Sie bekommen auch eine Belohnung in Form von aktualisierten oder weiteren E-Books.

Fehlerart E-Book-Guthaben
Inhaltlicher Fehler Pro Fehler 5 Euro
Sprachlicher Fehler Pro Fehler 2 Euro

Ein Beispiel: Wenn Sie zwei inhaltliche Fehler und zehn Rechtschreibfehler in diesem Buch
finden, dann haben Sie bei mir 30 Euro gut. Dafiir konnen Sie dann eins meiner selbstverlegten
Biicher als E-Book bekommen.

Die selbstverlegten Biicher finden Sie unter www./T-Visions.de/Verlag
Melden Sie die Fehler unter www.dotnet-doktor.de/Leserfeedback

Schreiben Sie dabei, welches E-Book Sie wiinschen. Das Buch schicke ich Thnen dann per E-Mail
zu.

Tipp: Auch Fehler auf meiner personlichen Website www.dotnet-doktor.de und der
Firmenwebsite www./T-Visions.de zéhlen mit!

Ich freue mich auf Thre Fehlermeldung!
Holger Schwichtenberg

P.S. Die Fehlermeldung zéhlt nur, wenn nicht ein anderer Leser dies bereits gemeldet hat und es
daher in der aktuellen Auflage schon korrigiert ist.

http://www.dotnet-doktor.de/Leserfeedback
http://www.it-visions.de/Verlag
http://www.dotnet-doktor.de/Leserfeedback
http://www.dotnet-doktor.de/
http://www.it-visions.de/

Fakten zu C# 31

6 Fakten zu C#
6.1 Der Name C#

C# wird gesprochen ,,C Sharp®. Das # kénnte man auch in ein vierfaches Pluszeichen aufspalten
(also CH++++, eine Weiterentwicklung von C++). Urspriinglich sollte die Sprache "Cool" heifien.
Eine Zeit lang wurde auch "C# NET" verwendet; das ist heute aber nicht mehr iiblich. Microsoft
spricht aber gelegentlich noch von "Visual C#", z.B. meldet sich der Kommandozeilencompiler
von C# auch in der aktuellen Version mit "Microsoft (R) Visual C# Compiler".

6.2 Urspriinge von C#

C# ist das Ergebnis eines Projektes bei Microsoft, welches im Dezember 1998 gestartet wurde,
nachdem die Firma Sun Microsoft die Veranderung der von Sun entwickelten Programmiersprache
Java verboten hatte. Vater von C# ist Anders Hejlsberg [de.wikipedia.org/wiki/Anders_Hejlsberg],
der zuvor auch Turbo Pascal und Borland Delphi erschaffen hat. Er war friiher bei Borland und
arbeitet seit 1996 bei Microsoft. Heutzutage ist er auch verantwortlich fiir die Sprache TypeScript.

6.3 .NET als Basis fiir C#

Die Programmiersprache C# ist sehr eng verbunden mit der Softwareentwicklungsplattform
Microsoft NET. C#-Programmcode lduft immer auf Basis einer .NET-Laufzeitumgebung und
bendtigt Klassen aus der NET-Basisklassenbibliothek. So besitzt C# selbst keine Datentypen: Alle
Datentypen, die man in C# verwendet, z.B. string, sind in Wirklichkeit Klassen aus der .NET-
Basisklassenbibliothek (string = System.String). Auch andere Sprachkonstrukte in C# basieren
auf Schnittstellen und Klassen der .NET-Basisklassenbibliothek, z.B. foreach(...) { ... } basiert
auf der Schnittstelle System.Collections.IEnumerable und await foreach(...) { ... } basiert auf
System.Collections.Generic.IAsyncEnumerable<T>. Der Range-Operator (1..10) erfordert die
Klasse System.Range usw.

Im Laufe der Geschichte von .NET (seit dem Jahr 2001) gab es zahlreiche Implementierungen von
NET (.NET Framework, Mono, .NET Compact Framework, .NET Framework Client Profile,
NET Micro Framework, Silverlight, XNA, .NET Profile fir Windows Runtime, .NET Core,
Universal Windows Platform). Derzeit sind noch in signifikantem Umfang in Einsatz:

= NET Framework

= NET Core

= Universal Windows Platform (UWP)
= Mono/Xamarin

= NET ab Version 5.0

Hinweis: Mit .NET 6.0 fiihrt Microsoft diese Implementierungen zu einer einheitlichen
Plattform zusammen. Alle anderen Implementierungen werden nicht mehr entwickelt.

Zumindest das ".NET Framework" wird aber noch viele Jahre eine Bedeutung im Markt haben,
weil Microsoft dafiir zumindest noch Updates im Bereich Fehlerbehebung, Zuverlassigkeit und
Sicherheit liefert. Fiir alle anderen Implementierungen wird auch dieser Support bald enden.

https://de.wikipedia.org/wiki/Anders_Hejlsberg

32 Fakten zu C#

Die .NET-Familie 2024

CH 7. + Teile von C# 8.0/9.0/10.0/11.0/12.0/13.0 Alle Sprachfeatures von Ci 13.0
WPF, ASP.NET nur ASP.NET Core 8.0 WPF & NETMAUI Blazor

Windows (Webforms, vixe Windows

Forms, MVCS, WebAPI2Z | v2.xauch (MVC, Razor Pages, Forms
Windows WebPages3, auf signalR, WebAPI, (:NET Core
Services, NET“Ful” gRPC, CoreWCF, Desktop

Console SEERLED Framework [] Runtime)

nur Entity Framework Core 1x, 2% 3.1 Entity Framework Core 1. bis 9.0
Entity Framework 6.3/6.4/6.5
nurvixr NET Standard Library 2.1 (System.*, Microsoft.*)
2 Math Collections Data 10 XML LINQ Globalization Security Threading Text TCP/IP ...
NET Framework Class Library (FCL) Windows Compatibility Pack (System.*, Microsoft.)

NET Framework 4.8 » " " i
1/ Desktop Framewerk) Registry ODBC Drawing LDAP WMI CodeDOM Caching WCF-Client ...

(-NET

Basisklassen, Regisry, Data, XML, 10, Logging, Configuration,
CodeDOM, Security, Caching, Network, LDAP, Workflow, W, ..

NET Framework 4.8.1 NET Core Runtime in NET 9.0 Mono Runtime n NET 9.0
Windows, Linux, macOS. Windows Windows 10/11 Tizen Android ios Browser
Windows ab7 inallenVarianten macos
- & €Cu
- L (3 Oa

© 0. Holger Schwichtenberg, www.T-Visions de, Stand 01.11.2024

Abbildung: Die .NET-Familie mit NET Framework 4.8 und .NET 9.0

6.4 Status der Programmiersprache C#

Frither gab es einen wahren Glaubenskrieg in der .NET-Entwicklergemeinde um die Wahl der
»richtigen« Programmiersprache. C# oder Visual Basic .NET hieB die Frage, die viele
Projektteams bewegt hat. Auch wenn Visual Basic .NET in allen wesentlichen Punkten syntaktisch
ebenbiirtig war, hat C# klar gewonnen.

C# ist heute nicht nur eine von vielen Programmiersprachen fiir NET, es hat sich durchgesetzt als
DIE Programmiersprache fiir .NET. Gegenwirtig gibt es nur noch wenige .NET-Projekte, die
Visual Basic .NET, F# oder C++/CLI oder exotischere Sprachen verwenden.

Waihrend frither viele NET-Fachbiicher in zwei verschiedenen Editionen zu C# und Visual Basic
NET erschienen sind, gibt es heutzutage nur noch eine Variante zu C#.

In der Dokumentation der NET-Klassenbibliothek gibt es aber mittlerweile neben C# auch wieder
Beispiele in Visual Basic .NET,

Fakten zu C#

33

INET API Browser | Micre X

L Process Class (SystemDi X

S NLT FaETEW TR Ciass Cidiaty

X | & Sicher | httpsy/

microsoft.c

diagnostics. proce

110).aspx?cs-save-lang=18ics-lang=csharp#code-snippet-1

4

PerformanceCounterType
Enumeration

PresentationTracelLevel
Enumeration

PresentationTraceSources Class

Process Class
> Process Methods
> Process Properties
> Process Events
Process Constructor
ProcessModule Class
ProcessModuleCollection Class

ProcessPriorityClass Enumeration

ProcessStartinfo Class

ProcessThread Class

ProcessThreadCollection Class

ProcessWindowStyle Enumeration

SourceFilter Class

Sourcelevels Enumeration

SourceSwitch Class

StackFrame Class

Syt pIag st Nal S paies

SysEags s -

Process Class

NET Framework (current version) | Other Versions =

System_CAPS_note Note

The .NET AP Reference documentation has a new home, Visit the NET API Browser on
docs.microsoft.com to see the new experience.

Provides access to local and remote processes and enables you to start and stop local system
processes.

To browse the .NET Framework source code for this type, see the Reference Source.

Namespace: System.Diagnostics
Assembly: System (in System.dll)

Inheritance Hierarchy

System.Object
System.MarshalByRefObject
System.ComponentModel. Component
System.Diagnostics. Process

Syntax
[ea [cos [e [e |

[PermissionsetAttribute(SecurityAction. LinkDemand, Name = "FullTrust”)]

[HostProtactionAttribute(SecurityAction. LinkDemand, SharedState = true,
Synchronization = true, ExternalProcessigmt = true, SelfAffectin

"FullTry

[PermissionSetAttribute(SecurityAction. InheritanceDemand, Name =
public class Process : Component
El

Abbildung: Beispiele in vier Sprachen in der alten MSDN-Dokumentation der .NET-Klassen in
verschiedenen Registerkarten

34 Fakten zu C#

Learn / NET / API-Browser / System Diagnostics / C# ~ o
o
Process Klasse "
Referenz F# & Feedback
C+e

Definition
MNamespace: System.Diagnostics

Assembly: System.Diagnostics Process.dll

Erméglicht den Zugriff auf lokale Prozesse und Remateprozesse und das Starten und Anhalten lokaler Systemprozesse
cw M Kopieren

public class Process : System.ComponentModel.Component, IDisposable

Vererbung Object — MarshalByRefObject — Component —~ Process

Implementiert |Disposable

Im folgenden Beispiel wird ein instance der Process -Klasse verwendet, um einen Prozess zu starten.
c# M Kopieren
using System;
using System.Diagnostics;
using System.ComponentModel;
namespace MyProcessSample
class MyProcess

{
public static void Main()

{
try
r

Abbildung: Neue Dokumentation auf learn.microsoft.com mit Auswahl der Sprachen per
Dropdown oben auf der Seite

6.5 Dokumentation zu C#

Die offizielle Dokumentation zu C# finden Sie unter
https://learn.microsoft.com/en-us/dotnet/csharp

Weitere Dokumentation finden Sie in zwei GitHub-Projekten:
https://github.com/dotnet/csharplang
https://github.com/dotnet/roslyn

https://learn.microsoft.com/en-us/dotnet/csharp/
https://github.com/dotnet/csharplang
https://github.com/dotnet/roslyn

Fakten zu C# 35

6.6 Versionsgeschichte

Hinsichtlich der Versionsnummern der Sprache C# herrschte frither etwas Verwirrung. Es gab
einerseits eine offizielle Zahlung mit Versionsnummer (parallel zum .NET Framework),
andererseits mit Jahreszahlen (parallel zu Visual Studio). Intern wird eine dritte Zahlung fiir den
Compiler verwendet. Die erste Version von C# im Rahmen des NET Framework 1.0 trug intern
die Versionsnummer 7.0. Zu .NET 1.1 gab es dann C# 7.1, im .NET Framework 2.0 und 3.0 meldet
sich der C#-Compiler mit Version 8.0. Ab .NET Framework 3.5 hat Microsoft dies aber bereinigt.
Dort meldet sich der Compiler nun auch mit Version 3.5.

Die folgende Liste dokumentiert die Versionsgeschichte von C# einschlieBlich der verschiedenen
Namen, die es jeweils gibt.

= C# 1.0 ist erschienen am 05.01.2002 (in Visual Studio.NET 2002+2003 / .NET Framework
1.0 und 1.1. Erste Version des ISO-Standards fiir C#.)

= C#2.0 isterschienen am 07.11.2005 (C# 2005 / in Visual Studio.NET 2005 / .NET Framework
2.0 und 3.0. Zweite Version des ISO-Standards fiir C#.)

= C#3.0 isterschienen am 15.08.2008 (C# 2008 / in Visual Studio.NET 2008 / .NET Framework
3.5)

= C#4.0 isterschienen am 12.04.2010 (C#2010/in Visual Studio.NET 2010/ .NET Framework
4.0)

= C#5.0 isterschienen am 12.08.2012 (C# 2012/ in Visual Studio.NET 2012 / .NET Framework
4.5)

= C#6.0 isterschienen am 20.07.2015 (C# 2015/ in Visual Studio.NET 2015 / .NET Framework
4.6)

= C# 7.0 ist erschienen am 05.03.2017 (C# 2017 / in Visual Studio 2017 v15.0)
= C#7.1isterschienen am 14.08.2017 (in Visual Studio 2017 v15.3)

= C# 7.2 isterschienen am 15.11.2017 (in Visual Studio 2017 v15.5)

= C# 7.3 ist erschienen am 02.08.2018 (in Visual Studio 2017 v15.7)

= C# 8.0 ist erschienen am 23.09.2019 (in Visual Studio 2019 v16.3)

= C#9.0 ist erschienen am 10.11.2020 (in Visual Studio 2019 v16.8)

= C#10.0 ist erschienen am 08.11.2021 (in Visual Studio 2022, v17.0)

= C#11.0 ist erschienen am 08.11.2022 (in Visual Studio 2022, v17.4)

= C#12.0 ist erschienen am 14.11.2023 (in Visual Studio 2022, v17.8)

= C#13.0 ist erschienen am 12.11.2024 (in Visual Studio 2022, v17.12)

Version der Ausgeliefert mit Version der Interne
Sprachsyntax mit Sprachsyntax Versionsnummer des
Versionsnummer mit Jahreszahl C#-Compilers

C#1.0 NET Framework 1.0 | Visual C# 2002 7.0 (alter Compiler)
C# 1.1 NET Framework 1.1 | Visual C# 2003 7.1 (alter Compiler)
C#2.0 NET Framework 2.0 | Visual C# 2005 8.0 (alter Compiler)
C#2.0 NET Framework 3.0 | Visual C# 2005 8.0 (alter Compiler)
C#3.0 NET Framework 3.5 | Visual C# 2008 3.5 (alter Compiler)

36 Fakten zu C#

Version der Ausgeliefert mit Version der Interne

Sprachsyntax mit Sprachsyntax Versionsnummer des

Versionsnummer mit Jahreszahl C#-Compilers

C#4.0 NET Framework 4.0 | Visual C# 2010 4.0 (alter Compiler)

C#5.0 NET Framework 4.5 | Visual C# 2012 4.5 (alter Compiler)

C#6.0 NET Framework 4.6 | Visual C# 2015 1.x (Neuer Compiler)
/ NET Core 1.0

C#7.0 Visual Studio 2017 Visual C# 2017 2.0 (Neuer Compiler)
15.0/ NET Core 2.0

C# 7.1 Visual Studio 2017 Visual C# 2017 2.3 (Neuer Compiler)
15.4 / NET Core 2.0

C#7.2 Visual Studio 2017 Visual C# 2017 2.7 (Neuer Compiler)
15.5/ NET Core 2.0

C#173 Visual Studio 2017 Visual C# 2017 2.84+2.9 +2.10 (Neuer
15.7/ NET Core 2.1 Compiler)

C#8.0 Visual Studio 2019 Visual C# 2018 3.3 bis 3.7 (Neuer
16.3 / NET Core 3.x Compiler)

C#9.0 Visual Studio 2019 Visual C# 2020 ab v3.8 (Neuer
16.8 / NET 5.0 Compiler)

C#10.0 Visual Studio 2022 Visual C# 2022 ab v4.0 (Neuer
17.0/ NET 6.0 Compiler)

C#11.0 Visual Studio 2022 Visual C# 2023 ab v4.4 (Neuer
17.4/ NET 7.0 Compiler)

C#12.0 Visual Studio 2022 Visual C# 2023 ab v4.8 (Neuer
17.8 / NET 8.0 Compiler)

C#13.0 Visual Studio 2022 Visual C# 2024 ab v4.11 (Neuer
17.12/ NET 9.0 Compiler)

Tabelle: Verschiedene Versionsnummernzihlungen fiir die Sprache C#

6.7 Standardisierung

Microsoft hat einige Teile des .NET Framework unter dem Namen Common Language
Infrastructure (CLI) standardisieren lassen. Die CLI wurde erstmals im Dezember 2001 von der
European Computer Manufacturers Association (ECMA) standardisiert (ECMA-Standard 335,
Arbeitsgruppe TC49 / TG3, frither: TC39 / TG3, siche [ECMAO1]); mit kleinen Anderungen
wurde der Standard im Dezember 2002 von der weltweit wichtigsten
Standardisierungsorganisation, der International Standardization Organization (ISO),
iibernommen als ISO / IEC 23271.

Die Begriffe lauten in den Standards zum Teil allerdings anders als bei Microsoft: Was im .NET
Framework Microsoft Intermediate Language (MSIL) heift, entspricht im Standard der Common
Intermediate Language (CIL). Anstelle der Framework Class Library (FCL) spricht man von der
CLI Class Library. Von der Standardisierung ausgenommen sind jedoch z.B. die

Fakten zu C# 37

Datenbankschnittstelle ADO.NET und die Benutzeroberfldchen-Bibliotheken Windows Forms
und ASP.NET Webforms. Auch die neueren .NET-Bibliotheken (WPF, WCF und WF) sind nicht
standardisiert.

Auch die Programmiersprache C# ist von beiden Gremien akzeptiert (ECMA-334 bzw. ISO / IEC
23270). Die Standardisierung bezieht sich aber auf dltere Versionen. Die letzten C#-Versionen hat
Microsoft nicht mehr standardisieren lassen. Die Standardisierung von C# ist alllerdings auf dem
Stand C# 6.0 stehengeblieben [www.ecma-international.org/publications-and-
standards/standards/ecma-334/].

MICROSOFT VISUAL C# CORRESPONDING ECMA CORRESPONDING ISO/IEC
VERSION STANDARD STANDARD

V2.0 ECMA-334:2006 ISO/IEC 23270:2006

V4.0 none none

V6.0 ECMA-334:2022 none

Abbildung: Standard der C#-Standardisierung [Quelle: www.ecma-
international.org/publications-and-standards/standards/ecma-334, Stand: 29.10.2023]

Ein weiterer, von Microsoft initiierter Standard ist von der ECMA im Dezember 2005 unter
ECMA-372 (Arbeitsgruppe TC49 / TGS, frither: TC39 / TGS) verabschiedet worden: C++ / CLI
ist eine Spracherweiterung fiir C++ (ISO / IEC 14882:2003), die eine elegantere Nutzung von C++
auf der CLI-Plattform ermdglicht, als dies bisher mit den Managed Extensions for C++ (alias
Managed C++) moglich war.

6.8 Implementierung des C#-Compilers

Die urspriingliche Version des C#-Compilers (csc.exe) wurde in C++ implementiert. Auch der C#-
Compiler im Mono-Projekt ist in C++ geschrieben.

Mit dem Projekt "Roslyn" (alias: NET Compiler Platform) hat Microsoft selbst den Compiler neu
in C# implementiert. Die erste Version des neuen Compilers war C# 6.0.

6.9 Open Source

Bereits zu C# 1.0 gab es eine quelloffene Version im Projekt "Rotor" im Rahmen der
Standardisierung von C#. Diese war jedoch nicht "Open Source", sondern nur "Shared Source",
d.h. der Quellcode durfte betrachtet, aber nicht weiterverwendet werden. Seit C# 6.0 ist der neue
Compiler im Rahmen der .NET Compiler Platform "Roslyn" ein Open Source-Projekt auf Github.

https://www.ecma-international.org/publications-and-standards/standards/ecma-334/
https://www.ecma-international.org/publications-and-standards/standards/ecma-334/
http://www.ecma-international.org/publications-and-standards/standards/ecma-334
http://www.ecma-international.org/publications-and-standards/standards/ecma-334

38 Fakten zu C#

Projekt fiir das Design der Programmiersprache:
github.com/dotnet/csharplang
Projekt fiir die Implementierung der Programmiersprache:

github.com/dotnet/roslyn

6.10 Paritiat und Co-Evolution mit Visual Basic .NET

Im Jahr 2010 hatte Microsoft verkiindet, die Programmiersprache C# und Visual Basic .NET
hinsichtlich ihrer Funktionalitit anzugleichen. »Die Sprachen sollen sich in Stil und Gefiihl
unterscheiden, nicht in ihrem Funktionsumfang«, schrieb Mads Torgersen, Produktmanager fiir C#
damals. Scott Wiltamuth fiihrt den Begriff "Co-Evolution" ein
[blogs.msdn.microsoft.com/scottwil/2010/03/09/vb-and-c-coevolution].

Einige Jahre hat Microsoft diese Strategie tatséchlich umgesetzt und bestehende Sprachfeatures,
die nur eine Sprache hatte, in der anderen Sprache nachgeriistet und neue Sprachfeatures
gleichzeitig oder zumindest zeitnah in beiden Sprachen verdffentlicht.

Im Jahr 2017 hat Microsoft sich von Paritét und Co-Evolution wieder verabschiedet. Die parallel
zu C# 7.0 erschienene Version 15 von Visual Basic .NET bietet daher lediglich Tupel und binire
Literale als neue Sprachfeatures an. Zudem kann Visual Basic .NET 15 C#-Methoden nutzen, die
Zeiger mit ref liefern, selbst aber solche Methoden nicht implementieren.

Im Mirz 2020 hat Microsoft verkiindet, die Programmiersprache Visual Basic .NET hinsichtlich
der Syntax nicht mehr weiter zu entwickeln, diese Sprache aber zumindest bei einigen Projektarten
in NET weiterhin zu unterstiitzen [devblogs.microsoft.com/vbteam/visual-basic-in-net-core-3-0/).
Zentrale Aussagen darin waren:

= "Going forward, we do not plan to evolve Visual Basic as a language."

= "Future features of .NET Core that require language changes may not be supported in Visual
Basic. "

= "Due to differences in the platform, there will be some differences between Visual Basic on
NET Framework and .NET Core."

Visual Basic .NET ist dennoch nach C# weiterhin die zweitwichtigste Programmiersprache in
der .NET-Welt. Telemetriedaten [blogs.msdn.microsoft.com/dotnet/2017/02/01/the-net-
language-strategy] von Microsoft zeigen einerseits, dass Visual Basic .NET hauptséchlich zur
Programmierung mit alteren NET-Techniken wie Windows Forms und ASP.NET Webforms
zum Einsatz kommt. Andererseits beginnen viele neue .NET-Entwickler mit Visual Basic NET,
bevor sie sich an C# herantrauen.

6.11 Popularitat von C#

Fiir die Beliebtheit von Programmiersprachen gibt es verschiedene Erhebungen. Sehr beliebt ist
der Tiobe Index [www.tiobe.com/tiobe-index], der monatlich durch eine Auswertung von
Internetseiten ermittelt wird. Hier liegt C# in der Regel seit ldngerem auf Platz 5, hinter Python,
C++, C und Java. Knapp hinter C# liegt Visual Basic .NET, hier nur als "Visual Basic" bezeichnet,
aber abzugrenzen von "Visual Basic Classic" auf Platz 22 (hier nicht mehr im Bild).

https://github.com/dotnet/csharplang
https://github.com/dotnet/roslyn
https://blogs.msdn.microsoft.com/scottwil/2010/03/09/vb-and-c-coevolution
https://devblogs.microsoft.com/vbteam/visual-basic-in-net-core-3-0/
https://blogs.msdn.microsoft.com/dotnet/2017/02/01/the-net-language-strategy
https://blogs.msdn.microsoft.com/dotnet/2017/02/01/the-net-language-strategy
https://www.tiobe.com/tiobe-index/

Fakten zu C# 39
Oct 2024 Oct 2023 Change: Programming Language Ratings Change
1 1 - Python 21.90% +7.08%
z 3 @ o 1.60% +0.83%
3 4 J Java 1051% “150%
4 2 - e c 8.38% 3.70%
5 5 @ o 562% 209%
6 6 s JavaScript 354% +0.64%
7 7 @ Visual Basic 235% 022%
8 1 @ Go 202% +0.65%
] 18 6 Fortran 1.80% +0.78%
10 13 @ DelphiObjsct Pascal 1.68% +0.38%
n 9 ~ saL 164% 0.15%
12 14 4 vALE 1.48% +0.22%
13 20 ® Rust 1.45% +0.63%
14 12 - Soratch 141% +0.05%
1 8 ¥ & - 121% 069%
18 i ¥ o Asssmbly languags 113% 051%
7 7 R R 1.08% +0.12%
18 19 rl Ruby 0.99% 0.07%
19 24 - co8oL 0.99% +0.23%
0 15 ¥ © Swift 0.98% 0.09%

Abbildung: Beliebtheit der Programmiersprachen (Quelle: www.tiobe.com/tiobe-index)

n

TIOBE Programming Community Index

Ce 88T

b
i
s W \

7 T T
2002 2004 208

= Fypen o

Abbildung: Beliebtheit von C#von 2002 bis 2024 (Quelle: www.tiobe.com/tiobe-index)

T
200

-t

T T
0 a2

—CH = douaSore

214 e

= Vil Base = 0o — Fervan

T T
. 20

Diekhiibyeet Pascal

T
e

s

Das Ranking der IEEE (Institute of Electrical and Electronics Engineers) basiert auf der
Auswertung mehrerer Datenquellen (CareerBuilder, GitHub, Google, Hacker News, IEEE, Reddit,

Stack Overflow und Twitter).

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/

40 Fakten zu C#

Top Programming Languages 2024

Click a button to see a differently weighted ranking
ﬂ Tronding lobs

8.4855

Python

Java

JavaScript 0.4451
0.3749

Cs

TypeScript 0.2497

)
-]

@.2089
@.2852

2
5

@.1989

o

@.1817

Rust @.1506

x
=z

Mathematica 9.1275
PHP 0.1196
Shell 0.117

Lua

®
2
[
-]

o
2
II II II II ii
@
afle
b kb
5

Auby

Dart

switt [
Abbildung: IEEE-Ranking 2023 [spectrum.ieee.org/top-programming-languages/#toggle-gdpr]
("The “Spectrum” ranking is weighted towards the profile of the typical IEEE member, the
“Trending” ranking seeks to spot languages that are in the zeitgeist, and the “Jobs” ranking
measures what employers are looking for.")

Auch das IT-Marktforschungsunternehmen RedMonk liefert ein Programmiersprachenranking
basierend auf GitHub und Stackoverflow.com. C# liegt dort zusammen mit C++ und CSS auf Platz
5. Davor sind JavaScript, Python, Java und PHP.

https://spectrum.ieee.org/top-programming-languages/%23toggle-gdpr

Fakten zu C# 41

RedMonk Q124 Programming Language Rankings

VBA
Visual Basic NET Visual Basic
Matiab
Go
Asse =l
GCC Machine Description ly amt
g — Lua
a8 Fi#
= ColdFusion "
3 Julia
feeScript
z Erlang” M e
H oCami
: L
3 = Smarty
§
=
5
2
£
H
H
&
25~ Nix
HCL
Starare gerip
0- SoF Rich Text Format Roff
4 30 %0

0
Popularity Rank on GitHub (by # of Projects)

Abbildung: Programmiersprachen-Ranking von RedMonk, Stand Januar 2024: Diagramm
korreliert GitHub-Pull-Requests (x-Achse) zum Rang bei Stack Overflow (y-Achse)
[https://redmonk.com/sogrady/2024/03/08/language-rankings-1-
24https://redmonk.com/sogrady/2022/03/28/language-rankings-1-22/]

https://redmonk.com/sogrady/2024/03/08/language-rankings-1-24/
https://redmonk.com/sogrady/2024/03/08/language-rankings-1-24/
https://redmonk.com/sogrady/2022/03/28/language-rankings-1-22/

42 Fakten zu C#

RedMonk Language Rankings

September 2012 - January 2024

<oy
)
<oy
g

L3

Abbildung: Jahresauswertungen von RedMonk 2012 bis 2024
[https://redmonk.com/rstephens/2024/03/08/top20-jan2024]

Seit dem Jahr 2017 gibt es eine Umfrage "The State of Developer Ecosystem" der Firma JetBrains.
C# liegt im Jahr 2023 bei der Beliebtheit auf Platz 9, mit 21% weit hinter den Webtechniken wie
JavaScript, TypeScript und HTML/CSS. Auch Python, SQL, Java, Shell-Sprachen und sogar C++
sind bei der Umfrage beliebter.

https://redmonk.com/rstephens/2024/03/08/top20-jan2024/

Fakten zu C# 43

Which programming, scripting, and markup
languages have you used in the last 12 months?

2017 2018 2019 2020 2021 2022 2023

69% 70% 69% 6 JavaScript
Python

HTML/CSS
soL
Java
Shell
TypeScript
17% 18% 20% 27% 23% 25% 25% Co-
20% 22% 24% 22% 21% 23% 21% c#
15% 16% 17% 23% 19% 20% 9% C
30% 26% 20% % % 20% 18% PHP
8% 12% 18% 19% 7% 19% 7% Go
2% 9% 16% 17% 14% 16% 15% Kotlin
- 2% 5% 7% 6% 0% 10% Rust
0% 8% 1% o% 7% 7% 6% Swift
10% 8% 1% 8% 6% 5% 4% Ruby
7% 5% 6% 5% 3% 3% 3% Scala
7% 5% 6% 4% 3% 3% 2% Objective-C
-
0 70%

Abbildung: Umfrage "The State of Developer Ecosystem” 2023
[https://www jetbrains.com/Ip/devecosystem-2023]

Eine weitere viel beachtete Statistik ist die jahrliche Umfrage von Stackoverflow.com. In der
Jahresumfrage 2023 (2023, 2022, 2021, 2020, 2019, 2018) mit rund 65.000 Teilnehmern
(weltweit) war C# auf Platz 8 (8, 8, 8, 7, 7, 8) der Liste der am meisten eingesetzten Programmier-
und Markupsprachen mit 27,1%, (27,62%, 27,98%, 27,86%, 31,4 %, 31,9%, 35,35%).

https://www.jetbrains.com/lp/devecosystem-2023

44 Fakten zu C#

s
HTML/CSS
PY

saL

Ts
Bash/Shell

Java

PowerShell
Go

Rust

Kotlin

Lua

Dart
Assembly
Ruby

Swift

R

Visual Basic
MATLAB
VBA
Groovy
Scala

Perl

GDScript

Objective-C

Elixir

Haskell

Abbildung: Einsatzhdufigkeit von C# in der Jahresumfirage 2024 von stackoverflow.com
[https://survey.stackoverflow.co/2024]

In der Stackoverflow-Umfrage wird auch nach "Desired" (blauer Kreis, bei C# 21,6%) und
"Admired" (roter Kreis, bei C# 64,1%) gefragt.

= "Admired": Ist im Einsatz und Entwickler/Entwicklerin mochte es weiterhin nutzen

= "Desired": Bisher nicht im Einsatz, aber Entwickler/Entwicklerin mochte es gerne nutzen

Fakten zu C# 45

Abbildung: Liebe und Abneigung zu C# in der Jahresumfrage 2024 von stackoverflow.com
[https://survey.stackoverflow.co/2024]
Eine weitere Umfrage unter Entwicklern liefert SlashData. Das Analystenteam von SlashData
berichtet mit seinem Report “State Of The Developer Nation® vierteljahrlich dariiber, mit welchen
Programmiersprachen die weltweite Gemeinschaft der Softwareentwickler arbeitet. Hier liegt C#
auf Platz 4. JavaScript, TypeScript und CoffeeScript sind zusammengefasst auf Platz 1.

< Top 5 i used by
%
"
%
l“ .
a% . . . :
malobol (n=10.2651 B

FIATA

Abbildung: SlashData-Umfiage, Stand 1. Quartal 2022
[Quelle: hitps://www.developernation.net/developer-reports/dn26]

Falls es Thnen bei der Programmierung auf Energie-Effizienz ankommt, sollten Sie sich diese
Studie durchlesen: "Energy Efficiency across Programming Languages - How Does Energy, Time,
and Memory Relate?" [https.//greenlab.di.uminho.pt/wp-content/uploads/2017/09/paperSLE.pdf]

https://www.developernation.net/developer-reports/dn26/
https://greenlab.di.uminho.pt/wp-content/uploads/2017/09/paperSLE.pdf

46 Fakten zu C#

Table 4. Normalized global results for Energy, Time, and
Memory

[Total |
Energy Time Mb
©C 1.00 © C 1.00 (c) Pascal 1.00
(c) Rust 1.03 (c) Rust 1.04 (c) Go 1.05
(© C++ 1.34 (© C++ 1.56 ©C 1.17
(c) Ada 1.70 (c) Ada 1.85 (c) Fortran 1.24
(v) Java 1.98 (v) Java 1.89 (c) C++ 1.34
(c) Pascal 2.14 (c) Chapel 2.14 (c) Ada 1.47
(c) Chapel 2.18 (c) Go 2.83 (c) Rust 1.54
(v) Lisp 2.27 (c) Pascal 3.02 (v) Lisp 1.92
(¢) Ocaml 2.40 (c) Ocaml 3.09 () Haskell 2.45
(c) Fortran 2.52 (v) C# 3.14 (i) PHP 2.57
(c) Swift 2.79 (v) Lisp 3.40 (c) Swift 2.71
(c) Haskell 3.10 (c) Haskell 3.55 (i) Python 2.80
(v) C# 3.14 (c) Swift 4.20 (c) Ocaml 2.82
(c) Go 3.23 (c) Fortran 4.20 (v) C# 2.85
(i) Dart 3.83 (v) F# 6.30 (i) Hack 3.34
(v) F# 4.13 (i) JavaSeript 6.52 (v) Racket 3.52
(i) JavaScript 4.45 (i) Dart 6.67 (i) Ruby 3.97
(v) Racket 7.91 (v) Racket 11.27 (c) Chapel 4.00
(i) TypeScript 21.50 (i) Hack 26.99 (v) F# 4.25
(i) Hack 24.02 (i) PHP 27.64 (i) JavaScript 4,59
(i) PHP 29.30 (v) Erlang 36.71 (i) TypeScript 4,69
(v) Erlang 42.23 (i) Jruby 43.44 (v) Java 6.01
(i) Lua 45.98 (i) TypeScript | 46.20 (i) Perl 6.62
(i) Jruby 46.54 (i) Ruby 59.34 (i) Lua 6.72
(i) Ruby 69.91 (i) Perl 65.79 (v) Erlang 7.20
(i) Python 75.88 (i) Python 71.90 (i) Dart 8.64
(i) Perl 79.58 (i) Lua 82.91 (i) Jruby 19.84

Abbildung: C# liegt bei der Studie zum Vergleich der Programmiersprachen im Mittelfeld

6.12 Editoren fur C#
Microsoft liefert fiir C# selbst drei Editoren:

= Visual Studio: nur fiir Windows. Kostenfreie Community-Version nur fiir Open Source-
Projekte, Studierende und kleine Unternehmen.
visualstudio.microsoft.com/de/downloads

= Visual Studio for Mac: kostenfrei (Nachfolger des fritheren Xamarin Studio, wird aber am
31.8.2024 eingestellt)

visualstudio.microsoft.com/de/vs/mac

https://visualstudio.microsoft.com/de/downloads
https://visualstudio.microsoft.com/de/vs/mac/

Fakten zu C# 47

= Visual Studio Code: kostenfrei fiir Windows, macOS und Linux.
code.visualstudio.com
Die C#-Erweiterung "C# for Visual Studio Code" muss installiert sein!
marketplace.visualstudio.com/items?item Name=ms-dotnettools.csharp
Projektmappen-Explorer und Test-Explorer bekommt man iiber eine weitere Erweiterung,
das C# Dev Kit:

https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit

Beide Erweiterungen beinhalten aber nicht alle Werkzeuge aus dem groflen Visual Studio,
z.B. keine grafischen UI-Designer

Zudem liefert Microsoft mit OmniSharp [www.omnisharp.net] eine Basis fiir die Integration in
anderen (plattformneutralen) Editoren wie ATOM, Brackets, Emacs, Sublime und Vim (siche
Abbildung). Hier wird nicht nur Syntax-Farbeinfarbung, sondern auch Eingabeunterstiitzung
(IntelliSense) angeboten. Auch die Visual Studio Code-Erweiterung fiir C# basiert auf OmniSharp.

ABOUT INTEGRATIONS TEAM

HERE'S HOW YOU CAN TOO

Es gibt weitere einfache Editoren, die fir die C#-Syntax nur Einfirbung, aber keine
Eingabeunterstiitzung bieten.

Einen weiteren professionellen C#-Editor mit vielen Eingabeunterstiitzung- und Refactoring-
Funktionen liefert die Firma JetBrains mit ihrem Produkt "Rider" (kostenpflichtig,
www.jetbrains.com/rider).

6.13 C#13.0

C# 13.0 ist zusammen mit Visual Studio 2022 Version 17.12 und .NET 9.0 am 12. November 2024
erschienen.

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csdevkit
http://www.omnisharp.net/
http://www.jetbrains.com/rider

48 Fakten zu C#

Wie schon bei .NET 6.0/C# 10.0 und .NET 7.0/C# 11.0 sowie .NET 8.0/C# 12.0 verwendet
Microsoft bei .NET 9.0/C# 13.0 an vielen, aber nicht allen Stellen die Versionsnummer ohne ".0".
Hier wird einheitlich die Schreibweise mit ".0" verwendet.

Anders als NET 8.0 besitzt die 9.0-Version nur einen "Standard-Term-Support" (STS) fiir 18
Monate statt 36 Monaten. Nach aktuellem Stand gibt es dafiir dann also Unterstiitzung und Updates
von November 2024 bis Mai 2026.

6.14 Support fiir C# 13.0

C# 13.0 wird offiziell von Microsoft erst ab .NET 9.0 unterstiitzt ("C# 13.0 is supported only on
NET 9 and newer versions." [learn.microsoft.com/en-us/dotnet/csharp/language-
reference/configure-language-version].

Tipp: Man kann allerdings auf eigene Verantwortung dennoch die einige (aber nicht alle!) C#
13.0-Sprachfeatures auch in élteren .NET-Versionen einschlieflich NET Framework, NET
Core und Xamarin nutzen. Dazu muss man die <LangVersion> in der Projektdatei (.csproj) auf
"13.0" erhdhen. Dies wird im Kapitel "Erste C#-Schritte/Festlegen der Compilerversion”
beschrieben.

Bitte beachten Sie aber, dass es fiir den Einsatz von C# 13.0-Sprachfeatures in .NET-Versionen
vor 9.0 keinen technischen Support von Microsoft gibt, d.h. falls Sie Probleme damit haben,
konnen Sie nicht Ihren Support-Vertrag nutzen, um Microsoft um Hilfe zu ersuchen. Dennoch
ist der Einsatz hoherer C#-Versionen in dlteren .NET-Projekten in einigen Unternehmen
géngige und problemlose Praxis.

Notwendige Visual Studio-Version fiir C# 13.0 ist Visual Studio 2022 v17.12 oder hoher. Eine
Verwendung von C# 14.0 auch mit einer aktuellen Version von Visual Studio Code und anderen
OmniSharp-kompatiblen Editoren [www.omnisharp.net] ist moglich.

6.15 Neuerungen in C# 13.0

In C# 13.0 sind gegeniiber Version 12.0 zehn Neuerungen erschienen. In C# 12.0 gab es sieben
Neuerungen gegeniiber C# 11.0. In C# 11.0 gegeniiber 10.0 sowie Version 10.0 gegeniiber 9.0 gab
es jeweils 16 Neuerungen.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
http://www.omnisharp.net/

Fakten zu C# 49

Features Added in C# Language Versions

C# 13.0 - .NET 9 and Visual Studio 2022 version 17.12

ESC escape sequence: introduces the \e escape sequence ta represent the ESCAPE/ESC character (U+0018)

Method group natural type i
type of @ method group.

ements: look scope-by-scape and prune inapplicable candidates early when determining the natural

* Lock t: allow performing a lock on System.Threading.Lock instances.

* Implicit indexer access in object initializers: allows indexers in object initializers to use implicit Index/Range indexers (new ¢ { [*1] = 2 }).

* params collections: extends params support to collection types (void M(params Readonlyspancint> s})

suspension points.
® ref struct interfaces: allows ref struct types to implement interfaces and introduces the allows ref struct constraint

* Overload resolution priority: allows AP| authors to adjust the relative priority of overloads within a type using

Systen.Runtine. Compilerservices.overloadResalutionPriority
* Partial properties: allows splitting a property into multiple parts using the partial modifier.

« Better conversion from collection expression element: impraves averload resolution to account for the element type of collection

expressions.

Abbildung: Ubersicht iiber die Neuerungen in C# 13.0 | Quelle: Microsoft
[github.com/dotnet/csharplang/blob/main/Language-Version-History.md|

Sie finden in diesem Buch:

Partielle Properties und partielle Indexer im Kapitel "Partielle Klassen, Methoden, Properties
und partielle Indexer"

Prioritéten fiir Methodeniiberladungen im Kapitel "Methoden"

Generische Mengen in Verbindung mit dem Schliisselwort params im Kapitel
"Methoden/Parameterlisten”

Konsolenausgabenformatierung mit ANSI-Codes mit neuem Escape-Zeichen \e im Kapitel
"Datentypen”

System.Threading.Lock im Kapitel "Exklusive Zugriffe auf Ressourcen mit lock()"
Einsatz von Range-Indexern bei der Mengeninitialisierung im Kapitel "Objektmengen-
Initialisierung mit Index"

Neuerungen fiir ref struct im Kapitel "Strukturen/Strukturen ausschlieBlich auf dem Stack (ref
struct)"

6.16 C#13.0 in dlteren .NET-Versionen

Nur diejenigen neuen Sprachfeatures funktionieren auch in .NET-Versionen vor .NET 9.0, die
keine Abhidngigkeit von erst in NET 9.0 eingefiihrten Basisbibliotheksklassen haben. Sofern man
<LangVersion>latest</LangVersion> setzt in der Projektdatei, sind in <eren Versionen folgende
neuen Sprachfeatures von C# 13.0 moglich:

Partielle Properties und partielle Indexer
Generische Mengen in Verbindung mit dem Schliisselwort params
Neuerungen fiir ref struct, auler der Verwendung als Typargument

Escape-Zeichen \e

https://github.com/dotnet/csharplang/blob/main/Language-Version-History.md

50 Fakten zu C#

6.17 Breaking Changes in C# 13.0

Es gibt einige wenige Breaking Changes im Verhalten des Compilers in C# 13.0 gegeniiber C#
12.0. Dies sind jedoch Sonderfille von geringer Bedeutung (z.B. Verbot der Annotation
[InlineArray] auf record struct) und werden hier daher nicht ndher besprochen. Sie finden die
Informationen unter

https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/breaking-
changes/compiler%20breaking%20changes%20-%20dotnet%209

6.18 Vertagte neue Sprachfeatures

Folgende Sprachfeatures waren fiir C# 13.0 geplant, wurden aber dann auf C# 14.0 (November
2025) vertagt:

Tupel-Dekonstruktion (int x, string y) = default statt (default, default)

Automatische Konvertierung zwischen Array, Span<T>, ReadOnlySpan<T>
Semi-Auto-Properties mit neuem Schliisselwort field

Extension Types: Eine weiterentwickelte Form der Extension Methods, bei der man nicht
nur Instanzmethoden, sondern Methoden und Properties sowohl auf Instanz- als auch
Klassenebene ("static") ergédnzen kann. Dazu will Microsoft das neue Schliisselwort
extension einfiihren, siche nichstes Bild.

1 public implicit extension StringExtensions for string

2

3 public int Dots { get; set; }

4 public string Truncate(int count)

5 {

6 if (this == null) return "";

7 if (this.Length <= count) return this;
8 return this,Substring(®, count) + Dots;
9 }

1@ public static string Create(int count)
11 {

12 return new string('.', count);

13 }

14 }

15

16 // Verwendung des Extension Types
17 string str = "Hello World";

18 str.Dots = "...";
19 string truncated = str.Truncate(5); // Hello...
20

21 string str2 = String.Create(5); // "..... "

Abbildung: So sollten Extension Types in C# 13.0 aussehen

Die kommende Version C# 14.0 soll im November 2025 zusammen mit .NET 10.0 erscheinen.

Die Liste der Sprachfeatures, an denen Microsoft aktiv arbeitet, findet man unter

https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/breaking-changes/compiler%20breaking%20changes%20-%20dotnet%209
https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/breaking-changes/compiler%20breaking%20changes%20-%20dotnet%209

Fakten zu C#

51

https://github.com/dotnet/roslyn/blob/main/docs/Language%20F eature%20Status.md

Working Set

Feature
Default in
deconstruction
Roles/Extensions
Null-conditional
assignment

field keyword in
roperties

First-class Span
Types

Branch

decon-default

roles

null-co

assignment

field-keyword

FirstClassSpan

State:

In Progress

In Progress

In Pragress

Merged into
3

Merged into
17.13p1

Developer

jeouv

couv

RikkiGibson

Youssef1313,
cston

jlonescz

Abbildung: Sprachfeatures in Arbeit fiir C# 14.0

Sprachfeatures, die sich bereits in der Entwicklung befinden
Sprachcompilers sind, konnen Sie ausprobieren auf dieser Website:

sharplab.io

W s

using System;

public class MeineKlasse {

public string Name

got => field;
set {

if ¢ -IshullorEmety(valued) {

throw new ApplicationException(“Name darf nicht leer seinl®};

]
Fleld = value;
+

Funti

Reviewer
gafter

AlekseyTs,

jionescz

cston, jjienescz

333fred,

eston, 333fred

onpilerservi

IDE Buddy

CyrusNajmabadi

TBD

CyrusNajmabadi

aber noch

[Systen. Runtime .ConpilerServices.Nullable(8)]
public class Maineklasse
i

[Compt Lercenerated]
[Debugerorowsable(Dsbuggarbrons sblestata. Never)]
string sMamork_BackingField;

private

public string Name
{

eturn <Nanesk_BackingFleld;

if (string. IsMullorEnpty(value))
{

LDM Champ

couv

MadsTorgersen

Ril

Gibson

CyrusNajmabadi

333fred,
stephentoub

nicht Teil des

throw new AgplicationException(“Name darf nicht leer seif

<Manesk_Backingrield = valug;

Edifor: Defaul Theme: | Auto | Buitby

(@ashmind) -

Abbildung: sharplab.io mit dem nun fiir C# 13.0 geplanten Sprachfeatures "Semi-Auto-
Properties" mit dem neuen Schliisselwort field fiir den Zugriff auf das automatisch generierte

Backing-Field eines Properties

6.19 Vorschlage fir kommende Sprachfeatures

Weitere Vorschlédge fiir kommende Sprachfeatures findet man unter

github.com/dotnet/csharplang/tree/main/proposals

Jedermann kann Vorschldge fiir neue Sprachfeatures einreichen; die Hiirden zur Annahme sind

aber recht hoch.

https://github.com/dotnet/roslyn/blob/main/docs/Language%20Feature%20Status.md
https://github.com/dotnet/roslyn/blob/main/docs/Language%20Feature%20Status.md
https://sharplab.io/
http://www.sharplab.io/
https://github.com/dotnet/csharplang/tree/main/proposals

52 Grundkonzepte von C#

7 Grundkonzepte von C#

Konzeptionell wurde C# vor allem von C++ und Java beeinflusst; man kann aber auch Parallelen
zu Visual Basic und Delphi finden.

71 Sprachtypus

Im Gegensatz zur Programmiersprache C++, die eine hybride Sprache aus objektorientierten und
nicht-objektorientierten Konzepten darstellt, ist C# ebenso wie Java eine rein objektorientierte
Sprache, d.h. alle Datentypen basieren auf Klassen und alle Anweisungen erfolgen in Klassen.

C# unterstiitzt alle zentralen Konzepte der Objektorientierung einschlieSlich Schnittstellen,
Vererbung und Polymorphismus. Schon in C# 2.0 wurde auch die Unterstiitzung fiir generische
Klassen und partielle Klassen hinzugefiigt. Aulerdem besitzt C# Konzepte der funktionalen
Programmierung (Delegates und Lambda-Ausdriicke). Man nennt C# daher auch "Multi-
Paradigmen-Sprache".

7.2 GroRB- und Kleinschreibung

Ein wesentlicher Unterschied zwischen C# und Visual Basic .NET ist die Tatsache, dass C# im
Gegensatz zu Visual Basic .NET zwischen GroB- und Kleinschreibung unterscheidet. Dies gilt
sowohl fiir die Schliisselworter der Sprache als auch fiir alle Bezeichner (a und A sind verschiedene
Variablen!). Die Schliisselworter der Sprache C# werden komplett in Kleinbuchstaben
geschrieben.

7.3 Schliisselworter der Sprache

Die folgende Liste zeigt die vordefinierten Schliisselwdrter der Programmiersprache C#. Diese
Namen diirfen in der gleichen GroB-/Kleinschreibung nicht als Bezeichner verwendet werden
(Quelle: learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/index).

abstract event namespace static
as explicit new string
base extern null struct
bool false object switch
break finally operator this
byte fixed out throw
case float rride true
catch for params try
char foreach private typeof
checked goto protected uint
class if public ulong
const implicit readonly unchecked
continue in ref unsafe
decimal int return ushart
default interface shyte using
delegate internal sealed virtual
do is short void
double lock sizeof volatile
else long stackalloc while

enum

Grundkonzepte von C# 53

Dariiberhinaus gibt es weitere sogenannte Kontext-Schliisselworte, die eine besondere Bedeutung
in bestimmten Zusammenhéngen haben, die aber dennoch auch als Bezeichner verwendet werden
diirfen.

add get notnul select

and global nuint set

alias group on unmanaged (function
ascending init or pointer calling convention)
args into orderby unmanaged (generic type
async join partial (type) constraint)

await let partial (method) value

by managed (function pointer record var

descending calling convention) remove when (filter condition)

dynamic nameof required where (generic type

equals nint scoped constraint)
file not where (guery clause)
from with
yield
7.4 Namensregeln und Namenskonventionen

Bei der Vergabe von eigenen Bezeichnern (z.B. Variablennamen, Parameternamen, Attributnamen
und Methodennamen) gibt es verpflichtende Regeln und optionale Namenskonventionen.
Verpflichtende Regeln sind:

= Der Name darf nur Buchstaben (*), Zahlen und den Unterstrich enthalten.

= Der Name muss mit einem Buchstaben beginnen

= Die GroB- und Kleinschreibung ist relevant

= Es diirfen keine Namen von C#-Schlisselwortern verwendet werden (Theoretisch kann man
C#-Schliisselworternamen mit vorangestelltem @ verwenden, also z.B. @class oder @if oder
@for usw. Aber dies zu tun, ist nicht {iblich und erschwert den Lesefluss von Programmcode!)

Hinweis: (*) Umlaute sind erlaubt, aber sollten dennoch besser vermieden werden: Nicht alle
Werkzeuge und alle Menschen kommen damit gut klar!

Seit C# 11.0 gibt es zudem eine Compiler-Warnung (CS8981), wenn man Typnamen (fiir Klassen,
Strukturen, Enumerationen, Record-Typen, Delegaten) verwendet, die nur aus Kleinbuchstaben
bestehen. Dies geschieht vor dem Hintergrund, dass Microsoft zukiinftig weitere neue
Schliisselworter in die Programmiersprache C# einfithren mochte (vgl. das in C# 11.0 neu
eingefiihrte required), ohne dass es Konflikte mit bestehenden Typnamen der C#-Nutzer gibt.

54 Grundkonzepte von C#

class allesinkl hstaben

public delegate int suchaljpskleinCint x, int y);

1 dokogate int €11 fint x int

“auchallesklin’ orly contsins knwer-cased asci charaters. Such names may becoms roserved for he language.

Abbildung: Warnung bei einem Klassennamen und einem Delegaten, die nur aus
Kleinbuchstaben besteht.

Optionale Regeln hat Microsoft in den ".NET Framework Design Guidelines"
[learn.microsoft.com/en-us/dotnet/standard/design-guidelines] definiert. Die wichtigsten Regeln
dort sind:

= Fiir die GroB-/Kleinschreibung gilt grundsitzlich PascalCasing, d.h. ein Bezeichner beginnt
grundsétzlich mit einem Grofibuchstaben und jedes weitere Wort innerhalb des Bezeichners
beginnt ebenfalls wieder mit einem GroBbuchstaben.

Beispiel: KundenPortalBenutzer

= Ausnahmen gibt es fiir Abkiirzungen, die nur aus zwei Buchstaben bestehen. Diese diirfen
komplett in GroBbuchstaben geschrieben sein (z.B. UI und 10). Alle anderen Abkiirzungen
werden entgegen ihrer normalen Schreibweise in GroB-/Kleinschreibung geschrieben (z.B.
Xml, Xsd und W3c).

Beispiele: System.10.File, System.Xml.XmIDocument

= Lokale Variablen, versteckte Attribute (private/protected) und Parameternamen sollen in
camelCasing (Bezeichner beginnt mit einem Kleinbuchstaben, aber jedes weitere Wort
innerhalb des Bezeichners beginnt mit einem Grobuchstaben) geschrieben werden.
Beispiel: Login(KundenPortalBenutzer kundenPortalBenutzer)

J=public class fastallesInleinbuchstaben

-/ @ ot | A o2 wamings | [@ 1 Message | (8] s « iteiserse . »
Desar

' e violation: These words, mast begin with upper case characters: lastliesinKleinbuchstabon

Abbildung: Hier gibt es keine Warnung, sondern nur eine Nachricht von der eingebauten Style-
Polizei, weil der Klassenname zwar Grofbuchstaben enthdlt, aber nicht mit einem solchen
beginnt.

75 Blockbildung und Umbriiche

Blockbildung findet in C# im Stil der Programmiersprachen Cund C++ statt, also mit
geschweiften Klammern { }. Befehlstrenner ist das Semikolon (;).

Ein Zeilenumbruch kann zwischen den Elementen des Ausdrucks auftreten, ohne das besondere
Vorkehrungen getroffen werden miissen. Zahlen konnen seit C# 7.0 mit einem Unterstrich
gegliedert werden; aber man darf innerhalb von Zahlen keinen Zeilenumbruch haben.

// Formel ohne Umbriiche
double Ergebnisl = (2 + 3) * (5 + 6) * (7 * 8) + 3.141_592_653_59;

https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines

Grundkonzepte von C# 55

// Formel mit Umbriichen
double Ergebnis2 = (2 + 3) *
(5 + 6) *
(7 * 8)
+ 3.141_592_653_59;

7.6 Hello World

Das folgende Listing zeigt das Hello World-Beispiel in C#, das man in jeder Programmiersprache
zuerst schreibt.

using System;

namespace HalloWelt
{
class Program

{

static void Main(string[] args)

{
Console.WriteLine ("Hallo Welt!");

}
}
}
Marginal komplexer ist diese Variante, die — sofern vorhanden — den ersten iibergebenen
Kommandozeilenparameter als Name auffasst und die Person mit Namen griif3t.

namespace HalloWelt

{

class Program

static void Main(string[] args)

{

if (args.Length > 0)

{
var name = args[0];
// Rusgabe mit String Interpolation
Console.WriteLine ($"Hallo {name}!");
Console.ReadLine() ;

}

else

{
Console.WriteLine ("Hallo Welt!");
}
}
}
}

7.7 Eingebaute Funktionen

Anders als in Visual Basic existieren in C# keine eingebauten Funktionen zur Typumwandlung
(z.B. CBool(), CInt(), CLng(), CType()), Zeichenkettenverarbeitung (z.B. InStr(), Trim(), LCase())
und Ausgabe (z.B. MsgBox()). Auch die My-Klassenbibliothek ist nicht vorhanden.

Grundsitzlich ist es moglich, die in Visual Basic eingebauten Funktionen und die My-Bibliothek
durch Referenzierung der Microsoft.VisualBasic.dll auch in C# zu nutzen. Dies sollte jedoch
vermieden werden, um sprachunabhéngig zu bleiben. Alle Visual Basic-Funktionen und -Objekte
sind auch in der NET-Klassenbibliothek enthalten, z.B. String.IndexOf() statt InStr() und
Convert.Tolnt32() statt Clnt().

56

Grundkonzepte von C#

Der C#-Compiler 57

8 Der C#-Compiler

Es gibt zwei Varianten des C#-Compilers: eine alte, in C++ geschriebene, und neue, in C#
geschriebene Implementierung.

8.1 Der urspriingliche (alte) C#-Compiler

Der Kommandozeilencompiler fiir C# im .NET Framework Redistributable ist csc.exe. Er wird
installiert im Verzeichnis C:\Windows\Microsoft. NET\Framework64\v4.0.30319. Alternativ kann
er in der NET Framework-Klassenbibliothek im sogenannten "CodeDOM" durch die Klasse
Microsoft.CSharp.CSCodeProvider angesprochen werden.

Wenn Sie heute ein aktuelles Microsoft .NET Framework (z.B. 4.8.1) verwenden, so ist dort der
urspriingliche C#-Compiler immer noch in der Version 5.0 enthalten.

Abbildung: In .NET Framework 4.8.1 ist der C#Compiler fiir C# 5.0 enthalten.

8.1.1 Kompilierung mit csc.exe
Der Befehl

csc.exe Dateinamel.cs Dateiname2.cs DateinameX.cs

oder

csc Dateinamel.cs Dateiname2.cs DateinameX.cs

ibersetzt die angegebenen Dateien in eine Konsolenanwendung. Eine Datei, die als

Konsolenanwendung oder Windows-Anwendung kompiliert wird, muss genau eine Klasse mit
folgendem Einstiegspunkt besitzen: public static void Main().

Listing: »Hello World« in C#

class Hauptprogramm

public static void Main()
{
System.Console.WriteLine ("Hello World!") ;
}
}

8.1.2 Kommandozeilenparameter
Der Kommandozeilencompiler bietet zahlreiche Optionen. Die wichtigsten davon sind:
= /target:winexe Der Compiler erzeugt eine Windows-Anwendung

= /target:library Der Compiler erzeugt eine DLL (kein Main() notwendig)

= /r:Dateiliste Die angegebenen Assemblys werden referenziert

58 Der C#-Compiler

= /out:Dateiname Name der Ausgabedatei
= /doc:Dateiname Der Compiler erzeugt zusétzlich eine XML-Dokumentationsdatei
= /help Anzeige der Hilfe zu den Compiler-Optionen

= Anders als beim Visual Basic NET-Compiler vbc.exe miissen die Optionen /target und /out
bei csc.exe vor den Namen der Quelldateien in der Parameterliste erscheinen.

Es folgt die komplette Liste der Kommandozeilenparameter des alten C#-Compilers
Visual C# Compiler Options
- OUTPUT FILES -

/out:<file> Specify output file name (default: base name of
file with main class or first file)

/target:exe Build a console executable (default) (Short form:
/t:exe)

/target:winexe Build a Windows executable (Short form: /t:winexe)
/target:library Build a library (Short form: /t:library)
/target:module Build a module that can be added to another
assembly (Short form: /t:module)

/target:appcontainerexe Build an Appcontainer executable (Short form:
/t:appcontainerexe)

/target:winmdobj Build a Windows Runtime intermediate file that is
consumed by WinMDExp (Short form: /t:winmdobj)

/doc:<file> XML Documentation file to generate
/platform:<string> Limit which platforms this code can run on: x86,

Itanium, x64, arm, anycpu32bitpreferred, or anycpu. The default is anycpu.

- INPUT FILES -

/recurse:<wildcard> Include all files in the current directory and
ubdi ie ding to the wildcard specifications

/reference:<alias>=<file> Reference metadata from the specified assembly
file using the given alias (Short form: /r)

/reference:<file list> Reference metadata from the specified assembly
files (Short form: /r)

/addmodule:<file list> Link the specified modules into this assembly
/link:<file list> Embed metadata from the specified interop assembly

files (Short form: /1)

- RESOURCES -
/win32res:<file> Specify a Win32 resource file (.res)
/win32icon:<file> Use this icon for the output
/win32manifest:<file> Specify a Win32 manifest file (.xml)
/nowin32manifest Do not include the default Win32 manifest
/resource:<resinfo> Embed the specified resource (Short form: /res)
/linkresource:<resinfo> Link the specified resource to this assembly

(Short form: /linkres)
Where the resinfo format is <file>[,<string
name>[,public|private]]

- CODE GENERATION -
/debug[+]-] Emit debugging information
/debug: {full |pdbonly} Specify debugging type ('full' is default, and
enables attaching a debugger to a running program)
/optimize[+]|-] Enable optimizations (Short form: /o)

Der C#-Compiler 59

- ERRORS AND WARNINGS -

/warnaserror[+|-] Report all warnings as errors
/warnaserror([+|-]:<warn list> Report specific warnings as errors
/warn:<n> Set warning level (0-4) (Short form: /w)
/nowarn:<warn list> Disable specific warning messages

- LANGUAGE -
/checked[+] -] Generate overflow checks
/unsafe[+]|-] Allow 'unsafe' code
/define:<symbol list> Define conditional compilation symbol(s) (Short
form: /d)
/langversion:<string> Specify language version mode: ISO-1, ISO-2, 3, 4,

5, or Default

- SECURITY -
/delaysign[+]|-] Delay-sign the assembly using only the public
portion of the strong name key
/keyfile:<file> Specify a strong name key file
/keycontainer:<string> Specify a strong name key container
/highentropyval+|-] Enable high-entropy ASLR

- MISCELLANEOUS -
@<file> Read response file for more options
/help Display this usage message (Short form: /?)
/nologo Suppress compiler copyright message
/noconfig Do not auto include CSC.RSP file

- ADVANCED -
/baseaddress:<address> Base address for the library to be built
/bugreport:<file> Create a 'Bug Report' file
/codepage: <n> Specify the codepage to use when opening source
files
/utf8output Output compiler messages in UTF-8 encoding
/main:<type> Specify the type that contains the entry point
(ignore all other possible entry points) (Short form: /m)
/fullpaths Compiler generates fully qualified paths
/filealign:<n> Specify the alignment used for output file
sections
/pdb:<file> Specify debug information file name (default:
output file name with .pdb extension)
/errorendlocation Output line and column of the end location of each
error
/preferreduilang Specify the pref d output 1 ge name.
/nostdlib[+]-] Do not reference standard library (mscorlib.dll)
/subsystemversion:<string> Specify subsystem version of this assembly
/lib:<file list> Specify additional directories to search in for
references
/errorreport:<string> Specify how to handle internal compiler errors:
prompt, send, queue, or none. The default is queue.
/appconfig:<file> Specify an application configuration file

containing assembly binding settings
/moduleassemblyname:<string> Name of the assembly which this module will be a
part of

60 Der C#-Compiler

8.2 Der aktuelle (neue) C#-Compiler

Der im Projekt "Roslyn" neu implementierte C#-Compiler heifit auch csc.exe; er ist aber nicht
mehr Teil des NET Framework Redistributable. Er wird auf diesen Wegen verbreitet:
= Visual Studio bzw. Visual Studio Build Tools
= NET SDK
dotnet.microsoft.com/download/dotnet/6.0
= NuGet-Paket "Microsoft.Net.Compilers"
www.nuget.org/packages/Microsoft.Net. Compilers
Visual Studio installiert den Compiler im Dateisystemverzeichnis C:\Program Files\Microsoft

Visual Studio\2022\<Visual Studio-Edition>\MSBuild\Current\Bin\Roslyn z.B. C:\Program
Files\Microsoft Visual Studio\2022\Enterprise\MSBuild\Current\Bin\Roslyn.

Das NuGet-Paket www.nuget.org/packages/Microsoft.Net. Compilers enthélt den csc.exe im
Ordner /Tools. Im .NET Core SDK wird der C#-Compiler nicht als csc.exe mitgeliefert, sondern
tiber die .NET CLI-Werkzeuge angesprochen (z.B. dotnet build).

Die folgende Abbildung zeigt die Installation des C#-Compilers per NuGet.exe mit dem Befehl:
nuget install Microsoft.Net.Compilers

Das Programm NuGet.exe bekommt man www.nuget.org/downloads

https://dotnet.microsoft.com/download/dotnet/6.0
http://www.nuget.org/packages/Microsoft.Net.Compilers
https://www.nuget.org/packages/Microsoft.Net.Compilers/

Der C#-Compiler 61

Abbildung: Installation des neuen C#-Compilers via NuGet

Abbildung: Start des neuen C#Compiler aus der NuGet-Installation

™ Developer Command Prompt X + |~

khkkAkhkkhkkhkhhkkhhkhhhkhhkhhhhkhrhkhkdhhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh ik
** Visual Studio 2022 Developer Command Prompt v17.8.@-pre.5.0
*% Copyright (c) 2022 Microsoft Corporation

Feddededekk e ke kok ek ke ok ok kA ok ke ke ke kok ke koo ke ko ke ko ke

Program Files\Microsoft Visual Studio\2022\Preview>csc

Microsoft (R) Visual C# Compiler version 4.8.0-3.23517.14 (be69ebdb)
Copyright (C) Microsoft Corporation. All rights reserved.

warning CS2008: No source files specified.
error CS1562: Outputs without source must have the /out option specified

C:\Program Files\Microsoft Visual Studi 2\Preview>

Abbildung: Start des neuen C#Compilers aus der Visual Studio-Installation

Die Neufassung des CodeDOM-APIs mit dem neuen Compiler erhilt man iiber das NuGet-Paket
www.nuget.org/packages/Microsoft. CodeDom.Providers.DotNetCompilerPlatform.
8.21 Versionsnummern des Compilers

Die Versionsnummer des neuen C#-Compilers richtet sich nach dem Funktionsumfang des
Compilers, nicht nach den Sprachfeatures (siche folgende Abbildung).

http://www.nuget.org/packages/Microsoft.CodeDom.Providers.DotNetCompilerPlatform

62

Der C#-Compiler

® Versions 1.x mean C# 6.0 and VB 14 (Visual Studio 2015 and updates). For instance, 1.3.2 corresponds to the most recent update

(update 3) of Visual Studio 2015.

* Version 2.8 means C# 7.0 and VB 15 (Visual Studio 2017 version 15.0).
* Version 2.1 is still C# 7.0, but with a couple fixes (Visual Studio 2017 version 15.1).

* Version 2.2 is still C# 7.0, but with a couple more fixes (Visual Studio 2017 version 15.2). Language version “default” was updated to mean

70"

* Version 2.3 means C# 7.1 and VB 15.3 (Visual Studie 2017 version 15.3). For instance, 2.3.e-beta1 corresponds to Visual Studio 2017

version 15.3 (Preview 1).

* Version 2.4 isstill C# 7.1 and VB 15.3, but with a couple fixes (Visual Studio 2017 version 15.4).
® Version 2.6 means C# 7.2 and VB 15.5 (Visual Studic 2017 version 15.5).

* Version 2.7 means C# 7.2 and VB 15.5, but with a number of fixes (Visual Studio 2017 version 15.6).

* Version 2.8 means C# 7.3 (Visual Studio 2017 version 15.7)
* Version 2.9 is still C# 7.3 and VB 15.5, but with mare fixes (Visual Studio 2017 version 15.8)

® Version 2.1@ isstill C# 7.3 and VB 15.5, but a couple more fixes (Visual Studio 2017 version 15.9)

® Version 3.8 includes a preview of C# 8.0 (Visual Studio 2019 version 16.0), but 2.11 was used for previewi.

* Version
* Version
* Version
® Version
* Version
* Version
* Version
* Version
* Version
* Version
* Version
* Version
* Version
* Version
* Version
* Version
* Version
* Version

3.1 includes a preview of C# 8.0 (Visual Studio 2013 version 16.1)
3.2 includes a preview of C# 8.0 (Visual Studio 2019 version 16.2)
3.3 includes C# B.0 (Visual Studio 2019 version 163, .NET Core 3.0)
3.4 includes C# 8.0 (Visual Studio 2019 version 16.4, NET Core 3.1}
3.5 includes C# 8.0 (Visual Studio 2019 version 16.5, NET Core 3.1}
3.6 includes C# 8.0 (Visual Studio 2019 version 16.6, NET Core 3.1}
3.7 includes C# 8.0 (Visual Studio 2019 version 16.7, NET Core 3.1}
3.3 includes C# 9.0 (Visual Studio 2019 version 16.8, NET 5)

3.9 includes C# 9.0 (Visual Studio 2019 version 16.9, NET 5)

3.10 includes C# 9.0 (Visual Studio 2019 version 16.10, NET 5)

3.11 includes C# 9.0 (Visual Studio 2019 version 16,11, .NET 5)

4.8 includes C# 10.0 (Visual Studio 2022 version 17.0, .NET &)

4.1 includes C# 10.0 (Visual Studio 2022 version 17.1, .NET &)

4.2 includes C# 10.0 (Visual Studio 2022 version 17.2, .NET 6)
4.3.1 includes C# 10.0 (Visual Studio 2022 version 17.3, NET §)

4.4 includes C# 11.0 (Visual Studio 2022 version 17.4, NET 7)

4.5 includes C# 11.0 (Visual Studio 2022 version 17.5, NET 7)

4.6 includes C# 11.0 (Visual Studio 2022 version 17.6, NET 7)

* Version ‘4.7 includes C# 11.0 (Visual Studio 2022 version 17.7, .NET 7)

Abbildung: Versionierung des neuen C#-Compilers

[github.com/dotnet/roslyn/blob/master/docs/wiki/NuGet-packages.md]

8.2.2

Es folgen die Kommandozeilenparameter des neuen C#-Compilers

Jout:<file>
/target:exe
/target:winexe

/target:library
/target:module

/target:appcontainerexe

Kommandozeilenparameter

Visual C# Compiler Options

- OUTPUT FILES -

form: /t:exe)

/t:winexe)

Specify output file name (default: base name of
file with main class or first file)
Build a console executable (default) (Short

Build a Windows executable (Short form:

Build a library (Short form: /t:library)
Build a module that can be added to another
assembly (Short form: /t:module)

Build an Appcontainer executable (Short form:

https://github.com/dotnet/roslyn/blob/master/docs/wiki/NuGet-packages.md

Der C#-Compiler 63

/t:appcontainerexe)

/target:winmdobj Build a Windows Runtime intermediate file that
is consumed by WinMDExp (Short form: /t:winmdobj)
/doc:<file> XML Documentation file to generate
/refout:<file> Reference assembly output to generate
/platform:<string> Limit which platforms this code can run on: x86,

Itanium, x64, arm, anycpu32bitpreferred, or
anycpu. The default is anycpu.

- INPUT FILES -
/recurse:<wildcard> Include all files in the current directory and
subdirectories according to the wildcard

specifications
/reference:<alias>=<file> Reference metadata from the specified assembly
file using the given alias (Short form: /r)
/reference:<file list> Reference metadata from the specified assembly
files (Short form: /r)
/addmodule:<file list> Link the specified modules into this assembly
/link:<file list> Embed metadata from the specified interop
assembly files (Short form: /1)
/analyzer:<file list> Run the analyzers from this assembly

(Short form: /a)
/additionalfile:<file list> Additional files that don't directly affect code
generation but may be used by analyzers for

producing
errors or warnings.

/embed Embed all source files in the PDB.
/embed:<file list> Embed specific files in the PDB

- RESOURCES -
/win32res:<file> Specify a Win32 resource file (.res)
/win32icon:<file> Use this icon for the output
/win32manifest:<file> Specify a Win32 manifest file (.xml)
/nowin32manifest Do not include the default Win32 manifest
/resource:<resinfo> Embed the specified resource (Short form: /res)
/linkresource:<resinfo> Link the specified resource to this assembly

(Short form: /linkres) Where the resinfo format
is <file>[,<string name>[,public|private]]

- CODE GENERATION -
/debug[+]-1 Emit debugging information
/debug: {full |pdbonly |portable | embedded}
Specify debugging type ('full' is default,
'portable' is a cross-platform format,
'embedded' is a cross-platform format embedded

into

the target .dll or .exe)
/optimize[+]|-] Enable optimizations (Short form: /o)
/deterministic Prod a de inistic bly

(including module version GUID and timestamp)
/refonly Produce a reference assembly in place of the main
output

/instrument:TestCoverage Produce an assembly instrumented to collect

64 Der C#-Compiler

coverage information
/sourcelink:<file> Source link info to embed into PDB.

- ERRORS AND WARNINGS -

/warnaserror[+|-1] Report all warnings as errors

/warnaserror[+|-]:<warn list> Report specific warnings as errors

/warn:<n> Set warning level (0-4) (Short form: /w)

/nowarn:<warn list> Disable specific warning messages

/ruleset:<file> Specify a ruleset file that disables specific
diagnostics.

/errorlog:<file> Specify a file to log all compiler and analyzer
diagnostics.

/reportanalyzer Report additional analyzer information, such as

execution time.

- LANGUAGE -
/checked[+]-] Generate overflow checks
/unsafe[+]|-] Allow 'unsafe' code
/define:<symbol list> Define conditional compilation symbol(s) (Short
form: /d)
/langversion:? Display the allowed values for language version
/langversion:<string> Specify language version such as

“default’ (latest major version), or
“latest’ (latest version, including minor

versions) ,
or specific versions like "6 or 7.1
- SECURITY -
/delaysign[+]|-] Delay-sign the assembly using only the public
portion of the strong name key
/publicsign[+]-] Public-sign the assembly using only the public
portion of the strong name key
/keyfile:<file> Specify a strong name key file
/keycontainer:<string> Specify a strong name key container
/highentropyva[+]|-] Enable high-entropy ASLR
- MISCELLANEOUS -
@<file> Read response file for more options
/help Display this usage message (Short form: /?)
/nologo Suppress compiler copyright message
/noconfig Do not auto include CSC.RSP file
/parallel[+]|-] Concurrent build.
/version Display the compiler version number and exit.
- ADVANCED -
/baseaddress:<address> Base address for the library to be built
/checksumalgorithm:<alg> Specify algorithm for calculating source file
checksum stored in PDB. Supported values are:
SHAl1 (default) or SHA256.
/codepage: <n> Specify the codepage to use when opening source
files
/utf8output Output compiler messages in UTF-8 encoding

/main:<type> Specify the type that contains the entry point

Der C#-Compiler

65

/fullpaths
/filealign:<n>

/pathmap : <K1>=<V1>,<K2>=<V2>,

/pdb:<file>
/errorendlocation
/preferreduilang
/nostdlib[+]|-]
/subsystemversion:<string>

/lib:<file list>

/errorreport:<string>

/appconfig:<file>
/moduleassemblyname:<string>

/modulename:<string>

(ignore all other possible entry points)
form: /m)

Compiler generates fully qualified paths
Specify the alignment used for output file

(Short

sections

Specify a mapping for source path names output by
the compiler.

Specify debug information file name (default:
output file name with .pdb extension)

Output line and column of the end location of
each error

pref d output la ge name.

Do not dard library (mscorlib.dll)
Specify subsystem version of this assembly
Specify additional directories to search in for
references

Specify the

£ ce s

Specify how to handle internal compiler errors:
prompt,
queue.
Specify an application configuration file
containing assembly binding settings

Name of the assembly which this module will be
a part of

send, queue, or none. The default is

Specify the name of the source module

66 Erste C#-Schritte mit Visual Studio

9 Erste C#-Schritte mit Visual Studio

Dieses Buch ist kein Handbuch fiir Visual Studio. Fiir Leser, die neu in Visual Studio sind, folgt
jedoch hier eine kurze Einfithrung in das Anlegen und Ubersetzen eines Projekts am Beispiel von
Konsolenanwendungsprojekten fiir NET Framework und .NET Core.

Achtung: Fir C# 13.0 benétigen Sie Visual Studio 2022 ab Version 17.12. Fir C# 12.0
bendtigen Sie Visual Studio 2022 ab Version 17.8. Vorherige Versionen von Visual Studio 2022
ab 17.4 kénnen C# 11.0. Die Version 17.0 bis 17.3 konnen nur C# 10.0. In Visual Studio 2019
kompiliert C# bis Version 9.0. Visual Studio 2017 kann nur C# 7.x.

Achten Sie auch darauf, ob Sie ein Konsolenprojekt fiir das klassische NET Framework
(Vorlagename: Console Application (NET Framework) oder fiir das moderne .NET
(Vorlagename: Console Application, Zusatz frither ".NET Core", heute kein Zusatztext mehr!)
erstellen. Das klassische .NET Framework kann nur maximal C# 7.0 und einige Teile der
moderneren C#-Versionen. Nur die jeweils modernsten .NET-Versionen konnen alle
Sprachversionen.

9.1 Visual Studio versus Visual Studio Code

Visual Studio ist die primére Entwicklungsumgebung fiir C#. Sie lauft allerdings auf Windows.
https://visualstudio.microsoft.com/downloads

Falls Sie auf Linux oder macOS entwickeln wollen, sollten Sie Visual Studio Code (VSCode)
verwenden: https://code.visualstudio.com

[Hinweis: VSCode wird in diesem Buch nicht behandelt. ‘

9.2 Visual Studio-Versionen

Visual Studio gibt es in drei Varianten und zwei Kanélen. Varianten sind:
= Community

= Professional

= Enterprise

Die kostenfreie Community-Variante entspricht funktional der Professional-Variante. Allerdings
darf die Community-Variante nur fiir Open Source-Projekte, von Studenten und kleineren
Unternehmen eingesetzt werden.

Die Enterprise-Variante bietet zahlreiche zusitzliche Funktionen im Vergleich zu Professional und
Community. Sie ist wesentlich teurer.

Hinweis: Fiir alle Inhalte in diesem Buch reichen die Varianten Professional bzw. Community.

Es gibt von jeder Visual Studio-Version stets zwei Kanile: Den stabilen Kanal und den Preview-
Kanal.

https://visualstudio.microsoft.com/downloads
https://code.visualstudio.com/

Erste C#-Schritte mit Visual Studio 67

() Visual Studio 2022 =

The m T and C+

Preview

Professional

 stucerts, aper Profesianal IDE
-

Froe douniaad

Sie konnen jeweils mehrere Visual Studio-Versionen und pro Kanal jeweils eine Unterversion
parallel auf einem Windows-System installieren.

Enterprise

Community

Pl IDE,

Beispiel: Auf einem Rechner ist moglich:

= Visual Studio 2019 Community Version 16.5

= Visual Studio 2022 Professional Version 17.7

= Visual Studio 2022 Enterprise Preview Version 17.12

Tipp 1: Installieren Sie die englische Version. In den deutschen Ubersetzungen sind teilweise
haarstrdubende Ubersetzungsfehler, die die Arbeit mit der Entwicklungsumgebung sehr
erschweren.
Tipp 2: Die Preview-Versionen sind immer kostenfrei. Ebenso gibt es kostenfrei Community-
Versionen.
Wihlen Sie bei der Installation von Visual Studio den Workload ".NET Desktop Development"
aus. Die folgenden Screenshots zeigen Visual Studio 2022. Die Vorgehensweise in Visual Studio
2019 ist analog.

Viiciaal CrinAdia linreallae

Visual Studio Enterprise 2022 Preview — 1

Madifying Preview 5.0

Workloads
B Web & Cloud {4)

Individual components Language packs Installation locations

@ ASPNET and web development /] Azure development M
Build web applicatio NET Core, ASP.NET e SDKs, tooks, and projects for developing cloud apps
HTMLJavaSeript, a s including Dacker supp. es using .NET and .NET Framework...
Pythan development Nodejs development
Editing, debugging, inter: development and s Build scalable network apy ans using Node js, an
contral for Python asynchronous event-driven JavaScript runtime.
Desktop & Mabile (5)
_NET desktop development

gﬂ NET Multi-platform App Ul development
Build Android, 105, Windaws, and Mac apps from a single
codebase using C# with NET MAUI

9.3

Starten Sie Visual Studio.

Build WPF, Windows Form
using C#, Visual Basic, ant

and cansale applications
vith NET and NET Frame.

Hello World mit dem klassischen .NET Framework

68 Erste C#-Schritte mit Visual Studio

off o

Visual Studio Visual Studio
2022 Preview 2022

In Visual Studio wéhlen Sie File/New Project und dann in dem Dialog "Visual C#/Windows
Classic Desktop/Console App".

Seit Visual Studio 2019 wurde der Dialog komplett veréndert und erscheint nur als Assistent mit
zwei Seiten. Ein Konsolenprojekt findet man am leichtesten, wenn man in dem Suchfeld "Console"
eingibt und den Filter auf "C#" stellt (siche Screenshot). Die Auswahl der .NET Framework-
Version kann man erst auf der zweiten Seite vornehmen.

) X
. Cansole x -
pI'OJeCt Clear all
‘ s - Al platforms * Allprojectiypes -
Recent project templates
s Console Application
1 . A project for creating a command-line application that can run on .NET Core on
B Console Application c# Windows, Linux and mac0s
& Unx maxOS Windows Consok
[ASPNETCoreWeb
ARl «
e T —— (
B ASPNETCoreWeb A project for creating a command-IMe application
App
& Windows Consoe
1 WPF Application =3
PPl €2 Workflow Console Application
4 blank Warkflow Console Application
@ BlazorWebassemoly
= € Windows Consok
@ BlazorseverApp Cr
Other resuits based on your search
& Razor ClassLibrary ¢ ﬂ Consale Application
A project for creating a command-line application that can run on .NET Core on
. Windows, Linuand mac0s
B ComsolesmnNET
(NG VeuslBae Lnox macOS Windows Co
Next

Erste C#-Schritte mit Visual Studio 69

Configure your new project

Console App (NET Framework) < wingows console

Project name

Helloworis |

Location

E 1@

Solution

[cesenew sotion .

soution name @

Piace solution and projeet inthe same directory

Framework

| NET Framework 4.8 l

NET Framework 20
NET Framework 3.0

WNET Framework 3.5

NET Framework &

NET Framework 4.5

WNET Framework 4.5.1

WNET Framework 4.5.2

NET Framework 4.6

WNET Framework 4.6.1

WNET Framework 4.6.2

NET Framework 4.7

NET Framework 4.7.1

WNET Framework 4.7.2

NET Framework 4.8 S

Sie erhalten dann eine Projektmappe (.sIn-Datei im Dateisystem) mit einem Projekt (.csproj-Datei).
In dem Projekt gibt es eine Datei Program.cs mit der Grundstruktur der Konsolenanwendung.

70

Erste C#-Schritte mit Visual Studio

%] HelloWorld - Microsoft Visual Studio QY & [Quick Launch (cti<Q) Pl - B8 x
File Edit View Project Build Debug Team Tools Architecture Test Analyze Window Help Dr. Haolger Schwichtenberg ~ ﬂ
- T2 = '~ Debug ~ AnycPU < P ostart v pU 0 n g
Progamcs = X .
[& Helloworld | %%, Helloworld.Program «| @, Main(string] args) L- A& o-cam <o ﬁEﬁ'
L B = | search Solution Explorer (Ctrl=+3) Pl
2 using ctions.Generic; -
3 B s = & solution Helloworld' (1 project)
N e - . 4 [E Helloworia
5 = : Syst:]d ng.Tasks: - 4 o properties
H using oy eading.Tasks;] € Assemblylnfo.cs
7 Enamespace Hellohorld 4 "W References
3 < & Analyzers
9 B class Program 00 CIEEEr T
10 P =8 system
11 = static void Main(string[] args) System.Core
12 system.Data
13 ¥ =8 System.Data.DataSetExtensions
14 H =B System.Net.Hitp
’1'2 b »B Systemxml
=B System.xml.Ling
) App.canfig
4 @ prog
4 "%, Program
@, Mainistringl) : void
Ergdnzen Sie in Main() den folgenden Programmcode:
namespace HalloWelt
{
class Program
{
static void Main(string[] args)
{
if (args.Length > 0)
{
var name = args[0];
// BAusgabe mit String Interpolation
Console.WriteLine ($"Hallo {name}!");
Console.ReadLine () ;
}
else
{
Console.WriteLine ("Hallo Welt!");
Console.ReadLine() ;
}
}
}
Wihlen Sie das Menii "Build/Build Solution" (Alternativ die Tastenkombination

STRG+SHIFT+B), um den Programmcode zu iibersetzen.

Sie sollten nun im Ausgabefenster (Einblenden iiber View/Output) dies sehen:

Show output from: Build
1>-

Build started: Project: HelloWorld, Configuration: Debug &ny CPU --

- £

1> HelloWorld -> t:\MeinCode\HelloWorld\HelloWorld\bin\DebugiHellokorld.exe

= Bulld: 1 succeeded, @ failed, @ up-to-date, @ skipped =

Falls Sie Eingabefehler gemacht haben, sehen Sie dies im Fenster "Error List".

Erste C#-Schritte mit Visual Studio 71

Program.cs # X -
[#] HelloWorld ~ *%, HelloWorld.Pragram ~| &, Main(string[] args) -
- =
6 =namespace HelloWorld =
7 [o
= class Program
9 i
= static void Main(string[] args)
1
= if (args.lLength > @)
{
var name = args[@]; -
// Ausgabe mit String Interpolation [
Console.Writeline($"Hallo {name}!") -
E e.Readline();
¥
= else
Console.Writeline("Hallo Welt™);
¥
Console.ReadlLine();
T
¥
3
-
114% ~
Error List : 5 ~0x
Entire Solution - m ! 0Warnings 0 0 Messages
Search Error List P~
| Code Description Project File Line
0 C51002 ; expected HelloWorld Program.cs 17

Wenn Thr Programm erfolgreich iibersetzt wurde, starten Sie es im Debugger mit Debug/Start
Debugging oder der Taste F5.

B th\MeinCode\HelloWorld\HelloWorld\bin\Debug'HelloWorld.exe

Um dem Programm beim Start einen Kommandozeilenparameter zu iibergeben, wihlen Sie im
Solution Explorer im Kontextmenii des Projekts (nicht der Projektmappe, wo "Solution" davor
steht) den Eintrag "Properties" und tragen Sie in der Registerkarte "Debug" bei "Command Line
Arguments" Thren Namen ein.

72 Erste C#-Schritte mit Visual Studio

) HelloWorld - Microsoft Visual Studio ¥ | & | Quick Launch (Ctrl-

File Edit View Project Buld Debug Team Tools Architecturs Test Analyze Window Help

Q- FRl Al "I Debug - Any CPU - P Stat - B -
HelloWorld & X Program.cs. ~ Solution Explorer
Application @WE- o-&6F B k-
Configuration: | Active (Debug) ~| Patform: | Active (any CPU) v
Build Explorer (Ctri+u)
Build Events Start action 7 Solution "Helloworld" (1 project)
4 telloWorld

F properties
C* Assemblyinto. o8

@ startproject

Resources O start external program:
Services 4 =B References
<ettings O Start browser with URL: F Analyzers

/ =8 Microsoft.Charp
Referance Paths SELICERD 0 S
— Command line arguments: [oiged e
Sy =8 SystemData

=B System Data DataSetextensions

GEETD = System NetHtp
Code Anaiysis Working directory: [Brows =8 systemxmi

=8 SystemmiLing
3 App.contig

4 program.cs
4% Program
Enable native code debuggin

O 99ing @, Main(stringl): void

[se remote machine

Debugger engines

[enable saL server debugging

Driicken Sie wieder F5.

1 t\MeinCode\HelleWorld\HelloWorld\bin\Debug\HelloWorld. exe
Hallo Holger!

Schauen Sie sich das Projekt auf der Festplatte im Windows Explorer an. Sie erkennen ein
Ausgabeverzeichnis bin/Debug in dem das kompilierte Programm als .EXE-Datei liegt, die man
direkt starten kann.

Hinweis: Das Kompilat in NET nennt man eine Assembly. Die Assembly ist in diesem Fall
eine .EXE-Datei.

TEMP (T:) » MeinCode » HelloWorld » HelloWorld > bin > Debug

A Name Date modified Type Size
] HelloWorld.exe 2 12 lication HE
4 HelloWorld.exe.config nfiguration Sou 1 ke
A HelloWorld.pdb Program Debug D.. 12 K8

EX Command Prompt - T:\MeinCode\HelloWerld\HelloWorld\bin\Debug\HelloWorld.exe Holger

Erste C#-Schritte mit Visual Studio 73

Sie konnen ein in Visual Studio erzeugtes .NET-Projekt auch an der Kommandozeile tibersetzen.
Theoretisch kann man dazu den C#-Compiler csc.exe direkt einsetzen, aber dann muss man alle
Quellcodedateien sowie bendtigte Referenzen auf andere Assemblies dort als Parameter angeben.
Da diese Abhdngigkeiten alle bereits in den Projektdateien definiert sind, bietet sich der Einsatz
von msbuild.exe an, dass die .csproj-Dateien auswertet. Offnen Sie dazu den "Developer
Command Prompt", der mit Visual Studio installiert wird, gehen Sie in das Verzeichnis mit der
.sIn-Datei und rufen Sie msbuild.exe auf.

Hinweis: Andere .NET-Anwendungsarten (z.B. Webanwendungen mit ASP.NET, Desktop-
Anwendungen mit Windows Forms oder Windows Presentation Foundation, Mobile Apps mit
NET MAUI) erstellen und iibersetzen Sie mit den gleichen Funktionen und Werkzeugen. Sie
miissen nur entsprechende Workloads im Setup von Visual Studio installieren und dann die
entsprechende Projektvorlage wihlen.

B Developer Cammand Prompt for VS 2017 - o x

To enable

9.4 Hello World mit modernem .NET

Hier werden die Schritte beschrieben, die anders sind, wenn Sie das moderne .NET verwenden
wollen statt NET Framework. Dabei kommt Visual Studio 2022 zum Einsatz, denn die aktuellen
NET-Versionen ab 6.0 setzen diese Version voraus. Mit Visual Studio 2019 kénnen Sie nur bis
NET 5.0 entwickeln.

74 Erste C#-Schritte mit Visual Studio

Wichtig ist, dass Sie in Visual Studio den Workload "ASP.NET and Web Development" und/oder
".NET Desktop Development" wihlen und zudem das NET SDK in der aktuellen Version
zusatzlich von [dotnet.microsoft.com/download/dotnet] installieren.

Hinweis: Es kann sein, dass Sie das aktuelle SDK schon durch Visual Studio installiert
bekommen haben, da es aber haufig Updates des SDKs gibt, gehen Sie damit sicher, dass Sie
die aktuelle Version haben.

Mocyng — Visua St Evterprive 2022 Prevew — 1700 Freveem 31
Workloads Indiidual components Language packs Installation locations

‘Web & Cloud (4)
" Installation details

ASPNET anch web developmnt L eure development . deskto, "
Bt web sppicstions wsing ASPNET Cere, ASPNET, i eure SO ks, and prejects for deveicping coud 3pps MET P development

HIMUJsvaorg, and Cantaners incuing Dockercupp | srdl aeating resources sing BT and NET Framemorke.. ol

= i e
=
L} CF = -
ot . i oo ek drven et e
[0 NET Framemork A8 developmment tosls
B #iend for Visusl Shudio
P———

Deskiop & Mobile (5) NET profiing tcis
2]

Il NET desktop deelopment 4] Desktop development with C+ -
S i WP i Forms, e i st L oo € ppfo Wiousing s ot
g C9. Vs Baic. and P with AET 3nd AT Frame. choke pcuding WEVC. Clang Chakeor MSBuL
E Live Unit Testing
B treshwe
[T e ——
Unversl Windenes Ptorm develogement . P e
Conab apcation e theUnivesal Windzs Pitfrms ¢ e ———
wr

A G VB, o aptionaly Cos. - e

Lacason
CProgram FlesMicasoft Visus S\ 2022 Freven
ol space resuired 7.6 GB

By caminuing, o agree 1 the edtion you selecrad
ceparatey Sary Motices or in cense: B continung. you

ratahwhie domnloding = | Moy

Abbildung: Installation von Workloads in Visual Studio 2022

Waibhlen Sie im Projektvorlagendialog (Menu File/New/Project oder Taste STRG+SHIFT+N) nun
"Console Application" (ohne Zusatz).

Hinweis: In fritheren Visual Studio-Versionen hatten die Vorlagennamen noch den Zusatz
"(.NET Core)".

Erste C#-Schritte mit Visual Studio

75

Create a new project \| Console

Recent project templates

-

B Console App ce

@ Blazor Server App Empty C#

Blazor WebAssembly App
Empty

@
@ Blazor WebAssembly App C#

@ Blazor Server App e

) ASPNET Core Wieb App
(Model-View-Controller)

B8 ASP.NET Core Web API <]
B ASPNET Core Web App €

] ASPNET Web Application
(NET Framework)

<[

[

C

cx

= Al platforms -

o ——

All project types

o

Clear all

A project for creating a command-iine application that can run on NET on Windows,

Linux and macOS

C¢ | Llmx | macOS | Windows Console

Cansole App (NET Framework)
A project for creating a command-line application

CF Windows Console

Workdiow Console Application
A blank Workflow Cansole Application

€4 Windows Console

Azure loT Edge Function

Azure loT Edge Function

ce Console

Other results based on your search

Abbildung: Konsolenprojekt anlegen in Visual Studio 2022

x

76

Erste C#-Schritte mit Visual Studio

Configure your new project

Console App ¢ tmx macOs windows Consie

Project name
HelloWorid
Lacation

1)
Solution name @
HelloWerid

[Place solution and project in the same directory

Back

Abbildung: Optionen beim Anlegen eines Konsolenprojekt in Visual Studio 2022

Die zu verwendende .NET-Version kann man erst auf der dritten Seite wihlen.

o *
Additional information
Console App €F L ma0S Windows Console
Framework (O
NET 80 Fresen) ol
[+ o P Y
0 ot use top-level statements © NET 80 (Frevan L | -]
] Enable native AGT pubish @ R R
NET Core 3.1 (Outof support)
NET 5,0 (Out of support)
INET 6.0 (Lang Term Suppart)
NET 70 (Standard T Support)
NET 80 (Provew)
Back Create

o

Abbildung: Weitere Optionen beim Anlegen eines Konsolenprojekt in Visual Studio 2022

Sie erhalten dann eine Projektmappe (.sIn-Datei im Dateisystem) mit einem Projekt (.csproj-Datei)
und einer Datei Program.cs. Der Projektaufbau eines modern .NET-Projekts ist etwas anders als

X

Erste C#-Schritte mit Visual Studio 77

bei einem klassischen .NET-Projekt (z.B. Ast "Dependencies" statt "References"), die Bedienung
beziiglich Ubersetzung und Debugging sind aber gleich.

Bei der Struktur des erzeugten Codes gibt es zwei Moglichkeiten:

= Klassische Grundstruktur mit class Program und Methode Main() mit Parameter args fiir die
iibergebenen Kommandozeilenparameter

= Minimalcode mit Top-Level-Statements ohne Klasse und Methode. Auch in diesem
minimalen C# 10-Konsolenprojekt kann man auf die Kommandozeilenparameter zugreifen:
args ist jetzt eine "unsichtbare" deklarierte Variable.

Beides wird in den folgenden Abbildungen dargestellt.

Of e G Vew Gt ot Bl Demg Arhiecure Ten Ay ook Ememsions Widow Hep fre— ® - o «x
0 8 Debug | Ay O - Prekwors - P - BB ER W, D lveshae B | PRomew
7 s
HETT™ Trorctomonarogam | Sowanmmraizgn - + ad o 06 b 4=
& 14 namespace Hollowerld; - = o

“internal elass Progran R Sclution Heloiorkt (1 of 1 poject
- |

static void Kain(string[]) args)
t

[¢ & MriteLine("Hello, World!™);
'

3

Abbildung: Klassische Grundstruktur einer Konsolenanwendung in Visual Studio 2019 bzw.
Visual Studio 2022 seit Version 17.3 mit Option "Do not use top-level statements"

O Fie Bl View Foed Buld Debup Team Arhdedue Ted Anabme Took Edeosions Window Help ewch il P weomera - O x
B-SBE Debug - AnyCPU - P Helowornd - & [B, " . & ureshare | PR

Pogames 8 X
B Helowona

// see hitps://aka.ms/new-console-template for more information

S console.uriteLine(Hello, Werld:®); Lo

ks
[a Microsaft NETCore App

Abbildung: Minimal-Konsolenanwendung mit Top-Level-Statement in Visual Studio 2022

Welche Grundstruktur Sie erhalten, ist von der Version der eingesetzten Werkzeuge abhingig:

= Visual Studio 2019 und .NET SDK vor Version 6.0: Immer klassische Grundstruktur

= Visual Studio 2022 Versionen 17.1 und 17.2 sowie .NET SDK 6.0: Top-Level-Statements fiir
viele (aber nicht alle) Projektarten, z.B. Konsolen- und Webanwendungen. WPF- und
Windows Forms-Anwendungen werden weiterhin mit der klassischen Grundstruktur erstellt

= Visual Studio 2022 Versionen seit Version 17.3 sowie .NET SDK seit Version 7.0: Es gibt
eine Option zur Abwahl der Top-Level-Statements (siche oben "Do not use Top-Level-
Statements").

78 Erste C#-Schritte mit Visual Studio

In beiden Fillen gilt: Es gibt aber keine Namensraumimporte mehr: C# 10.0 bietet Implicit
Namespace Imports fiir hdufig genutzte Namensrdume wie System, System.IO, System.Linq und
System.Task.

Kommentar: Warum gibt es die reduzierten Vorlagen? Weil Microsoft Anfingern zeigen will,
dass .NET sehr einfach ist — so einfach wie node.js. Ich bin kein Fan von diesem Minimalismus
und der args-"Magie".

Es war mein Wunsch, dass es eine Auswahl der Entwickler zwischen klassischer Struktur und
Minimal-Projekt gibt. Seit Visual Studio 2022 Version 17.3 ist mein Wunsch implementiert!

Egal wie die Struktur des Codes aussieht, der Start erfolgt gleich: Starten Sie die Anwendung im
Debugger mit Debug/Start Debugging oder der Taste F5.

B Microsoft Visual Studio Debug Console - o X

s window . . .

Abbildung: Start der Konsolenanwendung aus Visual Studio heraus

Hinweis: Bei modernen .NET-Projekten endet eine im Debugger gestartete
Konsolenanwendung nicht automatisch, sondern wartet auf einen Tastendruck, siche
Screenshot. Wenn Sie die Konsolenanwendung aber auflerhalb von Visual Studio starten, endet
die Anwendung nach der Abarbeitung des Programmcodes sofort, auler wenn Sie mit
Console.ReadLine() auf eine Eingabe warten.

Ein modernes .NET Core-/.NET-Projekt konnen Sie auch an der Kommandozeile mit msbuild.exe
oder dotnet build tibersetzen.

Erste C#-Schritte mit Visual Studio 79

B¥ C\Windows\SYSTEM32\emd.exe - [m] X

Time Elapsed

u ellokorld>

Abbildung: Ubersetzung der Konsolenanwendung mit dotnet build

Hinweis: Andere moderne .NET-Anwendungsarten (z.B. Webanwendungen mit ASP.NET
Core, Universal Windows Platform Apps) erstellen und iibersetzen Sie mit den gleichen
Funktionen und Werkzeugen. Sie miissen nur entsprechende Workloads im Setup von Visual
Studio installieren und dann die entsprechende Projektvorlage wéhlen.

In dlteren .NET Core-Versionen (vor .NET Core 3.0) sah man in der Titelzeile dotnet.exe, das
universelle Kommandozeilenwerkzeug von .NET Core, dass auch zum Start einer NET Core-
Anwendung verwendet wurde. Wahrend man beim NET Framework im Ausgabeverzeichnis
immer eine .EXE-Datei erhielt, bekam man bei .NET Core nur eine .DLL. Daher muss man
dotnet.exe (oder abgekiirzt dotnet) beim Start voranstellen. Die aktuelleren Versionen erzeugen
aber wieder direkt Executables und brauchen dotnet.exe nicht mehr als Starthilfe. Auch in den
aktuellen Versionen wird aber immer neben der EXE eine DLL erzeugt, die man iiber dotnet.exe
starten kann (siehe folgende Abbildung).

80 Erste C#-Schritte mit Visual Studio

TEMP (T) > MeinCode » HelloWorldCore > HelloWerldCore > bin > Debug > netcoreapp2.0

A Name Date modified Type Size

SON Source File 1K8

4 HelloWorldCore.deps son
9 HelloworldCore.di
B HelloWorldCore.pdb

cation extens. 5KB

am Debug D... 1K8
< File 1K8
< File 1KB

] HelloWorldCore runtimeconfig.dev.json

4] HelloWorldCore.runtimeconfig json

I Command Prompt - O X

IC:\U
d11 Hol,

TFul

Abbildung: Start der Konsolenanwendungen in dlteren .NET Core-Versionen

9.5 Programme ohne Main() (Top-Level Statements)

Seit C# 9.0 ist die Verwendung einer Einsprungmethode Main() nicht mehr verpflichtend. Man
kann als Startcode der Anwendung auch direkt freien Programmcode in eine beliebige .cs-Datei
schreiben, z.B.

using System;

Console.WriteLine ("Hello Word") ;

oder sogar in eine Zeile

System.Console.WriteLine ("Hello Word") ;

Intern erzeugt der C#-Compiler aus den Top-Level-Statements doch wieder eine class Program mit
Main()-Methode.

Beispiel: Aus diesem Programm

string GetNETVersion()
{

return System.Runtime.InteropServices.RuntimeInformation.FrameworkDescription;

}

CUI.H1("C# Top-Level Statements (seit C# 9.0)");
Console.WriteLine (GetNETVersion()) ;
Console.ReadLine() ;

erzeugt der Compiler

81

Erste C#-Schritte mit Visual Studio
[CompilerGenerated]
internal class Program
=I{
private static void <Main>$(string[] args)
= {
CUI.H1("C# Top-Level Statements (seit C# 9.0)");
Console.WritelLine(GetNETVersion());
Console.ReadlLine();
static string GetNETVersion()
{
return RuntimeInformation.FrameworkDescription;
¥
}

}

Abbildung: Decompilierung eines Top-Level-Statements mit ILSpy
[https://github.com/icsharpcode/ILSpy]

Sofern es innerhalb des Top-Level-Codes ein await gibt
string GetNETVersion ()
{

return System.Runtime.InteropServices.RuntimeInformation.FrameworkDescription;

}

CUI.H1("C# Top-Level Statements (seit C# 9.0)");
Console.WriteLine ("Hole Daten...");

await System.Threading.Tasks.Task.Delay(1000) ;
Console.WriteLine (GetNETVersion()) ;
Console.ReadLine() ;

erzeugt der C#-Compiler automatisch eine den Einsprungpunkt Main() mit dem Zusatz async:

[CompilerGenerated]
internal class Program

= {
private staticTask <Main>$(string[] args)

{
CUI.HA1("C# Top-Level Statements (seit C# 9.0)");
Console.WriteLine("Hole Daten...");
await Task.Delay(1008);
Console.WriteLine(GetNETVersion());
Console.ReadlLine();
static string GetNETVersion()
{

return RuntimeInformation.FrameworkDescription;

}

}

}

Abbildung: Decompilierung eines Top-Level-Statements mit einem asynchronen Aufruf

82 Erste C#-Schritte mit Visual Studio

Es darf natiirlich in einem C#-Projekt nicht mehr als eine Datei geben, die solch freien Code
enthilt, sonst wire der Einsprungpunkt der Anwendung nicht mehr eindeutig. Der Compiler
beschwert sich dann "Error CS8802: Only one compilation unit can have top-level statements."

Zu Dbeachten ist auch, dass in der Datei mit dem Top-Level-Statement keine
Namensraumdeklaration mit File-Scoped Namespaces erfolgen kann (CS0116: A namespace
cannot directly contain members such as fields, methods or statements) und die Programmstart-
Befehle vor allen in der Datei ebenfalls noch méglichen Typdeklarationen stehen miissen (CS8803:
Top-level statements must precede namespace and type declarations).

Falls es ein Top-Level Statement und ein void Main() gibt, wird void Main() ignoriert!

Praxishinweis: Der Einsatz dieses Sprachfeatures ist umstritten. Microsoft schreibt dazu: "One
of the most common uses for this feature is creating teaching materials. Beginner C# developers
can write the canonical “Hello World!” in one or two lines of code. None of the extra ceremony
is needed."

Der Autor dieses Buchs sieht allerdings mit Top-Level-Statement die Gefahr, dass der Code
uniibersichtlicher wird. Der Einsprungpunkt einer Anwendung ist nicht mehr auf Anhieb zu
finden und man schreibt leicht aus Versehen ein Top-Level-Statement! Der Autor dieses Buchs
sieht in dem Weglassen von Main() allenfalls ein Einsatzgebiet und zwar im Einsatz von C# als
Skriptsprache, wo das Skript nur aus einer Datei besteht.

In .NET 6.0 hatte Microsoft begonnen, in vielen modernen Projektvorlagen nur mit Top-Level-
Statements zu arbeiten. Seit NET 7.0 bzw. Visual Studio 2022 Version 17.3 hat der Entwickler
wieder die Wahl.

S elons.d Projektvorlagen fiir ASP.NET Core WebAPI (&)
e ke Sy Mehr Optionen MAXIMAGO
« Visual Studio 17.2 + Visual Studio 17.3

Additional information Additions! Information
ASRIET G

s AP () (D) 2 6
ASENET Core Web b <@

-

.
Abbildung: WebAPI-Projekte anlegen in Visual Studio 17.2 versus 17.3
Beim Kommandozeilenbefehl dotnet new gibt es ab NET 7.0 dafiir nun den Parameter --use-
program-main
z.B.

dotnet new console --use-program-main

Erste C#-Schritte mit Visual Studio 83

und

dotnet new webapi --use-program-main

9.6 Festlegung der Compilerversion

Wihrend friiher die verwendete Visual Studio-Version auch die verwendete Version des
Sprachcompilers von C# festlegte, kann man seit Visual Studio 2017 die Sprachversion pro Projekt
in den Projekteigenschaften (Build/Advanced) festlegen.

rmens e Clopmmes GoOmois GRpmes cums

Apieation Coniqurstion: Actve Debugl Plrform acthe

Setings = e
Plast targar anyery
2 Prefer 220

] tow unsae o

[Optimizs co
- Advanced Build Settings

rees s marigs
| cenent

[n——
b
Cm
O spacificwamng
ot

Ot

] 0L documeseation il

Gervrate srilzason msemibly Auto

Adeweces

Abbildung: Einstellen der Sprachversion

Zudem warnt Visual Studio, wenn Sie ein Sprachfeature verwenden, welches es in der eingestellten
Version noch nicht gibt.

int b = default;

Consol(®-r Feature ‘default literal' is not available in C# 7. Please use language version 7.1 or greater.

Seit Visual Studio 2019 hat Microsoft diese freie Auswahl wieder abgeschafft. Nun legt die
verwendete Framework-Version eine bestimmte Compiler-Version fest.

84 Erste C#-Schritte mit Visual Studio

Advanced Build Settings ? *

General

Language version: Automatically selected based on framework version

Why can't | select 5 different C£ HEIDIOH’.’
Internal compiler error reporting: | Prompt

[] check for arithmetic overflow/underflow

Output

Debugging information: Full ~
File alignment: 512 ~
Library base address: 0x00400000

oK Cancel

Abbildung: Auswahl der Sprachversion in Visual Studio 2019

Ianguagel

4 Build (1)

Build

Advanced (1)

P Package (1)
Advanced Language version

The version of the language available to code in this project.

Abbildung: Informationen zur automatisch eingestellten Sprachversion-Version in Visual Studio
2022

Der Link fiithrt zu [learn.microsoft.com/de-de/dotnet/csharp/language-reference/configure-
language-version] und dort steht:

https://docs.microsoft.com/de-de/dotnet/csharp/language-reference/configure-language-version
https://docs.microsoft.com/de-de/dotnet/csharp/language-reference/configure-language-version

Erste C#-Schritte mit Visual Studio

85

Value

preview

latest

latestMajor
or default

9.8

8.8

7.3

&2

7.4

1s0-2
or 2

150-1
or 1

Meaning

The compiler accepts all valid language syntax from the latest preview version.

The compiler accepts syntax from the latest released version of the compiler (including minor version).

The compiler accepts syntax from the latest released major version of the compiler

The compiler accepts only syntax that is included in C# 13 or lower.
The compiler accepts only syntax that is included in C# 12 or lower.
The compiler accepts anly syntax that is included in C# 11 ar lower.
The compiler accepts only syntax that is included in C# 10 or lower.
The compiler accepts only syntax that is included in C# 9 or lower.

The compiler accepts only syntax that is included in C# 8.0 or lower

The compiler accepts only syntax that is included in C# 7.3 or lower.

The compiler accepts anly syntax that is included in C# 7.2 or lower.

The compiler accepts only syntax that is included in C# 7.1 or lower
The compiler accepts only syntax that is included in C# 7.0 or lower

The compiler accepts only syntax that is included in C# 6.0 or lower,

The compiler accepts only syntax that is included in C# 5.0 or lower.

The compiler accepts only syntax that is included in C# 4.0 or lower.

The compiler aceepts anly syntax that is included in C# 3.0 or lower.

The compiler accepts only syntax that is included in ISO/IEC 23270:2006 C# (2.0).

The compiler accepts only syntax that is included in ISO/IEC 23270:2003 C# (1.0/1.2).

Abbildung: Mégliche Einstellungen fiir <LangVersion>
(Quelle: learn.microsoft.com/de-de/dotnet/csharp/language-reference/configure-language-

version)

Um eine bestimmte Version der C#-Sprachsyntax zu erzwingen, kann man aber die Projektdatei
manuell bearbeiten und dort mit dem Tag <LangVersion> eine bestimmte Version erzwingen. So
ist es zum Beispiel moglich, in .NET Framework und .NET Standard auch Sprachsyntaxelemente
aus C# 8.0 und héher zu verwenden.

Hinweis:

In einem NET 9.0-Projekt
<TargetFramework>net9.0</TargetFramework>) ist C#-Sprachversion 13.0 der automatisch
eingestellte Standard, auch ohne Tag <LangVersion>.

(Projekteinstellung:

Die <LangVersion> legt man in den Projekteinstellungen (in der Datei .csproj) fest. Man kann auf

diese Weise neuere aber auch dltere Sprachversionsnummern erzwingen.

Tipp: Bei modernen .NET-SDK-Projekten kann man die .csproj-Datei einfach bearbeiten,
indem man einen Doppelklick auf der Projektdatei im Solution Explorer macht. Bei klassischen

https://docs.microsoft.com/de-de/dotnet/csharp/language-reference/configure-language-version
https://docs.microsoft.com/de-de/dotnet/csharp/language-reference/configure-language-version

86 Erste C#-Schritte mit Visual Studio

.csproj-Dateien muss man erst "Unload Project" und dann "Edit Project File" wahlen. Nach der
Bearbeitung muss man "Reload Project” ausfiihren.

Listing: Setzen der <LangVersion> in modernen .NET-SDK-Projekten.
Hier: Upgrade von C# 12.0 auf C# 13.0 in einem .NET 8.0-Projekt
<PropertyGroup>
<TargetFramework>.net8.0</TargetFramework>
<LangVersion>13.0</LangVersion>
</PropertyGroup>

Listing: Setzen der <LangVersion> in klassischen .NET Framework-Projekten

Hier: Upgrade von C# 7.2 auf C# 13.0 in einem .NET Framework-Projekt

<PropertyGroup Condition=" '$(Configuration) |$(Platform)' == 'Debug|AnyCPU' ">
<PlatformTarget>AnyCPU</PlatformTarget>

<LangVersion>13.0</LangVersion>
</PropertyGroup>

<PropertyGroup Condition=" '$ (Configuration) |$(Platform)' == 'Release|AnyCPU' ">
<PlatformTarget>AnyCPU</PlatformTarget>

<LangVersion>13.0</LangVersion>
</PropertyGroup>

Wichtig: In den klassischen .csproj-Dateien, die .NET Framework verwendet, ist die
<LangVersion> pro Compilerkonfiguration zu setzen.

ChapSsrachsy el & J WG e st | roganes et
e it
</MuGetPackage InportStang> v languorsion X~ - x
=== anable—> Aa E§ 4% Cumrent document -
<1==- sWarningsAsErrors-CS8680;C38602;
WarningsAsErrors>--> - tin
s | </PropertyGroups ==« B somie
41 = =PropertyGroup Condition=" '$(Config J1$(Platforn)' == 'Debugl ,wwj b B VENETSpeachystas
" + B ColupSouaodoeerors
@ <PlatfarnTarget>AnyCPUs/Plat fornTarget>
a3 <Bebugsynbols>true</Debugsynbol >
au <DebugTypexFulle/DebugTypes
us <Optinize>falses/Optinizes
a <OutputPathbin\Debug\s/OutputPath>
e <Bof inaCanstants>TRACE; DEBUG/Def ineConstants>
s <Errorfleport>prompts/ErrorReport>
49 <Warninglevelali</WarningLevel>
58 <LARGVErS1H>10 . </ LARGEEEIan>
51 <ALLowlnsafelocks>true</ALLontinsafeSlacks>
52 </PropertyGroups
53 & <PrlD!rtyGruup Condition=" '$(Configuration)|$(Platforn)' == 'Release| =
AnyCPU'
su LAt oraTargetoAnyCPUS PLat foraTarget
55 <DebugType=pdbonlys/DebugType>
56 <Optinizestrues/Optinize>
57 <OutputPathabin\Release\</OutputPath=
53 <Def ineCenstants>TRACE/Def ineCanstants>
59 <Errorfeport>prompte/ErrorReport>
8 SdarninglesetadeMerninglents
61 <LARGVEFS1R>10 .0« /LA
62 <MlulunsaFEBIB(kSth‘ue<[lllnwunsafesln(ks> Senpe 1o Ths
63 | </PropertyGroup> F—
64 = <ItemGroups
5 <Reference Include="ITV. AppUtil NETStandard, Version=5.8.6.0, =
Culturesneutral, PublicHeyToken=d1831d49172becdf, pe

prnwssumrrmnnurz HSIL">

Abbzldung Bearbeitung der <LangVersion> in einem klassischen .NET Framework-Projekt
nach dem "Unloading” des Projekts

Wenn ein Entwickler Sprachelemente verwendet, die gemal aktuell giiltiger Sprachversion nicht
verfiigbar sind, meckert der Compiler. Manchmal steht auch dabei, welche Sprachversion
notwendig wird.

Erste C#-Schritte mit Visual Studio 87

public recoryl UserAndTime(string User, string EMail, DateTime dateTime);

C50246: The type or namespace name 'record’ could not be found (are you missing a using directive or an assembly reference?)

Console.WriteLine($@"Test");
Console.WritelLine(@$"Test");

o #i3 class System.String
Represents text as a sequence of UTF-16 code units.

To use ‘@S’ instead of 'S@' for an interpolated verbatim string, please use language version ‘8.0' or greater.

Show patential fixes (Ctri+.)

Abbildung: Fehlermeldung, wenn eine zu niedrige Sprachversion verwendet wird

Hinweis: Neben der Einstellung der <LangVersion> sind zum Teil weitere Tricks erforderlich,
um neuere Sprachversionen auf <eren, von Microsoft nicht flir die aktuellen C#-
Sprachversionen unterstiitzten .NET-Versionen nutzen zu konnen. Sie finden darauf jeweils
Hinweise in den einzelnen Kapiteln, siche z.B. Kapitel "Init Only Setters in .NET Framework
und .NET Standard".

9.7 Eingabeunterstiitzung in Visual Studio

Visual Studio unterstiitzt den Entwickler mit Hilfsfunktionen bei der Programmcodeeingabe.

9.7.1 IntelliSense

Die IntelliSense-Eingabeunterstiitzung, die kontextabhéngige Vorschldge fiir Bezeichner und
Klassenmitglieder macht, gibt es nicht erst seit der ersten Visual Studio-Version im Jahr 1997,
sondern sie gab es auch schon in den Vorgingerprodukten (Visual C++, Visual Basic, Visual
FoxPro etc). Seit dem Jahr 2018 gibt es mit IntelliCode [hwww. heise.de/developer/meldung/Build-
2018-IntelliCode-C-Eingabeunterstuetzung-mit-kuenstlicher-Intelligenz-4044483.html] eine
Zusatzfunktion, die aus dem Kontext heraus hédufig verwendete Klassenmitglieder hervorhebt.

w2’ | consote.ng
0 void leWrite(bool value) (+ 16 averloads)

&1 WriteLine Writes the text representation of the specified Boolean value to the standard output stream
& @

Abbildung: IntelliSense-Vorschlige in Visual Studio 2022

9.7.2 IntelliCode

In Visual Studio 2022 macht Microsoft erstmals nicht nur Vorschldge fiir einzelne Bezeichner,
sondern aus dem aktuellen Kontext heraus fiir vollstindige Programmzeilen (siche Abbildungen).
Microsoft nennt diese Funktion IntelliCode. Mit einem doppelten Driicken auf die Tabulator-Taste
ibernimmt der Entwickler den Vorschlag. Die Vorschlidge basieren dabei auf dem KI-Training mit
dem Quellcode einer halben Million Open-Source-Projekten auf GitHub. Details zu dieser
erweiterten IntelliCode-Funktion findet man in einem Blogeintrag
[devblogs.microsoft.com/visualstudio/type-less-code-more-with-intellicode-completions].

https://www.heise.de/developer/meldung/Build-2018-IntelliCode-C-Eingabeunterstuetzung-mit-kuenstlicher-Intelligenz-4044483.html
https://www.heise.de/developer/meldung/Build-2018-IntelliCode-C-Eingabeunterstuetzung-mit-kuenstlicher-Intelligenz-4044483.html
https://devblogs.microsoft.com/visualstudio/type-less-code-more-with-intellicode-completions/

Erste C#-Schritte mit Visual Studio

18 211 /// <summary>
19 /// Gets all News—-Objects in a ClassRoom
20 /11 </summary>
21 /// <param name="classRoomID">ClassRoom-ID</param>
22 /// <returns>List of News-Objects</returns>
23 - public List<News> GetAll(int classRoomID)
24 {
25@ | return ctx.NewsSet.Where(x=>x .10 == classRoomID).ToList();
26 1
27
28 ¥ rd)
%3 ¥ & % ClassRoomiD
& ClassRoomID
£k

Abbildung: IntelliCode-Zeilenvorschldge in Visual Studio 2022

{

if (ctx.RefSet.Find(refid)
new Ref();
r.ID = refid;

var r =

null) return;

r.Text = "Auto-Created " + DateTime.Now;

ktx.Redset . Add(r);

to accept &

ctx.SaveChanges();

3

Abbildung: IntelliCode-Zeilenvorschlige in Visual Studio 2022

Search Options (Ctri+E)
I Azure Data Lake
‘Azure Service Authentication
‘Container Tools
I Cross Platform
Database Tools
I Dependency Validation
EF Core Power Tools
F# Tools

4 IntelliCode

General

|| Advanced

¥ General

Automatic machine-assaciated madel training

C# suggestions

Promate likely items in IntelliSense completion lists
Show completions for whole lines of code

Abbildung: IntelliCode-Einstellungen in Visual Studio 2022

|
Options

Search Options (Cirl+ £}
| T+ Azure Data Lake
|| b Azure Service Authentication
b Container Tools
|| & cross elattorm
b Database Tools
b Dependency Validation
b EF Core Power Tools

<

<

Completions for whale lines of code
Apply completions for whole lines on right arrow

Show completions on new lines

Wait for pauses in typing before showing line completions

IntelliCode suggestions logging
Output window lagging
Preview features

P F# Tools C++ team models for completions
2 '"‘:‘““df ~ Promote likely items in IntelliSense completion lists
enera

b Live Unit Testing
b NuGet Package Manager
b Office Tools

+ Office Tools (Web)

Acquire team models for completions
Automatic model training notification

C# deep-leaming base model for completions
Notify when team models are acquired

Abbildung: IntelliCode-Einstellungen in Visual Studio 2022

= public void EnsureCreatedRefId(string refid = "")

Default
Default
Default
Default

Default
Default
Default

Default
Default

Default

Default
Default
Default
Default

Tab|[Tab|] to accept

int BOBase. D [get; set;) (+ 1 overload)
* IntelliCode suggestion based on this context

Erste C#-Schritte mit Visual Studio 89

9.7.3 Copilot

Noch umfangreichere Vorschliage (mehrzeilige Codeblocke / ganze Methoden auf Basis von
Kommentaren) erhalten Sie mit GitHub Copilot, das wie ChatGPT auf den KI-Modellen von
OpenAl basiert. Allerdings ist dazu ein kostenpflichtiges Copilot-Abo bei GitHub erforderlich (ab
10 Euro/Monat, Ausnahmen gelten fiir Studenten und Open Source-Projekte):

https://github.com/features/copilot
Fiir Visual Studio miissen Sie fiir Copilot eine Erweiterung installieren:

https://marketplace.visualstudio.com/items?itemName=GitHub.copilotvs

EENETS Consele

namespace NETB_Console.CS12;

9 cinternal class Liv q
10 [t
2
12
13
14
4 /10 selutons.

1 ¥ // Eine Erweiterungsmethode, die alle Elemente einer
EH public static void PrintList(this IEnumerablesstring>
17
18 foreach (var item in list)
19
28 { steline(d
H Consele WriteLine(iten);
22 ¥
23 3 ¥
au

Inccopn Seution

public static void Print<T>(this TEnumerable<T> list)
i

foreach (var item in list)

i

Console WriteLine(iten);

Abbildung: GitHub-Copilot schligt auf Basis einer vom Entwickler erfassten Kommentarzeile
eine ganze Methode vor. Den Vorschlag kann man mit Driicken der Tabulatortaste iibernehmen.
Im Copilot-Fenster sieht man weitere Alternativen, die man durch Klick auf "Accept Solution”
tibernehmen kann.

9.8 Refactoring in Visual Studio

Wihrend man in den Anfangsjahren von .NET fiir das effiziente Refactoring (Umgestalten) von
Code Zusatzsoftware wie ReSharper von JetBrains [htips://www.jetbrains.com/resharper] oder
CodeRush von Developer Express [https://www.devexpress.com/products/coderush] zwingend
brauchte, bietet Visual Studio inzwischen zahlreiche integrierte Refactoring-Funktionen.

Die Refactoring-Funktionen findet man in der Gliihbirne neben den Zeilennummern.

Tipp: Sofern die Glithbirne nicht automatisch erscheint, driicken Sie die Tasten STRG und .
Zusammen.

https://github.com/features/copilot
https://marketplace.visualstudio.com/items?itemName=GitHub.copilotvs
https://www.jetbrains.com/resharper/
https://www.devexpress.com/products/coderush/

90 Erste C#-Schritte mit Visual Studio

15 = public string SumString

16 {

199 - get { return "Sum is " + (x + y); }
iE Introduce constant L4 Lines 16 to 18

2E Convert to raw string {

21 . . = get { return "Sum is * + (x + v)|; }

E v

27 Convert to interpolated string :‘ + get { return @"Sum e . ry L}
Use expression body for property }

Wrapping L

Suppress or configure issues r Preview changes

Abbildung: Vorschlag zur Umwandlung der Zeichenkette in eine interpolierte Zeichenkette

15 - public string SumString
16 {
179 - get { return "Sum is " + (x + y); }

IDE0025 Use expression body for property

%E Introduce constant »
2€ Convert to raw string Lines 14 to 22
27 Convert to interpolated string
= -public string SumString
Use expression body for property Il

68 [{ FeEmEA]"sun is " + (x + y);[H

+ public string SumString E “Sum is " + (x + y)

Wrapping » | B

Suppress or configure issues v

Preview changes
Fix all occurrences in: Document | Project | Solution | Containing Member

| Containing Type

Abbildung: Vorschlag zur Umwandlung des Getters des Properties in einem Lambda-Ausdruck

9.9 .NET Fiddle

Eine Moglichkeit, C#-Code auf einfache Weise auszuprobieren, ist die Website .NET Fiddle
[https://dotnetfiddle.net].

Hier kann man C#-Code eingeben und innerhalb der Webseite ausfiihren. Dabei kann man die
NET-Version wihlen.

Ein Zugriff auf lokale Ressourcen auf dem PC des Entwicklers ist freilich wegen der Sandbox des
Webbrowsers nicht moglich.

Angemeldete Benutzer konnen den Programmcode speichern.

https://dotnetfiddle.net/

Erste C#-Schritte mit Visual Studio

ompiler | NETFice X | o

@ dotnetfiddie net

@ Share A Collaborate & Tidy Up.

We Stand with Ukraine

¢ options # Eniername here.

uaing System:
Language:

publie class Progran

public static void Mein()

Project Type
- . var § - 334867855
Console briteLina(§ Hello Norld {i:sws,see 00})
H
Compiler: ¥
Latest (NET7 -

Fallo Herld 123,456.79
NuGet Packages:

Auto Run:
Yes ®No

Entity Framework E;

W Getting Started

Access: Public

- 1D:56:14 am
001s
007s

Abbildung: Test einer formatierten Ausgabe mit Console.WriteLine und interpolierter

Zeichenkette in .NET Fiddle

92 Erste C#-Schritte mit Visual Studio

@ - Te
i L FivecEaaped Tasespaces 5
H 3 saspia maie. Deveopar;

H 7 Rasdanly Racard Struct it dem Seack
H M 5§ |-public reatoaly recerd struct umurhm m, L 1
P —— H
: 7, e P
" ° public Teatealy DataTime ObjestErzewpungsZeitpurit { get; |
w 4 by L~
i i
W *
H
H
B vt e ettt
T e Tl i € At ihetetatus = “abpasbnt b
B o,
H
B M betie e e
= . AT e
E et ot g e
b o pacty Pattarn i nemessace e v
31 R et v 19913
3 eettalineCdahe dus erston D-drtikels stimeti®); H
[r— Tpharkeiturg deklaris M
3| v st Artikel von * o a Nama o * dst|| 11
et g L
Y iy
R it -
[
Abbildung: Umbenennen eines Typs (Refactoring "Rename")
33 // Funktion via Lanbda mit Typherleitung deklarieren
30 - var status = (Autor a) => "Artikel ven " + a.Name + " ist im Status " + a.Artikelstatus;
3 Use explict type nstead of ‘var Lines 33 to 35
/4 Funktion via Lambda mit Typherleitung ﬂekluiaren
Use block body for lambd:
= A e = (Autor a) => "Artikel von ist in Status .Artikelstatus;

Comvert 1o interpolaed sting 1
Wesppind // Funnktion vermenden

Suppress or Configure issues
Preview changes

CAutor a) => fArtikel von u@ ist im Status @ Artikelstatus])');

Abbildung: Umwandlung in eine interpolierte Zeichenkette (Refactoring "Convert to Interpolated

String")

“publie static class validasisn

e

tatic vedd ChackiangeCint WAL, ine misvalus, dnt masvalus,
¥ Erprussion "vals ing? e

» *minalue®3] string? = ol
= string? = nutt)

56 (URTR + maxvaie)
.

3353
1

hrow pew ArgmentOetfRargstscant ion(nameef (valiad,
$~[4alua) ({valusExprazsion}) muss zwischan {atnvalus} ({minvalucExpsl

*
=2
o
=

Abbildung: Andern einer Methodensignatur (Refactoring "Change Signature")

Datentypen 93

10 Datentypen

Die Datentypen orientieren sich in allen .NET-Programmiersprachen basierend auf den in der
NET-Basisklassenbibliothek implementierten Datentypen. Innerhalb der Programmiersprache
kann es fiir einen .NET-Basistyp einen Alias geben. Der Entwickler kann wahlweise entweder den
Klassennamen oder den Alias verwenden, auch gemischt.

System.String vorname = "Holger"; // Variable typisiert mit Basisklasse
string nachname = "Schwichtenberg"; // Variable typisiert mit C#-Alias
System.String GanzerName = vorname + " " + nachname;

string Gan Umgekehrt = nach + ", " + vorname;

10.1 Uberblick iiber die Datentypen

Die folgende Tabelle gibt einen Uberblick iiber die wichtigsten Datentypen in C#.

94 Datentypen

Datentyp .NET-Basisklasse Alias Alias in
in C# Visual Basic NET

Boolean System.Boolean bool Boolean

Ganzzahl System.Byte byte Byte

1 Byte

Ganzzahl System.Int16 short Short

2 Bytes

Ganzzahl System.Int32 int Integer

4 Bytes

Ganzzahl System.Int64 long Long

8 Bytes

Ganzzahl System.Int128 - -

16 Bytes (seit .NET 7.0)

Gebrochene System.Half - -

Zahlen (seit .NET 7.0)

2 Bytes

Gebrochene System.Single float Single

Zahlen

4 Bytes

Gebrochene = System.Double double Double

Zahlen

8 Bytes

Gebrochene System.Decimal decimal Decimal

Zahlen

12 Bytes

Zeichen System.Char char Char

1 Byte oder

2 Bytes

Zeiger System.IntPtr nint (seit C# 11.0) -

(Numeric

Integer

Pointer)

Zeichenkette = System.String string String

(UTF-16

codiert)

Datum / System.DateTime DateTime Date

Uhrzeit

Tabelle: Vergleich der wichtigsten Datentypen in .NET, C# und Visual Basic NET

Hinweis: Fir die Ganzzahltypen und die Zeiger gibt es jeweils auch eine Variante mit dem
Vorbuchstaben "u" wie "Unsigned", also uint ist Alias fiir System.UInt32. Diese Zahlen haben
einen Wertebereich von 0 beginnend.

Datentypen

95

Eine Bennungsausnahme ist System.UIntPtr: Hier heifit der Alias nicht unint, sondern nuint.

Eine weitere Ausnahme ist der Typ byte bzw. System.Byte: Der Wertebereich liegt von 0 bis
255. Wenn man negative Zahlen ausdriicken will mit einem Byte, gibt es den Typ System.SByte

mit dem alias sbyte (Wertebreich -128 bis 127).

C#- Bereich GréoBe .NET-Typ

Typ/Schliisselwort

sbyte ~128 bis 127 Ganze 8-Bit-Zahl mit Vorzeichen System.SByte

byte 0 bis 255 8-Bit-Ganzzahl ohne Vorzeichen System.Byte

short -32.768 bis 32.767 Ganze 16-Bit-Zahl mit Verzeichen System.Int16

ushort 0 bis 65.535 16-Bit-Ganzzahl ohne Vorzeichen System.UInt16

int -2,147,483,648 bis 2,147,483,647 Eine 32-Bit-Ganzzahl mit Vorzeichen System.Int32

uint 0 bis 4.294.967.295 32-Bit Ganzzahl| ohne Vorzeichen System.UInt32

long -9,223,372,036,854,775,808 bis 64-Bit-Ganzzahl mit Vorzeichen System.Int64
9,223,372,036,854,775,807

ulong 0 bis 18,446.744.073,709.551,615 64-Bit-Ganzzah! ohne Vorzeichen System UInt64

nint Hangt von der Plattform ab (berechnet zur 32-Bit- oder 64-Bit-Integerwerte mit System.IntPtr
Laufzeit) Vorzeichen

nuint Hangt von der Plattform ab (berechnet zur 32-Bit- ader 64-Bit-Integerwerte ohne System.UIntPtr
Laufzeit) Vorzeichen

Abbildung: Wertebereich der Ganzzahl-Datentypen (Quelle: [https://learn.microsoft.com/de-
de/dotnet/csharp/language-reference/builtin-types/integral-numeric-types]).

C#-Typ/Schliisselwort Ungefahrer Bereich Genauigkeit GréBe NET-Typ
float £15 %1074 zu £34 % 10% ~6-9 Stellen 4 Bytes System.Single
double 25,0 = 10722 bis 21,7 = 10308 ~15-17 Stellen 8 Bytes System.Double
decinal £1.0 x 1028 10 £7.9228 = 1028 28-29 Stellen 16 Bytes System.Decima

Abbildung: Wertebereich der Fliefkommazahl-Datentypen (Quelle:
[https://learn.microsoft.com/de-de/dotnet/csharp/language-reference/builtin-types/floating-point-
numeric-typesy]).

10.2 Variablendeklarationen
In C# steht der Typ am Anfang jeder Deklaration. Mehrfachdeklarationen sind méglich durch
Kommatrennung.

int a, b, c;
string x, y, z;
System.Guid gl, g2, g3;

10.3 Typinitialisierung

Ebenfalls sehr streng ist C# hinsichtlich der Initialisierung von Variablen. Wiahrend der Visual
Basic .NET-Compiler in seiner Standardeinstellung folgende Anweisung immer durchgehen lasst,

96 Datentypen

Dim a As Integer

a=a+1

weil a mit 0 vorinitialisiert wurde, erfordert der C#-Compiler die explizite Initialisierung bei allen
lokalen (methodeninternen) Variablen (nicht aber bei Klassenmitgliedern).

int a = 0;
a=a+1;
int a;

Console.Writeline(y);
[#1 (local variable) int a
Use of unassigned local variable 'a’

Abbildung: Der C#-Compiler beschwert sich iiber die Verwendung einer nicht initialisierten
Variable

Hinweis: Der C#-Compiler seit Version 2005 erzeugt Warnungen bei deklarierten, aber nicht
verwendeten Variablen.

Mit dem Schliisselwort default kann man eine Variable auf ihren Standardwert setzen. Dies ist 0
fir alle Zahlen und null fiir Zeichenketten und Referenztypen. Fir Datumswerte ist es der
01.01.0001 um 00:00:00 Uhr. Wihrend in den bisherigen Versionen die Syntax vorsah, nach
default in Klammern den Datentyp zu nennen

int x = default(Int32);

kann man diesen seit C# 7.1 weglassen (Default Literal Expressions):

int x = default;

Beispiele:

decimal zahll = default(decimal); // 0.0

decimal zahl2 = default; // 0.0

int ganzzahll = default(int); // O

int ganzzahl2 = default; // 0

bool janeinl = default(bool); // false

bool janein2 = default; // false

string zeichenkettel = default(string); // null

string zeichenkette2 = default; // null

Person personl = default(Person); // null

Person person2 = default; // null

DateTime dl = default(DateTime); // 01.01.0001 00:00:00

DateTime d2 = default;// 01.01.0001 00:00:00

10.4 Literale fiir Zeichen und Zeichenketten

Zeichenketten sind in doppelte Anfiihrungszeichen zu setzen. Zeichenketten werden in .NET intern
als Folge von Bytes in UTF-16-Codierung abgelegt.

Einzelne Zeichen, in einfache Anfiihrungszeichen.

string Name = "Holger Schwichtenberg";

string Wichtigkeitl = "A";

char Wichtigkeit2 = 'C';

Sonderzeichen in Zeichenketten werden — wie in C++ — durch einen Backslash (\) eingeleitet (z.B.
steht \n fiir einen Zeilenumbruch). Man spricht von Escapesequenz (siche Tabelle).

Datentypen 97

Escape-Sequenz Bedeutung

\a Ton

\b Riicktaste

\f Seitenvorschub

\n Zeilenwechsel

\r Wagenriicklauf

\t Horizontaler Tabulator

\v Vertikaler Tabulator

\ Einfaches Anfiihrungszeichen

\" Doppeltes Anfiihrungszeichen

\ Umgekehrter Schragstrich

\? Literales Fragezeichen

\xhh ASCII-Zeichen in der Hexadezimalnotation

\xhhhh Unicode-Zeichen in der Hexadezimalnotation
Beispiel 1:

string seineAussage = "Er sagte:\n\"Hallo Welt!'\"";
Console.WriteLine (seineAussage) ;

Beispiel 2:

Console.WriteLine ("\x48\x6£f\x6c\x67\x65\x72 \x53\x63\x68\x77\x69\x63\x68\x74\x65\
x6e\x62\x65\x72\x67") ;

Holger Schwichtenberg

Da der Backslash in der Zeichenkette ein Sonderzeichen darstellt, miissen Pfadangaben besonders
behandelt werden.

string PFagFalsch = “C

Richtig ist, entweder fiir jeden Backslash \ einen doppelten Backslash \\ zu verwenden oder aber
die Zeichenkette mit einem @ einzuleiten. @ leitet eine "wortgetreue Zeichenkette" (Verbatim
String) ein. Dadurch verlieren alle Escapesequenzen ihre Bedeutung und der Backslash ist wieder
ein normales Zeichen. Synonym sind daher: "c:\\ordner\\datei.txt" und @"c:\ordner\datei.txt".
string PfadRichtigl = "C:\\Windows\\Microsoft.NET\\Framework64\\v4.0.30319";
string PfadRichtig2 = @"C:\Windows\Microsoft.NET\Framework64\v4.0.30319";
Console.WriteLine (PfadRichtigl + ": "+ System.IO.Directory.Exists(PfadRichtigl)) ;

98 Datentypen

Console.WriteLine (PfadRichtigl + ": " +
System.IO.Directory.Exists (PfadRichtigl)) ;

10.5 Konsolenausgabenformatierung mit ANSI-Codes

Mit den uralten VT100/ANSI-Codes (siehe htps://en.wikipedia.org/wiki/ANSI escape_code)
kann man auch heute noch in Konsolenanwendungen zahlreiche Formatierungen auslosen, z.B.
24-Bit-Farben, Fettschrift, Unterstreichen, Durchstreichen, Blinken usw. Die VT100/ANSI-Codes
werden durch das ESCAPE-Zeichen (ASCII-Zeichen 27, hexadezimal: 0x1b) eingeleitet.

Vor C# 13.0 konnte man dieses ESCAPE-ASCII-Zeichen 27 in NET-Konsolenanwendungen bei
Console.WriteLine() nur umstédndlich ausdriicken tiber \u001b, \U0000001b oder \x1b, wobei
letzteres nicht empfohlen ist: "Wenn Sie die Escapesequenz \x verwenden, weniger als vier
Hexadezimalziffern angeben und es sich bei den Zeichen, die der Escapesequenz unmittelbar
folgen, um giiltige Hexadezimalziffern handelt (z. B. 0-9, A—F und a—f), werden diese als Teil der
Escapesequenz interpretiert. \xA1 erzeugt beispielsweise "i" (entspricht dem Codepunkt U+00A1).
Wenn das néchste Zeichen jedoch "A" oder "a" ist, wird die Escapesequenz stattdessen als \xA1A
interpretiert und der Codepunkt "9" erzeugt (entspricht dem Codepunkt U+0A1A). In solchen
Fallen konnen Fehlinterpretationen vermieden werden, indem Sie alle vier Hexadezimalziffern (z.
B. \x00AT1) angeben." [https://learn.microsoft.com/de-de/dotnet/csharp/programming-
guide/strings/).

Hinweis: 9 ist ein Panjabi-Schriftzeichen. Panjabi ist eine in Pakistan und Indien gesprochene
Sprache.

Typischerweise sahen Ausgaben mit VT100/ANSI-Escape-Codes dann aus wie im nédchsten
Listing.

Listing: Bisherige VT100/ANSI-Escape-Codes

Console.WriteLine ("This is a regular text");

Console.WriteLine ("\u00lb[1lmThis is a bold text\u001lb[Om") ;

Console.WriteLine ("\u00lb[2mThis is a dimmed text\uO0Olb[Om") ;

Console.WriteLine ("\u00lb[3mThis is an italic text\u0Olb[Om");

Console.WriteLine ("\u00lb[4mThis is an underlined text\u0O0lb[Om") ;
Console.WriteLine ("\u001lb[5mThis is a blinking text\u001lb[Om") ;
Console.WriteLine ("\u00lb[6mThis is a fast blinking text\u001b[Om") ;
Console.WriteLine ("\u00lb[7mThis is an inverted text\u00lb[Om") ;
Console.WriteLine ("\u00lb[8mThis is a hidden text\u0Olb[Om") ;

Console.WriteLine ("\u00lb[9mThis is a crossed-out text\u00lb[Om") ;
Console.WriteLine ("\u00lb[21mThis is a double-underlined text\u0OOlb[Om") ;
Console.WriteLine ("\u001b[38;2;255;0;0mThis is a red text\u00lb[Om");
Console.WriteLine ("\u001b[48;2;255;0;0mThis is a red background\u00lb[Om") ;
Console.WriteLine ("\u001b[38;2;0;0;255;48;2;255;255;0mThis is a blue text with a
yellow background\u001b[Om") ;

Seit C# 13.0 gibt es nun \e als Kurzform fiir das ESCAPE-Zeichen ASCII 27 ein, sodass die
Zeichenfolgen deutlich kompakter und tibersichtlicher werden (siche néchstes Listings).

Listing: Etwas tibersichtlichere VT100/ANSI-Escape-Codes mit der neuen Abkiirzung \e in C#
13.0

Console.WriteLine ("This is a regular text");
Console.WriteLine ("\e[1lmThis is a bold text\e[Om") ;
Console.WriteLine ("\e[2mThis is a dimmed text\e[Om");
Console.WriteLine ("\e[3mThis is an italic text\e[Om");
Console.WriteLine ("\e[4mThis is an underlined text\e[Om");

https://en.wikipedia.org/wiki/ANSI_escape_code
https://learn.microsoft.com/de-de/dotnet/csharp/programming-guide/strings/
https://learn.microsoft.com/de-de/dotnet/csharp/programming-guide/strings/

Datentypen 99

Console.WriteLine ("\e[5mThis is a blinking text\e[Om");

Console.WriteLine ("\e[6mThis is a fast blinking text\e[Om") ;

Console.WriteLine ("\e[7mThis is an inverted text\e[Om");

Console.WriteLine ("\e[8mThis is a hidden text\e[Om");
Console.WriteLine("\e[9mThis is a crossed-out text\e[Om");

Console.WriteLine ("\e[21mThis is a double-underlined text\e[Om");
Console.WriteLine("\e[38;2;255;0;0mThis is a red text\e[Om");

Console.WriteLine ("\e[48;2;255;0;0mThis is a red background\e[Om") ;
Console.WriteLine ("\e[38;2;0;0;255;48;2;255;255;0mThis is a blue text with a yell
ow background\e[Om") ;

Die Abbildung zeigt das Ergebnis, das sowohl beide Listings produziert.

Th a red background
h a blue text h a yellow backgroun

Abbildung: Die Ausgabe der beiden vorherigen Listings sieht gleich aus.

So gibt man ein Farbraster mit den neuen Escape-Codes aus (das war mit den alten Escape-Codes
natiirlich auch schon méglich, es ist jetzt nur priagnanter):

Console.WriteLine ("\n\nFarbraster:");
for (int i = 0; i < 16; i++)
{
for (int j = 0; j < 16; j++)
{
Console.Write("\e[48;5;" + (i * 16 + j) + "m" + (i * 16 + j).ToString() .PadLeft
(4));
}
Console.WriteLine ("\e[Om") ;

}

100 Datentypen

Farbraster:
e 1 2 E | PERE
16 17 18 22 23 28 29 30 31
32 33 34 38 39 gy o5 de 47
54 55 60 61 62 63
64 65 66 67 69 70 71 76
§ 92 93 94 95

200 241 242 243 244 205 24624
Abbildung: Farbraster in der Konsole mit ANSI-Codes

10.6 String Interpolation

Mit einer String Interpolation kénnen Entwickler seit C# 6.0 die Zusammensetzung von
Zeichenketten aus festen und variablen Bestandteilen libersichtlicher als bisher realisieren.

var ausgabeAltl = "Kunde #" + String.Format("{0:0000}", k.ID) +": " +
k.GanzerName + " ist in der Liste seit " + String.Format("{0:d}", k.ErzeugtAm) +

var ausgabeAlt2 = String.Format("Kunde #{0:0000}: {1} ist in der Liste seit
{2:d}.", k.ID, k.G , k. tAm) ;

var ausgabeNeu = $"Kunde #{k.ID:0000}: {k.GanzerName} ist in der Liste seit
{k.ErzeugtAm:d}.";

Console.WriteLine (ausgabeAltl) ;

Console.WriteLine (ausgabeAlt2) ;

Console.WriteLine (ausgabeNeu) ;
Kunde #0] Holger Schwichtenberg ist in der
Kunde # C

Kunde #0]

Abbildung: Ausgabe des obigen Beispiels

Der Einsatz des terndren Operators und Verschachtelungen von Interpolationsausdriicken sind
moglich:

var ausgabeVerschachtelt = $"Kunde #{k.ID:0000}: {k.GanzerName} {(k.ErzeugtAm !=
null ? $"ist in der Liste seit {k.ErzeugtAm:d}" : "ist nicht in der Liste")}.";

Schon seit C# 6.0 lassen sich die einer Zeichenkette vorangestellten Operatoren $ und @
kombinieren, aber zundchst nur in der Reihenfolge

$@"{ID}: {Name} \\server\User{ID:000}";
Erst mit C# 8.0 wurde eingefiihrt, dass auch die andere Reihenfolge erlaubt ist:
@$"{ID}: {Name} \\server\User{ID:000}";

Datentypen 101

Erst seit C# 10.0 ist String Interpolation bei der Wertzuweisung an Konstanten mdglich.
Voraussetzung ist allerdings, dass die verwendeten Platzhalter auch alle mit Konstanten befiillt
werden.

const string Vorname = "Holger";

const string Nachname = "Schwichtenberg";

// Constant Interpolated String

const string GanzerName = $"Dr. {Vorname} {Nachname}";

19 I static string Vorname = "Holger";

20 const string Nachname = "Schwichtenberg";

21 // Constant interpolated strings

22 || const string GanzerName = §"Dr. {Vorpame} {Nachname}";

gi i € (field) static string) Sonstiges.Vorname

gg 1 CS0133: The expression being assigned to 'CS10_Sonstiges. GanzerName' must be constant

Abbildung: Der Compiler beschwert sich, dass im Interpolated String "GanzerName" eine
Variable statt einer Konstanten verwendet wird.

Die String Interpolation ist seit C# 10 — sowohl mit Konstanten als auch Variablen — deutlich
schneller als C# 6.0 bis 9.0, da Microsoft die Umsetzung durch den Compiler iiberarbeitet hat.
Wihrend vor C# 10.0 die Zeichenketten mit String.Format() und String.Concat() verbunden
wurden, arbeitet im Untergrund nun eine Instanz der Klasse InterpolatedStringHandler, eine
Variante der Klasse StringBuilder.

Aus dieser String Interpolation

string companyInfo = $"Company {ID:0000} {CompanyName} Postcode {Postcode:00000}
Founded {Founded:yyyyl";

macht der Compiler:

DefaultInterpolatedStringHandler defaultInterpolatedstringHandler = new DefaultInterpolatedstringHandler(28, 4);
defaultInterpolatedStringtandler.AppendLiteral("Company ");

defaultInterpolatedstringtandler.AppendFormatted(ID, "B008");

defaultInterpolatedStringHandler.AppendLiteral(” ");
defaultInterpolatedstringHandler . AppendFormatted(CompanyName) ;

defaultInterpolatedStringtandler.AppendLiteral(” Postcode *);
defaultInterpolatedStringHandler . AppendFormatted(Postcod
defaultInterpolatedStringHandler.AppendLiteral(”
defaultInterpolatedstringtandler.AppendFormatted(Founded, "yyyy");
string companyInfo = defaultInterpolatedStringHandler.ToStringAndClear();

Microsoft kommt zu diesen Performance-Ergebnissen, wobei "Old" C# 9.0 meint und "New" C#
10.0 [devblogs.microsoft.com/dotnet/string-interpolation-in-c-10-and-net-6]).

Method Mean Ratio Allocated
Old 111.70 ns 1.00 192 B
New 66.75 ns 0.60 408

Mit dem folgenden Programmcode kénnen Sie selbst nachmessen.

Listing: Vergleich von String Interpolation mit String.Format() und String. Concat()
using System.Diagnostics;

namespace CS10
{
public class CS10_InterpolatedStringPerformance

https://devblogs.microsoft.com/dotnet/string-interpolation-in-c-10-and-net-6

102 Datentypen

int loopCount = 1000000;

public int ID { get; set; } = 123;
public string CompanyName { get; set; } = "www.IT-Visions.de";
public int Postcode { get; set; } = 45257;

public DateTime Founded { get; set; } = new DateTime (1996, 1, 1);
public void Run()

{

var swl = new Stopwatch();

swl.Start();

for (int i = 0; i < loopCount; i++)

{

string name = "Company " + String.Format("{0:0000}", ID) + " " + CompanyName
+ " Postcode " + String.Format("{0:00000}", Postcode) + " Founded " +
String.Format("{0:yyyy}", Founded);

}

swl.Stop() ;

Console.WriteLine ($"{loopCount} String Concat+String Format:
{swl.ElapsedMilliseconds}ms") ;

var sw2 = new Stopwatch() ;

sw2.Start();

for (int i = 0; i < loopCount; i++)

{

string name = String.Format ("Company {0:0000} {1} Postcode {0:00000} Founded
{0:yyyy}", ID, CompanyName, Postcode, Founded) ;

}

sw2.Stop() ;

Console.WriteLine ($"{loopCount} String Format: {sw2.ElapsedMilliseconds}ms");
var sw3 = new Stopwatch();

sw3.Start();

for (int i = 0; i < loopCount; i++)

{

string name = $"Company {ID:0000} {CompanyName} Postcode {Postcode:00000}
Founded {Founded:yyyyl}";

}
sw3.Stop() ;
Console.WriteLine ($"{loopCount} String Interpolation:
{sw3.ElapsedMilliseconds}ms") ;
}
}
}

Datentypen 103

CS18_InterpolatedStringPerformance

ring Forma

1

16 Be r on: 364ms
Abbildung: Ergebnisse des obigen Listings

Neu in C# 11.0 ist, dass Entwickler Zeilenumbriiche und Kommentare innerhalb von
Zeichenketten-Interpolationsausdriicken (also innerhalb der geschweiften Klammern) erfassen
konnen:
string ganzerName = "Dr. Holger Schwichtenberg";
var t = $"V : {ga // BAufteilen

.Split(" ") // dann erstes Element

.ElementAt (1) }";
Console.WriteLine (t) ;

10.7 Raw Literal Strings (seit C# 11.0)

Seit C# 11.0 gibt es eine neue Syntaxform fiir Zeichenkettenliterale mit Umbriichen. Bei einem
"Raw Literal String" beginnt die Zeichenkette mit drei oder mehr Anfithrungszeichen (z.B. """)
und endet mit der gleichen Anzahl von Anfiihrungszeichen.

Die Motivation fiir dieses neue Sprachfeature war, eine Zeichenkettenreprisentation zu
verschaffen, in der keine Steuerzeichen (Escape-Sequenzen) notwendig werden, mit der sich aber
dennoch einfach Umbriiche abbilden lassen und die Interpolation unterstiitzt.

In Raw Literal Strings gilt:
= Umbriiche landen in der Zeichenkette.
= Es gibt keine Steuerzeichen.

= Einrlickungen bleiben erhalten, aber in jeder Zeile entfallen genau so viele Einriickungen wie
es Einriickungen in der letzten Zeile vor dem Ende (z.B. """) gibt.

= Interpolationsausdriicke sind mdglich mit zwei oder mehr Dollarzeichen vor den
Anfiihrungszeichen. Es sind dann in der Zeichenkette fiir den Interpolationsausdruck genauso
viele geschweifte Klammern zu verwenden.

Ein erstes Beispiel mit einen Raw Literal String (hier ohne Einriickungen und ohne Interpolation)
zeigt dieses Codefragment:

// Raw Literal String: 3 oder mehr Anfithrungszeichen zu Beginn

var rawLiteralString = """"

.NET 7.0

ist am 8. November 2022 erschienen

mit Support fiir 18 Monate

wann

Die bisherigen Syntaxformen "Regular String" (Umbriiche mit \n) und "Verbatim String" (Beginn
mit @) bleiben aber weiterhin erlaubt:

var regularString = "\n.NET 7.0\nist am 8. November 2022
erschienen\nmit Support fiir 18 Monate.\n";

var verbatimString = @"
.NET 7.0
ist am 8. November 2022 erschienen

104 Datentypen

mit Support fiir 18 Monate

Visual Studio 2022 seit Unterversion 17.2 bietet Refactoring-Funktionen, um zwischen den nun
drei Zeichenkettenformen (Regular String, Verbatim String, Raw Literal String) umzuwandeln
(siche Abbildung).

1€@ - | var regularString = "\n.MET 7.8\nist am 8. Wovember 2822 erschienen\nmit Support fir 18 Monate
1] woe exphct type instead of v es 9 to 11

var regularstring = FI| NET 7.oJRE an 8. Novesber 7023 srschienenIREY Suppert Fir 18 Menate.
var regularstring = [+

2 Camvart o ram sing o] .weT 70
1€ e mtanmarng ﬁ“ 8. November 2621 erschisnen
Support fir 18 Honate
£ Sumpresor Corturs sves .

v ange
ol ccruemances i Document | Frejst | Ssiution | Conesinig Tyt | Contaming saemes

Abbildung: Refactoring fiir Zeichenketten in Visual Studio 2022 seit Version 17.2
Die folgenden Beispiele zeigen Raw Literal String mit Einriickung und Interpolation:

var name = "Dr. Holger Schwichtenberg";
var website = "www.dotnet-doktor.de";

var nameUndWebsitel = $$"""
Name: {{{name}}} Website: {{{website}}}

Console.WriteLine (nameUndWebsitel); // Name: {Dr. Holger Schwichtenberg} Websit
e: {www.dotnet-doktor.de}

var nameUndWebsite2 = $$§"""
Name: {{{name}}} Website: {{{website}}}

Console.WriteLine (nameUndWebsite2); // Name: Dr. Holger Schwichtenberg Website:
www.dotnet-doktor.de

Praxisbeispiel

Das folgende Listing zeigt den Einsatz eines Raw Literal String fiir die Konstruktion einer JSON-
Zeichenkette mit Einriickungen und Interpolation inklusive Kommentare in der Interpolation.

Listing: Ein Raw Literal String mit Interpolation, der JSON erzeugt

var name = "Dr. Holger Schwichtenberg";
var website = "www.dotnet-doktor.de";

var json = $§"""

{
"Person": {
"Name": "{{name // Name der Person
e
"Webseite": "{{website // Website in Kleinbuchstaben
.ToLower () }}"
}

}

Datentypen 105

Der Debugger Visualizer in Visual Studio zeigt bereits an, dass die Einrtickungen per Leerzeichen
erhalten bleiben (siche ndchste Abbildung).

u3 var name = "Dr. Holger Schwichtenberg";

4y var website = "www.dotnet-doktor.de";

us

ug - var [json = $§"""

u7 i

ug "Person": {

ug "Name": "{{name // Name der Person

50

51 "Webseite": "{{website // VWebsite in Kleinbuchstaben
52 .ToLower "

53

54 I Text Visualizer 7 X
55

56 Expression: json

574" Eonsole.WriteLine(json);] | wue
8

{
59 e g
60 “Name": "Dr. Holger Schwichtenberg”,
61 "Webseite": "www.dotnet-doktor.de"
62
63 ¥

Abbildung: Raw Literal String im Debugger-Visualizer

Die Ausgabe an der Konsole sicht daher so aus:

Abbildung: Ausgabe des Raw Literal String an der Konsole

Hinweis zu den Einriickungen in Raw Literal Strings

Die Einriickungen bei einem Raw Literal konnen gemischt aus Tabulatoren und Leerzeichen
bestehen, z.B.

name-//-Name-der-Person

:-"{{website-//-Website-in-Kleinbuchstaben
.ToLower "

Abbildung: Giiltige Mischung von Tabulatoren und Leerzeichen in einem Raw Literal String

Allerdings muss die Einrlickung links von der Linie einheitlich in allen Zeilen sein. Die folgende
Bildschirmabbildung zeigt eine ungiiltige Einrlickung, weil in Zeile 51 und 53 jeweils zweimal
einen Tabulator verwendet wird, in allen anderen Zeilen nur einmal. Visual Studio zeigt daher auch
nicht die Linie an, die die Einriickung im Code von der Einrtickung im String trennt.

Datentypen

name://:Name -der:Person

website-//-Website-in-Kleinbuchstaben
. . -+ .ToLower! "
@ [59063: Line contains different whitespace than the closing Line of the ram string Literal: '\t' versus '\ubg2a"

Abbildung 5: Ungiiltige Mischung von Tabulatoren und Leerzeichen in einem Raw Literal String

10.8 UTF-8-Zeichenkettenliterale (seit C# 11.0)

NET arbeitet im Standard mit Zeichenketten in der Zeichencodierung UTF-16. In
Webanwendungen wird in der Regel UTF-8 verwendet.

UTF-16 is the only web-encoding incompatible with ASCII and never gained popularity on the
web, where it is declared by under 0.002% of web pages| (and many of these are actually UTF-8
because of "contradictory character encoding specifications” and/or "incorrect character
encoding defined"). UTF-8, by comparison, accounts for 98% of all web pages. The Web Hypertext
Application Technology Working Group (WHATWG) considers UTF-8 "the mandatory encoding
for all [text]" and that for security reasons browser applications should not use UTF-16."
[https://en.wikipedia.org/wiki/UTF-16]

Neu in C# 11.0 sind auch UTF-8-Zeichenkettenliterale mit denen Entwickler eine Zeichenkette
angeben dirfen, aus der man eine Bytefolge von UTF-8-Codes in Form einer Instanz des .NET-
Typs ReadOnlySpan<byte> erhilt. Eine UTF-8-Zeichenkette bendtigt den Nachsatz u8 oder us
nach dem schlieBenden Anfithrungszeichen.

Die folgenden Beispiele zeigen "Hallo Holger!" in UTF-8-Zeichenkettenliteralen:

ReadOnlySpan<byte> sl = "Hallo Holger!'"u8;
var s2 = "Hallo Holger!"u8;

var s3 = "Hallo Holger!"US8;

byte[] s4 = "Hallo Holger!"u8.ToArray() ;

Alle diese Syntaxvarianten erzeugen in C# 11.0 die folgende Bytefolge:
0x48 0x61 0x6C 0x6C Ox6F 0x20 0x48 0x6F 0x6C 0x67 0x65 0x72 0x21

UTF8-Zeichenketten konnen jedoch nicht verwendet werden mit String Interpolation und in
Standardwerten fiir Parameter!

10.9 Zahlenliterale

Fiir die gebrochenen Zahlen gibt es in C# besondere Kiirzel, die in Literalen zu verwenden sind.
Im Standard ist eine gebrochene Zahl vom Typ double. Der Suffix d ist also optional.

byte zl1 = 123;

short z2 = 123;

int z3 = 123;

long z4 = 123;

float z5 = 123.45f;

double z6 = 123.45d;

decimal z7 = 123.45m;
Zahlenliterale kann der Entwickler seit C# 7.0 auch in Bindrform hinterlegen. Der Unterstrich ist
als Trennzeichen zur libersichtlicheren Darstellung bei Binér- und Dezimalsystemliteralen erlaubt
und hat keinen Einfluss auf den Wert.

Datentypen 107

int AntwortAufAlleFragen = 0b001_01010; // 42
Console.WriteLine (AntwortAufAlleFragen) ;

decimal JahresGehalt = 123 456_789m;
Console.WriteLine (JahresGehalt) ;

10.10 Datumsliterale

Es gibt —anders als in Visual Basic .NET — keine eigene Syntax fiir Datumsliterale. Man kann ein
Datum nur unter Verwendung des Konstruktors .NET-Klasse DateTime erzeugen.

DateTime dl = new DateTime (2018, 03, 23); // 23.3.2018 00:00:00 Uhr
DateTime d2 = new DateTime (2018, 11, 11, 11,11,11); // 11.11.2018 11:11:11 Uhr

10.11 Lokale Typableitung (Local Variable Type
Inference)

In C# 3.0 wurde die Typableitung neu eingefiihrt. Typableitung bedeutet, dass der Entwickler in
seinem Programmcode keinen expliziten Typ vergibt, sondern der Compiler den Typ wihrend der
Ubersetzung festlegt. Typableitung darf nicht mit Variant aus Visual Basic 5.0 / 6.0 verwechselt
werden (auch wenn in C# 2008 das Schliisselwort var heifit): Bei einem Variant konnte man
jederzeit im Programmablauf den Typ é&ndern. Ein Variant war eine sehr speicherfressende
Datenstruktur. Variablen, die mit Typableitung erzeugt wurden, erhalten hingegen zur
Ubersetzungszeit einen festen Typ, der im Programmablauf nicht mehr geéindert werden darf und
nicht mehr Speicher als bei einer expliziten Deklaration verbrauchen.

Typableitungen werden in C# durch das neue Schliisselwort var anstelle des Datentyps, aber mit
Initialisierung festgelegt.

Listing: Drei Typableitungen in C#

// Local Variable Type Inference fiir String
var heimatflughafen = "Essen/Miilheim";
Console.WriteLine (heimatflughafen.GetType () .FullName) ;

// Local Variable Type Inference fiir Int32
var anzahl = vorstandsmitglieder.Count;
Console.WriteLine (anzahl.GetType () . FullName) ;

// Local Variable Type Inference fiir die Klasse Vorstandsmitglied
var vorstandschef = vorstandsmitglieder[0];
Console.WriteLine (vorstandschef.GetType () . FullName) ;

Hinweis: Die Typableitung heifit lokal, weil sie nur fiir lokale Variablen in Methoden mdglich
ist. Ein Einsatz als Attribut einer Klasse bzw. Parameter oder Riickgabewert einer Methode ist
ausgeschlossen. Eine Typableitung muss immer mit einer Wertinitialisierung verbunden sein,
da sonst keine Typableitung moglich ist. null bzw. nothing ist nicht erlaubt, da hier keine
Typableitung moglich ist.

Man kann die Typableitung auch fiir Laufvariablen in Schleifen verwenden.

Wichtig: Bei vielen Entwicklern herrscht zundchst Skepsis iiber den Sinn der lokalen
Typableitungen. Tatsdchlich machen Typableitungen fiir sich isoliert betrachtet nur einen
begrenzten Sinn. Typableitungen sind jedoch absolut notwendig im Zusammenhang mit
anonymen Typen und LINQ-Projektionen. In beiden Szenarien entstehen Klassen, deren Namen
der Entwickler nicht kennen kann.

108 Datentypen

Man darf Typableitung nicht mit dem Einsatz der allgemeinen Klasse System.Object
verwechseln. Eine mit System.Object (alias object oder Object) deklarierte Variable kann
tatsichlich im Programmablauf verschiedenartigste Inhalte aufnehmen. Eine mit lokaler
Typableitung deklarierte Variable hingegen hat einen festen, unveranderbaren Typ.

Tipp: Gerade bei der Klasseninstanziierung in C# kann man durch die Typableitung die
tiberfliissige Doppelnennung des Klassennamens vermeiden, denn man schreibt nun statt
Vorstandsmitglied vl = new Vorstandsmitglied();

kiirzer:

var v2 = new Vorstandsmitglied();

Die neue Schreibweise hat keinen Nachteil!

Vorstandsmitglied ¥1 = new Yorstandsmitglied();
Vorstandsmitglied ¥2 = new Yaorstandsmitglied();

Abbildung:Beim Betrachten mit dem Decompiler .NET Reflector sieht man, dass der Compiler
beide Zeilen gleich iibersetzt hat

10.12 Giuiltigkeit von Variablen

Eine innerhalb eines Anweisungsblocks { ... } deklarierte Variable ist nur innerhalb des Blocks
giiltig, nicht in der ganzen Unterroutine.

public void Aktion()
{
int a = 1;
{
int b = 2;
Console.WriteLine ($"{a}+{b}={a}{b}");
}
// geht nicht, denn b ist hier nicht mehr giiltig
// Console.WriteLine($"{a}+{b}={a}{b}");
}

10.13 Typprifungen

Mit GetType() ermittelt man von einer Variablen den Typ in Form einer Instanz der .NET-Klasse
System.Type. Dies kann man mit dem Typ einer anderen Variablen vergleichen oder dem
statischen Ausdruck typeof(Typ). Solch ein Vergleich macht nur Sinn fiir Variablen des Typs
object oder dynamic. Wenn eine Variable typisiert ist (auch bei Einsatz des Schliisselwortes var),
wird die Priifung immer nur fiir diesen Typ erfolgreich sein, selbst wenn eine Konvertierung in
einen anderen Typ moglich wire (hier am Beispiel: "5" ist eine Zeichenkette, keine Zahl). Eine
solche Typkonvertierung muss man explizit implementieren (siehe néchstes Unterkapitel).

// Dieser Wert wurde eingegeben
object eingabe = "Holger";

if (eingabe.GetType() == typeof (string)) { Console.WriteLine ("Eingabe ist ein
Text"); } // wahr

eingabe = 1;

Datentypen 109

if (eingabe.GetType() == typeof (int)) { Console.WriteLine ("Eingabe ist eine
zahl"); } // wahr

dynamic eingabe2 = "Holger";

if (eingabe2.GetType() == typeof (string)) { Console.WriteLine ("Eingabe ist ein
Text"); } // wahr

eingabe2 = 1;
if (eingabe2.GetType() == typeof (int)) { Console.WriteLine ("Eingabe ist eine
zahl"); } // wahr

var name = "Holger Schwichtenberg";
if (name.GetType() == typeof(string)) { Console.WriteLine("name ist ein
Text"); } // wahr

name = "5";
if (name.GetType() == typeof(int)) { Console.WriteLine("name ist eine Zahl");
} // falsch

10.14 Typkonvertierung

Typkonvertierung (engl. Type Cast) bezeichnet die Umwandlung von einem Datentyp in einen
anderen, z.B. Umwandeln einer Zahl in eine Zeichenkette oder Extrahieren einer Zahl aus einer
Zeichenkette.

In C# kommt immer eine sehr strenge Typpriifung zum Einsatz, wohingegen sie in Visual Basic
NET explizit (mit Option Strict) eingeschaltet werden muss. Fiir

int zahl = 1;

sind folgende Konstrukte nicht giiltig:

// falsch: string text = zahl;
// falsch: string text = ((string) zahl);
// falsch: string text = zahl as string;

int zahl = 1;
string text = %\]’.,

[®1 {local variable) int zahl

Cannot implicitly convert type ‘int' to 'string’
Abbildung: Der Compiler ist streng

Die Konvertierung von Zahl zu Text ist nur moglich iiber die ToString()-Methode oder iiber die
NET Basisklasse System.Convert.

string textl = zahl.ToString();

string text2 = Convert.ToString(zahl);

Dariiberhinaus bieten alle Klassen fiir Zahlen (System.Byte, System.Int16, System.Int32, etc.)
sowie einige andere Typen wie System.Version und System.Guid die Moglichkeit, den Typ aus
einer Zeichenkette zu extrahieren mithilfe der Methoden Parse() und TryParse().

decimal eingabezahlA;
if (System.Decimal.TryParse (ei , out ei b hlA))

{ Console.WriteLine ("Eingabe ist die Zahl: " + eingabezahlA); }
else

110 Datentypen

{ Console.WriteLine ("Eingabe war keine Zahl!"); }
Seit C# 7.0 kann man mit sogenannten "Inline-out-Variablen" die Syntax verkiirzen:
string eingabeB = "123.45";
if (System.Decimal.TryParse (eingabeB, out decimal eingabezahlB))
{ Console.WriteLine ("Eingabe ist die Zahl: " + eingabezahlB); }
else
{ Console.WriteLine ("Eingabe war keine Zahl!"); }
Wenn es nur um die Typpriifung, aber nicht um die Konvertierung geht, dann kann man bei out
die sogenannte Discard-Variable, die nur aus dem Unterstrich (_) besteht, einsetzen (ebenfalls
seit C# 7.0).
string eingabeC = "123.45";
if (System.Decimal.TryParse(eingabeC, out _))
{ Console.WriteLine("Eingabe ist die Zahl!"); }
else
{ Console.WriteLine ("Eingabe war keine Zahl!"); }

Zwischen polymorphen Klassen gibt es zwei Syntaxformen fiir die Typumwandlung:

1. Voranstellen des Zieltyps in runden Klammern

pass = ((Passagier)a[0]);

2. Verwendung des Operators as

pass = (a[0] as Passagier);

Der Unterschied zwischen der Schreibweise mit dem vorangestellten Typnamen und der
Verwendung des as-Operators ist, dass in dem ersten Fall eine Ausnahme (InvalidCastException)
erzeugt wird, wenn die Konvertierung nicht moglich ist, wahrend der as-Operator in diesem Fall
null zuriickliefert.

Hinweis: Sie finden im Kapitel "Erweiterungsmethoden" Beispiele fiir einige sehr elegante
Losungen fiir die Typkonvertierung.

10.15 Dynamische Typisierung

Dynamische Typisierung bedeutet, dass die Einsprungstelle fiir einen Attributzugriff oder einen
Methodenaufruf nicht zur Kompilierzeit feststeht (statische Typisierung), sondern erst zur Laufzeit
ermittelt wird. Grundsétzlich ist statische Typisierung erstrebenswert, aber nicht immer ist dies
mdoglich. Unmdglich ist die statische Typisierung zum Beispiel bei der Verwendung von COM-
Bibliotheken, die als Datentypen Variant verwenden. Oder beim Zusammenspiel mit dynamischen
Sprachen wie IronPython.

Achtung: Bei dynamischer Typisierung kann Visual Studio keine IntelliSense-
Eingabeunterstiitzung bieten. Dynamische Typisierung birgt immer die Gefahr, dass die
entsprechende Aktion nicht verfiigbar ist, sei es durch einen Tippfehler oder weil ein anderes
Objekt geliefert wird, als erwartet wurde. Wenn die Bindung nicht moglich ist, kommt es zum
Laufzeitfehler (RuntimeBinderException).

Datentypen 111

public static void ExcelDemo()

i

dynamic excel = Activator.CreateInstance(Type.GetTypeFromProgID
"Excel.Application”}});

excel.Visible = true;

dynamic workBook = excel.wWorkbooks.Add();

excel.Cells[1, 1].value2 = "Test";

workBook. SaveAs (@"C:\temp\testdatei.xls");

excel.(lose()ﬂ;\

}

L. RuntimeBinderException was unhandled

} 'Microsoft.OfficeInterop.Excel. ApplicationClass' does not contain a definition f
‘Close’

Abbildung: Laufzeitfehler, denn die Methode zum Schliefen wiire Quit() statt Close() gewesen

In C# wurde die dynamische Typisierung erst in C# 4.0 auf einfache Weise ermdglicht. Vorher
musste man sehr umstindlich mit dem .NET-Reflection-Mechanismus arbeiten. C# bietet seit
Version 4.0 dafiir das Schliisselwort dynamic.

Um dynamic in C# zu nutzen, muss man die Assembly Microsoft.CSharp.dll referenzieren. Es
kommt sonst zum Fehler »Predefined type 'Microsoft.CSharp.RuntimeBinder.Binder' is not
defined or imported.«

Listing: Verwendung der dynamischen Typisierung in C# [CS10_Dynamic.cs]
/// <summary>
/// Beispiel fiir dynamische Nutzung einer COM-
Bibliothek (hier: Microsoft Excel)
/// </summary>
public static void ExcelDemo ()
{
dynamic excel = Activator.CreatelInstance (Type.GetTypeFromProgID ("Excel.Applicat
ion"));
excel.Visible = true;
dynamic workBook = excel.Workbooks.Add() ;
excel.Cells[1l, 1].Value2 = "Test";
workBook.SaveAs (Q@"C:\temp\testdatei.xls");
excel.Quit() ;

}

10.16 Wertelose Wertetypen (Nullable Value Types)

Waihrend Referenztypen bereits in NET 1.x den Zustand null als Reprisentanz des Zustands nicht
vorhanden / nicht gesetzt annehmen konnten, war dies fiir Wertetypen nicht vorgesehen. Ab .NET
2.0 existiert ein Hilfskonstrukt, um auch Wertetypen den Wert null zuweisen zu kénnen.

In .NET (seit Version 2.0) ist ein auf null setzbarer Wertetyp eine generische Struktur
(System.Nullable<T>), die aus dem eigentlichen Wert (Value) und einem Hilfs-Flag HasValue
(Typ boolean) besteht, das anzeigt, ob der Wert des Typs null ist.

C# unterstiitzt Nullable Value Types bereits seit Version 2005 durch ein besonderes
Sprachkonstrukt: Durch ein Fragezeichen als Suffix eines Wertetyps in einer Typdeklaration sorgt
der C#-Compiler automatisch dafiir, dass der Wertetyp in die generische System.Nullable-Struktur
verpackt wird. Moglich ist auch eine explizite Deklaration mit System.Nullable.

112 Datentypen

// Wertetyp ohne null

int a = 1;

int b = 0;

// Wertetyp mit null erlaubt
int? x = 2;
System.Nullable<Int32> y = 6;

Die folgende Tabelle zeigt verschiedene Ergebnisse fiir Operationen mit den obigen Variablen.

Operation Ergebnis, falls x den Ergebnis, falls x null ist
Wert 2 hat

string sl = True False

x.HasValue.ToString();

string s2 = x; Kompilierungsfehler Kompilierungsfehler

string s3 = x.Value.ToString(); 2 Laufzeitfehler

string s4 = x.ToString(); 2 Leere Zeichenkette

int? z=x+10; 12 Null

intal =x; 2 Kompilierungsfehler

int a2 = (int)x; 2 Laufzeitfehler

inta3 =x??0; 2 0

Tabelle: Verschiedene Operationen mit wertelosen Wertetypen in C# seit Version 2005

Bitte beachten Sie, dass man den Typ string (System.String) nicht als wertelosen Wertetyp
verwenden kann, da String kein Wertetyp ist, sondern ein Referenztyp, der sich in einigen
Punkten (z.B. Wertzuweisungen) verhélt wie ein Wertetyp. Richtig ist also string i = null; statt
string? i = null;

Listing: Verschiedene Beispiele mit Nullable Types

public void NullableTypes ()

{

int a = 1;

// Elegante Deklaration in C#

int? b = 2;

// a = null; // verboten!

b = null; // Erlaubt

// Explizite Deklaration

System.Nullable<Int32> c = null;

c = 100;

Demo.Print(c.HasValue.ToString()) ;

Demo.Print(c.Value.ToString()); // Achtung: Geht nur, wenn c tatsidchlich einen
Wert hat!

// Besser: "Null" abfangen

Demo.Print ("b = " + (b.HasValue ? b.Value.ToString() : "null"));

}

Datentypen

113

Deklaration eines
normalen Wertetyps

Zuweisung des nicht
vorhandenen an
einen normalen
Wertetyp

Deklaration eines
wertelosen Wertetyps
in Langform

Deklaration eines
wertelosen Wertetyps
in Kurzform

Ausdruck x

Ausdruck x.Value

Ausdruck
x.HasValue

Ausdruck x + 1

Zuweisung x =a

Zuweisung a = x

Zuweisung a = (int) x
bzw.
a = CType(x, Integer)

C#
int a;

Nicht moglich
(Kompilierungsfehler)

System.Nullable<Int32> x =
null

int? x = null;

Liefert Wert oder null

Liefert Wert oder
Laufzeitfehler (»Das Objekt
mit Nullwert muss einen Wert
haben.«)

Liefert true oder false

Liefert null, wenn x gleich null

Erlaubt, liefert a

Kompilierungsfehler:
Verbotene Typkonvertierung

Laufzeitfehler (»Das Objekt
mit Nullwert muss einen Wert
haben.«), wenn x gleich null

Visual Basic NET

Dim a As Integer

a=nothing

setzt den Wert auf die Zahl 0 bzw.
anderen Startwert (z.B.z.B.
DateTime.MinValue)

Dim x As System.Nullable(Of
Integer) = Nothing

Integer? x = nothing;

Visual Basic .NET 2005: Nicht
moglich (Kompilierungsfehler)
Ab Visual Basic .NET 2008:
Liefert Wert oder null

Liefert Wert oder Laufzeitfehler
(»Das Objekt mit Nullwert muss
einen Wert haben.«)

Liefert true oder false

Visual Basic .NET 2005: Nicht
moglich (Kompilierungsfehler)

Ab Visual Basic .NET 2008:
Liefert null, wenn x gleich null

Erlaubt, liefert a

Mit Option Strict: Verbotene
Typkonvertierung

Ohne Option Strict: Laufzeitfehler
(»Das Objekt mit Nullwert muss
einen Wert haben.«), wenn x
gleich null

Laufzeitfehler (»Das Objekt mit
Nullwert muss einen Wert
haben.«), wenn x gleich null

114 Datentypen

Konvertierung eines a=x??0 If x.HasValue Then
wertelosen Wertetyps a=x.Value

in einen normalen Else

Wertetypen mit der a=0

Semantik: liefert x, End If

wenn x einen Wert

hat oder Zahl 0,

wenn x gleich null.

Tabelle: Gegeniiberstellung der Behandlung von wertelosen Wertetypen in C# und Visual Basic
.NET

Operatoren 115

11 Operatoren

Es gibt einige wichtige Unterschiede zwischen den Operatoren in Visual Basic .NET und C#, die
bei Portierungen von Code zu beachten sind:

Das Gleichheitszeichen = ist in C# immer der Zuweisungsoperator. Zum Vergleichen miissen
immer zwei Gleichheitszeichen = = verwendet werden.

Das Ungleichheitszeichen ist = statt <>.

Zeichenkettenverkniipfungen erfolgen immer mit dem Pluszeichen (+). Das kaufménnische
Und (&) ist nicht erlaubt.

Die logischen Operatoren Und (&&) und Oder (||) verwenden immer die Short-Circuit-
Auswertung, d. h., die folgenden Teile eines Ausdrucks werden nicht mehr ausgewertet,
sobald feststeht, dass der Ausdruck nicht mehr wahr werden kann. && entspricht also
AndAlso und || also OrElse in Visual Basic .NET.

Bei der Division ist es vom Typ der Operanden abhéngig, ob die Division als Ganzzahldivision
ausgefiihrt wird.

1.1 Uberblick iiber die Operatoren

Die folgende Tabelle zeigt die Operatoren in C# im Vergleich zu anderen Programmiersprachen
der NET-Welt.

116 Operatoren
Visual C# Visual J# C++ JSeript
Basic
Mathematik
Addition + + + + +
Subtraktion — — — _ _
Multiplikation * * * * *
Division / / / / /
Ganzzahldivision \ / ---
Modulus Mod % % % %
Negation Not ~ ~ ~ ~
Inkrement - ++ ++ ++ ++
Dekrement - -- -- - .
Zuweisung
Einfache Zuweisung = = = = =
Addition += += += += 4=
Subtraktion -= -= .= o= o
Multiplikation *= *= *= *= K
Division /= /= /= /= /=
Ganzzahl-Division \= /= ---
Zeichenketten- &= += +=
verbindung
Modulus (Divisionsrest) - %= Y= Yo= Y%=
Bit-Verschiebung nach <<= <<= <<= <<= <<=
links
Bit-Verschiebung nach >>= >>= >>= >>= >>=
rechts
Bit-weises UND - &= &= &= &=
Bit-weises XOR - A= A= A= Am
Bit-weises OR - = - - —
Vergleich
Kleiner < < < < <
Kleiner gleich <= <= <= <= <=
Grofier > > > > >

Operatoren 117
Visual C# Visual J# C++ JScript
Basic
Grofler gleich >= >= >= >= >=
Gleich = == == —= -
Nicht gleich <> 1= 1= 1= 1=
Objektvergleich Is == == - ==
Objektvergleich (negativ) = IsNot 1= 1= - =
Objekttypvergleich TypeOf x x is Class] | x instanceof - Instanceof
Is Classl Classl
Zeichenkettenvergleich = == - ==
Zeichenkettenverbindung = & + + - +
Logische Operatoren
UND And && && && &&
ODER Or I I I I
NICHT Not ! ! ! !
Short-circuited UND AndAlso && && && &&
Short-circuited ODER OrElse I 1 I Il
Bit-Operatoren
Bit-weises UND And & & & &
Bit-weises XOR Xor ~ ~ ” n
Bit-weises OR Or
Bit-Verschiebung nach << << << << <<
links
Bit-Verschiebung nach >> >> >> >> >> >>>
rechts
Sonstiges
Bedingt 1IF- ” % IH ?:
Funktion
und If-
Operator
Bedingt (fiir Nullable - 27 ---
Types)

Tabelle: Vergleich der Operatoren in verschiedenen .NET-Sprachen

11.2 Uberlaufpriifung

StandardmaBig ignoriert C# Uberldufe in Ganzzahloperationen, was zu falschen Ergebnissen
fiihren kann, ohne eine Ausnahme auszulGsen.

118 Operatoren

Beispiel: Der maximale Wert eines int in C# ist 2.147.483.647. Wenn dieser Wert um 1 erhoht
wird, fiihrt dies zu einem Uberlauf, wodurch der Wert negativ wird ("unterlduft"): -2.147.483.648.

int max = int.MaxValue;

int result = max + 1; // Keine Exception, fithrt zu Uberlauf und negativem Wert
Console.WriteLine (result); // Ausgabe: -2147483648

Mit dem Einsatz von checked kann man diese Uberldufe zur Laufzeit priifen. Das Schliisselwort
checked kann man in einem einzelnen mathematischen Ausdruck wie eine Funktion verwenden
oder als Blockoperator mit geschweiften Klammern wie z.B. using oder unsafe.

Listing: Einsatz von checked

try

{

int result2 = checked(max + 1);

Console.WriteLine (result2) ;

}

catch (Exception ex)

{

CUI.Error (ex); // System.OverflowException: 'Arithmetic operation resulted in an
overflow.'

}

try

{

checked

{
int result3 = max + 1;
Console.WriteLine (result3) ;
}

}

catch (Exception ex)

{
CUI.Error(ex); // System.OverflowException: 'Arithmetic operation resulted in an
overflow.'

}

Zusiitzlich gibt es auch das Gegenteil, das Schliisselwort unchecked, das Uberlaufiiberpriifungen
explizit ausschaltet in Fillen, in denen bereits der Compiler einen Uberlauf erkennt, man dies aber
zulassen will:

long €@ = ulong.MaxValue * 2; // kompiliert nicht: 58220 The operation overflows at compile time in checked mode

71, B fconstant) const ulong ulong MaxValue = 18445744073709551615
Represents the largest possitie value of s feld s comstant.

€50220: The operation cverlaws at compse time in checked made

Listing: Einsatz von unchecked

unchecked
{
long el = long.MaxValue * 2;
Console.WriteLine (el); // erlaubter Uberlauf -> -2

ulong e2 = ulong.MaxValue * 2;
Console.WriteLine (e2); // erlaubter Uberlauf -> 18446744073709551614
}

long e3 = unchecked(long.MaxValue * 2);

Operatoren 119

Console.WriteLine(e3); // erlaubter Uberlauf -> 2

ulong e4 = unchecked (ulong.MaxValue * 2);
Console.WriteLine(e4); // erlaubter Uberlauf -> 18446744073709551614
}

Hinweis: Das Ausschalten der Uberlaufpriifung mit unchecked steigert die Performance, fiihrt
aber ggf. zu falschen Ergebnissen!

In C# unterstiitzen FlieBkomma-Datentypen wie float, double und decimal weder checked noch
unchecked. Das Verhalten ist aber bei diesen Typen verschieden:

* Bei cinem Uberlauf wirft der decimal-Typ immer eine OverflowException, unabhingig
davon, ob checked oder unchecked verwendet wird.

» Fiir float und double ist das Verhalten bei Uberldufen, Division durch Null und
Ungenauigkeiten ist im IEEE 754-Standard festgelegt. Anstelle einer OverflowException
geben diese Typen spezielle Werte wie Infinity, -Infinity und NaN (Not a Number) zuriick.

11.3 Null Coalescing Operator ??

Ein C#-Operator, fiir den es keine Entsprechung in Visual Basic NET gibt, ist das doppelte
Fragezeichen (??). Der "Null Coalescing Operator" 22 liefert (seit C# 2.0) den Wert des vo-
rangestellten Ausdrucks, wenn dieser nicht null ist. Wenn der Wert null ist, wird der Wert des
nachfolgenden Ausdrucks iibergeben. Somit kann man auf elegante Weise den null-Fall in einen
anderen Wert umwandeln.

Listing: Einsatz des ??-Operators

// Umwandlung eines Nullable Int in einen Int

int? d = null;

int e = d ?? -1;

// Behandlung eines String

string s = null;

Demo.Print ("s = " + (s ?? "(kein Inhalt)"));

Leider ist der Operator nicht hilfreich, wenn man einen wertelosen Zahlenwert ausgeben mochte,
weil beide Operanden den gleichen Typ besitzen miissen.

Demo.Print("d = " + (d ?? "null")); // geht leider nicht :-(

11.4 Null Coalescing Assignment ??=

Eine weitere Behandlung des null-Falls ist in C# 8.0 hinzugekommen in Form des Operators "Null
Coalescing Assignment" mit 2?=. Mit diesem Zuweisungsoperator kann der C#-
Softwareentwickler eine Zuweisung ausfithren, wenn eine Variable den Wert null hat. Damit
werden einige Einsatzgebiete des Null Assignment Operators nochmals verkiirzt.

Statt

P =p ?? new Person() { ID = 1, Name = "Holger Schwichtenberg" };

oder

if (p == null) p = new Person() { ID = 1, Name = "Holger Schwichtenberg" };

kann man nun auch priagnanter schreiben:

P ??= new Person() { ID = 1, Name = "Holger Schwichtenberg" };

120 Operatoren
11.5 Null Conditional Operator ?.

Zu den sehr praktischen Neuerungen seit C# 6.0 gehort der Fragezeichen-Punkt-Operator (?.), der
im Gegensatz zu dem einfachen Punkt-Operator keinen Laufzeitfehler auslost, wenn der Ausdruck
vor dem Punkt keinen Wert besitzt, also "null" (in C#) beziehungsweise "nothing" (in Visual Basic
NET) liefert. Microsoft nennt den Operator den Null Conditional Operator.

In der folgenden Zeile ist der Inhalt der Variablen name null, wenn entweder:
= Die Variable repository null ist

= Die Methode GetKontakt(123) null liefert

= QOder das String-Attribut Name im gelieferten Kontakt-Objekt null ist.

string name = repository?.GetKontakt(123)?.Name;

Hinweis: Auf den ersten Blick konnte man denken, dass hier die Ursache fiir einen Fehler nicht
mehr erkennbar ist. In vielen Féllen geht es aber gar nicht darum, die Ursache fiir einen Fehler
zu kennen, sondern primér erstmal darum, dass es gar keinen Fehler gibt. Hier hilft der Operator
?2. sehr.

11.6 Operator nameof()

Der in C# 6.0 (und Visual Basic 14.0) neu eingefiihrte Operator nameof() liefert den Namen eines
Bezeichners als Zeichenkette (bei mehrgliederigen Namen nur den letzten Teil). Dieser Operator
erhoht die Robustheit und erleichtert das Refactoring in Situationen, in denen der Name einer
Klasse oder eines Klassenmitglieds als Zeichenkette zu iibergeben ist.

Listing: Einsatz des Operators nameof() fiir ArgumentNullException
public void SaveKontakt (Kontakt neuerKontakt)

{

if (neuerKontakt == null) throw new
ArgumentNullException (nameof (neuerKontakt)) ;

}
Listing: Einsatz des Operators nameof() fiir PropertyChangedEventArgs
public int KontaktAnzahl
{
get { return kontaktAnzahl; }
set
{
PropertyChanged (this, new PropertyCh
kontaktAnzahl = value;
}
}
Laut der Dokumentation ist der Operator nameof() auf Variablen, Typen und Mitglieder
beschrénkt.

:ventArgs ((KontaktAnzahl))) ;

nameof expression (C# reference)
19+ 2 minutes to resd « GO@O

A nameof expression produces the name of a variable, type, or member as the string canstant:

Operatoren 121

Abbildung: learn.microsoft.com/en-us/dotnet/csharp/language-reference/operators/nameof

Tatséchlich funktioniert nameof() aber auch mit Namensraumen.

Listing: Einsatzgebiete von nameof{()
namespace CS60
{
class CS60Demos
{
public int Property { get; set; }
public static void DemoNameOf ()
{
int Variable;

Console.WriteLine (" "+ (Cs60)) ;
Console.WriteLine ("Klasse: " + nameof (CS60Demos)) ;
Console.WriteLine ("Methode: " + nameof (DemoNameOf)) ;
Console.WriteLine ("Property: " + nameof (Property));
Console.WriteLine ("Variable: " + nameof (Variable)) ;
}

}
}
Der Operator nameof() kann auch auBerhalb der Klasse eingesetzt werden indem man den
Klassennamen dem Mitgliedsnamen getrennt durch einen Punkt voranstellt:

nameof (Klasse.Klassenmitglied)

Hinweis: Dies ist aber nur fiir Offentliche Klassenmitglieder =~ mdglich
[github.com/dotnet/csharplang/issues/1990]. Daher ist im néchsten Beispiel der Einsatz fiir
"FieldPrivate" nicht moglich.

Listing: Einsatz des Operators nameof() fiir das Mapping eines Fields bei Entity Framework
Core

public class DemoEntityClass

{

public byte ID { get; set; }
public int FieldPublic;
private int FieldPrivate;

protected override void OnModelCreating(ModelBuilder modelBuilder)

{

modelBuilder.Entity<DemoEntityClass>() .Property (nameof (DemoEntityClass.FieldPubl
ic));

modelBuilder.Entity<DemoEntityClass>() .Property ("FieldPrivate") ;
}

11.6.1 Neuerungen fiir nameof() seit C# 11.0
Der Operator nameof() funktioniert seit C# 11.0 auch fiir Parameter von Methoden in
Annotationen, die auf der Methode oder einen Parameter gesetzt sind.

[Description ($"Diese Methode besitzt einen generischen Typparameter mit Namen {na
meof (T) } und erwartet eine Instanz dieses Types im Parameter {nameof (obj)}.")]

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/nameof
https://github.com/dotnet/csharplang/issues/1990

122 Operatoren

static void NameOfErweiterungenl<T>(T obj)
{

static void NameOfErweiterungen2<T>([Description($"Die Methode {nameof (NameOfErwe
iterungen2)} erwartet im ersten Parameter {nameof (obj)} ein Objekt vom Typ des ge
nerischen Parameters {nameof(T)}!")] T obj)

{

11.6.2 Neuerungen fiir nameof() seit C# 12.0

Der Operator nameof() funktionierte vor C# 12.0 in manchen Situationen nicht. Der Abruf des
Namens von Instanzmitgliedern von Klassenmitglieder war nicht moglich in einigen Féllen
(statische Mitglieder, Annotationen) vor C# 12.0. Microsoft hat den Einsatzbereich von C# in
Version 12.0 auf diese Fille erweitert.

Listing: nameof() funktioniert seit C# 12.0 auch in Annotationen und statischen Mitgliedern
[Description ($" {nameof (StringLength)} liefert von {nameof (Name)} die Eigenschaft
{nameof (Name.Length) }")] // nameof (Name.Length) nicht méglich vor C# 12.0!
public struct Person

{

public string Name;

// bisher schon mdglich:

public string MemberNamel () => nameof (Name) ;

// bisher schon méglich:

public string MemberName2 () => nameof (Name.Length) ;

// bisher schon méglich:

public static string MemberName3 () => nameof (Name) ;

// bisher Fehler CS0120, da statisches Mitglieder versucht auf Mitglied von Mitg
lied zuzugreifen

public static string MemberNamed4 () => nameof (Name.Length) ;

[Description ($" {nameof (StringLength)} liefert von {nameof (Name)} die Eigenschaft
{nameof (Name.Length) }")] // nameof (Name.Length) war nicht méglich vor C# 12.0!
public int StringLength ()

{

return Name.Length;

}

public void PrintMemberInfo ()
{

Console.WriteLine ($"Die Struktur {nameof (Person)} hat ein Mitglied {nameof (Name
)}, welches eine Eigenschaft {nameof (Name.Length)} besitzt!");

}
}

Hier wire vor C# 12.0 der Ausdruck nameof(Name.Length) in drei der sechs oben gezeigten Fille
nicht moglich gewesen und vom Compiler mit dem Kompilierungsfehler "error CS0120: An object
reference is required for the non-static field, method, or property 'Name.Length" quittiert worden.

Der folgende Screenshot zeigt mit roten Linien, was vor C# 12.0 nicht moglich war.

Operatoren 123

19 | [oe on($ [naneof(stringLengtn)} Uefert von {nameofCnane)] sie Eigenschart {nanssf(Name.Lengtn)}*)] // Name.Length nicht mégiich var co 12,01
2 public struct Person
i

public
41 wis

10 = naneof(Nase);
e2() == naneof(Nase Length;

rhaneaC) = namacé (haned;
3 17 visher Fenler Cse1 hes mitglisder versucnt auf mitalied ven Mitglied zuzugredfen

public static stri 4D == nameos (Name Length);
11

[Deseription(s" {naneoF(Str W} efert von)} die Eigensehaft { Length)}*)] // Wame.Length nicht miglich vor CF 12.8
public int Stringlength()

return Kane.Length;

Abbildung: Unterstrichen sind vor C# 12.0 nicht mégliche Anwendungsfille von nameof()

11.7 Index und Range (C# 8.0)

In C# 8.0 sind zwei neue Operatoren fiir die Auswahl von Teilmengen aus Mengen enthalten:

= Der Index-Operator (*), der eine Position relativ zum Ende einer Menge kennzeichnet. Der
Compiler verwendet dafiir die Klasse System.Index.

= Der Range-Operator (..), der einen Bereich mit Start und Ende aus einer Menge kennzeichnet.
Der Compiler verwendet dafiir die Klasse System.Range.

Hinweis: Range- und Index-Operator funktionieren nur in .NET Core seit Version 3.0, nicht
aber im klassischen .NET Framework.

11.7.1 Index

Der Index-Operator () kennzeichnet eine Position relativ zum Ende einer Menge. Der Compiler
verwendet dafiir die Klasse System.Index.

string[] Namen = { "Leon", "Hannah", "Lukas", "Anna", "Leonie", "Marie",
"Niklas", "Sarah", "Jan", "Laura", "Julia", "Lisa", "Kevin" };
string il = Namen[~2]; // Index Operator: zweiter von hinten = "Lisa" (%2 ==

Namen.Length-2)
string i2 = Namen[Namen.Length - 2]; // alte Schreibweise!

List<string> namensListen = Namen.ToList();
string 11 = namensListen[*2];

// ---- BAnd Formuli isen

Index i3 = ~2; // neue Klasse System.Index: zweiter von hinten
string n3 = Namen[i3]; // zweiter von hinten = "Lisa"

Index i4 = Index.FromEnd(2); // andere Schreibweise: zweiter von hinten
string n4 = Namen[i4]; // zweiter von hinten = "Lisa"

Achtung: Ein Zugriff auf Namen[?0] fiihrt hingegen zum Laufzeitfehler
"System.IndexOutOfRangeException: 'Index was outside the bounds of the array.", denn ~0
bedeutet Namen.Length-0, also Namen[Namen.Length], was ungiiltig ist, da die Z&hlung von 0
bis Namen.Length-1 lauft.

11.7.2 Range

Der Range-Operator (..) kennzeichnet einen Bereich mit Start und Ende aus einer Menge. Der
Compiler verwendet dafiir die Klasse System.Range.

124 Operatoren

Achtung: Bei Range ist der Start-Index inklusive (enthalten in der Zielmenge), aber der Ende-
Index exklusiv (nicht enthalten in der Zielmenge). Die Zéhlung beginnt bei 0. Der Range 1..3
bedeutet also: das zweite und dritte Element. Das vierte Element der Menge ist NICHT dabei.
Dies empfinden einige Entwickler nicht als intuitiv. Microsoft hat sich nach einer Diskussion
aber am 22.1.2018 bewusst so entschieden. Die Diskussion konnen Sie hier nachlesen:
https://github.com/dotnet/csharplang/blob/main/meetings/2018/LDM-2018-01-22.md

Ranges konnen mit Indexen kombiniert werden.

// Russchnitt .. von x bis vor!!! y (erstes ist INKLUSIV, zweites ist EXKLUSIV!)
string[] ml = Namen[1l..3]; // zweiter und dritter: "Hannah", "Lukas"

string[] m2 = Namen[6..”4]; // sechs von vorne und vier hinten abschneiden:
"Niklas", "Sarah", "Jan"

string[] m3 = Namen[11l..]; // vom 12. Element bis Ende: "Lisa", "Kevin"
string[] m4 = Namen[0..~0]; // alle
string[] m5 = Namen[..]; // alle

// ---- Andere Formulierungsweisen
System.Range rl = 1..3; // neue Klasse System.Range
string[] m6 = Namen[rl]; // zweiter und dritter: "Hannah", "Lukas"

Hinweise: Ranges waren urspriinglich schon fiir C# 7.3 geplant.

In der PowerShell gibt es schon seit Version 1.0 das Konzept der Ranges mit zwei Punkten als
Operator. Der Ausdruck "0..20" generiert dabei die Menge aller Zahlen von 0 bis 20. Man kann
Ranges in PowerShell auch Teilmengen adressieren, z.B. Menge[1..3] sind die Elemente 2, 3
und 4 der Menge. Bei der PowerShell ist also anders als in C# auch das Ende inklusive.

11.7.3 Weitere Beispiele

Das folgende Listing zeigt Beispiele fir Range und Index mit einer Zeichenkette als
Eingabemenge.

#region Ranges/Indexe mit Zeichenkette
string text = "0123456789";

//alt:
var teilstringla = text.Substring(4, text.Length - 4); // --> ab dem 5. Zeichen
bis Ende "456789"

//neu
string teilstringlb = text[4..]; // --> ab dem 5. Zeichen bis Ende "456789"

string teilstring2 = text[*4..70]; // O = Ende --> "6789"
string teilstring3 = text[2..4]; // "23"

string teilstring4 = text[0..70]; // alle

string teilstring5 = text[..]; // .. == alle

// ---- Andere Formulierungsweisen

System.Range r7 = 1..3;// neue Klasse System.Range
string t7 = text[r7]; // "12"

#endregion

https://github.com/dotnet/csharplang/blob/main/meetings/2018/LDM-2018-01-22.md

Operatoren 125

11.7.4 Einschrankungen

Wihrend Indizes mit generischen Listen (Klassen, die IEnumerable<T> implementieren)
funktionieren, ist dies mit Ranges nicht moglich.

List<string> namensListen = Namen.ToList() ;

string 11 = namensListen["2];

Console.WriteLine(11l); // Lisa

//string 12 = namensListen[1l..3]; // geht nicht ;-(

1

26 Schleifen

12 Schleifen

Sowohl Visual Basic .NET als auch C# unterstiitzen vier Typen von Schleifen:

Kopfgepriifte bedingte Schleifen while (bedingung) { ... }
FuBigepriifte bedingte Schleifen do { ... } while (Bedingung)
Zéhlschleifen: Schleife mit einer bestimmten Anzahl von Durchlaufen
Jfor ([Initialisierung],; [Abbruchbedingung], [Iteration]) { ... }

Mengenschleifen: Schleifen tiber alle Mitglieder eines Arrays oder eine anderer Objektmenge,
welche die IEnumerable-Schnittstelle unterstiitzen (insbesondere die Klassen aus dem .NET-
Basisklassen-Namensraum System.Collections): foreach (x iny) { ... }

Das Besondere an der for-Schleife ist, dass alle drei Bestandteile der runden Klammer optional
sind. Das nachfolgende Beispiel enthélt daher eine giiltige for-Schleife, bei der Initialisierung,
Abbruchbedingung und Iteration in eigenen Codezeilen enthalten sind. Eine innerhalb eines
Anweisungsblocks einer Schleife deklarierte Variable ist nur innerhalb des Blocks giiltig, nicht in
der ganzen Unterroutine.

Normale For-Schleife For-Schleife ohne Inhalt in den runden
Klammern
for (inta=0; a <= 10; at++) intb=0;
for (;5)
‘ {
bt++;

if (b > 10) break;

}

Tabelle: Beispiele fiir For-Schleifen in C#

Um eine aufzdhlbare Objektmengenklasse zu implementieren, leitet man diese von einer
bestehenden aufzdhlbaren Klasse (aus dem Namensraum System.Collections) ab oder
implementiert IEnumerable selbst unter Verwendung des Schliisselworts yield, das mit C# 2.0
neu eingefithrt wurde.

Listing: Beispiele fiir Schleifen

// 1. For-Schleife

for (int a = 1; a <= 10; a++)
{
Console.WriteLine ($"a={a}") ;

}

// 2. Endlos-For-Schleife mit Abbruchbedingung

int b = 0;

for (;;)

{

b++;

Console.WriteLine ($"b={b}") ;
if (b >= 10) break;

}

// 3. while-Schleife

Schleifen

127

//

//

int ¢ = 0;
while (c < 10)
{
ct+;
Console.WriteLine ($"c={c}");

}

4. do-while-Schleife
int d = 0;

do

{

d++;

Console.WriteLine ($"d={d}") ;
} while (d < 10);

5. foreach-Schleife

IEnumerable<int> zahlen = Enumerable.Range (1,
foreach (int e in zahlen)

{

Console.WritelLine ($"e={e}"); ;

}

10) ;

128 Verzweigungen

13 Verzweigungen

Fiir die Verzweigung im Programmcode unterstiitzt C# die gleichen Konstrukte wie Visual Basic
NET: einfache Verzweigungen und Mehrfachverzweigungen.

if (Bedingung) {...} else {...}
switch (Bedingung) { case Wert:... default:... }

131 Einfache Verzweigungen mit if...else

Bei der if-Verzweigung und der if...else-Verzweigung sowie der if..else..else if-Verzweigung
gelten folgende Regeln:

Die Bedingungen miissen immer in runden Klammern stehen

Die Befehlsblocke miissen nur dann in geschweiften Klammern stehen, wenn mehr als eine
Anweisung folgt. Wenn im Ausfiithrungsblock nur eine Anweisung folgt, kann man die
geschweifte Klammer weglassen. Die eine Anweisung kann direkt in derselben Zeile wie die
Bedingung stehen oder eine Zeile danach. Es ist Geschmackssache, ob man immer
geschweifte Klammern setzen will. Viele Entwicklungsteam einigen sich hier auf Regeln
im Team.

Eine innerhalb eines Anweisungsblocks { ... } einer Bedingung deklarierte Variable ist nur
innerhalb des Blocks giiltig, nicht in der ganzen Unterroutine.

Listing: Fallunterscheidungen in C# mit if’

var note = 3; // Wert kommt irgendwo her

// eine Ausfiihr ile ohne Blockkl n ohne Umbruch

if (note < 1 || note > 6) throw new ApplicationException("ungiiltige Note!") ;
if (note <= 3) Console.WriteLine("akzeptable Leistung");

else Console.WriteLine("zu schlecht") ;

// eine Ausfiihr ile ohne Blockkl mit Umbruch

if (note < 1 || note > 6)

throw new ApplicationException ("ungiiltige Note!");

if (note <= 3)

Console.WritelLine ("akzeptable Leistung");

// hier kann nicht noch eine Befehlszeile stehen , das bemingelt der

Compiler!: Console.WriteLine ("Es geht aber noch besser!");

else
Console.WriteLine("zu schlecht") ;

// mit Blockklammern mit beliebiger Zeilenanzahl und beliebigen Umbriichen
if (note < 1 || note > 6) { throw new ApplicationException("ungiiltige Note!");

if (note <= 3)
{
Console.WriteLine ("akzeptable Leistung");
Console.WriteLine ("Es geht aber noch besser!");
}

else { Console.WriteLine("zu schlecht"); }

Verzweigungen 129

13.2 Mehrfachverzweigungen mit switch

Bei der switch-Anweisung sind im Vergleich zu der Select-Anweisung in Visual Basic .NET
folgende Punkte zu beachten:

= Jeder Fall muss mit einer break-Anweisung abgeschlossen werden
= Anders als in Visual Basic NET kann man bei C# keine Wertebereiche nach case angeben

Listing: Fallunterscheidungen in C# mit switch
switch (note)
{

case 1: e

"sehr gut"; break;

case 2: e = "gut"; break;
case 3: e = "befriedigend"; break;
default: e = "zu schlecht"; break;

}

13.3 Switch Expressions (seit C# 8.0)

Die Mehrfachverzweigungen switch { case: ... break; default: ... } gibt es in C# seit der ersten
Version. In C# 8.0 hat Microsoft eine deutlich prignantere Variante dieses Sprachkonstrukts
eingefiihrt.

Die neuen Switch Expressions sind so aufgebaut:

= Zuerst kommt der Wert (in der Regel in einer Variablen), anhand dessen unterschieden werden
soll.

= Dann folgt das Schliisselwort switch

= Dann folgt in geschweiften Klammern die Liste der Alternativen, jeweils gefolgt von einem
Lambda-Pfeil => und dem resultierenden Wert. Break-Anweisungen sind dabei nicht
notwendig.

= Anstelle des Schliisselwortes default tritt die Discard-Variable (Unterstrich:).

Hinweis: Da es sich bei einer Switch Expression dem Namen nach um einen Ausdruck handelt,
muss ein Wert zuriickgegeben und dieser verwertet werden, zum Beispiel fiir eine Zuweisung
an eine Variable, als Riickgabewert oder Teil eines Ausdrucks.

Das folgende Beispiel zeigt eine Fallunterscheidung fiir eine textliche Aussage iiber einen Kunden
anhand seiner Klassifizierung (A, B oder C). Die Fallunterscheidung wird zundchst mit dem
klassischen Switch-Konstrukt realisiert, dann mit der in C# 8.0 neu eingefiihrten Switch
Expressions.

Listing: Fallunterscheidung mit klassischen Switch-Konstrukt
string name = "Max Miiller";
string status = "A";

string aussageUeberKunde = $"{name} ist ein ";

switch (status)

{

case "A":

aussageUeberKunde += "guter Kunde"; break;

case "B":

aussageUeberKunde += "durchschnittlicher Kunde"; break;
case "C":

aussageUeberKunde += "schlechter Kunde"; break;

130 Verzweigungen

default:
aussageUeberKunde += "sonstiger Kunde"; break;
}

Console.WriteLine (aussageUeberKunde) ;

Listing: Fallunterscheidung mit Switch-Expressions (seit C# 8.0)

string name2 = "Max Milller";
string status2 = "A";

var aussageUeberKunde2 = $"{name2} ist ein " + status2 switch

{

// keine weiteren Statements hier erlaubt, z.B. string ausgabe = "{name} ist ein

"A" => $"guter Kunde",

"B" => $"durchschnittlicher Kunde",

"C" => $"schlechter Kunde",

_ => $"sonstiger Kunde"
}i
Console.WriteLine (aussageUeberKunde2)
Es gibt auch die Option, dass eine ganze Methode nur aus einer Switch Expression bestehen kann.
Dazu kombiniert man eine Switch Expression mit den Expression-bodied Members (seit C# 6.0
erlaubt. Hierzu gibt es ein eigenes Kapitel in diesem Buch.

Der erste Lambda-Ausdruck => fiir den Expression-bodied Member folgt nach der Parameterliste.
Er legt die in der switch-Anweisung zu nutzende Variable fest. Danach folgt das Schliisselwort
switch. Die einzelnen Werte mit dem Folgeausdruck sind dann wieder jeweils durch den Lambda-
Ausdruck => getrennt.

Die folgenden Listings zeigen drei Varianten des obigen Beispiels zur Kundenklassifizierung.

Listing: Klassisches Switch-Konstrukt in einer Methode

string Get denTypString Classic(string name, string abc)
{

// weitere Statements hier erlaubt

string kundenText = "";

switch (abc)

{

case "A":

kundenText = "guter Kunde"; break;

case "B":

kundenText = "durchschnittlicher Kunde"; break;
case "C":

kundenText = "schlechter Kunde"; break;
default:

kundenText = "sonstiger Kunde"; break;

}
return $"{name} ist ein {kundenText}.";
}
Seit C# 8.0 geht das pragnanter mit einer Switch Expression:

Listing: Switch Expression ohne Expression-bodied Member

string GetKundenTypString(string name, string abc)
{

return abc switch

{

Verzweigungen 131

// keine weiteren Statements hier erlaubt, z.B. string ausgabe = "{name} ist ei
n";

"A" => $"{name} ist ein guter Kunde",

"B" => $"{name} ist ein durchschnittlicher Kunde",

"C" => $"{name} ist ein schlechter Kunde",

_ => $"{name} ist ein sonstiger Kunde"

}i
}
Noch prignanter ist es, wenn man eine Switch Expression und Expression-bodied Member
kombiniert:

Listing: Switch Expression und Expression-bodied Member

string GetKundenTypString2(string name, string abc) => abc switch

{

// keine weiteren Statements hier erlaubt, z.B. string ausgabe = "{name} ist ei
n";

"A" => $"{name} ist ein guter Kunde",

"B" => $"{name} ist ein durchschnittlicher Kunde",

"C" => $"{name} ist ein schlechter Kunde",

_ => $"{name} ist ein sonstiger Kunde"

b
Der Wert, der zur Fallunterscheidung herangezogen wird, muss kein elementarer Datentyp sein.
Das folgende Listing zeigt die Fallunterscheidung anhand eines Enumerationstyps.

Listing: Farbunterscheidung fiir einen in der klassischen Version
public ConsoleColor GetColor_Classic(LogLevel level)

{

switch (level)

{

case LogLevel.Information:

return ConsoleColor.White;
case LogLevel.Warning:
return ConsoleColor.Yellow;
case LogLevel.Error:
return ConsoleColor.Red;
default:
throw new ArgumentException("Ungiiltiger Wert: " + level, nameof (level));
}i
}
Listing: Farbunterscheidung fiir ein Property eines Objekts mit Switch Expression

public ConsoleColor GetColor (LogLevel level) => level switch
{
LogLevel.Information => ConsoleColor.White,
LogLevel .Warning => ConsoleColor.Yellow,
LogLevel .Error => ConsoleColor.Red,
_ => throw new ArgumentException("Ungiiltiger Wert: " + level, nameof (level))

}i

Hinweis: Switch Expressions kann man auch verschachteln. Ein Beispiel dazu finden Sie im
néchsten Kapitel "Pattern Matching".

132 Verzweigungen

13.4 Pattern Matching

Pattern Matching ist der Oberbegriff fiir eine Reihe von zusitzlichen Vergleichsoperationen, die
Microsoft in C# 7.0 in die Sprache einbaut hat. Dieses Sprachfeature wurde von Microsoft in C#
9.0 und C# 10.0 sowie C# 11.0 weiter ausgebaut.

13.4.1 Pattern Matching in Bedingungen mit is und is not
Das Pattern Matching mit is wurde in C# 7.0 eingefiihrt. Seit C# 9.0 gibt es auch is not.

Mit is und is not sind Vergleiche nicht nur mit dem passenden Typ, sondern auch mit dem
Basistyp system.object moglich.

Beispiel:

Fiir diese Variable

object x = 42;

ist der folgende Vergleich nicht erlaubt, weil man ein Objekt vom Typ System.Object nicht mit
einer Zahl vergleichen kann (Error CS0019 Operator ' cannot be applied to operands of type
'object’ and "int'):

if (x > 0 && x <= 100) { Console.WritelLine($"x ist zwischen 0 und 100!'"); }

Mit dem Pattern Matching-Operator ist der Vergleich jedoch moglich und funktioniert:

if (x is >= 0 and <= 100) { Console.WriteLine($"x ist zwischen 0 und 100!"); }
Weiteres Beispiel fiir:

object d = '1';

nicht erlaubt ist:

if ((d >= 'a' && d <= 'z') || (d >= 'A' & d <= 'Z')) { Console.WriteLine ("Buchst
abe!"); }
Moglich ist aber:

if (d is (>= 'a' and <= 'z') or (>= 'A' and <= 'Z')) { Console.WriteLine ("Buchsta
be!"); }

if (d is not (>= 'a' and <= 'z') or (>= 'A' and <= 'Z')) { Console.WriteLine ("Kei
n Buchstabe!"); }

In diesen beiden Pattern konnte man die inneren Klammern weglassen, da and wie iiblich eine
hohere Prizedenz als or besitzt:

if (d is (>= 'a' and <= 'z' or >= 'A' and <= 'Z')) { Console.WriteLine ("Buchstabe
'"); }

if (d is not (>= 'a' and <= 'z' or >= 'A' and <= 'Z')) { Console.WriteLine ("Kein
Buchstabe!"); }

Hinweis: Gewohnungsbediirftig ist, dass man in Pattern Und mit and statt wie sonst in C# iiblich
mit && und Oder mit or statt wie sonst iiblich || sowie Nicht mit not statt ! ausdriickt.

Typkonvertierungen von dem Typ System.Object in einen beliebigen anderen Typ konnen seit C#
7.0 in if- und switch-Bedingungen leichter realisiert werden mit Pattern Matching.

Mit dem Operator is kann der Entwickler ein Objekt in einer auf System.Object deklarierten
Variablen auf einen beliebigen .NET-Typ priifen und bei erfolgreicher Priifung in eine zweite
Variable, die nach dem Typ anzugeben ist, konvertieren lassen (siehe Listing). Anstelle der
Bedingung eingabe == null kann der Entwickler in C# 7.0 auch eingabe is null schreiben.

Verzweigungen 133

Listing: Pattern Matching erlaubt Typpriifung und Typkonvertierung in einem Abwasch

// Beispiel: Ein Eingabewert, der aus einer Import-Datei kommt
object eingabe = 123;
/...

if (eingabe is int zahl) { Console.WriteLine(zahl * 2); }
else { Console.WritelLine("Keine Zahl!"); }

if (eingabe is null) { Console.WriteLine("Leer"); }

Seit C# 9.0 ist auch ein Vergleich auf Ungleichheit mit is not moglich:
if (eingabe is not int zahl2) { Console.WriteLine ("Keine Zahl!"); }

Die Routine PruefeEingabe() im folgenden Listing zeigt einige Beispiele fiir den Einsatz von is
und is not.

Listing: Weitere Beispiele fiir Pattern Matching in Bedingungen
void PruefeEingabe (object eingabe)
{

CUI.H3("Eingabe = " + eingabe) ;

// Vergleiche mit null

if (eingabe is null) { Console.WriteLine("Leer"); }

if (eingabe is not null) { Console.WriteLine("Nicht leer"); }

// Typpriifung

if (eingabe is int zahll) { Console.WriteLine("Zahl: " + zahll); }
if (eingabe is not int) { Console.WriteLine("Keine Zahl!"); }

// Wertevergleiche mit is

if (eingabe is >= 0 and <= 100) { Console.WritelLine ($"Eingabe ist zwischen 0 und
100!"); }

if (eingabe is < 0 or > 100) { Console.WriteLine ($"Eingabe ist nicht zwischen 0
und 100!'"); }

if (eingabe is 0 or 100) { Console.WriteLine($"Eingabe ist Extremwert!"); }

if (eingabe is (>= 0 and <= 10) or (>= 90 and <= 100)) { Console.WriteLine($"Ein
gabe ist hoher oder niedriger Wert!"); }

// Wertevergleiche mit is not

if (eingabe is not (>= 0 and <= 100)) { Console.WriteLine("Eingabe ist nicht zwi
schen 0 und 100!'"); }

if (eingabe is not >= 0 or not <= 100) { Console.WriteLine("Eingabe ist nicht zw
ischen 0 und 100!'"); }

}
13.4.2 Pattern Matching bei switch
Auch in Verbindung mit Schliisselwort switch ist Pattern Matching mdglich.

Listing: Pattern Matching bei switch mit Type Pattern
// Beispiel: Ein Eingabewert, der aus einer Import-Datei kommt
object eingabe = 123;

switch (eingabe)
{

134 Verzweigungen

case int z:

Console.WriteLine ("Das Doppelte ist: " + z * 2);
break;

case string s:

Console.WriteLine (s) ;

break;

case bool b:

if (b) Console.WriteLine("Die Aussage ist wahr!");
break;

case null:

Console.WriteLine ("Kein Wert") ;

break;

default:

break;

13.4.3 Pattern Matching fiir Typen

Seit C# 9.0 kann man auch Typvergleiche per Pattern Matching in Switch Expressions sehr
priagnant definieren, wenn der konkrete Wert nicht interessiert. Microsoft nennt dies "Simplified
Type Pattern".

Listing: Switch Expression mit Simplified Type Pattern

var ausgabel = eingabe switch

{

int => "Eingabe ist eine Zahl!",
string => "Eingabe ist eine Zeichenkette!",
_ => "Eingabe ist etwas anderes"

Y;

13.4.4 Pattern Matching mit GroRenvergleichen

Seit C# 9.0 sind auch Vergleiche mit den Operatoren >, >=, <= und < mdéglich. Microsoft nennt
dies "Relational Pattern".

Listing: Switch Expression mit Relational Pattern
var ausgabe2 = eingabe switch

{

< 0 => "Eingabe ist negative Zahl!",
<= 100 => "Eingabe ist zwischen 0 und 100!",
_ => "Eingabe ist grdBer als 100"

Yi

13.4.5 Pattern Matching mit logische Operatoren

Seit C# 9.0 sind auch logische Operatoren (und / oder) beim Pattern Matching méglich.

Aber Achtung: Abweichend von dem in C# sonst iiblichen Standard driickt man diese nicht mit
&& und || aus, sondern mit den Wortern and und or.

Listing: Switch Expression mit Relational Pattern und Logical Pattern
var ausgabe3 = eingabe switch

{

< 0 => "Eingabe ist negative Zahl!",
0 or 100 => "Alles oder nichts!",

Verzweigungen 135

> 0 and < 100 => "Eingabe ist zwischen 0 und 100!",
_ => "Eingabe ist groBer als 100"
}i

Praxisbeispiel

In dem folgenden Praxisbeispiel werden Type Pattern, Simplified Type Pattern, Relational Pattern
und Logical Pattern kombiniert in einer verschachtelten Switch Expression.

Listing: Verschachtelte Switch Expression mit mehreren Pattern

public static void EingabeAuswerten ()
{
// Beispiel: Ein Eingabewert, der aus einer Import-Datei kommt
object eingabe = 98;

string ausgabe = eingabe switch
{
int z => z switch
{
<0 => "Negative Zahl",
0 => "Kein Ergebnis!",
>= 1 and <=100 => "Zahl zwischen 1 und 100",
_ => $"Sonstige Zahl: {z}"
b,
DateTime => "Eingabe ist Datum!",
_ => "Ungiiltige Eingabe!"
}i
Console.WriteLine (ausgabe) ;

}

13.4.6 Pattern Matching fiir Daten in einem Objekt (Property
Pattern)

Bei einer Switch-Anweisung tiber ein komplexes Objekt kann man auch das sogenannte Property
Pattern verwenden. Dabei wird bei den Fillen wieder das Objekt durch eine geschweifte Klammer
représentiert und Bezug auf ein oder mehrere Properties genommen in der Form { Propertyl :
Wertl, Property2: Wert2, Property3: Wert3, usw }.

Listing: Switch Expression mit Property Pattern iiber ein Property

string Getl d 'ypStringFr de (Kunde k) => k switch

{

// keine weiteren Statements hier erlaubt, z.B. string ausgabe = "{name} ist
ein";

{ Status: 'A' } => $"{k.Name} ist ein gute Kunde",

{ Status: 'B' } => $"{k.Name} ist ein durchschnittlicher Kunde",

_ = $"{k.Name} ist ein sonstiger Kunde"

}i
Listing: Switch Expression mit Property Pattern iiber zwei Properties
string GetKontaktTypString(Kontakt k) => k switch

{

// keine weiteren Statements hier erlaubt, z.B. string ausgabe = "{name} ist
ein";

{ Status: 'A', Art: KontaktArt.Kunde } => $"{k.Name} ist ein guter Kunde",

{ Status: 'A', Art: KontaktArt.Lieferant } => $"{k.Name} ist ein guter
Lieferant",

136 Verzweigungen

{ Status: 'B', Art: KontaktArt.Kunde } => $"{k.Name} ist ein
durchschnittlicher Kunde",
{ Status: 'B', Art: KontaktArt.Lieferant } => $"{k.Name} ist ein
durchschnittlicher Lieferant",
_=> $"{k.Name} ist ein sonstiger Kontakt"
}i
Wenn man mehrere iibergebene Parameter in die Fallunterscheidung einbeziehen will, kann man
die Parameter in der Switch Expression zu einem Tupel zusammenfassen. Man spricht hier vom
Tupel Pattern. Tupel gibt es in C# seit Version 7.0 (Hieriiber gibt es ein eigenes Kapitel in diesem
Buch). Dabei folgt nach dem Lambda-Pfeil in der Parameterliste die Erschaffung eines Tupels aus
den gewiinschten Parametern. Das Tupel wird dann in jeder Fallzeile der Switch Expression
verwendet.
Listing: Switch Expression mit Tupel Pattern
public string GetAnrede(string Geschlecht, string Art)
=> (Geschlecht, Art) switch
{

("w", "Kunde") => "Sehr geehrte Kundin",
"w", "Lieferant") => "Sehr geehrte Lieferantin",
"m", "Kunde") => "Sehr geehrter Kunde",
("m", "Lieferant") => "Sehr geehrter Lieferant",

(_, _) => "Sehr geehrte Damen und Herren"
}i
Uber das Property Pattern kann man auch Unterobjekte ansprechen. Wenn eine Klasse Person ein
Unterobjekt Firma vom Typ Firma mit einem Property Firmennamen besitzt, kann man so priifen,
ob der Firmenname einen bestimmten Wert (hier: Leerstring) hat:
if (p is Person { Firma: { Firmenname: "" } })

{

Console.WriteLine ("Firmenname fehlt!") ;
}
Seit C# 10.0 geht das mit dem "Extended Property Pattern" auch eleganter mit der Punktnotation:

if (p is Person { Firma.Firmenname: "" })

{

Console.WriteLine ("Firmenname fehlt!");

}

13.4.7 Pattern Matching fiir Listen und Teilmengen (List Pattern
und Slice Pattern)

Wie schon in den letzten C#-Versionen (seit Version 7.0) erweiterte Microsoft in C# 11.0 das
Pattern Matching, dieses Mal um die Priifung von Listen (List Pattern) und die Extraktion von
Teilmengen (Slice Pattern).

Im Muster steht ein Unterstrich _ fiir ein Element und der zweifache Punkt . . fiir beliebig viele
Elemente.

Die beiden Methoden CheckList() im folgenden Listing (in zwei Varianten mit Parameter vom
Typ Integer-Array und List von Integer) priifen, ob eine Zahlenmenge mit 1 und 2 oder nur mit 1
beginnt und liefert entsprechende Textaussagen zuriick.

Listing: List Pattern
public string CheckList(int[] values)
=> values switch

Verzweigungen 137

{
[1, 2, .., 10]
=> "Liste beginnt mit 1 und 2 sowie endet mit 10",
[1, 2] => "Liste besteht aus 1 und 2",
[1, _] => "Liste beginnt mit 1, es kommt danach noch genau ein Element",
[1, ..] => "Liste beginnt mit 1, danach noch mehrere Elemente",
[_] => "Liste aus einem Element, beginnt nicht mit 1",
[..] => "Liste aus mehreren Elementen, beginnt nicht mit 1"

}i

public string CheckList(List<int> values)
=> values switch
{
[1, 2, .., 10]
=> "Liste beginnt mit 1 und 2 sowie endet mit 10",
[1, 2] => "Liste besteht aus 1 und 2",
[1, _] => "Liste beginnt mit 1, es kommt danach noch genau ein Element",
[1,
[_] => "Liste aus einem Element, beginnt nicht mit 1",
[..] => "Liste aus mehreren Elementen, beginnt nicht mit 1"
}i
Fir die folgenden Beispielaufrufe bekommt der Aufrufer die jeweils als Kommentar dahinter
genannten Riickgabewerte:

=> "Liste beginnt mit 1, danach noch mehrere Elemente",

Console.WriteLine (CheckList(new[] { 1, 2, 10 })); // "Liste beginnt mit
1 und 2 sowie endet mit 10"

Console.WriteLine (CheckList(new[] { 1, 2, 7, 3, 10 })); // "Liste beginnt mit
1 und 2 sowie endet mit 10"

Console.WriteLine (CheckList (new[] { 1, 2 })); // "Liste besteht aus
1 und 2"

Console.WriteLine (CheckList (new[] { 1, 3 })); // "Liste beginnt mit
1, es kommt danach noch genau ein Element"

Console.WriteLine (CheckList(new[] { 1, 2, 5 })); // "Liste beginnt mit
1, danach noch mehrere Elemente"

Console.WriteLine (CheckList (new[] { 3 })): // "Liste aus einem E1
ement, beginnt nicht mit 1"

Console.WriteLine (CheckList (new[] { 3, 5, 6, 7 })); // "Liste aus mehreren
Elementen, beginnt nicht mit 1"

Console.WriteLine (CheckList (new[] { 3, 4 })); // "Liste aus mehreren

Elementen, beginnt nicht mit 1"

Console.WriteLine (CheckList (new List<int> { 1, 2, 10 })); // "Liste begi
nnt mit 1 und 2 sowie endet mit 10"

Console.WriteLine (CheckList (new List<int> { 1, 2, 7, 3, 10 })); // "Liste begi
nnt mit 1 und 2 sowie endet mit 10"

Console.WriteLine (CheckList (new List<int> { 1, 2 })); // "Liste best
eht aus 1 und 2"

Console.WriteLine (CheckList (new List<int> { 1, 3 })); // "Liste begi
nnt mit 1, es kommt danach noch genau ein Element"

Console.WriteLine (CheckList (new List<int> { 1, 2, 5 })); // "Liste begi
nnt mit 1, danach noch mehrere Elemente"

Console.WriteLine (CheckList (new List<int> { 3 })); // "Liste aus
einem Element, beginnt nicht mit 1"

Console.WriteLine (CheckList (new List<int> { 3, 5, 6, 7 })); // "Liste aus

mehreren Elementen, beginnt nicht mit 1"

138 Verzweigungen

Console.WriteLine (CheckList (new List<int> { 3, 4 })); // "Liste aus
mehreren Elementen, beginnt nicht mit 1"

Man kann mit Variablennamen im Pattern auch einzelne Elemente einer Menge herausgreifen
(Slice Pattern). ExtractValue() liefert eine Zeichenkette aus einer Menge von Zahlen:

Listing 8: Slice Pattern

/// <summary>
/// Slice Pattern
/// </summary>
public string ExtractValue(int[] values)
=> values switch
{
[1, var middle, _] => $"Mittlere Zahl von 3 Zahlen (Beginn 1): {String.Join(", "
, middle)}",
[_, var middle, _] => $"Mittlere Zahl von 3 Zahlen (Beginn beliebig): {String.Jo
in(", ", middle)}",
[.. var all] => $"Alle Zahlen: {String.Join(", ", all)}"
Y
Hier liefern die Aufrufe von Extractvalue () folgende Ergebnisse:

Console.WriteLine (ExtractValue (new[] { 1, 2, 6 })); // "Mittlere Zahl von
3 Zahlen (Beginn 1): 2"

Console.WriteLine (ExtractValue (new[] { 3, 4, 5 })); // "Mittlere Zahl von
3 Zahlen (Beginn beliebig): 4"

Console.WriteLine (ExtractValue (new[] { 2, 5, 6 })); // "Mittlere Zahl von
3 Zahlen (Beginn beliebig): 5"

Console.WriteLine (ExtractValue(new[] { 1, 2, 5, 6 })); // "Alle Zahlen: 1, 2,
5, 6"

Console.WriteLine (ExtractValue(new[] { 2, 5, 6, 7 })); // "Alle Zahlen: 2, 5,
6, 7"

Durch Voranstellen von zwei Punkten vor der Variablen (.. var middle) entspricht die
Teilmenge (Slice) mehreren Elementen. Hier eine Variante ExtractValues():

public string ExtractValues(int[] values)
=> values switch

[1, .. var middle, _] => $§"Mittlere Zahlen: {String.Join(", ", middle)}",
[.. var all] => $"Alle Zahlen: {String.Join(", ", all)}"

Hier liefern die Aufrufe von Extractvalues () folgende Ergebnisse:

Console.WriteLine (ExtractValues (new[] { 1, 2, 5, 6 })); // "Mittlere Zahlen (B
eginn 1): 2, 5"

Console.WriteLine (ExtractValues(new[] { 1, 2, 6 })); // "Mittlere Zahlen (B
eginn 1): 2"

Console.WriteLine (ExtractValues(new[] { 2, 5, 6, 7 })); // "Alle Zahlen: 2, 5,
6, 7"

Console.WriteLine (ExtractValues (new[] { 2, 5, 6 })); // "Alle Zahlen: 2, 5,
6"

Hinweise: Das List-Pattern funktioniert mit allen Mengentypen, die eine Eigenschaft Length
oder count sowie einen Indexer (name[x]) besitzen. Beim Slice-Pattern muss der Indexer der
Menge ein Range-Objekt als Eingabe unterstiitzen oder aber der Listentyp muss eine Slice()-
Methode mit zwei Integer-Parametern besitzen. Diese Voraussetzungen sind fiir die auf der
Schnittstelle TEnumerable basierenden Mengentypen noch nicht generell gegeben. Microsoft

Verzweigungen 139

ruft zum Feedback auf (siehe [https://devblogs.microsoft.com/dotnet/early-peek-at-csharp-11-
features/]).
Die Struktur autor im ndchsten Listing bietet eine Methode ExtractTitleAndSurname() zur
Extraktion von Namensbestandteilen. ExtractTitleAndSurname() liefert als Riickgabe eine
Zeichenkette, die man per Split() bei den Leerzeichen auftrennt. Dann wird der Titel und der
Nachname extrahiert. ToString() liefert Titel und Nachname als JSON-Zeichenkette.

Listing: Extraktion von Namensbestandteilen mit Slice Pattern
struct Autor : TAutor

{

public required int ID;

public string Name { get; set; }

public Autor() { }

private (string Titel, string Surname) ExtractTitleAndSurname (string fullname)
=> fullname.Split(" ") switch // Slice Pattern
{

["Prof.", "Dr.", var nachname] => ("Professor Doktor", nachname),

["Dr.", var nachname] => ("Doktor", nachname),

["Prof.", var nachname] => ("Professor", nachname),

["Prof.", "Dr.", _, .. var all] => ("Professor Doktor", String.Join(" ", al
1)),

['Dr.", _, .. var all] => ("Doktor", String.Join(" ", all)),

["Prof.", _, .. var all] => ("Professor", String.Join(" ", all)),

[_, var nachname] => ("", nachname),

[var nachname] => ("", nachname),

[, .. var all] => ("", String.Join(" ", all)),

=> ("", "")

}i

public override string ToString()
{

var json = $§"""

"Autor": {
"ID": "{{ID}}",
"Titel": "{{ExtractTitleAndSurname (Name)
.Titel}}",
"Nachname": "{{ExtractTitleAndSurname (Name)
.Surname}}"

}

return json;
}

}
Hinweis: Es sind in dem Beispiel noch nicht alle moglichen Fille abgedeckt. Es gibt in .NET
und C# schon lange andere Optionen fiir solch eine Extraktion, z.B. reguldre Ausdriicke, die
aber in so einem Fall uniibersichtlicher sind.

Der Client im folgenden Listing zeigt, welche Fille von ExtractTitleAndSurname() abgedeckt sind.

https://devblogs.microsoft.com/dotnet/early-peek-at-csharp-11-features/
https://devblogs.microsoft.com/dotnet/early-peek-at-csharp-11-features/

140 Verzweigungen

Listing: Nutzung des Slice Pattern aus dem vorherigen Listing

Autor hs = new() { ID = 1, Name = "Dr. Holger Schwichtenberg" };
Console.WriteLine (hs) ;

Autor mm = new() { ID = 2, Name = "Jérg Krause" };
Console.WriteLine (mm) ;

Autor jf = new() { ID = 3, Name = "Dr. Fuchs" };

Console.WriteLine (jf) ;

Autor ol = new() { ID = 4, Name = "Lischke" };

Console.WriteLine (ol) ;

Autor rn = new() { ID = 5, Name = "Prof. Dr. Robin Nunkesser" };
Console.WriteLine (rn) ;

Autor leer = new() { ID = 6, Name = "" };

Console.WriteLine (leer) ;

Autor mehrereNamen = new() { ID = 7, Name = "Max Miiller Lidenscheidt" };

Console.WriteLine (mehrereNamen) ;

Dies ist die zugehorige Ausgabe des Clients:

Verzweigungen

Autor

"Doktor",
vichtenberg"

or Doktor",

liller Liidenscheidt"

Abbildung: Ausgabe des obigen Listings

142 Klassendefinition

14 Klassendefinition

Klassen sind in .NET das zentrale Konzept zur Aufnahme von Daten und Programmcode. Eine
Klassendefinition erstellt eine neue Klasse.

Klassen konnen folgende Elemente enthalten:

= Attribute in Form von Feldern oder Property-Routinen
= Methoden mit und ohne Riickgabewerte (Function/Sub)
= Ereignisse (Events)

Hinweis: Sowohl in C# als auch in Visual Basic .NET gilt: Anders als in Java darf eine
Quellcodedatei beliebig viele Klassen enthalten und der Name der Quellcodedatei muss nicht
dem in der Datei implementierten Klassennamen entsprechen. Die in Visual Studio integrierten
Refactoring-Funktionen (Funktionen zur nachtriglichen Umgestaltung von Programmcode)
werden fiir C#-Klassen allerdings automatisch tatig, wenn eine Quellcodedatei umbenannt wird,
die eine Klasse mit gleichem Namen enthilt. In diesem Fall wird auch die Klasse umbenannt.

141 Klassendefinitionen

Klassen werden in C# durch das Schliisselwort class und einen Block mit geschweiften Klammern
gebildet.

Das Listing zeigt die Implementierung der Klasse Person mit zahlreichen Klassenmitgliedern, die
in den folgenden Kapiteln néher erldutert werden.

Listing: Implementierung der Klasse Person in C#
#region Namensrdume einbinden

using System;

using System.Collections.Generic;
using System.Text;

#endregion

namespace de.WWWings
{

/// <summary>

/// Basisklasse fiir Mitarbeiter und Passagiere
/// </summary>

[System.Serializable()]

public class Person

{

#region Attribute (Fields)

private long _ID;

#endregion

#region Attribute (Properties)
public long ID

{

get { return _ID; }

set { _ID = value; }

}

Klassendefinition

143

public string Vorname { get; set; }
public string Nachname { get; set; }
public DateTime Geburtsdatum { get; set; }
#endregion

#region Errechnete Attribute (Properties)

/// <summary>
/// Liefert Vorname und Nachname
/// </summary>
public string GanzerName
{
get
{
return this.Vorname + " " + this.Nachname;
}
}

#endregion

#region Konstruktoren

// Parameterloser Konstruktor

public Person()

{

}

// Konstruktor, der an anderen Konstruktor delegiert
public Person(int id, string nachname, string vorname)
{

this.ID = id;

}

public Person(string Nachname, string Vorname)
{

this.Vorname = Vorname;

this.Nachname = Nachname;

}

#endregion

#region Methoden

/// <summary>

/// Uberschreiben einer geerbten Methode
/// </summary>

public override string ToString()

{

return "Person: " + this.GanzerName;

}

public virtual void Info()
{

Console.WriteLine (this.ToString()) ;
}

this (nachname, vorname)

144 Klassendefinition

#endregion
}
}

14.2 Instanzierung mit dem Operator new

Eine Klasse wird mit dem Operator new instanziiert. Eine passende Objektvariable ist vorab zu
deklarieren.

Person p;

P = new Person() ;

Wenn man eine Variablendeklaration und die Zuweisung in eine Zeile schreibt, ist im Standard der
Klassenname zweimal zu verwenden:

Person p = new Person() ;

Mit dem Einsatz des Schliisselwortes var (seit C# 3.0) bzw. dem Sprachfeature "Target-Typed New
Expression" (seit C# 9.0) kann man dies verkiirzen.

14.21 Angabe der Konstruktorparameter

In runden Klammern gibt der Nutzer der Klasse die Konstruktorparameter an.

Person p = new Person (123, "Schwichtenberg", "Holger");

Da es nur einen parameterlosen Konstruktor gibt, ist eine Instanziierung ohne Parameter mit new()
moglich.

Person p = new Person() ;

Das folgende Listing zeigt Beispiele.

Listing: Verwendung des Operators new

// Person instanziieren mit parameterlosem Konstruktor (ohne
Konstruktorparameter)

Person pl = new Person() ;

pl.Vorname = "Holger";
pl.Nachname = "Schwichtenberg";

Console.WriteLine (pl.GanzerName) ;
Console.WriteLine (pl.ToString()) ;
Console.WriteLine(pl); // entspricht ToString()

// Person instanziieren mit Konstruktorparametern
Person p2 = new Person (123, "Schwichtenberg", "Holger");

Console.WriteLine (p2.GanzerName) ;

Console.WriteLine (p2.ToString()) ;
Console.WriteLine(p2); // entspricht ToString()

14.2.2 Schliisselwort var

Seit C# 3.0 gilt es durch die Verwendung des Schliisselwortes var vor dem Variablennamen den
Instanzierungsausdruck zu verkiirzen:

var p2 = new Person (123, "Holger", "Schwichtenberg");

Wichtig: Das C#-Schliisselwort var darf nicht mit dem Datentyp "Variant" in Visual Basic
NET verwechselt werden! "var" in C# ist kein eigener Datentyp, sondern bedeutet, dass der
Compiler den Datentyp fiir die Variable aus dem Ergebnis der Zuweisung wihlt. Fiir den

Klassendefinition 145

Compiler sind die Ausdriicke Person pl = new Person(); und var pl = new Person(); daher
gleichbedeutend. Der Einsatz von var erspart dem Entwickler etwas Tipparbeit. Der Einsatz von
var ist in vielen Entwicklungsteams umstritten.

14.2.3 Verwendung des Operators new ohne Typangabe (Target-
Typed New Expression)

Seit C# 9.0 bietet Microsoft in der Sprachsyntax eine andere Verkiirzung an, die das Potential hat,
weniger umstritten zu sein. Man kann nun nach dem Operator new den Klassennamen weglassen,
wenn man Deklaration und Initialisierung in eine Zeile schreibt und der Typ instanziiert wird, der
durch die Deklaration vorgegeben wurde. Voraussetzung ist natiirlich, man will die Klasse
instanziieren, die der Deklaration entspricht und nicht etwa eine abgeleitete Klasse.

Der Entwickler kann also statt

Person p = new Person() ;

Person hs = new Person (123, "Holger", "Schwichtenberg");
oder

var p = new Person();

var hs = new Person (123, "Holger", "Schwichtenberg");
nun auch schreiben:

Person p = new() ;

Person hs = new (123, "Holger", "Schwichtenberg") ;

Auch mit generischen Typen ist dies moglich, also statt
List<Person> personList = new List<Person>() ;

oder

var personList = new List<Person>();

nun zu schreiben:

List<Person> personList = new();

Im Gegensatz zu var kann man Target-Typed New Expression auch in Klassenmitgliedern, z.B.
bei der Initialisierung von Properties und Fields einsetzen:

class Person
{
public int ID { get; init; }
public string Firstname { get; set; }
public string Surname { get; set; }
public Adresse Adresse { get; set; } = new();

}

Auch im Programmablauf kann man Datenmitglieder (Properties und Fields) seit C# 9.0 durch
new() ohne Angabe des Klassennamens befiillen, da der Klassenname ja durch die Deklaration
bereits feststeht:

Person p4 = new() { Vorname = "Holger", Nachname = "Schwichtenberg" };

p4.Adresse = new() { Ort = "Essen", Land = "DE" };

Selbst eine Ubergabe als Methodenparameter ist ohne Klassennamen méglich, wenn sich dieser
aus dem erwarteten Parameter ergibt:

public void Umziehen (Adresse adresse)

{

146 Klassendefinition

this.Adresse = adresse;

}

p4.Umziehen(new() { Ort = "Essen", Land = "DE" });

Hinweis: Diese letzten hier gezeigten Anwendungsgebiete (Werte von Datenmitgliedern von
auBen setzen und Werte fiir Parameter) haben wieder das Potential zu Diskussionen in den
Entwicklungsteams, denn man sieht dabei ja nicht auf den ersten Blick, welche Klasse hier
instanziiert wird.

Jeremy Clark
eremybytes

Quick questions for C# devs:

Which do you prefer?

1. List<Person> employees = new();

2. var employees = new List<Person>();

Prefer new() 228%
Prefer var 77.2%
2,271 Stimmen - Endergebnisse

Abbildung: Abstimmungsergebnis auf Twitter zum Einsatz von new() ohne Typangabe
[twitter.com/jeremybytes/status/1458105599623761929]

14.3 Objektinitialisierung

Urspriinglich konnte man Objekte nur pragnant und elegant bei der Instanziierung initialisieren,
sofern die Klassen entsprechende Parameter im Konstruktor anboten.

Seit C# 3.0 und Visual Basic .NET 9.0 kann nun jedes offentliche Attribut (egal ob Field oder
Property) bei der Instanziierung initialisiert werden. C# bietet dazu eine Schreibweise mit
geschweiften Klammern an, Visual Basic .NET das Schliisselwort with (In Visual Basic .NET ist
auflerdem zu beachten, dass immer dem Attributnamen ein Punkt voranzustellen ist, in C# jedoch
nicht!)

Hinweis: Man kann nur offentliche und beschreibbare Attribute der Klasse von auflen
initialisieren. Man muss keineswegs alle Attribute initialisieren. Man darf aber jedes Attribut
nur einmal initialisieren.

Listing: Initialisierung von Objekten bei der Instanziierung (C# seit Version 3.0)

Vorstandsmitglied MM = new Vorstandsmitglied() { Name = "Max Miller",
Aufgabengebiet = "Flugbetrieb", Alter = 33 };

Vorstandsmitglied HM = new Vorstandsmitglied() { Name = "Hans Meier",
Aufgabengebiet = "Personal", Alter = 42 };

Vorstandsmitglied HS = new Vorstandsmitglied() { Name = "Hubert Schmidt",
Aufgabengebiet = "Marketing" ,Alter = 35, Ort = "Essen" };

Hinweis: Man kann die Objektinitialisierung auch zusitzlich verwenden, wenn es einen
parameterbehafteten Konstruktor gibt, z.B.

Vorstandsmitglied HS = new Vorstandsmitglied("Hubert Schmidt") { Aufgabengebiet =
"Marketing", Alter = 35, Ort = "Essen" };

Klassendefinition 147

Man kann die Objektinitialisierung seit C# 9.0 auch mit dem Feature "Target Type New"
verwenden, also den Klassennamen nach new weglassen:

Vorstandsmitglied HS = new("Hubert Schmidt") { Aufgabengebiet = "Marketing", Alter = 35,
Ort = "Essen" };

14.4 Geschachtelte Klassen (eingebettete Klassen)

Klassendefinitionen kénnen Klassendefinitionen (innere Klassen) enthalten.

class PersonMitAdresseClient

{

public static void Run()

{
var p = new PersonMitAdresse() ;
p.Adresse = new PersonMitAdresse.AdressKlasse();
p.Name = "Holger Schwichtenberg";
p.Adresse.Ort = "Essen";

}

/// <summary>

/// AuBere Klasse

/// </summary>

class PersonMitAdresse

{

public class AdressKlasse

{

public string Strasse { get; set; }
public string PLZ { get; set; }
public string Ort { get; set; }

}

public int ID { get; set; }

public string Name { get; set; }

public AdressKlasse Adresse { get; set; }
}
}

14.5 Sichtbarkeiten/ Zugriffsmodifizierer fiir Klassen

und Klassenmitglieder

Die Zugriffsmoglichkeiten auf Klassen und Klassenmitglieder wird durch sogenannte

Zugriffsmodifizierer gesteuert.

Fur Klassen gilt,

= Eine Klasse ist im Standard internal, d.h. sie sind nur in ihrem Projekt sichtbar, aber nicht in
Projekten, die das Projekt referenzieren.

= Wenn das Kompilat des Projekts in anderen Projekten referenziert wird und die Klasse
verwendbar sein soll, muss der Modifizierer public vor die Klasse geschrieben werden:
public class Person { ..}

148 Klassendefinition

= Seit C# 11.0 gibt es auch den Modifizierer file, d.h. die Klasse kann nur innerhalb der Datei
verwendet werden, in der sie sich befindet.

Fiir eine innere Klasse (eine in eine andere Klasse eingebettete Klasse) kann man auch anwenden:
= private: Die Klasse kann nur innerhalb der dufleren Klasse verwendet werden

= internal: Die Klasse kann innerhalb der gleichen Assembly verwendet werden.

= public: Die Klasse kann auch in referenzierenden Assemblies verwendet werden.
Klassenmitglieder konnen folgende Sichtbarkeiten besitzen:

= private: Das Mitglied kann nur innerhalb der Klasse genutzt werden

= protected: Das Mitglied kann innerhalb der Klasse und in abgeleiteten Klassen genutzt
werden

= private protected: Seit C# 7.2 (wie in Visual Basic .NET seit Version 15.5) moglich fur
Klassenmitglieder in einer abgeleiteten Klasse in der gleichen Assembly verwendet zu
werden, nicht aber in anderen Assemblies.

= internal: Das Mitglied kann in allen Klassen innerhalb der Assembly genutzt werden

= public: Das Mitglied kann in allen Klassen auch in referenzierenden Assemblys genutzt
werden

Hinweis: Visual Basic NET und C# unterscheiden sich bei den Klassendefinitionen aufer bei
friend/internal nur hinsichtlich der GroB-/Kleinschreibung der Schliisselworter. In C#
miissen die Schliisselworter klein geschrieben werden. In Visual Basic .NET ist dies egal, der
Editor schreibt die Worter allerdings automatisch grof3.

14.6 File-local Types (seit C# 11.0)

Als letztes neues Sprachfeature, kurz vor dem Erscheinen von C# 11.0, hat Microsoft einen neuen
Zugriffsmodifizierer fiir Typen eingefithrt, um deren Sichtbarkeit auf die Dateiebene zu
beschriinken.

Seit C# 11.0 gibt es auch die Sichtbarkeit (Scope) £ile (neben den bisher bekannten public,
private, protected, internal, protected internal und private protected).

Mit file deklarierte Schnittstellen, Klassen, Strukturen, Enumerationen, Delegates und Records
sind nur innerhalb der Datei sichtbar, in der sie deklariert werden. Eingebettete Typen konnen nicht
mit £ile versehen werden.

Hinweis: Jetzt wird vielen Lesern als erster Gedanke kommen: In C# ist doch "Best Practice"
pro Datei nur einen einzigen Typ zu deklarieren. Wenn man diesen einen Typ dann mit file
deklariert, ist er ja nicht sinnvoll, weil er nirgendwo anders sichtbar ist. Da sieht man wieder
einmal, wie es mit "Best Practices" ist: Sie gelten eben nicht immer und iiberall &2

In der Praxis kann es aber durchaus Sinn machen, mehrere kleinere Typen in einer Datei zu
deklarieren, z.B. weil eine Klasse eine eigene, personliche, d.h. nur fir die Klasse geltende
Datenstrukturen in Form einer anderen Klasse oder eines Record-Typen erhélt. Tatsdchlich
eingefiihrt hat Microsoft den Scope file fiir die Source Generatoren: Sie sollen Hilfsklassen
erzeugen konnen ohne in Konflikt mit anderen Generatoren zu geraten.

In den Programmcodebeispielen zu diesem Buch macht der neue Scope £ile auch durchaus
Sinn: Jede Datei behandelt ein Sprachfeature. Als Beispiel wird oft der Typname Person

Klassendefinition 149

verwendet, aber immer wieder anders implementiert. Die bisherige Trennung der verschiedenen
person-Implementierungen in verschiedene Namensraume kann nun entfallen.

Das folgende Listing zeigt den Inhalt einer Datei, die drei Typen deklariert:
= Schnittstelle IPerson mit Scope public

= Klasse Person, die IPerson implementiert, mit Scope file

= Klasse PersonManager mit Scope public

Das Listing zeigt: PersonManager kann durchaus eine Instanz von Person an die AuBlenwelt (Code
in anderen Dateien) liefern, denn diese konnen die Instanz ja iiber Schnittstelle IPerson
verwenden. Die AuBlenwelt kann aber keine Instanz von Person hineinreichen, weil sie diese
Klasse nicht kennt.

Listing: C11_FileScope.cs

namespace NET7Console;

public interface IPerson

{

public int ID { get; set; }
public string? Name { get; set; }
public string GetInfo();

}

file class Person : IPerson

{

public int ID { get; set; }

public string? Name { get; set; }

public string GetInfo() => $"{this.GetType() .FullName} {this.ID}: {this.Name}";
}

public class PersonManager

{

public int ID { get; set; }
public string? Name { get; set; }

public string GetInfoFromTestPerson ()
{

Person p = new();

return p.GetInfo() ;

}

public IPerson CreatePerson ()
{
return new Person();

}

// Nicht méglich: File-

local type 'Person' cannot be used in a member signature in non-file-
local type 'PersonManager'.

//public int GetInfo (Person p)

/4

// return p.GetInfo();

//}

150 Klassendefinition

Hinweise: Typen mit £ile-Scope bekommen einen vom Compiler vergebenen Namenszusatz,
der sie eindeutig macht. Der Namensaufbau ist:
<Dateiname>HEX-ZAHL _Typname z.B.

NET7Console.<C11_FileScope>FA5SB2AEDF9084311D7828CE3F0191286CC8A2A06CFD7
ACDYE4A415DDBY9FB91671__Person

Warnung: Ein Typ mit Scope file kann einen anderen Typen, der iibergeordnet sichtbar ist,
verdecken. Beispiel: Wenn es neben einer Klasse Person in der Datei Person.cs, die internal
oder public ist, noch einen Klasse file class Person in Test.cs gibt, ist innerhalb dieser Datei
Test.cs der Typ Person aus Person.cs nicht sichtbar!

14.7 Statische Klassen

An die Stelle des Visual Basic .NET-Schliisselworts Module tritt in C# seit Version 2005 das
Konstrukt static class. Eine solche Klasse darf nur statische Mitglieder besitzen. Die Klasse kann
nicht von einer anderen .NET-Klasse explizit erben; sie erbt automatisch von System.Object..

Listing:Beispiel fiir eine statische Klasse in C#
static class StatischeKlasse
{
public static void StatischesMitglied() { .. }
// Nicht erlaubt: Instanzmitglied
// public void InstanzMitglied() ;
}

Eine statische Klasse kann nicht instanziiert werden, weil der Konstruktor automatisch als private
deklariert ist. Dies ist also nicht erlaubt:

StatischeKlasse obj = new StatischeKlasse ()
Die statische Klasse kann nur iiber die Klasse selbst verwendet werden:
StatischeKlasse.StatischesMitglied() ;
Eine hiufig verwendete statische Klasse aus der .NET-Klassenbibliothek ist System.Environment.
Console.WritelLine (Environment.OSVersion) ;
Console.WriteLine (Environment.UserName) ;
foreach (string s in Environment.GetLogicalDrives())
{

Console.WriteLine(s) ;

}

Datenmitglieder / Attribute (Fields und Properties) 151

15 Datenmitglieder / Attribute (Fields und
Properties)

Attribute sind in der objektorientierten Lehre Datenmitglieder (alias Merkmal, Kennzeichen,
Informationsdetail) einer Klasse (vgl. de.wikipedia.org/wiki/Attribut_(Objekt)). Microsoft kennt in
der Programmiersprache C# und anderen .NET-Sprachen zwei Arten von Attributen und spricht
von

= Feldern (engl. Fields) und
= Eigenschaften (engl. Properties)

Praxishinweis: Sie sollten grundsitzlich Properties fiir 6ffentliche Attribute bevorzugen, da
einige Bibliotheken (insbesondere GUI-Bibliotheken) Properties fiir die Datenbindung
erfordern. Fiir private Klassenmitglieder konnen auch Fields in Frage kommen.

15.1 Abweichungen von der Lehre
Leider weicht Microsoft bei C# von den Begriffen von der objektorientierten Lehre erheblich ab:

= Attribute einer Klasse nennt Microsoft Felder und Properties

= Attribute sind bei Microsoft hingegen Metadaten (in anderen Sprachen besser "Annotationen"

bezeichnet).
H e a
B Awibute (C#) | Microsol:
&« C | @ Sicher https/docs.microsoft.com/de-de/dotnet/csharp/programming-guide/concepts/attribut T
Nach Test e Attribute (C#)
£ 26.04.2018 + ® 9 Minuten Lesedauer * Beitragende & ** ¥
Attribute In diesem Artikel
> Erstellen benutzerdefinierter Verwenden van Attributen
I Attribute Haufige Verwendungsmaglichkeiten fiir Attribute
| Zugniff auf Attribute mit Verwandte Abschnitte
: Reflektion

Siehe auch
Gewusst wie: Erstellen einer
:R:@J;?‘CH mit Attribute stellen eine effiziente Methode dar, Metadaten oder deklarative
Informationen Code (Assemblys, Typen, Methoden, Eigenschaften usw.)
zuzuordnen. Nach dem Zuordnen eines Attributs zu einer Programmentitat
kann das Attribut zur Laufzeit mit einer Technik namens Reflektion

Allgemeine Attribute

abgefragt werden. Weitere Informationen finden Sie unter Reflektion (C#).

Abbildung: Microsofts Definition von "Attribute" [learn.microsoft.com/de-
de/dotnet/csharp/programming-guide/concepts/attributes/]

https://de.wikipedia.org/wiki/Attribut_(Objekt)

152 Datenmitglieder / Attribute (Fields und Properties)

< C @ Sicher httpsy//docs.microsoft.com/de-de/dotnet/csharp/programming-guide/classes-and-structs/fields w* [
N T Felder (C#-
Kissen und - Programmierhandbuch)

Klassenmember -
[1 20.07.2015 @ 6 Minuten Lesedauer - Beitragende & *N 14 @ @
Statische Klassen und

statische Klassenmember In diesem Artikel
Mitglieder C#t-Programmiersprachenspezifikation

Zugriffsmodifizierer Siehe auch

Ein Feld ist eine Variable eines beliebigen Typs, die direkt in einer class oder

> Konstanten struct deklariert ist. Felder sind Member Ihres enthaltenden Typs.
> Eigenschaften
Abbildung: Microsofts Definition von "Feld" [learn.microsoft.com/de-
de/dotnet/csharp/progr ing-guide/classes-and-structs/fields]

Hinweise: In diesem Buch werden — im Einklang mit der objektorientierten Lehre — die
Datenmitglieder einer Klasse als "Attribute" bezeichnet. Was Microsoft "Attribut" nennt, finden
Sie hier im Kapitel "Annotationen".

Felder sind in der Informatik eine Menge gleichartiger Daten (vgl.
[de.wikipedia.org/wiki/Feld_(Datentyp)]). Hier bleibt das Buch aber bei der Verwendung des
Begriffs

15.2 Felder (Field-Attribute)

Attribute (Daten) einer Klasse ohne Codehinterlegung werden — im Sprachjargon von Microsoft —
durch "Felder" (engl. Fields) erzeugt.

15.2.1 Deklaration von Feldern

Felder kénnen public (sichtbar fiir die Klasse und alle Nutzer), private (sichtbar nur fiir die Klasse)
oder protected (sichtbar fiir die Klasse und geerbte Klassen) sein. In C# werden die
Sichtbarkeitsmodifizierer vor den Field-Namen vorangestellt. Mehrere Fields gleichen Typs
konnen durch ein Komma getrennt werden. Fields konnen bei der Deklaration explizit initialisiert
werden durch eine Zuweisung. Wenn sie nicht explizit initialisiert werden, erhalten sie den
Standardwert des Datentyps (z.B. 0 bei Zahlen, null bei Zeichenketten, false bei Boolean und den
1.1.0001 bei DateTime).

private string PersonalausweisNr;

public string Vorname, Nachname;

Protected System.DateTime Geburtstag;
Protected string Geburtsort = "unbekannt";

15.2.2 Felder mit readonly

Fields konnen auch mit dem Zusatz readonly deklariert werden. An ein readonly-Field kann man
Werte nur in der Deklaration und letztmalig (!) im Konstruktor zuweisen. Danach sind sie
unverdnderlich.

https://de.wikipedia.org/wiki/Feld_(Datentyp)

Datenmitglieder / Attribute (Fields und Properties) 153

Hinweis: Auch in einem Objekt-Initialisierer ist das Field dann nicht mehr dnderbar! Dies ist
ein Unterschied zu einem Property mit Init Only Setter. Ein Property mit Init Only Setter kann
auch in einem Objekt-Initialisierer noch geéndert werden!

public class Person
{
#region Fields
// Normales Fields ohne Initialiserung
public DateTime ZuletztGeaendert;
// Readonly Fields mit Initialiserung
public readonly DateTime AngelegtAm = DateTime.Now;
#endregion

#region Konstruktoren

public Person ()

{

// letztmalige Anderungsméglichkeit fiir das readonly field!
this.AngelegtAm = DateTime.Now;

}

15.3 Eigenschaften (Property-Attribute)

Ein Property dient dazu, ein Attribut (Datenmitglied) einer .NET-Klasse zu deklarieren, bei dem
Programmcode sowohl beim Setzen des Werts als auch beim Lesen des Werts ausgefiihrt wird. Ein
Property ist somit eine Mischung aus einem Attribut und einer Methode: Der Aufrufer sieht das
Property als Attribut, die Klasse intern besitzt jedoch eine oder zwei Methoden: Die Get-Methode
(alias Getter) zum Lesen und/oder die Set-Methode (alias Setter) zum Schreiben des Attributs.
Getter und Setter konnen unterschiedliche Sichtbarkeiten besitzen (public, private, protected). Der
Standard ist public.

In der deutschen Dokumentation verwendet Microsoft den Begriff "Eigenschaft" als Ubersetzung
fiir "Property", im Gegensatz zu den normalen (einfachen) Attributen, die Microsoft "Field" bzw.
"Feld" nennt.

Was tatsdichlich in Getter und Setter ausgefiihrt wird, ist dem Entwickler iiberlassen. Typische
Beispiele fiir die Nutzung von Properties sind:

= Im Getter wird ein Wert berechnet, statt ihn aus dem Speicher zu lesen. Der Setter fehlt, weil
es keinen Sinn macht, einen berechneten Wert zu speichern (z.B. Alter: Diese Property wiirde
im Getter das Alter aus Geburtstag und aktuellem Datum errechnen. Einen Setter gébe es nur
fur Geburtstag, aber nicht fiir Alter).

= Im Setter wird gepriift, ob der Wert Sinn macht (z.B. Geburtstag darf nicht in Zukunft liegen)

= Man darf einen Wert setzen, aber nicht wieder auslesen (z.B. Kennwort)

Architekturhinweis: Der Programmcode in Getter und Setter sollte nicht zu umfangreich
werden. Er sollte nicht lang dauern und auch nichts unerwartetes tun, z.B. externe Ressourcen
ansprechen. Aktionen, die langer dauern, sollten in Methoden implementiert werden.

Urspriinglich gab es nur explizite Properties. Seit C# 2008 gibt es auch automatische Properties.

154 Datenmitglieder / Attribute (Fields und Properties)

15.3.1 Explizite Properties mit Field

Explizite Properties (ausformulierte Properties) sind der Grundtypus, bei dem man fiir Getter und
Setter jeweils einen eigenen Programmcodeblock { ... } schreibt. Dabei definiert man
typischerweise ein zugehoriges privates Field als Datenspeicher.

Hinweis: Das zu einem Property gehorige explizite Field kann der Entwickler beliebig
benennen. Ublich ist aber, entweder den Namen des Properties (z.B. Flugstunden) mit kleinem
Anfangsbuchstaben (flugstunden) zu verwenden oder aber dem Namen einen Unterstrich
voranzustellen (_Flugstunden). Oft vereinbaren Entwicklungsteams dazu interne Konventionen.

Das folgende Property enthilt noch keinen Programmcode auBler dem Setzen und dem Lesen des
privaten Fields.
Listing: Ein Property mit zugehorigem Field in expliziter Schreibweise
private long _Flugstunden;
public long Flugstunden
{
get
{
return this._ Flugstunden;
}
protected set
{
this._ Flugstunden = value;
}
}
Die folgende Variante enthilt im Setter eine Validierung.

Listing: Ein Property mit zugehorigem Field in expliziter Schreibweise und Validierung im Setter
private long _Flugstunden;
public long Flugstunden
{
get
{
return this. Flugstunden;

}

protected set

{
if (value < 0) throw new ApplicationException ("Ungiiltiger Wert");

this. Flugstunden = value;
}
Seit C# 7.0 kann Properties auch verkiirzt per Lambda-Expression implementieren.

Listing: Ein Property mit zugehdrigem Field in expliziter Schreibweise per Lambda

private long _FlugStunden;
public long Flugstunden
{
get => this. Flugstunden;
protected set => this._ Flugstunden = value;
}

Datenmitglieder / Attribute (Fields und Properties) 155

Man kann die Lambda-Schreibweise fiir Getter und Setter getrennt wihlen. So ist es z.B. moglich,
in dem Setter noch Programmcode zu hinterlegen (z.B. zur Validierung), wihrend der Getter
pragnant per Lambda-Ausdruck nur den Wert des privaten Fields abruft.

private long _FlugStunden;
public long Flugstunden
{
get => this. Flugstunden;
protected set
{
if (value < 0) throw new ApplicationException("Ungiiltiger Wert");
this._ Flugstunden = value;
}
}

Hinweis: Bei ausformulierten Properties kann man get weglassen, wenn der Lesezugriff nur
iiber das korrespondiere Field erfolgen soll. Auch das Field ist optional; man kann den Wert
auch woanders speichern. Theoretisch kann man ein Property auch wie eine Methode mit einem
Parameter verwenden. Dies ist aber kein guter Programmierstil.

15.3.2 Automatische Properties

Die automatischen Eigenschaften (engl. Automatic Property) machen die Syntax prignanter fiir
solche Property-Attribute, die nichts anderes tun als ein privates Field-Attribut zu lesen und zu
beschreiben. In diesem Fall kann man sich die explizite Definition des privaten Field-Attributs
sparen und die Erzeugung dem Compiler iiberlassen. Damit verkiirzt sich auch die Schreibweise
von Getter und Setter radikal. Automatische Eigenschaften gibt es in C# seit Version 3.0 und in
Visual Basic seit Version 2010. Seit C# 6.0 und Visual Basic 14 kann man automatische Properties
auch direkt bei der Deklaration initialisieren.

Ein Property in C# mit zugehorigem Field als automatisches Property deklariert man so:
public long Flugstunden { get; set; }
Getter und Setter konnen unterschiedliche Sichtbarkeiten besitzen:

public long Flugstunden { get; protected set; }

Hinweis: Eine Validierung oder andere Logik ist bei automatischen Properties nicht méglich.
Bei einer automatischen Property erzeugt der Compiler ein privates Field, dessen Namen der
Entwickler nicht kennt und nicht sieht. Er kann es nicht ansprechen, d.h. alle Zugriffe laufen
iiber das Property. Erst ab 7.3 kann man Annotationen fiir diese automatisch generierten privaten
Fields setzen.

Wenn keine Validierung oder andere Logik notwendig ist, sollte man fiir offentliche
Klassenmitglieder dennoch immer ein automatisches Property realisieren und nicht der
Versuchung verfallen, ein Field anzulegen. Einige Bibliotheken wie die Windows Presentation
Foundation (WPF) erfordern Properties fiir die Datenbindung.

Seit C# 6.0 kann man automatische Properties, fiir die es keine explizite Felddeklaration gibt, direkt
im Rahmen der Deklaration mit einem Wert initialisieren und auch automatische Properties
schaffen, die nach ihrer Initialisierung unverdnderbar sind, indem sie nur einen Getter besitzen.
Lediglich im Konstruktor der Klasse kann der Entwickler solche Eigenschaften dann noch
letztmalig dndern. Eine normale Methode oder der Nutzer des Objekts kann das Property nicht
verdndern.

156 Datenmitglieder / Attribute (Fields und Properties)

Hinweis: Man darf den Setter bei automatischen Properties weglassen, aber es muss immer
einen Getter geben!

Listing: Automatische Properties mit Initialisierung und optional auch ohne Setter
public class Kontakt

{

// Butomatic Properties mit Initialisierung

public string Land { get; set; } = "Deutschland";

// Butomatic Properties mit Initialisierung und ohne Setter

public DateTime ErzeugtAm { get; } = DateTime.Now;

public Kontakt(DateTime erzeugtAm)

{
// Getter Only Auto Property im Konstruktor setzen

ErzeugtAm = DateTime.Now;
}

15.3.3 Properties, die nach Initialisierung unveranderlich sind (Init
Only Properties)

Seit C# 9.0 gibt es zusitzlich auch automatische Properties, deren Werte nur bei der
Objektinitialisierung (Konstruktionsphase) gesetzt werden konnen und die danach unverianderlich
sind. Man nennt diese Properties "Init Only Property" und sie werden mit dem "Init Only Setter"
deklariert. Man kann Init Only Properties in Klassen, Strukturen und Record-Typen verwenden.

Ein solcher "Init Only Setter" verwendet das Schliisselwort init anstelle von set:

class Person

{
public int ID { get; init; }

}
Dies geht bei automatischen Properties ebenso wie bei ausformulierten Properties:
private int id;

public int ID
{
get { return id; }
init { id = value; }
}
und auch Properties in der Lambda-Schreibweise:
private int id;
public int ID
{
get => id;
init => id = value;
}
Hinweis: init und set diirfen nicht beide verwendet werden. Bei ausformulierten Properties kann
man get weglassen; bei automatischen Properties nicht.

Das Init Only Property kann ein Softwareentwickler nur noch bei der Objektinitialisierung
(Konstruktionsphase) eines Objekts setzen, also an zwei Stellen:

Datenmitglieder / Attribute (Fields und Properties)

157

= Konstruktor der Klasse
public Person(int ID)
{
this.ID = ID;
}

Person hsl = new Person(123);
= Objekt-Initialisier direkt bei der Instanziierung
Person hs2 = new Person() { ID = 123 }

Bei der Instanziierung ist auch moglich, den Wert sowohl per Konstruktorparameter zu setzen als

auch per Objekt-Initialisier einen (ggf. abweichenden) Wert zu setzen.
Person hs3 = new Person(123) { ID = 456 };

Das folgende Listing zeigt ein komplettes Beispiel fiir die Klasse mit zwei Properties mit Init Only
Setters. Der Nutzer der Klasse darf nach der Instanziierung nur noch den Nachnamen (Surname)

verdndern, aber nicht den Vornamen und die ID der Person.

verdndert werden. Eine Methode ChangelD() ist nicht erlaubt!

Hinweis: Auch innerhalb der Klasse kénnen die Properties mit Init Only Setters nicht mehr

public static void InitOnlysetters()
{
Person pl = new Person (123, "Susanne", "Miller");
Person p2 = new Person("Susanne", "Miller") { ID = 123 }

Person p3 = new Person(123, "Susanne", "Miller") { ID = 456 };
p3.Surname = "Schulze";
// p3.Firstname = "Marianne";// verboten durch "Init Only Setter"!

// p3.ID = 456; // verboten durch "Init Only Setter"!
}

class Person

{

public int ID { get; init; }

public string Firstname { get; init; }
public string Surname { get; set; }

public Person()
{ }
public Person(int ID)

{
this.ID = ID;
}

public Person(string firstname, string surname) : this()
{

this.Firstname = firstname;

this.Surname = surname;

}

public Person(int id, string firstname, string surname)
{

this (id)

158 Datenmitglieder / Attribute (Fields und Properties)

this.Firstname = firstname;
this.Surname = surname;

}

public override string ToString()

{
return this.Firstname.ToUpper() + " " + this.Surname.ToUpper() ;

}

// verboten durch "Init Only Setter"!
//public void ChangelID (int newID)

/4
// this.ID = newiID;
17}

15.3.4 Init Only Setters in .NET Framework und .NET Standard

Bei der Verwendung von Init Only Setters in Projekten, die auf .NET Framework oder .NET
Standard basieren, kommt es zur Fehlermeldung "Error CS0518:Predefined type
'System.Runtime.CompilerServices.IsExternallnit' is not defined or imported".

class Person

1

public int ID { get; inik; }

) void Person.iD.init
€50518; Predefined type 'System. Runtime.CompilerServices.IsExternallnit' is not defined or imported

Abbildung: Fehlermeldung bei einem Init Only Setter

Das passiert selbst nach der Erhohung der <LangVersion> auf eine Zahl >= 9, weil es die Klasse
System.Runtime.CompilerServices.IsExternallnit im klassisches .NET Framework und .NET
Standard nicht gibt.

Allerdings kann man dies mit einem Trick 16sen: Diese Klasse ist eine Annotation (.NET-
Attribute), das man selbst implementieren kann. Man fiigt folgenden Programmcode einfach in
jedes Projekt ein.

Listing: Hack fiir die Verwendung von C# >= 9 in .NET Standard und .NET Framework

using System.ComponentModel;

namespace System.Runtime.CompilerServices

{
[EditorBrowsable (EditorBrowsableState.Never)]
public class IsExternalInit { }

}

15.3.5 Zusammenfassung zu Properties

Das folgende Listing zeigt alle Spielarten von Properties im Vergleich.

public class Person

{

#region Properties

Datenmitglieder / Attribute (Fields und Properties) 159

// RAutomatisches Property mit &ffentlichem Getter und Setter
public string Name { get; set; }
// Rutomatisches Property mit &ffentlichem Getter und privatem Setter und Initi
alisierung

public char Geschlecht { get; private set; } = '?';
// Explizites Property mit privatem Field und &6ffentlichem Getter und Setter
private string _Vorname;
public string Vorname
{

get { return _Vorname; }

set

{

if (String.IsNullOrEmpty(value)) throw new ApplicationException ("Vorname darf

nicht leer sein");

if (value.Length>50) _Vorname = value.Substring(0,50);

else _Vorname = value;

}
}
// Explizites Property nur mit Getter (berechnetes Property)
public string GanzerName
{

get { return $"{Vorname} {Name}"; }
}
// Explizites Property nur mit Getter (berechnetes Property) ,h Lambda-Syntax
public string GanzerNameMitGeschlecht => $"{Vorname} {Name} ({Geschlecht})";
// Explizites Property nur mit Setter
private string _KennwortHash;
public string Kennwort
{

set { _KennwortHash = value.GetHashCode () .ToString(); }
}

#endregion

15.4 Pflichtmitglieder (Required Members)

Seit C# 11.0 gibt es ein neues Schliisselwort required fiir Fields und Properties. Wenn ein
Datenmitglied einer Klasse diesen Zusatz erhilt, dann ist zwingend erforderlich, dass dieses
Datenmitglied entweder im Konstruktor oder Objekt-Initialisierer vom Nutzer der Klasse gesetzt
wird. Ein Konstruktor ist mit [SetsRequiredMembers] annotierbar, was dem Compiler anzeigt,
dass er alle erforderlichen Mitglieder belegt.

Hinweis: Der Zusatz required ist erlaubt bei Datenmitgliedern in Klassen, Strukturen und
Record-Typen, aber nicht in Schnittstellen.

Beispiel: Die Klasse im folgenden Listing deklariert ein Field und zwei Properties mit required
sowie eine weitere Property ohne diesen Zusatz. Zudem gibt es neben dem parameterlosen
Konstruktor zwei weitere Konstruktoren mit Parametern, die beide mit [SetsRequiredMembers]
annotiert sind; allerdings setzt nur einer von beiden alle drei der erforderlichen Mitglieder auf
belegt.

Achtung: Der Code kompiliert auch, wenn [SetsRequiredMembers] gar nicht alle
erforderlichen Mitglieder setzt, siche zweiter Konstruktor im folgenden Listing. Es gibt auch
keine Warnung! Das heif3t: Der Compiler verlésst sich auf die Angabe [SetsRequiredMembers]

160 Datenmitglieder / Attribute (Fields und Properties)

des Entwicklers! Es gab den Plan, dass der Compiler das tatsdchliche Setzen aller
Pflichtmitglieder validiert; er wurde jedoch verworfen. Es gab beim C#-Entwicklungsteam den
Plan, dass man einzelne Mitglieder ein- und ausschlieen kann. Auch dies ist Stand C# 11.0
nicht moglich.

"An earlier version of this proposal had a larger metalanguage around initialization, allowing
adding and removing individual required members from a constructor, as well as validation that
the constructor was setting all required members. This was deemed too complex for the initial
release, and removed. We can look at adding more complex contracts and modifications as a
later feature." [https://learn.microsoft.com/en-us/dotnet/csharp/language-
reference/proposals/csharp-11.0/required-members]

Listing: CS11_Required.cs

public class Consultant
{

public Consultant() { }

[SetsRequiredMembers]

public Consultant(int id, string name, DateTime created) => (ID, Name, Created)
= (id, name, created);

[SetsRequiredMembers]

public Consultant(int id, string name) => (ID, Name) = (id, name);

public required int ID; // Required Field
public required string Name { get; init; } // Required Property

public required DateTime Created { get; init; } = DateTime.Now; // Required Prop
erty

public string? City { get; set; } // nicht "required"!
}
Diese Klasse ist nun wie folgt instanziierbar.
1. Aufruf des Konstruktors mit allen drei erforderlichen Angaben:
var pl = new Consultant(l, "Dr. Holger Schwichtenberg", DateTime.Now) ;
2. Aufruf des Konstruktors mit nur zwei der drei Pflichtangaben:
var p2 = new Consultant(2, "Dr. Joachim Fuchs");

3. Aufruf des parameterlosen Konstruktors und Initialisierung aller drei Angaben im Objekt-
Initialisierer:

var p3 = new Consultant() { ID = 3, Name = "Dr.habil. Klaus Schmaranz",
Created = DateTime.Now };

Nicht erlaubt ist hingegen:

= Parameterloser Konstruktor ohne Objekt-Initialisierer

var pd = new Consuytant(); (@ cs935: Required member “Consultant.ID' must be set in the object initializer or attribute canstructar.
@ 0 (+ 2 overloads)
55035 Required member ‘Consultant 10" must be set in the object initializer or attribute constructor.

Required member ‘Consultant Name must be set in the ebject infializer or attribute constructor.

15: Required member ‘Consultant Created’ must be set in the object initializer or attribute canstructor

= Parameterloser Konstruktor mit unvollstindigem Objekt-Initialisierer

Datenmitglieder / Attribute (Fields und Properties) 161

var p5 = new Consulfant() { ID = 5, Name = "Dr. Benny Tritsch® };
@ Consultant Consultant{) (+ 2 overloads)
59035: Required member 'Consultant Created' must be set in the object initializer or attribute constructor.

Praxishinweis: Das Beispiel zeigt auch: Es reicht nicht, dass das Property Created eine
Standardwertzuweisung in der Klasse besitzt. Der Aufrufer muss trotzdem Created belegen.

Visual Studio zeigt iibrigens in den Tooltips deutlich an, wenn das Setzens eines Mitglieds
erforderlich ist.

var p2 = new Consultant ID = 2, Name = "Dr.habil. Klaus Schmaranz*l

Created { get

162 Methoden

16 Methoden

Methoden sind Operationen in Klassen, die innerhalb der Klasse oder von Nutzern aufgerufen
werden konnen. Methoden konnen einen Riickgabewert liefern. Parameter von Methoden konnen
optional sein. Weggelassene Parameter werden durch Vorgabewerte ersetzt, die in der
Methodendeklaration stehen miissen. Der Aufrufer gibt in der Regel die Parameter in der
Deklaration vorgegebenen Reihenfolge an. Durch eine spezielle Syntax kann man aber die
Parameter in einer beliebigen Reihenfolge angeben. Optionale Parameter diirfen Wertelose
Wertetypen (Nullable Types) sein.

16.1 Methodendefinition und Riickgabewerte

In C# beginnt eine Methodendefinition mit der Sichtbarkeit. Danach folgt der Datentyp des
Riickgabewerts. In C# gibt es kein direktes Schliisselwortpendant zum Sub und Function aus
Visual Basic .NET. Methoden ohne Riickgabewerte werden durch den Datentyp void signalisiert.

Der Riickgabewert wird in C# wie in Visual Basic .NET mit return festgelegt.

public class MethodenDemo
{
/// <summary>
/// Methode ohne Riickgabewert
/// </summary>
public void DruckeUhrzeit()
{
Console.WriteLine ("Aktuelle Uhrzeit: " + DateTime.Now.ToShortTimeString());
}

/// <summary>
/// Methode mit Zeichenkette als Riickgabewert
/// </summary>
public string GetUhrzeit()
{
return (DateTime.Now.ToShortTimeString());
}
}
Beim Methodenaufruf sind immer runde Klammern zu verwenden, auch wenn es keine Parameter
gibt!
DruckeUhrzeit () ;
var Uhrzeit = GetUhrzeit() ;
Console.WriteLine (Uhrzeit) ;

16.2 Methodenparameter

Eine Methode kann eine Parameterliste besitzen, wobei der Typ — wie bei Variablendeklarationen
— auch hier jeweils vor dem Parameternamen genannt wird.

/// <summary>

/// Methode mit Parametern

/// </summary>

public double Berechnen(int a, int b, double c)
{

return (a + b) / Math.Pow(c, 2);

Methoden 163

}

16.3 Methodeniiberladungen

Methoden konnen iiberladen sein, d.h. der gleiche Methodenname darf mehrfach mit
verschiedenen Parameterlisten verwendet werden, sofern beim Aufruf die Zuordnung zu einer der
Uberladungen noch eindeutig ist. Fiir iiberladene Methoden gibt es kein Schliisselwort in C#,
wihrend Visual Basic .NET dafiir Overloads verwendet.

/// <summary>

/// Uberladene Methode mit Parametern

/// </summary>

public double Berechnen(double a, double b, double c)

{

return (a + b) / Math.Pow(c, 2);

}
Bei den folgenden Aufrufen geht der erste Aufruf an die erste Variante mit den zwei Int-Werten in
den ersten Parametern, wihrend der zweite Aufruf die Uberladung mit den double-Werten aufrufen
muss, da 2.8 nicht in int a passen wiirde. Dass der zweite Parameterwert hier kein double ist, stort
nicht. Der Compiler konvertiert automatisch die 3 in 3.0.

Console.WriteLine (Berechnen (2,3, 4.456)); // Ruft die erste Uberladung
Console.WriteLine (Berechnen (2.8, 3, 4.456)); // Ruft die zweite Uberladung

Hinweis: Uberladungen miissen sich hinsichtlich der Parameteranzahl und Parametertypen
unterscheiden. Nicht giiltig ist, wenn sich zwei Methodendeklarationen nur hinsichtlich des
Riickgabetyps oder den Zusitzen out und ref zu den Parametern unterscheiden.

16.4 Prioritaten fir Methodeniiberladungen (ab C# 13.0)

Die in C# 13.0 und NET 9.0 neu eingefiihrte Annotation [OverloadResolutionPriority] im
Namensraum System.Runtime.CompilerServices bietet eine bedeutende Verbesserung fiir
Uberladungen von Methoden: Diese Annotation ermdglicht es, die Prioritit von Uberladungen
explizit festzulegen, um die Entscheidung, welche Methodeniiberladung der Compiler aufrufen
soll, gezielt zu steuern.

Mit [OverloadResolutionPriority] konnen Entwicklerinnen und Entwickler festlegen, dass
bestimmte Uberladungen bei der Entscheidung, welche Uberladung verwendet werden soll, eine
hohere Prioritdt erhalten sollen. Dies hilft zum Beispiel, wenn mit [Obsolet] annotierte
Uberladungen einer Methode existieren. Bei der neuen Annotation [OverloadResolutionPriority]
gibt man eine Integer-Zahl an: Je hoher die in der Annotation angegebene Zahl ist, je hoher
die Prioritit.

Das folgende Listing zeigt ein Beispiel: Der Aufruf von Print() mit einer Zeichenkette wiirde ohne
[OverloadResolutionPriority] immer zur Implementierung von Print() mit einem String-Parameter
gehen, auch wenn diese Uberladung als [Obsolete] gekennzeichnet ist. Durch das Einfiigen von
[OverloadResolutionPriority] kann man den Compiler auf eine andere Implementierung umlenken.
Wiirde man in dem Beispiel sowohl der Implementierung mit Parametertyp object als auch
ReadOnlySpan<char> den gleichen Prioritdtswert geben, wiisste der Compiler nicht, welche
Konvertierung er machen soll und verweigert die Ubersetzung:

164 Methoden

The call is ambiguous between the following methods or properties:
'CS13_OverloadResolutionPriority.Print(object, ConsoleColor)" and
'CS13_OverloadResolutionPriority.Print(ReadOnlySpan<char>, ConsoleColor)’

Mit einem abweichenden Priorititswert kann man den Compiler zu der einen oder der anderen
Implementierung lenken, hier im Listing mit Wert 10 zu public void Print(ReadOnlySpan<char>
text, ConsoleColor color).

Die Implementierung public void Print(object text, ConsoleColor color) kommt aber weiterhin
zum Einsatz fiir alle anderen Datentypen, zum Beispiel Zahlen wie 42, denn diese kann der
Compiler nicht automatisch in ReadOnlySpan<char> konvertieren.

Listing: Einsatz der neuen Annotation [OverloadResolutionPriority]
using System.Runtime.CompilerServices;

namespace NET9 Console.CS13;

public class CS13_OverloadResolutionPriority
{
public void Run()

{
CUI.Demo (nameof (CS13_OverloadResolutionPriority)) ;

// verwendet Print(ReadOnlySpan<char> text)
ReadOnlySpan<char> span = "www.IT-Visions.de".AsSpan() ;
Print (span) ;

// verwendet Print(ReadOnlySpan<char> text) wegen OverloadResolutionPriority (10
Print("Dr. Holger Schwichtenberg") ;

// verwendet public void Print(object obj)
Print (42) ;

[Obsolete]

//[OverloadResolutionPriority (10)]

public void Print(string text)

{
// Set the console color
Console.ForegroundColor = ConsoleColor.Red;

// Print the text
Console.WriteLine ("string: " + text);

// Reset the console color
Console.ResetColor() ;

[OverloadResolutionPriority (1)]
public void Print(object obj)
{

// set the console color

Methoden 165

Console.ForegroundColor = ConsoleColor.Yellow;

// Print the text
Console.WriteLine ("Object: " + obj.ToString());

// Reset the console color
Console.ResetColor() ;

}

[OverloadResolutionPriority (10)]

public void Print(ReadOnlySpan<char> text)

{
// Set the console color
Console.ForegroundColor = ConsoleColor.Green;

// Print the text
Console.WriteLine ("ReadOnlySpan<char>: " + text.ToString());

// Reset the console color
Console.ResetColor() ;

Object: u2

Abbildung: Ausgabe des Listings

Wiirde man bei public void Print(string text, ConsoleColor color) auch eine Overload Resolution
Priority von mindestens 10 setzen
[Obsolete]
[OverloadResolutionPriority (10)]
public void Print(string text, ConsoleColor color)
{
// Set the console color
Console.ForegroundColor = color;

// Print the text
Console.WriteLine("string: " + text);

// Reset the console color
Console.ResetColor () ;
}
dann wird bei
Print("Dr. Holger Schwichtenberg", ConsoleColor.Yellow) ;
die Uberladung mit string-Parameter genommen, auch wenn diese mit [Obsolete] markiert ist.

166 Methoden

16.5 Optionale und benannte Parameter

Seit C# 4.0 gibt es optionale und benannte Parameter. Zuvor musste man optionale Parameter durch
Methodeniiberladung nachbilden. Optionale Parameter werden in C# durch einen Vorgabewert in
dem Methodenkopf angezeigt. Optionale Parameter diirfen nur am Ende der Parameterliste
erscheinen.

Listing: Methode mit zwei optionalen Parametern
/// <summary>
/// Methode mit zwei optionalen Parametern
/// </summary>
public void Print(string text, ConsoleColor Farbe = ConsoleColor.Gray, bool Datum
= false)
{
if (Datum) text = DateTime.Now.ToShortTimeString() + ": " + text;
ConsoleColor bisherigeFarbe = Console.ForegroundColor;
Console.ForegroundColor = Farbe;
Console.WriteLine (text) ;
Console.ForegroundColor = bisherigeFarbe;

}
Die obige Methode kann man wie folgt aufrufen:

CS10_Parameter obj = new CS10_Parameter() ;

obj.Print ("Ausgabe ohne spezielle Farbe und ohne Datum.");

obj.Print ("Ausgabe in griin und ohne Datum.", ConsoleColor.Green) ;
obj.Print("Ausgabe in griin und mit Datum.", ConsoleColor.Green, true);

Benannte Parameter erlauben die Angabe der Parameter in beliebiger Reihenfolge unabhingig von
der Reihenfolge in der Deklaration. Ein benannter Parameter ist allein Sache des Aufrufers, d.h.
hierzu sind keine Anderungen in der Deklaration notwendig. Der Aufrufer gibt durch
Parametername und Doppelpunkt an, welchen Parameter er iibergeben will.

obj.Print(text: "Ausgabe ohne spezielle Farbe und mit Datum.", Datum: true);

Von C#4.0 bis C# 7.1 konnte man zwar benannte Parameterwerte und unbenannte Parameterwerte
mischen in einem Aufruf, aber es galt die Regel, dass unbenannte Parameterwerte nur am Anfang
vor dem ersten benannten Parameterwert verwendet werden diirfen. Dies wurde erst in C# 7.2
aufgehoben ("Non-trailing named arguments").

// RAufruf gemischt mit unbenannten und benannten Parametern

obj.Print("Ausgabe ohne spezielle Farbe und mit Datum.", Datum: true);

obj.Print ("Ausgabe ohne spezielle Farbe und mit Datum.", ConsoleColor.Green, Datu
m: true);

obj.Print("Ausgabe ohne spezielle Farbe und mit Datum.", Farbe: ConsoleColor.Gree
n, Datum: true);

// erst ab C# 7.2 méglich: Benannte und unbenannte Parameter an beliebiger Stelle
obj.Print (text: "Ausgabe ohne spezielle Farbe und mit Datum.", ConsoleColor.Green
, true);

Achtung: Wenn man das Kompilat eines optionalen Parameteraufrufs mit einem Decompiler
betrachtet, wird man iiberrascht: Die Aufrufe erfolgen gar nicht mit weniger Parametern,
vielmehr werden die Vorgabewerte mit in den Aufruf hineinkompiliert. Das gilt sowohl fiir C#
als auch Visual Basic.

Methoden 167

€548_Parameter obj = new CS40_Parameter();

obj.Print("Ausgabe ohne spezielle Farbe und ohne Datum.”, ConsoleColor.Gray, false);
obj.Print("Ausgabe in griin und chne Datum.", ConsoleColor.Green, false);
obj.Print(“Ausgabe in grin und mit Datum.", ConsoleColor.Green, true);

Abbildung: Dekompilat mit ILSpy [github.com/icsharpcode/ILSpy]

In der Verwendung optionaler Parameter besteht also eine Gefahr: Wenn die optionale Methode in
einer anderen Assembly als der Aufrufer ist und diese beiden Assemblys unabhéngig voneinander
kompiliert werden (also nicht in einer Projektmappe sind), dann kann es zu Inkonsistenzen
kommen. Nach einer Anderung der Vorgabewerte wiirden nicht erneut kompilierte Aufrufer
weiterhin die alten Werte verwenden.

16.6

Mit dem Zusatz in bei einem Parameter deklariert eine Methode, dass sie den iibergebenen
Parameter nur lesen, aber nicht verdndern wird.

Parametermodifizierer in, ref und out

Fiir die Ubergaberichtung der Parameter vom Aufrufer an eine Methode gibt es in C# fiir den Call-
by-Value-Fall (Ubergabe als Wert) kein Schliisselwort und fiir den Call-by-Reference-Fall
(Ubergabe eines Zeigers) zwei Worter:

= Der Zusatz ref vor einem Parameter (entspricht ByRef in Visual Basic .NET) bedeutet, dass
der Wert bzw. das Objekt von auBen hereingegeben wird und innerhalb der Methode verandert
werden darf. Seit C# 12.0 gibt es auch ref readonly. Mit diesem Zusatz darf die Methode den
empfangenen Wert bzw. die empfangene Objektreferenz nicht &ndern. Bei der Ubergabe von
Referenztypen per ref readonly kann die Methode aber weiterhin die einzelnen Objektinhalte
andern.

= Der Zusatz out vor einem Parameter bedeutet, dass der Aufrufer nur leeren (nicht
initialisierten) Speicherplatz hereingibt. Der Wert muss zwanglaufig von der Methode selbst
gesetzt werden und wird dann dem Aufrufer geliefert.

Hinweise: Wichtig ist, dass man nicht nur in der Methodensignatur selbst out und ref verwenden
muss, sondern auch beim Aufruf der Methode.

Zudem ist zu beachten, dass keine Properties als Zeiger {ibergeben werden konnen!
Referenztypen werden immer als Zeiger iibergeben! Wenn ein Referenztyp iibergeben wird,
kann die aufgerufene Methode immer die Daten im Objekt dndern. Die Modifizierer verhindern
dann ggf. nur, dass ein anderes Objekt zugewiesen wird!

Wichtig fiir das Verhalten ist, ob als Parameter ein Wertetyp oder ein Referenztyp tibergeben wird,
siche Tabelle.

Parameter ist Parameter ist Referenztyp

Wertetyp
Methode kann Methode kann einzelne | Methode kann neues
Wert dndern Werte im iibergebenen | Objekt zuweisen
Objekt andern
Ubergabe ohne Ja, aber Aufrufer Ja Ja, aber Aufrufer
Modifizierer bekommt den bekommt das neue
neuen Wert nicht Objekt nicht
Ubergabe mit in Nein Ja Nein

168 Methoden

Parameter ist Parameter ist Referenztyp
Wertetyp
Methode kann Methode kann einzelne | Methode kann neues
Wert andern Werte im iibergebenen | Objekt zuweisen
Objekt dndern
Ubergabe mit ref | Ja Ja Ja
Ubergabe mit ref | Nein Ja Nein
readonly (seit C#
12.0)
Ubergabe mit out | Ja Ja Ja

Tabelle: Unterschiedliche Auswirkungen der Parametermodifizierer bei Ubergabe von
Wertetypen und Referenztypen

Die folgenden drei Listings zeigen dazu Beispiele inklusive eines Screenshots der jeweiligen
Bildschirmausgaben.

Listing: Wirkung der Parametermodifizierer, wenn Parameter Wertetyp ist
/// <summary>
/// Wertetypen an Methode iibergeben
/// </summary>
public void ParameterValueTypes ()
{
CUI.H2 (nameof (ParameterValueTypes)) ;
#region
int a = 10;
int b = 20;
int ¢ = 30;
int d = 40;
int e = 50;
CUI.H3("Der Aufrufer hat vorher folgende Werte:");
Console.WriteLine(a + ";" + b+ ";" + c + ";" +d + ";" + e);
string r = ParameterDemoValueTypes(a, b, ref c, ref d, out e);
CUI.H3("Die Methode hat folgende Werte:");
Console.WriteLine(r); // 11;20;31;40
CUI.H3("Der Aufrufer hat nachher folgende Werte:");
Console.WriteLine(a + ";" + b + ";" + c + ";" +d + ";" + e);
#endregion

public string ParameterDemoValueTypes (int WertValue, in int WertIn, ref int
WertRef, ref readonly int WertRefRO, out int WertOut)
{

WertValue++;

// nicht erlaubt, da in-Wert: WertIn++;

WertRef++;

// WertRefRO++; // nicht erlaubt, da readonly

// nicht erlaubt, da noch nicht initialisiert: WertOut++;

WertOut = 41;

return WertValue.ToString() + ";" + WertIn.ToString() + ";" +
WertRef.ToString() + ";" + WertOut.ToString();

Methoden 169

}

Der Aufrufer hat vorher folgende Werte:
10;20;30;40;50

Die Methode hat folgende Werte:
11;20;31;41

Der Aufrufer hat nachher folgende Werte:
10;20;31;40;41

Abbildung: Ausgabe des vorherigen Listings

Listing: Parameter ist Referenztyp (class Counter). Methode dndert Wert im Objekt

class Counter

{

public string Name { get; set; }

public int Value { get; set; }

public override string ToString() => Name + "=" + Value;
}

/// <summary>
/// Referenztypen an Methode iibergeben, die Wert in dem Objekt &ndert
/// </summary>
public void ParameterReferenceTypel ()
{
CUI.H2 (nameof (ParameterReferenceTypel)) ;
Counter a = new Counter() { Name = "a", Value = 10 };
Counter b = new Counter() { Name "b", Value = 20 };
Counter c¢ = new Counter() { Name "

"c", Value = 30 };
Counter d = new Counter () { Name = "d", Value = 40 };
Counter e = new Counter() { Name = "e", Value = 50 };
CUI.H3("Der Aufrufer hat vorher folgende Werte:");
Console.WriteLine(a);

Console.WriteLine (b) ;

Console.WriteLine(c) ;

Console.WriteLine(d) ;

Console.WriteLine (e) ;

string r = ParameterDemoRefl(a, b, ref c, ref d, out e);
CUI.H3("Die Methode hat folgende Werte:");
Console.WriteLine(r) ;

CUI.H3("Der Aufrufer hat nachher folgende Werte:");
Console.WriteLine(a);

Console.WriteLine (b) ;

Console.WriteLine(c) ;

Console.WriteLine(d) ;

Console.WriteLine (e) ;

public string ParameterDemoRefl (Counter WertValue, in Counter WertIn, ref Counter
WertRef, ref readonly Counter WertRefRO, out Counter WertOut)

{

WertValue.Value++;

170 Methoden

WertIn.Value++;
WertRef.Value+t+;
WertRefRO.Value++;

WertOut = new Counter { Name = "d", Value = 41 };
return WertValue.ToString() + ";" + WertRef.ToString() + ";" +
WertIn.ToString() + ";" + WertOut.ToString();

}

ParameterReferenceTypel

Der Aufrufer hat vorher folgende Werte:
a=10

b=20

c=30

d=u0

e=50

Die Methode hat folgende Werte:
a=11;c=31;b=21;d=41

Der Aufrufer hat nachher folgende Werte:
a=11

b=21

c=31

d=u1

d=u1

Abbildung: Ausgabe des vorherigen Listings

Listing: Parameter ist Referenztyp (class Counter). Methode dndert Objektreferenz

class Counter

{

public string Name { get; set; }

public int Value { get; set; }

public override string ToString() => Name + "=" + Value;

}

/// <summary>
/// Referenztypen an Methode iibergeben, die neues Objekt zuweist &ndert
/// </summary>
public void ParameterReferenceType2 ()
{
CUI.H2 (nameof (ParameterReferenceType2)) ;

Counter a = new Counter() { Name = "a", Value = 10 };
Counter b = new Counter() { Name = "b", Value = 20 };
Counter ¢ = new Counter() { Name = "c", Value = 30 };
Counter d = new Counter() { Name = "d", Value = 40 };
Counter e = new Counter() { Name = "e", Value = 50 };

CUI.H3("Der Aufrufer hat vorher folgende Werte:");
Console.WriteLine(a) ;
Console.WriteLine (b) ;
Console.WriteLine (c) ;

Methoden 171

Console.WriteLine (d) ;

Console.WriteLine (e) ;

string r = ParameterDemoRef2(a, b, ref c, ref d, out e);
CUI.H3("Die Methode hat folgende Werte:");
Console.WriteLine(r) ;

CUI.H3("Der Aufrufer hat nachher folgende Werte:");
Console.WriteLine(a);

Console.WriteLine (b) ;

Console.WriteLine (c) ;

Console.WriteLine(d) ;

Console.WriteLine (e) ;

public string ParameterDemoRef2 (Counter WertValue, in Counter WertIn, ref Counter
WertRef, ref readonly Counter WertRefRO, out Counter WertOut)

{

WertValue = new Counter { Name = "a*", Value = 101 };

// WertIn = new Counter { Name = "b*", Value = 100 }; // nicht erlaubt

WertRef = new Counter { Name = "c*", Value = 102 };

// WertRefRO = new Counter { Name = "c*", Value = 103 }; // nicht erlaubt, da
readonly

WertOut = new Counter { Name = "d*", Value = 104 };

return WertValue.ToString() + ";" + WertRef.ToString() + ";" +
WertIn.ToString() + ";" + WertOut.ToString();

}

ParameterReferenceType2|

Der Aufrufer hat vorher folgende Werte:
a=10

b=20

Die Methode hat folgende Werte:

a*=101;c*=102;b=20;d*=1064
Der Aufrufer hat nachher folgende Werte:
a=10

Abbildung: Ausgabe des vorherigen Listings
Fir die Deklaration von out-Variablen gibt es seit C# 7.0 eine verkiirzte Syntax, bei der die
Deklaration der Variablen im Aufruf selbst erfolgt (siehe folgendes Listing).

Auch neu in C# 7.0 ist das Konstrukt out . Der Unterstrich ist die Discard-Variable und bedeutet,
dass das Ergebnis verworfen wird.

172 Methoden

Listing: In den Aufiuf eingebettete Deklaration von out-Variablen

// alt
int zahl;
string eingabe = "123";
if (int.TryParse (eingabe, out zahl))
Console.WriteLine ("Zahl=" + zahl);
else
Console.WriteLine ("Fehler!") ;

// neu
string eingabe2 = "123";
if (int.TryParse(eingabe2, out int zahl2))
Console.WriteLine ("Zahl=" + zahl2);
else
Console.WriteLine ("Fehler!") ;

// neu: _ = Wert ignorieren

string eingabe3 = "123";

if (int.TryParse (eingabe3, out _))
Console.WriteLine ("Ist eine Zahl!");

16.7 Parameterlisten

Seit der ersten Version von C# gibt es Parameter-Arrays fiir sogenannte variadische Parameter
(vgl. https://de.wikipedia.org/wiki/Variadische Funktion), mit denen eine Methode eine beliebig
lange Liste von Parametern eines Typs empfangen kann, wenn dies mit dem Schliisselwort params
eingeleitet wird.
Beispiel:
public void MethodeMitBeliebigVielenParametern Alt(string text, params int[] args
)

{

CUI.H2 (nameof (MethodeMitBeliebigVielenParametern Alt));

CUI.Print(text + ": " + args.Length);

foreach (var item in args)

{

CUI.LI (item) ;

}
}
Diese Methode kann man beispielsweise so aufrufen:

MethodeMitbeliebigVielenParametern Alt("Anzahl Zahlen", 1, 2, 3);
MethodeMitbeliebigVielenParametern Alt("Number of numbers", 1, 2, 3, 4);
Neu seit C# 13.0 ist, dass statt eines Arrays bei den Parametern auch generische Mengentypen
verwendet werden diirfen, z.B. List<T>:
public void MethodeMitBeliebigVielenParametern Neu(string text, params List<int>
args)
{

CUI.H2 (nameof (MethodeMitBeliebigVielenParametern Neu)) ;

CUI.Print(text + ": " + args.Count); // statt args.Length

foreach (var item in args)

{

CUI.LI(item) ;

https://de.wikipedia.org/wiki/Variadische_Funktion

Methoden 173

}
}

Analog ist der Aufruf dann genauso flexibel méglich wie beim Parameter-Array:

MethodeMitBeliebigVielenParametern Neu("Anzahl Zahlen", 1, 2, 3);
MethodeMitBeliebigVielenParametern Neu ("Number of numbers", 1, 2, 3, 4);

Dann sind diese generischen Mengentypen bei params in C# 13.0 erlaubt:

= System.Collections.Generic.IEnumerable<T>

= System.Collections.Generic.IReadOnlyCollection<T>

= System.Collections.Generic.IReadOnlyList<T>

= System.Collections.Generic.ICollection<T>

= System.Collections.Generic.IList<T>

= Alle Klassen, die System.Collections.Generic.IEnumerable<T> implementieren
= System.Span<T>

= System.ReadOnlySpan<T>

16.8 Statische Methoden als globale Funktionen

In C# 6.0 hat Microsoft eingefiihrt, was in Visual Basic .NET schon seit der ersten Version moglich
ist: statische Klassen mit using so einzubinden, dass man auf die einzelnen Klassenmitglieder nun
ohne Verwendung des Klassennamens zugreifen darf:

// bisherige Schreibweise
Console.WriteLine (Environment.UserDomainName + @"\" + Environment.UserName) ;

// neu seit C# 6.0
using static System.Console;
using static System.Environment;

WriteLine (UserDomainName + @"\" + UserName) ;

Dieses Sprachfeature ist jedoch umstritten, weil hier die Lesbarkeit des Programmcodes zugunsten
einer ersparten Tipparbeit geopfert wird.

16.9 Lokale Funktion (seit C# 7.0)

C# 7.0 unterstiitzt lokale Funktionen, die in andere Methoden eingebettet und nur dort sichtbar
sind. Lokale Funktionen konnen iiber mehrere Ebenen geschachtelt sein und die Variablen der
duBeren Ebenen (der umgebende Klasse und Funktion) verwenden (siche folgendes Listing). Solch
ein Einbetten ist auch in Getter- und Setter-Routinen erlaubt.

Hinweis: Seit C# 9.0 konnen lokale Funktionen auch Annotation mit .NET-Attributen besitzen,
z.B. [Obsolete].

Listing: Eingebettete Funktionen haben Zugriff auf die Variablen der duferen Funktionen.
public static void LocalFunctionDemo ()
{
var count = 0;
CUI.Headline (nameof (LocalFunctionDemo)) ;

PrintWithTime ("Rom") ;

174 Methoden

PrintWithTime ("Paris") ;
PrintWithTime ("Essen") ;

// Funktion ist Teil der Funktion, méglich in Methoden, Getter und Setter
void PrintWithTime (string s)
{
void Print(string s2)
{
// innere Funktion kann Variablen der &uBeren nutzen
count++;
Console.WriteLine (count + ": " + s2);
}
Print($"{DateTime.Now.ToShortTimeString()}: {s}");
}

16.10 Statische lokale Funktionen (seit C# 8.0)

Die in C# 8.0 neu eingefiihrten statischen lokalen Funktionen konnen im Gegensatz zu den in C#
7.0 eingefiihrten nicht-statischen lokalen Funktionen NICHT auf Variablen der dufleren Ebenen
(der umgebende Klasse und Funktion) zugreifen.

Listing: Eingebettete statische Funktionen haben keinen Zugriff auf die Variablen der dufSeren
Funktionen.
using System;

namespace CS80
{
class StaticLocalFunctionsDemo
{
int field = 42;
public int prop { get; set; } = 42;
public void Run()
{
int x = 42;

NonStaticLocalFunc (x) ;
StaticLocalFunc (x) ;

// seit C# 7.0: Nicht-

statische lokale Funktion kann umgebende Variablen nutzen!
int NonStaticLocalFunc (int p)
{

int y = 42;
int x = 43; // verdeckt x aus Run()
Console.WriteLine (x) ; // OK

Console.WriteLine (prop) ; // OK
Console.WriteLine (field); // OK
Console.WriteLine (y) ; // OK
return p;

// ----> seit C# 8.0: Kann umgebende Variablen NICHT sehen!

Methoden 175

static int StaticLocalFunc(int p)
{

int y = 42;

int x = 43; // verdeckt x aus Run()
Console.WriteLine (x) ; // lokales x
//Console.WriteLine (field); // nicht erlaubt, weil static
//Console.WriteLine (prop) ; // nicht erlaubt, weil static
Console.WriteLine (y) ; // Ok, weil lokal

return p;

} // Ende der statischen lokalen Funktion
} // Ende der Methode Run()
} // Ende der Klasse
}

16.11 Caller-Info-Annotationen

Seit Version C# 5.0 (auch in Visual Basic .NET seit Version 11.0) bieten die Compiler sogenannte
Caller-Info.Annotationen

= [CallerFilePath]
= [CallerLineNumber]
= [CallerMemberName]

mit denen man Methodenparameter annotieren kann. Dadurch erhilt die gerufene Methode
Informationen tiber den Aufrufer (vgl. _ FILE _und _ LINE__ in C++).

Listing: Nutzung der Caller-Info-Annotationen
public void Run()
{
var Ergebnis = Berechnen (10) ;
Console.WriteLine (" h bnis: " + Er is);
Run2 () ;
}

public int Berechnen (int Wert,
[CallerMemberName] string memberName = "",
[CallerFilePath] string filePath = "",
[CallerLineNumber] int lineNumber = 0)

// BRusgabe hier zu Anschauungszwecken an der Konsole
Console.ForegroundColor = ConsoleColor.Yellow;
Console.WriteLine ("Routine Berechnung() wurde aufgerufen!");
Console.WriteLine ("Aus diesem Quellcodepfad: " + filePath);
Console.WriteLine("Von diesem Mitglied: " + memberName) ;
Console.WriteLine ("In dieser Zeil : "+ 1i ber) ;
Console.ForegroundColor = ConsoleColor.Gray;

// Eigentlicher Inhalt der Berechnung

Console.WriteLine ("Hier tue ich was...");

return 10 * Wert;

176 Methoden

CallerInfoDemo
Routil

B

Abbi,

Insbesondere [CallerMemberName] ist sehr hilfreich, um die Schnittstelle
INotifyPropertyChanged zu realisieren, die einige GUI-Frameworks (z.B. Windows Forms, WPF)
in NET fiir Datenbindungsmechanismen erfordern. Ohne [CallerMemberName] miisste man beim
Aufruf NotifyPropertyChanged() den Namen des Properties manuell als Zeichenkette iibergeben:
NotifyPropertyChanged("Wert"), was fehleranfillig ist. Erst seit C# 7.0 kann man auch schreiben:
NotifyPropertyChanged(nameof(Wert)), was aber immer noch mehr Tipparbeit ist als der Einsatz
von [CallerMemberName].

Listing: Elegante Realisierung von INotifyPropertyChanged mit [CallerMemberName]

class DatenobjektDemo
{
public static void Run()
{
CUI.Headline (nameof (DatenobjektDemo)) ;
var d = new Datenobjekt();
d.PropertyChanged += (x, args) =>

Console.WriteLine ("DatenobjektDemo: Property " + args.PropertyName + " hat
sich geédndert!");
Yi
d.Wert = 123;
}
}

class Datenobjekt : System.ComponentModel.INotifyPropertyChanged
{
public event System.ComponentModel.PropertyChangedEventHandler PropertyChanged;

/// <summary>
/// Realisierung mit expliziter Ubergabe des Property-Namens
/// </summary>
/// <param name="propertyName"></param>
private void NotifyPropertyChangedAlt(String propertyName = "")
{
Console.WriteLine ("Datenobjekt: Property " + propertyName + " hat sich
gedndert!") ;
if (PropertyChanged != null)
{
PropertyChanged (this, new
System.ComponentModel . PropertyChangedEventArgs (propertyName)) ;
}
}

/// <summary>

/// Realisierung ohne dass der Aufrufer den Property-Namen iilbergeben muss
/// </summary>

/// <param name="propertyName"></param>

private void NotifyPropertyChanged([CallerMemberName] String propertyName =

Methoden 177

{
Console.WriteLine ("Datenobjekt: Property " + propertyName + " hat sich
gedndert!") ;
if (PropertyChanged !'= null)
{
PropertyChanged (this, new
System.ComponentModel . PropertyChangedEventArgs (propertyName)) ;
}
}

private int wert;

public int Wert
{
get { return wert; }
set { wert = value; NotifyPropertyChanged(); }
}
}

16.12 Caller Argument Expressions

Zusitzlich zu schon in C# 5.0 eingefiihrten Caller-Info-Annotationen [CallerFilePath],
[CallerLineNumber] und [CallerMemberName] gibt es seit C# 10.0 nun auch Caller Argument
Expressions, mit denen eine Methode die Information erhilt, welche Ausdriicke (Variablennamen
bzw. Formeln) hinter den vom Aufrufer iibergebenen Werten stehen.

Dafiir kann der Entwickler in der Parameterliste die Annotation
System.Runtime.CompilerServices. CallerArgumentExpressionAttribute einsetzen, die es seit
NET Core 3.0 gibt. Die folgende Methode besitzt sechs Parameter: drei "echte Parameter" und
drei Caller Argument Expressions fiir die ersten drei Parameter. Die Caller Argument Expressions
beziehen sich auf den Namen der Parameter.

Hinweis: Leider muss man die Parameter als Zeichenkette angeben: der Operator nameof()
funktioniert hier nicht.

Listing: Einsatz von Caller Argument Expressions
public static class Validation

{

public static void CheckRange (int value, int minValue, int maxValue,

[CallerA P ion("value")] string? valueExpression = null,
[CallerA: P ion("minValue")] string? minValueExpression = null,
[CallerA tEXp ion("maxValue")] string? maxValueExpression = null)

{
if (value > maxValue)
{
throw new A OutOf] tion (: f (value) ,
$"{value} ({valueExpression}) muss zwischen {minValue}
({minValueExpression}) und {maxValue} ({maxValueExpression}) liegen!");

}
}
}
Beim Aufruf der Methode werden nur die ersten drei Parameter erwartet:

var a = 5;
var max = Convert.ToInt32(Math.Floor (Math.PI));
Validation.CheckRange(a * 2, 0, max);

178 Methoden
Die tibrigen drei fiillt der Compiler automatisch. Der folgende Screenshot zeigt, dass die Methode
fiir den ersten Parameter die Information erhélt, dass sich 10 aus a * 2 zusammensetzt. Der zweite
Parameter war ein Zahlenliteral (0), der dritte Parameter eine Variable.

sregion Caller Argunent Expressions
try

«

var a =
var max = vert.ToInt32({math.Floor!
Validation CheckRange(a = 2, 8, sax)

th.PI));

on ex)

)
cateh (ex
1

cur.error(exd;

Eroeshon Theown »aox
Syt ArmesROUTaneeption: 10 4 * 2 s THlsen O)
and ® e

public static class v

public static void checkRange(int walue, int minvalue, int maxvalue,
[call € 2 va pression = null,

uiL)

ession(*maxvalue*)] string? maxvalueExpression =
‘
1F (ualue > maxvalue)

throw new ArgunentoutofRangeException(nameot(value),
$"[value} ({valueExpression]) muss zwischen (minvalue) ({minvalueExpression)) und (naxvalue) ({naxvalueExpression]) liegen:™); @

Abbildung: Wirkung der Caller Argument Expressions

Hinweis: Die Caller Argument Expressions koénnen bei der Protokollierung und in
Fehlermeldungen helfen. Sie bergen aber auch die Gefahr, dass fremder Programmcode an
Informationen (Variablenname oder Formeln) kommt, die er nicht bekommen sollte. Daher
sieht der Aufrufer die Caller Argument Expressions im Editor.

var | = 5;
var max = Convert.ToInt32(Math.Floor(Math.PI));

Validation.CheckRange(a * 2, 0, max);
void Validation.CheckRange(int value, int minValue, int maxValu, [string?

= nul], [string? ma = null])

= nul], [string?

Konstruktoren und Destruktoren (Finalizer) 179

17 Konstruktoren und Destruktoren
(Finalizer)

Ein Konstruktor ist eine Methode, die beim Instanziieren einer .NET-Klasse aufgerufen wird. In
ihm kann man das Objekt initialisieren. Ein Desktruktor wird bei der Vernichtung eines Objekts
aufgerufen.

Konstruktoren besitzen den Namen der Klasse und haben keinen Riickgabetyp (auch nicht void).
Der Bezeichner fiir den Finalizer besteht aus ~, gefolgt vom Klassennamen. Es kann nur hochstens
einen Finalizer geben, aber beliebig viele iiberladene Konstruktoren. Diese konnen sich gegenseitig
mit dem : this() aufrufen (ggf. unter Angabe der Parameter). Das : this() muss vor der 6ffnenden
geschweiften Klammer stehen.

Echte Destruktoren, die beim Loschen eines Objekts aufgerufen werden, kennt .NET hingegen
nicht. Der Aufruf des Destruktors ist in .NET nicht deterministisch, weil er erst bei einer
Speicherbereinigung (Garbage Collection) erfolgt oder ggf. ganz ausbleibt, wenn das Programm
vorher endet. Daher spricht man oft auch von Finalizern statt von Destruktoren.

171 Klasse mit Konstruktoren und Finalizer

Die Klasse im folgenden Listing besitzt drei iiberladene Konstruktoren und einen Finalizer. Die
Konstruktoren rufen sich gegenseitig auf. Im parameterlosen Konstruktor wird das private statische
Attribut Count hochgezéhlt, sodass jede Instanz innerhalb eines Programmlaufs eine eindeutige ID
erhilt.

Listing: Klasse mit Konstruktoren und Finalizer

/// <summary>

/// Klasse mit Konstruktoren und Finalizer
/// </summary>

class Dozent

{

private static int Count = 0;

// Konstruktor mit einem Parameter

public Dozent(string Name) : this(Name, null)
{

}

// Weiterer Konstruktor mit zwei Parametern
public Dozent(string name, string themen) : this()
{

this.Name = name;

this.Themen = themen;

}

// Konstruktor ohne Parameter

public Dozent()

{

Count++;

this.ID = Dozent.Count;

CUI.Print("Dozent #" + this.ID + " wurde instanziiert!", ConsoleColor.Cyan) ;

}

// Finalizer
~Dozent ()

CUI.Print("Dozent #" + this.ID + " wurde vernichtet!", ConsoleColor.Cyan) ;

180 Konstruktoren und Destruktoren (Finalizer)

// BAutomatisches Property

public int ID { get; set; }

// RAutomatisches Property

public string Themen { get; set; }

// Property mit explizitem Field
string name;
public string Name
{
get { return name; }
set { name = value; }
}
}
Achtung: Ein parameterloser Konstruktor, der nichts tut, scheint auf den ersten Blick
iiberfliissig zu sein. Sofern kein parameterbehafteter Konstruktor vorhanden ist, generiert der
Compiler — sowohl von C# als auch von Visual Basic NET — automatisch einen parameterlosen
Konstruktor. Wird jedoch ein parameterbehafteter Konstruktor explizit implementiert, so wird
der parameterlose Konstruktor nicht automatisch erzeugt. Wenn dieser benétigt wird, ist er also
ebenfalls explizit zu implementieren.

Wie in Visual Basic .NET wird der parameterlose Konstruktor in C# nur dann automatisch
erzeugt, wenn kein anderer Konstruktor explizit implementiert wird.

17.2 Aufruf von Konstruktoren

Der folgende Programmcode nutzt obige Klasse Dozent, indem er eine Instanz erzeugt und
verwendet. Nach der Verwendung wird die Objektvariable auf null gesetzt, d.h. es gibt nun keinen
Verweis mehr auf die Instanz. Der Garbage Collector von .NET wird bei néchster
Speicherbereinigung den Finalizer aufrufen. In diesem Fall wird zu Demonstrationszwecken die
Garbage Collection mit dem Aufruf System.GC.Collect() erzwungen. Die Garbage Collection lauft
aber asynchron in einem Hintergrundthread, d.h. die nach Collect() folgenden Befehle werden vor
der Garbage Collection ausgefiihrt wie man in der folgenden Abbildung erkennen kann, dass die
Ausgabe "Routine fertig" vor der Ausgabe des Finalizers erscheint.

Listing: Nutzung der Klasse Dozent
CUI.Headline ("Beispiel fiir Konstruktur und Destruktor");

Console.WriteLine ("Dozent wird erzeugt...");
var d = new Dozent("Holger Schwichtenberg", ".NET, PowerShell, JavaScript");

Console.WriteLine ("Dozent wird verwendet...");

d.Themen += ", C#, TypeScript, Entity Framework, ASP.NET";

Console.WriteLine ("Dozent " + d.ID + " (" + d.Name + ") hat folgende Themen:
")

foreach (string t in d.Themen.Split(','"))

{

Console.WriteLine("- " + t.Trim());

}

Console.WriteLine ("Dozent wird nicht mehr bendtigt...");
d = null;

Console.WriteLine ("Garbage Collection wird erzwungen...");
System.GC.Collect(); // l&uft asynchon

Console.WriteLine ("Routine fertig!");

Console.ReadLine() ;

Konstruktoren und Destruktoren (Finalizer) 181

r und Destruktor

de Themen:

Abbildung: Ausgabe des obigen Listings

Info: Die Laufzeitumgebung Common Language Runtime (CLR) von .NET (alle Varianten)
enthilt einen Garbage Collector (GC), der im Hintergrund (in einem System-Thread) arbeitet
und den Speicher aufraumt. Der Speicher wird allerdings nicht sofort nach dem Ende der
Verwendung eines Objekts freigegeben, sondern zu einem nicht festgelegten Zeitpunkt bei
Bedarf (Lazy Resource Recovery). Beim Aufrdumen des Speichers erzeugt der Garbage
Collector einen Baum aller Objekte, auf die es aktuell einen Objektverweis gibt. Der Speicher
aller nicht mehr erreichbaren Objekte wird freigegeben.

Der Garbage Collector kann von einer Anwendung nur bedingt beeinflusst werden. Die
Anwendung kann mit dem Befehl System.GC.Collect() dem Garbage Collector den Auftrag
geben, titig zu werden. Eine Anwendung eine Speicherbereinigung tempordr mit
GC.TryStartNoGCRegion() unterdriicken.

Der Garbage Collector ruft die Destruktoren (alias Finalizer) der .NET-Objekte auf. Die
Reihenfolge des Aufrufs und ob der Finalizer tiberhaupt aufgerufen wird, ist jedoch nicht
deterministisch, d. h., es kann sein, dass ein Finalizer nicht aufgerufen wird. Beim Schliefen
einer .NET-Anwendung werden die Finalizer der verbliebenen Objekte nicht aufgerufen.

17.3 Primérkonstruktoren (seit C# 12.0)

Die bedeutendste Neuerung in C# 12.0 sind Primarkonstruktoren fiir Klassen. Alte Hasen unter
den C#-Entwicklern werden sich erinnern, dass dieses Sprachfeature bereits im Jahr 2014 als
Prototyp fir C# 6.0 verfigbar war, dann aber doch gestrichen wurde
www.heise.de/developer/artikel/Microsofi-streicht-Sprachfeatures-aus-C-6-0-und-Visual-Basic-
2015-2432073.html].

Nun, sechs C#-Versionen weiter, kommt Microsoft in C# 12.0 darauf zuriick, auch vor dem
Hintergrund der Record-Typen, die es seit C# 9.0 mit Primérkonstruktoren gibt:

public record Person(int ID, string Name, string Website = "");

Ein Primérkonstruktor ist eine Parameterliste direkt hinter dem Typnamen. Seit C# 12.0 ist das
auch fiir Klassendefinitionen moglich:

public class Person(int ID, string Name, string Website = "");

Solch eine Klasse kann ohne Inhaltsbereich (also geschweifte Klammern) existieren, ist aber
wertlos. Anders als bei den in C# 9.0 eingefiihrten Record-Typen erstellt der Priméarkonstruktor
némlich keine 6ffentlichen Properties in der Klasse, sondern nur private Fields. Wenn man diese
Klasse mit Primérkonstruktor in einem Decompiler betrachtet, sieht man zunéchst {iberhaupt keine
Verarbeitung der Parameter im Primérkonstruktor:

https://www.heise.de/developer/artikel/Microsoft-streicht-Sprachfeatures-aus-C-6-0-und-Visual-Basic-2015-2432073.html
https://www.heise.de/developer/artikel/Microsoft-streicht-Sprachfeatures-aus-C-6-0-und-Visual-Basic-2015-2432073.html

182 Konstruktoren und Destruktoren (Finalizer)

public class Person

public Person(int ID, string Name, string Website = "")
{
}

}

Das liegt daran, dass die Primédrkonstruktorparameter gar nicht verwendet werden. Wir miissen die
Klasse z.B. um ToString() erweitern, siche Listing.

Listing: Klasse mit Primdrkonstruktor und Methode ToString()

public class Person(int id, string name, string Website = "")
{

public string Name { get; set; } = name;

public string Website { get; set; } = website;

public override string ToString()
{
return $"Person #{ID}: {Name} -> {Website}";

}
}
Nun sehen wir im Decompiler, dass ein privates Feld fiir den Konstruktorparameter id entstanden
ist, aber nicht fiir name und website, da mit diesen lediglich ein Property initialisiert wurde und
kein direkter Zugriff mehr auf die Namen aus dem Primérkonstruktor (name und website mit
kleinem Anfangsbuchstaben!) erfolgt.

Hinweis: Es entsteht kein privates Field, wenn man einen Konstruktorparameter nur fiir eine
Initialisierung verwendet!

Listing: Dekompilat des vorherigen Listings mit [LSpy
public class Person

{

[CompilerGenerated]
[DebuggerBrowsable (Debug leState.Never)]
private int <id>P;

public string Name { get; set; }
public string Website { get; set; }

public Person(int ID, string name, string website = "")
{

<id>P = ID;

Name = name;

Website = website;

base. .ctor() ;

}

public override string ToString()
{
return $"Person #{<id>P}: {Name} -> {Website}";

}
}
Um offentlich auf die im Primérkonstruktor iibergebenen Daten zugreifen zu konnen, muss man
die Konstruktorparameter fiir Zuweisungen verwenden, siche Name und Website im néchsten
Listing.

Zu beachten ist, dass Entwicklerinnen und Entwickler nun in der Implementierung von ToString()
auf das Property Name und nicht mehr auf den Primérkonstruktorparameter name zugreifen

Konstruktoren und Destruktoren (Finalizer) 183

sollten, denn sonst wiirde man nachtrégliche Namensénderungen (Zuweisungen an das Property
Name) nicht bei ToString(). Der C#-Compiler denkt mit und wirft in Fall der Verwendung von
name bei ToString() die Warning "CS9124" aus: Parameter 'string name' is captured into the state
of the enclosing type and its value is also used to initialize a field, property, or event.". Diese
Fehlermeldung gibt es aber nicht bei der Verwendung in ToString(), sondern bei der Initialisierung
des Properties:

public string Name { get; set; } = name;

Auch abgeleitete Klassen diirfen Primérkonstruktoren besitzen. Im néchsten Listing gibt es neben
der Klasse Person eine zweite, abgeleitete Klasse Autor mit Priméarkonstruktor.

Listing: Primdrkonstruktorbeispiel mit und ohne Zuweisung der Primdrkonstruktorparameter an
offentliche Properties und Vererbung

namespace NET8Konsole.CS12;

/// <summary>
/// Klasse mit Primidrkonstruktor
/// </summary>
public class Person(Guid id, string name)
{
public string Name { get; set; } = name;
public Person() : this(Guid.Empty, "") { }
public override string ToString()
{
// Hier Property Name statt Primirkonstruktorparameter name verwenden!
// Man wiirde sonst Namensinderungen nicht sehen!
return $"Person {id}: {Name}";
}
}

/// <summary>

/// Bbgeleitete Klasse mit Primidrkonstruktor

/// </summary>

public class Autor(Guid id, string name, string website) : Person(id, name)
{

public string Website { get; set; } = website;

public override string ToString() {

return $"Autor {id}: {Name} -> {Website}";
}
}

internal class CS12_PrimaryConstructors_Demo
{
public void Run()
{
var p = new Person() ;
Console.WriteLine (p.Name) ;
Console.WriteLine (p.ToString()) ;

var a = new Autor (Guid.NewGuid(), "Dr. Holger Schwichtenberg", "www.IT-
Visions.de");

Console.WriteLine (a.Name) ;

184 Konstruktoren und Destruktoren (Finalizer)

Console.WriteLine (a.Website) ;
Console.WriteLine (a.ToString());
}
}

Hinweis: Leider gibt es in C# in Priméarkonstruktoren nicht wie TypeScript-Konstruktoren die
Moglichkeit, durch die Sichtbarkeiten public und private zu steuern (vgl
https://kendaleiv.com/typescript-constructor-assignment-public-and-private-keywords/),
welche Sichtbarkeit die resultierenden Datenmitglieder der Klasse erhalten sollen. Ebenso ist
keine Einschridnkung readonly moglich, die verhindert, dass Programmcode in der Klasse den
iibergebenen Wert verdndert.

https://kendaleiv.com/typescript-constructor-assignment-public-and-private-keywords/

Aufzéhlungstypen (Enumeration) 185

18 Aufzahlungstypen (Enumeration)

Ein Aufzihlungstyp legt unter einem Oberbegriff mehrere Namen fest. Den Namen werden intern
Zahlen zugeordnet.

public enum Kenntnisse

{

Befriedigend=3,Gut=2, SehrGut=1

}

Wenn keine Zahlen im der Typdefinition benannt sind, beginnt die Zahlung automatisch bei 0, was
in diesem Beispiel nicht so viel Sinn machen wiirde, in anderen Fillen kénnen die Werte aber aus
Entwicklersicht irrelevant sein.

public enum Kenntnisse

{

Befriedigend, Gut, SehrGut

}

Das folgende Listing zeigt die Verwendung dieses Aufzahlungstypen inklusive der Umwandlung
zwischen Aufzahlungswertname und dem Zahlenwert.

Kenntnisse meineCSharpKenntnisse = Kenntnisse.SehrGut;

// Umwandlung Aufzdhlungswert in Zahl
int note = (int)meineCSharpKenntnisse; // = 1

Console.WriteLine ($"Meine C#-Kenntnisse sind {meineCSharpKenntnisse}, in
Noten: {note}!"); // "SehrGut" 1

// Umwandlung Zahl in Aufzdhlungswerz
Kenntnisse noteAlsText = (Kenntnisse) note; // wandelt 1 in Kenntnisse.SehrGut

if (noteAlsText == Kenntnisse.SehrGut) { Console.WriteLine ("Meine Kenntnisse
sind weiterhin sehr gut!"); };

switch (noteAlsText)
{

case Kenntnisse.Befriedigend:

Console.WriteLine ("Meine Kenntnisse sind noch befriedigend"); break;
case Kenntnisse.Gut:

Console.WriteLine ("Meine Kenntnisse sind immer noch gut!"); break;
case Kenntnisse.SehrGut:

Console.WriteLine ("Meine Kenntnisse sind immer noch sehr gut!"); break;

Hinweis: Weder C#-Compiler noch Laufzeitumgebung beschweren sich, wenn man zahlen in
einem Enumerationswert konvertiert, die es nicht gibt. Beispiel:
Kenntnisse unsinnigeNote = (Kenntnisse)42;

Nun liefert ein Zugriff auf unsinnigeNote den Wert 42.

186 Expression-bodied Members

19 Expression-bodied Members

Expression-bodied Members sind neu seit C# 6.0 — es gibt sie nicht in Visual Basic .NET.
Methoden und nicht beschreibbare Properties, die nur einen einzigen Ausdruck zuriickliefern, kann
der C#-Entwickler nun verkiirzt unter Einsatz des Lambda-Operators => einen sogenannten
Expression Body statt eines Blocks in geweiften Klammern (Block Body) schreiben:

public string GanzerName => this.Vorname + " " + this.Nachname;

public decimal NeuerEinkauf (decimal wert) => this.Umsatz += wert;

public override string ToString() => this.GanzerName + ": " + this.KontaktStatus;
Mit C# 6.0 hatte Microsoft sogenannte "Expression-bodied Members" eingefiihrt, die bei
einzeiligen Methoden und read-only Properties eine verkiirzte Lambda-Schreibweise erlauben.
Seit C# 7.0 ist dies nun ausgeweitet auf Konstruktoren, Finalizer sowie Getter-, Setter- und
Indexer-Routinen. Seit C# 8.0 sind Expression Bodies genauso wie Block Bodies auch in
Standardimplementierungen in Schnittstellen (Interfaces) erlaubt.

class Dozent
{
public int ID { get; set; }
public string Name { get; set; }
public bool DOTNETExperte { get; set; }

public Dozent() { }

// Expression-bodied Constructor
public Dozent(int ID) => this.ID = ID;

// Expression-bodied Finalizer

~Dozent () => Console.Error.WriteLine ("Finalized!");
// Expression-bodied Getter und Setter

private Decimal? honorar2;

public Decimal? Honorar2

get => this.honorar;
set => this.honorar = value ?? 1000.00m;

Behandlung von null 187

20 Behandlung von nuli

Zu den héufigsten Fehlern, die Softwareentwickler in C# machen, z&hlt die fehlende
Beriicksichtigung, dass Variablen und Klassenattribute den Wert null annehmen kénnen und man
auf einem null-Wert keine Objektoperationen ausfiihren kann. Dann kommt es zum Laufzeitfehler
NullReferenceException.

201 NullReferenceException

Eine NullReferenceException entsteht sofort, wenn man von einer Objektvariable, die null ist,
einen Attributwert abrufen will, einen Attributwert setzen will oder eine Methode aufrufen will:
// das fihrt zum Absturz
Person p@ = null;
Console.Writeline(p®.Nachname); &

Exception Unhandled P X

System.NullReferenceException: ‘Object reference not
set to an instance of an object.’

pO was null.
Auch ein Aufruf einer Methode auf einer Zeichenkette, die null ist, flihrt zur
NullReferenceException:
string eingabe = null;
string eingabeInKleinbuchstaben = eingabe.ToLower();
Auch Wertetypen konnen null sein, wenn man sie als Nullable Value Type (NVT) in die
Datenstruktur Nullable<T> verpackt. Hier kommt es beim Versuch, eine Rechenoperation auf

einem null-Wert auszufithren zum Laufzeitfehler: System.InvalidOperationException: 'Nullable
object must have a value.".

int? zahl = null;
int zahl2 = zahl.value+1l®; @

Exception Unhandled X

System.InvalidOperationException: ‘Nullable ohject
must have a value.'

20.2 Null-Prifung und Toleranz gegeniiber Null

Zur Vermeidung der NullReferenceException ist es wichtig, immer vor dem Zugriff auf ein
Attribut oder auf eine Methode bzw. vor einer Rechenoperation mit einer Variablen, die null
annehmen kann, sicherzustellen, dass die Variable auf ein Objekt verweist und nicht null ist:
// hier kann man sich NICHT sicher sein, dass p nicht null ist
Person p = GetPerson(123);
if (p '= null)
{
Console.WriteLine (p2.Nachname) ;

}

188 Behandlung von null

Dies gilt auch fiir die Weiterverarbeitung einzelner Attribute der Klasse. Angenommen, die
Klassendefinition sei:

public class Person
{
public int ID { get; set; }
public string Vorname { get; set; }
public string Nachname { get; set; }
public string Ort { get; set; }
public DateTime Geburtstag { get; set; }
public DateTime? Einstellungsdatum { get; set; }
public decimal Gehalt { get; set; }

public Person(int id)
{
this.ID = id;
}
}

Hier ist zu beachten, dass Geburtstag ein normaler Wertetyp ist (also nicht null annehmen kann),
aber Einstellungsdatum ein Nullable Value Type (NVT) ist. Geburtstag wird im Standard mit dem
1.1.0001 initialisiert, aber das Einstellungsdatum mit null. Der Abruf des Attributs Year aus dem
Geburtstag ist daher eine sichere Operation, das gleiche auf Einstellungsdatum kann aber zur
NullReferenceException fiihren.

Das folgende Listing zeigt fiinf Optionen der Behandlung des null-Falls:

= Priifung mit == null

= Priifung mit is null

= Weiterreichen des null-Wertes mit ?. (Null-propagating Operator)

= Umwandeln des null-Wertes in einen anderen Wert der gleichen Klasse mit ??

= Umwandeln des null-Wertes in einen beliebigen anderen Wert mit ? ... : ...
Person p2 = GetPerson(123);
if (p2 !'= null)

{

Console.WriteLine (p2.Nachname) ;

// Geburtstag ist DateTime, daher kein nicht null als Wert vorkommen
Console.WriteLine ("Geboren im Jahr: " + p2.Geburtstag.Year);

// Einstellungsdatum ist aber Nullable<DateTime>, daher droht hier ein
Laufzeitfehler

Console.WriteLine ("Eingestellt im Jahr: " + p2.Einstellungsdatum.Value.Year);

// Richtige Variante la mit null-Priifung

if (p2.Einstellungsdatum '= null)

{

Console.WriteLine ("Eingestellt im Jahr: " +
p2.Einstellungsdatum.Value.Year) ;

}

// Richtige Variante 1b mit null-Priifung

if (!(p2.Einstellungsdatum is null))

{

Behandlung von null 189

Console.WriteLine ("Eingestellt im Jahr: " +
p2.Einstellungsdatum.Value.Year) ;

}

// Richtige Variante 2 mit 2.
Console.WriteLine ("Eingestellt im Jahr: " + p2.Einstellungsdatum?.Year) ;

// Richtige Variante 3 mit ??
Console.WriteLine ("Eingestellt im Jahr: " + (p2.Einstellungsdatum ??
default (DateTime))) ;

// Richtige Variante 4 mit ? :
Console.WriteLine ("Eingestellt im Jahr: " + (p2.Einstellungsdatum !'= null ?
p2.Einstellungsdatum.Value.ToString() : "Kein Datum"));

}

Eine weitere Behandlung des null-Falls ist in C# 8.0 hinzugekommen in Form des Operators "Null
Coalescing Assignment" mit ??=. Mit diesem Zuweisungsoperator kann der C#-
Softwareentwickler eine Zuweisung ausfiihren, wenn eine Variable den Wert null hat.

Statt

p = p ?? new Person() { ID = 1, Name = "Holger Schwichtenberg" };

oder

if (p == null) p = new Person() { ID = 1, Name = "Holger Schwichtenberg" };

kann man nun auch prégnanter schreiben:

P ??= new Person() { ID = 1, Name = "Holger Schwichtenberg" };

20.3 Null-Referenz-Priifung / Non-Nullable Reference
Types (C# 8.0)

Bereits im September 2017 [www.heise.de/developer/meldung/Programmiersprachen-C-8-soll-
Fehler-mit-null-verhindern-3835949.html] hatte Microsoft fiir C# 8.0 angekiindigt: Referenztypen
sollen nicht mehr automatisch "nullable" sein; die Moglichkeit, den Wert null zuzuweisen soll der
Entwickler explizit deklarieren miissen.

Nach einiger Diskussion hat sich Microsoft aber zunéchst entschlossen, diese Neuerung nicht zum
Standard, sondern zu einer Option des C#-Compilers zu machen. In den Projektvorlagen fiir neue
NET-Projekte ab .NET 6.0 bzw. Visual Studio 2022 sind die Nullable Reference Types im
Standard aktiv!

Achtung: Die Namensgebung des in C# 8.0 eingefiihrten Features ist nicht gliicklich gewahlt
von Microsoft. Microsoft nennt das Feature offiziell "Nullable Reference Types" und die
Einstellung heilt <nullable>enable</nullable> bzw. #nullable enable. Allerdings waren
Referenztypen schon vor C# 8.0 immer "nullable" und dies es auch in den aktuellen C#-
Versionen im Standard immer noch — das steht auch im ersten Satz der Dokumentation (siche
Abbildung). "nullable enable" ist also sehr missversténdlich, denn dies schaltet den Standard
aus. Richtig ist, bei dem neuen Feature von "Non-Nullable Reference Types" zu sprechen, wie
dieses Kapitel daher auch heif3t.

https://www.heise.de/developer/meldung/Programmiersprachen-C-8-soll-Fehler-mit-null-verhindern-3835949.html
https://www.heise.de/developer/meldung/Programmiersprachen-C-8-soll-Fehler-mit-null-verhindern-3835949.html

190 Behandlung von null

Nullable reference types
11/10/2021 + 15 minutes to read - i @ & £ & @

Prior to C# 8.0, all reference types were nullable. Nullable reference types refers to a group of features introduced in C#
8.0 that you can use to minimize the likelihood that your code causes the runtime to throw
System.NullReferenceException. Nullable reference types includes three features that help you avoid these exceptions,
including the ability to explicitly mark a reference type as nullable:

o Improved static flow analysis that determines if a variable may be null before dereferencing it
+ Attributes that annctate APls so that the flow analysis determines null-state.
= Variable annotations that developers use to explicitly declare the intended nuli-state for a variable

Abbildung: Ungliickliche Namensgebung fiir das neue Feature bei Microsoft
[learn.microsoft.com/en-us/dotnet/csharp/nullable-references]

Praxishinweis: Die neue Null-Referenz-Priifung des C# 8.0-Compilers ist ein sinnvolles
Instrument, um Null-Referenz-Fehler zur Laufzeit zu verhindern. Die Aktivierung dieser neuen
Priifung fiir bestehenden Programmcode ist aber ein groBeres Projekt, denn die meisten
Softwareentwickler wird der C# 8.0-Compiler mit sehr vielen Warnungen konfrontieren. Es ist
daher sinnvoll, dieses neue Konzept erstmal an einzelnen Bibliotheken oder Programmteilen zu
erproben.

Seit NET 6 aktiviert Microsoft in allen Projektvorlagen im Standard die Nicht-Nullbaren-
Referenztypen, siehe Zeile 7 im nachstehender Bildschirmabbildung einer .csproj-Datei. Der
Entwickler kann dies aber wieder auf "disable" setzen oder die Zeile einfach 16schen.

1 E<Project Sdk="Microsoft.NET.Sdk">

2

3 <PropertyGroup>

4 <OutputType>Exe</OutputType>

5 <TargetFramework>net6.0</TargetFramework>
6 <ImplicitUsings>enable</ImplicitUsings>

7 <Nullable>enable</Nullable>

8 </PropertyGroup>

9

10 | </Project>

Abbildung: Eine C#-Projektdatei, die mit der .NET 6-Projektvorlage fiir Konsolenanwendungen
erzeugt wurde und <Nullable>enable</Nullable> enthilt

20.3.1 Neue Compiler-Features

Der C#-Compiler bringt seit der Sprachversion 8.0 zur Vermeidung der hiufigen Null-Referenz-
Laufzeitfehler (Null Reference Exception) drei neue sogenannte Kontexte mit sich. Ein Kontext
ist ein Bereich im C#-Programmcode. Ein Kontext kann sich iiber einzelne Zeilen, ausgewihlte

Klassen oder auch das ganze Projekt erstrecken.

Bisher galt in C# der Standardkontext mit folgender Bedeutung fiir Variablen, Fields und
Properties:

e Variablen, Fields und Properties, die mit Wertetypen (z.B. int, DateTime, bool) deklariert
wurden, konnen im Standard nicht den Wert Null annehmen. Sie konnen seit C# 2.0 mit
Nullable<T> (bzw. die dquivalent prignantere Form mit Fragezeichen, z.B. int? oder
bool?) "nullable" gemacht werden.

e Variablen, Fields und Properties, die mit Referenztypen (string und eigene Klassen)

Behandlung von null 191

deklariert wurden, konnen immer Null annehmen.

Die drei neuen Kontexte in C# 8.0 sind:

= Nullable Warning Context: Der Compiler warnt vor dem Auftreten von Null-Reference-
Laufzeitfehlern bei allen Zugriffen auf Variablen, bei denen méglich / nicht sichergestellt ist,
dass sie nicht null enthalten bzw. bei denen der null-Fall nicht abgefangen ist.

= Nullable Annotation Context: Referenztypen (string, eigene Klassen) sind im Standard nicht
mehr nullable (fahig, den null-Wert anzunechmen). Wenn null-Werte explizit gewiinscht sind,
ist dies mit dem Fragezeichen bei der Typdeklaration anzuzeigen, z.B. string? und Klasse?
(Nicht aber erlaubt: Nullable<string> und Nullable<Klasse> wie bei den Nullable Value
Types!)

= Nullable Context: Allgemein als "Nullable Context" wird ein Kontext bezeichnet, der sowohl
Nullable Warning Context als auch Nullable Annotation Context ist, also die Funktionen
beider Kontexte in sich vereint.

Hinweis: Ein Kontext ist ein Bereich in Threm Programmcode. Ein Kontext kann sich iiber
einzelne Zeilen, ausgewahlte Klassen oder auch das ganze Projekt erstrecken.

Die folgende Tabelle stellt die drei Kontextarten gegeniiber.

Nullable Nullable Nullable Context
Annotation ‘Warning (= Annotation Context +
Context Context Warning Context)

Bedeutung der Non-Nullable Nullable Non-Nullable

Deklaration

Klasse k;

Bedeutung der Nullable Nicht erlaubt Nullable

Deklaration (fuhrt zur

Klasse? k; Warnung)

Warnung vor Nein Ja Ja

Null-Reference-

Laufzeitfehlern

Aktivierung auf <Nullable> <Nullable> <Nullable>

Projektebene in annotations warnings enable

der .csproj-Datei | </Nullable> </Nullable> </Nullable>

Aktivierung in

#nullable enable

#nullable enable

#nullable enable

Programmcodedat
ei (.cs) fir die
folgenden Zeilen

C#- annotations warnings

Programmcodedat

ei (.cs) fiir die

folgenden Zeilen

Deaktivierung in | #nullable disable | #nullable disable | #nullable disable
Ctt- annotations warnings

Zuriicksetzung
der C#-

#nullable restore
annotations

#nullable restore
warnings

#nullable restore

192 Behandlung von null

Nullable Nullable Nullable Context
Annotation Warning (= Annotation Context +
Context Context Warning Context)

Programmdatei

fiir die folgenden

Zeilen auf die

Einstellung auf

Projektebene

Tabelle: Drei neue Kontextarten in C# 8.0

Das folgende Listing zeigt an Beispielen die Auswirkungen der drei neuen Kontextarten.

Listing: Basiswissen zu den Nullable-Kontexten
// Normaler Kontext

string namel = null;

Experte el = null;

int idl = 1;

int? plzl = null;

// Nullable Context einschalten

#nullable enable

string name2 = null; // Non-Nullable Reference Type -> Warnung!

string? name3 = null; // Nullable Reference Type

Experte e2 = null;// Non-Nullable Reference Type -> Warnung!

Experte? e3 = null; // Nullable Reference Type

int id2 = 1; // keine Auswirkung auf Value Types!

int? plz2 = null; // keine Auswirkung auf Value Types!

Console.WriteLine (name2.Trim()); // Warnung: Dereference of a possibly null refer
ence

Console.WriteLine (name3.Trim()); // Warnung: Dereference of a possibly null refer
ence

Console.WriteLine (plz2.ToString()); // keine Warnung

// Nullable Context wieder ausschalten
#nullable disable

name2 = null; // keine Warnung

string? name4 = null; // Warnung bei ?

// nur Nullable Annotations Context einschalten

#nullable enable annotations

string name5 = null; // Nullable Reference Type, keine Warnung!
string? name6 = null; // Nullable Reference Type
Console.WriteLine (name5.Trim()); // keine Warnung
Console.WriteLine (name6.Trim()); // keine Warnung

#nullable disable annotations

// nur Nullable Warning Context einschalten

#nullable enable warnings

string name7 = null; // Nullable Reference Type, keine Warnung!

string? name8 = null; // Warnung bei ?, Nullable Reference Type nicht erlaubt
Console.WriteLine (name7.Trim()); // Warnung: Dereference of a possibly null refer
ence

Behandlung von null 193

Console.WriteLine (name8.Trim()); // Warnung: Dereference of a possibly null refer
ence
#nullable disable warnings

20.3.2 Compiler erkennt die Programmierfehler nicht

Zum Praxistest wird das Programm im nachstehenden Listing verwendet. Der C#-Compiler
iibersetzt den Programmcode fehlerfrei und ohne Warnungen.

Einwandfrei funktionieren kann der Programmcode freilich nicht: Bei der Ausfiihrung sieht man
direkt zweimal den Laufzeitfehler "NullReferenceException: Object reference not set to an
instance of an object."

Hier miisste man null-Priifungen oder eine Toleranz gegeniiber null einbauen.

Listing: Ein Programm mit NullReference-Fehlern
using ITVisions;
using System;

namespace CS80
{
class NullableRefTypes
{
public static void Run()
{
CUI.MainHeadline (nameof (NullableRefTypes) + ": 1. String");
try
{
string Name = null;
Print("Guten Tag, " + Name);
Console.WriteLine ($"Ihr Name ist {Name.Length} Zeichen lang!");
}
catch (System.Exception ex)
{
CUI.PrintError ("ERROR: " + ex.Message);
}

CUI.MainHeadline (nameof (NullableRefTypes) + ": 2. Person");

try

{

Person pl = new Person() { ID = 123, Surname = "Schwichtenberg" };

PrintPerson (pl) ;
Person p2 = null;
PrintPerson (p2) ;

pl.Firstname = null;
string name = pl.Firstname.ToUpper() ;
Console.WriteLine (name) ;
}
catch (System.Exception ex)
{
CUI.PrintError ("ERROR: " + ex.Message) ;
}
}

194 Behandlung von null

static void Print(string s)
{
Console.WriteLine (s.Trim()) ;

}

static void PrintPerson (Person p)

{

Console.WriteLine ($"{p.ID}: {p.ToString()}"):;
}

class Person

{

public int ID { get; set; }

public string Firstname { get; set; }
public string Surname { get; set; }

public Person()

1}

public Person(int ID) : this()
{

this.ID = ID;

}

public override string ToString()
{

return this.Firstname.ToUpper() + " " + this.Surname.ToUpper () ;

Guten Tag,
ERROR: Object reference not set to an instance of an object.

NullableRefTypes: 2. Person|

ERROR: Object reference not set to an instance of an object.

Abbildung: Ausgabe des obigen Programms

20.3.3 Aktivieren der Null-Referenz-Priifung

Seit C# 8.0 gibt es die optionale strengere Null-Referenz-Priifung. Den Nullable Kontext (mit
Annotation Context und Warning Context) aktiviert man in einer Programmcodedatei mit

Behandlung von null 195

#nullable enable // Nullable check for Reference Types
Man kann diese Priifung auch jederzeit wieder deaktivieren mit
#nullable disable // Nullable check for Reference Types wieder aus
Man kann diese Priifung auch fiir ein ganzes Projekt aktivieren. Dies erfolgt in der Projektdatei
(.csproj) per:
<PropertyGroup>
<Nullable>true</Nullable>

</PropertyGroup>
Auch eine auf Projektebene gesetzte Priifung kann der Entwickler im Programmcode jederzeit
deaktivieren. Der Ausdruck
#nullable restore

bedeutet, dass die Einstellung auf Projektebene wieder gelten soll.

Hinweis: Diese neue Option ist moglich in .csproj-Dateien sowohl fiir das klassische .NET
Framework als auch in den kompakteren .NET Core-Projektdateien.

Mit der strengeren Null-Referenz-Priifung kommt es in dem obigen Listing zu neun Warnungen.
Da es nur Warnungen sind, kompiliert das Programm weiterhin und es kommt immer noch zu den
Laufzeitfehlern.

Error List - Current Document (NullabeReferenceTypes.cs)

1 sof9Warnings | () 0of 6 Messages E Build = Intellisense -

58600 Conwerting null literal or possible null value to non-nullable type.

Current Document -

" Code Description

58602 Dereference of a possibly null reference.

58600 Converting null literal or possible null value to non-nullable type.
1. CS8504 Possible null reference argument for parameter "p’ in "void NullableRefTypes.PrintPerson(Person pJ'.

! (52825 Cannot convert null literal to non-nullable reference type.

58602 Dereference of a possibly null reference.

58618 Non-nullable property ‘Firstname' is uninitialized. Consider declaring the property s nullable.

58618 Non-nullable property ‘Surname’ is uninitialized. Consider declaring the property as nullable.

Abbildung: Warnungen bei aktivierter Null-Referenz-Priifung

Praxistipp: Durch einen Eintrag in der Projektdatei kann man ausgewihlte Warnungen zu
Fehlern hochstufen, z.B. <WarningsAsErrors>CS8600;CS8602;CS8603;CS8604;CS8625
</WarningsAsErrors>

20.3.4 Verbessertes Programm

Das ndchste Listing zeigt das verbesserte Programm, das nun alle strengeren Null-Reference-
Priifung besteht.

In dem Listing wurde geéndert:

= Variablen fiir Referenztypen, die null erlauben sollen, wurden explizit mit einem Fragezeichen
versehen, also zu Nullable Reference Types gemacht, z.B. string? und Person?

= Es wurden Null-tolerierende Operatoren eingebaut, z.B. mit den Operatoren ?? und ?.
= Es wurden Null-Priifungen eingebaut, z.B. if (p ==null) { ... }

= Es wurden Initialisierungen ergénzt, z.B. Firstname =""; Surname ="";

196 Behandlung von null

= Es wurde der neue sogenannte Null Forgiveness-Operator eingebaut:
this.Firstname!. ToUpper() + " " + this.Surname!.ToUpper();

Hinweis: Nullable Reference Types darf man anders als Nullable Values Types nicht mit
System.Nullable<T> deklarieren. Erlaubt ist nur die Schreibweise string?, nicht
Nullable<string>.

Listing: Verbessertes Programm ohne NullReference-Fehler

using ITVisions;
using System;
#nullable enable // Nullable check for Reference Types

namespace CS80
{
class NullableRefTypesMitPriifungen
{
public static void Run()
{
CUI.MainHeadline (nameof (NullableRefTypes) + ": 1. String");
try
{
string? Name = null;
Print("Guten Tag, " + Name);
Console.WriteLine ($"Ihr Name ist {Name?.Length ?? 0} Zeichen lang!");
}
catch (System.Exception ex)
{
CUI.PrintError ("ERROR: " + ex.Message);
}

CUI.MainHeadline (nameof (NullableRefTypes) + ": 2. Person");

try

{

Person pl = new Person() { ID = 123, Surname = "Schwichtenberg" };

PrintPerson(pl) ;
Person? p2 = null;
PrintPerson (p2) ;

pl.Firstname = null;
string name = pl.Firstname!.ToUpper();
Console.WriteLine (name) ;
}
catch (System.Exception ex)
{
CUI.PrintError ("ERROR: " + ex.Message);
}
}

static void Print(string s)
{
Console.WriteLine (s.Trim()) ;

}

Behandlung von null

197

static void PrintPerson(Person? p)

{

if (p == null) { Console.WriteLine ("Person ist leer!"); return; }
// oder: null coalescing assignment ("compound assigment")
//p ??= new Person() { ID = -1 };

Console.WriteLine ($"{p.ID}: {p.ToString()}");
}

class Person

{

public int ID { get; set; }

public string? Firstname { get; set; }
public string? Surname { get; set; }

public Person()
{
Firstname = ""; Surname = "";

}

public Person(int ID) : this()
{

this.ID = ID;

}

public override string ToString()

{

// Null Forgiveness-Operator zur als Beispiel

return this.Firstname!.ToUpper() + " " + this.Surname!.ToUpper() ;
// besser widre eine Null-tolerierende Lé&sung:

return this.Firstname?.ToUpper() + " " + this.Surname?.ToUpper() ;

}
}
}
}

20.3.5 Null Forgiveness-Operator

Der Null Forgiveness-Operator (!.) unterdriickt Warnungen der Null-Referenz-Priifung. Er stellt
ein Risiko dar, den man nur als letztens Mittel einsetzen sollte, wenn man ganz sicher ist, dass Null

nicht vorkommen kann.

In den meisten Fillen sollte der Null Forgiveness-Operator nicht notwendig sein.
Statt

public override string ToString()

{

// Null Forgiveness-Operator zur als Beispiel

return this.Firstname!.ToUpper() + " " + this.Surname!.ToUpper() ;

}
Besser wire eine Null-tollerierende Losung:

public override string ToString()
{

return this.Firstname?.ToUpper() + " " + this.Surname?.ToUpper() ;

198 Behandlung von null

}
Oder ein Beheben des Problems:

public override string ToString()

{

if (this.Firstname null) this.Firstname = "";
if (this.Surname == null) this.Surname = "";

return this.Firstname.ToUpper() + " " + this.Surname.ToUpper() ;

// Null Forgiveness-Operator zur als Beispiel

return this.Firstname!.ToUpper() + " " + this.Surname!.ToUpper() ;
// besser widre eine Null-Toleranz:
return this.Firstname?.ToUpper() + " " + this.Surname?.ToUpper() ;

}
In allen drei 0.g. Féllen kommt es zu keiner Compiler-Warnung.

Partielle Klassen, Methoden, Properties und Indexer 199

21 Partielle Klassen, Methoden, Properties
und Indexer

Mit dem Schliisselwort partial kann man Aufspaltungen von Code vornehmen, was in der Regel
genutzt wird, um Code auf mehrere Dateien zu verteilen:

= Klassen lassen sich aufteilen, indem ein einige Mitglieder in einem Teil liegen und andere
Mitglieder in dem anderen Teil

= Bei Methoden, Properties und Indexer kann man die Deklaration von der Implementierung
trennen.

211 Partielle Klassen

Partielle Klasse gibt es in C# schon sehr lange: seit NET Framework 2.0 und C# 2.0 (Jahr 2005).
Partielle Klassen erlauben dem Entwickler den Programmcode einer Klasse auf mehrere einzelne
Klassendefinitionen aufzuteilen. Dabei konnen die partiellen Klassendefinitionen auch in
verschiedenen Dateien existieren. Die verschiedenen Klassendefinitionen werden von dem
Compiler zu einer Klasse vereint. Dies bedeutet, dass alle Klassenmitglieder, auch wenn sie in
verschiedenen Dateien liegen, sich gegenseitig sehen und nutzen konnen.

Partielle Klassen erlauben, dass verschiedene Entwickler an einer Klasse arbeiten kénnen bzw.
dass ein Teil einer Klasse automatisch durch ein Werkzeug generiert wird, wihrend andere Teile
héndisch codiert werden. Partielle Klassen werden von verschiedenen Werkzeugen in Visual
Studio verwendet, um generierten Programmcode von eigenem Programmcode zu trennen (z.B. in
Windows Forms, ASP.NET Webforms, typisierten DataSets, Entity Framework, ASP.NET Core
Blazor).

Entwickler konnen partielle Klassen auch dazu verwenden, den eigenen Code iibersichtlicher zu
halten. Allerdings gibt es Verfechter der Regel, dass eine Klassendefinition nicht so lang sein
sollte, dass man eine Aufteilung auf mehrere Dateien liberhaupt in Betracht ziehen miisste (vgl.
[dzone.com/articles/rule-30-%E2%80%93-when-method-class-or]). Demnach sollte man in
solchen Fillen die Funktionalitdt der groBen Klasse nach inhaltlichen Kriterien auf mehrere
Klassen aufteilen.

Hinweis: Uber das Schliisselwort partial verbunden werden kénnen auf diese Weise aber nur
Klassen im Quellcode und innerhalb einer Assembly. Sie konnen also keine Klasse in einer
referenzierten Assembly erweitern. Letzteres ist nur mit Vererbung moglich (sofern die Klasse
es erlaubt).

Es gelten folgende Bedingungen fiir den Einsatz des Schliisselwortes partial:
= partial muss klein geschrieben werden

= partial muss hinter den Sichtbarkeitsmodifizierern der Klasse stehen

= partial muss bei allen Teilklassen angegeben werden

Listing: Datei PartielleKlasse Teill.cs

namespace CS20

{

public partial class Buch

{
public Buch(string titel, string ISBN)
{

https://dzone.com/articles/rule-30-%E2%80%93-when-method-class-or

200 Partielle Klassen, Methoden, Properties und Indexer

this.ISBN = ISBN;
// kann Property aus Teil 2 der Klasse verwenden!
this.Titel = titel;
}
public string ISBN;
}
}
Listing: Datei PartielleKlasse_Teil2.cs
namespace CS20
{
public partial class Buch

{
public string Titel;

public override string ToString()
{
// kann Property aus Teil 1 der Klasse verwenden!
return "Buch '" + this.Titel + "' (ISBN " + this.ISBN + ")";
}
}
}

21.2 Partielle Methoden

Partielle Methoden gibt es seit C# 3.0. Im Rahmen von C# 9.0 wurden sie erweitert.

Im Rahmen eines Teils einer partiellen Klasse kann man eine Methode deklarieren (ohne
Implementierung). Im Rahmen eines anderen Teils kann man die Implementierung liefern. So
lassen sich die Deklaration und die Implementierung trennen. Die partielle Methode kann
gleichwohl in dem Teil, in dem sie nur deklariert ist, aufgerufen werden. Wenn es keine
Implementierung in einem anderen Teil gibt, kommt es aber nicht zu einem Fehler. Der Compiler
wird vielmehr alle Aufrufe entfernen. Damit kann man partielle Methoden als Hooks einsetzen,
um sich in Programmcode einzuklinken. Gerne wird dies benutzt bei Programmcode, der von
einem Codegenerator (Assistenten oder Designer) erzeugt wurde. Zum ersten Mal eingesetzt
wurde diese Vorgehensweise im LINQ to SQL-Designer.

Hinweis: Partielle Attribute (Properties) gibt es leider bisher nicht.

Es galten folgende Bedingungen fiir partielle Methoden in C# 3.0 bis 8.0:
= Die Methode darf keinen Riickgabewert (void) haben.

= Beide Teile miissen partial verwenden.

= Die Methode ist automatisch private. Sie diirfen nicht 6ffentlich sein.
= Eine Sichtbarkeit darf nicht angegeben sein (also auch nicht private).
= Parameter mit out sind nicht erlaubt.

= Sie konnen statisch sein.

Listing: Beispiel fiir eine partielle Methode in C# seit Version 3.0

public partial class Vorstandsmitglied
{
// Automatic Properties
public string Name { get; set; }

Partielle Klassen, Methoden, Properties und Indexer 201

public string Aufgabengebiet { get; set; }
public int Alter { get; set; }
public string Ort;

public override string ToString()

{

// Partielle Methode - Verwendung
OnToString() ;

return Name;

}

// Partielle Methode - Deklaration
partial void OnToString() ;
}

public partial class Vorstandsmitglied

{

// Partielle Methode - Implementierung
partial void OnToString()

{

Console.WriteLine ("ToString aufgerufen!");

}
}

Seit C# 9.0 sind einige dieser Restriktionen gelockert: Riickgabewerte, Sichtbarkeitsangabe und
out-Parameter sind erlaubt. Allerdings muss es bei Verwendung dieses Features dann auch
zwingend eine Implementierung geben!

Listing: Partielle Methoden alten vs. neuen Typs / Erster Teil der partiellen Klasse:
partial class MeineKlasse

{
// partielle Methode alten Typs --> keine Implementierung erforderlich!

partial void M1 () ;

// partielle Methode neuen Typs, da "private" --> Implementierung erforderlich!
private partial void M2();

// partielle Methode neuen Typs, da "int" --> Implementierung erforderlich!
public partial int M3();
}

Listing: Partielle Methoden alten vs. neuen Typs / Zweiter Teil der partiellen Klasse
partial class MeineKlasse

{

private partial void M2() { }

public partial int M3() { return 42; }

}
In diesem Beispiel kime es zu Compilerfehlern, wenn:

= Die Implementierung von M2() oder M3() fehlt: "Partial method xy must have an
implementation part because it has accessibility modifiers."

= Bei M3() kein Sichtbarkeitsangabe festgelegt ist: "Partial method xy must have accessibility
modifiers because it has a non-void return type.

= Der Riickgabetyp von Deklaration und Implementierung nicht iibereinstimmen: "Both partial
method declarations must have the same return type."

202 Partielle Klassen, Methoden, Properties und Indexer

= Die Sichtbarkeitsangabe von Deklaration und Implementierung nicht iibereinstimmen: "Both
partial method declarations must have identical accessibility modifiers."

21.3 Partielle Properties und partielle Indexer (ab C#
13.0)

Eine wichtige Neuerung in C# 13.0 sind partielle Properties und Indexer. Auf dieses Sprachfeature
warten viele Entwicklerinnen und Entwickler bereits seit der Einfiihrung der partiellen Methoden
in C# 3.0. Das C#-Schliisselwort partial gibt es sogar bereits seit C# 2.0 fiir Klassen.

Mit partiellen Klassen kann man den Programmcode einer einzigen Klasse auf mehrere Code-
Dateien aufspalten - ohne dafiir Vererbung zu nutzen. Das ist nicht nur sinnvoll fir mehr
Ubersichtlichkeit bei umfangreichen Klassen, sondern wird vor allem verwendet, wenn ein Teil
der Klasse automatisch generiert und der andere Teil der Klasse manuell geschrieben wird. Diese
Vorgehensweise kommt in .NET zum Beispiel bei GUI-Bibliotheken wie ASP.NET Webforms
und Blazor, beim Reverse Engineering von Datenbanken mit Entity Framework und Entity
Framework Core sowie bei Source-Generatoren (z.B. fiir reguldre Ausdriicke und JSON-
Serialisierung) zum Einsatz.

Nun in C# 13.0 kénnen Entwicklerinnen und Entwickler auch Property-Definitionen und Indexer-
Definition sowie deren Implementierung mit partial in zwei Dateien trennen. Dabei miissen beide
Teile jeweils die gleiche Kombination von Getter und Setter mit den gleichen Sichtbarkeiten
realisieren. Ein konkretes Beispiel: Wenn in einem Teil der Klasse ein Property sowohl einen
offentlichen Getter als auch einen 6ffentlichen Setter besitzt, miissen diese auch im anderen Teil
vorhanden und 6ffentlich sein. Aber wihrend in einem Teil ein automatisches Property verwendet
wird, kann im anderen Teil eine explizite Implementierung vorhanden sei.

Die folgenden drei Listings zeigen ein Beispiel einer aufgeteilten Klasse mit partieller Methode
und partiellem Property sowie einem partieller Indexer.

Listing: Erster Teil der partiellen Klasse nur mit Definitionen von ID und Print()
/// <summary>

/// Erster Teil der partiellen Klasse nur mit Definitionen von ID, Indexer und Pr
int ()

/// </summary>

public partial class PersonWithAutoID

{

// NEU: Partielles Property --> kein "Convert to Full Property"

public partial int ID { get; set; }

// NEU: Indexer

public partial string this[int index] { get; }

// "Normales Property"

public string Name { get; set; }

// Partielle Methode

public partial void Print();

}
Listing: Im zweiten Teil der partiellen Klasse werden Getter und Setter fiir ID sowie die Methode
Print() implementiert

/// <summary>

/// Im zweiten Teil der Klasse werden Getter und Setter fiir ID, der Getter fiir de
n Indexer sowie die Methode Print() implementiert

/// </summary>
public partial class PersonWithAutoID

Partielle Klassen, Methoden, Properties und Indexer

203

{

int counter = 0;

// Implementierung des Partial Property

private int iD;

public partial int ID
{

get

{

if (iD == 0) iD = ++counter;

return iD;

set

{

iD = value;
}
}

// Implementierung des Partial Indexer
public partial string this[int index]
{

get

{

return index switch

0 => ID.ToString(),

1 => Name,
=> throw new IndexOutOfRangeException ()

// Implementierung der Partial Method
public partial void Print()
{

Console.WriteLine ($"{this.ID}:

}

{this.Name}") ;

}
Listing: Nutzer der zusammengesetzten Klasse PersonWithAutoID

if (ID > 0) throw new ApplicationException("ID ist bereits gesetzt");

/// <summary>
/// Client-Klasse fiir die Demo

/// </summary>

public class CS13_PartialPropertyAndIndexerDemoClient
{

public void Run()

{
CUI.Demo (nameof (CS13_PartialPropertyAndIndexerDemoClient)) ;

CS13.PersonWithAutoID p = new() { Name = "Holger Schwichtenberg
p.Print(); // 1: Holger Schwichtenberg
CUI.H2 ("Versuch, die ID neu zu setzen,

fihrt zum Fehler:");

204 Partielle Klassen, Methoden, Properties und Indexer

}
}

catch (Exception ex)
{
CUI.Error(ex); // System.ApplicationException: ID ist bereits gesetzt

}
CUI.Print($"Nutzung des Indexers: {p[0]}: {p[1]} ")

Erweiterungsmethoden (Extension Methods) 205

22 Erweiterungsmethoden (Extension
Methods)

Eine Erweiterungsmethode ermdoglicht einer Klasse, extern eine Methode anzuheften. Extern heifit,
dass dies nicht im Rahmen der Klassendefinition selbst erfolgt, sondern in einer anderen Klasse.
Damit ist es moglich, Klassen zu erweitern, die man selbst nicht geschrieben hat (z.B. Klassen der
NET-Klassenbibliothek FCL). Ein solches Konzept ist bereits aus JavaScript vielen Entwicklern
bekannt. Zu beachten ist, dass die Methoden geméB dem Prinzip der Kapselung nur auf die
offentlichen Attribute und Methoden der Klasse zugreifen kénnen. Durch Einsatz von Reflection
(Metadatennutzung) kann diese Beschrankung jedoch umgangen werden (durch Reflection kann man
immer auch auf private Mitglieder zugreifen!). Erweiterungen konnen nur Methoden sein; Fields und
Properties konnen leider nicht nachtréglich erganzt werden.

Tipp: Erweiterungsmethoden konnen auch auf Schnittstellen angewendet werden, sodass man
auf einfache Weise alle Klassen erweitern kann, die eine bestimmte Schnittstelle anbieten.
Microsoft hat dies im Rahmen von Language Integrated Query auf die Schnittstelle
IEnumerable angewendet, um alle Objektmengenklassen » LINQ-féhig« zu machen.

Hinweis: Mit den Erweiterungsmethoden hat man eine dritte syntaktische Moglichkeit,

bestehende Klassen zu erweitern:

1. Vererbung: Moglich seit .NET 1.0, aber nur fiir Klassen, die Vererbung zulassen (also nicht
sealed bzw. NotInheritable sind)

2. Partielle Klassen: Mdglich seit .NET 2.0, aber nur fiir Klassen im gleichen Projekt, die als
Partiell gekennzeichnet sind

3. Erweiterungsmethoden: Moglich seit .NET 3.5, fiir alle Klassen und auch anwendbar auf
Schnittstellen

221 Entwicklung von Erweiterungsmethoden
Um in C# eine Erweiterungsmethode zu entwickeln, schreibt man:

= eine statische Klasse

= mit einer statischen Methode

= die mindestens einen Parameter besitzt

= der mit this beginnt

= und den Typ der zu erweiternden Zielklasse besitzt

Hinweise:

1. Der Name der Klasse, in der die Erweiterungsmethode implementiert wird, ist im Ubrigen
egal. Auf diese Weise ist die Anzahl der Erweiterungsmethoden fiir eine Klasse nicht
rdumlich und der Menge nach beschrinkt. Erweiterungsmethoden kdnnen iiberladen
werden, wobei hier die gleichen Bedingungen wie bei normalen Methoden gelten.
Erweiterungsmethoden miissen keinen Riickgabewert haben (d. h. void bzw. Sub sind
erlaubt).

2. Eine Erweiterungsmethode darf nicht in einer eingebetteten Klasse definiert werden.

206 Erweiterungsmethoden (Extension Methods)

3. Die Verwendung von this ist leider wenig intuitiv, zumal this schon mehrere andere
Bedeutungen in C# hat. Aulerdem muss die Erweiterungsmethode statisch deklariert sein,
wenngleich sie nachher eine Instanzmethode ist. Ebenso muss die Klasse statisch sein.

4. Falls Sie von Visual Basic NET kommen: Die dort iibliche Verwendung der Annotation
System.Runtime.CompilerServices.ExtensionAttribute funktioniert in C# nicht!

Das folgende Beispiel zeigt die Implementierung einer Erweiterungsmethode Print() fiir die
Schnittstelle IEnumerable. Dadurch erhalten alle Objektmengenklassen in .NET die Methode
Print(), die alle enthaltenen Objekte in einer bestimmten Farbe an der Konsole ausgibt (die
Ausgabe erfolgt mit ToString() und ist daher darauf angewiesen, dass ToString() in den Objekten
sinnvoll implementiert wurde.

Listing: Implementierung der Erweiterungsmethode Print() fiir die Schnittstelle [Enumerable (in
C#)

using System.Runtime.CompilerServices;

using System;

using System.Collections;

namespace ITVisions
{
public static class ITVisionsCollecti ion
{
// --- Erweiterungsmethode fiir IEnumerable
public static void Print(this IEnumerable Menge, ConsoleColor Farbe)
{
ConsoleColor VorherigeFarbe = Console.ForegroundColor;
Console.ForegroundColor = Farbe;
foreach (object o in Menge)
Console.WriteLine (o.ToString()) ;
Console.ForegroundColor = VorherigeFarbe;
}
}
}

22.2 Nutzung von Erweiterungsmethoden

Wichtig ist, dass in der Klasse, in der die Erweiterungsmethode verwendet wird, der Namensraum
der Klasse, in der die Erweiterungsmethode implementiert wurde, durch using bzw. imports
eingebunden wird. Sonst kann die Erweiterungsmethode vom Compiler nicht gefunden werden.
Dies ist auch der Grund dafiir, dass LINQ-Abfrageausdriicke nur dann zur Verfiigung stehen, wenn
der Namensraum System.Linq eingebunden wurde!

Listing: Anwendung der Methode Print() auf eine Menge, die mit der generischen Mengenklasse

List erzeugt wurde (in C#)
Imports de.WWWings.Library

List<Vorstandsmitglied> Vorstandsmitglieder = new List<Vorstandsmitglied> { HS,
HM, MM };

// Verwendung einer Erweiterungsmethode
Vorstandsmitglieder.Print (ConsoleColor.DarkYellow) ;

Erweiterungsmethoden (Extension Methods) 207

22.3 Praxisbeispiele: Erweiterungsmethoden fiir die
Datentypkonvertierung

Mit ein Erweiterungsmethoden kann man die Konvertierung von elementaren Datentypen
wesentlich schoner gestalten.

Motivation: Die Konvertierung zwischen elementaren Datentypen gehort zum Alltag eines
jeden Softwareentwicklers, denn nicht immer kommen Daten in dem gewiinschten Typ im
eigenen Programmcode an. Datenbankzugrifftechniken wie DataReader und das untypisierte
DataSet liefern Daten aus Datenbankspalten in Form des allgemeinen .NET-Basistyps
System.Object. Beim Auslesen einer Textdatei bekommt man alle Daten als Zeichenketten.
Ebenso liefern Texteingabefelder in grafischen Benutzeroberflichen iiblicherweise
System.String. Auch in Verbindung mit dem Netzwerkprotokoll HTTP hantiert man meist mit
Zeichenketten.

22.3.1 Eingebaute Konvertierungsfunktionen

Nehmen wir als Beispiel mal eine Zechenkette mit Inhalt "42"

string input = "42";

Diese Zeichenkette mochte in eine Integer-Zahl umwandeln. Ein einfacher Typecast in C# ist hier
nicht die Losung

int x = (int)input;

"Cannot onvert type 'string' to 'int", sagt der Compiler dazu nur.
Es ist die Hilfe der NET-Klassenklassenbibliothek notwendig, z.B.

= System.Int32.Parse()

= System.Int32.TryParse()

= System.Convert.ToInt32()

= System.Convert.ChangeType()

Das nédchste Listing zeigt diese vier Moglichkeiten im Rahmen von Unit Tests. Variante 2 ist
eindeutig die beste Losung, denn bei Variante 1, 3 und 4 kommt es im Fall, dass die Zeichenkette
kein giiltiger Ganzzahlwert ist zu einem Laufzeitfehler vom Typ System.FormatException ("Input
string was not in a correct format."). Wenn die Zeichenkette den Wert null hat, gibt es den
Laufzeitfehler vom Typ System.InvalidCastException ("Null object cannot be converted to a value
type") bzw. System.ArgumentNullException ("Value cannot be null.").

Diese Fehlerfille miisste man also explizit abfangen. Man sollte aber das Auftreten einer
Ausnahme in NET wenn immer moglich vermeiden, da Ausnahmen viel Zeit kosten. Diese Zeit
fallt zwar kaum ins Gewicht, wenn man Eingaben eines Benutzers in einer Bildschirmmaske priift.
Die Zeit fiir das Abfangen der Laufzeitfehler ist aber relevant, wenn man einen Datenimport mit
500.000 Datensitzen aus einer Textdatei implementiert und es haufig fehlerhafte Daten gibt.

Listing: In .NET eingebaute Moglichkeiten der Konvertierung zwischen einer Zeichenkette und
einer Zahl

using System;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace DNP.Kolumne.Folgel52.UnitTests
{

208 Erweiterungsmethoden (Extension Methods)

[TestClass]
public class StringConversionTests

{

[TestMethod]
public void StandardKonvertierungen_Parse ()
{

string input = "42";

int x = System.Int32.Parse (input) ;
Assert.AreEqual (42, x);

}

[TestMethod]
public void StandardKonvertierungen TryParse ()
{
string input = "42";
bool success = System.Int32.TryParse (input, out int x);
if (success)
{
Assert.AreEqual (42, x);
}
else
{
// Konvertierung fehlgeschlagen
}
}

[TestMethod]
public void StandardKonvertierungen_Convert ()
{

string input = "42";

int x = System.Convert.ToInt32 (input);
Assert.AreEqual (42, x);

}

[TestMethod]
public void StandardKonvertierungen ChangeType ()
{
string input = "42";
int x = (int)System.Convert.ChangeType (input, typeof (int));
Assert.AreEqual (42, x);
}
}
}

22.3.2 Erweiterungsmethoden zum Konvertieren

Der eine oder andere erinnert sich vielleicht noch an die Version Beta 1 von .NET Framework 1.0
im Jahr 2000 — das ist zugegebener Mafen lange her. Einige der heutigen .NET-Entwickler waren
da noch nicht geboren. In dieser Beta-Version gab es Konvertierungsmethoden direkt in der
System.String-Klasse: TolInt32(), ToDateTime(), ToDecimal() usw. Leider haben es diese
Konvertierungsmethoden bis heute in keine einsatzreife Version von .NET geschafft. Mit ein klein

Erweiterungsmethoden (Extension Methods) 209

wenig Zutun konnen diese Konvertierungsmethoden aber selbst erschaffen werden, als eine
elegantere Losung um die Methode TryParse() herum.

Das folgende Listing zeigt die Methoden Tolnt32() und ToInt320rNull(). Beides sind
Erweiterungsmethoden fiir die Klasse System.String. Beide sind daher statische Methoden in einer
statischen Klasse und haben ein "this" vor dem ersten Parametertyp — das alles gehort zu den
Voraussetzungen fiir Erweiterungsmethoden in C#. Beide Methoden kapseln den Aufruf von
System.Int32.TryParse(). Beide Methoden erlauben die optionale Angabe eines Parameters mit
einem Wert, der verwendet wird fiir den Fall, dass eine Konvertierung in eine Zahl nicht moglich
war. Wihrend bei ToInt32() immer eine Zahl zuriickkommt (man muss sich also tiberlegen, was
im Fehlerfall eine Zahl ist, an der man erkennt, dass die Konvertierung nicht geklappt hat), erlaubt
TolInt320rNull() die Riickgabe von null. Daher definiert ToInt32() als Riickgabewert System.Int32
und ToInt320rNull() liefert System.Nullable<System.Int32> alias Int32?.

Listing: Erweiterungsmethoden Tolnt32() und Tolnt320rNull()
namespace ITVisions

{

public static class StringExtensions

{

/// <summary>
/// Konvertiert eine Zeichenkette nach Int32 oder in NULL-Wert
/// </summary>
/// <param name="obj">Zielobjekt</param>

/// <param name="defaultValue'>Riickgabestandardwert fiir den Fall, das Konvertie
rung nicht erfolgreich ist- Ohne Angabe ist der Riickgabestandardwert NULL.</param
>

/// <returns>Nullable Int32</returns>
public static Int32? ToInt320rNull (this string obj, Int32? defaultValue = null)
{

int i;

if (Int32.TryParse(obj, out i)) return i;

return defaultValue;

}

/// <summary>

/// Konvertiert eine Zeichenkette nach Int32,

/// </summary>

/// <param name="obj">Zielobjekt</param>

/// <param name="defaultValue'>Riickgabestandardwert fiir den Fall, das Konvertie
rung nicht erfolgreich ist. Ohne Angabe ist der Riickgabestandardwert 0.</param>

/// <returns>Int32</returns>

public static Int32 ToInt32(this string obj, Int32 defaultValue = 0)

{

int i;

if (Int32.TryParse(obj, out i)) return i;
return defaultValue;
}

}

Das néchste Listing zeigt die Nutzung obiger Erweiterungsmethoden. Wichtig ist dabei

using ITVisions;

210 Erweiterungsmethoden (Extension Methods)

Erst durch diesen Namensraumimport werden alle Erweiterungsmethoden in statischen Klassen in
diesem Namensraum eingebunden. Die Erweiterungsmethoden funktionieren beide auch fiir den
Null-Fall, wie die Unit Tests im néchsten Listing beweisen. Normale Instanzmethoden in einer
Klasse wiirden hier versagen, denn auf einem Objektverweis, der auf null steht, konnte man keine
Methode aufrufen. Erweiterungsmethoden konnen damit aber umgehen, da sie das Objekt als
Parameter erhalten.

Listing: Unit Tests fiir Tolnt32() und ToInt320rNull()

using System;
using ITVisions;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace ITV.AppUtil.UnitTests
{

[TestClass]
public class StringConversionTests

{

[TestMethod]

public void ToInt32_Valid()

{

string input = "d42";

int? x1 = input.ToInt320rNull(Q);
Assert.AreEqual(u2, x1);

int x2 = input.ToInt320);
Assert.AreEqual(u2, x2);

int x3 = input.ToInt32(-1);
Assert.AreEqual(u2, x3);
}

[TestMethod]

public void ToInt32_NotValid()

{

string input = "abc";

int? x1 = input.ToInt320rNull(Q);
Assert.AreEqual(null, x1);

int x2 = input.ToInt32Q);
Assert.AreEqual(@, x2);

int x3 = input.ToInt32(-1);
Assert.AreEqual(-1, x3);

[TestMethod]

public void ToInt32_Null()

{

string input = null;

int? x1 = input.ToInt320rNull();

Erweiterungsmethoden (Extension Methods) 211

Assert.AreEqual(null, x1);

int x2 = input.ToInt32();
Assert.AreEqual(@, x2);

int x3 = input.ToInt32(-1);
Assert.AreEqual(-1, x3);

22.3.3 Erweiterungsmethoden fiir Zeichenketten mit null

Diese Anwendbarkeit von Erweiterungsmethoden auf null-Verweise kann man sich auch zu Nutze
machen fiir weitere elegante Erweiterungsmethoden, die null-Félle in Zeichenketten abhandeln,
siche ndchstes Listing.

Listing: Erweiterungsmethoden fiir die String-Klasse zur Priifung und Behandlung von null-
Werten
namespace ITVisions
{
public static class StringExtensions2
{

public static bool IsNullOrEmpty (this string s)
{

return (String.IsNullOrEmpty(s))

}

public static bool IsNotNullOrEmpty (this string s)
{

return (!String.IsNullOrEmpty(s))

}

public static string NotNull (this string s, string altString = "")
{
if (String.IsNullOrEmpty(s)) return altString;
return s;
}
}

Mit der hier realisierten Erweiterungsmethode IsNullOrEmpty() kann man anstelle der Nutzung
der statischen Methode IsNullOrEmpty() in der Klasse System.String

bool bl = String.IsNullOrEmpty (input) ;
nun deutlich pragnanter schreiben:

bool bl = input.IsNullOrEmpty () ;
Ebenso statt

bool b2 = !String.IsNullOrEmpty (input) ;
nun

bool b2 = input.IsNotNullOrEmpty () ;

212 Erweiterungsmethoden (Extension Methods)

Mit der dort realisierten Erweiterungsmethode NotNull() kann man statt

string outputl = input ?? "";

auch schreiben

string outputl = input.NotNull();

Das sind auf den ersten Blick mehr Zeichen, aber die IntelliSense-Eingabeunterstiitzung im Editor
sorgt dafiir, dass man den Erweiterungsmethodenaufruf schneller eingeben kann, denn fiir ?? ""
muss man (inklusive der Leerzeichen) sechs Tasten tippen, vier davon mit gedriickter Shift-Taste.
Fiir NotNull() reichen drei Tastaturanschldge: Punkt, N und Tabulator-Taste. Noch besser wird
das Tastaturanschlagsanzahlverhéltnis, wenn man danach noch weitere Methoden aufrufen will,
was beim Operator ?? eine Klammerung erfordert:

int lenl = (input ?? "") .Length;

daraus wird nun schneller eingebbar:

int lenl = input.NotNull() .Length;

Die Erweiterungsmethode NotNull() unterstiitzt dabei auch alternative Texte, z.B.

string output = input.NotNull("- keine Angabe -");

22.3.4 Erweiterungsmethoden fiir beliebige null-Verweise
Die null-Priifung kann man leicht auf beliebige Objekte ausdehnen (siehe Listing).

Listing: Erweiterungsmethoden fiir System.Object zur Priifung von null-Werten
namespace ITVisions

{

public static class ObjectExtensions

{

public static bool IsNull(this object o)
{
return (o == null);

}

public static bool IsNotNull (this object o)
{
return (o '= null);

}

public static object NotNull (this object o, object defaultObject)
{

if (o is null) return defaultObject;

return o;

}

}

Nun gibt es ja schon mehrere eingebaute Moglichkeiten zur null- bzw. nicht-null-Priifung in C#:
= bool bl = input == null; (seit C# 1.0)

= bool b2 = input != null; (seit C# 1.0)

= bool b3 = input is null; (seit C# 7.0)

= bool b4 = input is not null; (seit C# 9.0)

Erweiterungsmethoden (Extension Methods) 213

Mit den Erweiterungsmethoden aus obigem Listing kann man nun allerdings mit besserer
Eingabeunterstiitzung schreiben:

= bool bl = input.IsNull();
= bool b2 = input.IsNotNull();

Das ist aus der Sicht des Autors dieses Buchs auch besser lesbar. Uber "bessere Lesbarkeit" kann
man aber streiten. Es gibt verschiedene Wahrnehmungstypen unter den Menschen.

Das obige Listing beinhaltet auch zwei Erweiterungsmethoden NotNull() fiir System.Object.
Damit geht nun statt

(input ?? new DirectoryInfo (@"t:\download")) .CreateIfNotExists();

auch dieser Aufruf:

input.NotNull (new DirectoryInfo (@"t:\download")) .CreateIfNotExists();

In diesem Fall kann man jetzt durchaus auch dariiber streiten, was eleganter und schneller
eingebbar ist.

22.3.5 Universelle Erweiterungsmethode To<T>

Die ADO.NET-Datenzugriffsklassen ~ System.Data.Common.DbDataReader (und die
Abkommlinge wie der SqlDataReader) und System.Data.DataRow (als Teil des DataSet)
signalisieren NULL-Spalten in einem Datenbankmanagementsystem nicht als null-Wert in C#
bzw. nothing in Visual Basic .NET sondern mit einer Instanz der Klasse System.DBNull.

Auf der Suche nach einer komfortableren Losung kommt man auf die generische Methode
To<T>() in nichsten Listing als Erweiterungsmethode fiir System.Object. Die Methode priift
zundchst auf DBNull und liefert in diesem Fall null oder einen anderen als optionalen per
Parameter defaultValue iibergebenen Standardwert zuriick. Die Riickgabe von null wird
verweigert, wenn der iibergebene generische Typ T nicht nullable ist.

Wenn kein DBNull iibergeben wurde, dann holt sich die Implementierung der Methode To<T>()
iiber die Klasse System.ComponentModel. TypeDescriptor zunichst einen Konverter von dem
Quellobjekttyp in den Zieltyp (Variable targettype) zur Ausfithrung von ConvertTo(). Wenn es
keinen Konverter dafiir gibt, versucht die Methode To<T>() es beim Gegenpart, also beim Zieltyp
einen Konverter zu bekommen, der ConvertFrom() unterstiitzt.

Listing: To<T> bietet eine universelle Konvertierung

public static T To<T>(this object obj, object defaultValue = null)
{
if (obj !'= null)
{
Type targetType = typeof (T);

// Zieltyp ist gleich dem Quelltyp
if (obj.GetType() == targetType)

{

return (T)obj;

}

// DBNull? Dann null zuriickgeben
if (obj == DBNull.Value)
{

214 Erweiterungsmethoden (Extension Methods)

if (defaultValue == null && targetType typeof (string) && (!targetType.IsGe
nericType || targetType.GetGenericTypeDefinition() != typeof (Nullable<>)))

{

throw new InvalidOperationException("Cannot convert DBNull to " + targetType

.ToString() + " because it is a non-nullable value type");

}

return defaultValue.To<T>();

}

// Konvertierung iiber TypeConverter fiir aktuelles Objekt
TypeConverter converter = TypeDescriptor.GetConverter (obj) ;
if (converter !'= null)
{

if (converter.CanConvertTo (targetType))

{

return (T)converter.ConvertTo(obj, targetType);

}
}

// Konvertierung iiber TypeConverter fiir Zieltyp
converter = TypeDescriptor.GetConverter (targetType) ;
if (converter != null)
{

if (converter.CanConvertFrom(obj.GetType()))

{

return (T)converter.ConvertFrom(obj) ;

}
}
}

return (T)obj;

}
Mit To<T> kann man viele Konvertierungsfille abdecken. Beispiele zeigen die Unit Tests im
folgenden Listing.

Listing: Eine Auswahl der Unit Tests fiir die Konvertierungsmethode To<T>
[TestMethod]

public void ToT_Intlé6()

{

string value = "42";

string nullValue = null;
object DBNullValue = DBNull.Value;

var resultl = value.To<Intlé>();

var result2 = value.To<Intl6?>();

var result3 = nullValue.To<Intl6?>();
var result4 = DBNullValue.To<Intl6?>();
var result5 = DBNullValue.To<Intl6>(42) ;

Assert.AreEqual (42, resultl);
Assert.AreEqual (42, result2.Value);
Assert.IsNull (result3) ;
Assert.IsNull (resultd) ;

Erweiterungsmethoden (Extension Methods)

215

Assert.AreEqual (42, result5);
}

[TestMethod]

public void ToT_Bool ()

{

string nullValue = null;

string value = "true";

object DBNullValue = DBNull.Value;

var resultl = value.To<Boolean>() ;

var result2 = value.To<Boolean?>();

var result3 = nullValue.To<Boolean?>() ;

var resultd4 = DBNullValue.To<Boolean?>() ;
var result5 = DBNullValue.To<Boolean>(false) ;

Assert.AreEqual (true, resultl);
Assert.AreEqual (true, result2.Value);
Assert.IsNull (result3) ;

Assert.IsNull (resultd) ;
Assert.AreEqual (false, result5);
}

[TestMethod]

public void ToT_String()

{

string nullValue = null;

object value = "Holger Schwichtenberg";
object DBNullValue = DBNull.Value;

var resultl = value.To<string>();

var result2 = value.To<string>();

var result3 = nullValue.To<string>();

var resultd4 = DBNullValue.To<string>();

var result5 = DBNullValue.To<string>("Max Mustermann") ;

Assert.AreEqual (value.ToString (), resultl);
Assert.AreEqual (value, result2);
Assert.IsNull (result3) ;

Assert.IsNull (resultd) ;

Assert.AreEqual ("Max Mustermann", result5);

}
22.4 Sammlungen von Erweiterungsmethoden

Es gibt im Internet Sammlungen von Erweiterungsmethoden, in denen sie
Konvertierungsmethoden und andere Erweiterungsmethoden finden:

1. GitHub-Projekt: Z.ExtensionMethods
https://github.com/zzzprojects/Z.ExtensionMethods

2. extensionmethod.net

dhnliche

https://github.com/zzzprojects/Z.ExtensionMethods

216 Erweiterungsmethoden (Extension Methods)

https://extensionmethod.net

https://extensionmethod.net/

Annotationen (.NET-Attribute) 217

23 Annotationen (.NET-Attribute)

Der Entwickler selbst kann Komponenten, Klassen und Klassenmitglieder mit zusétzlichen
Informationen (Metadaten) versehen, die entweder wihrend der Kompilierung oder zur Laufzeit
der Anwendung ausgewertet werden koénnen. Typische Beispiele fiir derartige
Zusatzinformationen sind:

= Die Komponente hat die Version x (AssemblyVersionAttribute)
m Instanzen einer Klasse sind serialisierbar (SerializableAttribute)
= Instanzen der Klasse sollen Teil einer Transaktion sein (TransactionAttribute)

= Ein Mitglied einer Klasse ist aus Kompatibilititsgriinden zwar noch vorhanden, sollte aber
nicht mehr verwendet werden, weil ein anderes, besseres Mitglied zur Verfliigung steht
(ObsoleteAttribute)
Leider verwendet Microsoft fiir diese Metadaten eine stark von der objektorientierten Lehre
abweichende Begriffswelt: Die Firma nennt eine derartige Auszeichnung Attribut (engl. Attribute),
was einen Namenskonflikt zu dem Begriff Attribut, also dem Datenmitglied einer Klasse darstellt
(vgl. fir den deutschen Sprachraum [Oesterreich, B.: Objektorientierte Softwareentwicklung,
Miinchen, Wien: Oldenburg Verlag, 1997, S. 157] und [Schneider, U.; Werner, D.: Taschenbuch
der Informatik, Miinchen: Fachbuchverlag Leipzig, 2004, S. 277] und fiir den englischen
Sprachraum [Oxford Dictionary of Computing, New York: Oxford University Press, 1997, S.
243]). Die Datenmitglieder einer Klasse heilen bei Microsoft Felder (engl. Fields) und
Eigenschaften (engl. Properties). Dabei denkt man doch bei Feldern eher an Arrays. Ein klarer Fall
von MINFU (siehe Fussnote 1) der sich in der deutschen Ubersetzung besonders schlimm auswirkt.

Hinweis: Mittlerweile verwendet Microsoft auch hiufiger den Begriff Annotationen (wie in
Java seit Version 5.0). Dieses Buch verwendet ebenfalls Annotation fiir diese Meta-Daten,
wihrend mit "Attribut" ein Datenmitglied einer Klasse bezeichnet wird.

Annotationen werden in Form von Klassen implementiert, die von der Basisklasse
System.Attribute abgeleitet sind. Sie haben Namen, die auf Attribute enden, wobei bei ihrer
Verwendung das Wort Attribute weggelassen werden kann (z.B. System.ObsoleteAttribute >
[Obsolete]). Jeder Entwickler kann eigene Annotationen definieren. Annotationen konnen ein
Verhalten besitzen; sie werden aber erst verarbeitet, wenn ein Typ explizit von einem Host (z.B.
einer Entwicklungsumgebung) oder einem anderen Typ via Reflection nach Annotationen gefragt
wird.

23.1 Annotationen verwenden

Annotationen konnen in C# den Typen und den Typmitgliedern in eckigen Klammern vorangestellt
werden.

In dem folgenden Beispiel wird die vordefinierte Annotation System.Obsolete einer Methode
zugewiesen. System.Obsolete sorgt dafiir, dass der Compiler den Entwickler warnt, wenn er eine
derart deklarierte Methode aufruft.

Listing: Beispiel fiir die Anwendung der Annotation System.Obsolete in Visual Basic NET

using System;

! Auf Basis der Erkenntnis, dass Microsoft regelmaflig Probleme mit der Bezeichnung der

eigenen Produkte und Konzepte hat, schuf der amerikanische Autor David S. Platt ein neues Wort:
MINFU. Dies ist eine Abkiirzung fiir MIcrosoft Nomenclature Foul-Up.

218 Annotationen (.NET-Attribute)

e CSharpSprachsyntax.CS10_NET10_ 2002

{

public class Annotationen

{
public void Run()
{
Print ("Start");
}

[Obsolete ("Verwenden Sie bitte Log()!'")]
void Print(string s)

{

Console.WriteLine(s) ;

}

void Log(string s, bool mitZeit = false)

{
Console.WriteLine ((mitZeit ? System.DateTime.Now.ToString() + ": " : "") + s);

}

}
}

public class
1

public void Run()

e MET Framewek sousee code for i type,s6¢ the Reerence Seunce

Represents test 252 s8quence of UTF 16.

T s cbsalete

ete(Vernenden Sie bitte Log(}1"}]
woid Print(string 5)

_Weiteline(s);
)

vold Loglstring 2, bool mitZeit = false)
¢

Writalina((mitzeit X Mow. Tostring() + L e E)
)

Abbildung: Der Compiler warnt, wenn Sie ein mit [Obsolete] annotierter Methode aufrufen

Das zweite Beispiel zeichnet die Klasse Passagier als serialisierbar aus, d. h., ihre Instanzen kénnen
persistiert oder in einen anderen Prozess iibertragen werden.

[System.Serializable()]

public class Passagier : de.WWWings.Person

{.}

Seit C# 3.0 gibt es sogenannte automatische Properties, bei denen der Compiler selbstindig ein
unsichtbares "Backing Field" fiir ein Property beim Kompilieren anlegt:

public int ID { get; set; }
public string Name { get; set; }

Vor C# 7.3 hatte ein Entwickler keine Moglichkeit, Annotationen fiir das automatisch generierte
Backing Field zu vergeben. Das erlaubt C# Version 7.3, indem der Entwickler zwischen die
offnende eckige Klammer und den Namen der Annotation "field:" schreibt, z.B.

Annotationen (.NET-Attribute) 219

[field: NonSerialized]

Dies ist sinnvoll, da man einige Annotationen wie z.B. [NonSerialized] nicht auf Properties
anwenden darf.

Die folgende Listing zeigt ein Anwendungsbeispiel dazu.

Listing: Annotationen fiir unsichtbare Backing Fields
[Serializable]
public class Autor
{
[field: NonSerialized]
public int AutorenID { get; set; }
public string Name { get; set; }

public string Themen;
}

23.2 Annotationen selber schreiben

Eine Annotation schreibt man selbst, indem man eine Klasse implementiert, die von der
Basisklasse system.attribute erbt. Eine Annotationsklasse muss keine Mitglieder besitzen.

Eine leere Annotationsklasse ist eine "Markierungsklasse", mit der man eine Typ oder ein Mitglied
eines Typs markiert, fiir einen bestimmten Zweck. Es gibt dann nur Ja (Markierung ist vorhanden)
oder Nein (Markierung ist nicht vorhanden). Durch Hinzufiigen eines Konstruktors mit Parametern
kann man der Annotationsklasse Daten iibergeben und damit weitere Informationen transportieren.

Bei der Deklaration einer Annotationsklasse kann man die Annotation [AttributeUsage]
verwenden und damit festlegen,

= bei welchen Sprachkonstrukten die Annotation eingesetzt werden kann (Assembly, Klasse,
Struktur, Enumeration, Methode, Property, Field, Event, Parameter, Riickgabewert,
Generischer Parameter). Durch All gibt es keine Einschrinkung.

= Mit AllowMultiple legt man fest, ob die Annotation mehrfach bei ein und demselben
Sprachkonstrukt erscheinen darf

= Mit Inherited legt man fest, ob die Annotation an abgeleitete Klassen weitervererbt wird.

Beispiel: Die folgende, selbstdefinierte Annotation ProgVersion ist auf jedem Sprachkonstrukt
erlaubt und dient dazu, festzuhalten, mit welcher Programmversion der Code eingefiihrt wurde.

Listing: Eigene Annotationen implementieren

[AttributeUsage (AttributeTargets.All, AllowMultiple = false, Inherited = false)]
public class ProgVersion : System.Attribute

{

public int Versionsnummer { get; }

public string Notiz { get; }

public ProgVersion(int versionsnummer, string notiz = "")
{

Versi = version ;

Notiz = notiz;
}
}

220 Annotationen (.NET-Attribute)

Die Annotation ProgVersion wird in folgendem Beispiel angewendet auf C#-Sprachkonstrukte:
Properties in der klassischen Schreibweise gibt es seit C# 1.0, automatische Properties erst seit C#
3.0

Listing: Eigene Annotationen verwenden
public class Ei tationenA d
{

string nachname;

[ProgVersion(l, "Klassische Property-Deklaration")]
public string Nachname
{
get
{
return nachname;

}

set
{
nachname = value;
}
}

[ProgVersion (3, "Automatisches Property")]
public string Vorname { get; set; }

}

}

Eigene Annotationen haben weder fiir den Compiler noch die Laufzeitumgebung eine Bedeutung.
Entwickler miissen selbst Code schreiben, um die Annotationen per Reflection auszuwerten.

Listing: Eigene Annotationen auswerten

public class AnnotationenAuswerten

{

public static void Run()

{
CUI.H1 ("Auswertung der Annotation auf den Properties");
var typ = typeof (Ei tationen. den) ;
Console.WriteLine ("Klasse: " + typ.FullName);
var properties = typ.GetProperties();

foreach (var prop in properties)
{
CUI.H3("Property " + prop.Name + ": ");
if (Attribute.IsDefined(prop, typeof (ProgVersion)))
{
foreach (var a in prop.GetCustomAttributesData())
{
Console.WriteLine("- " + a.AttributeType.FullName) ;
// Schleife iiber alle Parameter des Konstruktors
foreach (var arg in a.ConstructorArguments)
{
Console.WriteLine(" " + arg.ArgumentType + " = " + arg.Value);
}

Annotationen (.NET-Attribute) 221

// Alternative: Gezielt die Annotation holen und mit Type Cast das Annotatio
nsobjekt erhalten

var pv = (ProgVersion)prop.GetCustomAttribute (typeof (ProgVersion), false);

CUI.Print(" Eingefiihrt in " + pv.Versionsnummer + ": " + pv.Notiz, ConsoleC
olor.Yellow) ;

Auswertung der Annotation auf den Properties
Klasse: CSharpSprachsyntax.CS10_NET18_2002.EigeneAnnotationenAnwenden
Property Nachname:
- CSharpSprachsyntax.CS1@_NET10_2002.ProgVersion
System.Int32 = 1

System.String = Klassische Property-Deklaration
Eingefiihrt in 1: Klassische Property-Deklaration
Property Vorname
- CSharpSprachsyntax.CS1@_NET10_2002.ProgVersion
System.Int32 3
System.String = Automatisches Property
Eingefiihrt in 3: Automatisches Property

Abbildung: Ausgabe der Auswertung der Annotationen auf dem Typ "Beispiel"

23.3 Annotationen mit Typparametern

Neu in C# 11.0 ist, dass .NET-Attribute (alias "Annotationen") generische Parameter ("Generic
Attributes") enthalten diirfen. Man schreibt eine generische Klasse und ldsst diese — wie bei
Attributen tiblich — von system.Attribute erben:

public class GenericAttribute<T>
: System.Attribute
{

}
Damit kann ein Entwickler dann bei der Attribuierung einer Klasse oder Methode einen
Typparameter als generischen Parameter angeben:

[GenericAttribute<Person>()]
class CS1l_GenericAttribute Demo
{

public Person p { get; set; }

[GenericAttribute<Person> ()]

public string Print()

{

string s = DateTime.Now + ": " + p.ToString();
Console.WriteLine (s) ;

return s;

222

}
}

Es ist aber nicht erlaubt, dass ein generischer Typparameter einer Klasse wieder bei einem

generischen Attribut eingesetzt wird. Es diirfen beim generischen Attribut nur konkrete Typen
genannt werden.

Annotationen (.NET-Attribute)

public class GenericType<T>
{
[GenericAttribute<T>()] // nicht erlaubt :-(
public string Method() => default;
}

Hinweis: Als Typparameter hier nicht erlaubt sind: dynamic, Nullable Reference Types, Tupel
in C#-Syntax (ValueTupel<T,T> ist aber erlaubt!)

Vor C# 11.0 konnte man einen Typ an ein Attribut nur als normalen Parameter im Konstruktor
tibergeben:

public class TypeAttribute : Attribute

{

public TypeAttribute (Type t) => ParamType = t;

public Type ParamType { get; }
}
Die Nutzung sah dann so aus:

[TypeAttribute (typeof (Person))]
class CS1l_TypeAttribute Demo
{

public Person p { get; set; }

[TypeAttribute (typeof (Person))]

public string Printl()

{

string s = DateTime.Now + ": " + p.ToString();
Console.WriteLine(s) ;

return s;

}

}

Generische Klassen 223

24 Generische Klassen

Generische Klassen (Generics) erlauben es, einen oder mehrere Typen, die die Klasse intern
verarbeitet, variabel zu halten (Typparameter). Ein typischer Einsatzfall sind generische
Objektmengen (siche Klassen wie List<T> im Namensraum System.Collections.Generic in der
NET-Klassenbibliothek). Generische Objektmengen ermdglichen es, dass der Entwickler einen
allgemeinen Mengentyp so prégt, dass die Menge nur Mitglieder einer bestimmten Klasse
akzeptiert und dafiir eine Typpriifung bereits zur Entwicklungszeit stattfindet.

Neben den in der FCL implementierten generischen Objektmengen kann man in Visual Basic NET
und C# auch selbst generische Klassen erzeugen. In diesem Kapitel wird die Definition und
Verwendung eigener generischer Klassen besprochen.

241 Definition einer generischen Klasse

Die Unterstiitzung fiir generische Klassen wurde in C# ebenso wie in Visual Basic .NET im
Rahmen von .NET 2.0 hinzugefiigt. Wie in vielen anderen Punkten auch, ist der Unterschied rein
syntaktisch: An die Stelle des Of-Operators in runden Klammern tritt ein Klammernpaar aus
spitzen Klammern. Die Bedingungen fiir die generischen Typparameter (Generic Constraints)
definiert man mit dem Schliisselwort where.

Listing: Implementierung einer generischen Klasse in C#
public class Mitarbeiterzuordnung<ChefTyp, AssistentTyp>
where ChefTyp : Mitarbeiter
where AssistentTyp : Mitarbeiter
{
ChefTyp Chef;
AssistentTyp Assi;

public Mitarbeiterzuordnung(ChefTyp Chef, AssistentTyp Assi)

{
this.Chef = Chef;
this.Assi = Assi;
}
}

24.2 Verwendung einer generischen Klasse

Bei der Verwendung einer generischen Klasse miissen sowohl bei der Deklaration der
Objektvariablen als auch bei der Instanziierung in spitzen Klammern <...> die zu gebrauchenden
Typen angegeben werden. In dem folgenden Beispiel wird ein Team aus zwei Piloten gebildet.

In C# kommen anstelle von runden Klammen und dem Schliisselwort Of die spitzen Klammen
zum Einsatz, um die von der Klasse erwarteten Typparameter anzugeben.

Listing: Nutzung einer generischen Klasse in C#

Mitarbeiterzuordnung<Pilot,Pilot> CockpitTeam;

Pilot Pilotl = new Pilot("Miiller", "Max")

Pilot Pilot2 = new Pilot("Meier", "Hans");

CockpitTeam = new Mitarbeiterzuordnung<Pilot, Pilot>(Pilotl, Pilot2); // OK!
Passagier Passl = new Passagier ("Schwichtenberg", "Holger")

' Fehler: CockpitTeam = new Mitarbeiterzuordnung<Pilot, Pilot>(Pilotl, Passl);

224 Generische Klassen

24.3 Einschrankungen fiir generische Typparameter
(Generic Constraints)

Ein Problem verbleibt bei der Nutzung generischer Typen: Bei der Deklaration einer Variablen fiir
einen generischen Typ konnte ein Entwickler (versehentlich) Typparameter angeben, fiir die die
Klasse gar nicht vorgesehen ist, beispielsweise ein File-Objekt und ein Directory-Objekt bei der
Klasse Mitarbeiterzuordnung.

// Das ist Unsinn:

Mitarbeiterzuordnung<System.IO.FileInfo, System.IO.DirectoryInfo> DateiTeam;

Um dies zu verhindern, konnen Bedingungen fiir die Typparameter (so genannte Generic
Constraints) definiert werden. In Visual Basic erfolgt die Festlegung solcher Generic Constraints
mit dem Schliisselwort As hinter dem Typparameternamen in der Of-Deklaration. Nach dem As
dirfen in geschweiften Klammern beliebig viele Schnittstellennamen, aber maximal ein
Klassenname genannt werden, da die angegebenen Namen additiv wirken und eine Klasse maximal
eine Basisklasse besitzen darf. In C# verwendet man das Schiisselwort where.

Listing: Deklaration einer generischen Klasse in C# mit Generic Constraints

public class Mitarbeiterzuordnung<ChefTyp, AssistentTyp> where ChefTyp:
Mitarbeiter, new()

where AssistentTyp:
Mitarbeiter, new()

public ChefTyp Chef;

public AssistentTyp Assi;

public Mitarbeiterzuordnung(ChefTyp Chef, AssistentTyp Assi,
de .WWWings.Flug flug)

{

this.Chef
this.Assi

Chef;
Assi;

}
}

In Generic Constraints sind folgende Angaben erlaubt:

= eine oder mehrere Schnittstellen

= cine Basisklasse

= Schliisselwort new (steht fiir Typen mit parameterlosem Konstruktor)
= Schliisselwort class (steht fiir Referenztypen)

= Schliisselwort structure (steht fiir Wertetypen)

24.4 Kovarianz fiir Typparameter

In C# 4.0 hat Microsoft die sogenannte Kovarianz fiir generische Typen eingefiihrt. Sie erlaubt es,
dass bei einem Typparameter anstelle der eigentlich in einem Methodenparameter genannten
Klasse auch eine abgeleitete Klasse libergeben werden kann. Dies deklariert der Entwickler einer
generischen Schnittstelle mit dem Schliisselwort out vor dem Typparameter.

Den Typparameter der Schnittstelle IEnumerable<T> hat Microsoft bereits so deklariert in der
NET-Klassenbibliothek:

public interface IEnumerable<out T> : IEnumerable
{ .1

Generische Klassen 225

In

dem folgenden Listing wird eine Klasse Person implementiert und zwei davon abgeleitete

Klassen Professor und Student. Danach werden drei generischen Listen mit der Klasse List<T>
erzeugt:

Eine Liste nur mit Professoren
Eine Liste nur mit Studenten

Eine Liste mit Professoren und Studenten, die aus den ersten beiden Listen mit AddRange()
zusammengesetzt wird.

Danach werden die drei Listen mit der Methode Print() ausgeben. Print() erwartet als zweiten
Parameter IEnumerable<Person>.

Die Kovarianz von IEnumerable wirkt hier in zwei Féllen:

Das von Microsoft implementierte = AddRange() auf List<Person> erwartet
IEnumerable<Person>. Dank der von Microsoft deklarierten Kovarianz funktioniert auch die
Ubergabe einer List<Student> und List<Professor>.

Das selbst implementierte Print() erwartet IEnumerable<Person>. Dank der von Microsoft
deklarierten Kovarianz funktioniert auch die Ubergabe einer List<Student> und
List<Professor>.

Listing: Kovarianz

class Person

{

}

public int ID { get; set;
public string Name { get; set; }

class Professor : Person

{

}

public string Fachbereich { get; set; }

class Student : Person

{

}

public int MatrikelNummer { get; set; }

class CollectionVarianzDemo_Uni

{

public static void Run()

{

var hh = new Professor() { ID = 1, Name = "Harald Hastig", Fachbereich =
"Physik" };
var tl = new Professor() { ID = 2, Name = "Theodor Langweilig", Fachbereich =

"Mathematik" };

}:

var hs = new Student() { ID = 2, Name = "Hans Streber", MatrikelNummer=123456
var mf = new Student() { ID = 2, Name = "Max Faul", MatrikelNummer = 567890 };

var Profliste = new List<Professor>() { hh, tl };
var StudentenlListe = new List<Student>() { hs, mf };
var AlleUniAngeocerigen = new List<Person>();

226 Generische Klassen

AlleUni igen.Add (ProfListe) ;
AlleUniAngeocerigen.AddRange (AlleUniAngeoerigen) ;

Print("Alle", AlleUniAngeoerigen) ;
Print ("Professoren", ProfListe); // méglich Dank Kovarianz fiir IEnumerable<T>

Print("Studenten", StudentenListe); // méglich Dank Kovarianz fir
IEnumerable<T>

// Kovarianz fiir IEnumerable<T>; geht nicht mit List<Person>
public static void Print(string headline, I le<Person> p)
{
CUI.Headline (headline) ;
foreach (var p in personen)
{
Console.WriteLine (p.GetType() .Name + " #" + p.ID + " heiBt " + p.Name);
}
}
}

Kovarianz fiir generische Typparameter wird in Schnittstellendefinitionen festgelegt. Die
Kovarianz bezieht sich dann aber auch nur auf die Schnittstellen. Klassen, die diese Schnittstelle
implementieren, erhalten nicht diese Kovarianz. Daher kann man in obigem Beispiel bei der
Methode Print() den zweiten Parameter nicht mit List<Person> deklarieren, auch wenn List<T>
die Schnittstelle IEnumerable<T> implementiert.

Ein zweites Kovarianz-Beispiel zeigt das folgende Listing mit primitiven Typen: Hier kann die
Methode Print(IEnumerable<object> ¢) auch eine List<string™> ausgeben.

Listing: Kovarianz
/// <summary>

/// Kontra-Varianz bei Collections

/// </summary>

class CollectionVarianzDemo_ObjectString

{

/// <summary>

/// Diese Methode erwartet eine Menge von Objekten
/// </summary>

public static void Print (IEnumerable<object> c)

{ Console.WriteLine("Anzahl: " + c.Count()); }

public static void Run()

{

List<string> Namen = new List<string> { "Miiller", "Meier", "Schulze" };
// Die Methode erhdlt eine Menge von Strings

// Bisher war das nicht méglich, weil Enumerable<T>

// nicht Kontra-Varianz untersiitzte!

Print (Namen) ;

}

Generische Klassen 227

}

24.5 Generische Mathematik

Generische Mathematik umfasst eine Reihe von Schnittstellen in NET im
Basisklassennamensraum system.Numerics, die es erlauben, mathematische Operationen so zu
implementieren, dass sie fiir beliebige Zahlentypen (Ganzzahlen und gebrochene Zahlen beliebiger
Bit-Linge funktionieren).

Die in .NET 6.0 als experimentelles Feature [htips://devblogs.microsoft.com/dotnet/preview-
features-in-net-6-generic-math)] enthaltene generischen Mathematikoperationen (INumber<T>,
INumberBase<T>, IComparisonOperators<T, = T>, [AdditionOperators<T, T, T>,
IMultiplyOperators<T, T, T>, ISubtractionOperators<T, T, T> usw.) haben seit .NET 7.0 die
Produktionsreife erlangt.

Das néchste Listing zeigt ein aussagekréftiges Beispiel fiir eine generische mathematische
Berechnung in der Mehode Calc() und ein generisches Extrahieren einer Zahl aus einer
Zeichenkette in ParseNumber().

Diese beiden generischen mathematischen Methoden werden in der Methode Run() mit vielen
verschiedenen Ganz- und FlieBkommazahlentypen getestet u.a. mit den NET 7.0 neu eingefiihrten
Zahlentypen System.Int128 (Ganzzahl, 16 Bytes) und System.Half (FlieBkommazahl, 2 Bytes)
zum Einsatz.

Listing: Generische Mathematik

using System.Globalization;
using System.Numerics;

namespace CS11;

public class CS1l_GenericMath
{

/// <summary>

/// Generische mathematische Berechnung

/// </summary>

T Calc<T>(T x, T y)

where T : INumber<T> // INumber<T> ist ein neues Interface mit static abstract
Members!

{

Console.WriteLine ($"Calc {x.GetType () .ToString()}/{y.GetType().ToString()}");

if (x == T.Zero || y <= T.Zero) return T.One;

return (x + y) * T.CreateChecked (42.24);

}

/// <summary>

/// Generisches Konvertieren einer Zeichenkette in einen beliebigen Zahlentyp
/// </summary>

T ParseNumber<T>(string s)

where T : IParsable<T> // IParsable<T> ist ein neues Interface mit static ab

stract Members!

{

return T.Parse(s, CultureInfo.InvariantCulture) ;

}

https://devblogs.microsoft.com/dotnet/preview-features-in-net-6-generic-math
https://devblogs.microsoft.com/dotnet/preview-features-in-net-6-generic-math

228 Generische Klassen

public void Run()
{
CUI.H2("Calc mit 1 und 2");
Console.WriteLine ($"Ergebnis mit System.Byte: {Calc((byte)l, (byte)2)}"); // 12

Console.WriteLine ($"Ergebnis mit System.Int32: {Calc(l, 2)}"); // 126

Console.WriteLine ($"Ergebnis mit System.Int128: {Calc((Intl28)1, (Intl28)2)}");
// 126

Console.WriteLine ($"Ergebnis mit System.Single: {Calc((Single)1.0, (Single)2.0)
¥ // 126,72

Console.WriteLine ($"Ergebnis mit System.Double: {Calc(1.0d, 2.0d)}"); // 126,72

Console.WriteLine ($"Ergebnis mit System.Decimal: {Calc(1.0m, 2.0m)}"); // 126,7
20

Console.WriteLine ($"Ergebnis mit System.Half: {Calc((Half)1l.0m, (Half)2.0m)}");
// 126,75

CUI.H2 ("ParseNumber 1.00 und 2.00") ;
var x = ParseNumber<float>("1.00");
var y = ParseNumber<float>("2.00");

Console.WriteLine ($"Ergebnis mit System.Single: {Calc(x, y)}"); // 3,6000001
Console.WriteLine ($"Ergebnis mit System.Int32: {Calc(0, 1)}"); // 1
}
}
Der Beitrag der Programmiersprache C# ist an dieser Stelle die Moglichkeit, statische abstrakte
Mitglieder in Schnittstellen zu definieren (was seit C# 10.0 experimentell moglich war und seit C#
11.0 offiziell zur Sprachsyntax gehort). Diesen Modifizierer verwendet Microsoft in den
Basisklassen wie INumberBase<T>.

Listing: Ausschnitt aus INumberBase<T>

public interface INumberBase<TSelf>
IAdditionOperators<TSelf, TSelf, TSelf>,
IAdditiveIdentity<TSelf, TSelf>,
IDecrementOperators<TSelf>,
IDivisionOperators<TSelf, TSelf, TSelf>,
IEquatable<TSelf>,
IEqualityOperators<TSelf, TSelf, bool>,
IIncrementOperators<TSelf>,
IMultiplicativeIdentity<TSelf, TSelf>,
IMultiplyOperators<TSelf, TSelf, TSelf>,
ISpanFormattable,
ISpanParsable<TSelf>,
ISubtractionOperators<TSelf, TSelf, TSelf>,
IUnaryPlusOperators<TSelf, TSelf>,
IUnaryNegationOperators<TSelf, TSelf>

where TSelf : INumberBase<TSelf>?
{
/// <summary>Gets the value <c>1</c> for the type.</summary>
static abstract TSelf One { get; }

/// <summary>Gets the value <c>0</c> for the type.</summary>
static abstract TSelf Zero { get; }

Generische Klassen 229

/// <summary>Tries to parses a string into a value.</summary>
static abstract bool TryParse ([NotNullWhen(true)] string? s, NumberStyles style,
IFormatProvider? provider, out TSelf result);

}

230 Obijektmengen (Arrays und Collections)

25 Objektmengen (Arrays und Collections)

Es gibt drei Arten von Objektmengen in C# und Visual Basic .NET:

= Einfache Arrays (typisiert)
= Untypisierte Objektmengen
= Typisierte Objektmengen

251 Einfache Arrays

Einfache Arrays sind Instanzen der Klasse System.Array. Alle Arrays sind nun dynamisch
beziiglich der Grofe, jedoch muss man sie explizit erweitern. Die Anzahl der Dimensionen muss
bei der Deklaration festgelegt werden.

Tipp: Die Handhabung der Objektmengen aus dem Namensraum System.Collections ist
einfacher als die Verwendung von Arrays. Jedoch erwarten einige Methoden in der .NET-
Klassenbibliothek Arrays als Parameter. Man kann aber alle Objektmengen in Arrays
umwandeln und so mit Objektmengen arbeiten bis zur Parameteriibergabe.

Wihrend man in Visual Basic .NET Arrays mit runden Klammern kennzeichnet, kommen in C#
eckige Klammern zum Einsatz. Die Initialisierung erfolgt ebenso wie in Visual Basic .NET mit
geschweiften Klammern. In NET-Arrays beginnt die Zéhlung der Elemente immer bei 0. Einen
wichtigen Unterschied gibt es jedoch zwischen Visual Basic .NET und C#: In C# ist in der
Deklaration die Anzahl der Elemente zu nennen, in Visual Basic .NET der hochste Index (also
Anzahl — 1). Erlaubte und gleichwertige Deklarationen sind:

byte[] lottozahlenl = new byte[7] { 23, 48, 3, 19, 20, 6, 9 };

byte[] lottozahlen2 = new byte[] { 23, 48, 3, 19, 20, 6, 9 };

byte[] lottozahlen3 = { 23, 48, 3, 19, 20, 6, 9 };

Seit C# 12.0 gibt es eine alternative Syntax mit eckigen Klammern (siche Unterkapitel zu
"Collection Expression"):

byte[] lottozahlen3 = [23, 48, 3, 19, 20, 6, 9];

Microsoft empfiehlt in Coderegel IDE0300 https.//learn.microsoft.com/de-

de/dotnet/fundamentals/code-analysis/style-rules/ide0300 den Einsatz dieser neuen Syntax. Dies
ist aber keineswegs eine Pflicht!

Tipp: Da es fiir die VB.NET-Schliisselworter ReDim und Preserve kein Aquivalent in C# gibt,
muss man in C# auf die .NET-Klassenbibliothek zuriickgreifen:

Array.Resize<byte>(ref lottozahlen3, 20);

25.2 Untypisierte Collections

Neben den einfachen Arrays kennt .NET das Konzept der Collections im Namensraum
System.Collections, die einfacher zu bedienen bzw. méachtiger sind.

Urspriinglich gab es in .NET Framework 1.0 und 1.1 nur untypisierte Objektmengen wie
System.Collections.ArrayList und System.Collections.HashTable. Hier konnte man jeweils ein
Objekt eines beliebigen Typs aufnehmen (die Elemente der Liste wurden mit dem allgemeinen
Typ System.Object verwaltet), was die Gefahr von Laufzeitfehlern barg. Dennoch wurden Klassen
wie ArrayList hdufig eingesetzt, da die Verwendung komfortabler als ein einfaches Array war, da
man bei den Objektmengen Elemente hinzufiigen und entfernen kann, ohne die Grofie der Menge

https://learn.microsoft.com/de-de/dotnet/fundamentals/code-analysis/style-rules/ide0300
https://learn.microsoft.com/de-de/dotnet/fundamentals/code-analysis/style-rules/ide0300

Objektmengen (Arrays und Collections) 231

explizit anpassen zu miissen. Die Objektmengen in System.Collections werden nicht durch
spezielle Schliisselworter in den Sprachen unterstiitzt.

Waihrend die urspriinglich in .NET 1.0 eingefiihrten Objektmengen alle untypisiert waren und
dadurch konnte es Typfehler geben, hat Microsoft mit .NET 2.0 so genannte generische
Objektmengen eingefiihrt, die typisiert sind. Sie kénnen nur Objekte des im Typparameter
genannten Typs aufnehmen.

Praxishinweis: Diese untypisierten Klassen sind seit der Einfithrung der typisierten
Objektmengen in .NET Framework 2.0 quasi bedeutungslos, aber weiterhin auch in allen NET-
Implementierungen enthalten.

25.3 Typisierte Collections

Generische Mengentypen sind neu seit .NET Framework 2.0 (Jahr 2005) und bieten gegeniiber den
untypisierten Mengentypen den Vorteil, dass eine generische Objektmenge bereits zur
Entwicklungszeit auf einen bestimmten Inhaltstyp geprigt werden kann, sodass der Compiler
schon feststellt, wenn der Menge Objekte falschen Typs hinzugefiigt werden.

Die typisierten Objektmengen (Namensraum System.Collections.Generic) basieren auf
generischen Klassen. Bei den generischen Objektmengen wird durch einen Typparameter bei
Deklaration bzw. Instanziierung festgelegt, was die Menge aufnehmen darf. Bei generischen
Dictionaries gibt es zwei Typparameter: einen fiir den Schliissel und einen fiir den Wert.
Beispiele:

= List<string>: Eine Liste von Zeichenketten

= Stack<int>: Eine LIFO-Struktur (First in, First out) fiir Ganzzahlen

= SortedList<int, Person>: Ein Verzeichnis von Personen, die {iber eine Zahl identifiziert
werden.

= List<object>: Eine Liste beliebiger Objekte, entspricht ArrayList.

Mengentyp Untypisiert Typisiert, generisch

(System.Collection) (System.Collection.Generic),
seit NET Framework 2.0

FIFO-Struktur (First-In- Queue Queue<Typ>

First-Out)

FIFO-Struktur (First-In- - PriorityQueue<Typ>

First-Out) mit Prioritéten (seit .NET 6.0)

LIFO-Struktur (Last-In-First- | Stack Stack<Typ>

Out)

Dynamische Menge fiir ArrayList List<Typ>

beliebige Objekte, Zugriff

iiber Position, doppelte

Elemente erlaubt

Dynamische Menge fiir Bit- | BitArray -

Werte

232 Objektmengen (Arrays und Collections)

Mengentyp Untypisiert Typisiert, generisch
(System.Collection) (System.Collection.Generic),
seit NET Framework 2.0

Schliissel-Wert-Paare HashTable Dictionary<Schliisseltyp, Wertty
(Zugriff nur per Schliissel, p>

keine doppelten Werte

erlaubt)

Schliissel-Wert-Paare SortedList SortedList<Schliisseltyp, Wertty
(Zugriff per Schliissel oder p>

Index, keine doppelten
Werte erlaubt)

Doppelt verkettete Liste - LinkedList<Typ>
Schliissel-Wert-Paare - HashSet<Typ>
(Zugriff per Schliissel oder (seit NET Framework 3.5)

Index, keine doppelten
Werte erlaubt) mit speziellen
Mengenoperationen (z. B.
IntersectWith(),
ExceptWith(), UnionWith()
und IsSubsetOf())

Sortiertes Hashset - SortedSet<Typ>
(seit .NET Framework 4.0)

Tabelle: Wichtige Objektmengentypen in NET und .NET Core

Das folgende Beispiel zeigt, dass der Compiler bei untypisierten Mengentypen nicht feststellt, wenn
in eine Liste von Kunden versehentlich eine Instanz der Klasse Lieferant aufgenommen wird. Fiir
den generischen Mengentyp akzeptiert der Compiler hingegen nur Instanzen der Klasse Kunde und
von ihr abgeleitete Klassen (hier: StammKunde).

Listing: Typisierte vs. untypisierte Objektmenge

// Untypisierter Mengentyp

System.Collections.Queue Kundenl = new System.Collections.Queue() ;
Kundenl.Enqueue (new Kunde()) ;

Kundenl .Enqueue (new StammKunde ()) ;

Kundenl.Enqueue (new Lieferant());

// Generischer Mengentyp
System.Collections.Generic.Queue<Kunde> Kunden2 = new
System.Collections.Generic.Queue<Kunde>() ;

Kunden2 .Enqueue (new Kunde()) ;

25.4 Collection Initializer

Mengen werden haufig durch die Methode Add() befiillt. C# seit 2008 und Visual Basic seit 2010
bieten hier eine verkiirzte Schreibweise mit geschweiften Klammern wie bei einfachen Arrays an
(Collection Initializer). Diese Verkiirzung funktioniert nur, wenn es eine Add()-Methode in der
Mengenklasse gibt!

Initialisierung und Verwendung einer List<string>

List<string> beliebteVornamen = new List<string>()

Objektmengen (Arrays und Collections) 233

{"Leon", "Hannah", "Lukas", "Anna", "Leonie", "Marie", "Niklas", "Sarah",
"Jan", "Laura", "Julia", "Lisa", "Kevin"};
Console.WriteLine ("Anzahl Vornamen: " + beliebteVornamen.Count) ;

// Kevin ist nun doppelt, das ist nicht verboten in einer Liste
beliebteVornamen.Add ("Kevin") ;
Console.WriteLine ("Anzahl Vornamen: " + beliebteVornamen.Count) ;

// der erste gefundene Kevin wird entfernt
beliebteVornamen.Remove ("Kevin") ;

Console.WriteLine ("Anzahl Vornamen: " + beliebteVornamen.Count) ;

foreach (string vorname in beliebteVornamen)
{
Console.WriteLine (vorname) ;

}

// Das ist nicht méglich, Datentyp stimmt nicht
//beliebteVornamen.Add (123) ;
//beliebteVornamen.Add (DateTime.Now) ;

// Das ist mdglich, auch wenn inhaltlich unsinnig
beliebteVornamen.Add (123.ToString()) ;
beliebteVornamen.Add (DateTime.Now.ToString()) ;

25.5 Objektmengen-Initialisierung mit Index

Bisher schon konnte eine Initialisierung von Mengen (z.B. Arrays) mit Indexer [x] =y erfolgen. In
C# 13.0 ist eine Objektmengen-Initialisierung auch mit Index vom Ende [*x] =y mdglich mit dem
Index-Operator », den es seit C# 8.0 gibt. Das folgende Listing zeigt Beispiele.

Die neue Syntax ist allerdings nur bei der Objektmengen-Initialisierung méglich, nicht bei anderen
Zuweisungen.

Listing: Objektmengen-Initialisierung mit Index von vorne [x] und vom Ende ["x]
class Daten

{

public int[] Zahlen = new int[10];

}

public void ImplicitIndexAccess()
{
CUI.Demo (nameof (ImplicitIndexAccess)) ;

CUI.H2 ("Array-Initialisierung mit Indexer von vorne nach hinten");

var dAlt = new Daten()

{

Zahlen = {
[o1 =
[11 =
[21 =
[31 =

W N R o

234 Obijektmengen (Arrays und Collections)

[41 =
[51 =
[61 =
vy =
8] =
9] =

©®ao U

}
}i

foreach (var z in dAlt.Zahlen)
{
Console.WriteLine (z) ;

}

CUI.H2 ("NEU: Array-Initialisierung mit Indexer von hinten nach vorne");

var dNeu = new Daten()

{

Zahlen = {
[*1] =
[~2] =
[*31 =
[~4] =
[*5] =
[~6] =
[*71 =
[~8] =
[*9] =
[*10] =

© N0 sWNHKHO

© -~

}
};

foreach (var z in dNeu.Zahlen)
{
Console.WriteLine (z) ;

}
// erstelle ein Array von int mit 10 Elementen
int[] arrayl = new int[10] { O, O, O, O, O, O, O, O, O, O };

Console.WriteLine (arrayl.Length) ;

// das geht nicht

//arrayl = {

1/ [*1] = 0,
// [~2] =1,
// [*3]1 = 2,
// [~4] = 3,
// [*5]1 = 4,
// [~6] =5,
// [*7] = 6,
// 8] = 7,
// [~9]1 = 8,
// [~10] = 9

/7 }

Objektmengen (Arrays und Collections) 235

foreach (var item in arrayl)
{
CUI.LI(item) ;

}

}

25.6 Dictionary Initializer

Auch Dictionary-Klassen (Mengenklassen mit Name-Wert-Paaren) kann man in verkirzter
Schreibweise erstellen. Alternative zu Aufrufen von Add() kann man wahlweise verschachtelte
geschweifte Klammern verwenden oder aber innerhalb der geschweiften Klammen die Name-
Wert-Zuweisung per [Name] = Wert erledigen.

Listing: Initialisierung von Dictionary-Objekten

// Initialisierung mit Add()
SortedDictionary<int, string> dicO = new();
dic0.Add (10, "www.dotnet-doktor.de") ;
dic0.Add (21, "www.dotnetframework.de") ;
dic0.Add (42, "www.dotnet8.de") ;

// Initialisierung mit geschweiften Klammern
SortedDictionary<int, string> dicl = new()
{
{ 10, "www.dotnet-doktor.de" },
{ 21, "www.dotnetframework.de" },
{ 42, "www.dotnet8.de" }
Yi

// Initialisierung mit geschweiften und eckigen Klammern (schon vor C# 12.0
moéglich)
SortedDictionary<int, string> dic2 = new()
{
[10] = "www.dotnet-doktor.de",
[21] = "www.dotnetframework.de",
[42] = "www.dotnet8.de"

25.7 Vereinfachte Initialisierung und Zuweisung fiir
Mengen (Collection Expressions) (seit C# 12.0)
Eine sehr schone syntaktische Neuerung seit C# 12.0 ist die vereinfachte Syntax fiir die

Initialisierung von Arrays und Listen. Microsoft nannte dieses Sprachfeature urspriinglich
Collection Literals, jetzt aber Collection Expressions.

Hinweis: Collection Expressions sind bisher (Stand C# 13.0) nicht fiir Dictionary-Objekte
mdoglich. Es gibt aber fiir die Zukunft auch eine Idee, Dictionary Expressions einzufiihren, siche
https://github.com/dotnet/csharplang/blob/main/proposals/dictionary-expressions.md

Mit dieser neuen Syntaxform kann man die bisher sehr heterogene Initialisierungsformen von
Objektmengen stark vereinheitlichen im Stil von JavaScript, also mit den Werten in eckigen
Klammern, getrennt durch Kommata (siche Tabelle).

https://github.com/dotnet/csharplang/blob/main/proposals/dictionary-expressions.md

236 Objektmengen (Arrays und Collections)

Bisherige Initialisierung Nun auch moglich
int[]a=new int[3] { 1,2,3 }; int[]a=[1,2,3];
Span<int> b = stackalloc[] { 1,2, 3 }; Span<int> b =[1,2,3];

ImmutableArray<int> ¢ = ImmutableArray.Create(| ImmutableArray<int>c =[1,2,3];
1,2,3);

List<int>d=new() { 1,2,3 }; List<int>d =[1,2,3];
IList<int> e = new List<int>() { 1,2, 3 }; IList<int>e =1, 2, 3];
IEnumerable<int> f = new List<int>() { 1,2, 3 }; IEnumerable<int> f=[1,2,3];

Es entsteht dabei aber ein Objekt
vom Typ ReadOnlyArray<int>!

Tabelle: Variableninitialisierung mit Collection Expressions seit C# 12.0

Nicht erlaubt ist eine Initialisierung einer Variable die mit var deklariert ist, denn damit ist der
Zieltyp nicht klar:

// nicht erlaubt

var x = [1, 2, 3]; // Error(active) CS9176 There is no target type for the collec
tion expression

Es gibt aber Uberlegungen, dies in Zukunft zu ermdglichen und daraus (in diesem Fall) ein
List<int> oder Int-Array zu machen, sieche "Natural Element Type" im Dokument
https://github.com/dotnet/csharplang/blob/main/proposals/collection-expressions-next.md

Die Syntax mit den eckigen Klammern ist nicht nur bei der Erstinitialisierung, sondern auch bei
spiteren Zuweisungen von Mengen mdoglich:

List<string> sitesl, sites2 = ["www.IT-Visions.de"], sites3;

sitesl = ["www.dotnetframework.de", "www.dotnet8.de", "dotnet-lexikon.de",
"www.dotnet-doktor.de"] ;

sites3 = []; // leere Liste

Mit dem Spread-Operator . . kann man im Rahmen der Initialisierung Mengen in andere Mengen
integrieren. Der Spread-Operator sorgt dafiir, dass keine verschachtelte, sondern eine flache Liste
entsteht!

// Array aus den Elementen der Arrays erstellen mit Spread Operator

string[] allSitesAsArray = [.. sitesl, .. sites2, "dotnettraining.de",
sites3];

// Liste aus den Elementen der Arrays erstellen mit Spread Operator
List<string> allSitesAsList = [.. sitesl, .. sites2, "dotnettraining.de",
sites3];

// Liste noch mal erweitern
allSitesAsList = [.. allSitesAsList, "powershell-schulungen.de"];

// Buflisten: 7 Sites sind nun in der Liste
foreach (var site in allSitesAsList)
{
Console.WriteLine (site) ;
}
Es entsteht eine Menge mit diesen sieben Websites, denn neben den fiinf in den Variables sites1,
sites2 und sites3 enthaltenen Websites wurde noch eine zwei weitere Domainnamen hinzugefiigt.

https://github.com/dotnet/csharplang/blob/main/proposals/collection-expressions-next.md

Objektmengen (Arrays und Collections) 237

www . dotnetframework.de
www .dotnet8.de
dotnet-lexikon.de

www .dotnet-doktor.

www.IT-Visions.de
dotnettraining.de
powershell-schulungen.de

Abbildung: Ausgabe des obigen Listings

Bei Dictionary-Objekten kann man (wie vor C# 12.0) die Initialisierung wahlweise iiber
verschachtelte geschweifte Klammern verwenden oder aber innerhalb der geschweiften Klammen
die Name-Wert-Zuweisung per [Name] = Wert erledigen.

Listing: Initialisierung von Dictionary-Objekten

// Initialisierung mit Add()
SortedDictionary<int, string> dicO = new() ;
dic0.Add (10, "www.dotnet-doktor.de") ;
dic0.Add (21, "www.dotnetframework.de") ;
dic0.Add (42, "www.dotnet8.de");

// Initialisierung mit geschweiften Klammern
SortedDictionary<int, string> dicl = new() {
{ 10, "www.dotnet-doktor.de" },

{ 21, "www.dotnetframework.de" },

{ 42, "www.dotnet8.de" }

}i

// Initialisierung mit geschweiften und eckigen Klammern (schon vor C# 12.0
moéglich)

SortedDictionary<int, string> dic2 = new()

{

[10] = "www.dotnet-doktor.de",

[21] = "www.dotnetframework.de",

[42] = "www.dotnet8.de"

}i

25.8 Typparameter

Der Typparameter kann auch ein komplexer Typ sein, z.B. die Klasse "Vorstandsmitglied".

Listing: Initialisierung einer typisierten Objektmenge in C# mit vier Objekten, davon drei als
Collection Initializer

// Collection Initializer

List<Vorstandsmitglied> Vorstandsmitglieder = new List<Vorstandsmitglied> { HS,
HM, MM };

Vorstandsmitglieder.Add (HP) ;

Der Typparameter kann auch object sein. Generische Objektmengen werden zu untypisierten
Mengen, wenn man als Typparameter object angibt. Dann ist List<T> gleichbedeutend mit
ArrayList.

Listing: Eine untypisierte Liste mit der generischen Klasse List<T>

List<object> liste = new List<object>() ;
liste.Add (123);

238 Objektmengen (Arrays und Collections)

liste.Add("Holger") ;
liste.Add (DateTime.Now) ;
liste.Add (new System.IO.FileInfo(@"c:\temp\log.txt")) ;

25.9 Indexer

Ein Indexer erlaubt einem Softwareentwickler selbst eine Klasse zu schreiben, die sich verhélt wie
ein Dictionary, also eine beliebige Menge an Name-Wert-Paaren speichert. Dabei sind Datentyp
von Namen und Wert beliebig. Man kann fiir den Namen auch Zahlen verwendet, um ein
klassisches Array zu ermdglichen. Indexer sind eine gute Mdoglichkeit, Klassen erweiterbar zu
machen.

Einen Indexer deklariert man wie ein Property, aber mit dem feststehenden Ausdruck this[]:
public Typ this[Typ propName]
Danach folgen Getter und Setter:

public object this[string propName]

get => _additionaldata[propName] ;
set => _additionaldata[propName] = value;

Im folgenden Beispiel wird der Indexer intern auf SortedDictionary<string, object> abgebildet.
Hier sind beliebige andere Speicher denkbar.

Listing: Einsatz von Indexern
using ITVisions;
using System;

using System.Collections.Generic;
using System.Linqg;

using System.Text;

using System.Threading.Tasks;

namespace CSharpSprachsyntax
{

class FlexPerson

{

public int ID { get; set; }

public string Name { get; set; }

public DateTime Geburtstag { get; set; }

private SortedDictionary<string, object> _additionaldata = new SortedDictionary
<string, object>();

public object this[string propName]
{
get => _additionaldata[propName] ;
set => additionaldata[propName] = value;

class IndexerClient

Objektmengen (Arrays und Collections)

}
}
}

public static void Run()
{

CUI.Headline ("Indexer Demo") ;
var p = new FlexPerson ()

{

ID = 123,

Name = "Holger Schwichtenberg",

// Geburtstag bleibt unbelegt :-)
["Ort"] = "Essen",
["Firma"] = "www.IT-Visions.de",
["Raucher"] = false
}i

Console.WriteLine(p.ID + ": " + p.Name) ;

Console.WriteLine ("arbeitet bei Firma " + p["Firma"] + " in " + p["Ort"]);

239

240

Implementierungsvererbung

26 Implementierungsvererbung

Anders als in C++, aber wie in Java und C# / Visual Basic ist die Mehrfachvererbung, also die
gleichzeitige Ableitung einer Klasse von mehreren anderen Klassen, nicht mdglich. Die
Implementierungsvererbung stellt alle Attribute, Methoden und Ereignisse auch fiir die erbende
Klasse bereit. Nicht vererbt werden jedoch die Konstruktoren. Zirkuldres Erben (class A : B ...
class B : A) ist nicht sinnvoll und daher auch nicht erlaubt.

Die Implementierungsvererbung wird angezeigt durch einen Doppelpunkt nach dem
Klassennamen. Der Doppelpunkt dient auch der Anzeige von Schnittstellenvererbung, entspricht
also sowohl dem Visual Basic .NET-Schliisselwort Inherits als auch Implements.

Zum Dritten wird der Doppelpunkt eingesetzt, um in einem Konstruktor einen anderen Konstruktor
aufzurufen. Nach dem Doppelpunkt kann auf this (aktuelle Klasse) und base (Basisklasse) Bezug
genommen werden. Durch diese Syntaxform wird sichergestellt, dass der Aufruf des anderen
Konstruktors immer der erste Befehl in einem Konstruktor ist. Die Anforderung, dass der Aufruf
eines anderen Konstruktors der erste Befehl sein muss, existiert auch in C#; dort jedoch gibt es
dafiir keine spezielle Syntax, sondern die Befehlsreihenfolge wird durch den Compiler gepriift.

Sowohl auf Klassen als auch auf Mitgliederebene kann eine Klasse steuern, wie man von ihr erben
kann. Im Standard kann man von einer Klasse erben, man muss es aber nicht. Auf Klassenebene
bedeutet abstract (Visual Basic .NET: MustInherit), dass eine Klasse nicht direkt verwendet

werden kann, sondern nur der Vererbung dient. sealed (Visual Basic .NET: NotInheritable)
bedeutet, dass ein Erben nicht moglich ist.

Fiir Methoden gelten etwas andere Spielregeln: virtual (Visual Basic .NET: Overridable) legt fest,
dass eine Unterklasse eine Methode iiberschreiben (also reimplementieren) darf (siche Methode
Info() im Listing). abstract (Visual Basic .NET: MustOverride) bedeutet, dass die Unterklasse die
Methode iiberschreiben muss (abstrakte Methode). sealed (Visual Basic .NET:
NotOverridable) legt fest, dass eine Methode versiegelt ist, also nicht {iberschrieben werden kann.

Da dies die Grundeinstellung ist, miissen sealed bzw. NotOverridable nicht explizit genannt
werden.

Listing: Implementierung der Klasse Person in C#
namespace de.WWWings

{

public class Person

{

Attribute (Fields)

string PersonalausweisNr;

string Vorname;

string Nachname;

== Errechnete Attribute (Properties)
string GanzerName

{ return this.Vorname + " " + this.Nachname; }

== Konstruktoren

public Person() { }
public Person(string Nachname, string Vorname)
{

this.Vorname = Vorname;

this.Nachname = Nachname;

/ == Methoden
public virtual void Info()
{ Console.WriteLine ("Person: " + this.GanzerName); }

Implementierungsvererbung 241

}
}

Listing: Implementierung der Klasse Passagier in C#, die von Person erb

#region Using directives

using System;

using System.Collections.Generic;
using System.Text;

using de.WWWings.PassagierSystem;
using de.WWWings;

#endregion

namespace de.WWWings.PassagierSystem
{

public class Passagier : de.WWWings.Person

// Klassenmitglieder
public static de.WWWings.PassagierSystem.Passagiere Passagiere = new
Passagiere() ;

Attribute (Fields)

public de.WWWings.Fluege Fluege = new de.WWWings.Fluege() ;
public readonly long PID;

private de.WWWings.Flug _AktuellerFlug;

// = = Errechnete Attribute (Properties)
public Flug AktuellerFlug

{

get

{ return this. AktuellerFlug; }

}

// == == Konstruktoren

public Passagier(string Name, string Vorname) : base(Name, Vorname)
{
this.PID = Passagier.Passagiere.Add(this);

}

// Methoden

public void Buchen (de.WWWings.Flug flug)

{ this.Fluege.Add (flug.FlugNr, flug); }

public void Buchen(string Flugnummer)

{
if (! (Flug.Fluege.ContainsKey (Flugnummer)))
{

throw new de.NETFly.PassagierSystem.FalscheFlugnummer (this.PID + "/" +
Flugnummer) ;
}
else
{ this.Buchen (de.WWWings.Flug.Fluege [Flugnummer]) ; }

}
public Flug CheckIn(string Flugnummer)

if (!(this.Fluege.ContainsKey (Flugnummer)))
{
throw new de.NETFly.PassagierSystem.PassagierNichtAufFlugGebucht (this.PID +
"/" 4+ Flugnummer) ;
}

else

{ return this.Fluege[Flugnummer] ; }
}
public override void Info()

{

Console.WriteLine ("Passagier: " + this.GanzerName) ;

242 Schnittstellen (Interfaces)

27 Schnittstellen (Interfaces)

Wihrend NET nur die einfache Implementierungsvererbung unterstiitzt, gibt es
Mehrfachvererbung fiir Schnittstellen, d. h., eine Klasse kann optional eine oder mehrere
Schnittstellen implementieren. Eine Schnittstelle kann auch von mehreren anderen Schnittstellen
erben.

271 Deklaration einer Schnittstelle

Eine Schnittstelle wird in C# durch einen interface-Block deklariert und darf sowohl Attribute
(Properties, aber keine Fields!) als auch Methoden enthalten. Konstruktoren sind nicht erlaubt.
Modifizierer hinsichtlich der Sichtbarkeit (public, protected, private, private protected etc.) sind
ebenfalls nicht erlaubt.

Ausnahme: Standardimplementierungen fiir Methoden seit C# 8.0, siche weitere Unterkapitel.

Listing: Definition der Schnittstelle IPilot in C#

interface IPilot

{

== Attribute
DateTime FlugscheinSeit { get; set; }
string FlugscheinTyp { get; set; }
long Flugstunden { get; set; }
[/ == = Methoden
void FlugZuweisen (de.WWWings.Flug Flug) ;
}
}

Listing: Definition der Schnittstelle [Person in C#

interface IPerson

{

== Attribute
string Vorname { get; set; }
string Name { get; set; }
long ID { get; set; }
// = Methoden
void Print();

}

}

27.2 Verwendung von Schnittstellen

Eine Klasse zeigt durch einen Doppelpunkt hinter dem Namen an, dass sie eine Schnittstelle imple-
mentieren will.

public class Pilot : IPilot

Waihrend immer nur eine Implementierungsvererbung méglich ist, konnen in einer Klasse mehrere
Schnittstellen realisiert werden:

public class Pilot : IPilot, IPerson

Hinweis: Strukturen, die immer auf dem Stack leben (Schliisselwort ref struct), konnten vor C#
13.0 keine Schnittstellen realisieren.

Eine Klasse kann gleichzeitig ~ eine Implementierungsvererbung und eine
Schnittstellenimplementierung mit dem Doppelpunkt angeben.

public class Pilot : Mitarbeiter, IPilot

Schnittstellen (Interfaces) 243

Eine Klasse kann gleichzeitig eine Implementierungsvererbung und mehrere
Schnittstellenimplementierung mit dem Doppelpunkt angeben.

public class Pilot : Mitarbeiter, IPilot, IPerson

Hinweis: Der Compiler unterscheidet dabei automatisch, ob der Bezeichner nach dem
Doppelpunkt eine Klasse oder eine Schnittstelle ist.

27.3 Standardimplementierungen in Schnittstellen

Seit C# 8.0 ist in Schnittstellen erlaubt, was es in der Programmiersprache Java auch schon seit
Version 8 (erschienen im Jahr 2014) gibt: Schnittstellen diirfen nun auch Implementierungen
enthalten (Default Interface Members). Diese Implementierungen werden automatisch an alle
Klassen weitergegeben, die die Schnittstelle verwenden.

Hinweis: Standardimplementierungen in Schnittstellen funktionieren nur in NET Core seit
Version 3.0. Sie werden nicht unterstiitzt im klassischen .NET Framework. Es kommt zum
Kompilierungsfehler: "CS8701 Target runtime doesn't support default interface
implementation."

Praxistipp: Das Einsatzgebiet dieser Sprachfunktion ist die Weiterentwicklung von
Schnittstellen (Interface Evolution) fiir bereits bestehende Klassen, ohne diese Klassen édndern
zu miissen. In der Vergangenheit hat man Erweiterungsmethoden fiir diesen Zweck eingesetzt,
vgl. die Erweiterungsmethoden wie Where(), GroupBy() und Select() fir die Schnittstelle
IEnumerable<T>, die in .NET Framework 3.5 eingefiihrt wurden.

27.3.1 Realisierung einer Standardimplementierung in einer
Schnittstelle

Die Standardimplementierungen in Schnittstellen erfolgen syntaktisch wie die Implementierungen
von Methoden in Klassen auch, also mit Sichtbarkeitsmodifizierer (private, protected, internal,
public, virtual, abstract, sealed, static, extern und partial) und einem Codeblock in geschweiften
Klammern (Block Body) oder einem Lambda-Ausdruck (Expression Body). Im Standard sind die
Implementierung virtual, daher auch der alternative Name fiir Standardimplementierungen in
Interfaces: Virtual Extension Methods.

Neben Instanzmethoden kénnen Schnittstellen auch statische Methoden sowie statische Properties
und Fields enthalten.

27.3.2 Einfaches Beispiel

Gegeben ist folgende Schnittstelle ILogger.

Listing: Erste Version der Schnittstelle

interface ILogger
{
string Prefix { get; set; }
long Count { get; set; }
// Methode ohne Implementierung
void Log(LogLevel level, string message);
}
Dazu passend die Implementierung dieser Schnittstelle in der Klasse ConsoleLogger.

244 Schnittstellen (Interfaces)

Listing: Klasse, die Schnittstelle realisiert
class ConsolelLogger : ILogger

{

public string Prefix { get; set; } = "LOG:";
public long Count { get; set; } = 0;

public void Log(LogLevel level, string message)
{

Count++;

if (level == LogLevel.Info) Console.ForegroundColor = ConsoleColor.White;

if (level == LogLevel.Warning) Console.ForegroundColor = ConsoleColor.Yellow;
if (level == LogLevel.Error) Console.ForegroundColor = ConsoleColor.Red;

Console.WriteLine ($"{Prefix} {Count:000} {level}: {message}");
Console.ResetColor() ;

}

}

Diese Klasse ConsoleLogger kann man wie folgt nutzen:

Listing: Erste Version des Nutzers der Klasse
public static void Run()
{
ILogger 1 = new ConsoleLogger() ;
1.Log(LogLevel.Info, "C# 8.0 lauft!");
}
Nun konnte man spiter auf die Idee kommen, dass auch die direkte Ubergabe eines Exception-
Objekts an die Logger-Klasse eine gute Idee wiére, um im Fehlerfall etwas Programmcode
einzusparen. Mit den neuen Standardimplementierungen kann man dies nachtréiglich realisieren,
indem man die Schnittstelle ILogger erweitert.

Listing: Zweite Version der Schnittstelle
interface ILogger

{

string Prefix { get; set; }

long Count { get; set; }

// Methode ohne Implementierung

void Log(LoglLevel level, string message);

// Methode mit Implementierung mit Block Body
public void Log(Exception ex)

{

Log (LogLevel .Error, ex.Message);

}

// Methode mit Implementierung mit Expression Body

public void LogDetails (Exception ex)
=> Log(LogLevel .Error, ex.ToString());

}
Die Klasse ConsoleLogger muss man nicht verdndern. Dennoch stehen die neuen
Komfortfunktionen den Nutzern der Klasse nun zur Verfiigung.

Listing: Zweite Version des Nutzers der Klasse
public static void Run()

Schnittstellen (Interfaces) 245

{

ILogger 1 = new ConsolelLogger () ;
1.Log(LogLevel.Info, "C# 8.0 lauft!");

var ex = new ApplicationException("Ein Test-Fehler!");
1.Log(ex) ;
1.LogDetails (ex) ;
}
Zu beachten ist, dass die Methoden Log(Exception) und LogDetails(Exception) auf der Variablen
I nur zugénglich sind, weil die Variable auf ILogger und nicht auf ConsoleLogger typisiert wurde.

27.3.3 Uberschreiben der Implementierung

Eine Klasse, die eine Schnittstelle mit Implementierung realisiert, kann jede der implementierten
Methoden auch wieder anders realisieren, also tiberschreiben. In der folgenden Variante werden
Exception-Objekte nicht als Error, sondern als Warnung ausgegeben.

Listing: Uberschreiben der Standardimplementierung einer Schnittstelle in der Klasse

class ConsoleLogger : ILogger
{
public ConsoleLogger ()
{
ILogger.Prefix = "LOG: ";
}

public void Log(LogLevel level, string message)

{

// verwendet statische Properties und Methoden der Schnittstelle

if (ILogger.Count == 0) Console.WriteLine("Protokoll beginnt: " +
DateTime.Now) ;

ILogger.Count++;

if (level == LogLevel.Info) Console.ForegroundColor = ConsoleColor.White;
if (level == LogLevel.Warning) Console.ForegroundColor = ConsoleColor.Yellow;
if (level == LogLevel.Error) Console.ForegroundColor = ConsoleColor.Red;

Console.WriteLine (ILogger.GetLogText (level, message)) ;
Console.ResetColor () ;

// Klasse kann Implementierung iilberschreiben!
public void Log (Exception ex)
{
Log (LogLevel.Warning, ex.Message);
}
}

27.3.4 Komplexeres Beispiel

In dem komplexeren Beispiel wird wieder eine ILogger-Schnittstelle geschrieben, dieses Mal aber
auch mit statischen Properties und statischen Methoden, die Funktionen fiir die Implementierung
anbieten. Dies ist kein Beispiel fiir Interface Evolution, denn die Klasse ConsoleLogger greift in

246 Schnittstellen (Interfaces)

der Log()-Implementierung bewusst auf Implementierungen (ILogger.Count und
ILogger.GetLogText()) der Basisschnittstelle zuriick.

Hinweise: Die Klasse kann nur auf Implementierungen der Basisschnittstelle zuriickgreifen,
wenn diese als static deklariert sind. Bei der Verwendung muss der Name der Schnittstelle
(ILogger) vorangestellt werden, also ILogger.Count. Diese Verzahnung zwischen Klasse und
Schnittstelle ist moglich in C# 8.0, man sollte aber iiberdenken, ob dies nicht besser ein
Anwendungsfall fiir abstrakte Klassen ist, die es seit C# 1.0 gibt.

Listing: Komplexeres Beispiel fiir Standardimplementierungen
using ITVisions;
using System;

/// <summary>

/// Standardimplementierungen fiir Methoden in Schnittstellen, komplexeres
Beispiel

/// </summary>

class InterfacesDemo

{

public static void Run()
{

CUI.MainHeadline ("Standardimplementierungen fiir Methoden in Schnittstellen
(komplexeres Beispiel)");

ILogger 1 = new ConsolelLogger () ;
1.Log(LogLevel.Info, "C# 8.0 lauft!");

var ex = new ApplicationException("Ein Test-Fehler!");
1.Log(ex) ;
1.LogDetails (ex) ;
}
}

enum LogLevel { Info, Warning, Error }

interface ILogger

{

// Methode ohne Implementierung

void Log(LogLevel level, string message);

// Methode mit Implementierung mit Block Body
public void Log(Exception ex)

{

Log (LogLevel .Error, ex.Message);

}

// Methode mit Implementierung mit Expression Body
public void LogDetails (Exception ex)
=> Log(LogLevel .Error, ex.ToString());

// statische Methode mit Implementierung
protected static string GetLogText (LogLevel level, string message)

{

Schnittstellen (Interfaces) 247

return $"{Prefix}{ILogger.Count:000} {level}: {message}";
}

// Properties mit Implementierung

public static string Prefix { get; set; }
public static int Count { get; set; } = 0;
}

class Consolelogger : ILogger
{
public ConsoleLogger ()
{
ILogger.Prefix = "LOG: ";
}

public void Log(LogLevel level, string message)
{
// verwendet statische Properties und Methoden der Schnittstelle

if (ILogger.Count == 0) Console.WriteLine ("Protokoll beginnt: " +
DateTime.Now) ;

ILogger.Count++;

if (level == LogLevel.Info) Console.ForegroundColor = ConsoleColor.White;
if (level == LogLevel.Warning) Console.ForegroundColor = ConsoleColor.Yellow;
if (level == LogLevel.Error) Console.ForegroundColor = ConsoleColor.Red;

Console.WriteLine (ILogger.GetLogText (level, message)) ;
Console.ResetColor () ;
}
}
}

27.4 Statische abstrakte Properties und Methoden in
Schnittstellen

Seit C# 11.0 sind in Schnittstellen Deklarationen von Properties und Methoden mit static abstract
und static virtual erlaubt (in C# 10.0 war dies schon experimentell moglich).

Beispiel: Es gibt zwei Schnittstellen. IObjectWithID gibt ein statisches Property vom Typ Integer
mit Namen ID vor. Die darauf aufbauende Schnittstelle IAbc gibt drei weitere Mitglieder vor:

= Ein formale abstrakte Instanzmethode GetA()

= Eine statische Methode GetB() mit Implementierung
= Eine statische abstrakte Methode GetC()

interface IObjectWithID

{

static abstract int ID { get; set; } // NEU
}

interface IAbc : IObjectWithID
{
string GetA();

248 Schnittstellen (Interfaces)

static string GetB() => "B";

static abstract string GetC(); // NEU
}
Dazu zeigt folgende Implementierung der Klasse Abc auf Basis von Schnittstelle IAbc, dass man
die als static abstract deklarierten Mitglieder nun als statische Mitglieder implementieren muss:

class Abc : IAbc
{
Vorgaben der Interfaces
public string GetA() => "A"; // muss nicht-
statische Implementierung fiir GetA() liefern
public static string GetC() => "C"; // muss statische Implementierung fiir GetC()
liefern
public static int ID { get; set; } // muss statische Implementierung fiir Propery
ID liefern

zusdtzliche Properties

public static string Textl { get; set; } = "ABC"; // zusé&tzliches statisches Mit
glied, nicht aus Interface
public string Text2 { get; set; } = "ABC"; // zusidtzliches Instanzmitglied, nich

t aus Interface

}
Dann sind diese Verwendungen moglich:

class AbcClient

{

public static void Run()

{
var obj = new Abc();
Console.WriteLine (obj.GetA()); // Instanzmitglied
Console.WriteLine (IAbc.GetB()); // statisches Mitglied direkt im Interface
Console.WriteLine (Abc.ID); // statisches Mitglied - Nutzung via Klassenname
Console.WriteLine (Abc.GetC()); // statisches Mitglied - Nutzung via Klassenname
Console.WriteLine (Abc.Textl); // statisches Mitglied
Console.WriteLine (obj.Text2); // Instanzmitglied

Randbemerkung: An diesem Sprachfeature hat Microsoft laut Aussage von Microsoft Program
Manager Mads Torgersen mehr als 10 Jahre gearbeitet. Erst die Moglichkeit, die Runtime von
NET zu verdndern im modernen .NET hat die Umsetzung dann zur Produktreife gebracht
(Quelle: NET Conf 2022, 9.11.2022).

Verdnderungen der Runtime wurden im klassischen .NET Framework wegen moglicher
Breaking Changes nicht oder nur in kleinen Dosen umgesetzt.

Dieses Sprachfeatures funktioniert nicht in <eren .NET-Versionen. Es kommt die
Fehlermeldung "Target runtime doesn't support static abstract members in interfaces.".

Namensrgume (Namespaces) 249

28 Namensraume (Namespaces)

Namensrdume dienen der hierarchischen Benennung von Typen (Klassen, Strukturen und
Enumerationen).

Typen werden in NET nicht mehr wie in COM durch GUIDs, sondern durch Zeichenketten
eindeutig benannt. Diese Zeichenketten sind hierarchische Namen, die aus einem Namensraum
(engl. Namespace) und einem Typnamen bestehen. Ein Namensraum kann aus mehreren
Hierarchieebenen bestehen. Zur Bildung eines voll qualifizierten .NET-Typnamens werden sowohl
Namensraum und Typname als auch die Ebenen innerhalb eines Namensraums durch Punkte
getrennt. Uber alle Namensriume hinweg kann der Typname mehrfach vorkommen, vergleichbar
mit gleichnamigen Dateien in verschiedenen Ordnern in einem Dateisystem.

Namensraum

(N
de.ITVisions.NetCrashkurs.Autor

Typname
Abbildung: Beispiel fiir einen voll qualifizierten .NET-Typnamen

28.1 Softwarekomponenten versus Namensraume

Eine einzelne .NET-Softwarekomponente kann beliebig viele Namensrdume umfassen und ein
Namensraum kann sich iiber beliebig viele Softwarekomponenten erstrecken. Die Auswahl der
Typen, die zu einem Namensraum gehdoren, sollte nach logischen oder funktionellen Prinzipien
erfolgen. Im Gegensatz dazu sollte die Zusammenfassung von Typen zu einer
Softwarekomponente geméB den Bediirfnissen zur Verbreitung der Klassen (Deployment)
erfolgen.

250 Namensrgume (Namespaces)

mscorlib.dll system.dll system.web.dll

Namensraum ,System*

Namensraum
,System.Reflection”

Namensraum ,System.lO*

Namensraum ,System.Web*

Namensraum
,System.Runtime*

Namensraum ,System.Threading“

© Holger Schwichtenberg 2005
4 I g 9

Abbildung: Namensrdume versus Softwarekomponenten am Beispiel ausgewdhlter Teile der
.NET-Klassenbibliothek

In NET konnen beliebig viele Namensraumhierarchien parallel existieren. Es gibt keinen
gemeinsamen Wurzelnamensraum und keine zentrale Registrierung der Namensrdume. Die .NET-
Klassenbibliothek besitzt zwei Wurzelnamensrdume, System und Microsoft.

Da kein globales Verzeichnis aller Namensrdume auf einem System existiert, gibt es nicht wie in
COM ceine einfache Moglichkeit, alle auf einem System vorhandenen .NET-Klassen aufzulisten.
Moglich wire aber die Suche nach .dll- bzw. .exe-Dateien im Dateisystem und eine Einzelpriifung
dieser Dateien daraufhin, ob sie .NET-Typen enthalten.

28.2 Vergabe der Namensraumbezeichner

Da keine zentrale Stelle existiert, die die Namensraumbezeichner vergibt, besteht natiirlich
grundsitzlich die Gefahr, dass zwei Softwareentwickler gleiche Typnamen festlegen. Im CLI-
Standard (CLI = Common Language Infrastructure) ist daher vorgesehen, dass der Namensraum
mit dem Firmennamen beginnt. Noch eindeutiger wird der Name jedoch, wenn man anstelle des
Firmennamens den Internet-Doménennamen verwendet, z.B. de.ITVisions.NetCrashkurs. Autor
statt I'TVisions.NetCrashkurs.Autor.

Diese Konvention schiitzt natiirlich nicht vor mutwilligen Doppelbenennungen. Fir .NET-
Anwendungen und -Softwarekomponenten ist deshalb vorgesehen, dass diese digital signiert
werden kdnnen.

Namensrgume (Namespaces) 251

28.3 Vergabe der Typnamen

Auch fiir die Namensgebung von Typen in der NET-Klassenbibliothek gibt es Regeln, die im CLI-
Standard manifestiert sind. Die Namen fiir Klassen, Schnittstellen und Attribute sollen Substantive
sein. Die Namen fiir Methoden und Ereignisse sollen Verben sein.

Fir die GroB-/Kleinschreibung gilt grundsétzlich PascalCasing, d. h., ein Bezeichner beginnt
grundsétzlich mit einem Grofbuchstaben und jedes weitere Wort innerhalb des Bezeichners
beginnt ebenfalls wieder mit einem GroBbuchstaben. Ausnahmen gibt es lediglich fiir
Abkiirzungen, die nur aus zwei Buchstaben bestehen. Diese diirfen komplett in GroSbuchstaben
geschrieben werden (z.B. UI und IO). Alle anderen Abkiirzungen werden entgegen ihrer normalen
Schreibweise in Grof-/Kleinschreibung geschrieben (z.B. Xml, Xsd und W3c). Attribute, die
geschiitzt (Schliisselwort Protected) sind, und die Namen von Parametern sollen in camelCasing
(Bezeichner beginnt mit einem Kleinbuchstaben, aber jedes weitere Wort innerhalb des
Bezeichners beginnt mit einem Grofbuchstaben) geschrieben werden.

Einige Programmiersprachen (wie beispielsweise C#) erlauben, dass sich zwei Bezeichner nur
hinsichtlich der GroB- und Kleinschreibung unterscheiden konnen. Es wire in C# also giiltig zu
definieren:
public class Autor
{

public string Name;

public string name;
}
Jedoch ist diese Vorgehensweise nicht CTS-konform, weil eine andere, nicht zwischen Grof3- und
Kleinschreibung unterscheidende (case-sensitive) Sprache diese beiden Attribute nicht
unterscheiden konnte. Ein Client in Visual Basic wiirde nur das erste Mitglied Name sehen; das
zweite name bliebe verdeckt. CTS-konform ist jedoch folgende Deklaration, weil in diesem Fall
das zweite Attribut nicht nach auflen angeboten wird:
public class Autor
{

public string Name;

private string name;

}

28.4 Namensraume deklarieren

Die Deklaration eines Namensraums dient dazu, einen Typ einem Namensraum zuzuordnen. Jeder
Typ gehort nur zu genau einem Namensraum.

Die Festlegung des Namensraums fiir eine Klasse erfolgt in C# seit Version 1.0 durch den Code-
Block namespace Name { ... }. In einem Namensraum konnen beliebig viele Typen enthalten sein.
Ein Namensraum kann sich iiber mehrere Dateien und auch mehrere Assemblies erstrecken. Der
Namensraum muss aber zu Beginn jeder Datei in jedem Projekt erneut deklariert werden.
namespace de.WWWings.PassagierSystem

{

public class Passagier : de.WWWings.Person

)

public class Buchgung

{1
}
Seit C# 10.0 gibt es alternativ zu diesem Block-Stil auch Namensraumdeklaration auf Dateiebene
(engl. File-Scoped Namespace). Dabei schreibt man nur noch namespace Name; ohne geschweifte

252 Namensréume (Namespaces)

Klammern. Auch hier muss der Namensraum aber zu Beginn jeder Datei in jedem Projekt erneut
deklariert werden. Die Namensraumdeklaration auf Dateiebene muss vor allen Typdeklarationen
erscheinen.

namespace de.WWWings.PassagierSystem;

public class Passagier : de.WWWings.Person

{

public class Buchgung

{

Diese Namensraumdeklaration gilt dann fiir die gesamte Datei. Geschweifte Klammern und
Einriickung sind nicht mehr notwendig.

Hinweis: Diese in C# 10.0 eingefiihrte Vereinfachung basiert auf dieser Erkenntnis des C#-
Entwicklungsteams: "Measuring an even broader set of millions of C# files on GitHub shows
literally 99.99% of files have just one namespace in them."
[github.com/dotnet/csharplang/blob/main/meetings/2021/LDM-2021-01-13.md#file-scoped-
namespaces]

Options. 7 X
Search Options (Ctri~) S Yeur .cditorconfig file might averride the local settings configured on this page which anly apply ta your machine. To configure
these settings to travel with your solution use EditorConfig files, More infa. Learm more
General ~
Advanced Generate .editorconfig file from settings
File Extension esanmn - .
b All languages escription reference everity
e Code block preferences
b g Prefer braces Yes (© Refactoring Only ~
acx
General EEa <] O retactoringony -
Scroll Bars ook sconed
Tabs Prefer auto properties i | O reractormgony
Advanced
4 Code style Prefer simple ‘using statement Yes ~ | @ suggestion v
General
b Formatting Prefer System HashCade' in GetHashCode' Yes ~ || @ suggestion v
Naming
Intelisense 7/ Prefer:
b @2 namespace A.B.C;
b Css
E E""‘"’"E public class Program
- [
b HaL 1
b HTML
b JavaScript/TypeSeript v L
< >

Abbildung: Einstellung der priferierten Verwendung von Namensraumdeklaration auf
Dateiebene (File Scoped) oder mit geschweiften Klammern (Block Style) in den Einstellungen
von Visual Studio

Hinweis: Anders als bei Visual Basic-Projekten kann man in Visual Studio fiir C#-Projekte in
den Projekteigenschaften keinen Wurzelnamensraum definieren, der allen
Namensraumdeklarationen automatisch vorangestellt wird. Der im Tag <RootNamespace> in
einer .csproj-Datei wird automatisch bei neu angelegten Klassen als expliziter Namensraum in
der Datei eingetragen. Nur in Blazor-Projekten bei Razor Component wird der
<RootNamespace> automatisch vorangestellt.

Namensrgume (Namespaces) 253

28.5 Import von Namensraumen

Im Normalfall miissen Klassen in .NET immer mit ihrem vollen Namensraum genannt werden.
Das optionale Importieren von Namensrdumen hat das Ziel, einen Klassennamen mit verkiirztem
oder ganz ohne Namensraum zu verwenden.

Das Importieren von Namensrdumen erfolgt in C# mit dem Schliisselwort using. Dabei ist es
moglich, einen Alias-Namen fiir einen Namensraum zu vergeben.

using System.Collections.Generic;
using GenCol = System.Collections.Generic;

Import-Anweisung Typnutzung

Ohne System.Collections.Generic.SortedList<string
, Flug>

using System.Collections.Generic; SortedList<string, Flug>

using GenCol = System.Collections.Generic; = GenCol.SortedList<string, Flug>

Tabelle: Beispiele fiir den Einsatz von Import

Hinweis: Das Schliisselwort using hat in C# eine Doppelbedeutung. Es wird auch fiir Using-
Blocke beim IDisposable-Muster verwendet (siche Kapitel "IDisposable / Using-Blocke").

Seit C# 10.0 gibt es globale Namensraumimporte {iber globale Using-Direktiven (engl. Global
Using Directives). Der Zusatz static (vgl. statische Methode als globale Funktionen seit C# 6.0) ist
auch bei global using moglich. Ebenso sind Aliase erlaubt.

global using System;

global using static System.Console;

global using IS = System.Runtime.InteropServices;

Eine solche globale Using-Direktive gilt fiir alle Dateien in einem Projekt. Somit entféllt es, immer
wieder zu Beginn jeder Datei den Namensraum zu importieren.

Hinweis: Ein globaler Namensraumimport darf nicht innerhalb eines mit Block-Syntax
deklarierten Namenraums erfolgen (Regel CS8914: "A global using directive cannot be used in
a namespace declaration.")

Ein Entwickler kann die globalen Namensraumimporte auch in eine separate Datei auslagern und
die Importe damit ganz aus dem aktiven Sichtfeld verbannen. Alternativ dazu kann man
Namensrdaume auch in der Projektdatei .csproj global importieren mit dem Tag <Using> in einer
<ItemGroup>, optional auch mit dem Zusatz Static="True" fiir einen statischen Import (siche
Kapitel "Statische Methode als globale Funktionen"):

<Project Sdk="Microsoft.NET.Sdk">

<ItemGroup>

<Using Include="System.Runtime.InteropServices" />
<Using Include="System.Console" Static="True"/>
<Using Include="BO" />

<Using Include="BL" />

</ItemGroup>

</Project>

254 Namensréume (Namespaces)

Auf C# 10.0 (oder hoher) basierende Projekte haben zudem eine Reihe von Namensraumen, die
automatisch importiert werden und nicht mehr explizit importiert werden miissen ("Implizite
Namensrdume"). Welche dies sind, zeigt die folgende Abbildung abhéngig vom aktiven .NET

SDK.

© Microsoft.NET.SDK:
= System
= System.Collections.Generic
= System|O
= System.Ling
= System.NetHttp
= System.Threading
= System.Threading. Tasks
© Microsoft.NET.SDK.Web;:
= Everything included by Microsoft. NET.SDK, plus:
» System.NetHttp.Json
= Microsoft.AspNetCore Builder
= Microsoft.AspNetCore.Hosting
= Microsoft.AspNetCore.Http
= Microsoft.AspNetCore.Routing
= Microsoft.Extensions.Configuration
= Microsoft.Extensions.Dependencylnjection
= Microsoft.Extensions.Hosting
= Microsoft.Extensions.Logging
© Microsoft.NET.SDK.Worker
= Everything included by Microsoft. NET.SDK, plus:
» Microsoft.Extensions.Configuration
= Microsoft.Extensions.Dependencylnjection
= Microsoft.Extensions.Hosting

= Microsoft.Extensions.Logging

Abbildung: Liste der automatischen Namensaum-Importe (Quelle: learn.microsoft.com/en-
us/dotnet/core/compatibility/sdk/6.0/implicit-namespaces)

ACHTUNG: Implizite Namensrdaume konnen Probleme verursachen, wenn die Klassennamen
in mehreren Namensrdumen vorkommen. Wenn Sie zum Beispiel die Klasse
Microsoft.Build.Utilities. Task oder MiracleList.BO.Task verwenden und dafiir einen expliziten
Namensraumimport einbindenﬂ, wird der C#-Compiler seit C# 10.0 meckern: "'Task' is an
ambiguous reference". In diesem Fall miissen Sie entweder den Klassennamen vollstdndig mit
Namensraum angeben oder die impliziten Namensrdume deaktivieren.

Waihrend vor NET 6 RC1 die impliziten Namensraume im Standard automatisch aktiv waren
und mit <DisablelmplicitNamespacelmports>true</DisablelmplicitNamespacelmports> erst
deaktiviert werden mussten, was auch alle bestehenden Projekte betraf, hat sich Microsoft nun
eines Besseren besonnen: Die impliziten Namensrdume sind nur noch aktiv, wenn in der
Projektdatei in einer <PropertyGroup> das Tag <ImplicitUsings>enable</ImplicitUsings>
vorkommt. Dies ist nur bei mit .NET 6 in Visual Studio 2022 neu angelegten Projekten der Fall;
altere Projekte, die auf NET6 hochgestuft werden, erhalten das Tag nicht.

In neuen Projekten kann man die impliziten Namensrdume durch Loschen des Tags bzw. mit

<ImplicitUsings>disable</ImplicitUsings> deaktivieren. Alternativ kénnen Sie auch einzelne
implizite Namensrdume deaktivieren:

<ItemGroup>

[Kommentiert [DF1]: Satzsinn bzw. Formulierung ok?

Namensréume (Namespaces) 255

<Using Remove="System.Threading.Tasks" />
</ItemGroup>

MNETGConsoleMin.csproj £ X

1 E<Project Sdk="Microsoft.NET.Sdk">

2

3 £ <PropertyGroup>

4 <OutputType>Exe</OutputType>

H <TargetFramework>neté.0</TargetFramework>

6 <Nullable>enable</Nullable>

7 <!——<DisableImplicitNamespaceImports>true</DisableImplicitNamespaceImports>——>
8 </PropertyGroup>

]

10 H <ItemGroup>

11 <Import Remove="System.Threading.Task" />

12 <Import Include="System.Runtime.InteropServices" />
13 | </TtemGroup>

14

15 | </Project>

Abbildung: Implizite Namensrdume in der .csproj-Datei

28.6 Verweis auf Wurzelnamensraume

Waurzelnamensrdume sollten eindeutig sein. Deshalb ist es empfehlenswert, dem Namensraum die
Internet-Domain voranzustellen (zB. de.WWWings.PassagierSystem). Dabei sollte man
Namensdopplungen auch fiir untergeordnete Namensrdume vermeiden, weil es sonst unter
bestimmten Bedingungen zweideutige Interpretationen einer Anweisung geben konnte.
Insbesondere sollte man die Begriffe System und Microsoft vermeiden, weil damit die FCL-
Namensrdaume verdeckt werden.

Beispiel

Wenn man »versehentlich« einen Namensraum wie de. WWWings.System definiert hat, kann man
aus diesem Namensraum heraus nicht mehr auf den FCL-Namensraum System zugreifen (siche
Abbildung),

namespace €520.GlobalDemo. System. 10
{

class FileInfo

public string Name;

3}

class FileInfoTest

1{

public static void Run()
1

.Fu]rII\'J £ = new t .FileInfo();

FoName = @"c:\t&lma,)i 520 GlobalDemo SystemIQ Filel

global: :System.I0.FileInfo f2 = new global::System.I0.FileInfo(@"c:\temp\daten.txt");
b

¥

b

Abbildung: Der FCL-Namensraum System ist durch den Namensraum
CS20.GlobalDemo.System verdeckt

Das Schliisselwort global:: iibernimmt seit C# 2.0 die gleiche Funktion wie global ab Visual Basic
2005: Mit diesem dem Namensraum vorangestellten Schliisselwort adressiert man einen
Wurzelnamensraum, wenn dieser durch einen untergeordneten Namensraum verdeckt ist.

256 Namensréume (Namespaces)

using System;

using System.Collections.Generic;
using System.Text;

using System.IO;

namespace CS20.GlobalDemo.System.IO
{
class FileInfo
{
public string Name;
}
class FileInfoTest
{
public static void Run()
{
System.IO.FileInfo £ = new System.IO.FileInfo();
£.Name = @"c:\test.txt";

global: :System.IO.FileInfo £2 = new
global: :System.IO.FileInfo(@"c:\temp\daten.txt");

}

Anonyme Typen 257

29 Anonyme Typen

Neu seit C# 3.0 und Visual Basic .NET 9.0 ist, dass man Objekte ohne eine explizite
Klassendefinition erzeugen kann. Solche Klassen erhalten automatisch einen Klassennamen von
dem Compiler. Dieser Name ist recht kompliziert und nicht zur Verwendung durch den Entwickler
gedacht.

Ein anonymer Typ entsteht in C# durch Verwendung von new ohne Klassennamen und in Visual
Basic .NET durch New With.

Listing: Anonyme Typen in C# 3.0
// Anonyme Typen
var Fluggesellschaftl = new { Name = "World Wide Wings",

Gruendungsdatum = new DateTime (2005, 01, 01),
Vorstand = PersonenListe };
Console.WriteLine (Fluggesellschaftl.GetType () . FullName) ;

// 2., gleich aufgebauter anonymer Typ

var Flugzeugbauer = new { Name = "Never Come Back Airline",
Gruendungsdatum = new DateTime (1972, 08, 01),
Vorstand = new List<Person>() };

Console.WriteLine (Flugzeugbauer.GetType () . FullName) ;

// sind die Typen gleich?
var TypenGleich = Flugzeugbauer.GetType() == Fluggesellschaftl.GetType()
Console.WriteLine ("Typen gleich? " + TypenGleich);

Durch die obigen Listings entsteht ein anonymer Typ mit diesem Namen:

<>f AnonymousTypeO 3[[System.String, mscorlib, Version=2.0.0.0, Culture=neutral
, PublicKeyToken=b77a5c561934e089], [System.DateTime, mscorlib, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089], [System.Collections.Generic.Li
st 1[[NET3.SpracheCSharp.Demo_Sprachfeatures.Vorstandsmitglied, WWWings.Verschie
deneDemos, Version=0.5.0.0, Culture=neutral, PublicKeyToken=null]], mscorlib, Ve
rsion=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089]]

Hinweis: Bei anonymen Typen ist Folgendes zu beachten:
Die Initialisierung kann mit statischen Werten oder Variablen erfolgen.

Zwei auf die 0. g. Weise instanziierte Objekte gehdren zur gleichen Klasse, wenn sie die gleiche
Anzahl und Reihenfolge von Attributen bei der Instanziierung besitzen.

Auf diese Weise instanziierte Objekte konnen nicht mehr verdndert werden, weil alle Property-
Attribute nur fiir den Lesezugriff erzeugt werden.

Auf diese Weise instanziierte Objekte sind nicht serialisierbar, weil es keinen parameterlosen
Standardkonstruktor gibt.

Der Name eines anonymen Typen wird bei jedem Kompilierungsvorgang neu vergeben. Man
darf sich daher nicht auf das Ergebnis von GetType() verlassen.

Man kann komplexe anonyme Typen durch Verschachtelung erzeugen.

Man kann auch ein Array aus anonymen Typen bilden und — mit einem hier aus Platzgriinden
nicht gezeigten Trick — auch anonyme Typen in andere Objektmengen aufnehmen.

Anonyme Typen sind nur fiir lokale Variablen erlaubt. Sie sind nicht einsetzbar als
Klassenmitglieder, Parameter von Methoden und Riickgabewerte von Methoden.

Anonyme Typen kann man seit C# 10.0 mit With-Ausdriicken klonen (siche dazu Kapitel
""Strukturen/With-Ausdriicke").

258 Operatoriberladung

30 Operatoruberladung

Operatoriiberladung bedeutet, einem der Standardoperatoren wie +, -, * und = im Zusammenhang
mit selbstdefinierten Klassen eine neue Bedeutung zu geben, z.B. ein Flug-Objekt und ein
Passagier-Objekt zu addieren, um daraus ein neues Objekt des Typs Buchung zu gewinnen.

Wichtig: Zum Thema Operatoriiberladung gibt es geteilte Meinungen. Von einigen
Entwicklern wird sie geliebt wegen der Pragnanz. Von anderen Entwicklern wird sie gehasst
wegen der Mehrfachbedeutung der Operatoren, die die Lesbarkeit des Programmcodes
erschwert. Festzuhalten ist auf jeden Fall, dass man Operatoriiberladung nicht zwingend
braucht; alles was Operatoriiberladung kann, kann man auch durch eine Methode mit einem
sprechenden Namen ausdriicken.

C# bietet seit seiner ersten Version eine priagnante Syntax fiir die Definition einer
Operatoriiberladung.

Listing: Beispiel fiir Operatoriiberladung in C#

namespace de.WWWings

{

public partial class Flug
{

/// <summary>

/// Operatoriiberladung fiir die Buchung eines Flugs durch Addition eines Flug- u
nd eines Passagier-Objekts.

/// </summary>

/// <param name="flug">Flugobjekt</param>

/// <param name="pass">Passagierobjekt</param>

/// <returns>Flugobjekt mit hinzugefiigten Passagier</returns>

public static Flug operator +(Flug flug, PassagierSystem.Passagier pass)

{

pass.Buchen (flug) ;

return flug;

}

}
}
Seit C# 11.0 besteht auch die Moglichkeit, solch eine Operatoriiberladung in einer Schnittstelle zu
definieren, um eine Vorgabe bzw. Gemeinsamkeit fiir alle Implementierungen zu erschaffen, denn
erst seit C# 11.0 ist "static abstract" in Schnittstellen erlaubt.

Eine Schnittstelle mit einer Operatoriiberladung konnte so aussehen:

Listing: Operatoriiberladung in einer Schnittstelle (ab C# 11.0)
namespace de.WWWings;

public interface IFlug<TSelf> where TSelf : IFlug<TSelf>
{

string AbflugOrt { get; set; }

double Auslastung { get; }

DateTime Datum { get; set; }

long FlugNr { get; set; }

Operatoriberladung 259

short FreiePlaetze { get; set; }
bool Nichtraucherflug { get; set; }
short Plaetze { get; set; }

string Route { get; }

string ZielOrt { get; set; }

public static abstract Flug operator +(TSelf flug, de.WWWings.PassagierSystem.Pa
ssagier pass);

}

Hinweis: Der ein oder andere wird sich sicherlich fragen, warum die Schnittstelle generisch
sein muss. Der Grund dafiir ist einfach: Man will am Ende ja ein Flug-Objekt einfach mit + zu
einem Passagier addieren konnen. Ohne die generische Implementierung konnte man nur eine
Variable vom Typ [Flug zum Passagier addieren.

Die Implementierung der Klasse muss sodann um die Schnittstellenimplementierung

IFlug<Flug>
ergédnzt werden.

Listing: Beispiel fiir Operatoriiberladung in C#

namespace de.WWWings

{

public partial class Flug : IFlug<Flug>
{

/// <summary>

/// Operatoriiberladung fiir die Buchung eines Flugs durch Addition eines Flug- u
nd eines Passagier-Objekts.

/// </summary>

/// <param name="flug">Flugobjekt</param>

/// <param name="pass">Passagierobjekt</param>

/// <returns>Flugobjekt mit hinzugefiigten Passagier</returns>

public static Flug operator +(Flug flug,PassagierSystem.Passagier pass)

{

pass.Buchen (flug) ;

return flug;

}

260 Strukturen

31 Strukturen

Strukturen mit dem Schliisselwort struct anstelle von class sind eine besondere Form von Klassen.
Die .NET-Laufzeitumgebung behandelt diesen Typen als Wertetypen und verwaltet sie im
Hauptspeicher auf dem Stack-Speicher (mit First-In-First-Out-Methodik) statt auf dem Heap-
Speicher. Der Heap wird in .NET auch "Managed Heap" genannt.

311 Wertetyp versus Referenztyp

Grundsitzlich sind alle Typen in .NET echte Klassen, d.h. .NET ist also komplett objektorientiert,
weil auch einfache Datentypen wie Zahlen als Objekte aufgefasst werden, auf denen man
Methoden ausfiihren kann. So sind z.B. 5.ToString() und (123.45).ToString() giiltige Ausdriicke.
Klassen sind iiblicherweise Referenztypen, d.h., im Stack wird ein Zeiger auf einen Speicherplatz
im Heap vorgehalten.

Fiir einfache Datentypen ist diese Zwischenstufe jedoch sehr ineffizient. Microsoft hat daher in
NET auch Wertetypen (alias Strukturen) vorgesehen, deren Inhalt direkt auf dem Stack abgelegt
werden kann.

Stack Heap
Wertetyp
123
Dimi as SystemInt32 = 123
Referenztyp
L “Holger"
Dim 5 as System. String = "Holger"

@ Holger@Schwichtenberg de 2001

Abbildung: Wertetyp versus Referenztyp im Hauptspeicher

Auch Wertetypen sind als Klassen implementiert und konnen daher die gleichen Mitglieder wie
Klassen besitzen. Ihre Besonderheit besteht jedoch darin, dass sie von System.ValueType erben.

Die folgende Tabelle zeigt die Unterschiede zwischen Wertetyp und Referenztyp. Besonders zu
erwihnen ist noch die Klasse System.String. Diese Klasse gehort zwar zu den Referenztypen,
verhilt sich aber beim Kopieren wie ein Wertetyp.

Strukturen 261
Reference Typen Value Type Nullable Value
(Referenztyp) (Wertetyp/ Type
Strukturen) (Werteloser
Wertetyp/
Strukturen)
Verfiigbar seit NET 1.0 NET 1.0 NET 2.0
Standard-Speicherort | Heap Stack (koénnen aber in Stack (kénnen

der Werte

einigen Fillen auch auf
dem Heap leben, aufler
bei ref struct)

aber in einigen
Fillen auch auf
dem Heap leben)

Basisklasse Direktes oder Direktes oder Nullable<T>
indirektes Erben von | indirektes Erben von
System.Object System.ValueType
C#-Sprachkonstrukt class struct struct
zur Definition seit C# 9.0 auch seit C# 10.0 auch mit
record record struct
seit C# 10.0 auch mit
record class
Standardwert null Abhéngig vom null
Datentyp, 0 bei Zahlen,
false bei Boolean und
1.1.0001 bei DateTime
Setzen auf null Ja (bei Aktivierung Nein Mbglich
moglich von Nullable
Reference Types ab
C# 8 nur bei
Verwendung von ?
im Typ z.B. string?)
Parameterloser Maéglich Nicht moglich bis C# Nicht moglich bis
Konstruktor 9.0, moglich seit C# 10 | C# 9.0, moglich
seit C# 10
Initialisierung von Moglich Nicht moglich bis C# Nicht moglich bis
Fields und Properties 9.0, moglich seit C# 10 | C# 9.0, moglich
mit Werten seit C# 10
Vererbung von Ja Nein Nein
anderen Typen
Implementierung von | Ja Ja Ja
Schnittstellen
Zirkulédre Referenzen | Ja Nein Nein
Abonnement von Ja Nein Nein

Ereignissen

262 Strukturen
Reference Typen Value Type Nullable Value
(Referenztyp) (Wertetyp/ Type
Strukturen) (Werteloser
Wertetyp/
Strukturen)
Instanziierung Pflicht Optional, Optional,
Instanziierung fithrt zu | Instanziierung
Initialisierung fithrt zu
Initialisierung
Vergleich Referenzvergleich, Wertvergleich Wertvergleich
Bei Record-Typen:
Wertvergleich
Kopie Referenzkopie Wertkopie Wertkopie
(flache Wertkopie
optional mit
MemberwiseClone(),
tiefe Kopie muss
selbst entwickelt
werden)
Tabelle: Wertetyp versus Referenztyp
Ausgangszustand
.
Amw*
Referenzkopie
e o e
Aumr*
Seichte Kopie
e e e
Autor—»Autor
Tiefe Kopie
Au|0r4> BuChAutOr

Autor —m-{ BuchAutor

Abbildung: Typen von Objektkopien

Strukturen 263

Obige Tabelle enthilt die allgemeinen Regeln, von denen es aber Ausnahmen gibt. So leben
statische Variablen immer auf dem Heap. Auch wird eine Struktur, die Teil einer Klasse ist, auf
dem Heap gespeichert. Auch durch das sogenannte Boxing wird eine Struktur auf den Heap
gespeichert.

31.2 Deklaration von Strukturen

Eine Struktur wird in C# deklariert mit dem Sprachkonstrukt
struct { ... }

Eine Struktur kann — wie eine Klasse — Daten (in Form von Fields und Properties), Methoden,
Ereignisse, Konstruktoren, Operatoren und auch eingebettete Typen enthalten.

Wihrend Klassen in C# schon immer einen parameterlosen Konstruktor besitzen konnten, ist dies
fir Strukturen erst seit C# 10.0 erlaubt. Der Entwickler kann den parameterlosen Konstruktor
Strukturen seit C# 10.0 selbst definieren. Alternativ erzeugt der Compiler selbst einen
parameterlosen Konstruktor, wenn der Entwickler eine Initialisierung von Fields und Properties
bei der Deklaration in Strukturen vornimmt. Vor C# 10.0 waren solche Initialisierung in Strukturen
verboten!

Listing: Beispiel fiir eine Struktur

struct Experte

{

public int ID;

public string Name { get; set; }

public List<String> Themen { get; set; } = new List<string>(); // Diese Initial
isierung zieht nach sich, dass es einen Konstruktor in der Struktur geben muss, s
onst Fehler CS8983.

// erlaubt

public List<Experte> MitarbeiterTeam { get; set; } = new List<Experte>();

// nicht erlaubt:

//public Experte Vorgesetzter { get; set; } // Error CS0523 Struct member 'Exp
erte.Vorgesetzter' of type 'Experte' causes a cycle in the struct layout

struct Adresse

{

public string Strasse { get; set; }
public string PLZ { get; set; }
public string Ort { get; set; }

}

public Experte ()

{

ID = 0;

Name = "unbekannt";

}

public Experte(int id, string name)
{

Name = name;

264 Strukturen

public int ThemenAnzahl { get { return this.Themen.Count; } }

public string GetThemenString()

{

return String.Join(", ", this.Themen);

}
}
Bis einschlieflich C# 10.0 gilt, dass ein Konstruktor alle Properties, die keinen
Standardwertzuweisung innerhalb der Deklaration, explizit initialisieren muss.

struet Exper

public int ID;
public string Name { get; set;
public List<string> Themen { get; set; } = nem List<string>();

public Cint id)

int id)

d property ‘Experte. Name' must be fully assigned before control s retumed to the caller. Consider updating to language version

o toauto

alfies Al Enter or i)

Abbildung: Dieser Konstruktor initialisiert das Property Name nicht, welches hier keine
Vorbelegung besitzt

Ein parameterloser Konstruktor in einer Struktur musste vor C# 11.0 alle nicht in der Deklaration
initialisierten Fields und Properties explizit mit einem Wert belegen, z.B.
public Experte()
{
D =
Name = "unbekannt";
}
Das hat sich seit C# 11.0 gedndert: Die Datenmitglieder (Fields und Properties) von Strukturen
miissen seit C# 11.0 in eigenen Konstruktoren nicht mehr explizit initialisiert werden, wenn diese
keine Initialisierungswerte bei der Deklaration besitzen. Seit C# 11.0 werden alle nicht explizit
initialisierten Felder und Properties automatisch mit ihren Standardwerten initialisiert! Microsoft
nennt das Feature Auto-Default Structs.

Ab C# 11.0 kann also die obige Struktur auch einen parameterlosen Konstruktor ohne Code
enthalten und auch Konstruktoren, die nicht alle Fields und Properties initialisieren.

Listing: Struktur in C# seit Version 11.0 mit Konstruktoren, die nicht alle Datenmitglieder
initialisieren

struct Experte

{

public int ID;

public string Name { get; set; }

public List<String> Themen { get; set; } = new List<string>();

public Experte ()

{
}
public Experte(int id)
{
ID = id;

}

Strukturen 265

public Experte(int id, string name)
{

ID = id;

Name = name;

}

public int ThemenAnzahl { get { return this.Themen.Count; } }
public string GetThemenString()
{
return String.Join(",
}
}
Auch in der aktuellen C#-Version gilt aber noch, dass Initialisierungen von Fields und Properties
bei der Deklaration in Strukturen nur méglich sind, wenn man auch einen Konstruktor schreibt,
sieche nidchste Abbildung.

, this.Themen) ;

@ (Cs8983: A 'struct’ with field initializers must include an explicitly declared constructor

public int ID = ©;

public string Name get; set; = "unbekannt";

public List<String> Themen { get; set; = new List<string>();
}

Abbildung: Fehlermeldung, weil ID, Namen und Themen initialisiert sind, aber es keinen
Konstruktor gibt

31.3 Verwendung von Strukturen

Das folgende Beispiel zeigt sehr eindrucksvoll den Charakter einer Struktur im Vergleich zu einer
Klasse. Es wird eine Instanz der Struktur Experte erzeugt und befiillt.

Es wird eine Kopie der Instanz angelegt. Dass dies eine Wertkopie und keine Referenzkopie ist,
sieht man bei der Verdnderung des Namens in der urspriinglichen Variablen. Die Kopie behélt den
alten Wert in dem Attribut Name.

Allerdings wirkt sich das Hinzufiigen eines Themas zur Eigenschaft Themen auf beide Experten
aus, auf das Original und die Kopie. Das liegt daran, dass List<string> ein Referenztyp ist. Bei
dem Kopieren der Struktur wird also nur die Referenz auf die Themenliste kopiert.

Listing: Deklaration und Nutzung einer Struktur
Experte hs = new Experte();

hs.ID = 1;

hs.Name = "Holger Schwichtenberg";
hs.Themen = new List<string>();
hs.Themen.Add (" .NET") ;

hs.Themen.Add ("Web") ;

hs.Themen.Add ("PowerShell") ;
hs.Themen.Add ("Data Access");

1

Console.WriteLine (hs.Name + " ist Experte fiir " + hs.ThemenAnzahl + " Themen!");

Experte hs Klon = hs; // Wertkopie!
Console.WriteLine (hs_Klon.Name + " ist Experte fiir " + hs_Klon.ThemenAnzahl + " T
hemen!") ;

266 Strukturen

Console.WriteLine ("Namensergdnzung") ;

hs.Name = "Dr. " + hs.Name;

Console.WriteLine (hs.Name + " ist Experte fir " + hs.ThemenAnzahl + " Themen!");
// mit Dr.

Console.WriteLine (hs_Klon.Name + " ist Experte fir " + hs_Klon.ThemenAnzahl + " T
hemen!"); // weiterhin kein Dr.!

Console.WriteLine ("Themenergédnzung") ;

hs.Themen.Add ("Cloud & Docker") ;

Console.WriteLine (hs.Name + " ist Experte fiir " + hs.ThemenAnzahl + " Themen!");
// 5 Themen!

Console.WriteLine (hs_Klon.Name + " ist Experte fir " + hs_Klon.ThemenAnzahl + " T
hemen!"); // 5 Themen!

Experte fir 4 Themen!
4 Themen!

fiir 5 Themen!
5 Themen!

Abbildung: Ausgabe des obigen Listings

31.4 Initialisieren einer Struktur mit default

Auch eine Struktur kann man mit der Zuweisung an default initialisieren.

Experte StandardExperte = default;

Waihrend eine Variable fiir eine Klasse bei einer Zuweisung an default den Wert null erhilt,
entsteht bei einer Struktur eine Instanz, bei der alle Mitglieder mit Standardwerten belegt sind
(siche Abbildung). ThemenAnzahl liefert dabei einen Laufzeitfehler, denn die Liste Themen ist
null und es wird versucht, auf die Anzahl zuzugreifen!

xperte StandardExperte = default;
Console. WriteLine(StandardExperte);
)
210 0
+ M MitarbeierTeam null
& Name null
» & Themen null
@ ThemenAnzahl)] ‘StandardExperte. ThemenAnzahl' threw an exception of type ‘System.NullReferenceException

Abbildung: Initialisieren einer Struktur mit default

31.5 Strukturen mit Readonly (seit C# 7.2)

Seit C# 7.2 kann man Strukturdeklarationen mit dem Schliisselwort readonly versehen. Damit
erhélt man eine unverdnderliche Struktur (Immutable Struct). Damit man eine Struktur aber
iberhaupt mit Werten befiillen kann, gilt die Unverdnderlichkeit erst nach Ende der
Konstruktormethode, d.h. im Konstruktor kann man Werte setzen und dndern.

Listing: Deklaration der Readonly-Struktur

/// <summary>

/// Struktur, bei der alle Mitglieder Readonly sein miissen
/// </summary>

Strukturen 267

public readonly struct AppInfo
{
// Setzen und Andern der Werte nur im Konstruktor erlaubt
public AppInfo(string name, Version version, DateTime? datum)
{
this.Name = name;
this.Version = version;
this.Datum = datum;
this.ObjektErstelltAm = DateTime.Now;
if (this.Datum == null) this.Datum = this.ObjektErstelltAm;
}
// Readonly-Properties: nur Getter
public string Name { get; }
public Version Version { get; }
public DateTime? Datum { get; }
// Readonly-Fields
private readonly DateTime ObjektErstelltAm;
public void IncreaseVersion()
{
// nicht erlaubt: this.Version = new Version(this.Version.Major + 1, 0, 0,
0);
}
}
Listing: Verwendung der Readonly-Struktur
var appInfo = new AppInfo("MiracleList", new Version(0, 6, 3, 0), new
DateTime (2017, 11, 10));
Console.WriteLine ($"Version {appInfo.Version.ToString()} vom {appInfo.Datum}") ;
// verboten: appInfo.Version = new Version(0, 6, 4, 0);

31.6 Readonly fiir einzelne Mitglieder einer Struktur

(seit C# 8.0)

Seit C# 8.0 kann der Softwareentwickler in Strukturen das readonly-Schliisselwort auch auf

einzelne Mitglieder anwenden.

Der Zusatz readonly bedeutet:

= Fiir automatische Properties nur mit Getter, dass der Entwickler nur im Konstruktor der Klasse
einen Wert setzen kann. Der Zusatz readonly ist nicht erlaubt, wenn es auch einen Setter gibt.

= Fiir explizite Properties nur mit Getter, dass der Getter den Zustand des Objekts nicht
verdndern kann (d.h. keine Properties oder Fields verédndern)

= Fiir Methoden, dass die Methode den Zustand des Objekts nicht verdndern kann (d.h. keine
Properties oder Fields verédndern)

Hinweis: Readonly ist nicht erlaubt bei dem Konstruktor! |

Bisher hat man als "Readonly Property" solche Properties bezeichnet, die nur einen Getter besitzen,
z.B.:

// Properties nur mit Getter
public string Name { get; }
DateTime? _Datum;
public DateTime? Datum

{

268 Strukturen

get
{
if (_Datum
return _Datum;
}
}
Diese Sprechweise ist seit C# 8.0 nicht mehr ganz korrekt, weil Properties nun zusétzlich auch
noch explizit als readonly deklariert werden kénnen. Die Konsequenz des Zusatzes readonly ist,
dass nun im Getter des "Datum"-Properties ein Schreibzugriff auf das Property "Version" nicht
mehr erlaubt ist.

null) Version = new Version(1l, 0, 0, 0);

// Property mit Getter und Setter

public Version Version { get; set; }

// NEU: readonly Auto Property --> Zuweisung nur im Konstruktor!
public readonly string Name { get; }

DateTime? _Datum;
// NEU: readonly --> Darf Zustand des Objekts nicht &ndern
public readonly DateTime? Datum
{
get
{
// Zuweisung an Version nicht erlaubt:
// Version = new Version(l, 0, 0, 0);
//_Datum ??= DateTime.Now;
return _Datum;
}
}

Es folgt ein komplettes Beispiel, in dem auch eine Methode mit readonly gezeigt wird.

Listing: Struktur mit einzelnen Readonly-Mitgliedern
using System;

CSharpSp hsyntax.CS80_Sep2019
{
class ReadonlyStructMembersDemo

{

public static void Run()
{

var appInfo = new AppInfo("MiracleList", new Version(0, 6, 3, 0), new DateTime
(2017, 11, 10));

Console.WriteLine ($"Version {appInfo.Version.ToString()} vom {appInfo.Datum}")

/// <summary>

/// Struktur, mit einzelnen Readonly-Mitgliedern
/// </summary>

public struct AppInfo

{

public AppInfo(string name, Version version, DateTime? datum)

Strukturen 269
{

this.Name = name; // readonly --> Zuweisung nur im Konstruktor

this.Version = version;

this. Datum = datum;

this.ObjektErstelltAm = DateTime.Now;

if (this.Datum == null) this. Datum = this.ObjektErstelltAm;

// Readonly-Fields
private readonly DateTime ObjektErstelltAm;

// Property mit Getter und Setter

public Version Version { get; set; }

// NEU: readonly Auto Property --> Zuweisung nur im Konstruktor!
public readonly string Name { get; }

DateTime? _Datum;
// NEU: readonly --> Darf Zustand des Objekts nicht &ndern
public readonly DateTime? Datum
{
get
{
// Zuweisung grundsdtzlich nicht erlaubt, da Methode readonly
// Version =?? new Version(0, 0, 0, 0);
return Datum;
}
}

// NEU: readonly --> Darf Zustand des Objekts nicht &ndern
public readonly int GetMinorVersion()

{

// nicht erlaubt: if (Version == null) Version = new Version(0, 0, 0, 0);
return this.Version.Minor;

}

public int GetMajorVersion()

{

// nicht erlaubt, da Name readonly

// this.Name = "";

if (_Datum == null) Version = new Version(0, 0, 0, 0);

return this.Version.Major;

}

}
}

31.7 With-Ausdriicke

Mit einem With-Ausdruck erstellt man eine Wertkopie (Klon) eines Objekts und kann dabei neue
Werte initialisieren. With-Ausdriicke wurden in C# 9.0 fiir Record-Typen (damals waren Record-
Typen immer Klassen) eingefiihrt. Seit C# 10.0 kann man With-Ausdriicke in folgenden Fillen
einsetzen:

= Record-Klassen (Typdefinition mit record oder record class)

270 Strukturen

= Record-Strukturen (Typdefinition mit record struct oder readonly record struct)
= Normale Strukturen (Typdefinition mit struct)
= Anonyme Typen (keine Typdefinition)

Achtung: With-Ausdriicke erzeugen eine flache Kopie des Objekts, d.h. es werden alle
Attribute des Objekts kopiert, also auch Zeiger. Der Inhalt, auf den der Zeiger zeigt, wird aber
nicht kopiert. Beispiel: Wenn ein Objekt X, das auf ein anderes Objekt Y zeigt, kopiert wird,
dann zeigt die Kopie X' auf das gleiche Objekt Y. Y wird also nicht auch geklont! Wenn Y aber
eine Struktur ist, dann erhilt X' ein Y'.

Solche "With Expressionens" funktionieren aber nicht mit normalen Klassen, da diese eine
Referenzsemantik und keine Wertesemantik haben.

Das folgende Listing zeigt ein aussagekraftiges Beispiel zu With-Ausdriicken. Mit Hilfe der .NET-
Klasse System.Runtime.Serialization.ObjectIDGenerator wird eine eindeutige ID fiir jedes Objekt
ermittelt. Daran sicht man, ob man eine Wertkopie oder eine Zeigekopie erhalten hat.

With wird mit Record-Struktur, normaler Struktur und anonymen Typ gezeigt. Die Objekt-ID ist
nach dem Klonen jeweils anders, d.h. es wurde wirklich von with immer eine Wertkopie erzeugt.

Jeweils verweisen die drei Objekte auf jeweils ein Universitaet- und ein Firma-Objekt. Wie die
Ausgabe der Objekt-1Ds zeigt, klont With das Firma-Objekt mit, weil es ein Record-Typ ist. Alle
geklonten Objekte verweisen aber auf immer das gleiche Universitaet-Objekt (ID 2).

Listing: Einsatz von With-Ausdriicken

namespace CS10;

internal class CS10_WithExpressions

{

public record struct Firma(int ID, string Vorname)
{
}

public class Universitaet

{

public string Name { get; set; }
}

public readonly record struct PersonR(int ID, string Vorname, string Name, Firma
Firma, Universitaet Universitaet, string Status = "unbekannt")

{
public int Alter { get; init; } = 0;
}

public struct PersonS

{

public int ID = 0;

public string Vorname = "";

public string Name = "";

public Firma? Firma = null;

public Universitaet Universitaet = null;
public string Status = "unbekannt";
public int Alter { get; init; } = 0;

Strukturen 271

/// <summary>

/// "A 'struct' with field initializers must include an explicitly
/// declared constructor"

/// </summary>

public PersonS() { }

public override string ToString()

{
return $"{ID}: {Vorname} {Name} {Status}";

}
}

public static void Run()
{
CUI.H1 (nameof (CS10_WithExpressions)) ;

var oidg = new System.Runtime.Serialization.ObjectIDGenerator();

void Print(Object obj)

{

Console.WriteLine ($"Objekt #{oidg.GetId(obj, out _)}:{obj.ToString()}");

Console.WriteLine ($" - zeigt auf Universitdt {oidg.GetId(((dynamic)obj) .Univer
sitaet, out bool _)}"):;

Console.WriteLine ($" - zeigt auf Firma {oidg.GetId(((dynamic)obj).Firma, out b
ool _)}");

}

var ITVisions = new Firma(l, "www.IT-Visions.de");
var UniEssen = new Universitaet() { Name = "Universitdt Duisburg-Essen" };

CUI.H2 ("With bei record struct");
var personl = new PersonR()

{

ID = 123,

Vorname = "Holger",

Name = "Schwichtenberg",
Status = "hdlt Schulung",

Firma = ITVisions,

Universitaet = UniEssen

}i

Print (personl) ;

var person2 = personl with { Vorname = "Dr. " + personl.Vorname };
Print (person2) ;

CUI.H2 ("With bei normaler struct");
var person3 = new PersonS()

{

ID = 123,

Vorname = "Holger",
Name = "Schwichtenberg",

Status = "hdlt Schulung",

272 Strukturen

Firma = ITVisions,
Universitaet = UniEssen
}i
Print (person3) ;
var persond4 = person3 with { Vorname = "Dr. " + person3.Vorname };
Print (persond) ;
CUI.H2 ("With bei anonymen Typ");
var person5 = new

{

ID = 123,
Vorname = "Holger",
Name = "Schwichtenberg",

Status = "hdalt Schulung",
Firma = ITVisions,
Universitaet = UniEssen
}i
Print (person5) ;

var person6é = person5 with { Vorname = "Dr. "
Print (personé6) ;

+ person5.Vorname };

Abbildung: Ausgabe des obigen Listings

31.8 Boxing und Unboxing

Ein Wertetyp kann explizit als ein Referenztyp behandelt werden. Dazu muss der Wertetyp in ein

Objekt verpackt werden. Dieser Vorgang wird als Boxing bezeichnet. Der gegensitzliche Vorgang
heifit Unboxing.

In C# geschieht Boxing, wenn ein Wertetyp (wie eine Struktur) in einen Objekttyp (wie object)
umgewandelt werden muss. Der Boxing-Vorgang fithrt dazu, dass der Wertetyp auf dem Heap
gespeichert wird, anstatt auf dem Stack, um mit dem Objekttyp kompatibel zu sein.

Listing: Boxing und Unboxing

/// <summary>

/// Struktur fiir Boxing-/Unboxing-Demo
/// </summary>
struct Koordinate
{
public int X;
public int ¥;
public Koordinate(int x, int y)
{
this.X = x;

Strukturen 273

this.¥ = y;
}
public override string ToString()

"X+ y=" o+ Y

var i = new Koordinate(42,50); // Value Typ auf Stack
Console.WriteLine(i); // 42/50

// Boxing --> Heap
object oi = i;
Console.WriteLine (oi); // 42/50

// Unboxing --> Stack
Koordinate i2 = (Koordinate)oi;

Console.WriteLine(i); // 42/50
Console.WriteLine (oi); // 42/50
Console.WriteLine (i2); // 42/50

// Rusgangswert verdndern
i = new Koordinate (100, 200);

Console.WriteLine(i); // 100/200
Console.WriteLine(oi); // 42/50, weil Zeiger auf den urspriinglichen Wert
Console.WriteLine(i2); // 42/50, weil Zielwert von dem Zeiger beim Unboxing

// Kopieroperationen

Koordinate i3 = i; // Kopiert die Werte 100/200
object 0i3 = oi; // Kopiert den Zeiger auf 42/50
Console.WriteLine(i3); // 100/200
Console.WriteLine (0i3); // 42/50

i.X 4= 1; // das verdndert nur den Speicher von i, aber nicht i3

((dynamic)oi3) .X += 1; // das veridndert den Speicher, auf den oi und 0i3 zeige
n!

Console.WriteLine(i); // 100/200
Console.WriteLine (i3); // 101/200
Console.WriteLine (oi); // 43/50
Console.WriteLine (0i3); // 43/50

31.9 Strukturen ausschlieRlich auf dem Stack (ref
struct)

Seit C# 7.2 gibt es auch Strukturen, die immer auf dem Stack leben und niemals auf den Heap
wandern konnen: ref struct. Dieses Verhalten macht ref struct besonders niitzlich fiir
leistungskritische Szenarien, da der Overhead der Speicherzuweisung im Heap und die Garbage
Collection vermieden werden. Viele Anwendungsentwickler werden aber niemals selbst einen

274 Strukturen

Typen mit ref struct implementieren, aber von Microsoft in der Basisklassenbibliothek
bereitgestellte Implementierungen nutzen.

31.9.1 Einsatz von ref struct

Wenn man einen Typen als ref struct deklariert, ist ein Boxing nicht mehr moglich. Der Einsatz
von ref struct ist daher begrenzt, z.B. kann man kein Array und keine List<T> etc. daraus erzeugen.

Andere Beschriankungen von ref struct-Typen wurden in C# 13.0 aufgehoben, d.h. Microsoft den
Einsatz von ref struct erweitert. Solche Typen mit kénnen nun:

= Schnittstellen implementieren (Allerdings gilt die Einschriankung, dass die Struktur nicht in
den Schnittstellentyp konvertiert werden kann)

= als Typargument genutzt werden (Allerdings muss dazu der generische Typ bzw. die
generische Methode where T : allows ref struct verwenden).

= in Iteratoren verwendet werden.
= in synchronen Methoden, die Task oder Task<T> liefern, genutzt werden.

Listing: Beispiel fiir einen eigenen Typen mit ref struct, der eine Schnittstelle implementiert
internal interface IPerson

{

int ID { get; set; }

int Name { get; set; }

}

ref struct Person : IPerson // NEU seit C# 13.0: ref struct kann Schnittstelle im
plementieren

{

public int ID { get; set; }

public int Name { get; set; }

// ToString ()

public override string ToString()

{

return "Person #" + ID + " " + Name;
}
}
}

class Client

{

public void Run()

{

= new Person();

p.Name
Console.WriteLine (p.ID) ;
Console.WriteLine (p.Name) ;

// Das ist alles nicht erlaubt!

// IPerson i = p; // Casting auf Schnittstelle

// List<Person> PersonlList = new(); // List<T>

// PersonList[] PersonArray = new Person[10]; // Array

Strukturen 275

}

31.9.2 Einsatz von ref struct in der .NET-Basisklassenbibliothek

Zwei wichtige generische Typen, die Microsoft in .NET Core 2.0 eingefiihrt hat zur Performance-
Optimierung, sind als ref struct implementiert: System.Span<T> und System.ReadOnlySpan<T>.
Microsoft hat seit NET Core 2.0 die Einsatzgebiete dieser Typen kontinuierlich erweitert, z.B. in
NET 9.0:

Microsoft hat zahlreiche Klassen aus der .NET-Klassenbibliothek, die Parameter-Arrays
entgegennehmen (z.B. String.Format(), String.Join(), Console.WriteLine(), APIs im
Namensraum System.Drawing), —mit zusétzlichen — Methodeniiberladungen fiir
ReadOnlySpan<T> ausgestattet. Dies vermeidet die bei Arrays {iiblichen, langsameren
impliziten Heap-Allokationen, da ReadOnlySpan<T> auf dem Stack lebt.

Die Klasse Regex bietet nun eine Methode EnumerateSplits(). Dazu gibt es ein eigenes
Unterkapitel weiter oben.

In der System.IO.File-Klasse konnen Entwicklerinnen und Entwickler nun direkt mit
WriteAllText() Zeichenketten in Form von ReadOnlySpan<char> persistieren.

Analog gibt es bei WriteAllBytes() eine neue Uberladung fiir Bytefolgen, die als
ReadOnlySpan<byte> vorliegen.

ReadOnlySpan<T> bietet nun die Methoden StartsWith() und EndWith() wie die Klasse
System.String.

276 Record-Typen

32 Record-Typen

Record-Typen sind ein neuer Untertypus von Klassen. Record-Typen sind Referenztypen (also
nicht zu verwechseln mit Strukturen), die aber eine Wertesemantik besitzen. Sie sind ein
Zwischending zwischen normalen Klassen und Strukturen.

Record-Typen konnen auf einfache Weise als unverdnderbare Instanzen (Immutable) deklariert
werden. Aber nicht jeder Record-Typ ist automatisch unverénderbar.

Hinweis: Immutable Objects sind automatisch immer thread-safe, d.h. sie konnen beim Multi-
Threading gleichzeitig in mehreren Threads verwendet werden ohne die Gefahr von
Seiteneffekten (Race Conditions).

Vererbung von anderen Record-Typen ist moglich (aber nicht von normalen, mit "class"
definierten Klassen). Die Vererbung kann mit sealed unterbunden werden.

Record-Typen kann man mit With-Ausdriicken klonen.

Tipp: Record-Typen kann man auch in .NET Framework und .NET Standard verwenden. Dazu
ist der im Kapitel "Init Only Setters in .NET Framework und .NET Standard" beschriebene
Trick beziiglich der Init Only Setter notwendig. Ohne dies meckert der Compiler bei
Verwendung des Schliisselwortes record, dass er die Klasse
System.Runtime.CompilerServices.IsExternallnit nicht finden kénnen.

321 Records deklarieren

Record-Typen werden mit dem Schliisselwort "record" eingeleitet. In einem frithen Entwurf von
C# 9.0 hatte Microsoft hier "data class" verwendet. Dies ist aber in der endgiiltigen Version von
C# 9.0 nicht mehr erlaubt. Seit C# 10.0 ist alternativ und synonym zu "record" auch "record class"
moglich.

Das folgende Listing zeigt einen Record-Typen "Person" und einen abgeleiteten Record-Typen
"Dozent".

Praxistipp: Wie bei Klassen, kann auch bei Records mit dem Zusatz "sealed" eine Vererbung
verhindert werden.

Listing: Records seit C# 9.0

record Person

{
private int ID { get; init; }

public string Vorname { get; set; }
public string Name { get; set; }
public string Status = "unbekannt";
public Person ()

{

}
public Person(int id, string vorname, string name)
{
this.ID = id;
this.Vorname = vorname;
this.Name = name;
}
}

Record-Typen 277

record Dozent : Person

{

public List<string> Themen { get; set; } = new();

public Dozent(int id, string vorname, string name) : base(id, vorname, name) {
}
}
Das folgende Listing zeigt, was der C#-Compiler daraus erzeugt. Man sieht, dass zu beiden
Record-Typen erheblicher Programmcode dazu generiert wird. Insbesondere wurde erzeugt:

= Eine C#-Klasse mit vier Init Only Properties.
= Ein Konstruktor mit vier Parametern mit Zuweisung an die Properties.

= Die Protected-Methode PrintMembers(), die den Inhalt des Objekts in einem StringBuilder
liefert (ohne dabei Reflection einzusetzen!). Es wird aber nur die oberste Ebene der
offentlichen Attribute (Field und Properties) ausgegeben (keine Unterobjekte)!

= Das Uberschreiben von ToString(), das den Klassennamen und den Inhalt des Objekts via
Aufruf von PrintMembers() liefert.

= Die Impementierung der Operatoriiberladung fiir Gleichheit (=) und Ungleichheit (!=) sowie
der Methode Equals(). Es findet ein flacher Vergleich (nur die oberste Ebene) statt.

= Die Implementierung einer 6ffentlichen Methode Clone(), die eine Inhaltskopie erstellt (auch
hier flache Kopie ohne Einsatz von Reflection).

Hinweis: Dieser Record-Typ ist nicht immutable. Er wiirde immutable, indem man Init Only-
Properties verwendet (get; init; statt get; set;).

Listing: Dekompilat des Record-Typen "Person” mit ILSpy
// CS90.CS90_Records.Person
using System;

using System.Collections.Generic;
using System.Runtime.CompilerServices;
using System.Text;

private class Person : IEquatable<Person>
{
protected virtual Type EqualityContract
{
[System.Runtime.CompilerServices.NullableContext (1)]
[CompilerGenerated]
get
{

return typeof (Person) ;

public int ID
{
get;
init;

public string Vorname

{

278 Record-Typen

get;
set;

public string Name

get;
set;

public string Status

get;
set;

public Person()

Status = "unbekannt";
base. .ctor() ;

public Person(int id, string vorname, string name)

Status = "unbekannt";
base. .ctor() ;

ID = id;

Vorname = vorname;
Name = name;

public override string ToString()

StringBuilder stringBuilder = new StringBuilder();
stringBuilder.Append ("Person") ;
stringBuilder.Append (" { ");
if (PrintMembers (stringBuilder))
{
stringBuilder.Append (" ") ;
}
stringBuilder.Append("}") ;
return stringBuilder.ToString();

protected virtual bool PrintMembers (StringBuilder builder)
{

builder.Append ("Vorname") ;

builder.Append (" = ")

builder.Append ((object?)Vorname) ;

builder.Append (", ")

builder.Append ("Name") ;

builder.Append (" = ") ;

builder.Append ((cbject?)Name) ;

Record-Typen 279

builder.Append (", ");
builder.Append ("Status") ;
builder.Append (" = ") ;
builder.Append ((object?)Status) ;
return true;

[System.Runtime.CompilerServices.NullableContext (2)]
public static bool operator !'=(Person? rl, Person? r2)

{

return ! (rl == r2);

[System.Runtime.CompilerServices.NullableContext (2)]
public static bool operator ==(Person? rl, Person? r2)

{
return (object)rl == r2 || (rl?.Equals(r2) ?? false);

public override int GetHashCode ()
{

return
(((EqualityComparer<Type>.Default.GetHashCode (EqualityContract) * -1521134295 +
EqualityComparer<int>.Default.GetHashCode (ID)) * -1521134295 +
EqualityComparer<string>.Default.GetHashCode (Vorname)) * -1521134295 +
EqualityComparer<string>.Default.GetHashCode (Name)) * -1521134295 +
EqualityComparer<string>.Default.GetHashCode (Status) ;

}

public override bool Equals(object? obj)
{

return Equals(obj as Person) ;

public virtual bool Equals(Person? other)
{
return (object)other !'= null && EqualityContract ==
other! .EqualityContract && EqualityComparer<int>.Default.Equals(ID, other!.ID) &&
EqualityComparer<string>.Default.Equals (Vorname, other!.Vorname) &&
EqualityComparer<string>.Default.Equals(Name, other!.Name) &&
EqualityComparer<string>.Default.Equals(Status, other!.Status);

}

public virtual Person <Clone>$ ()
{

return new Person(this);

protected Person(Person original)

{
ID = original.ID;
Vorname = original.Vorname;
Name = original.Name;
Status = original.Status;

280 Record-Typen

Listing: Dekompilat des Record-Typen "Dozent” mit ILSpy
// €s90.CS90_Records.Dozent

using System;

using System.Collections.Generic;

using System.Runtime.CompilerServices;
using System.Text;

private class Dozent : Person, IEquatable<Dozent>
{
protected override Type EqualityContract
{
[System.Runtime.CompilerServices.NullableContext (1)]
[CompilerGenerated]
get
{
return typeof (Dozent) ;

public List<string> Themen
{

get;

set;

public Dozent(int id, string vorname, string name)
{
Themen = new List<string>();
base..ctor(id, vorname, name);

public override string ToString()

StringBuilder stringBuilder = new StringBuilder();
stringBuilder.Append("Dozent") ;
stringBuilder.Append (" { ");
if (PrintMembers (stringBuilder))
{
stringBuilder.Append(" ") ;
}
stringBuilder.Append("}") ;
return stringBuilder.ToString();

protected override bool PrintMembers (StringBuilder builder)
{
if (base.PrintMembers (builder))

{
builder.Append (", ");

Record-Typen

281

}

builder.Append ("Themen") ;
builder.Append (" = ") ;
builder.Append (Themen) ;
return true;

[System.Runtime.CompilerServices.NullableContext (2)]
public static bool operator !=(Dozent? rl, Dozent? r2)

{

return ! (rl == r2);

[System.Runtime.CompilerServices.NullableContext (2)]
public static bool operator ==(Dozent? rl, Dozent? r2)

{
return (object)rl == r2 || (rl?.Equals(r2) ?? false);

public override int GetHashCode ()

{
return base.GetHashCode () * -1521134295 +
EqualityComparer<List<string>>.Default.GetHashCode (Themen) ;

}

public override bool Equals(object? obj)
{

return Equals(obj as Dozent) ;

public sealed override bool Equals (Person? other)

{
return Equals ((object?)other) ;

public virtual bool Equals(Dozent? other)

{
return base.Equals (other) &&
EqualityComparer<List<string>>.Default.Equals (Themen, other!.Themen);

}
public override Person <Clone>$ ()

{

return new Dozent (this) ;

protected Dozent (Dozent original)
: base(original)

Themen = original.Themen;

282 Record-Typen

32.2 Record-Typen mit Primarkonstruktor

Eine Besonderheit von Record-Typen ist, dass man die Deklaration radikal verkiirzen kann.
Anstelle des oben geschriebenen Programmcodes, kann man die beiden Record-Typen "Person"
und "Dozent" auch in einer einzigen Programmcodezeile erzeugen. Syntaktisch schreibt man dabei
nur einen Konstruktor mit vorangestelltem Schliisselwort record. Man nennt diesen Konstruktor
den Primérkonstruktor.

public record Person(int ID, string Vorname, string Name, string Status =
"unbekannt") ;

public record Dozent(int ID, string Vorname, string Name, string Status =
"unbekannt", List<string> Themen = null) : Person(ID, Vorname, Name, Status);

Wie man sieht, ist dabei auch Vererbung méglich! Die erbende Record-Klasse nimmt nach dem
Doppelpunkt Bezug auf den Konstruktor des gewiinschten Basis-Record-Typs.

Hierbei stehen in "Person" automatisch vier Properties und ein Konstruktor. In "Dozent" steht ein
Property und ein Konstruktor (siche folgendes Listing des Dekompilats).

Der Unterschied zur expliziten Langdeklaration ist aber, dass nun
= ID ein 6ffentliches Property ist

= Alle Properties mit Init Only Setter deklariert sind, d.h. die Werte nach der Konstruktionsphase
nicht mehr dnderbar (immutable) sind! Das Verdndern eines Objekts beim Klonen mit with-
Ausdruck ist aber weiterhin moglich, weil dies zu Konstruktionsphase des neuen Objekts
zahlt.

= Als Standardwert eines Konstruktorparameters kann nur ein statischer Wert verwendet
werden, der zur Kompilierungszeit ausgewertet werden kann. Ein Wert, der erst zur Laufzeit
entsteht (z.B. DateTime.Now) ist nicht moglich ("CS1736 Default parameter value for XY
must be a compile-time constant").

= Es gibt eine Methode Deconstruct(), die den Zustand des Objekts in Einzelvariablen zerlegt.
Die Einzelvariablen werden in der gleichen Reihenfolge wie im Konstruktor zuriickgegeben.
Das Deconstruct()-Verfahren wurde im Zusammenhang mit Tupeln in C# 7.0 eingefiihrt. Die
Dekonstruktion verwendet man so (mit dem Unterstrich iibergeht der Entwickler Werte, die
ihn nicht interessieren):
// Nutzung von Deconstruct()
var (_, v, _, s) = hs;

Console.WriteLine("Vorname: " + v + " Status: " + s);

Hinweis: Record-Typen rein in der Kurzschreibweise sind automatisch immutable, da alle
Properties mit Init-Only-Setter angelegt werden.

Listing: Dekompilat mit ILSpy

// CS90.CS90_Records.Person

using System;

using System.Collections.Generic;
using System.Runtime.CompilerServices;
using System.Text;

public class Person : IEquatable<Person>
{
protected virtual Type EqualityContract
{
[System.Runtime.CompilerServices.NullableContext (1)]
[CompilerGenerated]
get

Record-Typen

283

{
return typeof (Person) ;
}
}

public int ID
{
get;
init;

}

public string Vorname
{

get;

init;

}

public string Name
{

get;

init;

}

public string Status
{

get;

init;

}

public Person(int ID, string Vorname, string Name, string Status

"unbekannt")
{

this.ID = ID;
this.Vorname = Vorname;
this.Name = Name;
this.Status = Status;
base. .ctor() ;

}

public override string ToString()
{
StringBuilder stringBuilder =
stringBuilder.Append ("Person")
stringBuilder.Append(" { ");

new StringBuilder();

if (PrintMembers (stringBuilder))

{

stringBuilder.Append (" ") ;
}
stringBuilder.Append("}") ;

return stringBuilder.ToString() ;

}

protected virtual bool PrintMembers (StringBuilder builder)

{
builder.Append ("ID") ;
builder.Append (" = ");
builder.Append (ID.ToString()) ;
builder.Append (", ");
builder.Append ("Vorname") ;
builder.Append (" = ") ;

builder.Append ((object?)Vorname) ;

builder.Append(", ");
builder.Append ("Name") ;
builder.Append (" = ") ;

284 Record-Typen

builder.Append ((object?)Name) ;
builder.Append (", ")
builder.Append ("Status") ;
builder.Append (" = ") ;
builder.Append ((object?) Status) ;
return true;

}

[System.Runtime.CompilerServices.NullableContext (2)]
public static bool operator !=(Person? rl, Person? r2)
{

return ! (rl == r2);

}

[System.Runtime.CompilerServices.NullableContext (2)]
public static bool operator ==(Person? rl, Person? r2)
{

return (object)rl == r2 || (rl?.Equals(r2) ?? false);
}

public override int GetHashCode ()

{
return (((EqualityComparer<Type>.Default.GetHashCode (EqualityContract) *
-1521134295 + EqualityComparer<int>.Default.GetHashCode (ID)) * -1521134295 +
EqualityComparer<string>.Default.GetHashCode (Vorname)) * -1521134295 +
EqualityComparer<string>.Default.GetHashCode (Name)) * -1521134295 +
EqualityComparer<string>.Default.GetHashCode (Status) ;

}

public override bool Equals(object? obj)
{
return Equals(obj as Person) ;

}

public virtual bool Equals(Person? other)
{
return (object)other !'= null && EqualityContract ==
other! .EqualityContract && EqualityComparer<int>.Default.Equals(ID, other!.ID) &&
EqualityComparer<string>.Default.Equals (Vorname, other!.Vorname) &&
EqualityComparer<string>.Default.Equals (Name, other!.Name) &&
EqualityComparer<string>.Default.Equals(Status, other!.Status);

}

public virtual Person <Clone>$ ()

{
}

return new Person(this);

protected Person(Person original)

ID = original.ID;
Vorname = original.Vorname;
Name = original.Name;
Status = original.Status;

}

public void Deconstruct(out int ID, out string Vorname, out string Name, out
string Status)

ID = this.ID;

Vorname = this.Vorname;
Name = this.Name;
Status = this.Status;

Record-Typen 285

}
}
Ein Record-Typ in der Kurzschreibweise mit Primérkonstruktor darf durchaus auch noch einen
normalen Klassenblock mit weiteren Properties, Fields und Methoden beinhalten. Auch ein
weiterer Konstruktor ist moglich; dieser muss aber dann den automatisch generierten Konstruktor
mit this(parameterliste) aufrufen. Auch die Implementierung von Schnittstellen (z.B. IDisposable)
ist moglich.

Hinweis: Record-Typen in der Kurzschreibweise konnen die Immutability verlieren, wenn der
Entwickler Properties mit normalen Settern oder beschreibbare Fields ergénzt, wie man dies im
folgenden Listing sicht.

Eine weitere Einschrankung ist, dass die Dekonstruktion nur flir Properties, die in
Kurzschreibweise erschaffen wurden in der Reihenfolge wie im Konstruktor funktioniert.

Listing: Kurzschreibweise eines Record-Typs: Primdrkonstruktor + eigene Zusitze
public record Person(int ID, string Vorname, string Name, string Status =
"unbekannt") : IDisposable

{

public Geschlecht Geschlecht { get; set; }
public int Alter { get; set; }

public Firma Firma { get; set; }

/// <summary>

/// Eigener Konstruktur muss generierten Konstruktor mit this() aufrufen!
/// </summary>

/// <param name="ID"></param>

public Person(int ID) : this(ID, "unbekannt", "unbekannt")

{

}

public string GetAnrede() => Geschlecht switch
{

Geschlecht.f => "Sehr geehrte Frau " + Name,
Geschlecht.m => "Sehr geehrter Herr " + Name,
_ => "Hallo " + Name

Yi

public void Dispose()
{
Console.WriteLine ("Dispose!") ;
}
}
In diesem Fall kann man die Zusatzproperties Geschlecht und Alter nicht im Konstruktor, aber via
Objektinitialisierung in geschweiften Klammern befiillen:
Person hsld = new Person (123, "Holger", "Schwichtenberg", "verheiratet") { Alter
= 48, Geschlecht = Geschlecht.m };
Diese Properties Alter und Geschlecht sind auch spdter noch dnderbar, weil sie als normale
Properties mit get; set; deklariert sind.

32.3 Records verwenden

Das folgende Listing zeigt einen Nutzer der beiden Record-Typen:

286 Record-Typen

= Es wird eine Instanz des Record-Typen "Person" erstellt.
= Die Instanz wird mit Hilfe von ToString() und Console.WriteLine() ausgeben.
= Es wird eine Instanz des Record-Typen "Dozent" erstellt.

= Der Objektverweis wird kopiert durch die Zuweisung dozent = hs. Dies ist eine Referenzkopie
wie bei Instanzen von Klassen iiblich.

= Einer der Objektverweise wird verdndert (das ist nur moglich, wenn der Record in der
Langschreibweise und nicht mit Init Only Setter geschrieben wurde)

= Die Ausgaben fiir beide Objektverweise sind gleich. Dies belegt, dass dozent und hs auf die
gleiche Speicherstelle verweisen.

= Nun wird der Dozent-Record geklont mit with ohne Verdnderung (via sogenanntem "With-
Ausdruck"). Dies ist eine Wertkopie.

= Die Ausgaben sind gleich.

= Nun wird der Dozent-Record geklont mit with mit Verdnderung von Status und Themen
(wieder eine Wertkopie).

= Die Ausgaben sind nicht mehr gleich.
Listing: CS90_Records.cs

public static void CS90Records_Client()
{
CUI.MainHeadline (nameof (CS90Records_Client)) ;

CUI.Headline ("Record-Instanz von 'Person' erstellen");
Person mm = new Person (123, "Max", "Miller");

if (mm !'= null) CUI.PrintSuccess("OK!");

CUI.Headline ("ToString()");

var ausgabe = mm.ToString() ;

Console.WriteLine (ausgabe) ;

// oder direkt:

Console.WriteLine (mm) ;

CUI.Headline ("Record-Instanz von 'Dozent' erstellen");
Dozent hs = new Dozent (123, "Holger", "Schwichtenberg") ;
hs.Themen.Add (" .NET") ;

hs.Themen.Add ("C#") ;

hs.Themen.Add ("JavaScript/TypeScript") ;

hs.Themen.Add ("DevOps") ;

if (hs !'= null) CUI.PrintSuccess("OK!");

CUI.Headline ("Kopie des Objektverweises erstellen");

var dozent = hs;

hs.Status = "Original";

hs.Themen.Add ("PowerShell") ;

Console.WriteLine (hs) ;

Console.WriteLine (dozent) ;

if (dozent == hs) CUI.PrintSuccess("Dozent und hs haben gleiche Inhalte!");
else CUI.PrintWarning("Dozent und hs haben NICHT gleiche Inhalte!");

CUI.Headline ("Kopie der Instanz erstellen mit with");
Dozent hsKlonl = hs with { };

Record-Typen 287

// Person hsKlon = hs.Clone(); // geht nicht, Clone() wird erst durch Compiler
erzeugt!!!

Console.WriteLine (hs) ;

Console.WriteLine (hsKlonl) ;

if (hsKlonl == hs) CUI.PrintSuccess("Klonl ist exakt gleich");

else CUI.PrintWarning("Klon2 ist verdndert!");

CUI.Headline ("Kopie der Instanz erstellen mit with und Verdnderung") ;
Dozent hsKlon2 = hs with { Status = "geklont" };

hsKlon2.Themen.Add ("Java") ;

Console.WriteLine (hs) ;

Console.WriteLine (hsKlon2) ;

if (hsKlon2 == hs) CUI.PrintSuccess("Klon2 ist exakt gleich");

else CUI.PrintWarning("Klon2 ist verdndert!");

}
cseerecords_Client]
ecord-Instanz von 'Person’ erstellen

aString()

o i ! -
cord-Tnstanz von 'Dozent’ erstellen

opie des Objektverweises erstellen

Abbildung: Ausgabe des obigen Listings

32.4 Uberschreiben von ToString()

Bereits in C# 9.0 war es moglich, auch in einem Record-Typen Methoden zu iiberschreiben, auch
wenn diese Methoden Teil der automatischen Codegenerierung fiir den Record waren, z.B.
ToString(). Damit wurde die automatische Implementierung aufler Kraft gesetzt.

Seit C# 10.0 ist es nun, aber ausschlieBlich bei ToString(), erlaubt, dass dabei das Schliisselwort
"sealed" eingesetzt wird. Das bedeutet, dass ein Record-Typ verhindern kann, dass davon erbende
Record-Typen ToString() wieder tiberschreiben mit der automatischen Implementierung. Folglich
gilt eine sealed ToString()-Implementierung auch fiir alle abgeleiteten Record-Typen.

Hinweis: Dieses Sprachfeature funktioniert nur bei Record-Klassen, nicht bei Record-
Strukturen, da Record-Strukturen nicht erben kénnen!

Listing: Record-Typ mit iiberschriebenen ToString() mit Zusatz "sealed”
public record class Person(int ID, string Vorname, string Name, string Status =
"unbekannt") : IDisposable

{

public Geschlecht Geschlecht { get; set; }

public int Alter { get; set; }

public Firma Firma { get; set; }

// Eigene ToString()-Implementierung méglich

// erst seit C# 10.0 kann die auch sealed sein und gilt dann auch fiir
abgeleitete Klasse '"Dozent"

public sealed override string ToString()

288 Record-Typen

{
return $"Person #{ID}: {Vorname} {Name}";

}
}
‘Wenn nun Dozent von Person erbt
public record Dozent(int ID, string Vorname, string Name, string Status =
"unbekannt", List<string> Themen = null) : Person(ID, Vorname, Name, Status);
Dann wird auch eine Instanz von Dozent immer ToString() in Person aufrufen.
Dozent hs = new Dozent (123, "Holger", "Schwichtenberg") { Themen = new
List<string>() };
Console.WriteLine (hs) ;

Die letzte Zeile gibt also aus:

Person #123: Holger Schwichtenberg

32.5 Record Structs

Ein Record in C# 9 ist immer eine Klasse. Seit C# 10.0 drei Arten von Record-Typen:

= record class: Dies ist gleichbedeutend mit der Verwendung von record ohne Zusatz. Es
entsteht wie bisher eine Klasse, also ein Referenztyp auf dem Heap. Alle per
Primérkonstruktor erzeugten Properties haben einen Init Only Setter, d.h. das entstehende
Objekt ist immutable (sofern nicht explizit Properties mit Setter hinzugefiigt wurden).

= record struct: Hier entsteht eine Struktur, also ein Wertetyp auf dem Stack (implizit erbend
von System.ValueType). Anders bei einer record class haben alle per Primérkonstruktor
erzeugten Properties einen normalen Setter, d.h. das Objekt ist mutable.

= readonly record struct: Auch hier entsteht eine Struktur, also ein Wertetyp auf dem Stack
(implizit erbend von System.ValueType). Alle per Primérkonstruktor erzeugten Properties
haben einen Init Only Setter, d.h. das Objekt ist immutable.

Hinweis: Im Gegensatz zu einer Record-Klasse kann eine Record-Struktur nicht erben! Auch
gibt es keinen EqualityContract und keine Null-Priifungen im generierten Code einer Record-
Struktur.

Name Struktur Record- Record- Klasse
Struktur Klasse

Seit C#- 1.0 (2001) 10.0 (2021) 9.0 (2020) 1.0 (2001)

Version (Jahr)

Typart Wertetyp Wertetyp Referenztyp Referenztyp

Zuweisungsse Wert Wert Wert Referenz

mantik

Speicherort Stack Stack Heap Heap

Primirkonstru | Nein Ja Ja Nein

ktor méglich

Codegenerieru | Nein Ja Ja Nein

ng fiir

ToString(),

Dekonstruktio

Record-Typen 289

Name Struktur Record- Record- Klasse
Struktur Klasse
n und
Vergleich
Vererbung Nicht moglich | Nicht moglich | Moglich Moglich
Verinderbar/ struct Xy record struct | record class xy | class xy
Mutable Xy oder
record xy
(sofern kein
Primérstruktur
verwendet
wird und keine
Init-Only-
Setter)
Unverinderbar | readonly struct | readonly record class xy | class xy
/Immutable Xy record struct | q.. (sofern alle Properties
(geht auch | XY record xy mit mit—Only-Setter
ohne deklariert werden)
"readonly, (scl)fern
wenn alle Primérstruktur
Properties mit verwendet
Init-Only- wird oder alle
Setter Properties mit
deklariert Init-Only-
werden) Setter)
deklariert
werden)

Tabelle 1: Klassen und Strukturen: Ubersicht iiber die verschiedenen Typ-Arten in C#

Aus dieser Deklaration einer record struct
public record struct Person(int ID, string Vorname, string Name, string Status =
"unbekannt")

{

public int Alter { get; set; } = 0;

}
wird der nachstehend abgedruckte Programmcode mit Properties mit Getter und Init-Only-Setter
inklusive Equals()-Implementierung, Operator-Uberladung fiir == und !=, Ausgabe aller
Datenmitglieder bei ToString() sowie Deconstruct()-Implementierung.

Hinweis: Zu beachten ist, dass grundsitzlich in einer Record-Struktur die zusétzliche Fields
und Properties mit primitiven Typen, die nicht Teil des Primarkonstruktors sind, explizit
initialisiert werden miissen, vgl. C#-Regeln CS0171 (fiir Fields) bzw. CS0843 (fiir Properties):
"must be fully assigned before control is returned to the caller".

Bei einer readonly Record-Struktur miissen alle zusétzlichen Properties Init Only Properties
(get; init;) sein. Die Regel CS8341 ("Auto-implemented instance properties in readonly structs
must be readonly.") ist etwas fehlleitend, den der Zusatz "readonly" ist zwar moglich, hilft
alleine aber nicht. Dies sicht man bei den Properties Alter und Wohnort. "Readondly" miisste
in diesem Fall zwingend bei Fields deklariert werden. Weiterhin gilt jedoch die

290

Record-Typen

Initialisierungspflicht. Da fiir Fields gleichzeitig die Regel CS0191 "A readonly field cannot be
assigned to" gilt, kriegt man den Einsatz von Fields und Primérkonstruktor nicht in Einklang.

Listing: Generierter Programmcode aus einer record struct

// CS10.CS10_RecordTypen.Person
using System;

using System.Collections.Generic;
using System.Text;

public struct Person :

{

public int ID { get; set; }
public string Vorname { get; set;
public string Name { get; set; }
public string Status { get; set; }
public int Alter { get; set; }
public Person(int ID,

"unbekannt")

{

}

this.ID = ID;
this.Vorname = Vorname;
this.Name = Name;
this.Status = Status;
Alter = 0;

public override string ToString()

{

}

StringBuilder stringBuilder =
stringBuilder.Append ("Person")
stringBuilder.Append(" { ");

string Vorname, string Name,

IEquatable<Person>

}

string Status

new StringBuilder();

if (PrintMembers (stringBuilder))

{

stringBuilder.Append (' ');
}
stringBuilder.Append('}');
return stringBuilder.ToString(

)i

private bool PrintMembers (StringBuilder builder)

{

}

builder.Append ("ID = ") ;
builder.Append (ID.ToString()) ;
builder.Append (", Vorname = ")

builder.Append ((object?)Vorname) ;

builder.Append (", Name = ") ;
builder.Append ((object?)Name) ;
builder.Append (", Status = ");

builder.Append ((object?)Status) ;

builder.Append (", Alter = ");
builder.Append (Alter.ToString (
return true;

)

public static bool operator !=(Person left, Person right)

{
}

return ! (left == right);

Record-Typen 291

public static bool operator ==(Person left, Person right)
{

return left.Equals(right);
}

public override int GetHashCode ()
{
return (((EqualityComparer<int>.Default.GetHashCode (ID) * -1521134295 +

EqualityComparer<string>.Default.GetHashCode (Vorname)) * -1521134295 +
EqualityComparer<string>.Default.GetHashCode (Name)) * -1521134295 +
EqualityComparer<string>.Default.GetHashCode (Status)) * -1521134295 +
EqualityComparer<int>.Default.GetHashCode (Alter) ;

}

public override bool Equals (object obj)
{
return obj is Person && Equals ((Person)obj) ;

}

public bool Equals (Person other)
{
return EqualityComparer<int>.Default.Equals(ID, other.ID) &&
EqualityComparer<string>.Default.Equals (Vorname, other.Vorname) &&
EqualityComparer<string>.Default.Equals (Name, other.Name) &&
EqualityComparer<string>.Default.Equals(Status, other.Status) &&
EqualityComparer<int>.Default.Equals (Alter, other.Alter);

public void Deconstruct(out int ID, out string Vorname, out string Name, out
string Status)
{
ID = this.ID;
Vorname = this.Vorname;
Name = this.Name;
Status = this.Status;

}

Hingegen entsteht aus

public readonly record struct Person2(int ID, string Vorname, string Name, string
Status = "unbekannt")

{

//Regel CS0843: Auto-

implemented property must be fully assigned before control is returned to the ca
ller

public int Alter { get; init; } = 0;

}

dann der nachstehende Code mit Init Only Setter-basierten Properties (auch mit Equals()-
Implementierung sowie Operator-Uberladung fiir == und !=).

Listing: Generierter Programmcode aus einer readonly record struct
using System;

using System.Collections.Generic;

using System.Text;

public readonly struct Person2: IEquatable<Person_ImmutableRecordStructs>
{

public int ID { get; init; }

public string Vorname { get; init; }

public string Name { get; init; }

292 Record-Typen

public string Status { get; init; }
public int Alter { get; init; }

public Person ImmutableRecordStructs(int ID, string Vorname, string Name,
string Status = "unbekannt")
{
this.ID = ID;
this.Vorname = Vorname;
this.Name = Name;
this.Status = Status;
Alter = 0;
}

public override string ToString()
{
StringBuilder stringBuilder = new StringBuilder();
stringBuilder.Append ("Person_ImmutableRecordStructs") ;
stringBuilder.Append (" { ");
if (PrintMembers (stringBuilder))
{
stringBuilder.Append (' ');
}
stringBuilder.Append('}"');
return stringBuilder.ToString();

}

private bool PrintMembers (StringBuilder builder)
{

builder.Append ("ID = ") ;

builder.Append (ID.ToString()) ;

builder.Append (", Vorname = ");
builder.Append ((object?)Vorname) ;
builder.Append (", Name = ") ;

builder.Append ((object?)Name) ;
builder.Append (", Status = ");
builder.Append ((object?)Status) ;
builder.Append (", Alter = ");
builder.Append (Alter.ToString()) ;
return true;

}

public static bool operator != (P 2left, Per: 2right)

return ! (left == right);
}

public static bool operator ==(Person2left, Person2right)

return left.Equals(right);
}

public override int GetHashCode ()
{
return (((EqualityComparer<int>.Default.GetHashCode (ID) * -1521134295 +
EqualityComparer<string>.Default.GetHashCode (Vorname)) * -1521134295 +
EqualityComparer<string>.Default.GetHashCode (Name)) * -1521134295 +
EqualityComparer<string>.Default.GetHashCode (Status)) * -1521134295 +
EqualityComparer<int>.Default.GetHashCode (Alter) ;

public override bool Equals (object obj)
{

Record-Typen 293

return obj is Person2&& Equals ((Person_ ImmutableRecordStructs)obj) ;

}

public bool Equals (Person2other)
{
return EqualityComparer<int>.Default.Equals(ID, other.ID) &&
EqualityComparer<string>.Default.Equals (Vorname, other.Vorname) &&
EqualityComparer<string>.Default.Equals (Name, other.Name) &&
EqualityComparer<string>.Default.Equals(Status, other.Status) &&
EqualityComparer<int>.Default.Equals (Alter, other.Alter);

public void Deconstruct(out int ID, out string Vorname, out string Name, out
string Status)
{
ID = this.ID;
Vorname = this.Vorname;
Name = this.Name;
Status = this.Status;

294 Immutable Objects

33 Immutable Objects

Als Immutable Object wird in der objektorientierten Lehre ein Objekt bezeichnet, dessen Zustand
nach der Erzeugung nicht mehr verdndert werden kann. Normalweise sind alle Objekte in C#
verdnderbar (mutable).

Hinweis: Immutable Objects sind automatisch immer thread-safe, d.h. sie konnen beim Multi-
Threading in mehreren Threads verwendet werden ohne die Gefahr von Seiteneffekten (Race
Conditions).

In C# kann man Immutable Objects auf folgende Weisen erstellen:

= Klassen mit Readonly Fields

= Klassen mit Properties mit Init Only Setter

331 Immutable Objects auf Basis von Readonly Fields

Das Listing zeigt ein Immutable Object "ImmutablePerson” auf Basis von Fields mit Zusatz
"readonly”. Dies ist moglich seit C# 1.0.

Die Werte des Objekts konnen bei der Field-Deklaration und im Konstruktor gesetzt werden.

Listing: ImmutableObjects_Fields.cs

using ITVisions;
using System;

namespace Immutable Fields
{

class ImmutablePerson

{

private readonly int id;

private readonly string name;

public readonly DateTime AngelegtAm = DateTime.Now;

public ImmutablePerson(int id, string name)
{

this.id = id;

this.name = name;

}

public int ID

{

get { return this.id; }
}

public string Name

{

get { return this.Name; }
}

public override string ToString()
{
return "Person " + this.id + ": " + this.Name;

}

Immutable Objects 295

}

class ImmutablePersonClient
{
public static void Run()
{
CUI.Headline (nameof (ImmutablePersonClient)) ;
var hs = new ImmutablePerson (123, "Dr. Holger Schwichtenberg");
Console.WriteLine (hs) ;
// nicht méglich: hs.Name = "xy";

33.2 Immutable Objects auf Basis von Properties mit
Init Only Setter

Das Listing zeigt ein Immutable Object "ImmutablePerson" auf Properties mit Init Only Setter.
Dies ist moglich seit C# 9.0.

Die Werte des Objekts konnen nur bei der Property-Deklaration, im Konstruktor und der Objekt-
Initialisierung gesetzt werden.

Listing: ImmutableObjects_Properties.cs

using ITVisions;
using System;

namespace Immutable Properties

{
class ImmutablePerson
{
private int id { get; init; }
private string name { get; init; }
public DateTime AngelegtAm { get; init; } = DateTime.Now;

public ImmutablePerson(int id, string name)
{

this.id = id;

this.name = name;

}

public int ID

get { return this.id; }

public string Name

get { return this.Name; }

public override string ToString()

296 Immutable Objects

return "Person " + this.id + ": " + this.Name;
}
}

class ImmutablePersonClient
{
public static void Run()
{
CUI.Headline (nameof (ImmutablePersonClient)) ;
var hs = new ImmutablePerson(123, "Dr. Holger Schwichtenberg") { AngelegtAm =
DateTime.Now };
Console.WriteLine (hs) ;
// nicht méglich: hs.Name = "xy";
}
}
}

33.3 Immutable Objects auf Basis von Records

Die kiirzeste Variante zur Deklaration eines Immutable Objects ist seit C# 9.0 die Deklaration eines
Record-Typen in Kurzschreibweise, dann erstellt der Compiler automatisch Properties mit Init
Only Setter.

Dabei ist es allerdings nicht moglich, die Eigenschaft AngelegtAm innerhalb des Record-Typen im
Standard mit DateTime.Now zu belegen, da nur statische Werte als Standardwert in einem
Konstruktor erlaubt sind.

Listing: ImmutableObjects Records.cs

using ITVisions;
using System;

namespace Immutable Records
{

record ImmutablePerson(int id, string name, DateTime AngelegtAm);

class ImmutablePersonClient
{
public static void Run()
{
CUI.Headline (nameof (ImmutablePersonClient)) ;
var hs = new ImmutablePerson (123, "Dr. Holger Schwichtenberg" 6 DateTime.Now) ;
Console.WriteLine (hs) ;
// nicht méglich: hs.Name = "xy";

Immutable Objects 297

33.4 Praxisbeispiel: Inmutable Objects mit Record-
Typen beim Flux-/Redux-Pattern

Das Flux-Pattern ist eine Variante des Observer-Pattern, die in von der Firma Facebook im Jahr
2014 veroffentlicht wurde. Redux ist eine modifizierte Implementierung von Flux, die 2015
erschienen ist (vgl. [redux.js.org/understanding/history-and-design/prior-art]).

Redux verwendet "Pure Funktionen" (Pure Functions) im sogenannten "Reducer", die einen
Zustand nicht modifizieren, sondern einen neuen Zustand erzeugen (Immutable Objects).

Ohne Record-Typen sieht die Implementierung eines Zustands fiir einen einfachen Zahler und
eines Reducers zum Andern des Zzhlers in C# so aus:

public class CounterState

{
public int ClickCount { get; }

public CounterState(int clickCount)
{
ClickCount = clickCount;
}
}

public static class Reducers

{

[ReducerMethod]

public static CounterState ReducelncrementCounterAction(CounterState state,
IncrementCounterAction action) =>

new CounterState (state.ClickCount + 1);

[ReducerMethod]

public static CounterState ReduceDecrementCounterAction(CounterState state,
IncrementCounterAction action) =>

new CounterState (state.ClickCount - 1);
}
Mit Record-Typen ist dies wesentlich pragnanter implementierbar:

public record CounterState(int ClickCount) ;

public static class Reducersl
{
[ReducerMethod]
public static CounterState ReducelIncrementCounterAction (CounterState state,
IncrementCounterAction action) =>
state with { ClickCount = state.ClickCount + 1 };

[ReducerMethod]

public static CounterState ReduceDecrementCounterAction (CounterState state,
DecrementCounterAction action) =>

state with { ClickCount = state.ClickCount - 1 };

}
Weitere Teile des Redux-Patterns (Feature, Actions) sind hier nicht wiedergegeben, da sie sich
durch den Einsatz von Record-Typen nicht dndern. Siehe dazu die Bibliothek Fluxor, die Redux
fiir NET realisiert: github.com/mrpmorris/Fluxor

https://redux.js.org/understanding/history-and-design/prior-art
https://github.com/mrpmorris/Fluxor

298 Tupel

34 Tupel

Die grofite syntaktische Erweiterung in C# 7.0 betrifft Tupel. Tupel, also "Listen endlich vieler,
nicht notwendigerweise voneinander verschiedener Objekte" [de.wikipedia.org/wiki/Tupel]. Tupel
haben den Vorteil, dass man eine Datenstruktur definieren und mit Werten befiillen kann, ohne
dafiir extra eine Klasse oder eine Struktur zu deklarieren. So kann zum Beispiel eine Methode mit
einem Tupel mehrere Werte zuriickliefern, ohne ref oder out in der Parameterliste zu verwenden
und ohne extra eine Klasse oder Struktur fiir den Riickgabetyp zu schreiben.

[Hinweis: Tupel sind Werttypen (wie Strukturen).

341 Alte Tupelimplementierung mit
System.Collections.Tupel

Tupel konnen C#-Entwickler seit NET Framework 4.0 durch die generische .NET-Klasse
System.Collections.Tupel verwenden. Diese Klasse unterstiitzt Tupel mit bis zu acht Elementen
(also Oktupel), die iiber die Field-Attribute Item1, Item2 bis Item8 abgerufen werden konnen.
Tuple<int, string, bool> dozent = new Tuple<int, string, bool>(1l, "Holger
Schwichtenberg", true);

Console.WriteLine ($"Dozent mit der ID{dozent.Iteml}: {dozent.Item2} {(
dozent.Item3 ? "ist ein .NET-Experte!": "")}");

34.2 Neue Tupelimplementierung in der Sprachsyntax

In C# 7.0 hat sich Microsoft entschlossen, die Tupel-Unterstiitzung direkt in der Sprachsyntax zu
verankern. Ein Tupel deklariert der Entwickler mit runden Klammern bei der Zuweisung zu einer
Variablen:
var dozent2 = (1, "Holger Schwichtenberg", true);
Die Datentypen der Elemente ergeben sich hier aus den zugewiesenen Werten. In diesem Fall sind
die Elemente weiterhin Iteml, Item2 bis Item8 benannt. Der Entwickler kann aber in der
Deklaration auch sprechende Namen angeben und diese dann verwenden:
var dozent3 = (ID: 1, Name: "Holger Schwichtenberg", DOTNETExperte: true);
Console.WriteLine ($"Dozent mit der ID{dozent3.ID}: {dozent3.Name}
{ (dozent3.DOTNETExperte ? "ist ein .NET-Experte!" : "")}");
Auch hier erfolgt die Typvergabe durch Typableitung aus den angegebenen Werten. Wer explizit
Kontrolle iiber die Typen der Tupelelemente mdchte, kann die folgende Syntax nutzen:

(int ID, string Name, bool DOTNETExperte) dozent4 = (ID:1, Name:"Holger
Schwichtenberg", DOTNETExperte:true);
Im Zuweisungsteil (rechts des Gleichheitszeichens) ist die Wiederholung der Namen optional. Ein
Tupel kann an allen Stellen zum Einsatz kommen, wo Typnamen erlaubt sind, also auch bei
Attributen einer Klasse und Riickgabewerten einer Methode. Die maximale Anzahl der Elemente
pro Tupel ist nicht dokumentiert [learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-
7#tuples]. Im Test funktionierte ein Tupel mit 50 Elementen, was hinsichtlich der Ubersichtlichkeit
schon grenzwertig ist.

Hinweis: Fiir die Realisierung der Tupel benétigt der C#-Compiler eine .NET-Klasse mit
Namen System.ValueTuple. Diese ist in .NET Framework seit Version 4.7 bzw. .NET Core seit
Version 2.0 enthalten. Altere .NET-Versionen miissen ein NuGet-Paket
[packages.nuget.org/packages/System.ValueTuple] installieren. Ohne dies kommt es zum
Kompilerfehler "Predefined type 'System.ValueTuple is not defined or imported". Der Name

https://de.wikipedia.org/wiki/Tupel
https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-7%23tuples
https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-7%23tuples
https://packages.nuget.org/packages/System.ValueTuple

Tupel 299

"ValueTuple" weist darauf hin, dass die neuen Tupel als Value Types auf dem Stack gespeichert
werden, wihrend die alten Tupel (System.Collections.Tupel) als Reference Types im Heap
residieren.

34.3 Tupel-Dekonstruktion

Tupel lassen sich in ihre Einzelelemente via Dekonstruktion zerlegen. Das ndchste Listing zeigt
vier Varianten der Dekonstruktion des Riickgabewertes der Methode GetDozent(), die ein
dreiteiliges Tupel liefert. In den ersten drei Fillen entstehen jeweils drei einzelne Variablen. Im
vierten Fall kommt die Discard-Variable, deren Namen nur aus dem Unterstrich _ besteht, zum
Einsatz. Sie zeigt an, dass ein Element verworfen werden soll, d.h. zur Weiterverarbeitung nicht
bereitsteht.

Listing: Vier Varianten der Dekonstruktion eines Tupels

// Dekonstruktion eines Tupel

(int ID1, string Namel, bool DOTNETExpertel) = GetDozent() ;
Console.WriteLine (ID1) ;

Console.WriteLine (Namel) ;

Console.WriteLine (DOTNETExpertel) ;

// Dekonstruktion eines Tupel: var méglich

(var ID2, var Name2, var DOTNETExperte2) = GetDozent();
Console.WriteLine (ID2) ;

Console.WriteLine (Name2) ;

Console.WriteLine (DOTNETExperte2) ;

// Dekonstruktion eines Tupel: verkiirzte Form des Einsatzes von var
var (ID3, Name3, DOTNETExperte3) = GetDozent() ;

Console.WriteLine (ID3) ;

Console.WriteLine (Name3) ;

Console.WriteLine (DOTNETExperte3) ;

// Dekonstruktion eines Tupel: Werte ignorieren mit _
var (_, Name4, DOTNETExperted4) = GetDozent();
Console.WriteLine (Name4) ;

Console.WriteLine (DOTNETExperted) ;

static (int ID, string Name, bool DOTNETExperte) GetDozent ()
{
return (ID: 1, Name: "Holger Schwichtenberg", DOTNETExperte: true);

}
Die Dekonstruktion ist auch auf Instanzen von Klassen anwendbar, wenn diese eine Methode
Deconstruct() anbieten, siehe Listing.

Listing: Klassendekonstruktion

class Dozent
{
public int ID { get; set; }
public string Name { get; set; }
public bool DOTNETExperte { get; set; }

300 Tupel

public void Deconstruct(out int ID, out string Name, out bool DOTNETExperte)
{

ID = this.ID;

Name = this.Name;

DOTNETExperte = this.DOTNETExperte;

}

public Dozent() { }

// Expression-bodied Constructor
public Dozent(int ID) => this.ID = ID;

// Expression-bodied Finalizer
~Dozent () => Console.Error.WriteLine ("Finalized!") ;

// Expression-bodied Getter und Setter
private Decimal? honorar2;
public Decimal? Honorar2

get => this.honorar;
set => this.honorar = value ?? 1000.00m;

private Decimal? honorar;
public Decimal? Honorar
{

get => this.honorar;

// throw ist nun an Stellen erlaubt, wo Ausdriicke erwartet werden, z.B. ??
und Expression Lambdas

set => this.honorar = value ??

throw new ArgumentNullException (nameof (value), "Kein Honorar nicht
erlaubt!");

}

public static void ClassDeconstruction()

{

CUI.Headline (nameof (ClassDeconstruction)) ;

// Dozent ist dekonstruierbare Klasse mit Deconstruct ()

var d = new Dozent() { ID = 1, Name = "Holger Schwich b , DO te =
true };

(var ID, var Name, var DOTNETExperte) = d;

Console.WriteLine (ID) ;

Console.WriteLine (Name) ;

Console.WriteLine (DOTNETExperte) ;

}

Seit C# 10.0 gibt es als neues Feature "Mixed Deconstruction". Dies bedeutet, dass man reine
Zuweisungen an bestehende Variablen und neue Variablendeklarationen mit Initialisierung in einer
Zeile gemischt kann.

// Tupel deklarieren

Tupel 301

var point = (x: 100, y: 200);

// schon vor C# 10.0 méglich: Dekonstruktion mit zwei
Deklarationen+Initialisierung fir neue Variablen

(int x, int y) = point;

// schon vor C# 10.0 mdglich: Dekonstruktion mit Zuweisung zu zwei bestehenden
Variablen

int x1 = 0;

int y1 = 0;

(x1, yl) = point;

// seit C# 10: Dekonstruktion mit Zuweisung und Initialisierung gemischt
méglich

int x2 = 0;

(x2, int y2) = point;

34.4 Serialisierung von Tupeln

Bei der Serialisierung von Tupeln (siche folgendes Listing) wird man feststellen, dass die im
Programmcode vergebenenen Elementnamen nicht serialisiert werden, sondern nur als "Item1",
"Item2", "Item3" usw. dort erscheinen.

Listing: JSON-Serialisierung eines Tupel

var dozent7 = (ID: 1, Name: “"Holger Schwichtenberg”, DOTNETExperte: true);
var json = JsonConvert.SerializeObject(dozent7);
Console.Writeline(dozent7.1ID);

Console.WriteLine(dozent7.Name);

Console.Writeline(dozent7.DOTNETExperte);

Console.WriteLine("JSON:" + json);

#region Ergebnis

//ISON: { "Iteml":1,"Item2":"Holger Schwichtenberg”,"Item3":true}
#endregion

Grund dafiir ist, dass die Elementnamen nur "syntaktischer Zucker" des C#-Compilers sind. In
Wirklichkeit besitzt die Klasse ValueTupel nur die Elementnamen mit "ItemX". Dies sicht man
auch, wenn man den ILSpy [github.com/icsharpcode/ILSpy] zum Dekompilieren einsetzt.
valueTuple<int, string, bool> dozent? = new ValueTuple<int, string, hool>(1, "Holger Schwichtenberg”, true);
string json = JsonConvert.Serializeobject(dozent7);

Consale.Writeline(dozent7. Tteml);

Console.WriteLine(dozent7.Item2);

Conscle.Writeline(dozent7. Item3);
Consele.Writeline("JSON:" + json);

Abbildung: Obiger Programmcode mit dem ILSpy dekompiliert

34.5 Vergleich von Tupeln (C# 7.3)

In C# 7.0 hatte Microsoft ValueTupel als leichtgewichtige, unbenannte Datenstruktur eingefiihrt,
die sich auf dem Stack speichert - im Gegensatz zu dem in NET Framework 4.0 eingefithrten
Referenztyp System.Collections.Tupel. Nun erst, in C# 7.3, erlaubt die Programmiersprache auch
den direkten Vergleich zweier Tupel mit den Vergleichsoperatoren == und !=.

var p = (ID: 1, Name: "H. Schwichtenberg", DOTNETExperte: true);

//

https://github.com/icsharpcode/ILSpy

Tupel

(1, "H. Schwichtenberg", true)){ Console.WriteLine("Er ist es :-)"); }
if (p '= (1, "H. Schwichtenberg", true)){ Console.WriteLine("Er ist nicht :-(");}

Nicht lediglich eine Variable und ein Tupelausdruck, sondern auch zwei Tupelausdriicke sind jetzt
direkt vergleichbar. So kann man nun anstelle von

if (x == 1 && y == 2) { Console.WriteLine("x ist 1 und y ist 2!"); }
auch formulieren:

if ((x, y) == (1, 2)) { Console.WriteLine("x ist 1 und y ist 2!"); }

Typaliase (seit C# 12.0) 303

35 Typaliase (seit C# 12.0)

Seit C# 12.0 gibt es mit Typaliasen die Moglichkeit, fiir einen Typen einen alternativen Namen zu
definieren. Ein Alias ist moglich fiir C#-Typen (z.B. Arrays und Tupel), .NET-Basisklassen/-
Strukturen oder eigene Klassen/Strukturen.

Einmal mehr kommt dabei das Schliisselwort using zum Einsatz.

Wenn Sie schreiben

using Numbers = int[];

konnen Sie fortan Numbers anstelle von int[] bei Typdeklarationen verwenden:
Numbers numbers = new int[10];

Allerdings darf man den Alias NICHT bei der Instanziierung verwenden:

= new ;

Auch kann man leider keinen Alias definieren mit Hilfe eines Aliases. Das geht also auch nicht:
using DbIntList = List<DbInt>;

Zweites Beispiel: Dblnt als Alias fiir ein int? bzw. Nullable<int>:

using DbInt = int?;

Danach ist moglich:

Listing: Verwendung des Alias DbInt

public DbInt LoadNumberFromDatabase ()
{

try

{

}
catch (Exception)
{
return null;
}
}

DbInt n;
n = LoadNumberFromDatabase () ;
Console.WriteLine(n == null ? "null" : n);

Drittes Beispiel: Typalias fiir ein Tupel
using Measurement = (string Units, int Distance);

Danach ist moglich:

Listing: Verwendung des Alias Measurement

public Measurement Add(Measurement ml, Measurement m2)
{
if (ml.Units == m2.Units)
{
return (ml.Units, ml.Distance + m2.Distance) ;
}
else
{

throw new Exception("Units do not match!");

304 Typaliase (seit C# 12.0)

Measurement ml = ("m", 100);

Console.WriteLine (ml.Distance + " " 4+ ml.Units);
Measurement m2 = ("m", 42);
Console.WriteLine (m2.Distance + " " + m2.Units);

Measurement m3 = Add(ml, m2);

Console.WriteLine (m3) ;

Viertes Beispiel: Auch kénnen Entwicklerinnen und Entwickler Typaliase fiir .NET-Klassen
definieren, unabhingig davon, ob diese aus der NET-Basisklassenbibliothek oder einem NuGet-
Paket stammen bzw. selbst definiert sind, z.B.

using MyPerson = BO.Person;

Anders als beim Int-Array-Alias numbers ist mit einem Klassenaliase auch eine Verwendung bei
der Instanziierung gestattet:

MyPerson p = new MyPerson() ;

MyPerson[] pArray = new MyPerson[10];

Ein Typalias muss am Beginn einer Datei auflerhalb von allen Typimplementierungen (Klassen,
Strukturen) stehen. Der Typalias darf vor oder nach den using-Anweisungen fiir
Namensraumimporte und vor oder nach der Namensraumdeklaration stehen. Ausnahme: Wenn der
Typalias nicht nur fiir eine Datei, sondern alle Dateien im Projekt gelten soll, dann muss der Alias
vor dem Namensraum stehen und zusétzlich das Schliisselwort global besitzen. Ein Typalias kann
nicht fiir andere Projekte exportiert werden. Er muss in jedem .NET-Projekt einmal deklariert sein,
wenn er verwendet wird.

Listing: Globale Typaliase miissen am Anfang einer Datei stehen. Auf die aktuelle Datei
beschrdnkte Typaliase diirfen auch innerhalb eines Namensraums vorkommen.

global using Measurement = (string Units, int Distance);
using BO;

namespace BL;

// Typaliase diirfen im Namensraum stehen
using Numbers = int[];

using DbInt = int?;

using MyPerson = Person;

class MeineKlasse

{

Funktionale Programmierung in C# (Delegates / Lambdas) 305

36 Funktionale Programmierung in C#
(Delegates / Lambdas)

C# unterstiitzt funktionale Programmierung insbesondere durch Delegates (seit C# 1.0) und
Lambda-Ausdriicke (seit C# 3.0).

36.1 Delegates

Delegaten (engl. Delegates) sind typsichere Zeiger auf Funktionen (Funktionszeiger). Durch
Delegaten kann der aufzurufende Code variabel gehalten werden. Sie kommen insbesondere zum
Einsatz fiir die Ereignisbehandlung und fiir asynchrone Methodenaufrufe. Ein Delegat kann auf
mehrere Funktionen zeigen (Multicast Delegate). Beim Aufruf des Delegaten werden alle an den
Delegaten gebundenen Funktionen aufgerufen.

C# unterstiitzt die Definition dieser .NET-Funktionszeiger seit Version 1.0 durch das
Schliisselwort delegate. In dem folgenden Listing wird zundchst ein Delegate GrussFunktion
definiert, der zwei Zeichenkettenparameter erwartet und eine Zeichenkette zuriickliefert. Danach
folgen zwei Funktionsimplementierung fiir den Delegate GrussFunktion, die nacheinander dem
Delegate zugewiesen und genutzt werden.

Eine Funktionsimplementierung nimmt — anders als die Vererbung unter Klassen, die man mit dem
Doppelpunkt ausdriickt — nicht expliziten Bezug auf den zu implementierenden Delegate. Eine
Funktion ist eine giiltige Implementierung eines Delegates schon dann, wenn die
Methodensignatur (Anzahl und Typ der Parameter) iibereinstimmt (in der Fachsprache: Duck
Typing oder: "Wenn es quarkt wie eine Ente und watschelt wie eine Ente, dann ist es eine Ente!").

Wichtig: Bei der Zuweisung einer Funktionsimplementierung zu einem Delegate diirfen hinter
dem Methodennamen keine runden Klammern verwendet werden und auch keine Parameter
angegeben werden. Die runden Klammern bedeuten, die Methoden soll aufgerufen werden. Die
Zuweisung einer Funktionsimplementierung soll noch keinen Aufruf der Implementierung
darstellen!

Listing: Eigene Delegate mit zwei Implementierungen
public class DelegateBeispiella
{
// Delegate definieren
public delegate string GrussFunktion(string name, string vorname);

static void Run_EigeneDelegates ()

{

string e; // Ergebnis

// Zuweisung einer Implementierung an den Delegate
GrussFunktion g = Hallo;

// BAufruf der Funktion, die hinter dem Delegate steht

e = g("Schwichtenberg", "Holger");

Console.WriteLine (e) ;

// Zuweisung einer anderen Implementierung an den Delegate
g = GutenTag;

// Bufruf der Funktion, die jetzt hinter dem Delegate steht
e = g("Schwichtenberg", "Holger");

Console.WriteLine (e) ;

306 Funktionale Programmierung in C# (Delegates / Lambdas)

// Implementierng #1 Delegate GrussFunktion<T,T>
static public string Hallo(string name, string vorname)
{

return "Hallo " + vorname + " " + name + "!";

}

// Implementierng #2 Delegate GrussFunktion<T,T>

static public string GutenTag(string name, string vorname)

{

return "Guten Tag " + vorname + " " + name + "!";

}
}
In dem vorhergehenden Beispiel wird zwar die Syntax fiir Delegates deutlich, aber das gleiche
Ergebnis hitte man leichter erzielen konnen, indem man die Funktionen Hallo() und GutenTag()
direkt aufgerufen hitte.

Ein Delegate kann Methodenparameter sein. Das ndchste Listing macht das vorherige Beispiel
etwas eindruckvoller, indem hier eine Methode DruckeGruss() exisitiert, die Name, Vorname und
einen Funktionszeiger vom Typ GrussFunktion erwartet. So kann man im Hauptprogramm immer
einfach DruckeGruss() aufrufen mit ganz unterschiedlichen Logiken der Grulerzeugung.

Listing: Eigene Delegate als Methodenparameter

public class DelegateBeispiellb
{
// Delegate definieren
public delegate string GrussFunktion(string name, string vorname) ;

static void Run_DelegateAlsParameter ()
{

DruckeGruss ("Schwichtenberg", "Holger

Hallo) ;
DruckeGruss ("Schwichtenberg", "Holger", GutenTag);
}

// Funktion, die eine Funktion vom Typ GrussFunktion erwartet

public static void DruckeGruss (string name, string vorname, GrussFunktion
grussfunktion)

{

var grussText = grussfunktion(name, vorname) ;

Console.WriteLine (grussText) ;

}

// Implementierng #1 Delegate GrussFunktion<T,6T>
static public string Hallo(string name, string vorname)
{

return "Hallo " + vorname + " " + name + "!";

}

// Implementierng #2 Delegate GrussFunktion<T,T>

static public string GutenTag(string name, string vorname)
{

return "Guten Tag " + vorname + " " + name + "!";

}

Funktionale Programmierung in C# (Delegates / Lambdas)

}

36.2

Vordefinierte Delegates Action<T> und Func<T>

Die .NET-Klassenbibliothek bietet im Namensraum System, in dem alle Basisdatentypen enthalten

sind, insgesamt 32 vordefinierte generische Delegate-Typen.

16 Delegate-Typen ohne Riickgabewert mit
Action<T>

16 Delegate-Typen mit Riickgabewert mit
Func<T>

Action

Action<T=>

Action<T1,T2>

Action<T1,T2T3>

Action<T1,T2T73,T4>
Action<T1,T2T3,T4T5>
Action<T1,T2T3,T4T5T6>
Action<T1,T2T3,T4T5T6T7>
Action<T1,T2T3,T4T5T6T7 T8>
Action<T1,T2T3,T4T5T6,T7, T8 T3>
Action<T1,T2T3,T4T576,T7,T8T9,T10>
Action<T1,T2T3,T4T5T6T7, 78T TI0TI1>

Action<T1,T2T3,T4T5T6T7.T8 T T10T11,T1
2>

Action<T1,T2T3,T4T576T7.T8 T8 T10.T11.T1
EREER

Action<T1,T2,T3,74,T5,76,77,78,79,T10,T11,T1
2T13T14>

Action<T1,T2T3,T4T576,T7, T8 T9,T10,T11,T1
2T13T14T15>

Action<T1,T2T3,T4T576,T7,T8,T9,T10,T11,T1
2T13T14T15T16>

Func<TResult>

Func<T TResults>

Func<T1,T2 TResult>
Func<T1,T2T3,TResult>
Func<T1,T2,T3,T4,TResult>
Func<T1,72,73,T4,T5,TResult>
Func<T1,72,73,T4,T5,T6,TResult>
Func<T1,72,73,T4,T5,76,T7 TResult>
Func<T1,T2,T3,T4,T5,T6,T7,78 TResult>
Func<T1,T2,T3,T4T5,T6,T7,78,T9,TResult>
FUNC<T1,T2,T3,T4,T5,T6,T7,78,T9,T10,TResult>

Func<T1,T2,T3,T4T576,T7,T8,T9,T10,T11,TRes
ult>

Func<T1,T2,T3,T4T5,T6,T7,T8,T9,T10,T11,T12,
TResult>

Func<T1,T2T3T4T5T6T7,T8T9T10,T11,T12,
T13,TResult>

Func«<T1,T2,T3,T4T5,76,T7,T2,T9,T10,T11,T12,
T13,T14TResult>

Func<T1T2T3T4T5T6TZ T TOTIOTILTIZ,
T13,T14,T15,TResult>

Func<T1,T2,T3T4T5T6,T7,T8,T9,T10,T11,T12,
T13,T14T15T16TResult>

Tabelle: Vordefinierte generische Delegate-Typen in der .NET-Klassenbibliotek

Das folgende Listing verzichtet auf eine eigene Delegate-Definition und verwendet stattdessen

zwei Varianten des vordefinierten Delegate Action und eine Variante von Func.

Listing: Vordefinierte Delegates

public class DelegateBeispiellc
{

public static void VordefinierterDelegate ()

{

Action<string> log = LogToConsole;
log("Start...");

1/

log("Lauft...");

//

log("Erfolgreich!");

Action<int, string, bool> log2 = LogToConsole2;

308 Funktionale Programmierung in C# (Delegates / Lambdas)

log2 (1, "Start...", true);
I ooo

log2(2, "Lauft...", false);
//

log2 (3, "Erfolgreich!", true);

Func<string, string, string> gruss = Hallo;
gruss ("Schwichtenberg", "Holger");

gruss = GutenTag;
gruss ("Schwichtenberg", "Holger");

// Implementierung des Delegate Action<T>

public static void LogToConsole(string text)

{

Console.WriteLine ($"LOG {DateTime.Now.ToShortTimeString()}: {text}");
}

// Implementierung des Delegate Action<T>

public static void LogToConsole2(int ID, string text, bool withTime)

{

Console.WriteLine ($"LOG { (withTime ? DateTime.Now.ToShortTimeString() : "")}:
{ID:0000}: {text} ");

}

// Implementierng #1 Delegate GrussFunktion<T,T>
static public string Hallo(string name, string vorname)
{

return "Hallo " + vorname + " " + name + "!";

}

// Implementierng #2 Delegate GrussFunktion<T,6T>
static public string GutenTag(string name, string vorname)
{
return "Guten Tag " + vorname + " " + name + "!";
}
}

Wichtig: Zu beachten ist, dass die Definitionen eines eigenen Delegates

public delegate string GrussFunktion(string name, string vorname);
und die Nutzung eines vordefinierten Delegatetypen
Func<string, string, string> GrussFunktionVordefiierterDelegate;

nicht kompatibel sind, da es sich um verschiedene Typen handelt, auch wenn Parameteranzahl,
Parametertypen und Riickgabetyp kompatibel ist.

Funktionale Programmierung in C# (Delegates / Lambdas) 309

36.3 Pradikate mit Predicate<T>

Neben Action<T> und Func<T> gibt es auch noch den vordefinierten Delegattypen Predicate<T>
aus Zeiten von .NET 1.0. Ein Prédikat ist ein Funktionszeiger (Delegat) auf eine Methode, die true
oder false liefert. Predicate<T> entspricht also System.Func<T, bool>.

Pradikate werden zur Auswahl von Elementen in Listen verwendet. Die Objektmengenklassen in
der FCL stellen aus historischen Griinden Methoden bereit, die Predicate<T> erwarten, z.B. die
Filter-Funktionen der Array-Klasse wie Find(), FindAll(), FindIndex() und FindLast().

Listing: Einsatz von Predicate<T>

// Predicate ist .NET 1.x-Stil: System.Predicate<T> _= _System.Func<T,
bool>

bool FilterZahlenKleiner1@(int x)

{

Console.WriteLine("Priife zahl:
return x < 10;

}

+ X);

public void PredidateDemo()
{
// Datenmenge
int[] zahlen = { 1, 30, 5, 10, 15, 20, 3, 9 };
// Verwendung Lambda-Ausdruck
Predicate<int> filter = FilterZahlenKleiner10;
var Ergebnis = Array.FindAll(Zahlen, filter);
// Ausgabe
foreach (object Zahl in Ergebnis)
{
Console.WriteLine(Zahl);
}
}

36.4 Lambdas

Ein Lambda ist seit C# 3.0 ist eine stark verkiirzte Schreibweise fiir eine anonyme Methode.
Technisch gesehen handelt es sich bei den Lambdas um einen Funktionszeiger (Delegates) und
zugleich um anonyme Delegaten, da kein expliziter Name fiir die Delegate-Klasse vergeben wird.
Die Namensvergabe erledigt, wie bei anonymen Typen, der Compiler.

Praxishinweis: Lambda-Ausdriicke sind eine elegante Moglichkeit, Code zu schreiben, der
kurz und prégnant ist, insbesondere in Situationen, in denen Sie eine schnelle und einfache
Funktion bendtigen, ohne eine separate Methode zu definieren. Lambdas sind in den letzten
Jahren an immer mehr Stellen vorgeriickt, an denen zuvor Methoden geschrieben wurden.

Der Rumpf eines Lambdas wird durch den Operator => knapp gehalten. Der Operator => wird
gelesen: "abgebildet auf".

310 Funktionale Programmierung in C# (Delegates / Lambdas)

Lambdas gibt es in zwei Formen: Einzeilige Lambdas mit nur einem Ausdruck nach dem =>
(Expression Lambda) und mehrzeilige Lambdas mit einem Befehlsblock in geschweiften
Klammern nach dem => (Statement Lambda).

36.4.1 Einzeilige Lambda-Ausdriicke

Das folgende Listing zeigt eine Reihe von einzeiligen Lambda-Ausdriicken, die nur einen Wert
zuriickliefern.

Hinweis: Lambda-Ausdriicke, die einen Typ auf einem anderen Typ abbilden (also Beispiele 2
bis 4 in dem folgenden Listing), nennt man eine Projektion.

Listing: Beispiele fiir einzeilige Lambda-Ausdriicke in C#

// Lambda-Ausdriicke deklarieren

Func<int> £f0 = () => DateTime.Now.Hour;

Func<int, int> fl = x => x + 1;

Func<string, string> £2 = s => s.ToUpper() ;

Func<string, int> £3 = s => s.Length;

Func<string, int, string> f4 = (s, i) => s.Substring(0, i);

// Lambda-Ausdriicke verwenden

Console.WriteLine (£0()); // ergibt 42

Console.WriteLine (£1(10)); // ergibt 11

Console.WriteLine (£2 ("World Wide Wings")); // ergibt WORLD WIDE WINGS
Console.WriteLine (£3 ("World Wide Wings")); // ergibt 16

Console.WriteLine (f4 ("World Wide Wings", 10)); // ergibt "World Wide"

Seit C# 10.0 gibt es fiir die Deklaration von Funktionen auf Basis von Lambda-Ausdriicken
abgekiirzte Syntaxformen auf Basis von Typherleitung. Dabei gibt der Softwareentwickler nur
noch den Typ der Parameter an. Der Riickgabetyp ergibt sich aus dem Code.

Die folgenden Programmzeilen zeigen die verkiirzte Variante der mit Lambda-Ausdriicken oben
deklarierten Funktionen FO bis 4.

Listing: Lambda-Ausdriicke deklarieren seit C# 10.0 mit Typherleitung

var fO0b = () => DateTime.Now.Second;

var flb = (int x) => x + 1;

var £2b = (string s) => s.ToUpper();

var £3b = (string s) => s.Length;

var f4b = (string s, int i) => s.Substring(0, i);

Es ist moglich den Riickgabetyp des Lambda-Ausdrucks ("Lambda Return Type") explizit
anzugeben. Dies ist zwar in allen obigen Fillen nicht erforderlich, aber einige Entwickler
préaferieren explizitere Codierung.

Listing: Lambda-Ausdriicke deklarieren seit C# 10.0 mit explizitem Riickgabetyp

var fOc = int () => DateTime.Now.Second;

var flc = int (int x) => x + 1;

var f2c = string (string s) => s.ToUpper();

var £3c = int (string s) => s.Length;

var f4c = string (string s, int i) => s.Substring(0, i);

Der explizite Riickgabetyp ist nur erforderlich, wenn man einen bestimmten Riickgabetyp
erzwingen will, z.B. hier.

Listing: Explicit Lambda Return Type

var £10 = byte () => 42; // Riickgabetyp wdre sonst int

var fll1 = FileSystemInfo () => new DirectoryInfo(Q@"c:\Windows"); // wire sonst Di
rectoryInfo

Console.WriteLine (£10()) ;

Funktionale Programmierung in C# (Delegates / Lambdas) 311

Console.WriteLine (£11 () .FullName) ;

Seit C# 10.0 kann man einem Lambda-Ausdruck auch Annotationen/Attribute fiir Parameter und
Riickgabewert geben:

var f£12 = [return:NotNull] ([SensitiveData] string name) => "Hallo " + name;

36.4.2 Einsatzbeispiele fiir Lambda-Ausdriicke

Ein Lambda-Ausdruck kann einen vordefiniertem Delegate oder einen eigenen Delegate
realisieren.

Listing: Expression Lambda vs. Statement Lambda

public delegate string GrussFunktion(string name, string vorname) ;
public delegate DateTime Berechnung(int type, byte stunden) ;

public static void LambdaArten ()
{
// Beispiel fiir Expression Lambda mit vordefiniertem Delegate
Func<string, string, string> expressionLambdal = (name, vorname)
=> $"Guten Morgen {vorname} {name}!";
// Beispiel fiir Expression Lambda mit vordefiniertem Delegate
Func<int, byte, DateTime> expressionLambda2 = (tage, stunden)
=> DateTime.Now.AddDays (tage) .AddHours (stunden) ;
// Beispiel fiir Expression Lambda mit eigenem Delegate
GrussFunktion expressionLambda3 = (name, vorname)
=> $"Guten Morgen {vorname} {name}!";
// Beispiel fiir Expression Lambda mit eigenem Delegate
Berechnung expressionLambda4 = (tage, stunden)
=> DateTime.Now.AddDays (tage) .AddHours (stunden) ;
// Beispiel fiir Statement Lambda mit vordefiniertem Delegate
Func<string, string, string> statementLambdal = (name, vorname) =>
{
return $"Guten Tag {vorname} {name}!";
}i
// Beispiel fiir Statement Lambda mit vordefiniertem Delegate
Func<int, byte, DateTime> statementLambda2 = (tage, stunden) =>
{
return DateTime.Now.AddDays (tage) .AddHours (stunden) ;
}i
// Beispiel fiir Statement Lambda mit eigenem Delegate
GrussFunktion statementLambda3 = (name, vorname) =>
{
return $"Guten Tag {vorname} {name}!";
}i
// Beispiel fiir Statement Lambda mit vordefiniertem Delegate
Berechnung statementLambdad4 = (tage, stunden) =>
{
return DateTime.Now.AddDays (tage) .AddHours (stunden) ;
}i

312 Funktionale Programmierung in C# (Delegates / Lambdas)

Func<string, string, string> statementLambda5 = (name, vorname) =>
{
Trace.WriteLine ("GutenTag() wurde aufgerufen!");
return $"Guten Tag {vorname} {name}!";
}:
}
Listing: Delegate-Beispiel mit Lambda-Ausdruck

// Deklaration Delegate GrussFunktion (string,string) -> string
public delegate string GrussFunktion(string name, string vorname) ;

public static void EigenerDelegate ()
{

// Implementierung des Delegate GrussFunktion(string,string) als Statement Lambd
a
GrussFunktion GutenTag = (name, vorname) =>

Trace.WriteLine ("GutenTag() wurde aufgerufen!");
return $"Guten Tag {vorname} {name}!";

}i

// Ub be des Exf ion Lambda

DruckeGruss ("Schwich g", "Holger", GutenTag);

}

Ein Lambda-Ausdruck muss keinen Namen besitzen, wenn er als Parameter an eine Funktion
iibergeben wird. In diesem Fall spricht man von einer anonymen Funktion.

Listing: Beispiel fiir benannte und unbenannte Lambda-Ausdriicke

public static void Run()

{

// Deklaration Lambda-Ausdruck

Func<string, string, string> gutenMorgen = (name, vorname) => $"Guten Morgen {vo
rname} {name}!";

// Nutzung des benannten Lambda-Ausdrucks

Dr ussFunc ("Schwi g", "Holger", gutenMorgen) ;

// Unbenannter Lambda-Ausdruck (anonyme Funktion)

DruckeGrussFunc ("Schwichtenberg", "Holger", (name, vorname) => $"Guten Abend {vo
rname} {name}'");

}

// Funktion, die eine Funktion (string,string) -> string erwartet
public static void DruckeGrussFunc(string name, string vorname, Func<string, stri
ng, string> grussfunktion)

{

var grussText = grussfunktion(name, vorname) ;

Console.WriteLine (grussText) ;
}
Eine anonyme Funktion kann auf alle Variablen der umgebenden Funktion zugreifen. Seit C# 9.0
kann man dies unterbinden mit dem Zusatz static. Der Entwickler kann sich mit dem Zusatz static
davor schiitzen, versehentlich auf Daten der Umgebung zuzugreifen.

Listing: Nicht-statische vs. statische anonyme Funktionen

public static void StatischeAnonymeFunktionen ()
{
string vorname = "Holger";
string name = "Schwichtenberg";

Funktionale Programmierung in C# (Delegates / Lambdas) 313

// normale anonyme Funktion: vorname und name sind nutzbar
DruckeGrussFunc ("Guten Abend", (gruss) => $"{gruss} {vorname} {name}!");
// statische anonyme Funktion: vorname und name sind NICHT nutzbar

// DruckeGrussFunc ("Guten Abend", static (gruss) => $"{gruss} {vorname}
{name}!");

}

// Funktion, die eine Funktion (string,string) -> string erwartet
public static void DruckeGrussFunc(string Gruss, Func<string, string>
formatGruss)

{

var grussText = formatGruss (Gruss) ;

Console.WriteLine (grussText) ;

}
Seit C# 9.0 ist es in Lambda-Ausdriicken auch erlaubt, mit der Discard-Variable _ anzuzeigen,
dass man einen Parameter nicht verwenden will.
DruckeGrussFunc ("Guten Abend", (_) => $"Hallo {vorname} {name}!");
Ein weiteres Einsatzbeispiel fiir Lambda-Ausdriicke ist der Einsatz als Pradikat (Predicate<T>).
Das folgende Listing zeigt drei verschiedene Schreibweisen, um alle Vorstandsmitglieder aus einer
Liste zu filtern, die eine bestimmte Bedingung erfiillen; die letzte Schreibweise mit Lambda-
Ausdriicken ist die kiirzeste und eleganteste.

Listing: Pradikate in C#

// Pradikate klassische Schreibweise
List<Vorstandsmitglied> JungeVorstandsmitgliederl =
Vorstandsmitglieder.FindAll (AuswahlJunge) ;
Console.WriteLine ("Junge Vorstandsmitglieder: " +
JungeVorstandsmitgliederl.Count) ;

// Pridikate mit anonymen Methoden

List<Vorstandsmitglied> JungeVorstandsmitglieder2 =

Vorstandsmitglieder.FindAll (delegate (Vorstandsmitglied v) { return v.Alter < 40;
K

Console.WriteLine ("Junge Vorstandsmitglieder: " +
JungeVorstandsmitglieder2.Count) ;

// Pridikate mit Lambda-Ausdruck

List<Vorstandsmitglied> JungeVorstandsmitglieder3 = Vorstandsmitglieder.FindAll (v
=> v.Alter < 40);

Console.WriteLine ("Junge Vorstandsmitglieder: " +
JungeVorstandsmitglieder3.Count) ;

}

// gehdért zu Pradikat klassische Schreibweise!
static public bool AuswahlJunge (Vorstandsmitglied v)
{

return (v.Alter < 40);
}

36.4.3 Mehrzeilige Lambdas

Die folgenden Listings zeigen Beispiele fiir mehrzeilige Lambdas. Man spricht bei den
mehrzeiligen Lambdas von "Statement Lambdas" — im Kontrast zu den "Expression Lambdas",
die aus einer Zeile bestehen nur einen Wert zuriickliefern.

314 Funktionale Programmierung in C# (Delegates / Lambdas)

Listing: Beispiel fiir einen mehrzeiligen Lambda-Ausdruck mit Riickgabewert in C#

Predicate<int> ZahlenKleinerl0 = x =>

{

Console.WriteLine ("Priife Zahl: " + x);
return x < 10;
}i

// Datenmenge

int[] Zahlen = {1,30, 5, 10, 15, 20, 3, 9};

// Verwendung Lambda-Ausdruck

var Ergebnis = Array.FindAll(Zahlen, ZahlenKleinerlO);
// Rusgabe

foreach (object Zahl in Ergebnis)

{

Console.WriteLine (Zahl) ;

}
Listing: Beispiel fiir einen mehrzeiligen Lambda-Ausdruck ohne Riickgabewert in C#

// Deklaration Lambda-Ausdruck ohne Riickgabewert
Action<int> Ausgabe = x =>

Trace.WriteLine (x) ;
Console.WriteLine (x);

// Datenmenge

int[] ZahlenReihe = {1,30, 5, 10, 15, 20, 3, 9};
// Verwendung Lambda-Ausdruck

Array.ForEach (ZahlenReihe, Ausgabe) ;

36.4.4 Optionale Lambda-Parameter (seit C# 12.0)

Lambdas erlaubten vor C# 12.0 keine optionalen Parameter. Das hat sich in C# 12.0 geéndert.
Anstelle dieser Funktion mit optionalem Parameter z

public decimal Calc(decimal x, decimal y, decimal z = 1)

{

return (x +y) * z;

}

kann ein Entwickler in C# 12.0 nun auch diesen Lambda-Ausdruck schreiben:

var calc = (decimal x, decimal y, decimal z = 1) => (x +y) * z;

Das geht auch mit Statement Lambdas. Anstelle dieser Methode mit optionalem Parameter color

public void Print(object text, ConsoleColor? color = null)
{

if (color !'= null) Console.ForegroundColor = color.Value;
Console.WriteLine (text) ;

if (color !'= null) Console.ResetColor();

}

kann nun dieses Statement Lambda treten:

var Print = (object text, ConsoleColor? color = null) =>

{

if (color !'= null) Console.ForegroundColor = color.Value;
Console.WriteLine (text) ;

if (color '= null) Console.ResetColor() ;

}i

Funktionale Programmierung in C# (Delegates / Lambdas)

315

316 Ereignisse

37 Ereignisse

Klassen oder einzelne Objekte konnen Ereignisse auslosen, die von anderen abonniert werden
konnen. Zu einem Ereignis kann es beliebig viele Abonnenten in beliebig vielen Objekten geben.
In diesem Fall ruft das Objekt Unterroutinen in allen Abonnenten auf, wenn eine bestimmte
Situation eintritt.

Die Definition und die Behandlung von Ereignissen ist in C# komplizierter im Vergleich zu der
Vorgehensweise in Visual Basic.

371 Definition von Ereignissen

Ein Ereignis ist ein Klassenmitglied, das mit event deklariert wird und sich auf einen Delegaten
bezicht, entweder einen selbstdefinierten Delegaten oder einen vordefinierten Delegaten wie
Action<T> oder EventHandler<T>. Ereignisse konnen Instanzen zugeordnet sein (nicht statisch)
oder der Klasse zugeordnet sein (statisch). Das folgende Beispiel zeigt drei statische Ereignisse der
Klasse Passagier.

public class Passagier

{
public delegate void CheckInStartHandler (Passagier p);

// Ereignis fiir selbtsdefinierten Delegaten

public static event CheckInStartHandler CheckInStart;

// Ereignis fiir vordefinierten Delegaten

public static event EventHandler<Passagier> CheckInErfolg;
// Ereignis fiir vordefinierten Delegaten

public static event Action<Passagier, string> CheckInFehler;

Tipp: Eine Vereinfachung bei der Deklaration von Ereignissen ist moglich durch die generische
Klasse System.EventHandler<T>. EventHandler<T> steht fiir einen Delegat mit zwei
Eingabeparametern: object sender und einem zweiten Parameter vom dem angegebenen Typ T.
Die nicht generische Variante System.EventHandler erwartet als zweiten Parameter einen von
System.EventArgs abgeleiteten Typen.

37.2 Ereignis auslosen

Ein spezielles Schliisselwort zum Auslosen eines Ereignisses (wie RaiseEvent in Visual Basic
NET) existiert in C# nicht. Zum Auslsen des Ereignisses kann das Ereignis wie eine Methode
aufgerufen werden.

if (CheckInStart !'= null) { CheckInStart(this); 1}

Wichtig: Man muss zuvor immer priifen, ob iiberhaupt jemand fiir das Ereignis registriert ist,
sonst kommt es zum Laufzeitfehler "System.NullReferenceException: 'Object reference not set
to an instance of an object."

Seit C# 6.0 ist die verkiirzte Syntax mit Fragezeichen-Punkt-Operator moglich. Auch hier wird ein
Absturz vermieden, wenn es keinen Nutzer des Ereignisses gibt.

CheckInStart?.Invoke (this) ;

Ereignisse 317

37.3 Ereignisbehandlung

Auch fiir die Ereignisbehandlung existieren in C# keine speziellen Schliisselworter wie
AddHandler, WithEvents und Handles in Visual Basic .NET. In C# muss der Delegat instanziiert
werden mit der Ereignisbehandlungsroutine als Parameter und diese so gebildete Instanz muss der
Ereignisvariablen der Klasse mit dem Operator + hinzugefiigt werden.

// Ereignisbehandlung mit explizitem Delegaten
Passagier.CheckInStart += new Passagier.CheckInStartHandler (CheckInGestartet) ;

static void CheckInGestartet (Passagier pass)

{ Demo.Print ("Check-In beginnt... fiir " + pass.GanzerName); }

C# unterstiitzt seit Version 2.0 zur Ereignisbehandlung auch anonyme Methoden, mit denen
Programmcode direkt einem Delegaten zugewiesen werden kann. Anstelle des Verweises auf eine
entsprechende Ereignisbehandlungsroutine kann der Entwickler mit dem Schliisselwort delegate
nun direkt einen Codeblock (anonyme Methode) binden. Wenn mehrere Ereignisse den gleichen
Code ausfiihren sollen, ist die Implementierung der anonymen Methode auf den Aufruf einer
Methode zu beschrinken.

// Ereignisbehandlung mit anonymer Methode

Passagier.CheckInErfolg +=
delegate (object sender, Passagier p) {
CUI.PrintWarning("Passagier Check-In OK: " + p.ToString());
}i

Seit C# 3.0 sind Lambda-Ausdriicke zur Ereignisbehandlung méglich.

// Ereignisbehandlung mit Statement Lambda
Passagier.CheckInFehler +=
(p, text) => {
CUI.PrintWarning("Passagier Check-In Fehler: " + p.ToString() + " Fehler: " +
text)
}

318 IDisposable / Using-Blécke

38 IDisposable / Using-Blocke

IDisposable ist eine zentrale Schnittstelle in .NET seit .NET Framework Version 1.0. Sie dient
dazu, ein Standardverfahren anzubieten, bei dem von einem Objekt verwendete Ressourcen
aufgerdumt werden. Man spricht vom IDisposable-Muster (Pattern). Mit Using-Blocken deklariert
man einen Bereich, in dem das Objekt und seine Ressourcen bendtigt werden.

38.1 Hintergriinde zur Speicher- und
Ressourcenverwaltung in .NET

Im Gegensatz zu COM verfiigt .NET iiber eine automatische Speicherverwaltung, die in der
Common Language Runtime (CLR) implementiert ist. Die CLR enthélt einen Garbage Collector
(GC), der im Hintergrund (in einem System-Thread) arbeitet und den Speicher aufraumt. Der
Speicher wird allerdings nicht sofort nach dem Ende der Verwendung eines Objekts freigegeben,
sondern zu einem nicht festgelegten Zeitpunkt bei Bedarf (Lazy Resource Recovery). Beim
Aufrdaumen des Speichers erzeugt der Garbage Collector einen Baum aller Objekte, auf die es
aktuell einen Objektverweis gibt. Der Speicher aller nicht mehr erreichbaren Objekte wird
freigegeben.

Der Garbage Collector kann von einer Anwendung nur bedingt beeinflusst werden. Die
Anwendung kann mit dem Befehl System.GC.Collect() dem Garbage Collector den Auftrag geben,
titig zu werden. Eine Anwendung kann jedoch eine Speicherbereinigung nicht verhindern. Der
Garbage Collector ruft die Destruktoren (alias Finalizer) der .NET-Objekte auf. Die Reihenfolge
des Aufrufs und ob der Destruktor iiberhaupt aufgerufen wird, ist jedoch nicht deterministisch,
d.h., es kann sein, dass ein Destruktor nicht aufgerufen wird. Beim Schliefen einer .NET-
Anwendung werden die Destruktoren der verbliebenen Objekte nicht aufgerufen. Um sich von den
deterministischen Destruktoren der Sprache C++ abzuheben, spricht man in .NET von
Finalisierung statt von Destruktion.

Es gibt aber Klassen, die nicht nur von der CLR verwalteten Speicher verwenden, sondern auch
noch weitere ("externe") Ressourcen, die nicht zum Garbage Collector aufgerdumt werden. Dies
sind zum Beispiel:

= Unverwalteter Speicher (z.B. in verwendeten COM-Objekten)
= Geoffnete Dateien

= Geoffnete Netzwerkverbindindungen

38.2 Schnittstelle IDisposable

Klassen, bei denen der Aufruf des Destruktors wichtig ist, weil dabei externe Ressourcen
freigegeben werden, miissen dem Disposable-Muster folgen und die Schnittstelle
System.IDisposable mit der Methode Dispose() implementieren. In Dispose() sind alle externen
Ressourcen freizugeben.

Der Nutzer der Klasse muss am Ende der Verwendung der Methode Dispose() aufrufen.

Listing: Deklaration einer Klasse mit IDisposable

using ITVisions;

using System;

using System.Collections.Generic;
using System.Text;

IDisposable / Using-Blécke

319

namespace CS10
{
class Dateisystemzugriff
{
System.IO.StreamWriter writer = null;
bool disposed = false;
string filepath = "";

IDisposable

public Dateisystemzugriff (string filePath)
{

this.filepath = filepath;

Console.WriteLine ($"Ich 6ffne die Datei {filePath} im Konstruktor

writer = new System.IO.StreamWriter(filePath, true);
}

public void Log(string s)
{

writer.WriteLine ($"{DateTime.Now}:

{s}");
}

~Dateisystemzugriff ()
{
Console.WriteLine ($"Finalizer fiir Instanz
{nameof (DateisystemClient) }#{£filepath}...");
Dispose () ;
}

public void Dispose ()
{
Console.WriteLine ($"Dispose fiir Instanz
{nameof (DateisystemClient) }#{£filepath}...");
if (disposed) return;

// Hier externe Ressourcen freigeben
writer.Close() ;

disposed = true;
GC.SuppressFinalize (this);
}
}
}

Listing: Verwendung einer Klasse mit IDisposable ohne Using-Block
class DateisystemClient

2"

{
public void Run()
{

CUI.MainHeadline ("Verwendung ohne Using Block") ;
Dateisystemzugriff dl =

new Dateisystemzugriff (@"c:\temp\csharplog.txt") ;
for (int a = 1; a < 10; a++)

{

dl.Log("Meldung # " + a);

Console.Write(".");

320 IDisposable / Using-Blécke

System.Threading.Thread.Sleep(10) ;
}
Console.WriteLine () ;
dl.Dispose() ;
}
}

38.3 Using-Blocke

Der Aufruf von Dispose() kann leicht von dem Softwareentwickler vergessen werden. Die
Programmiersprachen C# und Visual Basic unterstiitzen daher ein Programmblockkonstrukt mit
Namen Using-Block. Der Using-Block wird eingeleitet durch das Schliisselwort using. Wéhrend
es in Viusal Basic .NET ein "End Using" gibt, wird in C# der Block durch geschweifte Klammern
begrenzt. Am Ende eines Using-Blocks wird fiir die im Kopf des Blocks angegebenen Variablen
automatisch die Dispose()-Methode aufgerufen.

Hinweis: Das Schliisselwort using hat in C# eine Doppelbedeutung. Es wird auch fiir
Namensraum-Importe verwendet (siche Kapitel "Namensrdume (Namespaces)").

Listing: Verwendung einer Klasse mit IDisposable mit Using-Block
class DateisystemClient
{
public void Run()
{
CUI.MainHeadline ("Verwendung mit Using Block");

using (Dateisystemzugriff d2 = new
Dateisystemzugriff (@"c:\temp\csharplog.txt"))
{
for (int a = 1; a < 10; a++)
{
d2.Log("Meldung # " + a);
Console.Write(".");
System.Threading.Thread.Sleep(10) ;
}
Console.WriteLine() ;
}
}
}
}

38.4 Vereinfachte Using-Deklarationen (C# 8.0)

Seit C# 8.0 ist es moglich, das Schliisselwort using fiir Klassen mit IDisposable-Schnittstelle auch
zu verwenden ohne einen expliziten Codeblock mit geschweiftem Klammern { ... }. In diesem
Fall ist die nach using deklarierte Variable giiltig bis zum Ende des umgebenden Blocks; erst wenn
dieser endet, erfolgt der automatische Aufruf von Dispose().

try
{
CUI.MainHeadline ("Verwendung mit Using-Deklaration") ;
using Dateisystemzugriff d3 = new
Dateisystemzugriff (@"c:\temp\csharplog.txt");
for (int a = 1; a < 10; a++)
{

IDisposable / Using-Blécke 321

d3.Log("Meldung # " + a);
Console.Write(".");
System.Threading.Thread.Sleep (10) ;
}
// d3 ist hier noch giiltig
d3.Log ("Ende!") ;
}// d3 ist ab jetzt ungiiltig, d3.Dispose() wird aufgerufen
catch (Exception ex)
{
Console.WriteLine (ex) ;

}

38.5 IDispose fiir Strukturen auf dem Stack

Seit C# 8.0 konnen nicht nur Klassen (Schliisselwort class) und normale Strukturen (Schliisselwort
struct), sondern auch Strukturen, die nur auf dem Stack leben (Schliisselwort ref struct) das
IDisposable-Pattern realisieren. Allerdings nicht mit Verweis auf die Schnittstelle IDisposable,
denn Strukturen auf dem Stack konnen keine Schnittstellen implementieren. In Strukturen auf dem
Stack schreibt man einfach eine Dispose()-Methode. Diese lose Dispose()-Implementierung ruft
die .NET-Laufzeitumgebung am Ende von using-Bldcken genauso wie die implementierten
Dispose()-Methoden der expliziten IDisposable-Schnittstelle.

Listing: Pattern based Disposable / Disposable ref structs
public ref struct Ressource // immer am Stack, nie am Heap
{
// C# 8.0: Ableiten von IDisposable nicht méglich fiir structs
public void Dispose()
{
Console.WriteLine ("Ressource Dispose") ;

}

322 Exklusive Zugriffe auf Ressourcen mit lock()

39 Exklusive Zugriffe auf Ressourcen mit
lock()

Wenn Sie mit paralleler Codeausfithrung/Multi-Threading arbeiten, werden Sie eine Moglichkeit
bendtigen, die parallele Ausfiihrung bestimmter Codeteile zu unterbinden, in denen die paralleler
Codeausfiihrung zu unerwiinschten Ergebnissen fithren konnte. Fiir exklusive Zugriffe gibt es seit
der ersten C#-Version das Schliisselwort lock().

Bei lock() muss man ein Objekt angeben. Dies sollte keins der Datenobjekte sein, die der Code
verdndern will, sondern ein Objekt das nur zum Zwecke des Sperrvorgangs existiert. Vor C# 13.0
wurde bei lock() tiblicherweise ein Objekt des Types System.Object verwendet:

public class Counter
{
private int count = 0;
private readonly object lockObject = new object();

public void Increment ()

{
lock (lockObject) // Acquire a lock on lockObject
{

count++;
} // Release the lock when the block is exited

public int GetCount ()
{
lock (lockObject)
{

return count;

}

Seit NET 9.0/C# 13.0 gibt es fiir das Sperren von Codeblocken vor dem Zugriff durch weitere
Threads eine neue Klasse System.Threading.Lock, die man nun im Standard in Verbindung mit
dem lock-Statement in C# verwenden sollte, "for best Performance" wie Microsoft in der
Dokumentation https://learn.microsoft.com/en-us/dotnet/csharp/language-
reference/statements/lock schreibt.

Das nidchste Listing zeigt ein Beispiel mit dem Schliisselwort lock und der Klasse
System.Threading.Lock.

Listing: Ein lock in C# 13.0 mit der neuen Klasse System.Threading.Lock (Quelle des Beispiels:
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/statements/lock)

using System;

using System.Threading.Tasks;

namespace NET9_ Console.CS13;

public class Account

{

// Vor C# 13.0 wurde hier System.Object verwendet statt System.Threading.Lock
private readonly System.Threading.Lock _balancelLock = new();

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/statements/lock
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/statements/lock

Exklusive Zugriffe auf Ressourcen mit lock() 323

private decimal _balance;
public Account(decimal initialBalance) => _balance = initialBalance;

public decimal Debit (decimal amount)
{
if (amount < 0)
{
throw new Arg tOutOf ption (nameof (amount), "The debit amount cannot
be negative.");

}

decimal appliedAmount = 0;
lock (_balanceLock)
{
if (_balance >= amount)
{
_balance -= amount;
appliedAmount = amount;
}
}
return appliedAmount;

public void Credit(decimal amount)
{
if (amount < 0)
{
throw new ArgumentOutOfRangeException (nameof (amount), "The credit amount canno
t be negative.");

}

lock (_balanceLock)
{

_balance += amount;
}
}

public decimal GetBalance ()
{
lock (_balanceLock)
{
return _balance;
}
}
}

class AccountTest

{

static async Task Main()

{
var account = new Account(1000) ;
var tasks = new Task[100];

324 Exklusive Zugriffe auf Ressourcen mit lock()

for (int i = 0; i < tasks.Length; i++)

{

tasks[i] = Task.Run(() => Update (account)) ;

}

await Task.WhenAll (tasks) ;

Console.WriteLine ($"Account's balance is {account.GetBalance()}");
// Output:

// Bccount's balance is 2000

static void Update (Account account)
{
decimal[] amounts = [0, 2, -3, 6, -2, -1, 8, -5, 11, -6];
foreach (var amount in amounts)
{
if (amount >= 0)
{
account.Credit (amount) ;
}
else
{
account.Debit (Math.Abs (amount)) ;
}
}
}
}
Der C#-Compiler tibrigens dann aus

lock (_balanceLock)
{
_balance += amount;
}
einen Aufruf der EnterScope()-Methode in der Klasse System.Threading.Lock:

using (balanceLock.EnterScope())

{

_balance += amount;

}

Laufzeitfehler 325

40 Laufzeitfehler

Das Erzeugen und Behandeln von Ausnahmen ist in der Common Language Runtime (CLR), der
Laufzeitumgebung von .NET verankert und daher fiir alle .NET-Sprachen gleich. Exceptions
(Ausnahmen) sind .NET-Objekte, wobei es verschiedene Klassen von Ausnahmen geben kann, die
in einer Vererbungshierarchie zueinander stehen. Basisklasse ist System.Exception. Jede
Ausnahme stellt Informationen wie eine Fehlerbeschreibung (Message) und die Aufrufliste der
Methoden (StackTrace) bereit.

Achtung: Eine NET-Klasse kann — anders als in Java — nicht deklarieren, welche Fehlertypen
sie erzeugt und welche vom Nutzer abgefangen werden miissen (Konzept der Checked
Exceptions). Der .NET-Entwickler kann Wissen iiber mogliche Fehlerarten nur aus der
Dokumentation entnehmen.

40.1 Fehler abfangen

C# unterstiitzt das Konstrukt try...catch...finally, um Laufzeitfehler abzufangen. Dabei kann es
mehrere Catch-Blocke mit unterschiedlichen Ausnahmeklassen geben. Ein catch (Exception ex)
fangt alle Fehler ab, weil System.Exception die Oberklasse aller Ausnahmen ist.

Listing: Fehlerbehandlung in C#
public static void Run()
{
IEnumerable<string> inhalt = null;
var filename = @"c.\temp\daten.txt";
try
{
inhalt = System.IO.File.ReadLines (filename) ;
}
catch (ArgumentException)
{
Console.WriteLine ("Ungiiltiger Dateiname!") ;
}
catch (NotSupportedException ex) when (ex.Message.Contains("format"))
{
Console.WriteLine ("Ungiltiges Format!") ;
}
catch (NotSupportedException ex)
{
Console.WriteLine ("Nicht unterstiitzt: " + ex.Message);
}
catch (Exception ex)
{
Console.WriteLine ("Anderer Fehler: " + ex.Message);
}

// Inhalt verarbeiten...

}

In C# gibt es seit Version 6.0 auch Exception Filter, mit denen der C#-Entwickler nun zusitzlich
zu den Exception-Klassen in den catch-Blocken mit dem Schliisselwort when zwischen

326 Laufzeitfehler

verschiedenen Fillen differenzieren kann (siehe Listing). Diese Spracheigenschaft gibt es in Visual
Basic .NET schon seit dem Jahr 2002.

Listing: Exception Filter in C# 6

try

{

var datei = System.IO.File.ReadLines (filename) ;

}

catch (ArgumentException) when (filename == ""

{

Console.WriteLine ("Ohne Dateiname macht diese Aktion keinen Sinn!");
}

catch (ArgumentException ex) when (ex.Message.Contains("Illegales"))

{

Console.WriteLine ("Ungiiltige Zeichen im Dateinamen: " + filename) ;
}

catch (ArgumentException ex)

{

Console.WriteLine ("Ungiiltige Angabe: " + filename + ":" + ex.Message);
}

catch (NotSupportedException ex) when (ex.Message.Contains("format"))
{

Console.WriteLine ("Ungiiltiges Format!");

}

catch (NotSupportedException ex)

{

Console.WriteLine ("Nicht unterstiitzt: " + ex.Message);

}

catch (FileNotFoundException ex)

{

Console.WriteLine ("Datei " + filename + " nicht gefunden");

}

catch (Exception ex)

{

Console.WriteLine ("Anderer Fehler: " + ex.Message);

}

40.2 Fehler auslosen

Die Anweisung throw ExceptionKlasse erzeugt eine Ausnahme. Neben den in der .NET-
Klassenbibliothek vordefinierten Ausnahmen (z.B. System.ArithmeticException,
System.ArgumentException, System.FormatException) konnen eigene anwendungsspezifische
Ausnahmeklassen durch Ableitung von System.ApplicationException erzeugt werden.

Seit C# 7.0 ist der Einsatz von throw jetzt auch an Stellen erlaubt, an denen Ausdriicke erwartet
werden, z.B. nach dem doppelten Fragezeichen und in Lambda-Ausdriicken.

private Decimal? honorar;

public Decimal? Honorar

{

get => this.honorar;

// throw ist nun an Stellen erlaubt, wo Ausdriicke erwartet werden, z.B. ??
und Expression Lambdas

Laufzeitfehler 327

set => this.honorar = value ??
throw new ArgumentNullException (nameof (value), "Kein Honorar nicht
erlaubt!");

}

40.3 Eigene Fehlerklassen
In C# kann man auch eigene Fehlerklasse definieren, die dann bei throw verwendet werden diirfen.

public class FalscheFlugnummer : System.ApplicationException

{

public FalscheFlugnummer (string Beschreibung) : base (Beschreibung) { }

}

public class PassagierNichtAufFlugGebucht : FalscheFlugnummer

{

public PassagierNichtAufFlugGebucht (string Beschreibung) : base (Beschreibung) {
}

}

328 Modul-Initialisierer

41 Modul-Initialisierer

Ein Modul-Initialisierer (engl. Module Initializer) ist eine Methode, die beim Laden eines .NET-
Moduls (entspricht einer .NET-Assembly) von der .NET-Laufzeitumgebung automatisch
aufgerufen wird. Der Aufruf erfolgt vor allen anderen Codeausfiithrungen. Dies bedeutet, dass bei
einem Startmodul ein Modul-Initialisierer vor Main() ausgefiihrt wird. Bei einem DLL-Modul wird
der Modul-Initialisierer vor der ersten Methode, die in der DLL aufgerufen wird, ausgefiihrt.

Ein Modul-Initialisierer ist eine Methode, die folgende Voraussetzungen erfiillen muss:

= kompiliert mit C# 9.0 oder hoher

= Runtime .NET 5.0 oder hoher

= Methode ist in einer Klasse, die public oder internal ist

= Methode ist public oder internal

= Methode ist statisch (static)

= Methode ist parameterlos

= Methode ist hat keinen Riickgabewert (void)

= Methode ist nicht-generisch

= Methode ist annotiert mit [System.Runtime.CompilerServices.ModulelnitializerAttribute]

Es darf mehr als einen Modul-Initialisierer in einer Assembly geben! Alle Modul-Initialisierer
werden in der Reihenfolge aufgerufen, wie die Runtime sie im Kompilat findet!

Er folgt ein Beispiel.

Listing: Beispiel fiir einen Modul-Intialisierer

public class ModuleInitializerClass
{
[ModuleInitializer]
public static void ModulelInitializer ()
{
var ass = System.Reflection.Assembly.GetExecutingAssembly () .GetName () ;
CUI.Print("Modul wird geladen: " + ass.Name + " v" + ass.Version.ToString(),
ConsoleColor.Cyan) ;

}
}

Listing: Hauptprogamm im Hauptmodul

class Program
{
static void Main(string[] args)
{
CUI.H1("C# 9.0 Demos") ;

Console.WriteLine (System.Runtime.InteropServices.RuntimeInformation.FrameworkDesc
ription + " on " +
System.Runtime.InteropServices.RuntimeInformation.OSDescription) ;

Console.WriteLine ("Ergebnis: " + new Hilfsklassen.Util().GetValue());
CUI.H1l("Fertig!");

}
}

Modul-Initialisierer 329

Listing: Klassen im Modul Hilfsklassen.dll inklusive zwei Modul-Initialisierern
using ITVisions;

using System;
using System.Runtime.CompilerServices;

namespace Hilfsklassen
{
public class Util
{
public int GetValue()
{
return 42;
}
}
public class ModuleInitializerClass2
{
[ModuleInitializer]
public static void ModuleInitializer()
{
var ass = System.Reflection.Assembly.GetExecutingAssembly () .GetName () ;
CUI.Print("ModuleInitializerClass2: Modul wird geladen: " + ass.Name + " v" +
ass.Version.ToString(), ConsoleColor.Cyan) ;
}
}
public class ModuleInitializerClass
{
[ModuleInitializer]
public static void ModuleInitializer()
{
var ass = System.Reflection.Assembly.GetExecutingAssembly () .GetName () ;
CUI.Print("ModuleInitializerClassl: Modul wird geladen: " + ass.Name + " v" +
ass.Version.ToString(), ConsoleColor.Cyan) ;

}
}
}

In der folgenden Ausgabe des Beispiels sieht man:

= Der Modul-Initialisierer im Hauptmodul wird vor Main() aufgerufen

= Die beiden Modul-Initialisierer im Modul Hilfsklassen.dll werden erst aufgerufen, wenn das
Hauptprogramm erstmals auf etwas in der DLL zugreift, also die Methode Util.GetValue()
aufruft.

B8 Microsoft Visual Studio Debug Console

Abbildung: Ausgabe des obigen Beispiels

330 Kommentare und XML-Dokumentation

42 Kommentare und XML-Dokumentation

C# unterstiitzt drei Arten von Kommentaren:

Zeilenkommentare, bei denen jede Zeile mit einem // eingeleitet wird
= Blockkommentare, bei denen der Codeblock in /* ... */ eingerahmt wird

= XML-Kommentare, bei denen jede Zeile mit /// beginnt.
/// <summary>

/// erbende Klasse

/// </summary>

class Experte : Person

{

/// <summary>

/// Kenntnisstand

/// </summary>

public Kenntnisse Kenntnisse { get; set; } = Kenntnisse.SehrGut;
/// <summary>

/// Themenliste

/// </summary>

public List<string> Themen = new List<string>() { ".NET", "C#" };

/// <summary>

/// Konstruktor mit Delegation an Basisklasse

/// </summary>

/// <param name="name">Name des Experten</param>

/// <param name="erzeugtAm">Datum der Datensatzerstellung</param>
/// <param name="kenntnisse">Kenntnisstand</param>

public Experte(string name, DateTime erzeugtAm, Kenntnisse kenntnisse)
base (name, erzeugtAm)

{
this.Kenntnisse = kenntnisse;

}

/// <summary>
/// Uberschriebene Methode zu Ausdruck des Experten
/// </summary>
/// <param name="details">Ausdruck von Details</param>
public override void Drucke (bool details = false)
{
base.Drucke (details) ;
if (details)
{
Console.WriteLine ($"Experte fiir: {String.Join(",", this.Themen)}.");
}
}

Abbildung: Beispiel fiir XML-Codekommentare in C#

Kommentare und XML-Dokumentation 331

// Klasse nutzen
var er = new Person(“"Max Miller", new DateTime(2015, 12, 1));
er.Drucke(true);

// Erbende Klasse nutzen
var sie = new Experte("Maria Miller”, new DateTime(2015, 5, 5), Kenntnisse.SehrGut);
sie.Themen. Add("WPF");

sie.Drucke(])

void Experte Drucke ([bool details = false])

Uberschriebene Methode zu Ausdruck des Experten

details: Ausdruck von Details [

Abbildung: Visual Studio verwendet die XML-Kommentare bei der Eingabehilfe

Praxistipp: Weitere Verwendungsmoglichkeiten der XML-Kommentare ist die Generierung
von Hilfedokumenten —mit dem Sandcastle Help File Builder (SHFB)
[github.com/EWSoftware/SHFB] oder die Nutzung in Hilfedokumentation von WebAPIs mit
Swagger Open APl [learn.microsoft.com/de-de/aspnet/core/tutorials/web-api-help-pages-
using-swagger?tabs=visual-studio].

https://github.com/EWSoftware/SHFB
https://docs.microsoft.com/de-de/aspnet/core/tutorials/web-api-help-pages-using-swagger?tabs=visual-studio
https://docs.microsoft.com/de-de/aspnet/core/tutorials/web-api-help-pages-using-swagger?tabs=visual-studio

332 Asynchrone Ausfihrung mit async und await

43 Asynchrone Ausfiihrung mit async und
await

In C# 5.0 gab es zwei neue Schlisselworter (async und await), die die asynchronen
Programmierung erheblich vereinfachen. Eine Methode kann mit async deklarieren, dass sie plant,
im Laufe ihrer Ausfiihrung asynchron (ggf. in einem eigenen Thread) weiterzuarbeiten und die
Kontrolle an den Aufrufer zuriickzugeben. Eine solche asynchrone Methode muss dann ein Task-
Objekt (aus der in NET Framework 4.0 eingefiihrten Task Parallel Library (TPL)) zuriickliefern.
Innerhalb der asynchronen Methode wird die Kontrolle dann genau nach dem ebenfalls neuen
Schliisselwort await an den Aufrufer zuriickgegeben.

43.1 Verwendung von async und await mit der .NET-
Klassenbibliothek

Das néchste Listing zeigt das Beispiel eines asynchronen Datenbankzugriffs mit Connection,
Command und DataReader aus ADO.NET. In diesen Klassen gibt es nun zusitzlich zu den
bisherigen synchronen Methoden auch asynchrone Methoden. In dem Beispiel ruft das
Hauptprogramm Run() eine selbst erstellte asynchrone Methode ReadDataAsync(). In dieser
Methode kommen die von der seit ADO.NET 4.5 bereitgestellten asynchronen Methoden
OpenAsync() und ExecuteReaderAsync() zum Einsatz, die jeweils mit await aufgerufen werden.
Es ist dabei eine Konvention, aber keine Pflicht, dass der Name einer asynchronen Methode auf
sasync” endet. Die Ausgabe der Thread-Nummern im Listing dient lediglich dazu, die asynchrone
Ausfiithrung in verschiedenen Threads zu belegen (siche Abbildung).

Listing: Asynchrone Datenbankoperationen mit ADO.NET seit Version 4.5

public static void run()
{
Console.WriteLine ("Run() #1: Aufruf wird initiiert: Thread=" +
System.Threading.Thread.CurrentThread.ManagedThreadId) ;
ReadDataAsync() ;
Console.WriteLine ("Run() #2: Aufruf ist erfolgt: Thread=" +
System.Threading.Thread.CurrentThread.ManagedThreadId) ;
}

/// <summary>

/// Asynchroner Download (Riickgabe: nichts)

/// </summary>

static private async void ReadDataAsync()

{

// Datenbankverbindung asynchron aufbauen

SqlConnection conn = new SqlConnection(Q@"data source=.;initial
catalog=WWWings;integrated
security=True;MultipleActiveResultSets=True;App=ADONETClassic") ;

await conn.OpenAsync() ;

Console.WriteLine ("Nach Open Async: Thread=" +
System.Threading.Thread.Cu tThread. dThreadId) ;

// Daten asynchron abrufen

SqlCommand cmd = new SqlCommand("select top(10) * from flug", conn);

var reader = await cmd.ExecuteReaderAsync() ;

Console.WriteLine ("Nach ExecuteReaderAsync: Thread=" +
System.Threading.Thread.Cu tThread. dThreadId) ;

Asynchrone Ausfihrung mit async und await 333

// Daten ausgeben

while (reader.Read())

{

Console.ForegroundColor = ConsoleColor.Yellow;
Console.WriteLine (reader["Abflugort"]) ;
Console.ForegroundColor = ConsoleColor.Gray;

}

// Verbindung beenden
conn.Close() ;

un€> #1: Aufruf wird initiiert: Threas
un¢> #2: Aufruf ist erfolgt: Thread
: Threa

Abbildung: Ausgabe des obigen Listings als Beleg fiir die asynchrone Ausfiihrung in
verschiedenen Thread

43.2 Verwendung von async und await mit eigenen
Threads

Das zweite Beispiel zeigt async und await im Einsatz mit der Ausfiihrung einer Aufgabe in einem
separaten Thread mithilfe der Task-Klasse von .NET.

public async Task<int> MachWasAsync()
{

Console.WriteLine ("MachWasAsync - Start");
var t = new Task<int>(MachWasIntern) ;
t.Start();

var r = await t;

Console.WriteLine ("MachWasAsync - Ende");
return r;
}

private int MachWasIntern()

{

int sum = 0;

for (int i = 0; i < 10; i++)

{
Console.WriteLine (i.ToString());
sum += i;

}

return sum;

}

334 Asynchrone Ausfihrung mit async und await

43.3 Weitere Moglichkeiten mit async und await
Seit C# 6.0 darf ein C#-Entwickler die Schliisselwdrter async und await auch in catch- und finally-

Blocken verwenden. Dies ist fiir Visual Basic .NET nicht vorgesehen.

Asynchrone Methoden, die bisher auf die Riickgabe von Task, Task<T> oder void beschriankt
waren, konnen seit C# 7.0 auch andere Typen zuriickgeben, die eine GetAwaiter()-Methode
implementieren, die ein Objekt mit der Schnittstelle
System.Runtime.CompilerServices.ICriticalNotifyCompletion

liefert. So kann ein Entwickler nun zum Beispiel den Typ ValueTask<T> aus dem NuGet-Paket
System.Threading. Tasks.Extensions

[https://nuget.org/packages/System. Threading. Tasks.Extensions] als Riickgabewert verwenden
mit dem Vorteil, dass dies ein Value Typ auf dem Stack statt ein Reference Type auf dem Heap
ist.

Seit C# 7.1 darf auch die Main()-Routines eines C#-Programms mit async deklariert werden.
Folgenden Signaturen sind insgesamt nun bei Main() erlaubt [https://learn.microsoft.com/en-
us/dotnet/csharp/fundamentals/program-structure/main-command-line):

= public static void Main() { }

= public static int Main() { }

= public static void Main(string[] args) { }

= public static int Main(string[] args) { }

= public static async Task Main() { }

= public static async Task<int>Main() { }

= public static async Task Main(string[] args) { }

= public static async Task<int> Main(string[] args) { }

Seit C# 13 konnen asynchrone Methoden lokale ref-Variablen oder lokale Variablen eines ref
struct-Typs deklarieren.

https://nuget.org/packages/System.Threading.Tasks.Extensions
https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/program-structure/main-command-line
https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/program-structure/main-command-line

lteratoren 335

44 Iteratoren

Iteratoren sind ein .NET-Entwurfsmuster zur Erzeugung aufzihlbarer Objektmengen, die mit
foreach sequentiell vorwirts durchlaufen werden kénnen. Die einfachste Moglichkeit zur
Schaffung einer aufzihlbaren Menge sind die Collections (siche Kapitel "Objektmengen").
Dariiberhinaus kann der Entwickler eigene aufzéhlbare Typen mit der Iterator-Implementierung
schaffen, was in diesem Kapitel thematisiert ist.

Hinweis: Normale Schleifen mit for(...) und while verwenden keine Iteratoren. Sie greifen auf
die Elemente einer Menge iiber einen Indexer zu.

441 Iterator-Implementierung mit yield (Yield
Continuations)

Das in C# 2.0 eingefiihrte Schliisselwort yield vereinfacht die Iterator-Implementierung erheblich.
Yield liefert dhnlich wie return einen Wert an den Aufrufer zuriick. Anders als beim Einsatz von
return beginnt die CLR beim nichsten Aufruf der Methode nicht am Anfang der Routine, sondern
setzt die Bearbeitung nach dem yield fort. Das néchste Listing zeigt eine einfache Iterator-Klasse,
die die deutschen Bundeskanzler aufzahlt. Sinn macht ein solcher Iterator, wenn zwischen den
Schritten irgendeine Art von Verarbeitung stattfindet, wenn z.B. die Daten aus einem
Datenspeicher geholt oder dynamisch berechnet werden.

Listing: Iterator-Implementierung und -Nutzung

public class KanzlerListe : IEnumerable
{

public IEnumerator GetEnumerator ()

// Logik !!!

yield return "Adenauer";
// Logik !!!

yield return "Erhard";
// Logik !!!

yield return "Kiesinger ";
// Logik !!!

yield return "Brandt";
// Logik !!!

yield return "Schmidt";
// Logik !!!

yield return "Kohl";

// Logik !!!

yield return "Schréder";
// Logik !!!

yield return "Merkel";
// Ende

yield break;
}
}

class Iteratoren

public static void run()
{
KanzlerListe k2 = new KanzlerListe() ;
foreach (string s in k2)
{ Console.WriteLine(s) ; }
}
}

336 lteratoren

Seit C# 13.0 ist in Methoden, die yield return verwenden, auch die Verwendung von unsafe und
ref-Variablen erlaubt.

44.2 Praxisbeispiel fiir yield

Das vorstehende Beispiel ist nur ein Lernbeispiel. Eine Schleife iiber eine Menge von
Zeichenketten hitte man auch einfacher realisieren konnen. Ein echtes Praxisbeispiel fiir den
Einsatz von yield finden Sie in der nachstehenden Klasse FlugMengePaging. Diese Klasse
implementiert IEnumerable<Flug>, um die in der Datenbank vorhandenen Fliige seitenweise aus
der Datenbank auszulesen, wobei die Seitengrofie definierbar ist. Der Client soll von dem Paging
nichts mitbekommen, wenn er nicht will: Der Client kann mit einer ganz normalen foreach-Schleife
iiber die Datensétze iterieren. Optional kann der Client das Ereignis SeitenWechsel(), das die
Klasse FlugMengePaging auslost, abonnieren und damit {iber den Seitenwechsel informiert
werden.

Hamburg nach Koln-/Bonn am 13.681 .20

Hamburg nach Rom am 13.81.2006 2

Hamburg nach London am 12.81.28086 2

Hamburg nach Paris am 13.91.2886 18:89 .
ftitt Datenseite 11 won 47 mit 5 von insgesamt 235 Elementen

Hamburg h Mailand am 14.81.2806 12:50:83.

Hamburg Prag am 15.01.2006 A7:32:03.

Hamburg nach Moskau am 12.81.2806 1

Hamburg New York am 12.01.2006 14:53:03.

Hamburg ch Seattle am 13.81.2006 0%:34:
mm Daten_‘elte 12 von 5 von 1n_.ge_‘amt 235 Elenenten
Flug 161 von Hamburg nach L

Flug 162 von Hamhurg ETH] Kap“tadt am 14.01.2080 22

Flug 163 von Hamburg nach Madrid am 13.81.28606 BA:5

Flug 164 von Knln/Bnnn nach Berlin am 14.01.2086 14:22
Flug 165 von Kiln-Bonn nach Frankfurt am 14.01.2086 14 22
Htitt Datenseite 13 won 47 mit 5 von insgesamt 235 El

Flug 166 von Kuln/Bnnn nach Minchen am 15

Flug 178 von Kiln/Bonn nach London am 15.01.2086 @0:28:@:
Flug 171 von Kiln/Bonn nach Paris am 12.81.208086 A7:49: 33
Datenseite 14 von 47 mit 5 von insgesamt 235 Elementen:
Flug 172 von Kéln-Bonn nach Mailand am 12.081.2006 9:
Flug 173 von Kiln/Bonn nach Prag am 13.01.2006 B2:

Abbildung: Nutzung der Klasse FlugMengePaging

Das folgende Listing zeigt die Implementierung der Klasse FlugMengePaging, die zwei
Generische Klassen der NET-Klassenbibliothek verwendet:

= Zum einen die generische Variante von IEnumerable: IEnumerable<Flug>
= Zum anderen die generische Klasse EventHandler<> zur Deklaration eines Ereignisses.

Listing: Praxisbeispiel zum Einsatz von Yield, Ereignissen und Generics
/// <summary>
/// Klasse fiir Ereignisparameter beim Paging in der Geschiftslogik
/// </summary>
public class PagingInfo : System.EventArgs

{

public long AnzahlObjekteGesamt;

public long SeitenGroesse;

public long AnzahlSeiten;

public long AktuelleSeite;

public long AnzahlObjekteInAktuellerSeite;

public PagingInfo(long AnzahlObjekteG t, long AnzahlSeiten, long
SeitenGroesse, long AktuelleSeite, long AnzahlInAktuellerSeite)

{

this.AnzahlObjekteGesamt = AnzahlObjekteGesamt;

lteratoren 337

this.AnzahlSeiten = AnzahlSeiten;
this.SeitenGroesse = SeitenGroesse;
this.AnzahlObjekteInAktuellerSeite = AnzahlInAktuellerSeite;
this.AktuelleSeite = AktuelleSeite;

}

}

/// <summary>
/// FlugMenge ist die typisierte Menge von Flug-Objekten, die mithilfe der
Klasse
/// <see cref="System.Collections.Generic.List"/> implementiert ist. Diese
Variante holt immer
/// nur eine definierbare Menge (Attribut SeitenGroesse) aus der Datenbank.
/// </summary>
public class FlugMengePaging : IEnumerable<Flug>
{
private int _SeitenGroesse = 10;
/// <summary>
/// Maximale Anzahl von Objekten, die in einer Datenseite abgeholt werden
/// </summary>
public int SeitenGroesse
{
get { return _SeitenGroesse; }
set { _SeitenGroesse = value; }
}
// Ereignis beim Wechsel der Datenseite
public event EventHandler<PagingInfo> SeitenWechsel;
public FlugMengePaging(int SeitenGroesse)
{
this.SeitenGroesse = SeitenGroesse;
}
#region IEnumerable<Flug> Members
public IEnumerator<Flug> GetEnumerator ()
{
int Anzahl = new FlugBLManager () .Count() ;
int Seiten = Anzahl / SeitenGroesse;

for (int i = 0; i < Seiten; i++)
{
// Nichste Datenseite aus Datenbank abholen
FlugMenge ff = FlugBLManager.HoleAlle (SeitenGroesse, i * SeitenGroesse + 1);
// Ereignis auslésen
if (SeitenWechsel != null) SeitenWechsel (this, new PagingInfo(Anzahl, Seiten,
SeitenGroesse, i + 1, ff.Count));
// Elemente der aktuellen Seite in einer Schleife zuriickgeben
foreach (Flug £ in £f)
{ yield return £; }
}
yield break;
}

44.3 Asynchrone Streams / await foreach (seit C# 8.0)

Seit C# 8.0 kann der Softwareentwickler asynchrone Iteratoren mit der Schnittstelle
System.Collections.Generic.IAsyncEnumerable<T> schaffen und dariiber mit await foreach(...)
iterieren. Das Beispiel zeigt:

= GetDataSteam(): Simuliert eine datensendende Messstelle; sendet kontinuierlich und endlos
alle 250 Millisekunden eine Zahl (hier Zufallszahl). Wie bei synchronen Iteratoren kommt
yield zum Einsatz.

338 lteratoren

PrintData(): Gibt die eingehenden Zahlen der Messstelle aus. Priift, ob Abbruch via
CancellationTokenSource gefordert wird.

Main(): Hauptprogramm, das den Datenempfang startet und dann darauf wartet, dass ein
Benutzer die EINGABE-Taste bedient, was den Abbruch auslost.

Listing: Asynchroner Stream

using ITVisions;

using System;

using System.Collections.Generic;
using System.Threading;

using System.Threading.Tasks;

namespace CS80

class AsyncStreamDemos

{

public async void Main()

{
CUI.Headline (nameof (AsyncStreamDemos)) ;
CancellationTokenSource cts = new CancellationTokenSource() ;
await PrintData(cts);

CUI.Print("---> Hauptprogramm wartet auf RETURN", ConsoleColor.Yellow) ;
Console.ReadLine () ;

CUI.Print ("Hauptprogramm 168t Abbruch des Datenempfangs aus...",
ConsoleColor.Yellow) ;

cts.Cancel() ;

CUI.Headline ("Hauptprogramm endet!") ;

/// <summary>
/// Empfang der Daten von Stream und Ausgabe
/// </summary>
/// <param name="cts">Abbruchoption</param>
public async Task PrintData(CancellationTokenSource cts)
{
// NEU in C# 8.0: await foreach!
await foreach (var nextValue in GetDataStream())
{
CUI.Print($"{nextValue:000000}", ConsoleColor.Cyan) ;
if (cts.IsCancellationRequested)
{
CUI.PrintError ("!!!Abruch der Messdatenausgabe!!!");
return;
}
}
}

/// <summary>
/// Simuliert den Empfang von Daten von einer Messstelle

lteratoren 339

/// Erzeugt dafiir 100 Zufallszahlen als Stream, alle 250ms eine neue Zahl
/// </summary>
static async IAsyncEnumerable<int> GetDataStream/()
{
try
{
for (; ;)
{
await Task.Delay(250) ;
yield return new System.Random() .Next(1000000) ;
}
}
finally
{
Console.WriteLine ("GetDataStream: Finally");
}
}

B Microsoft Visual Studio Debug Console

Hauptprogramm 168t Abbruch des Datenempfangs aus...
Hauptprogramm endet!

Abbildung: Ausgabe des obigen Listings. Der Benutzer hat nach kurzer Zeit EINGABE gedriickt.

340 Zeigerprogrammierung

45 Zeigerprogrammierung

Fiir die Zeigerprogrammierung bietet C# seit Version 1.0 das Schliisselwort unsafe. Seit C# 7.0
gibt es eine sicherere Option (Managed Pointer).

451 Zeigerprogrammierung mit unsafe

Niemand mdchte unsicheren Code schreiben, doch die Programmiersprache C# kennt eine
gleichnamige Option (unsafe). Innerhalb von unsicherem Code konnen in C# Zeiger und
Zeigerarithmetik verwendet werden. Diese Operationen werden dann nicht von der Common
Language Runtime verifiziert und konnen zu Programmabstiirzen fiihren. Bei Visual Basic NET
gibt es keine in die Sprachsyntax eingebaute Moglichkeit, Zeiger und Zeigerarithmetik zu nutzen.
Das wire nur iiber Umwege iiber die Klassenbibliothek moglich. Wenn Sie derartige Low-Level-
Funktionen wirklich nutzen wollten, sollten Sie C# oder C++ / CLI verwenden.

Achtung: Es gibt nur wenige sinnvolle Einsatzgebiete fiir Zeigerarithmetik in .NET. Ein solcher
Fall liegt bei sehr umfangreichen Array-Operationen vor. Da die CLR bei jedem Array-Zugriff
die Array-Grenzen priift, kann durch Einsatz von Zeigerarithmetik ein erheblicher
Leistungsgewinn erzielt werden — allerdings auf Kosten der Zuverldssigkeit der Anwendung.

Mit dem Schliisselwort unsafe konnen ganze Unterroutinen markiert werden; es besteht auch die
Moglichkeit, einen unsafe-Block innerhalb einer Unterroutine zu erzeugen. Voraussetzung fiir die
Kompilierung einer Anwendung mit unsicherem Code ist die Verwendung der Compiler-Option
/unsafe.

CsharpSprachsyntax < X

Application Configuration: Active (Debug) - r

Build

Build Events

e General

Resources Conditional compilation symbols

oS [] Define DEBUG constant

Sattings -
7] Defin nstant

Reference Paths) Define TRACE constant

Signing Platform target Any CPU
Security [Prefer 32-bit

(i [Allow unsafe code

Code Analysis
Optimize code

o —

Abbildung: Einstellen der Compileroption "unsafe" in den Projekteigenschaften in Visual Studio

Listing: Unsicherer Code in C#
class Zeiger

unsafe static void ZeigerTest(int* x) // x ist ein Zeiger auf ein Integer32

{

int* y; // y ist ein Zeiger auf ein Integer32

int z = 10; // z ist ein Integer32

y = &z; // y zeigt auf den Speicherplatz von z

*x = *x * *y; // Der Platz, auf den x zeigt, soll mit dem Ergebnis des
Produktes aus dem Inhalt von x und y gefiillt werden

int* r; // r ist ein Zeiger auf ein Integer32

// Achtung: Das produziert Unsinn!

r =y + 1; // r soll nun auf den Speicherplatz zeigen, der 4 Plitze hinter y
liegt

Demo.Print(*r); // gebe den Inhalt aus, auf den r zeigt

public static void run()

Zeigerprogrammierung 341

{

int i = 5;

unsafe

{

ZeigerTest(&i); // Rufe ZeigerTest mit einem Zeiger auf den Speicherplatz von

i auf

}

Demo.Print (i) ;

}
Auch fiir unsafe-Blocke hat Microsoft Verbesserungen in C# 7.3 eingebaut. Die Allokierung von
Speicher auf dem Stack mit stackalloc war bisher nicht moglich in Verbindung mit einer
prégnanten Array-Initialisierung. Erst seit C# 7.3 kann man schreiben:

unsafe
{
var a2 = stackalloc int[3] { 45, 2, 57 }; // seit C# 7.3
var a3 = stackalloc int[] { 45, 2, 57 }; // seit C# 7.3
var a4 = stackalloc[] { 45, 2, 57 }; // seit c# 7.3
}
Zuvor musste man die Array-Elemente mithsam einzeln initialisieren:

unsafe
{
var al = stackalloc int[3]; // bisher schon erlaubt
al[0] = 45;
al[l] = 2;
al[2] = 57;

}
Die verkiirzte Array-Initialisierung kann nun auch auflerhalb von unsafe-Blocken in Verbindung
mit den in C# 7.2 eingefiihrten Typ Span<T> [msdn.microsoft.com/de-
de/magazine/mt814808.aspx] zum Einsatz kommen:
Span<int> a5 = stackalloc[] { 1, 2, 3 }; // seit C# 7.3
Schon seit der ersten Version von C# gibt es mit "fixed" deklarierte Variaben, die nicht vom
Garbage Collector verschoben werden kénnen und nur in Strukturen (struct { }), nicht in Klassen
(class { }) vorkommen diirfen. Als "Indexing movable fixed Buffers" bezeichnet Microsoft die
Moglichkeit, dass mit "fixed" deklarierte Variablen einfacher zu handhaben sind.

Das Befiillen und Auslesen eines Fixed Array erforderte in C# bis einschlieBlich Version 7.2 immer
einen zusitzlichen fixierten Zeiger, wie das nichste Listing.

Listing: Alte Handhabung fixierter Arrays mit fixierten Zeigern (vor C#7.3)
unsafe struct Daten
{
public fixed int Zahlen[7];
}

/// <summary>

/// vor C# 7.2

/// </summary>
class BerechnungAlt
{

static Daten s = new Daten();

unsafe public void Berechnen()

{

342 Zeigerprogrammierung

fixed (int* ptr = s.Zahlen)
{
for (int i = 0; i < 7; i++)
{
ptr[i] = new System.Random() .Next(1l, 49);
}

int pl = ptr[5];
Console.WriteLine (pl) ;
}
}
}
Seit C# 7.3 kann man darauf verzichten, siche nichstes Listing.

Listing: Vereinfachte Handhabung fixierter Arrays seit C# 7.3

/// <summary>

/// Bb C#7.3

/// </summary>
class BerechnungNeu
{

static Daten s = new Daten();

unsafe public void Berechnen ()
{
for (int i = 0; i < 7; i++)
{
s.Zahlen[i] = new System.Random() .Next(l, 49); // geht nicht vor C# 7.3
}

int p2 = s.Zahlen[5]; // geht nicht vor C# 7.3
Console.WriteLine (p2) ;
}
}

45.2 Zeigerprogrammierung mit ref (Managed Pointer)

Zeigerprogrammierung war in C# lange nur bei Methodenparametern und im Rahmen sogenannter
unsafe-Blocke moglich. Das bisher bei den Methodenparametern verwendete ref-Schliisselwort
dehnt Microsoft in C# 7.0 auch auf lokale Variablen und Methodenriickgabewerte aus. Dabei
verwendet man das Schliisselwort ref sowohl bei der Deklaration des Zeigers ref typ name (vgl. in
C++: Typ*) als auch um einen Zeiger auf eine Variable zu erhalten: ref name (vgl. C++: & name).
Im Untergrund arbeiten sogenannte Managed Pointer.

Das folgende Beispiel zeigt aber, dass im Gegensatz zu C++ in C# eine kontrollierte Variante der
Zeigerprogrammierung zum Einsatz kommt. Wihrend eine vergleichbare Befehlsfolge in C++ den
Zeiger z im Speicher verschieben wiirde, wirkt das +=10 in C# 7.0 sich auf den Inhalt statt dem
Zeiger aus. Die Variable z enthélt danach einen Zeiger auf den Wert 42.

int i = 32;
ref int z = ref i;
z+=10;

Das néchste Listing zeigt den Einsatz von ref bei dem Riickgabewert einer Methode. Die Methode
GetExperte() erhdlt ein Array und liefert ein Element als Zeiger zuriick. Der Aufrufer dndert bei

Zeigerprogrammierung 343

der Verwertung des Riickgabewertes also das Array. Eine Methode kann aber nicht einen Zeiger
auf eine lokale Variable innerhalb der Methode zuriickgeben.

Hinweis: Solche Zeiger mit ref sind auch nicht anwendbar bei der Deklaration von
Klassenattributen als Fields und Properties, in asynchronen und anonymen Methoden,
Iteratoren, Lambda- und LINQ-Ausdriicken.

Listing: Einsatz von Zeigern als Riickgabewert einer Methode

/// <summary>

/// Diese Funktion liefert die Speicherstelle eines Array-Elements, nicht den
Wert!

/// </summary>

static public ref string GetReiseziel (string[] namen, int position)

{

if (namen.Length > 0) return ref namen[position];

throw new IndexOutOfRangeException ($"Experte #{nameof (position)} nicht
gefunden.") ;

}

/// <summary>

/// nutzt die Funktion GetReiseziel()

/// </summary>

static public void DemoRefReturns2 ()

{

string[] orte = { "Rom", "Paris", "Oslo", "Istanbul", "Moskau" };
ref string ort4 = ref GetReiseziel (orte, 3);
Console.WriteLine ("Ort vorher: {0}", ortd4); // --> "Istanbul"
// &ndert das Array, da ref!

ortd = "Athen";

Console.WriteLine ("Ort nun: {0}", orte[3]); // --> "Athen"

In C# 7.0 bis 7.2 ist es nicht moglich, einen Managed Pointer, der ja immer bei der Deklaration
schon eine Zuweisung braucht, nachtréglich auf eine andere Speicherstelle zu verschieben. Erst C#
7.3 unterstiitzt das Ref Local Reassignment.

int i = 32;

int k = 42;

ref int z = ref i;

Console.WriteLine ("z=" + z);

z += 5;

Console.WriteLine ("z=" + z);

Die Ausgabe ist erst z=32 und dann z=37, da z+=5 nicht den Zeiger verschiebt, sondern den Wert
dndert. Bisher nicht erlaubt war, einen bestehenden Zeiger an eine andere Speicherstelle neu
zuzuweisen. Folglich beméngelte der Compiler nachstehende Ergdnzung in C# 7.0 bis 7.2:

z = ref k;

Console.WriteLine ("z=" + z);

Das ist aber in Version 7.3 nun moglich unter dem Namen "Ref Local Reassignment"”, sodass die
dritte Ausgabe z=42 lautet.

344 Zeigerprogrammierung

Abfrageausdriicke / Language Integrated Query (LINQ) 345

46 Abfrageausdriicke/Language Integrated
Query (LINQ)
46.1 Einfilhrung und Motivation

Language Integrated Query (LINQ) ist eine allgemeine Such- / Abfragesprache, die schon seit dem
NET Framework 3.5 in der .NET-Klassenbibliothek und der Sprachsyntax der Sprachen C# (seit
Version 3.0) und Visual Basic .NET (seit Version 9.0) verankert ist.

Das Problem, das LINQ zu 16sen versucht, lésst sich so beschreiben: Jede Art von Datenspeicher
(z.B. Objektmengen im Hauptspeicher, Datenbanktabellen, XML-Dokumente,
Verzeichnisdienste) besitzt eine Moglichkeit zur Suche nach Elementen. Bei Datenbanken ist dies
in der Regel die Sprache Structured Query Language (SQL), bei XML-Dokumenten XPath oder
XQuery und bei Verzeichnisdiensten LDAP. Fiir Objektmengen im Hauptspeicher gibt es keinen
Standard oder De-Facto-Standard. Innerhalb der .NET-Klassenbibliothek findet man
unterschiedliche Such- und Abfragemoglichkeiten, z.B. DataView-Objekte fiir DataTable-
Objekte. Auch die Methoden Find() und FindAll(), mit denen man unter Angabe eines Pradikats
in Objektmengen aus dem Namensraum System.Collections suchen kann, lassen sich dabei als eine
Abfragesprache bezeichnen. Alle diese Abfragesprachen unterscheiden sich hinsichtlich ihrer
Michtigkeit und auch hinsichtlich ihrer Syntax, sodass man fiir diese verschiedenen Datenspeicher
unterschiedliche Befehlssétze beherrschen muss. Erinnert sei an dieser Stelle auch noch daran, dass
es zwar einen Standard fiir SQL gibt, aber es dennoch Unterschiede zwischen der SQL-Syntax
verschiedener Datenbankmanagementsysteme gibt.

LINQ tritt an, eine allgemeine Such- und Abfragesyntax fiir alle Arten von Datenspeichern zu
definieren. Unterhalb der LINQ-Abfrageebene werden die Abfragen durch LINQ-Provider in
andere Sprachen (z.B. SQL, XPath oder LDAP) iibersetzt oder direkt auf dem Datenspeicher
ausgefiihrt.

346 Abfrageausdriicke / Language Integrated Query (LINQ)

C#-Code | | VB.NET-Code ” Anderer Code

\ 4
LINQ-Programmierschnittstelle

LINQ-to-SQL LINQ-to-Entities

LINQ-to-Objects Provider Fradatr LINQ-to-XML LINQ-to-...
Pradikate sQL Entity Model XPath
Andere
v Abfragesprache
Objektmenge (IEnumerable) ' \
Microsoft Andere XML~ 2
SQL Server Datenbanken Dokument)

Abbildung: Architektur von LINQ

Neben der Vereinheitlichung der Sprachen bietet LINQ noch einen Vorteil: Wahrend bisher
Sprachen wie SQL, XPath und LDAP aus der Sicht des Sprachcompilers nur Zeichenkettenliterale
waren, ist die Abfragesyntax nun in der Sprachsyntax bzw. Klassenbibliothek verankert. Der grofie
Vorteil von LINQ ist, dass die Sprachcompiler die Syntax priifen konnen und die
Entwicklungsumgebung IntelliSense-Unterstiitzung anbieten kann. Dies ist mit »externen«
Suchsprachen, die der Compiler nur als Zeichenkette sieht, nicht moglich.

46.2 LINQ-Provider

Dieser Abschnitt dokumentiert die zum Redaktionsschluss verfligbaren und dem Autor bekannten
LINQ-Provider.

Hinweis: LINQ-Provider haben meistens einen Namen, der mit LINQ to ... beginnt (z.B. LINQ
to XML). Einige wenige Provider verwenden noch die alte Benennungsweise mit einem
vorangestellten Kiirzel (z.B. hiel LINQ to XML frither XLINQ).

46.2.1 LINQ-Provider von Microsoft im .NET

Microsoft bietet seit NET Framework 3.5 die Moglichkeit zur Abfrage von

= NET-Objektmengen, die die Schnittstelle IEnumerable unterstiitzen (LINQ to Objects)
= Microsoft SQL Server-Datenbanken (LINQ to SQL, frither: DLINQ),

= ADO.NET-DataSets (LINQ to DataSet) und

= XML-Daten (LINQ to XML, frither: XLINQ).

Seit .NET Framework 3.5 Service Pack 1 liefert Microsoft noch zusitzlich:

= LINQ to Entities im Entity Framework: Abfrage von relationalen Datenbanken (nicht nur
Microsoft SQL Server wie bei LINQ to SQL)

= LINQ to DataService: Steuerung von WCF-Datendiensten mit Open Data Protocol (OData)

Abfrageausdriicke / Language Integrated Query (LINQ) 347

= In Entity Framework Core liefert Microsoft ebenfalls einen LINQ-Provider mit.

In diesem Buch werden nur LINQ-to-Objects und Parallel-LINQ behandelt. Die anderen LINQ-
Varianten setzen umfangreiche Kenntnisse zu den entsprechenden Klassenbibliotheken voraus,
die aulerhalb des Fokus dieses Buchs liegen.

46.2.2 Andere LINQ-Provider

Mittlerweise gibt es neben den im .NET Framework mitgelieferten Providern eine Reihe von
Anbietern (kommerzielle und Open Source), so genannte LINQ-Provider fiir verschiedene
Datenquellen.

46.2.3 Formen von LINQ

Es gibt zwei grundsiétzliche Formen der LINQ-Unterstiitzung:

= Abfrage iiber Mengen, die IEnumerable unterstiitzen: Diese Abfragen fallen alle unter LINQ
to Objects und werden von LINQ im RAM ausgefiihrt.

= Abfrage iiber Mengen, die IQueryable unterstiitzen: Diese Abfrage werden von einer
datenquellenspezifischen LINQ-Implementierung ausgefiihrt. LINQ iibergibt dieser
Implementierung die Abfrage in Form eines Ausdrucksbaums (Expression Tree). Es ist der
Implementierung iiberlassen, wie die Abfrage erfolgt (z.B. Umsetzung in SQL oder XPath
oder Aufruf eines Webservices). Der Einsatz von
IQueryable ist wesentlich komplexer als der Einsatz von IEnumerable, denn bei IQueryable
werden die LINQ-Abfragen zundchst in einen Ausdrucksbaum (Expression Tree)
umgewandelt. Dieser sprachneutrale Ausdrucksbaum wird dann an den LINQ-Provider
iibergeben, der diesen Baum in die jeweilige providerspezifische Anfragesyntax iibersetzt.

46.2.4 Einfiihrung in die LINQ-Syntax

Es gibt zwei Syntaxformen fiir LINQ: Die Abfragesyntax (Originalbezeichnung: Query Expression
Syntax) und die Methodensyntax (Originalbezeichnung: Extension Method Syntax). Die
Abfragesyntax ist eleganter, in der Praxis muss man in vielen Fllen beide Syntaxformen mischen,
denn viele Befehle sind nur in der Methodensyntax verfiigbar.

LINQ-Abfragesyntax
Die Grundstruktur eines LINQ-Befehls in der Abfragesyntax ist

from... where... orderby ... select...

Die Syntax von LINQ ist an die Datenbankabfragesprache SQL angelehnt, allerdings wird das
from immer vorangestellt. Der Grund fir diese Abweichung von SQL liegt darin, dass
Entwicklungsumgebungen in der Lage sein sollen, dem Entwickler Hilfen bei der Eingabe
(IntelliSense) zu geben. Dies kann eine Entwicklungsumgebung aber nur, wenn zu Beginn klar ist,
auf welche Menge sich die Abfrage bezieht. Dies ist aber nicht die einzige Abweichung von der
SQL-Syntax.

Die folgende Beschreibung liefert eine komplette formale Definition der LINQ-Abfragesyntax.
Alle diese hier genannten Begriffe (auler den Platzhaltern id, expr, source, key, query, condition
und ordering) sind Schliisselworter der Sprache C# (seit 3.0) bzw. Visual Basic (seit 9.0) und
werden von der Entwicklungsumgebung Visual Studio (seit 2008) auch wie Sprachschliisselworter
eingeférbt.

348 Abfrageausdriicke / Language Integrated Query (LINQ)

Listing: Syntaxbeschreibung fiir die LINO-Abfragesyntax (C#)
from id in source
{ from id in source |
join id in source on expr equals expr [into id] |
let id = expr |
where condition |
orderby ordering, ordering, .. }
select expr | group expr by key
[into id query]
Listing: Syntaxbeschreibung fiir die LINO-Abfragesyntax (Visual Basic .NET)
From id In source
{ from id In source |
Join id in source On expr Equals expr [Into id] |
Let id = expr |
Where condition |
Take x |
Skip x |
Order By ordering, ordering, .. }
Select expr | Group expr By key
Aggregate x in source
Into id query]
Distinct

An den obigen Syntaxbeschreibungen wird deutlich, dass gar nicht alle Sprachelemente von SQL
in der LINQ-Abfragesyntax (d.h. durch eigene Sprachelemente) unterstiitzt werden.
Beispielsweise fehlen in C# DISTINCT und TOP. Dies bedeutet aber nicht, dass diese
Funktionalitit in LINQ-Abfragen nicht verfiigbar wire. Es bedeutet nur, dass sie in der LINQ-
Abfragesyntax nicht verfiigbar sind. Es gibt aber noch eine LINQ-Methodensyntax. In Visual
Basic existieren mehr Befehle in der Abfragesyntax.

Beispiele

Vor der Diskussion der Methodensyntax sollen zunéchst zwei Beispiele (jeweils in C# und Visual
Basic) gezeigt werden.

Beispiel: Abfrage einer Menge von Zeichenketten

In diesem ersten Beispiel werden aus einer Liste von Monaten diejenigen Monate gefiltert, deren
Namen vier Zeichen lang sind. Von den Monatsnamen werden nur die ersten drei Zeichen
weiterverarbeitet. Die Liste wird lexikalisch aufsteigend sortiert. Das Ergebnis ist also Jul, Jun und
Miir.

Listing: Filtern in einer Liste von Zeichenketten (C#)

public static void Beispiell()

{

// Datendefinition (=Datenquelle)

string[] AlleMonate = { "Januar", "Februar", "Marz", "April", "Mai", "Juni",
"Juli", "August", "September", "Oktober", "November", "Dezember" };

// LINQ-Abfrage

IEnumerable<string> Monate4 = from Monat in AlleMonate
where Monat.Length == 4
orderby Monat
select Monat.Substring(0, 3);

// Nutzung des Abfrageergebnisses
foreach (string Monat in Monated4)
{

Console.WriteLine (Monat) ;

}
}

Abfrageausdriicke / Language Integrated Query (LINQ) 349

Listing: Filtern in einer Liste von Zeichenketten (Visual Basic .NET)
Public Sub Beispiell()

' Datendefinition (=Da 1le)
Dim AlleMonate As String() = {"Januar", "Februar", "Midrz", "April", "Mai",
"Juni", "Juli", "August",

"September", "Oktober", "November", "Dezember"}

' LINQ-Abfrage

Dim Monate4 As IEnumerable (Of String) = From Monat In AlleMonate _
Where Monat.Length = 4 _

Order By Monat _

Select Monat.Substring(0, 3)

' Nutzung des Abfrageergebnisses
For Each Monat As String In Monate4
Console.WriteLine (Monat)

Next

End Sub

Beispiel: Abfrage einer Menge von Objekten des Typs Process

Im zweiten Beispiel werden aus der Liste der laufenden Prozesse diejenigen herausgefiltert, die
weniger als 700.000 Bytes Speicher bendtigen. Die Datenmenge wird in diesem Fall von der
statischen Methode GetProcesses() in der FCL-Klasse System.Diagnostics.Process geliefert. Von
den gefilterten Prozessen wird der Name und die Speichermenge ausgegeben.

Listing: Filtern der Prozessliste (C#)
public static void Beispiel2()

{

// LINQ-Abfrage

var Prozesse =

from p in System.Diagnostics.Process.GetProcesses ()
where p.WorkingSeté64 < 700000

select new { p.ProcessName, p.WorkingSeté4 };

// Nutzung des Abfrageergebnisses
foreach (var Prozess in Prozesse)
{
Console.WriteLine (Prozess.ProcessName + ": " + Prozess.WorkingSeté64) ;
}
}

Listing:Filtern der Prozessliste (Visual Basic .NET)
Public Sub Beispiel2()
'LINQ-Abfrage
Dim Prozesse = _
From p In System.Diagnostics.Process.GetProcesses() _
Where (p.WorkingSet64 < 700000) _
Select New With {p.ProcessName, p.WorkingSet64}

' Nutzung des Abfrageergebnisses
Dim Prozess
For Each Prozess In Prozesse
Console.WriteLine (Prozess.ProcessName & ": " & Prozess.WorkingSet64)
Next
End Sub

Hinweis: In dem zweiten Beispiel ist der Einsatz des Schliisselwortes var anstelle eines
konkreten Typnamens bzw. Dim ohne Datentyp zu beachten. Der Grund dafiir ist, dass durch
die Reduktion der Prozessliste auf die Attribute ProcessName und WorkingSet64 ein anonymer
Typ entsteht.

350 Abfrageausdricke / Language Integrated Query (LINQ)

Wichtig: Es gibt eine wichtige Voraussetzung, damit die LINQ-Abfragesyntax in MSIL (alias
CIL) tibersetzt werden kann: Der Namensraum System.Linq muss importiert sein, also in C#:
using System.Ling;

Héufig wird diese Bedingung tibersehen. Dies erkennt man an der Fehlermeldung »Could not
find an implementation of the query pattern for source type '...'«.

Da select, where, from, etc. ja Schliisselworter der Programmiersprachen C# und Visual Basic
sind, stellt sich der kritische Leser sicherlich die Frage, warum dieser Import notwendig erfiillt
sein muss. Vor .NET Framework 3.5 gab es keine Schliisselwdrter, die von Referenzen und
Importanweisungen abhingig waren. Der Grund liegt in diesem Fall darin, dass der Compiler
die LINQ-Abfragesyntax in einem ersten Ubersetzungsschritt in LINQ-Methodensyntax
iibersetzt. Diese Methoden sind Erweiterungsmethoden fiir bestehende Typen. Wenn diese
Erweiterungsmethoden aber nicht verfiigbar sind, schldgt die Ubersetzung fehl.

LINQ-Methodensyntax

Wie bereits im vorangegangenen Abschnitt erwéhnt, sind alle LINQ-Anweisungen intern als
Methodenaufrufe realisiert. So wird z.B. das Schliisselwort where der Abfragesyntax auf die
Erweiterungsmethode Where() abgebildet, orderby ist realisiert durch OrderBy() und select durch
Select(). Durch die Aneinanderreihung der Methodenaufrufe konnen komplexe Abfragen definiert
werden.

Abfragesyntax Methodensyntax

/I LINQ-Abfrage in Abfragesyntax /I LINQ-Abfrage in Methodensyntax
[Enumerable<string> Monate4 = IEnumerable<string> Monate4 =

from Monat in AlleMonate AlleMonate

where Monat.Length == 4 .Where(Monat => Monat.Length == 4)
orderby Monat .OrderBy(Monat => Monat)

select Monat.Substring(0, 3); .Select(Monat => Monat.Substring(0,3));

Tabelle: Vergleich von Abfragesyntax und Methodensyntax an einem Beispiel

Tatséchlich existiert nur fiir einen sehr kleinen Teil der Moglichkeiten von LINQ eine
Reprisentation in der Abfragesyntax. Viele Moglichkeiten sind — insbesondere in C# — nur in der
Methodensyntax verfiigbar, z.B. Top(), Skip(), Distinct(), Min(), Average() etc.

Um die Monate 6 bis 8 in der Liste zu ermitteln, kann man mit Skip() die ersten fiinf iiberspringen
und dann mit Take() die néchsten drei auswiéhlen.

Listing: Beispiel in Methodensyntax

// LINQ-Abfrage in Methodensyntax

I ble<string> te =
AlleMonate
.Select (Monat => Monat.Substring(0, 3))
.Skip(5) .Take (3) ;

Die Methodensyntax ist nicht so elegant wie die Abfragesyntax. Der Entwickler kann aber die
beiden Syntaxformen miteinander kombinieren, indem er den Ausdruck in Abfragesyntax in
runden Klammern einschlieft und auf diesem Ausdruck dann die Erweiterungsmethoden
anwendet.

Listing: Beispiel in gemischter Syntax
// LINQ-Abfrage in gemischter Syntax
IEnumerable<string> SommerMonate =

Abfrageausdriicke / Language Integrated Query (LINQ) 351

(from Monat in AlleMonate

select Monat.Substring(0, 3))

.Skip (5) .Take(3) ;
Hinweis: In Visual Basic ist die Abfragesyntax umfangreicher als in C#. In C# kann man aber
auch alle LINQ-Befehle nutzen, zum Teil ist die Anwendung aber wesentlich uneleganter als in
Visual Basic.
Es gibt zur Laufzeit keinen Unterschied zwischen den beiden Syntaxformen. Auch die
Mischung der Syntaxformen hat keinen Nachteil, denn die Klammerung sorgt nicht dafiir, dass
der Teilausdruck vorher ausgewertet wird. LINQ-Ausdriicke werden immer erst bei ihrer
Verwendung ausgefithrt (verzogerte Ausfithrung). Eine Ausnahme bilden die
Konvertierungsmethoden ToArray(), ToDictionary(), ToList() und ToLookup(). Diese vier
Methoden sorgen allerdings dafiir, dass der davorstehende LINQ-Befehl sofort ausgefiihrt wird.

Ubersicht iiber die LINQ-Befehle

Die folgende Tabelle zeigt die Liste aller in .NET 3.5 /4.0 verfiigbaren LINQ-Befehle. LINQ-
Befehle werden auch LINQ-Operatoren genannt.

352

Abfrageausdriicke / Language Integrated Query (LINQ)

Methodenna
me

Schliisselwort
in der
Abfragesynta
x (C#)

Schliisselwort in
der Abfragesyntax
(Visual Basic)

Beschreibung

Aquivalent
in SQL

Aggregate

Eigene
Aggregatfunktionen

All

Aggregate ... In ...
Into All()

Liefert true, wenn
alle Elemente einer
Menge die
angegebene
Bedingung erfiillen

Any

Aggregate ... In ...
Into Any()

Liefert true, wenn
mindestens ein
Element der Menge
die angegebene
Bedingung erfiillt

EXISTS

Average

Mittelwert
(arithmetischer
Durchschnitt)

AVG

Cast

from Typ x in
Menge

From ... As ...

Typumwandlung
aller Elemente der
Menge

Concat

Vereinigungsmeng
e zweier Mengen

UNION

Contains

Priift, ob die
Menge ein
bestimmtes
Element enthalt

IN

Count

Aggregate ... In ...
Into Count()

Liefert die Anzahl
der Elemente in der
Menge in Form
einer 32-Bit-
Ganzzahl (Typ
Int32)

COUNT

Distinct

Distinct

Entfernt alle
doppelten Elemente
in der Liste

DISTINCT

ElementAt

Liefert das Element
in der Menge an
einer bestimmten
Stelle (Index)

Abfrageausdriicke / Language Integrated Query (LINQ)

353

Methodenna
me

Schliisselwort
in der
Abfragesynta
x (C#)

Schliisselwort in
der Abfragesyntax
(Visual Basic)

Beschreibung

Aquivalent
in SQL

ElementAtOr
Default

Liefert das Element
in der Menge an
einer bestimmten
Stelle (Index) oder
einen Standardwert,
wenn der Index
negativ oder grofler
als die Anzahl der
Elemente ist

Empty

Erstellt eine leere
Menge vom
angegebenen Typ

Except

Vergleicht zwei
Mengen und liefert
nur diejenigen
Elemente, die in
der ersten Menge
(die Menge, auf die
die Methode
angewendet wird),
aber nicht in der
zweiten Menge (die
Menge, die als
Parameter
angegeben wird)
vorhanden sind

First

Das erste Element
einer Menge. Wenn
mehrere Elemente
in der Menge sind,
werden alle
anderen bis auf das
erste verworfen.
Wenn es kein
Element gibt, tritt
ein Laufzeitfehler
auf.

354

Abfrageausdriicke / Language Integrated Query (LINQ)

Methodenna
me

Schliisselwort
in der
Abfragesynta
x (C#)

Schliisselwort in
der Abfragesyntax
(Visual Basic)

Beschreibung

Aquivalent
in SQL

FirstOrDefault

Das erste Element
einer Menge oder
ein Standardwert
(bei Referenztypen
null bzw. Nothing),
wenn die Menge
leer ist. Wenn
mehrere Elemente
in der Menge sind,
werden alle
anderen bis auf das
erste verworfen.

GroupBy

group ... by
...into ...

Group ... By ...
Into ...

Gruppiert eine
Menge nach dem
angegebenen
Kriterium

GROUP

GroupJoin

join ... in
on ... equals
...into ...

Group Join ... In
On ...

Verbindet zwei
Mengen durch
einen OUTER
JOIN

JOIN

Intersect

Liefert die
Schnittmenge
zweier Mengen

Join

join ... in
n ... equals

Join...In...On ...
Equals ...

Verbindet zwei
Mengen durch
einen INNER JOIN

JOIN

Last

Liefert das letzte
Element einer
Menge

LastOrDefault

Liefert das letzte
Element einer
Menge oder einen
Standardwert,
wenn die Menge
leer ist

LongCount

Aggregate ... In ...
Into LongCount()

Liefert die Anzahl
der Elemente in der
Menge in Form
einer 64-Bit
Ganzzahl (Typ
Int64)

COUNT

Abfrageausdriicke / Language Integrated Query (LINQ)

355

Methodenna
me

Schliisselwort
in der
Abfragesynta
x (C#)

Schliisselwort in
der Abfragesyntax
(Visual Basic)

Beschreibung

Aquivalent
in SQL

Aggregate ... In ...
Into Max()

Ermittelt den
maximalen Wert
einer Menge

MAX

Min

Aggregate ... In ...
Into Min()

Ermittelt den
minimalen Wert
einer Menge

MIN

OfType

Liefert alle
Elemente einer
Menge, die
Instanzen einer
bestimmten Klasse
sind

OrderBy

orderby

Order By

Sortiert eine Menge
aufsteigend

ORDER
BY

OrderByDesce
nding

orderby ...
descending

Order By ...
Descending

Sortiert eine Menge
absteigend

ORDER
BY DESC

Range

Erzeugt eine
Menge mit den
numerischen
Werten von n bis m

Repeat

Erzeugt eine
Menge mit n-Mal
dem gleichen
Element

Reverse

Umkehren der
Reihenfolge

Select

select

Select

Bestimmt die
Daten und bildet
die Elemente, die
aus einer Menge
erstellt werden

SELECT

SelectMany

Durchléuft
Mengen, die selbst
Mitglieder anderer
Mengen sind und
liefert eine flache
Liste

356

Abfrageausdriicke / Language Integrated Query (LINQ)

Methodenna
me

Schliisselwort
in der
Abfragesynta
x (C#)

Schliisselwort in
der Abfragesyntax
(Visual Basic)

Beschreibung

Aquivalent
in SQL

SequenceEqua
1

Priift, ob zwei
Mengen identisch
sind hinsichtlich
der Anzahl,
Reihenfolge und
Inhalt der Elemente

Single

Das erste Element
einer Menge. Wenn
es kein Element
gibt oder wenn
mehrere Elemente
in der Menge sind,
tritt ein
Laufzeitfehler auf.

SingleOrDefa
ult

Das erste Element
einer Menge. Wenn
es kein Element
gibt, wird der
Standardwerte (bei
Referenztypen null
oder Nothing)
geliefert. Wenn
mehrere Elemente
in der Menge sind,
tritt ein
Laufzeitfehler auf.

Skip

Skip

Uberspringt die
ersten n Elemente
einer Menge und
liefert den Rest

SkipWhile

Skip While

Uberspringt so
lange Elemente,
wie eine
Bedingung erfiillt
wird und liefert den
Rest

Aggregate ... In ...
Into Sum()

Summiert die
Elemente einer
Menge

SUM

Take

Take

Liefert die ersten x
Elemente einer
Menge

TOP

Abfrageausdriicke / Language Integrated Query (LINQ)

357

Methodenna
me

Schliisselwort
in der
Abfragesynta
x (C#)

Schliisselwort in
der Abfragesyntax
(Visual Basic)

Beschreibung

Aquivalent
in SQL

TakeWhile

Take While

Liefert so lange
Elemente, wie eine
Bedingung erfiillt
wird

ThenBy

orderby ..., ...

Order By ..., ...

Angabe eines
weiteren
aufsteigenden
Ordnungskriterium
s bei einer
Sortierung

ORDER

ThenByDesce
nding

orderby ..., ...
descending

OrderBy ..., ...
Descending

Angabe eines
weiteren
absteigenden
Ordnungskriterium
s bei einer
Sortierung

ORDER
BY

ToArray

Konvertiert eine
Menge zu einem
Array

ToDictionary

Konvertiert eine
Menge zu einer
generischen
Dictionary<K,T>-
Menge

ToList

Konvertiert eine
Menge zu einer
generischen
List<T>- Menge

ToLookup

Konvertiert eine
Menge zu einer
generischen Look-
up<K,T>-Menge.

Union

Vereint zwei
Mengen zu einer

UNION

Where

where

Where

Filtern der
Eingabemenge

WHERE

Tabelle: LINQ-Befehle

Neben den LINQ-Befehlen kann man auch die Methoden der .NET-Klassenbibliothek in LINQ-
Abfragen verwenden. Sinnvoll sind z.B. die Methoden der Klassen System.String (z.B.
StartsWith()), System.DateTime (z.B. AddYears() und System.Math (z.B. Round()). Mit LINQ to

358 Abfrageausdricke / Language Integrated Query (LINQ)

Objects kann man prinzipiell alle Methoden der .NET Klassenbibliothek und auch eigene
Methoden in eigenen Geschiftsobjekten nutzen. Mit anderen LINQ-Providern ist dies nur dann
moglich, wenn es fiir die Methode eine Entsprechung in der Basissyntax gibt. Dies gilt bei LINQ
to SQL im Wesentlichen nur fiir einige Methoden der Klassen System.String, System.Math und
System.DateTime. Andere Methoden und selbstdefinierte Methoden haben keine Entsprechung in
SQL und kénnen daher auch nicht in LINQ to SQL genutzt werden.

Achtung: Ob die Reihenfolge der Befehle entscheidend ist, hdngt von dem LINQ-Provider ab.
Bei LINQ to Objects ist

from x in Zahlen where x < 50 orderby x select x

viel schneller als

from x in Zahlen orderby x where x < 50 select x

Bei LINQ to Entities gibt es keinen Unterschied, denn die zugrundeliegende Datenbank wird
dies optimieren.

46.3 LINQ to Objects

Mit LINQ to Objects wird die Abfrage von Objektmengen im Hauptspeicher bezeichnet. Abgefragt
werden konnen alle Objektmengen, die entweder die Schnittstelle IEnumerable oder ihr
generisches Pendant IEnumerable<T> unterstiitzen. Dies sind also die Klassen in
System.Collections (z.B. ArrayList, Hashtable, Queue und Stack), die Klassen in
System.Collections.Generic (z.B. List<T>, SortedDictionary<T>, Queue<T> und Stack<T>), die
Klasse System.Array sowie spezielle Mengen wie DataRowCollection, DataColumnCollection,
DirectoryEntries und ManagementObjectCollection. Da IEnumerable bzw. IEnumerable<T>
Voraussetzungen fiir das Funktionieren der foreach-Schleife sind, besitzt praktisch jede Menge in
der .NET-Klassenbibliothek eine der beiden Schnittstellen. Fiir LINQ to Objects ist es unerheblich,
ob die Menge vom .NET Framework erzeugt wird oder von eigenem Programmcode.

46.3.1 LINQ to Objects mit elementaren Datentypen

Am Beispiel einer Menge von Zahlen in Form eines Arrays vom Typ Int32 soll die Anwendung
von LINQ-Befehlen auf elementaren Datentypen gezeigt werden.

Gegeben sind zwei Zahlenmengen:

Listing: Definition der Zahlenmenge

int[] Zahlenl = { 15, 4, 11, 3, 19, 8, 16, 7, 12, 5, 9, 20, 1, 4, 8, 13, 14, 4, 1
};

int[] Zahlen2 = { 12, 5, 31, 24, 29, 20, 13, 31 };

Das folgende Listing enthélt zahlreiche Fragestellungen in Bezug auf diese beiden Zahlenmengen
und den Weg, die Losung mit LINQ zu ermitteln. Das jeweilige Ergebnis wird aus Platzgriinden
hier nicht abgedruckt. Durch den Programmcode zu diesem Buch kénnen Sie dies jedoch selbst
ausprobieren.

Listing: Anwendungsbeispiele von LINQ to Objects auf Zahlenmengen

private static void Demo_LTO_Zahlen()
{

int i;

double d;

string s = "Geben Sie die Zahlen aus, die kleiner als 10 sind.";
var Ergebnis =

from n in Zahlenl

where n < 10

Abfrageausdriicke / Language Integrated Query (LINQ) 359

select n;
Print (Ergebnis, s);

s = "Geben Sie die Zahlen, die kleiner als 10 sind, aufsteigend sortiert
aus.";
Ergebnis =
from n in Zahlenl
where n < 10
orderby n // optional
select n;
Print (Ergebnis, s);

s = "Geben Sie die Zahlen, die kleiner als 10 sind, absteigend sortiert aus.";
Ergebnis =

from n in Zahlenl

where n < 10

orderby n descending

select n;
Print (Ergebnis, s);

s = "Geben Sie die Zahlen, die kleiner als 10 sind, absteigend sortiert aus."

"Eliminieren Sie alle Duplikate.";
Ergebnis =

(from n in Zahlenl

where n < 10

orderby n descending

select n) .Distinct();
Print (Ergebnis, s);

s = "Geben Sie die vierte bis achte Zahl aus.";
Ergebnis =

(from n in Zahlenl

where n < 10

select n) .Skip(3) .Take (4) ;
Print (Ergebnis, s);

s = "Geben Sie die erste Zahl aus!";
is=

(from n in Zahlenl

select n) .First();
Print(i, s);

s = "Geben Sie die letzte Zahl aus!";
i=

(from n in Zahlenl

select n) .Last();
Print(i, s);

s = "Geben Sie die 10. Zahl aus!";

(from n in Zahlenl
select n) .ElementAt(9) ;
Print(i, s);

s = "Geben Sie die 50. Zahl aus! (Fangen Sie den Fehler ab!)";
is=

(from n in Zahlenl

select n) .ElementAtOrDefault (49) ;
Print(i, s);
s = "Geben Sie die Anzahl der Zahlen aus.";
is=

(from n in Zahlenl

360 Abfrageausdriicke / Language Integrated Query (LINQ)

select n) .Count() ;
Print(i, s);

s = "Geben Sie nur die niedrigste Zahl aus.";
i=

(from n in Zahlenl

select n) .Min() ;
Print(i, s);

s = "Geben Sie nur die héchste Zahl aus.";
i=

(from n in Zahlenl

select n) .Max () ;
Print(i, s);

s = "Geben Sie den Durchschnitt aus.";
d =

(from n in Zahlenl

select n) .Average();
Print(d, s);

s = "Geben Sie die Summe aus.";
d =

(from n in Zahlenl

select n) .Sum() ;
Print(d, s);

s = "Geben Sie das Produkt aller Werte aus.";
d =

(from n in Zahlenl

select n) .Aggregate ((summe, wert) => summe *= wert);
Print(d, s);

s = "Gruppieren Sie die Werte.";
IEnumerable<IGrouping<int, int>> GruppeErgebnis =
(from n in Zahlenl
group n by n);
Print (GruppeErgebnis, s);

s = "Geben Sie die Hidufigkeit eines jeden Werts aus!
IDictionary<int, int> GruppeHaeufigkeit =

(from n in Zahlenl

group n by n into g

select new { Wert = g.Key, Anzahl = g.Count() }

) .ToDictionary(y => y.Wert, y => y.Anzahl);
Print (GruppeHaeufigkeit, s);

s = "Verbinden Sie die Zahlenmengen 1 und 2:";
Ergebnis = (from n in Zahlenl select n) .Union(from n2 in Zahlen2 select n2);
Print (Ergebnis, s);

s = "Verbinden Sie die Zahlenmengen 1 und 2 und sortieren Sie das Ergebnis:";
Ergebnis = (from n in Zahlenl select n).Union(from n2 in Zahlen2 select

n2) .OrderBy(n => n);
Print (Ergebnis, s);

s = "Bilden Sie die Schnittmenge aus den Zahlenmengen 1 und 2.";

Ergebnis = (from n in Zahlenl select n).Intersect(from n2 in Zahlen2 select
n2) .OrderBy(n => n);

Print (Ergebnis, s);

s = "SchlieBen Sie die Zahlen aus Zahlenmengen 2 in Menge 1 aus.";
Ergebnis = (from n in Zahlenl select n) .Except(from n2 in Zahlen2 select
n2) .OrderBy(n => n);

Abfrageausdriicke / Language Integrated Query (LINQ) 361

Print (Ergebnis, s);

s = "Priifen Sie, ob die Zahlenmenge 1 und 2 die gleichen Zahlen in der

gleichen Reihenfolge enthalten.";

bool Erfuellt = (from n in Zahlenl select n).SequenceEqual (from n2 in Zahlen2

select n2);

Print (Erfuellt, s);

s = "Priifen Sie, ob die Zahl 20 in der Menge vorkommt.";
Erfuellt =

(from n in Zahlenl

orderby n descending

select n) .Contains (20) ;
Print (Erfuellt, s);

s = "Priifen Sie, ob Zahlen gréBer als 20 in der Menge vorkommen.";
Erfuellt =

(from n in Zahlenl

orderby n descending

select n) .Any(n => n > 20);
Print (Erfuellt, s);

s = "Prifen Sie, ob alle Zahlen kleiner 20 sind.";
Erfuellt =

(from n in Zahlenl

orderby n descending

select n) .All(n => n < 20);
Print (Erfuellt, s);

s = "Filtern Sie alle Integer-Werte heraus!";
Ergebnis =
(from n in Zahlenl select n).OfType<int>();

Print (Ergebnis, s);

s = "Wandeln Sie alle Zahlen in Byte-Werte um!";
var kleineZahlen =

(from n in Zahlenl select n).Cast<byte>() ;
foreach (var x in kleineZahlen)
{

Console.WriteLine (x) ;

Print(kleineZahlen, s);

Das obige Listing nutzt zur Ausgabe die selbstdefinierte Methode Print(). Es muss aber mehrere
Uberladungen von Print() geben, da die LINQ-Abfragen unterschiedliche Ergebnisse liefern
konnen:

Viele der obigen LINQ-Abfragen liefern wieder eine Zahlenmenge zuriick. Der konkrete
Datentyp, der zuriickgeliefert wird, ist von den eingesetzten Methoden abhédngig. Alle diese
Klassen besitzen jedoch die Schnittstelle IEnumerable<int>. Zum Durchlaufen des
Ergebnisses ist eine einfache Schleife ausreichend.

Durch das Gruppieren von Elementen ohne das Schliisselwort into entstehen zwei
verschachtelte Objektmengen des Typs IEnumerable<IGrouping<int, int>>. Die obere Menge
repréasentiert dabei die Gruppen, die untergeordnete Menge die Elemente in jeder Gruppe. Zum
Durchlaufen des Ergebnisses ist eine geschachtelte Schleife notwendig. Diese Form des
Gruppierens bezeichnet man als hierarchisches Gruppieren.

Durch das Gruppieren von Elementen mit dem Schliisselwort into entsteht ein neuer anonymer
Typ, der das Gruppierungskriterium und die zusammengefassten Daten anderer Mitglieder des

362 Abfrageausdricke / Language Integrated Query (LINQ)

Ausgangstyps enthélt. Das Ergebnis ist ein Dictionary-Objekt mit zwei Int32-Werten:
IDictionary<int, int>. Diese Form des Gruppierens entspricht dem flachen Gruppieren aus
SQL. Trotz der Verwendung von into kann man hierarchisches Gruppieren erreichen, wenn
man in dem anonymen Typ auf die Gruppe selbst verweist, z.B. from p in
System.Diagnostics.Process.GetProcesses group p by p.ProcessName into g select new {
Name = gKey, Anzahl = g.Count(), Max = gMax(p => p.WorkingSet64),
ProzesseInDieserGruppe = g };

Listing: Ausgaberoutinen fiir die Ergebnisse der LINQ-Abfragen (Auswahl)

priate static void Print (IEnumerable<int> Nums, string s)

HeadLine (s) ;

foreach (int x in Nums)
{
Console.WriteLine (x) ;
}

}

private static void Print(IDictionary<int, int> gruppe, string s)

HeadLine (s) ;

foreach (var x in gruppe)

{

Console.WriteLine(x.Key + ": " + x.Value);

}
private static void Print(IEnumerable<IGrouping<int, int>> Gruppen, string s)

HeadLine (s) ;
foreach (IGrouping<int, int> x in Gruppen)
{
Console.WriteLine("---- " + x.Key);
foreach (int i in x)
{
Console.WriteLine (i) ;
}
}
}

46.3.2 LINQ to Objects mit komplexen Typen des .NET Framework

Die Anwendung von LINQ to Objects auf komplexe Datentypen unterscheidet sich von der
Anwendung auf elementare Datentypen wie folgt:

= Bei LINQ to Objects mit elementaren Datentypen wurde die in dem from-Ausdruck
deklarierte Laufvariable selbst fiir Bedingungen, Sortierungen und Berechnungen verwendet.
Bei komplexen Datentypen muss mithilfe der Laufvariablen Bezug auf ein Mitglied des
Objekts genommen werden.

= LINQ to Objects mit elementaren Datentypen liefert in der Regel eine Menge des Eingabetyps
zuriick. Bei komplexen Datentypen kann alternativ ein anonymer Typ zuriickgegeben werden,
der nur eine Teilmenge der Mitglieder des Ausgangstyps enthdlt. Dies nennt man eine
Projektion.

Beispiel

In dem folgenden Beispiel werden LINQ-Befehle auf einer Menge von Objekten des Typs
System.Diagnostics.Process angewendet. Die statische Methode GetProcesses() der Klasse

Abfrageausdriicke / Language Integrated Query (LINQ) 363

System.Diagnostics.Process liefert eine Liste der laufenden Prozesse auf einem System in Form
eines Arrays mit Instanzen von System.Diagnostics.Process.

Listing: Anwendungsbeispiele von LINQ to Objects auf eine Menge von Objekten des Typs
System.Diagnostics.Process
private static void Demo_LTO_Prozesse()

{

Process[] Prozesse = Process.GetProcesses();

Process p;
long i;
double d;

string s = "Geben Sie alle Prozesse aus, die weniger als 3.000.000 Bytes
Speicher verbrauchen.";
var Ergebnis =
from n in Prozesse
where n.WorkingSet64 < 3000000
select n;
Print (Ergebnis, s);

s = "Geben Sie alle Prozesse aus, die weniger als 3.000.000 Bytes Speicher
verbrauchen. Sortieren Sie die Liste aufsteigend nach Speicherverbrauch.";
Ergebnis =

from n in Prozesse

where n.WorkingSet64 < 3000000
orderby n.WorkingSet64 // optional
select n;

Print (Ergebnis, s);

s = "Geben Sie alle Prozesse aus, die weniger als 3.000.000 Bytes Speicher
verbrauchen. Sortieren Sie die Liste absteigend nach Speicherverbrauch.";
Ergebnis =

from n in Prozesse
where n.WorkingSet64 < 3000000
orderby n.WorkingSet64 descending // optional
select n;
Print (Ergebnis, s);
s = "Geben Sie die Prozesse aus. Eliminieren Sie alle Duplikate.";
Ergebnis =
(from n in Prozesse
select n) .Distinct() ;
Print (Ergebnis, s);

s = "Geben Sie den vierten bis achten Prozess aus in der nach
Speicherverbrauch aufsteigend sortierten Liste aller Prozesse, die mehr als
1.000.000 Bytes verbrauchen.";

Ergebnis =

(from n in Prozesse

where n.WorkingSet64 > 1000000
orderby n.WorkingSeté64

select n) .Skip(3) .Take (4) ;

Print (Ergebnis, s);

s = "Geben Sie den ersten Prozess aus in der nach Speicherverbrauch
aufsteigend sortierten Liste aller Prozesse, die mehr als 1.000.000 Bytes
verbrauchen.";

p=

(from n in Prozesse

where n.WorkingSeté4 > 1000000
orderby n.WorkingSet64

select n) .First();

364 Abfrageausdriicke / Language Integrated Query (LINQ)

Print(p, s);

s = "Geben Sie den letzten Prozess aus in der nach Speicherverbrauch
aufsteigend sortierten Liste aller Prozesse, die mehr als 1.000.000 Bytes
verbrauchen.";

(from n in Prozesse
where n.WorkingSet64 > 1000000
orderby n.WorkingSet64
select n) .Last();
Print(p, s);

s = "Geben Sie den 10. Prozess aus in der nach Speicherverbrauch aufsteigend
sortierten Liste
aller Prozesse, die mehr als 1.000.000 Bytes verbrauchen.";

(from n in Prozesse

where n.WorkingSet64 > 1000000

orderby n.WorkingSet64

select n) .ElementAt(9) ;
Print(p, s);

s = "Geben Sie den 150. Prozess aus! (Fangen Sie den Fehler ab!)";
(from n in Prozesse

select n) .ElementAtOrDefault (149) ;
Print(p, s);

[0}
[l

"Geben Sie die Anzahl der Prozesse aus (mit einem LINQ-Statement!)";

(from n in Prozesse
select n) .Count();
Print(i, s);

[}
[

"Geben Sie nur den niedrigsten Speicherverbrauch aus";

(from n in Prozesse
select n) .Min(n => n.WorkingSet64) ;
Print(i, s);

s = "Geben Sie nur den héchsten Speicherverbrauch aus";
i=

(from n in Prozesse

select n) .Max(n => n.WorkingSeté64) ;
Print(i, s);

s = "Geben Sie den durchschnittlichen Speicherverbrauch aus";
d =

(from n in Prozesse

select n) .Average(n => n.WorkingSeté64) ;
Print(i, s);

s = "Geben Sie die Summe des Speicherverbrauchs aus";
i=

(from n in Prozesse

select n).Sum(n => n.WorkingSeté64) ;
Print(i, s);

s = "Gruppieren Sie die Prozesse nach Namen.";
IEnumerable<IGrouping<string, Process>> GruppeErgebnis =
(from n in Prozesse
group n by n.ProcessName) ;
Print (GruppeErgebnis, s);

Abfrageausdriicke / Language Integrated Query (LINQ) 365

s = "Geben Sie die Haufigkeit eines jeden Prozessnamens aus!";
IDictionary<string, int> GruppeHaeufigkeit =

(from n in Prozesse

group n by n.ProcessName into g

select new { Name = g.Key, AnzProzess = g.Count() }

) .ToDictionary(y => y.Name, y => y.AnzProzess);
Print (GruppeHaeufigkeit, s);

s = "Starten Sie einen neuen Prozess (Notepad) und ermitteln Sie, durch einen
Vergleich der Prozessliste vorher und nachher, welche P: neu hi g
sind. (Geben Sie die Process-ID und den Prozessnamen aus!)";
Process neupro = Process.Start(@"C:\Windows\notepad.exe") ;
neupro.WaitForInputIdle() ;
Process[] Prozesse2 = Process.GetProcesses() ;

//Print((from pl in Prozesse where pl.ProcessName=="notepad" select pl),
"Test") ;

//Print((from p2 in Prozesse2 where p2.ProcessName=="notepad" select p2),
"Test") ;

IEnumerable<int> ProzessListe = (from n2 in Prozesse2 select
n2.Id) .Except(from n in Prozesse select n.Id);

Print (ProzessListe, s);

//var ProzessListe2 = from p in System.Diagnostics.Process.GetProcesses ()
select p.ProcessName;

s = "Listen Sie die Prozesse mit ihren Threads auf.";
var ProzesseMitThreads =
(from n in Prozesse
select new { n, n.Threads }
)i
HeadLine(s) ;
foreach (var x in ProzesseMitThreads)
{
Console.WriteLine(x.n) ;
try
{
foreach (P
{
Console.WriteLine (y.StartTime) ;

}

hreads)

y in x.

}

catch (Exception)

}
}

s = "Geben Sie zu jedem Prozess die Anzahl der Threads aus!'";
var ProzesseMitThreadCount =

(from n in Prozesse

where n.Id > zehn

select new { n, n.Threads.Count }

HeadLine (s) ;
foreach (var m in ProzesseMitThreadCount)

{

Console.WriteLine(m.n + ":" + m.Count) ;
s = "Geben Sie die Prozesse aus, die mehr als 10 Threads haben!";
Ergebnis =

(from n in Prozesse
where n.Threads.Count > 10

366 Abfrageausdricke / Language Integrated Query (LINQ)

select n);
Print (Ergebnis, s);

s = "Geben Sie den/die Prozess(e) aus, der/die die meisten Threads hat!";

Ergebnis = (from n in Prozesse where n.Threads.Count == Prozesse.Max(x =>
x.Threads.Count) select n);

Print (Ergebnis, s);

}

46.3.3 LINQ to Objects mit eigenen Geschéftsobjekten

LINQ-Abfragen kénnen auch iiber eigene (Geschifts-)Objektmengen gestellt werden, egal ob
diese direkt durch Implementierung von IEnumerable/IEnumerable<T> oder durch Ableiten von
einer der vordefinierten Mengenklassen implementiert wurden. Das folgende Objektmodell zeigt
drei Mengen (FlugMenge, PassagierMenge und BuchungsMenge), die jeweils durch Ableiten von

der Klasse System.Collections.Generic.List<T> realisiert wurden.

(Person @)
Class
 Fields
o _Geburtsdatun
4% Nachname
¥ _Personalausweis
(‘Flug) (FugMenge ®) o yorname
Class o MleFlege | Jass 5 Properties
3 litePlug P aker
= Fields 2 Ganzerhlame
& Datum F Geburtsdatum
4 abflugort — 2 Nachname
2 flughr ' Personalausweish
o freiePlastze & vomane
o nichtraucherflug & Methods
@ Passagere @ Person
o dslort
& Properties P _) _
= Abfugort 5‘;;"""? B o Alepassagiers P‘asxsaglerengz ®
= Datum <3
5 Flughr st Passagier>
' FreiePlactee = Fields
o Fug
' Hichtraucherfiug 4# buchungscode foean —\
gier =
T Plastze = Propettiss
= zelort 5 Buchungscade @ Possager | dpunon
= Methods = Methods g (BuchungsMenge (= |
© Fug % Buchung PR @ Buchungen | Tt
5 Passagerd b Lit<Buchung=
5 Methods
@ Passager

Abbildung: Objektmodell fiir die folgenden Beispiele

Beispiel

Das folgende Listing zeigt zahlreiche Beispiele zur Abfrage der Mengen in dem oben dargestellten
Objektmodell. Das Listing setzt voraus, dass die Mengen vorher mit Daten gefiillt wurden. Diese
Befiillung wird hier aus Platzgriinden nicht abgedruckt, ist jedoch in den Codebeispielen zu diesem
Buch enthalten.

Listing: Anwendungsbeispiele von LINQ to Objects auf verschiedene selbstdefinierte
Geschiftsobjektmengen
private static void Demo_LTO_Objektmodell ()

{
// Initialisiere das Objektmodell
BO_Init.Init();
string s;

Abfrageausdriicke / Language Integrated Query (LINQ)

367

long i;
Flug flug;
double d;

s = "Geben Sie alle Fliige von Rom abgehend aus!";
var Ergebnis =
from £ in Flug.AlleFluege

where f.AbflugOrt "Rom"

select £;

Print (Ergebnis, s);

s = "Geben Sie alle Fliige aus, die weniger als 100 freie Plitze haben.";

Ergebnis =
from n in Flug.AlleFluege
where n.FreiePlaetze < 100
select n;

Print (Ergebnis, s);

s = "Geben Sie alle Fliige aus, die weniger als 100 freie Platze haben.
Sortieren Sie die Liste aufsteigend nach Platzanzahl.";
Ergebnis =

from n in Flug.AlleFluege
where n.FreiePlaetze < 100
orderby n.FreiePlaetze
select n;

Print (Ergebnis, s);

s = "Geben Sie alle Fliige aus, die weniger als 100 freie Platze haben.
Sortieren Sie die Liste absteigend nach Platzanzahl.";
Ergebnis =

from n in Flug.AlleFluege

where n.FreiePlaetze < 100
orderby n.FreiePlaetze descending
select n;

Print (Ergebnis, s);

s = "Geben Sie Flug 101 aus.";

flug = (from £ in Flug.AlleFluege
where f.FlugNr == 101
select £).SingleOrDefault();

Print(flug, s);

s = "Geben Sie die Fliige aus, aber jede Strecke nur einmal!";
var Strecken =

(from n in Flug.AlleFluege

select new { n.AbflugOrt, n.ZielOrt }) .Distinct();
HeadLine (s) ;

foreach (var £ in Strecken)
{
Console.WriteLine (f.AbflugOrt + " -> " + f£.ZielOrt);

s = "Geben Sie alle Ziele aus, die von Rom aus erreichbar sind.";
var Ziele =

(from n in Flug.AlleFluege

where n.AbflugOrt == "Rom"

select n.ZielOrt) .Distinct() ;
HeadLine(s) ;

foreach (string £ in Ziele)
{
Console.WriteLine (£f) ;

}

368 Abfrageausdriicke / Language Integrated Query (LINQ)

s = "Geben Sie den vierten bis achten Flug aus in der nach freien Pladtzen
aufsteigend sortierten Liste aller Fliige, die in Berlin landen.";
Ergebnis =
(from n in Flug.AlleFluege
where n.ZielOrt == "Berlin"

orderby n.FreiePlaetze
select n) .Skip (3) .Take (4) ;
Print (Ergebnis, s);

s = "Geben Sie den ersten Flug aus in der nach freien Pldtzen aufsteigend
sortierten Liste aller Fliige, die in Berlin landen.";
flug =
(from n in Flug.AlleFluege
where n.ZielOrt == "Berlin"

orderby n.FreiePlaetze
select n) .First() ;
Print(flug, s);

s = "Geben Sie den letzten Flug aus in der nach freien Platzen aufsteigend
sortierten Liste aller Fliige, die in Berlin landen.";
flug =
(from n in Flug.AlleFluege
where n.ZielOrt == "Berlin"

orderby n.FreiePlaetze
select n) .Last();
Print(flug, s);

s = "Geben Sie den 10. Flug aus in der nach freien Platzen aufsteigend
sortierten Liste aller Fliige, die in Berlin landen.";
flug =

(from n in Flug.AlleFluege

where n.ZielOrt "Berlin"

orderby n.FreiePlaetze

select n) .ElementAt(9) ;
Print(flug, s);

s = "Geben Sie den 150. Flug aus in der nach freien Pldtzen aufsteigend
sortierten Liste aller Fliige, die in Berlin landen.
flug =
(from n in Flug.AlleFluege
where n.ZielOrt == "Berlin"

orderby n.FreiePlaetze
select n) .ElementAtOrDefault(149);
Print (flug, s);

s = "Geben Sie Anzahl der Fliige aus (mit einem LINQ-Statement!)";
i=

(from n in Flug.AlleFluege

select n) .Count() ;
Print(i, s);

s = "Geben Sie die geringste freie Platzanzahl aus.";
i=

(from n in Flug.AlleFluege

select n) .Min(n => n.FreiePlaetze) ;
Print(i, s);

s = "Geben Sie die hochste freie Platzanzahl aus.";
i=

(from n in Flug.AlleFluege

select n) .Min(n => n.FreiePlaetze) ;
Print(i, s);

Abfrageausdriicke / Language Integrated Query (LINQ) 369

s = "Geben Sie die durchschnittliche freie Platzanzahl aus.";
d =

(from n in Flug.AlleFluege

select n) .Average(n => n.FreiePlaetze);
Print(d, s);

s = "Geben Sie Summe aller freien Plidtze aus.";
is=

(from n in Flug.AlleFluege

select n).Sum(n => n.FreiePlaetze);
Print(i, s);

s = "Gruppieren Sie die Fliige nach Abflugorten.";
IEnumerable<IGrouping<string, Flug>> GruppeErgebnis =
(from n in Flug.AlleFluege
group n by n.AbflugOrt);
Print (GruppeErgebnis, s);

s = "Geben Sie die Haufigkeit eines jeden Abflugortes aus!";
IDictionary<string, int> GruppeHaeufigkeit =

(from n in Flug.AlleFluege

group n by n.AbflugOrt into g

select new { Name = g.Key, AnzFlug = g.Count() }

) .ToDictionary(y => y.Name, y => y.AnzFlug);
Print (GruppeHaeufigkeit, s);

s = "Erstellen Sie eine gruppierte Liste aller Passagiere mit ihren
Buchungen!";
var pass2 = from p in Passagier.AllePassagiere
orderby p.GanzerName
select new { p.Gan 5 1a h e
foreach (var p in pass2)
{
Console.WriteLine (p.GanzerName) ;
foreach (Buchung b in p.Buchungen)
Console.WriteLine ("\t" + b.Buchungscode) ;

}

s = "Erstellen Sie die Liste der zehn Passagiere mit den meisten Buchungen.";
var pass = (from p in Passagier.AllePassagiere
orderby p. .Count d ding

select p) .Take(10) ;
Print(pass, s);

s = "Erstellen Sie die Liste des/der Passagier(e) mit den meisten Buchungen.";

pass = (from n in Passagier.AllePassagiere where n.Buchungen.Count ==
Passagier.AllePassagiere.Max(x => x.Buchungen.Count) select n);

Print(pass, s);

s = "Finden Sie alle Passagiere, die nach Rom fliegen.";
pass = (from p in Passagier.AllePassagiere
where p.Buchungen.Any(b => b.Flug.ZielOrt == "Rom")
select p);

Print(pass, s);

s = "Finden Sie alle P iere, die viele haben wie ein
Flug freie Platze.";
var joinpass = (from p in Passagier.AllePassagiere
join f in Flug.AlleFluege
on p.Buchungen.Count equals f.FreiePlaetze
select new { p.GanzerName, f.FlugNr, p.Buchungen.Count,
f.FreiePlaetze });
HeadLine (s) ;
foreach (var j in joinpass)

370 Abfrageausdriicke / Language Integrated Query (LINQ)

{
Console.WriteLine (j.GanzerName + " und Flug " + j.FlugNr + " haben die
gleiche Zahl: " + j.Count + " / " + j.FreiePlaetze);
}

s = "Geben Sie alle Passagiere aus und optional dazu einen Flug, der
genausoviele freie Platze hat wie der Passagier Buchungen hat.";
var joinpass2 = (from p in Passagier.AllePassagiere
join £ in Flug.AlleFluege
on p.Buchungen.Count equals f.FreiePlaetze
into Fluege
select new { p.GanzerName, Fluege });
HeadLine (s) ;
foreach (var j in joinpass2)
{
Console.WriteLine (j.GanzerName + " hat " + j.Fluege.Count() + "
korrespondierende Fliige!");

s = "Geben Sie alle Passagiere aus, die dlter als 50 Jahre sind!";
pass = (from p in Passagier.AllePassagiere

where p.Geburtsdatum.AddYears (50) < DateTime.Now

select p);

Print(pass, s);

s = "Geben Sie alle Fliige aus, mit Passagieren dlter als 50 Jahre !";
Ergebnis = (from p in Passagier.AllePassagiere

where p.Geburtsdatum.AddYears(50) < DateTime.Now

from b in p.Buchungen

select b.Flug) .Distinct() ;
Print (Ergebnis, s);

46.4 Parallel LINQ (PLINQ)

Parallel LINQ (PLINQ, frither auch LINQ to Parallel) ist neu ab .NET 4.0. Es ermdoglicht die
Parallelisierung von LINQ to Objects-Abfragen auf mehrere Prozessoren / Prozessorkerne.
Dadurch kann (!) sich eine Beschleunigung ergeben.

PLINQ ist realisiert in Form der Erweiterungsmethode AsParallel(), die auf einfache Weise in
LINQ to Objects-Abfragen integriert werden kann.

Das folgende Beispiel zeigt eine einfache Abfrage mit Filtern (where) und Sortieren (orderby) tiber
eine Zahlenreihe mit Einsatz von AsParallel().

Listing: Eine Abfrage ohne und mit PLINQ
/// <summary>
/// Massendaten filtern und sortieren mit PLINQ
/// </summary>
public static void LTOMassendaten_mit PLINQ ()
{

long AnzZahlen = 1000000;

System.Random rnd = new Random(DateTime.Now.Year) ;

List<long> Zahlen = new List<long>();

for (int i = 1; i <= AnzZahlen; i++) Zahlen.Add(rnd.Next(100)) ;

long Summe = 0;

Stopwatch t = new Stopwatch() ;
t.Start() ;

for (int w = 1; w <= 20; w++)
{

Abfrageausdriicke / Language Integrated Query (LINQ) 371

var q = (from x in Zahlen.AsParallel() where x < 50 orderby x select x).ToLis
t0;

Summe += q.Count() ;

}

t.Stop() ;

Console.WriteLine ("Summe: " + Summe) ;

Console.WriteLine("Mit PLINQ = " + t.ElapsedMilliseconds) ;

}
Die folgende Tabelle zeigt Messergebnisse, auch im Vergleich, wenn man AsParallel() weglassen
wiirde.

Anzahl Zahlen Ohne PLINQ — ohne Mit PLINQ — mit
AsParallel() AsParallel()

10000 50 Millisekunden 76 Millisekunden

100000 441 Millisekunden 190 Millisekunden

1000000 5132 Millisekunden 1532 Millisekunden

Tabelle: Ausfiihrungsdauer von LINQ to Objects ohne und mit PLINQ, jeweils auf dem gleichen
Rechner mit Intel Core I7 mit acht Prozessorkernen

Achtung: Man sieht: Erst bei groferen Grundmengen lohnt der mit der Parallelisierung

verbundene Zusatzaufwand!

Abbildung: Auslastung von acht Kernen bei einer Abfrage ohne PLINQ

CPU Usage History

CPU Usage History

Abbildung: Auslastung von acht Kernen bei einer Abfrage mit PLINQ
Achtung: PLINQ bessert auch Reihenfolgefehler aus. Dort ist

from x in Zahlen orderby x where x < 50 select x

genauso schnell wie
from x in Zahlen where x < 50 orderby x select x

Ohne PLINQ dauert die erste LINQ to Objects-Abfrage bei 10000 Zahlen etwa doppelt so lange
wie die zweite!

Tipp: Bei Bedarf kann das Verhalten von PLINQ durch den Einsatz weiterer
Erweiterungsmethoden beeinflusst werden. Wird zum Beispiel mit AsOrdered() festgelegt, dass
die Sortierreihenfolge aus der Quelle erhalten bleiben soll, bringt dies im Zuge einer parallelen
Abfrage etwas Mehraufwand mit sich und muss deswegen mit dieser Methode bei Bedarf
angefordert werden. Mittels WithCancellation() wird dariiber hinaus ein CancellationToken an
die Abfrage iibergeben, sodass deren Ausfithrung spdter abgebrochen werden kann.

372 Abfrageausdricke / Language Integrated Query (LINQ)

WithDegreeOfParallelism() gibt an, wie viele Tasks maximal fiir diese Anfrage verwendet
werden diirfen. StandardmiBig werden so viele Tasks wie Kerne verwendet, die dann im
Idealfall alle genutzt werden konnen. Kommt PLINQ zur Entscheidung, dass das Parallelisieren
einer Abfrage nicht sinnvoll ist, so wird diese sequenziell ausgefiihrt. Dieses Verhalten kann
allerdings mittels WithExecutionMode() beeinflusst werden. Im betrachteten Listing wird damit
beispielsweise eine Parallelisierung erzwungen. Die letzte der verwendeten Optionen,
WithMergeOptions(), legt fest, wie die Ergebnisse der unterschiedlichen Tasks kombiniert
werden sollen. Mit FullyBuffered wird zum Beispiel erreicht, dass jeder Task sdmtliche
Ergebnisse in einen eigenen Buffer ablegt, wobei diese erst zum Schluss zur Ergebnismenge
zusammengefiigt werden.

Lesen Sie unbedingt »When To Use Parallel. ForEach and When to Use PLINQ?«
[download.microsofi.com/download/B/C/F/BCFD4868-1354-45E3-B71B-
B851CD78733D/WhenToUseParallelForEachOrPLINQ.pdf].

http://download.microsoft.com/download/B/C/F/BCFD4868-1354-45E3-B71B-B851CD78733D/WhenToUseParallelForEachOrPLINQ.pdf
http://download.microsoft.com/download/B/C/F/BCFD4868-1354-45E3-B71B-B851CD78733D/WhenToUseParallelForEachOrPLINQ.pdf

Source-Generatoren 373

47 Source-Generatoren

Eine weitere grolere Neuerung seit C# 9.0 sind Source Generators (anfangs auch Source Code
Generators genannt), mit denen ein Entwickler zusitzlichen Programmcode zur Kompilierungszeit
erzeugen kann, der zusammen mit dem eigentlichen Programmcode kompiliert wird (siche
Abbildung). Damit kann man z.B. Annotationen eine Bedeutung geben im Sinne aspektorientierter
Programmierung (AOP). Fir Microsoft sollen die neuen Generatoren den Weg zu einem
allgemeinen Ahead-of-Time-Compiler ebnen, der in sowohl in .NET 5.0 als auch .NET 6.0 noch
fehlt.

Hinweis: Ein Source Generator kann zusitzlichen Programmcode erzeugen, nicht aber wie
Werkzeuge zum "IL Enhancement" (z.B. PostSharp) bestehenden Programmcode verdndern.

Generated source
code added as input Compilation resumes
to compilation

Source generator step
of compilation

Compilation Runs

Generate
new source
code

\ Source Generator

e o o o e o e e e o

Abbildung: Funktion eines Source Code Generators (Quelle: Microsoft)

471 Aufbau eines Source-Generators

Ein Source-Generator ist eine NET-Klasse, die die Schnittstelle
Microsoft.CodeAnalysis.ISourceGenerator mit diesen beiden Methoden realisiert:

= void Initialize(GeneratorInitializationContext context)

= void Execute(GeneratorExecutionContext context)

Das néchste Listing zeigt einen Generator, der eine Klasse HelloWorld erzeugt.

Listing: Ein ganz einfacher Source-Generator
[CSharpSourceCodeGenerators/HelloWorldGenerator.cs]
using System;

using System.Collections.Generic;

using System.Text;
using Microsoft.CodeAnalysis;
using Microsoft.CodeAnalysis.Text;

tor ple

[Generator]
public class HelloWorldGenerator : ISourceGenerator
{

374 Source-Generatoren

public void Execute (GeneratorExecutionContext context)
{
var source = @"
using System;
namespace HelloWorldGenerated
{
public static class HelloWorld
{
public static void SayHello()
{
Console.WriteLine(""Hallo aus der Assembly "" + System.Reflection.Ass
embly.GetExecutingAssembly () .GetName () .Name) ;
}

3

// Code wird injiziert

context.AddSource ("helloWorldGenerator", SourceText.From(source, Encoding.UTF8
));

}

/// <param name="context"></param>
public void Initialize (GeneratorInitializationContext context)
{
}
}
}
Diese Generator-Klasse muss in eine DLL-Assembly kompiliert werden und bendtigt Verweise
auf die NuGet-Pakete "Microsoft.CodeAnalysis.Csharp" und
"Microsoft.CodeAnalysis.Analyzers".

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<TargetFramework>netstandard2.0</TargetFramework>
<LangVersion>13.0</LangVersion>

</PropertyGroup>

<ItemGroup>
<PackageReference Include="Microsoft.CodeAnalysis.CSharp" Version="3.8.0-
3.final" PrivateAssets="all" />
<PackageReference Include="Microsoft.CodeAnalysis.Analyzers" Version="3.0.0" Pr
ivateAssets="all" />
</ItemGroup>

</Project>

Diese DLL kann der Entwickler dann in einem anderen Projekt wie einen Rosyln-Analyzer
einbinden. Notwendig bei der <ProjectReference> sind die die Zusatzattribute
OutputltemType="Analyzer" ReferenceOutputAssembly="false".

<Project Sdk="Microsoft.NET.Sdk">

<ItemGroup>
<ProjectReference

Source-Generatoren 375

Include="..\CSharpSourceCodeGenerators\CSharpSourceCodeGenerators.csproj"
OutputItemType="Analyzer"

ReferenceOutputAssembly="false" />

</ItemGroup>

</Project>

Man sieht den generierten Quellcode dann in Visual Studio im Ast "Dependencies/Analyzers"
unter dem Namen der Assembly. Der Quellcode wird also nicht in dem Projekt, der den Generator
implementiert, sondern in dem nutzenden Projekt erzeugt.

Zeigeics B s o5

using System;
3 =namespace IMiisions {

4 4 public statie elass Compilelnfo {
5 public static string Getlnfo()
3 €

return “dssenbly wurde kompiliert am 11.11.2621 18:01:18 van ITV\\HS®;
]

Abbildung: Generierter Quellcode von einem Source-Generator im nutzenden Projekt

Danach steht innerhalb dieses Projekts die Klasse HelloWorld zur Verfligung:
HelloWorldGenerated.HelloWorld.SayHello() ;
Mit der Taste F12 ("Go to Definition") kann man den generierten Code direkt anspringen.

Verweis: Da dies ein sehr umfangreiches Thema ist, sei hier auf die Eintrdge "Introducing C#
Source Generators" [devblogs.microsoft.com/dotnet/introducing-c-source-generators] und
"New C# Source Generator Samples" [devblogs.microsoft.com/dotnet/new-c-source-generator-
samples]) im NET-Blog sowie die Dokumentation auf GitHub
[github.com/dotnet/roslyn/blob/master/docs/features/source-generators.md] verwiesen.

47.2 Praxisbeispiel

Ein Praxisbeispiel fiir den Einsatz eines Source Code-Generators ist die Generierung einer C#-
Funktion, die Informationen liefert, zu welchem Zeitpunkt und von wem eine Assembly iibersetzt
wurde. Dies miisste der Entwickler normalerweise jeweils hiandisch im Code hinterlegen oder man
miisste iber einen Pre-Build-Schritt den Quellcode modifizieren. Hier hilft ein Source Code-
Generator, der jeweils beim Ubersetzen eine entsprechende Funktion erzeugt.

Listing: [CSharpSourceCodeGenerators/CompilelnfoGenerator.cs]

using Microsoft.CodeAnalysis;
using Microsoft.CodeAnalysis.Text;
using System;

using System.Text;

namespace ITVisions.CodeGenerators
{

[Generator]

public class CompileInfoGenerator : ISourceGenerator

https://devblogs.microsoft.com/dotnet/introducing-c-source-generators
https://devblogs.microsoft.com/dotnet/new-c-source-generator-samples
https://devblogs.microsoft.com/dotnet/new-c-source-generator-samples
https://github.com/dotnet/roslyn/blob/master/docs/features/source-generators.md

376 Source-Generatoren

public void Execute (GeneratorExecutionContext context)

{

System.Diagnostics.Trace.WriteLine ("

HelloWorldGenerator.Execute") ;

// Source wird erzeugt
var source = Q"
using System;
namespace ITVisions {
public static class CompileInfo {
public static string GetInfo()
{
return ""Assembly wurde kompiliert am [NOW] von [USER]"";

Y
source = source.Replace (" [NOW]", DateTime.Now.ToString()) ;
// hier vier Backslash notwendig, da im generierten Code \\ stehen muss!
source = source.Replace (" [USER]", System.Environment.UserDomainName + "\\\\" +
System.Environment.UserName) ;

// neuer Code wird injeziert
context.AddSource ("CompileInfoGenerator", SourceText.From(source,
Encoding.UTF8)) ;

}

/// <summary>
/// In diesem Fall ohne Funktion
/// </summary>
public void Initialize (GeneratorInitializationContext context)
{
System.Diagnostics.Trace.WriteLine ("
}
}
}
Nach der Einbindung der generierten Assembly als <ProjectReference> kann man im Quellcode
den generierten Code verwenden, z.B.

HelloWorldGeneratorInitialize");

Console.WriteLine (ITVisions.CompileInfo.GetInfo())

Performanceoptimierungen 377

48 Performanceoptimierungen

Dieses Kapitel erortert Themen zur Leistungssteigerung von C#-basierten Anwendungen. Dabei
geht es hier — wie im gesamtem Buch — ausschlieflich um Leistungssteigerungen auf Ebene des
Compilers. Leistungstipps in Bezug auf die Verwendungen von .NET-Klassen sind nicht Thema
des Buchs.

48.1 x64 versus x86

Grundsitzlich sollte man .NET-Anwendungen immer im Modus "AnyCPU" kompilieren. Damit
laufen diese sowohl auf 32-Bit-Betriebssystemen als auch auf 64-Bit-Betriebssystemen jeweils in
der entsprechenden Bit-Anzahl.

Wenn man eine .NET-Anwendung im "x86"-Modus kompiliert, lduft sie auch auf einem 64-Bit-
Betriebssystem, dort aber im Emulator (unter Windows heifit dieser Windows on Windows 64,
kurz WOW64). Die Performanz ist dann schlechter als wenn diese als 64-Bit-Anwendung laufen
wiirde.

Griinde fiir die bessere Performance von 64-Bit-Anwendungen sind:

= Durch die lingeren CPU-Register kann die Verarbeitung von Zahlen schneller erfolgen (32-
Bit-Anwendungen brauchen 2 Register, wo 64-Bit-Anwendungen mit einem auskommen)

= Die 64-Bit-.NET-CLR ist optimiert gegeniiber der 32-Bit-NET-CLR.

= Der Emulator entfillt.

Hinweis: Eine im "x64"-Modus kompilierte Anwendung lauft nur auf 64-Bit-Betriebssystemen. |

378 Performanceoptimierungen

87 HA\TFS\Demos\NET\CSharp_X64X86Vergleich\CSharp_X64X86Vergleich\bin\x86\Release\CSharp_X64X86Vergleich.exe

Abbildung: Eine Anwendung im x86-Modus auf einem 64-Bit-Windows

B HATFS\Demos\NET\CSharp_X64X86Vergleich\CSharp_X64X86Vergleich\bin)x64\Release\CSharp_X64X86Vergleich.exe

Abbildung: Die gleiche Anwendung im x64-Modus auf einem 64-Bit-Windows ist schneller

48.2 Debug versus Release

Eine .NET-Anwendung, die im Release-Modus kompiliert wurde, 1duft schneller als nach dem
Kompilieren im Debug-Modus. Zur Betriebszeit sollte eine Anwendung daher als "Release”
kompiliert werden.

Performanceoptimierungen 379

@0

Abbildung: Die gleiche Anwendung im Release-Modus kompiliert ist schneller

48.3 Vermeidung von Laufzeitfehlern (Exceptions)

Vermeiden Sie das Auslosen und Abfangen von Laufzeitfehlern (Exceptions), wo immer moglich,
durch aktive Priifung und Fallunterscheidungen. Das Auslosen von Exceptions ist in der .NET-
Laufzeitumgebung eine recht "teure" Operation.

Mit 1eeocao
Ohne 1088088 Exceptions: 2ms
Abbildung: Verlangssamung durch Exceptions

Listing: Programmcode zu obiger Ausgabe
using ITVisions;

using System;
using System.Diagnostics;

namespace CSharpSyntaxNET5
{

public class Performance

{

public void ExceptionPerformance ()

380 Performanceoptimierungen

{
CUI.H1 (nameof (ExceptionPerformance)) ;
int anz = 1000000;

int x = 1;

int y = 0;

#region Abfangen einer Exception
var swl = new Stopwatch() ;
swl.Start() ;

for (int i = 0; i < anz; i++)

{

int z;

try

{
z=x/y;

}
catch (Exception)
{
z = Int32.MinValue;
}
}
swl.Stop() ;

Console.WriteLine("Mit " + anz + " Exception: " + swl.ElapsedMilliseconds +
ms") ;

#endregion

#region Vermeidung einer Exception
var sw2 = new Stopwatch();
sw2.Start() ;

for (int i = 0; i < anz; i++)

{

int z;

if (y == 0) z = Int32.MinValue;
else z = x / y;
}
sw2.Stop() ;
Console.WriteLine ("Ohne " + anz + " Exception: " + sw2.ElapsedMilliseconds +
"ms") ;
#endregion
}
}
}

48.4 Ahead-of-Timer-Compiler (Native AOT)

Schon seit dem Jahr 2016 arbeitet Microsoft als Alternative zu dem Just-in-Time-Compiler (JIT)
an einem Ahead-of-Timer-Compiler (AOT), der direkt Machinencode erzeugt und damit .NET-
Anwendungen schneller starten ldsst. Dieses Projekt lief zundchst als "CoreRT"
[github.com/dotnet/corert] und sollte schon in .NET 5.0, dann spéter in .NET 6.0 erscheinen.
Stattdessen ~ aber wurden die Arbeiten in das Projekt "Native = AOT"

https://github.com/dotnet/corert
https://github.com/dotnet/corert

Performanceoptimierungen 381

[github.com/dotnet/runtimelab/tree/feature/NativeAOT] tberfihrt und NET 6.0 lieferte AOT
lediglich fiir Blazor WebAssembly.

In NET 7.0 hat Microsoft den Native AOT-Code in das offizielle GitHub-Repository
"dotnet/runtime" [https://github.com/dotnet/runtime] tberfihrt und bot eine erste Version von
Native AOT in .NET 7.0. In .NET 8.0 gab es eine Erweiterung.

Native AOT verkleinert das Deployment-Paket erheblich (es findet ein Application Trimming,
alias Tree Shaking, statt) und beschleunigt den Anwendungsstart.

T islons.dé Just-in-Time-Compiler (JIT) vs.
m—— Ahead-of-Time-Compiler (AOT)

Plattformneytrale Miroseft
Intermedate Language

WASM-Bytecode

C#-Quellcode

C#-Compiler zur

Entwicklungszeit | = fiir Blazor WebAssembly
CrossGen-Compiler Assembly - seit .NET 6.0
zur Entwicklungszeit BT EiT o Ahead-of-Time-

(seit .NET Core 3.1)

. - Compiler
"Ready to Run" 1 Microsoft Intermediate

Language wEntwicklungszeir

Assembly ~

. Assembly
Plattform- Plattformneutrale Just-in-Ti I -
spezifischer Microsoft ust-in-Time- #q Plattform-spezifischer
Maschinencode [NGIESET Cum?_';frzz;; ‘ Maschinencode

Language RAM 3
Plattform-spezifischer Neu seit .NET 7.0:

Maschinencode Native AOT

-

————— .
Abbildung: Der Native AOT-Compiler im Vergleich zu anderen Compile-Verfahren in NET

48.4.1 Native AOT in .NET 7.0

Die erste Version von Native AOT war sehr eingeschriankt, denn sie funktioniert nur fiir
Konsolenanwendungen und auch dort gibt es Einschrankungen. Nicht moglich mit dem AOT-
Compiler sind:

= Funktionen, die auf Laufzeitcodegenerierung basieren (Reflection Emit)

= Dynamisches Nachladen von Assemblies (Add-Ins/Plug-Ins)

= Funktioniert nicht mit C++/CLI

= Die Nutzung von Komponenten des Component Object Models (COM), z.B. zur Steuerung
von Microsoft Office, ist nicht moglich

= Auch die Programmierschnittstellen der Windows Runtime Library (WinRT) sind nicht
nutzbar
Den AOT-Compiler aktiviert man durch eine Einstellung in der Projektdatei:

<!--fir AOT -->

<PropertyGroup>
<PublishAot>true</PublishAot>

</PropertyGroup>

https://github.com/dotnet/runtimelab/tree/feature/NativeAOT
https://github.com/dotnet/runtime

382 Performanceoptimierungen

Hinweis: Seit NET 8.0 kann man diese Einstellung direkt beim Anlegen eines Projekts
vorsehen durch das Hékchen "Enable native AOT publish" bzw. an der Kommandozeile via
Option --aot, z.B. dotnet new console —aot

In .NET 8.0 ist die AOT-Kompilierung moglich fiir folgende Projekttypen: console, api, grpc
und worker.

Die Einstellung wirkt aber nur, wenn man die Anwendung veroffentlicht, also z.B. per
Kommandozeile

dotnet publish -r win-x64 -c Release

Dann sieht man den Kompilierungsvorgang, der ab der Ausgabe "Generating native code" einige
Zeit braucht. Das Ergebnis eine einzige ausfilhrbare Datei im Projektunterordner
/bin/Release/[DOTNETVERSION]/win-x64/native. Das Ergebnis ist ein "Self-Contained
Executable", lauft also ohne dass vorher eine .NET Runtime installiert werden musste. Die
notwendigen Teile der Runtime sind schon enthalten! So gesehen ist diese Datei sehr klein!

W] NET7ConsalelITvsAOT exe 09.11.2022 18:58 Application 6.812 KB
Abbildung: Ergebnis der AOT-Kompilierung

Die folgenden Abbildungen zeigt eine Konsolenanwendung, die mit JIT und AOT kompiliert
wurden.

Performanceoptimierungen 383

»H: NE’ NE 1e \b \Re
.NET 7.@ JIT vs. AOT Demo - (C) Dr. Holger Schwichtenberg 2022

System & App Information)
b! .1

JIT mit Self-Contained+
Single File Deployment

65,78 MB Disk

Abbildung: JIT-Kompilierte Konsolenanwendungen

384 Performanceoptimierungen

B MET 7.0 JIT vs. AOT Dema - (C) Dr. Halger Schwichtenberg 2022 - u]

H:\TF HET7\NET £)T
LNET 7.8 JIT vs. AOT Demo - (C) Dr. Holger Schwichtenberg 2022

Native AOT
(immer Self-Contained+
Single File)

/]
nd a part of the path "H:\TFS\Demos\NET7\NET7Demos\NET7ConsoleAOT\bin\Release\net7.8\win-x64\native\AddIn
1.

ould not fil
EN.d1’

Abbildung: AOT-kompilierte Konsolenanwendungen

Die wesentlichen Erkenntnisse aus den beiden Bildern sind:

= Wie oben erwihnt, funktioniert die Laufzeitcodegenerierung mit Reflection Emit und das
dynamische Nachladen von Assemblies nicht bei AOT.

= Das Deploymentpaket bei AOT ist sehr wesentlich kleiner: 6,65 MB vs. 65,78 MB.

= Entsprechend ist der RAM-Bedarf bei Anwendungsstart bei AOT geringer: 4,97 MB vs. 8,84
MB.

= Aber: die Rechenzeit fiir eine Zahlenreihe von 42 Millionen zahlen dauert bei Native-AOT
doppelt so lange: 787 ms vs. 1519 ms.

Die offizielle Dokumentationsseite zu Native AOT verschweigt [/ttps://learn.microsoft.com/en-
us/dotnet/core/deploying/native-aot/], dass es Einstellungen fiir den AOT-Compiler gibt. Erste
beim Withlen in GitHub findet man eine weitere = Dokumentationsseite
[https://github.com/dotnet/runtime/blob/main/src/corecly/nativeaot/docs/optimizing.md] mit der

https://learn.microsoft.com/en-us/dotnet/core/deploying/native-aot/
https://learn.microsoft.com/en-us/dotnet/core/deploying/native-aot/
https://github.com/dotnet/runtime/blob/main/src/coreclr/nativeaot/docs/optimizing.md

Performanceoptimierungen 385

Zusatzoption <IlcOptimizationPreference>Speed</IlcOptimizationPreference>. Damit kommt
ein AOT-Kompilat heraus, dass nur wenige Kilobyte groBer ist (6.84 MB), aber die Berechnung
mit 612 Millisekunden noch schneller als der Just-in-Time-Compiler ausfiihrt!

B9 NET7.0 T vs. AOT Demo - (C) Dr. Holger Schwichtenberg 2022 - o x
.NET 7.8 JIT vs. AOT Demo - (C) Dr. Holger Schwichtenberg 2022

d ore
.NET 7.0.0-rtm.
Ve

de-DE (German (Germa:

1rsctnr Sst

om lsd Re~Ex
Ma LT
eflection Emit|

bynamic code generation is not supported on this platform.
ICould not flrld a part of the path "H:\TFS\Demos\NET7\NET7Demos\NET7ConsoleAOT\bin\Release\net7.0\win-x64\native\AddIns\A

ddzn en.d11°

1000000x the first 42 Fib i numbe

Abbildung: AOT-kompilierte Konsolenanwendungen mit Optimierung auf Leistung

Zu Windows Forms mit Native AOT gibt es von Microsoft Stand .NET 9.0 diese Aussagen:

= "you could run a Windows Forms application under native AOT"

= "This work is still highly experimental, and some scenarios are rough and require manual
work."

Quelle: https://devblogs.microsoft.com/dotnet/winforms-enhancements-in-dotnet-7

48.4.2 Native AOT in .NET 8.0

Der "Native AOT" genannte Compiler konnte in .NET 7.0 nur Konsolenanwendungen iibersetzen.
Seit NET 8.0 sind nun zusitzlich auch folgende Anwendungsarten beim AOT-Compiler moglich:
= Hintergrunddienste (Worker Services)

= gRPC-Dienste

https://devblogs.microsoft.com/dotnet/winforms-enhancements-in-dotnet-7/

386 Performanceoptimierungen

= WebAPIs mit Einschrinkungen: Bei den WebAPIs ist lediglich das "Minimal WebAPI"
genannte Modell moglich mit JSON-Serialisierung via System.Text.JJson im Source
Generator-Modus. Weitere Einschrinkungen siehe folgende Abbildung.

Hinweis: Native AOT funktioniert also weiterhin dort nicht, wo es am ndtigsten wire, die
Startzeit und den RAM-Bedarf zu verringern: Windows Forms und WPF.

Den Source Generator in System.Text.Json hat Microsoft dazu ausgebaut, sodass er nun fast alle
Konfigurationsoptionen wie der Reflection-basierte Modus kennt. Zudem funktioniert der Source
Generator jetzt zusammen mit den Init-Only-Properties aus C# 9.0 und den Required Properties
aus C# 11.0. Den alten Reflection-Modus kann man durch eine Projekteinstellung komplett
deaktivieren. Den Modus priifen Entwicklerinnen und Entwickler mit der Bedingung if
(JsonSerializer.IsReflectionEnabledByDefault) { ... }.

Performanceoptimierungen

387

Feature

gRPC

Minimal APls
MVC

Blazor

SignalR
Authentication
CORS

Health checks
Http logging
Localization
Output caching

Rate limiting

Request decompression

Response caching

Response compression

Rewrite
Session
SPA
Static files

WebSockets

Fully Supported
FdFully supported

FdFully supported
FFully supported
FFully supported
FFully supported
FFully supported
FFully supported
FFully supported
MaFully supported
FFully supported

FFully supported

Flrully supported
FaFully supported

Partially Supported ~ Not Supported
EdPartially supported
X Not supported
X Not supported
X Not supported

X Not supported (JWT soon)

X Not supported
X Not supported

Abbildung: Unterstiitzte ASP.NET Core-Features in Native AOT 8.0 (Bildquelle:
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/native-aot?view=aspnetcore-

8.0&tabs=netcore-cli)

48.4.3

Native AOT in .NET 9.0

In .NET 9.0 sind folgende Erweiterungen des AOT-Compilers enthalten:
= ASP.NET Core SignalR-Hubs koénnen mit Native AOT kompiliert werden

= NET fiir iOS / macOS: Trimming bei Native AOT
= Swashbuckle.AspNetCore (fiir OAS) funktioniert mit NativeAOT seit Version 6.6
= AOT fiir WinUI 3-Oberflichen seit Windows-App-SDK 1.6
Das Entwicklungsteam von WinUI hat auf der Microsoft BUILD-Konferenz 2024 in einem

Vortrag

https://build.microsoft.com/en-US/sessions/11626139-a9d0-4f8c-b664-

https://learn.microsoft.com/en-us/aspnet/core/fundamentals/native-aot?view=aspnetcore-8.0&tabs=netcore-cli
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/native-aot?view=aspnetcore-8.0&tabs=netcore-cli
https://build.microsoft.com/en-US/sessions/11626139-a9d0-4f8c-b664-3f3436cea50a

388 Performanceoptimierungen

3f3436cea50a angekiindigt, dass man ab Version 1.6 des Windows App SDK, die im
September 2024 erscheinen soll, die Native AOT-Kompilierung von WinUI 3-XAML und
Code-Behind-Code fiir WinUI 3-Anwendungen erlauben wird. Zunéchst wird man den Native
AOT-Compiler aus .NET 8.0 unterstiitzen, spéter dann .NET 9.0. Die WinUI 3-Bibliotheken
selbst sind ja bereits Native Code, miissen also nicht erneut tibersetzt werden. Das Team
verspricht 45% kleinere Deployment-Pakete und einen um die Hélfte der Zeit beschleunigten
Anwendungsstart. Eine gut funktionierende AOT-Kompilierung mit den genannten Vorteilen
wire ein wesentliches Argument fiir den Einsatz von WinUI 3 statt WPF.

= Entity Framework Core soll leider nur experimentell in .NET 9.0 laufen auf Basis von
statischer Codeanalyse und C#-Interceptoren. Es wird nur fiir statische LINQ-Abfragen
funktionieren.

Hinweis: Native AOT funktioniert also weiterhin dort nicht, wo es am nétigsten wire, die
Startzeit und den RAM-Bedarf zu verringern: Windows Forms und WPF.

48.4.4 Neue Native AOT-Option in Projektvorlagen

Neu seit .NET 8.0 ist, dass es bei einigen Projektvorlagen nun direkt eine Moglichkeit gibt, den
AOT-Compiler zu aktivieren mit der Kommandozeilenoption --aot bzw. mit einem Hakchen in
Visual Studio:

= Konsolenanwendung
dotnet new console --aot

= Worker Service
dotnet new worker --aot

= gRPC

dotnet new grpc --aot

Additional information

ASP.NET Core gRPC Service €& Lmux macOS Windows Cloud Sevice Web

Framework @

[e 90 (review) Bl

[[] enable container support @
Container 05 @

Container build type @

[] Do nat use top-level statements @

[] Enable native AOT publ\ih ®

Abbildung: Native AOT-Option bei der Projektvorlage fiir gRPC-Dienste in Visual Studio

https://build.microsoft.com/en-US/sessions/11626139-a9d0-4f8c-b664-3f3436cea50a

Performanceoptimierungen 389

Abbildung: Option --aot bei dotnet new

Bei der Projektvorlage fiir ASP.NET Core WebAPIs (Kurzname: "webapi") gibt es keine Option -
-aot und kein Hédkchen in Visual Studio. Hier hat sich Microsoft entschlossen, eine eigene
Projektvorlage zu bauen "ASP.NET Core WebAPI (native AOT)" mit Kurznamen "webapiaot".
Diese verwendet auch nicht das bisher in der WebAPI-Projektvorlage iibliche Beispiel von
Wetterdaten, sondern eine Aufgabenliste.

390

Performanceoptimierungen

- o X
Create a new project b n . o
Recent project templates ci - Allplatforms < Al project types -
=
Esl ASP.NET Core Web API s P ASPHET Cors BEAEE
A project template for creating a RESTFu Web AP u
cantrollers or minimal APIs, with optional suppor
@ Blazor Web App c authentication,
B Console App o C¢ lmx maic0S Windows APl Cloud Sevice Web
Web AP
B Console App LNET Frameviork) ce
E&j ASP.NET Core Web API (native AOT)
A project template for creating a RESTul web AP using ASP.NET Core
minimal APIs published 85 native ACT.
C¢ Llmx macOS Windows APl Coud Sevice Web
Web AP
Fo
ASPMET.
C¢ Windows Cloud Web
=)
Back Next

Abbildung: WebAPI-Projektvorlagen in Visual Studio

48.4.5 Warnungen bei nicht kompatiblem Code
Entwickler(innen), die den AOT-Compiler fiir ein ASP.NET Core-Projekt aktivieren, erhalten nun

Warnungen, falls sie Methoden aufrufen, die nicht kompatibel mit dem AOT-Compiler sind (siche
Abbildung).

var builder = We

ication,CreateBuilder();

1L2026: Using member

Micrasoft Extensions Dependencylnje

app.Run0); ction MveServiceCollectionExtensions,
: ’ AddControllersi|ServiceCollection)’

var app = builder.Build();

esUinreferencedCodeAttribute
ak functionalty when

trimming application code. MVC does
not currently support native ACT.
itps://aka ms/aspet/nativeaot

Abbildung: Warnung, dass der Aufiuf AddControllers() zum Aktivieren des Model-View-
Controller-Frameworks nicht beim Ahead-of-Timer-Compiler moglich ist.

48.4.6 Mogliche und nicht mogliche Operationen bei Native AOT

Datenbankzugriffe sind beim AOT-Compiler allerdings weiterhin nicht mit dem Objekt-
Relationalen Mapper Entity Framework Core moglich, da dieser immer noch
Laufzeitkompilierung verwendet. Gleiches gilt fiir den zweitwichtigsten OR-Mapper der .NET-
Welt, den Micro-ORM Dapper htps://github.com/DapperLib/Dapper. In AOT-kompilierten
Anwendungen konnen Entwicklerinnen und Entwickler derzeit nur DataReader, DataSet und

https://github.com/DapperLib/Dapper

Performanceoptimierungen 391

Command-Objekte aus ADO.NET oder das GitHub-Projekt NanORM
https://github.com/DamianEdwards/Nanorm verwenden.

Das ist mit Native AOT auch in NET 8.0 nicht mdoglich, selbst wenn man eine der o.g.
Anwendungsarten erstellt:

= Laufzeitcodegenerierung (Reflection Emit)

= dynamisches Nachladen von Assemblies (Add-Ins/Plug-Ins)
= COM-Interop

= WinRT-APIs

= Windows Management Instrumentation

= Zugriff auf Active Directory Services

= C++/CLI

= AOT mit WebAPIs im IIS

= Entity Framework Core

= Dapper

= JSON-Serialisierung mit JSON.NET (Newtonsoft JSON)
= AutoMapper und viele andere Drittanbieterbibliotheken
Beispiel, was moglich ist, sind:

= Regulédre Ausdriicke

= Dateisystemzugriffe

= JSON-Serialisierung mit System.Text.Json

= ADO.NET
= NanORM
= Dependency Injection mit Microsoft Dependency Injection-Container

(Microsoft.Extensions.Dependencylnjection) und AutoFac

48.4.7 Performance bei Native AOT

Fiir NET 8.0 hat Microsoft Zahlen herausgegeben, weil Auswirkungen der Native AOT-Compiler
auf WebAPIs hat. Man sieht in der folgenden Grafik:

= Grofe des Kompilats, RAM-Bedarf (insbes. auf Linux) und Startdauer werden wesentlich
geringer.

= Die Ausfiihrungsgeschwindigkeit sinkt aber leider auch etwas, denn der Native-AOT-
kompilierte Code schafft weniger "Requests per Second" (RPS).

https://github.com/DamianEdwards/Nanorm

392 Performanceoptimierungen

~Wovw IT-Visions. de.

e — Zahlen von Microsoft

.NET 8 - Native AOT Performance

.
T4ms

Published working Startup RPS Published working Startup RrPS
Set Size Set

RPS geringer
= etwas
Jangsamer

RPS geringer
- langsamer

———————————— =, Quele: ity devalogsmiczosoft.camdetmerannoancing-donet-2 |
Abbildung: Quelle: Microsoft

Anhang: Syntaxreferenz: C# versus Visual Basic .NET 393

49 Anhang: Syntaxreferenz: C# versus
Visual Basic .NET

Fir Umsteiger von Visual Basic .NET zu C# stellen nachfolgende Tabellen die wichtigsten
syntaktischen Konstrukte direkt gegeniiber.

Typdefinitionen C# Visual Basic

1

namespace de.TVisions { ... } Namespace de.ITVisions

Namensraumfestlegung fir einen
Block

End Namespace

Namensraumfestlegung auf
Dateiebene

namespace de.ITVisions

Namensraumimport auf

using de.[TVisions;

Imports de.[TVisions

Dateiebene

Namensraumimport mit Alias using TV = de.ITVisions; Imports ITV = de.[TVisions
Namensraumimport global fir global using de.ITVisions; -

Projekt im Code

Namensraumimport global fir <ltemGroup> <ltemGroup>

Projekt in Projektdatei <Using <Import Include="de.|TVisions"

Include="de.|TVisions'/>

/>

Implizite Namensréume

<PropertyGroup>

<ImplicitUsings>enable
</ImplicitUsings>

Typdefinitionen

C#

Visual Basic .NET

Klasse (Referenztyp)

class Klasse { ... }

Class Klasse

End Class

Struktur (Wertetyp)

struct Strukturname { ... }

Structure Strukturname

End Structure

Struktur (Wertetyp), die nur auf
dem Stack lebt

ref struct Strukturname {

Klasse mit Wertesemantik

record Name { ... }
oder

record class Name { ... }

Struktur mit Record-
Eigenschaften

record struct Name { ... }

Offentliche Klasse

public class Klasse { ... }

Public Class Klasse

.Er.wd Class

Klasse nur innerhalb der
Assembly sichtbar

internal class Klasse { ... }

Friend Class Klasse

vEr‘\d Class

Partielle Klasse

partial class Klasse { ... }

Partial Class Klasse

End Class

394

Anhang: Syntaxreferenz: C# versus Visual Basic .NET

Typdefinitionen

C#

Visual Basic .NET

Statische Klasse (nur statische
Mitglieder)

static class Klasse { ... }

Module Klasse

End Module
Generische Klasse public class Klasse<T1, T2> Public Class Klasse(Of T1, T1)
Implementierungsvererbung class C1: C2 Inherits
Abstrakte Klasse abstract Mustlnherit
Finale Klasse sealed Notlnheritable

Deklaration einer Schnittstelle

interface [Xyz

Interface IXyz

Schnittstellenvererbung

class C2 : C1

Class C2 Implements C1

Anonymer Typ var obj = new { Name = Dim obj = New With {.Name =
"World Wide Wings', "World Wide Wings',
Gruendungsdatum = new Gruendungsdatum = New
DateTime(2005, 01, 01), DateTime(2005, 1, 1), .Vorstand =
Vorstand = Vorstandsmitglieder Vorstandsmitglieder}

Tupel var dozent = (ID: 1, Name: Dim dozent = (ID:=1,
"Holger Schwichtenberg', Name: ="Holger Schwichtenberg",
DOTNETExperte: true); DOTNETExperte: =True)

Array byte[] x; Dim x as Byte()

Array-GréBenverdnderung

Array.Resize()

ReDim Preserve

Array initialisieren

string[] WebSites1 = new
string[] { "www.dotnet-
doktor.de", "www.dotnet-
lexikon.de" };

oder ab C# 12.0:

string[] WebSites2 =
['www.dotnet-doktor.de",
"www.dotnet-lexikon.de'];

Dim WebSites As String() =
{"www.dotnet-doktor.de",
"www.dotnet-lexikon.de'}

Enumeration

enum name { a, b, c }
enum name { a = 10, b = 20,

Enum name

} a
‘ b
End Enum
Variablen und C# Visual Basic .NET
Literale
Wertlose Werttypen Typ2 Oder Nullable(Of Typ)
Nullable <Typ>
Variablendeklaration/ Typ x Dim x as Typ
Attributdefinition als Field
Implizit typisierte Variable var x = Wert Dim x = Wert

Zeichenketten mit Escape-
Sequenz

Er sagte:\r\n\'Hallo Welt\";

"Er sagte:" & vbCrlf & ""Hallo
Weltl"™"

Zeichenketten ohne Escape-
Sequenz

@"c:\temp\daten.ixi"

"c:\temp\daten.txt"

Einzelne Zeichen

char Wichtigkeit = ‘A’

Dim Wichtigkeit As Char = "A"

String Interpolation

$'Er sagte am {Zeitpunkt:d}:\n\r

$'Er sagte am {Zeitpunkt:d}:{vbLf}

Anhang: Syntaxreferenz: C# versus Visual Basic .NET

395

Variablen und
Literale

Visual Basic .NET

{seineAussage}!

Zahlenliterale

C#

{seineAussage}";
byte 21 = 123;

short 22 = 123;

intz3 = 123;

long z4 = 123;

float z5 = 123.45f;
double z6 = 123.45d;

decimal z7 = 123.45m;

Dim z1 As Byte = 123

Dim 22 As Short = 123

Dim 23 As Infeger = 123

Dim z4 As Long = 123

Dim z5 As Single = 123.45
Dim z6 As Double = 123.45
Dim z7 As Decimal = 123.45

Datumsliterale

new DateTime(2014,12,24)

#12/24/2014#

XML-Literale

Dim x As XElement = _
<Flug ID="347">

<Abflugort>Madrid </Abflugort>

<Zielort>Paris</Zielort>
</Flug>

Zeilenumbruch
(Zeilenvorschubzeichen ASCII-
Code 10 & Wagenricklauf
ASClI-Code 13)

"\n\r"

vbCrLf

Zeigerprogrammierung
(unsafe)

unsafe, &, *x

Zeigerprogrammierung (safe)

refintz = ref i;

Typmitglieder

C#

Visual Basic .NET

Attributdefinition als Property
mit expliziten Field

private string x;
public string X
{
get { return x; }
set { x = value; }

I3

Private X as String
Property X() As String

Get

Return _X

End Get

Set(ByVal value As String)

X = value

End Set

End Property

Attributdefinition als
automatisches Property
(Automatic Properties/Auto-
Implemeted Properties)

public Type Name { get; set; }

Public Property X As String

Methode ohne Parameter und
ohne Rickgabetyp

void f()

Sub)

End Sub

396

Anhang: Syntaxreferenz: C# versus Visual Basic .NET

Typmitglieder

C#

Visual Basic .NET

Methode mit Parametern aber
ohne Rickgabetyp

void f(string s, int i)
{

Sub f(ByVal s As String, ByVal i As
Integer)

End Sub

Methode mit Parametern und
mit Rickgabewert

Typ f(string s, int i)
{

Function f(ByVal s As String, ByVal i
As Integer) as Typ

Typ t = new Typ(); Dim t as Typ

return t; Return t

} End Function
Uberladene Methode keine Zusatzangabe Overloads
Methode verlassen return Return
Methode verlassen und beim yield Yield
ndchsten Aufruf danach fortsetzen
Bezug auf Basisklasse base MyBase
Bezug auf aktuelle Klasse Name der Klasse MyClass
Bezug auf das aktuelle Objekt this Me
Konstantes Mitglied const Const
Methoden ohne Riickgabewert void Sub
Statisches Mitglied static Shared
Uberschreiben einer Methode override Overrides
Abstrakte Methode abstract MustOverride
Versiegelte Methode sealed NotOverridable
Uberschreibbare Methode virtual Overridable
Verdeckendes Mitglied keine Zusatzangabe Shadows
Konstruktor public Klassenname() { ... } Sub New() ... End Sub
Primérkonstrukfor public Klassenname(int a, string b) | ===

{

public int A { get; init; } = a;

public string B { get; set; } = b;

}
Deskiruktor/Finalizer -Person() { ... } Sub Finalize() ... End Sub
Referenz auf eine Methode delegate Delegate
Mitglied mit Ereignissen WithEvents
Bindung einer += Handles
Ereignisbehandlungsroutine _ AddHandler

RemoveHandler

Partielle Methode (Deklaration)

public partial void f();

Partial Public Sub f()
End Sub

Anhang: Syntaxreferenz: C# versus Visual Basic .NET

397

Typmitglieder

C#

Visual Basic .NET

Partielle Methode
(Implementierung)

public partial void f()

}

Partial Public Sub f()

End Sub

Partielles Property (Deklaration)

public partial int x { get; set; }

Partielles Property
(Implementierung)

public partial int x

{
get
{

set

Typen verwenden

C#

Visual Basic .NET

Programm-Einsprungpunkt

static void Main(string[] args)

Sub Main(ByVal args() As String)

Klasse instanzieren

new Klasse()

New Klasse

Generische Klasse instanzieren

new Klasse<Typ>()

New Klasse(of Typ)

Anonyme Methoden

+= delegate(){ ... }

LINQ-Abfrageausdruck

(from m in Menge where m.Feld
1000 select
m).Skip(1200).Take(10)

From m In Menge Where m.Feld <
1000 Select m Skip 1200 Take 10;

Lambda-Ausdruck

Func<string, int> 3 = s =>
s.Length;

Dim {3 As Func(Of String, Integer)
Function(s) s.Length

Blockbildung fir Obijekte

With obj ... End With

Datentyp C# Visual Basic .NET
Ganzzahl / 1 Byte byte Byte
Ganzzahl / Boolean bool Boolean
Ganzzahl / 2 Bytes short Short
Ganzzahl / 4 Bytes int Integer
Ganzzahl / 8 Bytes long Long
Zahl / 4 Bytes float Single
Zahl / 8 Bytes double Double
Zahl / 12 Bytes decimal Decimal
Zeichen / 1 Byte oder 2 Bytes char Char
Zeichenkette string String
Datum/Uhrzeit DateTime Date

398

Anhang: Syntaxreferenz: C# versus Visual Basic

.NET

Operatoren
Zeichenketten

C#

Visual Basic .NET

Zeichenkettenverbindung

&

Operatoren
Mathematik

C#

Visual Basic .NET

Addition

Subtraktion

Multiplikation

Division

Ganzzahldivision

Modulus

9
%

Potenz

Math.Pow(x,y)

Negation

Inkrement

Dekrement

Operatoren
Zuweisung

Einfache Zuweisung

Addition

Subtraktion

Multiplikation

Division

Ganzzahl-Division

Zeichenkettenverbindung

Modulo (Divisionsrest)

Bit-Verschiebung nach links

Bit-Verschiebung nach rechts

Bit-weises UND &= -
Bit-weises XOR -
Bit-weises OR R
Operatoren Vergleich | C# Visual Basic .NET

Kleiner

Kleiner gleich

Grofer

Grofer gleich

Gleich

Nicht gleich

Objekivergleich

Anhang: Syntaxreferenz: C# versus Visual Basic .NET

399

Objektvergleich (negativ)

IsNot

Obijekttypvergleich x is Klasse TypeOf x Is Klasse
Zeichenkettenvergleich

Zeichenkettenverbindung t &

Operatoren Logik C# Visual Basic .NET
UND && And

ODER | Or

NICHT ! Not

Short-circuited UND 8& AndAlso

Short-circuited ODER | OrElse

Operatoren Bit C# Visual Basic .NET
Bit-weises UND & And

Bit-weises XOR B Xor

Bit-weises OR | Or

Bit-Verschiebung nach links

Bit-Verschiebung nach rechts

Bedingungs- C# Visual Basic .NET
operatoren

Bedingungsoperator

Bedingung 2 wert1 : wert2

IIF-Funktion und If-Operator

NULL-Sammeloperator

Objekt 22 wert1 : wert2

NULL-Bedingungsoperator obj2.mitglied obj?2.mitglied
Typoperatoren C# Visual Basic .NET
Typermittlung typeof(obj) obj.GetType()

obj.GetType()
Typvergleich k1 is Kunde TypeOf k1 Is Kunde
Typkonvertierung x as Klasse oder CType(x,Klasse)

((Klasse) x)
Namensoperator nameof(x) NameOf(x)
Bedingungen C# Visual Basic .NET
Einfache Bedingung if (Bedingung) {...} If Bedingung Then ...

else {...} Else .

End If

Mehrfachverzweigung switch (a) Select Case a

{ Case 1: ...

case 1: ... break; Case 2:

case 2: ... break; Case 3: ...

case 3: ... break; Case Else: ..

400 Anhang: Syntaxreferenz: C# versus Visual Basic .NET

Bedingungen C# Visual Basic .NET
default: ... break; End Select
}
Schleifen C# Visual Basic .NET
Kopfgeprifte bedingte Schleife while (¢ < 10) { c++; } While c < 10
c+=1
End While
FuBgeprifte bedingte Schleife do { d++; Do
} while (d < 10); d+=1
Loop Whiled < 10
Zahlschleifen for (inta=1;a<=10; a++) For a As Integer = 1 To 10 Step 1
Next
Schleifen Gber Mengen foreach (int e in zahlen) { For Each x As Infeger In y
} Next

Anhang: Neuerungen in friheren Versionen 401

50 Anhang: Neuerungen in friheren
Versionen

Diese Kapitel bleibt auch in der C# 12.0-Version des Buchs als Anhang erhalten, weil viele
Unternehmen erst jetzt vom klassischen .NET Framework mit C# 7.3 auf die moderne .NET-Welt
mit C# 12.0 umsteigen, auf offiziellen Support von Microsoft Wert legen und die neueren
Versionen erst damit nutzen konnen.

50.1 Neuerungen in C# 8.0

Die fertige Version von C# 8.0 istam 23.09.2019 im Rahmen von .NET Core 3.0 und Visual Studio
2019 v16.3 erschienen.

Die wichtigsten Neuerungen in C# 8.0 sind:

= Nullable Reference Types string? und Null-Forgiveness-Operator !.
- Kapitel "Behandlung von null/Null-Referenz-Priifung / Nullable Reference Types"

= Standardimplementierungen in Schnittstellen (*)
- Kapitel "Schnittstellen/Standardimplementierungen in Schnittstellen"

= Index ~und Range .. (*)
- Kapitel "Operatoren/Index und Range"

= Switch Expressions
-> Kapitel "Verzweigungen/Switch Expressions"

Weitere Neuerungen in C# 8.0 sind:

= Null Coalescing Assignment ??7=
- Kapitel "Operatoren/Null Coalescing Assignment"

= Alternative fir ~ Verbatim Interpolated Strings: @$ zusdtzlich zu $@
- Kapitel "Datentypen/Konsolenausgabenformatierung mit ANSI-Codes

Mit den uralten VT100/ANSI-Codes (siche https://en.wikipedia.org/wiki/ANSI escape_code)
kann man auch heute noch in Konsolenanwendungen zahlreiche Formatierungen ausldsen, z.B.
24-Bit-Farben, Fettschrift, Unterstreichen, Durchstreichen, Blinken usw. Die VT100/ANSI-Codes
werden durch das ESCAPE-Zeichen (ASCII-Zeichen 27, hexadezimal: 0x1b) eingeleitet.

Vor C# 13.0 konnte man dieses ESCAPE-ASCII-Zeichen 27 in NET-Konsolenanwendungen bei
Console.WriteLine() nur umstidndlich ausdriicken {iber \u001b, \UO0O00001b oder \x1b, wobei
letzteres nicht empfohlen ist: "Wenn Sie die Escapesequenz \x verwenden, weniger als vier
Hexadezimalziffern angeben und es sich bei den Zeichen, die der Escapesequenz unmittelbar
folgen, um giiltige Hexadezimalziffern handelt (z. B. 0-9, A—F und a—f), werden diese als Teil der
Escapesequenz interpretiert. \xA 1 erzeugt beispielsweise "i" (entspricht dem Codepunkt U+00AT).
Wenn das nédchste Zeichen jedoch "A" oder "a" ist, wird die Escapesequenz stattdessen als \xA1A
interpretiert und der Codepunkt "9" erzeugt (entspricht dem Codepunkt U+0A1A). In solchen
Fillen konnen Fehlinterpretationen vermieden werden, indem Sie alle vier Hexadezimalziffern (z.
B. \x00A1) angeben." [https://learn.microsoft.com/de-de/dotnet/csharp/programming-
guide/strings/).

Hinweis: 9 ist ein Panjabi-Schriftzeichen. Panjabi ist eine in Pakistan und Indien gesprochene
Sprache.

402 Anhang: Neuerungen in friheren Versionen

Typischerweise sahen Ausgaben mit VT100/ANSI-Escape-Codes dann aus wie im néchsten
Listing.

Listing: Bisherige VT100/ANSI-Escape-Codes

Console.WriteLine ("This is a regular text");

Console.WriteLine ("\u00lb[1lmThis is a bold text\u001lb[Om") ;

Console.WriteLine ("\u00lb[2mThis is a dimmed text\u00lb[Om") ;

Console.WriteLine ("\u001lb[3mThis is an italic text\u001lb[Om") ;

Console.WriteLine ("\u00lb[4mThis is an underlined text\u0Olb[Om") ;
Console.WriteLine ("\u00lb[5mThis is a blinking text\u001b[Om") ;
Console.WriteLine ("\u00lb[6mThis is a fast blinking text\u001b[Om") ;
Console.WriteLine ("\u00lb[7mThis is an inverted text\u00lb[Om") ;
Console.WriteLine ("\u00lb[8mThis is a hidden text\u00lb[Om") ;

Console.WriteLine ("\u001lb[9mThis is a crossed-out text\u00lb[Om") ;
Console.WriteLine ("\u001lb[21mThis is a double-underlined text\u00lb[Om") ;
Console.WriteLine ("\u001b[38;2;255;0;0mThis is a red text\u00lb[Om");
Console.WriteLine ("\u001b[48;2;255;0;0mThis is a red background\u00lb[Om") ;
Console.WriteLine ("\u001b[38;2;0;0;255;48;2;255;255;0mThis is a blue text with a
yellow background\u00lb[Om") ;

Seit C# 13.0 gibt es nun \e¢ als Kurzform fiir das ESCAPE-Zeichen ASCII 27 ein, sodass die
Zeichenfolgen deutlich kompakter und tibersichtlicher werden (siche néchstes Listings).

Listing: Etwas iibersichtlichere VI'100/ANSI-Escape-Codes mit der neuen Abkiirzung \e in C#
13.0

Console.WriteLine ("This is a regular text");

Console.WriteLine ("\e[1lmThis is a bold text\e[Om") ;
Console.WriteLine ("\e[2mThis is a dimmed text\e[Om");
Console.WriteLine ("\e[3mThis is an italic text\e[Om");
Console.WriteLine ("\e[4mThis is an underlined text\e[Om") ;
Console.WriteLine ("\e[5mThis is a blinking text\e[Om");
Console.WriteLine ("\e[6mThis is a fast blinking text\e[Om") ;
Console.WriteLine ("\e[7mThis is an inverted text\e[Om");
Console.WriteLine ("\e[8mThis is a hidden text\e[Om");
Console.WriteLine("\e[9mThis is a crossed-out text\e[Om");
Console.WriteLine ("\e[21mThis is a double-underlined text\e[Om") ;
Console.WriteLine("\e[38;2;255;0;0mThis is a red text\e[Om");
Console.WriteLine("\e[48;2;255;0;0mThis is a red background\e[Om") ;
Console.WriteLine("\e[38;2;0;0;255;48;2;255;255;0mThis is a blue text with a yell
ow background\e[O0m") ;

Die Abbildung zeigt das Ergebnis, das sowohl beide Listings produziert.

Anhang: Neuerungen in friheren Versionen 403

This is a red background

Abbildung: Die Ausgabe der beiden vorherigen Listings sieht gleich aus.

So gibt man ein Farbraster mit den neuen Escape-Codes aus (das war mit den alten Escape-Codes
natiirlich auch schon moglich, es ist jetzt nur pragnanter):
Console.WriteLine ("\n\nFarbraster:") ;
for (int i = 0; i < 16; i++)
{
for (int j = 0; Jj < 16; j++)
{
Console.Write("\e[48;5;" + (i * 16 + j) + "m" + (i * 16 + j).ToString() .PadLeft
(4));
}
Console.WriteLine ("\e[Om") ;
}
Farbraster:
o 12 13
16 17 18 22 23 29 30 31
32 33 34 38 39 us
54 55 61 62 63
64 65 66 67 69 70 71
92 93 94 95

124 125 126 127

Abbildung: Farbraster in der Konsole mit ANSI-Codes

= String Interpolation”

= Asynchrone Streams und await foreach (*)
-> Kapitel "Iteratoren/Asynchrone Streams"
= Static Local Functions
-> Kapitel "Methoden/Statische lokale Funktionen (seit C# 8.0) "

404 Anhang: Neuerungen in friheren Versionen

= Using Declarations ohne Blocke
-> "IDisposable/Vereinfachte Using-Deklarationen "

= Unmanaged Constructed Types
= Readonly-Mitglieder in einer Struktur
-> Kapitel "Strukturen/Readonly fiir einzelne Mitglieder einer Struktur "

= Dispose() fiir ref structs (Strukturen auf dem Stack)
-> Kapitel "IDisposable/IDispose fiir Strukturen auf dem Stack"

(*) Die mit Stern markierten Sprachfeatures erfordert .NET Standard 2.1, d.h. nur fiir NET
Core, Xamarin, Mono und Unity. Diese Sprachefeatures sind also im klassischen .NET
Framework nicht verfiigbar und Microsoft plant auch nicht, diese dort noch einzubauen.

50.2 Neuerungen in C# 9.0

Die fertige Version von C# 9.0 ist am 10.11.2020 im Rahmen von .NET 5.0 und Visual Studio
2019 v16.8 erschienen.

Hinweise: C# 9.0 wird offiziell von Microsoft nur ab .NET 5.0 unterstiitzt ("C# 9.0 is supported
only on .NET 5 and newer versions." [learn.microsofi.com/en-us/dotnet/csharp/language-
reference/configure-language-version]. Man kann allerdings die meisten (aber nicht alle!) C#
9.0-Sprachfeatures auch in .NET Core, .NET Framework und Xamarin nutzen. Dazu muss man
die <LangVersion> in der Projektdatei erhohen. Dies wird im Kapitel "Erste C#-
Schritte/Festlegen der Compilerversion" beschrieben.

Notwendige Visual Studio-Version fiir C# 9.0 ist Visual Studio 2019 v16.8 oder héher.
C# 9.0 - .NET 5 and Visual Studio 2019 version 16.8

Records and with expressions: succinetly declare reference types with value semantics (racord Point(int X, int ¥}; , var newboint =
point with { X = 108 };).

* Init-anly setters: init-only properties can be set during object creation [int Property { get; init; }).

* Top-level statements: the entry point logic of a program can be written without declaring an explicit type or main methad.
* Pattern matching enhancements: relational patterns { is < 38), combinator patterns (is >= @ and <= 108, case 3 or 4:, is not null),
parenthesized patterns { is int and (< @ er > 188)), type patterns (case Type:).

+ Native sized integers: the numeric types nint and nuint match the platform memory size
+ Function pointers: enable high-performance code leveraging IL instructions 1dftn and calli (delegate® cint, void> local;)
+ Suppress emitting localsinit flag: attributing a method with [SkipLocalstnit] will suppress emitting the localsinit flag to reduce

cost of zero-initialization.

v expressions: Point p = new(42, 43);

fons: ensure that anonymaus functions don't capture this or local variables (static () = { ... ;)

| expressians: conditional expressions which lack a natural type can be target-typed (4nt? x = b ? 1 : null;)

iant return types: a method override on reference types can declare a more derived return type.

+ Lambd neters: multiple parameters _ appearing in a lambda are allowed and are discards

* Attributes on local functions.

le initializers: a method attributed with [Medulelnitializer] will be executed before any other code in the assembly.

on Get r - an extension GetEnumerator method can be used ina foreach

method h returned values: partial methods can have any accessi

return a type other than veid and use out parameters,

but must be implemented

Source Generators

Abbildung: Ubersicht iiber die Neuerungen in C# 9.0
Quelle: Microsoft
[github.com/dotnet/csharplang/blob/main/Language-Version-History.md]

Die wichtigsten Neuerungen in C# 9.0 sind:

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
https://github.com/dotnet/csharplang/blob/main/Language-Version-History.md

Anhang: Neuerungen in friheren Versionen

405

Record-Typen -> siehe Kapitel "Record-Typen"
Programme ohne Main() - Siche Kapitel "Top-Level Statements"

Properties, die nach Initialisierung unverédnderlich sind (Init Only Properties mit Init Only
Setters) = Siehe Kapitel "Attribute/Properties, die nach Initialisierung unveranderlich sind"

Verwendung des Operators new ohne Typangabe (Target-Typed New Expression) = Siche
Kapitel "Klassendefinition/Instanzierung mit dem Operator new")

Aufhebung der Restriktionen fiir partielle Methoden - Siche Kapitel "Particlle Methoden"

Statische anonyme Funktionen und Discard-Variablen in Lambdas = Siehe Kapitel "Lambda-
Ausdriicke"

Annotationen auf lokale Funktionen > Siehe Kapitel "Lokale Funktion"
Erweiterung des Pattern Matching - Siehe Kapitel "Verzweigungen/Pattern Matching"
Modul-Initialisierer = Siehe Kapitel "Modul-Initialisierer".

Source Code-Generatoren: Mit diesen neuen Code-Generatoren kann ein Entwickler
zusitzlichen Programmcode zur Kompilierungszeit erzeugen, der zusammen mit dem
eigentlichen Programmcode kompiliert wird. Damit kann man z.B. Annotationen eine
Bedeutung geben. - Siehe Kapitel "Source Code-Generatoren".

50.3 Neuerungen in C#10.0

C# 10.0 ist zusammen mit Visual Studio 2022 und .NET 6.0 am 8.11.2021 erschienen.

Hinweise: C# 10.0 wird offiziell von Microsoft erst ab .NET 6.0 unterstiitzt ("C# 10.0 is
supported only on .NET 6 and newer versions." [learn.microsoft.com/en-
us/dotnet/csharp/language-reference/configure-language-version]. Man kann allerdings die
meisten (aber nicht alle!) C# 11.0-Sprachfeatures auch in dlteren .NET-Versionen einschlielich
NET Framework, .NET Core und Xamarin nutzen. Dazu muss man die <LangVersion> in der
Projektdatei auf "10.0" erhohen. Dies wird im Kapitel "Erste C#-Schritte/Festlegen der
Compilerversion" beschrieben.

Notwendige Visual Studio-Version fiir C# 10.0 ist Visual Studio 2022 v17.0 oder héher. Eine
Verwendung von C# 10.0 sowohl mit Visual Studio for Mac 2022 als auch einer aktuellen
Version von Visual Studio Code und anderen OmniSharp-kompatiblen Editoren
[www.omnisharp.net] ist moglich.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
http://www.omnisharp.net/

406 Anhang: Neuerungen in friheren Versionen

C# 10.0 - .NET 6 and Visual Studio 2022 version 17.0

+ Record structs and with expressions on Structs (record struct Point(int X, int ¥); , var newPoint = point with { X = 188 };).

* Global usi

g dir

ives: global using directives avoid repeating the same using directives across many files in your program.

o Imp

d definite assignment: definite assignment and nullability analysis better handle comman patterns such as
dictionary?. TryGetvalue(key, out value) == true .

« Constant interpolated strings: interpolated strings composed of constants are themselves constants.

+ Extended property pattems: property patterns allow accessing nested members (i (e is MethodCallExpression { Method.Name:

Methodtane™ }) .

® Sealed record ToString: a record can inherit a base record with a sealed Tostring

emental source g

ators: improve the source generation experience in large projects by breaking down the source generation
pipeline and caching intermediate results.

Mixed d

tions: deconstruction-assignments and deconstruction-declarations can be blended together ((existingLocal, var

declarediocal) - expression).

Method-level A MethodBuilder: the AsyncMethodBuilder used to compile an async method can be overridden locally.

#line span dir

allow source generators like Razor fine-grained control of the line mapping with #line directives that specify the
destination span (#line (startiine, startChar) - (endLine, endChar) charOffset "Filenane”).

Lambda improvements: attributes and return types are allowed on lambdas; lambdas and method groups have a natural delegate type
(var £ = short () = 1;).

ers: interpolated string handler types allow efficient formatting of interpolated strings in assignments and

Interpolated string hand
invocations.

File-scoped namespaces: files with a single namespace don't need extra braces or indentation (namespace X.¥.Z;).

Parameterless struct constructors: support parameterless constructors and instance field initializers for struct types.

CallerArgumentExpression: this attribute allows capturing the expressions passed to a method as strings

Abbildung: Ubersicht iiber die Neuerungen in C# 10.0 | Quelle: Microsoft
[github.com/dotnet/csharplang/blob/main/Language-Version-History.md]

Das folgende Bild realisiert das kleine Kunststiick, fast alle neuen C# 10.0-Sprachfeatures in zwei
iiberschaubare und kommentierte Listings unterzubringen, die zusammen auch noch Sinn machen.
Verstehen Sie dies als Kurzreferenz. Natiirlich finden Sie eine ausfiihrliche Beschreibung in den
verschiedenen Kapiteln dieses Buchs.

- P re—————

77 Fite-izsped Ramespac:
pacs Hatse. Developar;

Uy
et i sttic . b pentnty enet st s 4 s
e e e 1,
S
i evitatats = nbnt™)

UrStaLine("ER 18 Deso il hadss Devaloperd;

publde resdonly tat

s Cojekterzeugungszettpunkt { o

i }
N = Catel o108, 3, 7, 23, 8,13;

.+ {Vermane) (Hacheana)”;

Latates = “ubgagebent;

ursteline(hs2);

£7 Wixed Baconstruction

« s,) = a2
UritaL e Uit $Lid): {naem]");

eparty Pattern

2;

46 (o L Mutur { ObjektErzeugungsZeitpunkt. Yoar: 1988 1)
0

Medtol inaf"Jabe dos srsten Artlhals stimti®);

’

£ Funitian via

Typharteitumy deklarisran
£*Artibal von {a.Hame} ist in Seatus: -

£ Pinedtsin verwsnten
Weitol tne{statustheal);

Abbildung: Fast alle neuen C# 10.0-Features auf einen Blick.

Sie finden in diesem Buch:

= Kapitel "Datentypen": Neuerungen zu Interpolated Strings

= Kapitel "Verzweigungen/ Pattern Matching": Neuerungen zum Pattern Matching
= Kapitel "Methoden": Caller Argument Expressions

https://github.com/dotnet/csharplang/blob/main/Language-Version-History.md

Anhang: Neuerungen in friheren Versionen 407

= Kapitel "Namensrdume": Alle Neuerungen zu den Namensrdumen (File-Scoped
Namespaces, Global Using Directives, Implicit Using Directives)

= Kapitel "Record-Typen": Alle Neuerungen zu Record-Typen (record class, record struct,
sealed ToString())

= Kapitel "Strukturen/With-Ausdriicke": Einsatz von Klonen mit with bei Strukturen und
anonymen Typen.

= Kapitel "Strukturen/Strukturen mit parameterlosem Konstruktor": Strukturen mit
parameterlosem Konstruktor

= Kapitel "Tupel": Mixed Deconstruction

= Kapitel "Funktionale Programmierung/Lambda-Ausdriicke": Typherleitung, explizite
Riickgabetypen und Annotationen/Attribute fiir Lambda-Ausdriicke

50.4 Neuerungen in C# 11.0

C# 11.0 ist zusammen mit Visual Studio 2022 Version 17.4 und .NET 7.0 am 8.11.2022 erschienen.

Wie schon bei .NET 6.0/C# 10.0 verwendet Microsoft bei .NET 7.0/C# 11.0 an vielen, aber nicht
allen Stellen die Versionsnummer ohne ".0". Hier wird einheitlich die Schreibweise mit ".0"
verwendet. Anders als NET 6.0 besitzt die 7.0-Version keinen "Long-Term-Support", sondern nur
"Standard Support" (frither "Current Version", zwischenzeitlich auch "Short-Termin-Support
(STS)" genannt). Dafiir gibt es also Unterstiitzung und Updates fiir 18 Monate, also von November
2022 bis Mai 2023.

Hinweise: C# 11.0 wird offiziell von Microsoft erst ab .NET 7.0 unterstiitzt ("C# 11.0 is
supported only on NET 7 and newer versions." [learn.microsoft.com/en-
us/dotnet/csharp/language-reference/configure-language-version]. Man kann allerdings die
meisten (aber nicht alle!) C# 11.0-Sprachfeatures auch in dlteren NET-Versionen einschlieBlich
NET Framework, .NET Core und Xamarin nutzen. Dazu muss man die <LangVersion> in der
Projektdatei auf "11.0" erhohen. Dies wird im Kapitel "Erste C#-Schritte/Festlegen der
Compilerversion" beschrieben.

Notwendige Visual Studio-Version fiir C# 11.0 ist Visual Studio 2022 v17.4 oder héher. Eine
Verwendung von C# 11.0 ist sowohl mit Visual Studio for Mac 2022 als auch einer aktuellen
Version von Visual Studio Code und anderen OmniSharp-kompatiblen Editoren
[www.omnisharp.net] ist moglich.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
http://www.omnisharp.net/

408 Anhang: Neuerungen in friheren Versionen

C# 11.0 - .NET 7 and Visual Studio 2022 version 17.4

iterals: introduces a string literal where the content never needs escaping { var json =
")
UTF-8 string literals with the ug suffix (Readonlyspancbytes s = “hell

"text™

"summary”: "text”, "length™: [{length}} }

rechars on a c

string: an input value of type Spancchar> or ReadanlySpancchars can be matched with a

constant string pattern (span is =123")
* Newlines in interpalations: allows newline characters in single-line interpolated strings

rrs: allows matching indexable types (1ist is (1, 2, ..]1).

e introduces the file type modifier (file class € { ... })
o Reffields: allows ref field declarationsina ref struct [ref struct S { ref int field; ... |), introduces scoped modifier and
[Unscopedref] attribute

+ Required members: intraduces the required field and property modifier and [Setskequiredienbers] attribute.

* Static abstract members in interfaces: allows an interface to specify abstract static members.

+ Unsigned right

tor introduces the »»> operatorand »»»=

* checked user-defined operators: numeric and conversion operatars support defining checked variants { public static Int128 operator
checked +(Int128 lhs, Int128 rhs) { ... }).
* Relaxing shift operator requirements: the right-hand-side operand of a shift operator is no longer restricted to only be int

(P nint / nuint become simple types aliasing System. IntPtr / System.UIntPtr

fault structs: struct constructors automatically default fields that are not explicitly assigned

+ Generic attributes: allows atiributes to be generic ([MyAttributecints])
* Extended nameof scope in attributes: allows nameof (parameter) inside an attribute on a methad or parameter

([MyAttribute(nameof (parameter})] void M(int parametar) { })

Abbildung: Ubersicht iiber die Neuerungen in C# 11.0 | Quelle: Microsoft
[github.com/dotnet/csharplang/blob/main/Language-Version-History.md]

Sie finden in diesem Buch:

Kapitel "Grundkonzepte": Warnungen bei Typnamen komplett in Kleinbuchstaben

Kapitel "Datentypen": Datentypen nint und nuint, Zeilenumbriiche innerhalb von
Interpolationsausdriicken, Raw Literal Strings und UTF-8-Zeichenkettenliterale

Kapitel "Operatoren": Erweiterte Einsatzgebiete von nameof()

Kapitel "Verzweigungen": Pattern Matching fiir Listen und Teilmengen (List Pattern und
Slice Pattern)

Kapitel "Klassendefinition": File-local Types

Kapitel "Datenmitglieder / Attribute": Pflichtmitglieder (Required Members)

Kapitel "Schnittstellen": Statische abstrakte Properties und Methoden in Schnittstellen
Kapitel "Annotationen (.NET-Attribute)": Annotationen mit Typparametern

Kapitel "Generische Klassen": Generische Mathematik

Kapitel "Strukturen": Auto-Defaults Structs

Kapitel "Operatoriiberladungen": Operatoriiberladungen in Schnittstellen mit Hilfe von
statischen abstrakten Methoden

Kapitel "Performanceoptimierungen": Ahead-of-Timer-Compiler (Native AOT)

https://github.com/dotnet/csharplang/blob/main/Language-Version-History.md

Anhang: Quellen im Internet

409

51 Anhang: Quellen im Internet

Neuerungen in C# 13.0
https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-13
Breaking Changes in C# 13.0

https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/breaking-
changes/compiler%20breaking%20changes%20-%20dotnet%209

Projekt fiir das Design der Programmiersprache C#
https://github.com/dotnet/csharplang

Projekt fiir die Implementierung des neuen C#-Compilers
https://github.com/dotnet/roslyn

Versionsgeschichte der C#-Sprachsyntax
https://github.com/dotnet/csharplang/blob/master/Language-Version-History.md
Versionsgeschichte des neuen C#-Compilers
https://github.com/dotnet/roslyn/blob/master/docs/wiki/NuGet-packages.md
Language Feature Status
https://github.com/dotnet/roslyn/blob/master/docs/Language%20F eature%20Status.md
C# ECMA Standard
https://www.ecma-international.org/publications-and-standards/standards/ecma-334/
Weiterentwicklung des C# ECMA Standards
https://github.com/dotnet/csharpstandard

NuGet-Paket des C#-Compilers

https://www.nuget.org/packages/Microsoft.Net. Compilers

NET-Entwickler-Lexikon

https://www.dotnet-lexikon.de

Website zu NET 9.0

https://www.dotnet9.de

https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-13
https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/breaking-changes/compiler%20breaking%20changes%20-%20dotnet%209
https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/breaking-changes/compiler%20breaking%20changes%20-%20dotnet%209
https://github.com/dotnet/csharplang
https://github.com/dotnet/roslyn
https://github.com/dotnet/csharplang/blob/master/Language-Version-History.md
https://github.com/dotnet/roslyn/blob/master/docs/wiki/NuGet-packages.md
https://www.ecma-international.org/publications-and-standards/standards/ecma-334/
https://github.com/dotnet/csharpstandard
http://www.dotnet-lexikon.de/
http://www.dotnet9.de/

410 Anhang: Versionsgeschichte dieses Buchs

52 Anhang: Versionsgeschichte dieses
Buchs

Die folgende Tabelle zeigt die Versionen, die von diesem Fachbuch erschienen sind, sowie die
darin besprochenen Blazor-Versionen.

Hinweis: Diese Tabelle ist eine wichtige Referenz fiir die Leser, die sich aktuelle Versionen des
Buchs beschaffen (z.B. iiber das PDF-Abo) und wissen wollen, was sich geéndert hat. Wenn
Sie das Buch erstmalig lesen, konnen Sie dieses Kapitel iiberspringen.

Die Behandlung einer neuen Versionsnummer des Produkts und die daraus resultierende Anderung
des Buchtitels erfordert gemil Amazon-Richtlinien ein neues Buchprojekt. In diesem Fall wird
die Versionsnummer des Buchs an der ersten Stelle hochgezihlt (z.B. 1.4 auf 2.0).

Eine Anderung der Versionsnummer an der zweiten Stelle (z.B. 1.3 auf 1.4) sind Aktualisierungen
oder Erweiterungen, die keine Titeldnderung erfordern.

Ergénzungen der Versionsnummer an der dritten Stelle (z.B. 1.2.2 auf 1.2.3) sind kleine
Korrekturen im Buch, die nicht explizit in dieser Versionstabelle erscheinen. Das
Erscheinungsdatum auf der Titelseite entspricht dem Erscheinungsdatum der Unterversion, kann
also von dem in der Tabelle genannten Erscheinungsdatum der iibergeordneten Version
abweichen.

Leider sind Preiserh6hungen mit steigendem Buchumfang notwendig, da der Arbeitsaufwand der
standigen Aktualisierungen dieses Buchs sehr hoch ist.

Buchversion Umfang C#- Bemerkung
Datum Version
13.0 421 13.0 = Basisversion des Buchs

01.11.2024 Seiten

Stichwortverzeichnis (Index) 411

53 Stichwortverzeichnis (Index)

Es sind hier jeweils nur die zentralen Stellen im Buch verlinkt. Um alle Vorkommnisse eines
Begriffs zu finden, nutzen Sie bitte die Volltextsuche im PDF, das Sie als Kdufer des gedruckten
Buchs kostenfrei bekommen (siehe Kapitel "Uber dieses Fachbuch").

&& 135 AsParallel() 371
.csproj 74 Assembly 149, 168, 200
.NET 31 async 333

.NET Compact Framework 31 Asynchroner Stream 338
.NET Core 31 ATOM 47

.NET Fiddle 91 Attribut 143, 218, 222
.NET Framework 31, 87 Aufzihlungstypen siehe Enumeration 186
.NET Framework Design Guidelines 55 Ausnahme 326

.sln 74 Auto-Default Struct 265
|| 135 Automatic Property 156
=> 310 Average 351, 353
Abfrageausdruck 346 await 333

abstract 241 await foreach 338
Action<T> 308, 315 Bezeichner 54

Active Data Objects NET 37 Blazor 200

AddYears() 358 Block 55

Aggregate 353 Block Body 187, 244
All 353 Blockkommentar 331
and 135 bool 95

Anders Hejlsberg 31 Boxing 264, 273
Annotation 218, 222 Brackets 47

Anonyme Funktion 313 Break 130

Anonymer Typ 271 byte 95, 96

ANSI 99, 402 C# 394

Any 353 versus Visual Basic NET 394
args 78 C#10.0 406

Array 231, 341 CH#H11.0 48, 408
Array.Resize() 231 C#8.0 402

ArrayList 231, 232, 359 C#9.0 405

as 111 C# Dev Kit 47
AsOrdered() 372 C++ 31, 37,53 97

ASP.NET 74, 80 C++/CLI 32, 37

412

Stichwortverzeichnis (Index)

Caller Argument Expression 178, 179
CallerFilePath 176, 178
Caller-Info-Annotation 176
CallerLineNumber 176, 178
CallerMemberName 176, 178

Camel Casing 55

camelCasing 252

Cast 353

char 95

ChatGPT 90

Checked Exception 326

class 225, 241

Clone() 278

CLR siehe Common Language Runtime 326
CodeDOM 58, 62

Code-Generator 406

CodeRush 90

Co-Evolution 38

Collect() 182

Collection 231

Collection Expression 236, 237
Collection Initializer 233

Collection Literal 236

Common Intermediate Language 36
Common Language Infrastructure 36, 37
Common Language Runtime 182, 326, 341
Community 46

Compiler 37, 58

Component Object Model 250, 251
Concat 353

Console 24

Contains 353

ConvertFrom() 214

ConvertTo() 214

Cool 31

Copilot 90

Count 353

csc.exe 37,58, 61

CSCodeProvider 58

Cul 24

DataRow 214

DataSet 200, 347
DataTable 346

DataView 346
Dateisystem 251
Datenbank 347
Datenbankschnittstelle 37
Datentyp 94
Datentypkonvertierung 208
DateTime 95
Datumsliteral 108
DbDataReader 214
DBNull 214

Debug 380

Debugging 78

decimal 95

Decompiler 183
Deconstruct() 283

default 267

Dekompilat 183, 283
Dekonstruktion 50
Delegate 306, 310, 318
descending 356
Destruktor 180, 182
Developer Express 90
Dictionary 233, 239, 363
Dictionary Expression 236
DisablelmplicitNamespacelmports 255
Discard 111, 130, 172, 300, 314, 406
Discard-Variable 172
Dispose() 319, 322
Distinct 353

Distrinct() 351

dotnet.exe 79

double 95

Duck Typing 306

Stichwortverzeichnis (Index)

413

dynamic 112
Editor 118, 241, 346
Eigenschaft

automatisch 156
Eingabeunterstiitzung 47
ElementAt 353
ElementAtOrDefault 354
Emacs 47
Empty 354
EndWith() 276
Entity Framework 200
Entity Framework Core 348
EnumerateSplits() 276
Enumeration 186
Equals() 278
Ereignis 143,317
Ereignisbehandlung 318
Erweiterungsmethode 206, 208

European Computer Manufacturers

Association 36
EventHandler 317, 337
EventHandler<T> 317
Except 354
Exception 326, 380
Execute() 374
Expression Body 187, 244
Expression Tree 348
Expression-bpdied Member 187
extension 50
Extension Method 206
Extension Type 50
Facebook 298
Fehlerbehandlung 326
Fehlerbeschreibung 326
Feld 153
Field 153
file 149
File-local Type 149

Finalizer 180, 182
Find() 346
FindAll() 346
First 354
FirstOrDefault 355
fixed 342
Fliefskommazahl 96
float 95
Flux 298
Fluxor 298
for 127
For 127
foreach 127, 359
Framework Class Library 36, 224
friend 149
From 351
FullyBuffered 373
Func<T> 308
Function 143, 163
Funktion

anonym 313
Funktional 306
Funktionszeiger 306, 310
Ganzzahl 95, 96
Garbage Collection 182
Garbage Collector 181, 182, 342
Generic Attribute 222
Generic Constraint 224, 225
Generics 224
Getter 154
GetType() 109, 258
GitHub 90
Glaubenskrieg 32
Gleichheit 278
Global 256
Global Unique Identifier 96
Global Using Directive 254
Gliihbirne 90

414

Stichwortverzeichnis (Index)

GroupBy 355

GroupJoin 355

Giiltigkeit 109

Hashtable 233, 359

Heap 262

Hello World 58

Hooks 201
IAsyncEnumerable<T> 31, 338
IDisposable 254, 286, 319, 322

IEnumerable 127, 206, 207, 337, 348, 362,
367

IEnumerable<T> 31, 225, 359
if 129

IL Enhancement 374

ILSpy 21, 183

immutable 289

Immutable Object 277, 295, 296, 297, 298
Implementierungsvererbung 241
Import 254

Index 124

Indexer 239

init 157

Init Only Property 157, 278

Init Only Property siehe Init Only Properties
406

Init Only Setter 154, 283, 289, 406
Init Only Setters 157

Initialize() siehe ISourceGenerator 374
InlineArray 50

Innere Klasse 149

int 95

Int32 363

IntelliCode 88

IntelliSense 47, 88

interface 243

internal 149

International .NET Association 18

International Standardization Organization
36

InterpolatedStringHandler 102
Intersect 355
InvalidCastException 111
IQueryable 348
IronPython 111
IsExternallnit 159, 277
ISourceGenerator 374
Iterator 336, 338
ITV. AppUtil 24
IT-Visions 16, 17
Java 53, 218, 241
JetBrains 90
Join 355
Kapselung 206
Klasse 143

generisch 224

partiell 200
Klassenbibliothek 206
Klassendefinition 143
Kommandozeilenparameter 58, 63
Kommentar 331

XML 331
Konsolenausgabe 24
Konstruktor 151, 180, 181, 241
Konvertierungsfunktion 208
Kovarianz 225, 227
Lambda 53, 306, 310, 311, 315, 408
Lambda-Ausdruck 310
Language Integrated Query Siehe LINQ
LangVersion 86, 87, 159
Last 355
LastOrDefault 355
Laufzeitcodegenerierung 21, 385
Laufzeitfehler 326, 380
Lazy Resource Recovery 182
LDAP 346, 347

Stichwortverzeichnis (Index)

415

LinkedList 233
LINQ 207, 346, 347, 348, 358
Provider 347
Syntax 348
LINQ to DataService 347
LINQ to DataSet 347
LINQ to Entities 347, 359
LINQ to Objects 347, 359, 363, 371
LINQ to SQL 201, 347
LINQ to XML 347
Linux 47
List 207, 232
List Pattern 137
List<T> 359, 367
Literal 97, 107
lock() 323
long 95
LongCount 355
macOS 47
Mads Torgersen 38
Main() 58, 329, 330
Managed C++ 37
Managed Extensions 37
Managed Pointer 341, 343
ManagementObjectCollection 359
Mathematik 228
Max 356
Mehrfachvererbung 243
MemberWiseClone() 263
Metadaten 206, 218
Methode 143, 163
partiell 201, 406
Microsoft Certified Solution Developer 17
Microsoft. VisualBasic.dll 56
Min 356
Min() 351
Modulelnitializer 329
Modul-Initialisierer 329, 406

Mono 31, 37

Most Valuable Professional 17
msbuild.exe 74, 79
Multi-Paradigmen 53
Multi-Threading 277, 295
MustInherit 241

mutable 289
Namenskonvention 54

Namensraum 127, 241, 242, 250, 252, 253,
254

Global siehe 254

Implizit siehe 255
Namensregel 54
nameof() 121,122, 123

Namespace Siehe Namensraum, Siehe
Namensraum

Name-Wert-Paar 239

NET SDK 255

new 145, 146, 225

nint 409

NotInheritable 206, 241
NuGet.config 24

nuint 96, 409

null 120, 188, 189, 190, 194, 214
Null Coalescing Assignment 190
Null Coalescing Assignment Operator 120
Null Coalescing Operator 120
Null Conditional Operator 121
Null Forgiveness-Operator 198
Nullable Annotation Context 192
Nullable Context 192

Nullable Reference Type 190, 196, 197
Nullable Value Type 112
Nullable Warning Context 192
NullReferenceException 188, 194
Null-Referenz-Priifung 190
Objektinitialisierung 147
Objektmenge 231

416

Stichwortverzeichnis (Index)

Objektorientierung 53
Obsolete 218
of 225
OfType 356
OmniSharp 47, 48, 406, 408
Open Source 37,46
OpenAl 90
Operator 116
Operatoriiberladung 259, 278
or 135
orderby 351, 356, 371
out 111,172
OverloadResolutionPriority 164
Overloads 164
packageSource 24
Parallel LINQ Siehe PLINQ, Siehe PLINQ
Parameter 167
benannt 167
optional 167, 168
Paritit 38
partial 201
Pascal Casing 55
PascalCasing 252
Pattern Matching 133, 134, 182, 406
Liste 137
Teilmenge 137
PLINQ 371
AsOrdered 372
CancellationToken 372
FullyBuffered 373
WithCancellation() 372
WithExecutionMode 373
WithMergeOptions() 373
PostSharp 374
Pradikat 314
Predicate<T> 310, 314, 315
Preserve 231
Primdrkonstruktor 182, 283, 289

PrintMembers() 278
PriorityQueue 232
private 149, 201, 243
Process 350
Produktmanager 38
Projektion 311
Property 154

Partiell 203
Property Pattern 136
protected 149, 243
Prozess 350
public 149, 243
Pure Function 298
Queue 232, 359
Queue<T> 359
Race Condition 277, 295
Range 124, 356
Raw Literal String 104
Readonly 267
readonly record struct 289
ReadOnlySpan<byte> 276
ReadOnlySpan<char 276
Record 270, 277
record class 289
record struct 289
ReDim 231
Reducer 298
Redux 298
ref 335, 343
Ref Local Reassignment 344
ref readonly 168
ref struct 243, 262, 335
Refactoring 90
Referenztyp 113, 261, 262, 273
Reflection 206, 218
Reflection Emit 385
Registrierung 251
Regular String 104

Stichwortverzeichnis (Index)

Relational Pattern 135
Release 380

Repeat 356

required 160
ReSharper 90

Reverse 356

Rider 47

Roslyn 37

Rotor 37

Round() 358
RuntimeBinderException 111

Sandcastle Help File Builder 332

shyte 96

Schleife 127
Schliisselwort 53
Schnittstelle 127, 243, 244, 286
Schwichtenberg, Holger 17
sealed 241, 277, 288

select 356

Select 351

SelectMany 356
Semi-Auto-Property 50
Semikolon 55
SequenceEqual 357

set 157
SetsRequiredMembers 160
Setter 154

Shared Source 37

short 95

Sichtbarkeit 148
Sichtbarkeiten 148
Sichtbarkeitsmodifizierer 200
Single 357
SingleOrDefault() 357
Skip 357

Skip() 351

SkipWhile 357

SlashData 45

Slice Pattern 137, 139
Softwarekomponente 250, 251
SortedDictionary 239
SortedDictionary<T> 359
SortedList 233
Source-Generator 374
Spread-Operator 237
SQOL 346, 347
SqlDataReader 214

Stack 232, 261, 262, 359
Stack<T> 359
Stackoverflow 40, 43, 44
StackTrace 326
StartsWith() 276, 358
static 329

static abstract 248

string 95, 113

String Interpolation 101
String.Concat() 102
String.Format() 102
StringBuilder 102

struct 261, 342

structure 225

Struktur 261

Sub 143, 163, 206
Sublime 47

Sum 357

Swagger Open API 332
switch 129, 130, 134
Switch Expression 130
System.Array 359
System.Attribute 220, 222
System.Boolean 95
System.Byte 95
System.Char 95
System.Collection 232
System.Collection.Generic 232
System.Collections 224, 231, 346

418

Stichwortverzeichnis (Index)

System.Collections.Generic 232
System.DateTime 95, 359
System.Decimal 95
System.Diagnostics 350
System.Double 95
System.Exception 326
System.Half 95
System.Index 124
System.Int128 95, 228
System.Int16 95
System.Int32 95
System.Int64 95
System.IntPtr 95
System.10.File 276
System.Ling 207, 351
System.Math 359
System.Nullable 112
System.Numerics 228
System.Object 109, 231, 262
System.Obsolete 218
System.Range 124
System.Single 95
System.String 95, 113, 276, 358, 359
System.Threading.Lock 323
System.ValueType 261, 289
Take 351, 357

TakeWhile 358
Target-Typed New Expression 146, 406
ThenBy 358
ThenByDescending 358
Thread 277, 295
thread-safe 277, 295

Tiobe 38

To<T>() 214

ToArray() 358
ToDictionary 358

ToList() 358

ToLookup() 358

Top-Level Statement 81
ToString() 207, 278, 288
Transaktion 218
try...catch 326
Try...catch 326
TryStartNoGCRegion() 182
Tupel 50, 137, 299
Tupel Pattern 137
Typ

anonym 258
Typableitung 108, 109
Typalias 304
Type Cast siehe Typkonvertierung 110
Type Inference Siehe Typableitung
Type Pattern 135
TypeDescriptor 214
typeof() 109
Typherleitung 408
Typinitialisierung 96
Typkonvertierung 110
Typname 250, 252
Typparameter 224
Typpriifung 109
Uberladung 164
Unboxing 273
Ungleichheit 278
unint 96
Union 358
Universal Windows Platform 31
Unix 36, 37
unsafe 341, 342
Unsafe 341
using 254
Using-Block 321
UTF-16 107
UTF-8 107
ValueTupel 302
var 237

Stichwortverzeichnis (Index)

419

Variable 96

Variant 111

Verbatim String 98, 104
Verzweigung 129

Vim 47

Virtual Extension Method 244

Visual Basic .NET 32, 38, 53, 56, 231, 306,
341, 394

versus C# 394
Visual Studio 46, 61, 67, 143, 200
Visual Studio 2019 68
Visual Studio 2022 190
Visual Studio Code 21, 47, 67
Visual Studio for Mac 46
void 163, 201, 206, 329
VT100 99, 402
WCF 347
Webforms 200
Wertetyp 112, 113, 163, 261, 262, 263, 273
where 225, 351, 358, 371
While 127
Windows 47
Windows Forms 37, 74

Windows on Windows 64 378
Windows Presentation Foundation 74
Windows Runtime 31

with 147, 283, 287
With-Ausdruck 258, 270, 277, 287
WithExecutionMode() 373
WOowe64 378

WriteAllBytes() 276
WriteAllText() 276
www.IT-Visions.de 18

Xamarin 31, 74, 80

XML 331, 347

XML Schema Definition Language 252
XML-Kommentar 331

XNA 31

XPath 346, 347

XQuery 346

yield 336, 337, 338

Yield Continuations 336
Zahlenliteral 107
Zeigerprogrammierung 341
Zeilenkommentar 331
Zugriffsmodifizierer 148

420 Werbung in eigener Sache

54 Werbung in eigener Sache ©

54.1 Dienstleistungen

®
www.IT=Visions.de
Dr. Holger Schwichtenberg

Wollen Sie mehr wissen?

Stehen Sie vor wichtigen Technologieentscheidungen?
Brauchen Sie Unterstiitzung fir Windows, Linux,

.NET Framework, PowerShell oder Weh-Techniken?

» Beratung bei Einfihrung und Migration

» Individuelle Vor-Ort-Schulungen

» Vortrage

» Praxis-Workshops

» Coaching

» Support (Vor-Ort - Telefon - E-Mail - Webkonferenz)

» Entwicklung von Prototypen und kompletten Lésungen

Kontaki:

Dr. Holger Schwichtenberg
Telefon 0201/649590-0
buero@I|TVisions.de

Biicher und Dienstleistungen: http://www.IT-Visions.de
Community Site: http://www.dotnetframework.de

LR E T CERTIFIED
Professional T Solution Develoner

@ Td Microsoft

Solution Developer

Werbung in eigener Sache 421

54.2 Aktion "Buch fiir Buchrezension"

Ich mochte Sie animieren, eine Rezension dieses Fachbuchs bei Amazon.de zu schreiben. Als Dank
dafiir erhalten Sie kostenlos ein weiteres E-Book (PDF) aus meiner Buchreihe (wenn Sie dieses
Buch als gedrucktes Buch gekauft haben, konnen Sie auch das PDF des selben Buchs erhalten!).

So geht es:

Sie schreiben bei Amazon.de eine Rezension zu diesem Fachbuch.

Nach dem Erscheinen der Rezension besuchen Sie die Webadresse
www.IT-Visions.de/Buchrezension

Fillen Sie bitte das Formular aus. Geben Sie dabei in den Details insbesondere den
Buchwunsch und Ihren Rezensionstext an, damit wir dies auf Amazon.de iiberpriifen konnen.
Sie miissen nicht Ihr Amazon-Konto angeben!

Das www.IT-Visions.de-Kundenteam sendet Ihnen nach der Uberpriifung das E-Book (PDF-
Format) des gewiinschten Buchs per E-Mail.

Dr. Holger Schwichtenberg

ihie Anrede Hesr v Andere

Ihr Vorname % Kontaktwege

Abbildung: Webformular fiir die Aktion "Buch fiir Buchrezension"

http://www.it-visions.de/Buchrezension

422 Werbung in eigener Sache

54.3 Angebot "PDF-Buch-Abo"

Sie zahlen einen einmaligen Preis (ab 99 € zzgl. 7% MwSt) und erhalten fiir die Dauer des Abos:
= alle meine aktuellen .NET- und Web-Biicher

= in der jeweils aktuellen Version

= inklusive Zugriff auf alle fritheren Ausgaben

= als PDF-E-Book zum Download

= alle 1-3 Monate die neusten Auflagen mit inhaltlichen Updates

= inklusive Neuausgaben, die im Abozeitraum erscheinen werden

= Zahlung auf Rechnung ohne Risiko

= ohne automatische Verlangerung!
(Sie entscheiden selbst nach Laufzeitende, ob Sie das Abo fortsetzen wollen)

Enthalten sind folgende aktuelle Fachbiicher:

= NET 9.0 Update (~175 Seiten, Wert ~14,99 €)

= C# 13.0 Crashkurs (~420 Seiten, Wert ~29,99 €)

= Moderne Datenzugriffslosungen mit Entity Framework Core 9.0 (~824 Seiten, Wert: 49,99 €)
* Moderne Datenzugriffslosungen mit Entity Framework 6.x (287 Seiten, Wert: 24,99 €)

= Blazor 9.0 (~824 Seiten, Wert 49,99 €)

= Vuejs 3 (~260 Seiten, Wert ~19,99 €)

Die .NET-Biicher werden im Abstand von einigen Wochen aktualisiert, jeweils bis zum Erscheinen
des Nachfolgebuchs. Die Nachfolgebiicher, die im November 2025 erschienen werden, sind
ebenfalls enthalten, sofern das Ihr Abo dann noch aktiv ist:

= NET 10.0 Update

= C# 14.0 Crashkurs

= ASP.NET Core Blazor 10.0

= Moderne Datenzugriffslosungen mit Entity Framework Core 10.0

Ebenfalls im Buch-Abo enthalten sind alle vorherige Ausgaben zu C# 8.0 bis C# 12.0, ASP.NET
Core Blazor 3.1 bis 8.0 sowie Entity Framework Core 3.1 bis 8.0.

Preise (jeweils zzgl. 7% Mehrwertsteuer):

= Einzelperson, 1 Jahr: 129 €

= Einzelperson, 2 Jahre: 218 € umgerechnet 109 € pro Jahr (15% Ersparnis)
= Einzelperson, 3 Jahre: 297 € umgerechnet 99 € pro Jahr (23% Ersparnis)
= Firmenlizenz bis zu 15 Personen, 1 Jahr: 399 €

= Firmenlizenz bis zu 50 Personen, 1 Jahr: 699 €

= Firmenlizenz bis zu 1000 Personen, 1 Jahr: 999 €

Weitere Informationen und Bestellung:

www.IT-Visions.de/BuchAbo

http://www.it-visions.de/Buecher/Abo

