

Dr. Holger Schwichtenberg

C# 10.0 Crashkurs

Die Syntax der Programmiersprache C#

für die Softwareentwicklung

in .NET Framework, .NET Core, .NET 5.0 und .NET 6.0

2 Inhaltsverzeichnis (Hauptkapitel)

Buchversion: 5.7.0 vom 13.11.2021

Verlag: www.IT-Visions.de, Fahrenberg 40b, D-45257 Essen

Sprachliche Korrektur: Matthias Bloch, M.A.

ISBN: 978-3-934-27941-4

Bezugsquelle Druck: www.amazon.de/exec/obidos/ASIN/3934279414/itvisions-21

Bezugsquelle Kindle: www.amazon.de/exec/obidos/ASIN/B09G2RG7JB/itvisions-21

Bezugsquelle PDF: www.leanpub.com/CSharp10

http://www.amazon.de/exec/obidos/ASIN/3934279414/itvisions-21
http://www.leanpub.com/CSharp8

Inhaltsverzeichnis (Hauptkapitel) 3

1 Inhaltsverzeichnis (Hauptkapitel)

1 Inhaltsverzeichnis (Hauptkapitel) ... 3

2 Inhaltsverzeichnis (Details) ... 5

3 Vorwort ... 13

4 Über den Autor ... 15

5 Über dieses Buch .. 16

6 Fakten zu C# ... 27

7 Grundkonzepte von C# ... 48

8 Der C#-Compiler .. 52

9 Erste C#-Schritte mit Visual Studio .. 61

10 Datentypen .. 81

11 Operatoren .. 96

12 Schleifen ... 104

13 Verzweigungen ... 106

14 Klassendefinition .. 115

15 Attribute (Fields und Properties) ... 122

16 Methoden .. 131

17 Konstruktoren und Destruktoren ... 140

18 Aufzählungstypen (Enumeration) ... 143

19 Expression-bodied Members ... 144

20 Behandlung von null ... 145

21 Partielle Klassen .. 156

22 Partielle Methoden .. 158

23 Erweiterungsmethoden (Extension Methods) ... 160

24 Annotationen (.NET-Attribute) ... 162

25 Generische Klassen ... 165

26 Objektmengen (Arrays und Collections)... 170

27 Implementierungsvererbung ... 176

28 Schnittstellen (Interfaces) ... 178

29 Namensräume (Namespaces) .. 184

30 Anonyme Typen .. 192

31 Operatorüberladung .. 193

32 Strukturen .. 194

4 Inhaltsverzeichnis (Hauptkapitel)

33 Record-Typen .. 206

34 Immutable Objects... 224

35 Tupel .. 228

36 Funktionale Programmierung in C# (Delegates / Lambdas) ... 233

37 Ereignisse .. 243

38 IDisposable / Using-Blöcke ... 245

39 Laufzeitfehler .. 249

40 Modul-Initialisierer.. 252

41 Kommentare und XML-Dokumentation ... 254

42 Asynchrone Ausführung mit async und await ... 256

43 Iteratoren ... 259

44 Zeigerprogrammierung .. 264

45 Abfrageausdrücke / Language Integrated Query (LINQ) ... 269

46 Source Code-Generatoren ... 297

47 Performanceoptimierungen ... 301

48 Syntaxreferenz: C# versus Visual Basic .NET .. 305

49 Quellen im Internet .. 312

50 Versionsgeschichte dieses Buchs .. 313

51 Stichwortverzeichnis (Index) ... 317

52 Werbung in eigener Sache ☺ .. 325

Inhaltsverzeichnis (Details) 5

2 Inhaltsverzeichnis (Details)

1 Inhaltsverzeichnis (Hauptkapitel) ... 3

2 Inhaltsverzeichnis (Details) ... 5

3 Vorwort ... 13

4 Über den Autor ... 15

5 Über dieses Buch .. 16

5.1 Bezugsquelle für Aktualisierungen ... 16

5.2 Versionsgeschichte dieses Buchs .. 16

5.3 Hinweise zur Breite und Tiefe dieses Buch – Sie haben Einfluss!................................ 16

5.4 Geplante Themen .. 17

5.5 Programmcodebeispiele zu diesem Buch .. 17

5.6 Hilfsklasse zur Konsolenausgabe (CUI) ... 20

5.7 Qualitätssicherung der Programmcodebeispiele ... 25

5.8 Ihre Belohnung, wenn Sie helfen, dieses Buch zu verbessern! 26

6 Fakten zu C# ... 27

6.1 Der Name C# .. 27

6.2 Ursprünge von C# ... 27

6.3 .NET als Basis für C# ... 27

6.4 Status der Programmiersprache C# ... 28

6.5 Versionsgeschichte .. 30

6.6 Standardisierung.. 32

6.7 Implementierung des C#-Compilers ... 33

6.8 Open Source .. 33

6.9 Parität und Co-Evolution mit Visual Basic .NET ... 34

6.10 Popularität von C# .. 34

6.11 Editoren für C#.. 41

6.12 Neuerungen in C# 9.0 ... 42

6.13 Neuerungen in C# 10.0 ... 43

6.14 Blick in die Zukunft .. 45

7 Grundkonzepte von C# ... 48

7.1 Sprachtypus ... 48

7.2 Groß- und Kleinschreibung ... 48

7.3 Schlüsselwörter der Sprache ... 48

6 Inhaltsverzeichnis (Details)

7.4 Namensregeln und Namenskonventionen ... 49

7.5 Blockbildung und Umbrüche ... 50

7.6 Hello World ... 50

7.7 Eingebaute Funktionen .. 51

8 Der C#-Compiler ... 52

8.1 Der ursprüngliche (alte) C#-Compiler ... 52

8.1.1 Kompilierung mit csc.exe ... 52

8.1.2 Kommandozeilenparameter .. 52

8.2 Der aktuelle (neue) C#-Compiler .. 55

8.2.1 Versionsnummern des Compilers ... 57

8.2.2 Kommandozeilenparameter .. 57

9 Erste C#-Schritte mit Visual Studio .. 61

9.1 Hello World mit dem klassischen .NET Framework ... 61

9.2 Hello World mit modernem .NET ... 68

9.3 Programme ohne Main() (Top-Level Statements) ... 74

9.4 Festlegung der Compilerversion .. 75

9.5 Eingabeunterstützung in Visual Studio ... 79

10 Datentypen... 81

10.1 Variablendeklarationen .. 82

10.2 Typinitialisierung .. 82

10.3 Literale für Zeichen und Zeichenketten ... 83

10.4 String Interpolation .. 85

10.5 Zahlenliterale ... 87

10.6 Datumsliterale.. 88

10.7 Lokale Typableitung (Local Variable Type Inference) ... 88

10.8 Gültigkeit von Variablen ... 89

10.9 Typprüfungen .. 89

10.10 Typkonvertierung .. 90

10.11 Dynamische Typisierung ... 91

10.12 Wertelose Wertetypen (Nullable Value Types) ... 92

11 Operatoren ... 96

11.1 Überblick über die Operatoren .. 96

11.2 Null Coalescing Operator ?? .. 99

Inhaltsverzeichnis (Details) 7

11.3 Null Coalescing Assignment ??= .. 99

11.4 Null Conditional Operator ?. ... 99

11.5 Operator nameof() ... 100

11.6 Index und Range (C# 8.0) ... 101

11.6.1 Index ... 101

11.6.2 Range .. 102

11.6.3 Weitere Beispiele .. 102

11.6.4 Einschränkungen ... 103

12 Schleifen ... 104

13 Verzweigungen ... 106

13.1 Einfache Verzweigungen mit if…else .. 106

13.2 Mehrfachverzweigungen mit switch ... 107

13.3 Switch Expressions (seit C# 8.0)... 107

13.4 Pattern Matching ... 110

13.4.1 Pattern Matching in Bedingungen mit is und is not .. 110

13.4.2 Pattern Matching bei switch .. 111

14 Klassendefinition .. 115

14.1 Klassendefinitionen ... 115

14.2 Instanzierung mit dem Operator new .. 117

14.2.1 Angabe der Konstruktorparameter .. 117

14.2.2 Schlüsselwort var .. 117

14.2.3 Verwendung des Operators new ohne Typangabe (Target-Typed New Expression)

 118

14.3 Objektinitialisierung .. 119

14.4 Geschachtelte Klassen (eingebettete Klassen) .. 120

14.5 Sichtbarkeiten/ Zugriffsmodifizierer ... 120

14.6 Statische Klassen... 121

15 Attribute (Fields und Properties) ... 122

15.1 Abweichungen von der Lehre ... 122

15.2 Felder (Field-Attribute) ... 123

15.2.1 Deklaration von Feldern .. 123

15.2.2 Felder mit readonly ... 123

15.3 Eigenschaften (Property-Attribute) ... 124

15.3.1 Explizite Properties mit Field .. 125

8 Inhaltsverzeichnis (Details)

15.3.2 Automatische Properties ... 126

15.3.3 Properties, die nach Initialisierung unveränderlich sind (Init Only Properties) .. 127

15.3.4 Init Only Setters in .NET Framework und .NET Standard 129

15.3.5 Zusammenfassung zu Properties .. 129

16 Methoden ... 131

16.1 Methodendefinition und Rückgabewerte ... 131

16.2 Methodenparameter ... 131

16.3 Optionale und benannte Parameter .. 132

16.4 Ref und out .. 133

16.5 Statische Methode als globale Funktionen .. 134

16.6 Lokale Funktion (ab C# 7.0) .. 135

16.7 Statische lokale Funktionen (ab C# 8.0) .. 135

16.8 Caller-Info-Annotationen .. 136

16.9 Caller Argument Expressions .. 138

17 Konstruktoren und Destruktoren ... 140

18 Aufzählungstypen (Enumeration) .. 143

19 Expression-bodied Members ... 144

20 Behandlung von null.. 145

20.1 NullReferenceException .. 145

20.2 Null-Prüfung und Toleranz gegenüber Null .. 145

20.3 Null-Referenz-Prüfung / Non-Nullable Reference Types (C# 8.0) 147

20.3.1 Neue Compiler-Features ... 148

20.3.2 Compiler erkennt die Programmierfehler nicht .. 150

20.3.3 Aktivieren der Null-Referenz-Prüfung ... 152

20.3.4 Verbessertes Programm .. 153

20.3.5 Null Forgiveness-Operator ... 155

21 Partielle Klassen .. 156

22 Partielle Methoden... 158

23 Erweiterungsmethoden (Extension Methods) .. 160

24 Annotationen (.NET-Attribute) ... 162

25 Generische Klassen ... 165

25.1 Definition einer generischen Klasse .. 165

25.2 Verwendung einer generischen Klasse .. 165

Inhaltsverzeichnis (Details) 9

25.3 Einschränkungen für generische Typparameter (Generic Constraints) 166

25.4 Kovarianz für Typparameter ... 166

26 Objektmengen (Arrays und Collections)... 170

26.1 Einfache Arrays... 170

26.2 Untypisierte Collections .. 170

26.3 Typisierte Collections ... 171

26.4 Indexer .. 173

27 Implementierungsvererbung ... 176

28 Schnittstellen (Interfaces) ... 178

28.1 Deklaration einer Schnittstelle .. 178

28.2 Verwendung von Schnittstellen .. 178

28.3 Standardimplementierungen in Schnittstellen ... 179

28.3.1 Realisierung einer Standardimplementierung in einer Schnittstelle 179

28.3.2 Einfaches Beispiel ... 179

28.3.3 Überschreiben der Implementierung ... 181

28.3.4 Komplexeres Beispiel ... 181

29 Namensräume (Namespaces) .. 184

29.1 Softwarekomponenten versus Namensräume ... 184

29.2 Vergabe der Namensraumbezeichner .. 185

29.3 Vergabe der Typnamen ... 186

29.4 Namensräume deklarieren ... 186

29.5 Import von Namensräumen ... 188

29.6 Verweis auf Wurzelnamensräume .. 190

30 Anonyme Typen .. 192

31 Operatorüberladung .. 193

32 Strukturen .. 194

32.1 Wertetyp versus Referenztyp .. 194

32.2 Deklaration von Strukturen ... 197

32.3 Verwendung von Strukturen ... 197

32.4 Strukturen mit Readonly (ab C# 7.2) .. 198

32.5 Readonly für einzelne Mitglieder einer Struktur (ab C# 8.0) 199

32.6 With-Ausdrücke .. 201

32.7 Strukturen mit parameterlosem Konstruktor ... 204

10 Inhaltsverzeichnis (Details)

33 Record-Typen .. 206

33.1 Records deklarieren ... 206

33.2 Record-Typen mit Primärkonstruktor .. 212

33.3 Records verwenden ... 215

33.4 Überschreiben von ToString() ... 217

33.5 Record Structs ... 218

33.6 Exkurs: Primärkonstruktoren für normale Klassen .. 222

34 Immutable Objects... 224

34.1 Immutable Objects auf Basis von Readonly Fields ... 224

34.2 Immutable Objects auf Basis von Properties mit Init Only Setter 225

34.3 Immutable Objects auf Basis von Records .. 226

34.4 Praxisbeispiel: Immutable Objects mit Record-Typen beim Flux-/Redux-Pattern...... 227

35 Tupel .. 228

35.1 Alte Tupelimplementierung mit System.Collections.Tupel .. 228

35.2 Neue Tupelimplementierung in der Sprachsyntax ... 228

35.3 Tupel-Dekonstruktion .. 229

35.4 Serialisierung von Tupeln .. 231

35.5 Vergleich von Tupeln (C# 7.3) .. 231

36 Funktionale Programmierung in C# (Delegates / Lambdas) ... 233

36.1 Delegates ... 233

36.2 Vordefinierte Delegates Action<T> und Func<T> ... 235

36.3 Prädikate mit Predicate<T> ... 237

36.4 Lambda-Ausdrücke ... 237

36.4.1 Einzeilige Lambda-Ausdrücke ... 238

36.4.2 Einsatzbeispiele für Lambda-Ausdrücke .. 239

36.4.3 Mehrzeilige Lambda-Ausdrücke .. 241

37 Ereignisse .. 243

37.1 Definition von Ereignissen .. 243

37.2 Ereignis auslösen ... 243

37.3 Ereignisbehandlung ... 244

38 IDisposable / Using-Blöcke ... 245

38.1 Hintergründe zur Speicher- und Ressourcenverwaltung in .NET 245

38.2 Schnittstelle IDisposable ... 245

Inhaltsverzeichnis (Details) 11

38.3 Using-Blöcke .. 247

38.4 Vereinfachte Using-Deklarationen (C# 8.0) ... 247

38.5 IDispose für Strukturen auf dem Stack ... 248

39 Laufzeitfehler .. 249

39.1 Fehler abfangen ... 249

39.2 Fehler auslösen .. 250

39.3 Eigene Fehlerklassen ... 251

40 Modul-Initialisierer ... 252

41 Kommentare und XML-Dokumentation ... 254

42 Asynchrone Ausführung mit async und await .. 256

42.1 Async und await mit der .NET-Klassenbibliothek .. 256

42.2 Async und await mit eigenen Threads .. 257

42.3 Weitere Möglichkeiten .. 258

43 Iteratoren ... 259

43.1 Iterator-Implementierung mit yield (Yield Continuations) ... 259

43.2 Praxisbeispiel für yield .. 260

43.3 Asynchrone Streams / await foreach (ab C# 8.0) .. 261

44 Zeigerprogrammierung ... 264

44.1 Zeigerprogrammierung mit unsafe .. 264

44.2 Zeigerprogrammierung mit ref (Managed Pointer) ... 266

45 Abfrageausdrücke / Language Integrated Query (LINQ)... 269

45.1 Einführung und Motivation ... 269

45.2 LINQ-Provider .. 270

45.2.1 LINQ-Provider von Microsoft im .NET .. 270

45.2.2 Andere LINQ-Provider ... 271

45.2.3 Formen von LINQ ... 271

45.2.4 Einführung in die LINQ-Syntax .. 271

Übersicht über die LINQ-Befehle ... 275

45.3 LINQ to Objects .. 282

45.3.1 LINQ to Objects mit elementaren Datentypen .. 282

45.3.2 LINQ to Objects mit komplexen Typen des .NET Framework 286

45.3.3 LINQ to Objects mit eigenen Geschäftsobjekten .. 290

45.4 Parallel LINQ (PLINQ)... 294

12 Inhaltsverzeichnis (Details)

46 Source Code-Generatoren ... 297

46.1 Aufbau eines Source Code-Generators .. 297

46.2 Praxisbeispiel ... 299

47 Performanceoptimierungen ... 301

47.1 x64 versus x86 ... 301

47.2 Debug versus Release .. 302

47.3 Vermeidung von Laufzeitfehlern (Exceptions) ... 303

48 Syntaxreferenz: C# versus Visual Basic .NET .. 305

49 Quellen im Internet .. 312

50 Versionsgeschichte dieses Buchs .. 313

51 Stichwortverzeichnis (Index) ... 317

52 Werbung in eigener Sache ☺ .. 325

52.1 Dienstleistungen .. 325

52.2 Aktion "Buch für Buchrezension" ... 326

52.3 Aktion "Buch-Abo" ... 327

Vorwort 13

3 Vorwort
Liebe Leserinnen und Leser,

der "C# Crashkurs" ist ein prägnanter Überblick über die Syntax der Programmiersprache C# in

der aktuellen Version 10.0.

Dieses Buch ist geeignet für Softwareentwickler, die von einer anderen objektorientierten

Programmiersprache (z.B. C++, Java, JavaScript, Visual Basic .NET, Delphi oder PHP) auf C#

umsteigen wollen oder bereits C# einsetzen und ihr Wissen erweitern insbesondere die neusten

Sprachfeatures kennenlernen wollen. Wir schulen bei www.IT-Visions.de jedes Jahr hunderte

Entwickler auf C# bzw. die neuste Version der Sprache um. Da es viele Umsteiger von Visual

Basic .NET zu C# gibt, werden hier die Unterschiede von C# gegenüber Visual Basic .NET an

einigen Stellen im Buch hervorgehoben.

Für Neueinsteiger, die mit C# erstmals überhaupt eine objektorientiere Programmiersprache (OOP)

erlernen wollen, ist dieses Werk hingegen nicht geeignet, denn es werden die OO-Grundkonzepte

nicht erklärt, da die meisten Softwareentwickler heutzutage diese aus anderen Sprachen kennen

und das Buch nicht mit diesen Grundlagen unnötig in die Länge gezogen werden soll.

Dieser Crashkurs erhebt nicht den Anspruch, alle syntaktischen Details zu C# aufzuzeigen, sondern

nur die in der Praxis wichtigsten Konstrukte.

In diesem Buch werden bewusst alle Syntaxbeispiele anhand von Konsolenanwendungen gezeigt.

So brauchen Sie als Leser kein Wissen über irgendeine (oft kurzlebige) GUI-Bibliothek und die

Beispiele sind prägnant fokussiert auf die Syntax.

Dieses Buch wird vertrieben:

▪ PDF-E-Book bei Leanpub.com ab 19,99 Dollar (der Autor erhält ca. 14,00 Euro):

www.leanpub.com/CSharp10

▪ gedruckt (Print-on-Demand) bei Amazon.de für 29,99 Euro (der Autor erhält 12,52 Euro):

www.amazon.de/exec/obidos/ASIN/3934279414/itvisions-21

▪ Kindle-E-Book bei Amazon.de für 9,99 Euro (der Autor erhält 6,29 Euro):

www.amazon.de/exec/obidos/ASIN/B09G2RG7JB/itvisions-21

Tipp: Als Käufer bei Leanpub.com können jederzeit Aktualisierungen des PDF-Buchs (gleiche

Hauptversion) kostenfrei dort beziehen. Amazon erlaubt dies leider nicht! Ich biete daher

Käufern bei Amazon die PDF-Version zum Sonderpreis von 9,99 Dollar an:

www.leanpub.com/CSharp10/c/Sloborn

Ich habe mich für den Vertriebsweg des gedruckten Buchs über Amazon entschieden, weil ich

dort ständig Updates zu dem Buch einreichen kann. Per Print-on-Demand erhalten Leser dann

immer das topaktuelle Buch. Oft liefert Amazon dennoch am Tag nach der Bestellung das Buch

schon aus. Der Vertrieb dieses Buch über klassische IT-Verlage, die leider heutzutage immer

noch größere Auflagen vorproduzieren, sind für ein sehr agiles Softwareprodukt wie .NET/C#

keine Alternative mehr.

Da solch niedrige Preise leider nicht nennenswert dazu beitragen können, den Lebensunterhalt

meiner Familie zu bestreiten, ist dieses Projekt ein Hobby. Dementsprechend kann ich nicht

garantieren, wann es Updates zu diesem Buch geben wird. Ich werde dann an diesem Buch

arbeiten, wenn ich neben meinem Beruf als Softwarearchitekt, Berater und Dozent und meinen

sportlichen Betätigungen noch etwas Zeit für das Fachbuchautorenhobby übrig habe.

http://www.amazon.de/exec/obidos/ASIN/3934279414/itvisions-21
file:///H:/Pub/2018_CSCrashkurs/5.4/www.leanpub.com/CSharp10/c/Sloborn

14 Vorwort

Falls mir in diesem Buch oder den zugehörigen Downloads menschliche Fehler passiert sind,

möchte ich mich dafür schon jetzt in aller Form entschuldigen bei Ihnen. Bitte geben Sie mir einen

freundlichen, genau beschriebenen Hinweis auf meine Fehler. Ich freue mich immer über

konstruktives Feedback und Verbesserungsvorschläge. Bitte verwenden Sie dazu das

Kontaktformular: www.dotnet-doktor.de/Leserfeedback

Tipp: Ich belohne Sie mit E-Books für gemeldete Fehler, siehe Kapitel

"Über dieses Buch / Ihre Belohnung, wenn Sie helfen, dieses Buch zu verbessern".

Ich helfe Ihnen gerne, Ihren eigenen Programmcode zu schreiben, aber ich hoffe, Sie verstehen,

dass ich dies nicht ehrenamtlich tun kann. Wenn Sie technische Hilfe zu Entity Framework und

Entity Framework Core oder anderen Themen rund um die Entwicklung und den Betrieb von

Anwendungen (Desktop, Web und Mobile) sowie Server und Cloud benötigen, stehe ich Ihnen

im Rahmen meiner beruflichen Tätigkeit für die Firmen www.IT-Visions.de (Beratung, Schulung,

Support) und MAXIMAGO GmbH (Softwareentwicklung, siehe www.MAXIMAGO.de) gerne zur

Verfügung. Bitte wenden Sie sich für ein Angebot an das jeweilige Kundenteam. Bitte kontaktieren

Sie die Firmen aber nicht für Feedback und Verbesserungsvorschläge zu diesem Buch, da dieses

Buch reine Privatsache ist.

Auf der von mir ehrenamtlich betriebenen Leser-Website unter www.IT-Visions.de/Leser, können

Sie die Beispiele zu diesem Buch herunterladen. Dort müssen Sie sich registrieren. Bei der

Registrierung wird ein Losungswort abgefragt. Bitte geben Sie dort bei der Registrierung das

Losungswort Sloborn ein.

Herzliche Grüße aus Essen, dem Herzen der Metropole Ruhrgebiet

Holger Schwichtenberg

http://www.dotnet-doktor.de/Leserfeedback
http://www.it-visions.de/
http://www.it-visions.de/Leser

Über den Autor 15

4 Über den Autor
▪ Studienabschluss Diplom-Wirtschaftsinformatik an der Universität Essen

▪ Promotion an der Universität Essen im Fachgebiet komponentenbasierter

Softwareentwicklung

▪ Seit 1996 selbstständig als unabhängiger Berater, Dozent, Softwarearchitekt und

Fachjournalist

▪ Fachlicher Leiter des Expertenteams bei www.IT-Visions.de in Essen

▪ Chief Technology Expert (CTE) der Softwareentwicklung bei der MAXIMAGO

GmbH in Dortmund (www.MAXIMAGO.de)

▪ Über 80 Fachbücher beim Carl Hanser Verlag, bei O'Reilly, Microsoft Press,

APress und Addison-Wesley sowie mehr als 1300 Beiträge in Fachzeitschriften

▪ Gutachter in den Wettbewerbsverfahren der EU gegen Microsoft (2006-2009)

▪ Ständiger Mitarbeiter der Zeitschriften iX (seit 1999), dotnetpro (seit 2000) und

Windows Developer (seit 2010) sowie beim Online-Portal heise.de (seit 2008)

▪ Regelmäßiger Sprecher auf nationalen und internationalen Fachkonferenzen (z.B.

BASTA!, enterJS, Microsoft TechEd, Microsoft Summit, Microsoft IT Forum,

OOP, IT Tage, .NET Architecture Camp, Advanced Developers Conference, Developer Week, DOTNET

Cologne, MD DevDays, Community in Motion, DOTNET-Konferenz, VS One, NRW.Conf, Net.Object

Days, Windows Forum, Container Conf)

▪ Zertifikate und Auszeichnungen von Microsoft:

o Microsoft Most Valuable Professional (MVP), kontinuierlich ausgezeichnet seit 2004

o Microsoft Certified Solution Developer (MCSD)

▪ Thematische Schwerpunkte:

o Softwarearchitektur, mehrschichtige Softwareentwicklung, Softwarekomponenten

o Visual Studio, Continous Integration (CI) und Continous Delivery (CD) mit Azure DevOps

o Microsoft .NET (.NET Framework, .NET Core), C#, Visual Basic

o .NET-Architektur/Auswahl von .NET-Techniken

o Einführung von .NET und Visual Studio/Migration auf .NET

o Webanwendungsentwicklung und Cross-Plattform-Anwendungen mit HTML, ASP.NET (Core),

JavaScript/TypeScript und Webframeworks wie Angular, Vue.js und Blazor

o Enterprise .NET, verteilte Systeme/Webservices mit .NET, insbesondere WebAPI, gRPC und WCF

o Relationale Datenbanken, XML, Datenzugriffsstrategien

o Objekt-Relationales Mapping (ORM), insbesondere ADO.NET Entity Framework und Entity

Framework Core

o PowerShell

o Architektur- und Code-Reviews

o Performance-Analysen und -Optimierung

o Entwicklungsrichtlinien

▪ Ehrenamtliche Community-Tätigkeiten:

o Vortragender für die International .NET Association

(INETA) und .NET Foundation

o Betrieb diverser Community-Websites:

www.dotnet-lexikon.de, www.dotnetframework.de,

www.windows-scripting.de, www.aspnetdev.de u. a.

▪ Firmenwebsites: www.IT-Visions.de und www.MAXIMAGO.de

▪ Weblog: www.dotnet-doktor.de

▪ Kontakt für Anfragen zu

Schulung und Beratung:

kundenteam@IT-Visions.de

Telefon 0201 / 64 95 90 - 50

▪ Kontakt für Anfragen zu

Softwareentwicklungsprojekten:

hsc@MAXIMAGO.de

Telefon 0231 / 58 69 67 - 12

▪ Kontakt für Feedback zu diesem

Buch:

www.dotnet-doktor.de/

Leserfeedback

http://www.it-visions.de/
http://www.it-visions.de/

16 Über dieses Buch

5 Über dieses Buch

5.1 Bezugsquelle für Aktualisierungen

Sie können jederzeit Aktualisierungen des PDF-Buchs (gleiche Hauptversion!) kostenfrei bei

Leanpub.com beziehen.

Käufer der Kindle- oder Druck-Version können die aktuelle PDF-Version zum Preis von 9,99

Dollar (zzgl. 7% Mehrwertsteuer) unter folgender Webadresse beziehen:

https://leanpub.com/CSharp10/c/Sloborn

Hinweise: Leider erlauben Amazon u.a. Buchhändler aufgrund der Buchpreisbindungsgesetze

in Deutschland den Autoren grundsätzlich nicht, dass Leser eine Aktualisierung im Kindle-

Format oder in gedruckter Form vergünstigt erhalten.

Bitte beachten Sie auch, dass die ISBN-Regularien erfordern, dass bei einer Titeländerung bei

neuer Produktversion eine neue ISBN vergeben werden muss und damit auch ein neues

Buchprojekt bei Amazon und Leanpub.com erstellt werden muss.

5.2 Versionsgeschichte dieses Buchs

Die Versionsgeschichte dieses Buch finden Sie in einem eigenen Kapitel am Ende des Buchs.

Hinweis: Die Versionsgeschichte ist eine wichtige Referenz für die Leser, die sich aktuelle

Versionen des Buchs beschaffen (z.B. über Leanpub.com) und wissen wollen, was sich geändert

hat. Wenn Sie das Buch erstmalig lesen, müssen Sie die Versionsgeschichte nicht lesen.

5.3 Hinweise zur Breite und Tiefe dieses Buch – Sie
haben Einfluss!

Ein Fachbuch, das ein riesengroßes Themengebiet wie C# behandelt, kann nicht jedes Teilgebiet

und jeden Aspekt der Programmiersprache behandeln, zumindest nicht in gleicher Tiefe. Dann

würde solch ein Fachbuch über eintausend Seiten, in einigen Fällen sogar mehrere tausend Seiten

umfassen.

Ich denke, dass ich nach aktuellem Stand der Technik und meinem Wissenstand etwa 1000 zur C#-

Syntax und -Tools sowie 3000 Seiten zu den C#-Bibliotheken schreiben könnte. Würden Sie so

ein dickes (und entsprechend teures) Buch kaufen und lesen wollen?

Wie jeder Fachautor lese auch ich immer wieder Kritik, dass ein(e) Leser*in ein bestimmtes Thema

nicht oder nicht in ausreichender Tiefe behandelt sei in dem Buch. Das ist aus der Sicht der

einzelnen Leser*in sicherlich gerechtfertigt, aber wie jeder Fachautor muss ich eben zwingend eine

Auswahl der Themen treffen. Gerne dokumentiere ich hier, wie ich persönlich diese Auswahl für

meine Bücher treffe:

▪ Ich behandele im Buch die Themen, die wir in unserer Firma selbst in der Praxis brauchen.

▪ Ich behandele zusätzlich die Themen, die unsere Kunden in Beratungsgesprächen behandelt

haben möchten.

Folglich sind die Themen, die ich im Buch nicht oder nur kurz behandele für uns und unsere

Kunden nicht relevant bzw. so selbsterklärend, dass es keine Fragen dazu gibt.

Über dieses Buch 17

Natürlich kann das für Sie anders sein. Sie können mir immer gerne schreiben, wenn Sie ein Thema

im Buch behandelt haben möchten. Ich sammele diese Anregungen und wenn es mehrere

Zuschriften zu einem Thema gibt, dann kommt das Thema auf weit oben auf die Prioritätenliste.

Ich denke, das ist ein faires Verfahren.

5.4 Geplante Themen

Folgende Themen sind für kommenden Ausgaben dieses Buchs geplant:

▪ Aliase für referenzierte Assemblies

▪ Clean Code-Programmierung mit C#

▪ Covariant Return Types (seit C# 9.0)

▪ Design Pattern in C#

▪ Dekompilierung mit ILSpy

▪ Extension Method GetEnumerator() (seit C# 9.0)

▪ Implicit Cast Operator [docs.microsoft.com/de-de/dotnet/csharp/language-

reference/keywords/implicit]

▪ Inkrementelle Source-Generatoren (seit C# 10)

▪ Nullable-Annotationen wie [AllowNull], [DisallowNull], [return: NotNullIfNotNull("xy")],

[DoesNotReturn], [return: MaybeNull], MaybeNullWhen(bool), NotNullWhen(bool)

▪ Span<T> / Memory<T> (seit C# 7.2)

▪ Statische Codeanalyse

▪ Strukturen auf dem Stack (ref struct) seit C# 7.2

▪ Unmanaged Constructed Types (seit C# 8.0)

5.5 Programmcodebeispiele zu diesem Buch

Die Programmcodebeispiele zu diesem Buch können Sie auf der auf der von mir ehrenamtlich

betriebenen Leserwebsite www.IT-Visions.de/Leser herunterladen. Dort müssen Sie sich

registrieren. Bei der Registrierung wird ein Losungswort abgefragt. Bitte geben Sie dort das

Losungswort Sloborn ein.

Alle Programmbeispiele aus diesem Buch sind in einer Visual Studio 2022-Projektmappe mit zwei

Projekten enthalten. Es muss seit C# 8.0 zwei Projekte geben, weil einige Sprachfeatures von C#

8.0 nicht mehr im klassischen .NET Framework laufen und C# seit Version 9.0 gar nicht mehr dort

läuft. Die beiden Projekte enthalten:

▪ CSharpSprachsyntax_NETClassic (.NET Framework 4.8): Alle Sprachfeatures von C# 1.0 bis

7.3 und solche von C# 8.0, die auch auf klassischen .NET Framework laufen

▪ CSharpSprachsyntax_NET (.NET 6.0): Alle Sprachfeatures von C# 8.0, die NICHT auf .NET

Framework laufen sowie alle Sprachfeatures ab C# 9.0

Die Beispiele sind in Unterordnern nach Sprachversionen aufgeteilt. Dies heißt, dass Sie zum

Beispiel Sprachfeatures von C# 9.0 im Ordner CS090 finden bzw. C# 10.0 in CS100.

https://docs.microsoft.com/de-de/dotnet/csharp/language-reference/keywords/implicit
https://docs.microsoft.com/de-de/dotnet/csharp/language-reference/keywords/implicit

18 Über dieses Buch

Wie im Vorwort bereits erwähnt handelt es sich um den Anwendungstyp "Konsolenanwendung".

So brauchen Sie als Leser kein Wissen über irgendeine GUI-Bibliothek und die Beispiele sind

prägnant fokussiert auf die Syntax. Bitte beachten Sie das nächste Kapitel zum Hilfsklasse "CUI".

Über dieses Buch 19

20 Über dieses Buch

Abbildung: Programmcodebeispiele zu diesem Buch in zwei Visual Studio-

Konsolenanwendungen (EXE) plus Hilfsbibliotheken (DLLs)

5.6 Hilfsklasse zur Konsolenausgabe (CUI)

Für die Bildschirmausgabe an der Konsole wird in diesem Buch oft nicht nur Console.WriteLine()

verwendet, sondern auch Hilfsroutinen kommen zur Anwendung, die farbige Bildschirmausgaben

erzeugen. Diese Hilfsroutinen sind in der Klasse ITVisions.CUI (CUI besteht dabei für

Commandline User Interface) implementiert. Diese Klasse ist Teil des NuGet-Pakets

ITV.AppUtil…nupkg, welches bei den herunterladbaren Projekten zu diesem Buch in Form

mitgeliefert und via <packageSource> in der Datei NuGet.config einbezogen wird.

Dies wichtigsten Hilfsroutinen in der Klasse CUI sind im Folgenden zum besseren Verständnis

abgedruckt.

Listing: Klasse CUI mit Hilfsroutinen für die Bildschirmausgabe an der Konsole
using System;

using System.Runtime.InteropServices;

using System.Web;

using ITVisions.UI;

using System.Diagnostics;

namespace ITVisions

{

 /// <summary>

 /// Helper utilities for console UIs

 /// (C) Dr. Holger Schwichtenberg 2002-2018

 /// </summary>

 public static class CUI

 {

 public static bool IsDebug = false;

 public static bool IsVerbose = false;

 #region Print only under certain conditions

 public static void PrintDebug(object s)

 {

 PrintDebug(s, System.Console.ForegroundColor);

 }

 public static void PrintVerbose(object s)

 {

 PrintVerbose(s, System.Console.ForegroundColor);

 }

 #endregion

 #region Issues with predefined colors

 public static void MainHeadline(string s)

 {

 Print(s, ConsoleColor.Black, ConsoleColor.Yellow);

 }

 public static void Headline(string s)

 {

Über dieses Buch 21

 Print(s, ConsoleColor.Yellow);

 }

 public static void HeaderFooter(string s)

 {

 Console.ForegroundColor = ConsoleColor.Green;

 Console.WriteLine(s);

 Console.ForegroundColor = ConsoleColor.Gray;

 }

 public static void SubHeadline(string s)

 {

 Print(s, ConsoleColor.White);

 }

 public static void PrintSuccess(object s)

 {

 Print(s, ConsoleColor.Green);

 }

 public static void H1(string s)

 {

 MainHeadline(s);

 }

 public static void H2(string s)

 {

 Headline(s);

 }

 public static void H3(string s)

 {

 SubHeadline(s);

 }

 public static void PrintGreen(string s)

 {

 Print(s, ConsoleColor.Green);

 }

 public static void PrintYellow(string s)

 {

 Print(s, ConsoleColor.Yellow);

 }

 public static void PrintRed(string s)

 {

 Print(s, ConsoleColor.Red);

 }

 public static void PrintSuccess(object s)

 {

 Print(s, ConsoleColor.Green);

 }

22 Über dieses Buch

 public static void PrintStep(object s)

 {

 Print(s, ConsoleColor.Cyan);

 }

 public static void PrintDebugSuccess(object s)

 {

 PrintDebug(s, ConsoleColor.Green);

 }

 public static void PrintVerboseSuccess(object s)

 {

 PrintVerbose(s, ConsoleColor.Green);

 }

 public static void PrintWarning(object s)

 {

 Print(s, ConsoleColor.Cyan);

 }

 public static void PrintDebugWarning(object s)

 {

 PrintDebug(s, ConsoleColor.Cyan);

 }

 public static void PrintVerboseWarning(object s)

 {

 PrintVerbose(s, ConsoleColor.Cyan);

 }

 public static void PrintError(object s)

 {

 Print(s, ConsoleColor.White, ConsoleColor.Red);

 }

 public static void PrintDebugError(object s)

 {

 PrintDebug(s, ConsoleColor.White, ConsoleColor.Red);

 }

 public static void PrintVerboseError(object s)

 {

 Print(s, ConsoleColor.White, ConsoleColor.Red);

 }

 public static void Print(object s)

 {

 PrintInternal(s, null);

 }

 #endregion

 #region Print with selectable color

Über dieses Buch 23

 public static void Print(object s, ConsoleColor farbe, ConsoleColor?

hintergrundfarbe = null)

 {

 PrintInternal(s, farbe, hintergrundfarbe);

 }

 public static void PrintDebug(object s, ConsoleColor farbe, ConsoleColor?

hintergrundfarbe = null)

 {

 if (IsDebug || IsVerbose) PrintDebugOrVerbose(s, farbe, hintergrundfarbe);

 }

 public static void PrintVerbose(object s, ConsoleColor farbe)

 {

 if (!IsVerbose) return;

 PrintDebugOrVerbose(s, farbe);

 }

 #endregion

 #region Print with additional data

 /// <summary>

 /// Print with Thread-ID

 /// </summary>

 public static void PrintWithThreadID(string s, ConsoleColor c =

ConsoleColor.White)

 {

 var ausgabe = String.Format("Thread #{0:00} {1:}: {2}",

System.Threading.Thread.CurrentThread.ManagedThreadId,

DateTime.Now.ToLongTimeString(), s);

 CUI.Print(ausgabe, c);

 }

 /// <summary>

 /// Print with time

 /// </summary>

 public static void PrintWithTime(object s, ConsoleColor c = ConsoleColor.White)

 {

 CUI.Print(DateTime.Now.Second + "." + DateTime.Now.Millisecond + ":" + s);

 }

 private static long count;

 /// <summary>

 /// Print with counter

 /// </summary>

 private static void PrintWithCounter(object s, ConsoleColor farbe,

ConsoleColor? hintergrundfarbe = null)

 {

 count += 1;

 s = $"{count:0000}: {s}";

 CUI.Print(s, farbe, hintergrundfarbe);

 }

24 Über dieses Buch

 #endregion

 #region internal helper routines

 private static void PrintDebugOrVerbose(object s, ConsoleColor farbe,

ConsoleColor? hintergrundfarbe = null)

 {

 count += 1;

 s = $"{count:0000}: {s}";

 Print(s, farbe, hintergrundfarbe);

 Debug.WriteLine(s);

 Trace.WriteLine(s);

 Trace.Flush();

 }

 /// <summary>

 /// Output to console, trace and file

 /// </summary>

 /// <param name="s"></param>

 [DebuggerStepThrough()]

 private static void PrintInternal(object s, ConsoleColor? farbe = null,

ConsoleColor? hintergrundfarbe = null)

 {

 if (s == null) return;

 if (HttpContext.Current != null)

 {

 try

 {

 if (farbe != null)

 {

 HttpContext.Current.Response.Write("<span style='color:" +

farbe.Value.DrawingColor().Name + "'>");

 }

 if (!HttpContext.Current.Request.Url.ToString().ToLower().Contains(".asmx")

&& !HttpContext.Current.Request.Url.ToString().ToLower().Contains(".svc") &&

!HttpContext.Current.Request.Url.ToString().ToLower().Contains("/api/"))

HttpContext.Current.Response.Write(s.ToString() + "
");

 if (farbe != null)

 {

 HttpContext.Current.Response.Write("");

 }

 }

 catch (Exception)

 {

 }

 }

 else

 {

 object x = 1;

 lock (x)

 {

 ConsoleColor alteFarbe = Console.ForegroundColor;

 ConsoleColor alteHFarbe = Console.BackgroundColor;

Über dieses Buch 25

 if (farbe != null) Console.ForegroundColor = farbe.Value;

 if (hintergrundfarbe != null) Console.BackgroundColor =

hintergrundfarbe.Value;

 //if (farbe.ToString().Contains("Dark")) Console.BackgroundColor =

ConsoleColor.White;

 //else Console.BackgroundColor = ConsoleColor.Black;

 Console.WriteLine(s);

 Console.ForegroundColor = alteFarbe;

 Console.BackgroundColor = alteHFarbe;

 }

 }

 }

 #endregion

 #region Set the position of the console window

 [DllImport("kernel32.dll", ExactSpelling = true)]

 private static extern IntPtr GetConsoleWindow();

 private static IntPtr MyConsole = GetConsoleWindow();

 [DllImport("user32.dll", EntryPoint = "SetWindowPos")]

 public static extern IntPtr SetWindowPos(IntPtr hWnd, int hWndInsertAfter, int

x, int Y, int cx, int cy, int wFlags);

 // Set the position of the console window without size

 public static void SetConsolePos(int xpos, int ypos)

 {

 const int SWP_NOSIZE = 0x0001;

 SetWindowPos(MyConsole, 0, xpos, ypos, 0, 0, SWP_NOSIZE);

 }

 // Set the position of the console window with size

 public static void SetConsolePos(int xpos, int ypos, int w, int h)

 {

 SetWindowPos(MyConsole, 0, xpos, ypos, w, h, 0);

 }

 #endregion

 }

}

5.7 Qualitätssicherung der Programmcodebeispiele

Ich versichere Ihnen, dass die Programmcodebeispiele auf zwei meiner Entwicklungssysteme

kompilierten und liefen, bevor ich sie per Kopieren & Einfügen in das Manuskript zu diesem Buch

übernommen habe und auf der Leser-Website zum Download veröffentlicht habe.

Dennoch gibt es leider Gründe, warum die Beispiele bei Ihnen als Leser nicht laufen:

▪ Eine abweichende Systemkonfiguration (in der heutigen komplexen Welt der vielen Varianten

und Versionen von Betriebssystemen und Anwendungen nicht unwahrscheinlich). Es ist

einem Autor nicht möglich, alle Konfigurationen durchzutesten.

26 Über dieses Buch

▪ Änderungen, die sich seit der Erstellung der Beispiele ergeben haben (von den vielen Breaking

Changes, die die neueren .NET-Versionen immer wieder durch Microsoft erhalten, können

auch Beispiele betroffen sein, was nicht immer leicht zu entdecken ist)

▪ Schließlich sind auch menschliche Fehler des Autors möglich. Bitte bedenken Sie, dass das

Fachbuchschreiben – wie im Vorwort erwähnt – nur ein Hobby ist. Es gibt nur sehr wenige

Menschen in Deutschland, die hauptberuflich als Fachbuchautor arbeiten und so professionell

Programmcodebeispiele erstellen und testen können wie kommerziellen (bezahlten)

Programmcode.

Falls dennoch Beispiele bei Ihnen nicht laufen, kontaktieren Sie mich bitte unter

www.dotnet-doktor.de/Leserfeedback

mit einer sehr genauen Fehlerbeschreibung. Ich bemühe mich, Ihnen binnen zwei Wochen zu

antworten. Im Einzelfall kann es wegen dienstlicher oder privater Abwesenheit aber auch länger

dauern.

5.8 Ihre Belohnung, wenn Sie helfen, dieses Buch zu
verbessern!

Wenn Sie Fehler in diesem oder einem anderen selbstverlegten Fachbuch (siehe www.IT-

Visions.de/Verlag) finden, bin ich Ihnen nicht nur wirklich sehr dankbar, sondern Sie bekommen

auch eine Belohnung in Form von aktualisierten oder weiteren E-Books.

Fehlerart E-Book-Guthaben

Inhaltlicher Fehler Pro Fehler 20 Euro

Sprachlicher Fehler Pro Fehler 4 Euro

Ein Beispiel: Wenn Sie einen inhaltlichen Fehler und fünf Rechtschreibfehler in diesem Buch

finden, dann haben Sie bei mir 40 Euro gut. Dafür können Sie dann eins meiner selbstverlegten

Bücher als E-Book bekommen.

Melden Sie die Fehler bitte per Webformular: www.dotnet-doktor.de/Leserfeedback

Bitte geben Sie dabei unbedingt nicht nur den Namen des Buchs, sondern auch die

Versionsnummer (siehe Impressum) und die genaue Fundstelle (Kapitel, Seitenzahl, Absatz) an.

Schreiben Sie bitte dabei, welches E-Book Sie wünschen. Das Buch schicke ich Ihnen dann per E-

Mail zu.

Tipp: Auch Fehler auf meiner persönlichen Website www.dotnet-doktor.de und der

Firmenwebsite www.IT-Visions.de zählen mit!

Ich freue mich auf Ihre Fehlermeldung!

Holger Schwichtenberg

P.S. Falls Sie Ihre Fehlermeldung sich auf eine Ausgabe des Buchs bezieht, die älter als ein Jahr

ist und der Fehler in der aktuellsten Ausgabe schon behoben ist, dann zählt das leider nicht.

http://www.dotnet-doktor.de/Leserfeedback
http://www.it-visions.de/Verlag
http://www.it-visions.de/Verlag
http://www.dotnet-doktor.de/Leserfeedback
http://www.dotnet-doktor.de/
http://www.it-visions.de/

Fakten zu C# 27

6 Fakten zu C#

6.1 Der Name C#

C# wird gesprochen „C Sharp“. Das # könnte man auch in ein vierfaches Pluszeichen aufspalten

(also C++++, eine Weiterentwicklung von C++). Ursprünglich sollte die Sprache "Cool" heißen.

Eine Zeit lang wurde auch "C# .NET" verwendet; das ist heute aber nicht mehr üblich. Microsoft

spricht aber gelegentlich noch von "Visual C#", z.B. meldet sich der Kommandozeilencompiler

von C# auch in der aktuellen Version mit "Microsoft (R) Visual C# Compiler".

6.2 Ursprünge von C#

C# ist das Ergebnis eines Projektes bei Microsoft, welches im Dezember 1998 gestartet wurde,

nachdem die Firma Sun Microsoft die Veränderung der von Sun entwickelten Programmiersprache

Java verboten hatte. Vater von C# ist Anders Hejlsberg [de.wikipedia.org/wiki/Anders_Hejlsberg],

der zuvor auch Turbo Pascal und Borland Delphi erschaffen hat. Er war früher bei Borland und

arbeitet seit 1996 bei Microsoft. Heutzutage ist er auch verantwortlich für die Sprache TypeScript.

6.3 .NET als Basis für C#

Die Programmiersprache C# ist sehr eng verbunden mit der Softwareentwicklungsplattform

Microsoft .NET. C#-Programmcode läuft immer auf Basis einer .NET-Laufzeitumgebung und

benötigt Klassen aus der .NET-Basisklassenbibliothek. So besitzt C# selbst keine Datentypen: Alle

Datentypen, die man in C# verwendet, z.B. string, sind in Wirklichkeit Klassen aus der .NET-

Basisklassenbibliothek (string → System.String). Auch andere Sprachkonstrukte in C# basieren

auf Schnittstellen und Klassen der .NET-Basisklassenbibliothek, z.B. foreach(…) { … } basiert

auf der Schnittstelle System.Collections.IEnumerable und await foreach(…) { … } basiert auf

System.Collections.Generic.IAsyncEnumerable<T>.

Im Laufe der Geschichte von .NET (seit dem Jahr 2001) gab es zahlreiche Implementierungen von

.NET (.NET Framework, Mono, .NET Compact Framework, .NET Framework Client Profile,

.NET Micro Framework, Silverlight, XNA, .NET Profile für Windows Runtime, .NET Core,

Universal Windows Platform). Derzeit sind noch in signifikantem Umfang in Einsatz:

▪ .NET Framework

▪ .NET Core

▪ Universal Windows Platform (UWP)

▪ Mono/Xamarin

▪ .NET ab Version 5.0

Hinweis: Mit .NET 6.0 führt Microsoft diese Implementierungen zu einer einheitlichen

Plattform zusammen. Alle anderen Implementierungen werden nicht mehr entwickelt.

Zumindest das ".NET Framework" wird aber noch viele Jahre eine Bedeutung im Markt haben,

weil Microsoft dafür zumindest noch Updates im Bereich Fehlerbehebung, Zuverlässigkeit und

Sicherheit liefert. Für alle anderen Implementierungen wird auch dieser Support bald enden.

https://de.wikipedia.org/wiki/Anders_Hejlsberg

28 Fakten zu C#

BrowseriOS

.NET Standard Library 2.1 (System.*, Microsoft.*)

 .NET Framework Class Library (FCL)
im .NET Framework 4.8

(.NET Full Desktop Framework)

Basisklassen, Registry, Data, XML, IO, Logging, Configuration,

CodeDOM, Security, Caching, Network, LDAP, Workflow, WCF, ...

.NET 6.0-spezifische Klassen (Microsoft.Extensions.*)

WPF,
Windows

Forms,
Windows
Services,
Console

ASP.NET
(Webforms,

 MVC 5, WebAPI 2
 WebPages 3,

SignalR 2)

ASP.NET Core 5.0

(MVC, Razor Pages,
SignalR, WebAPI,

gRPC, Blazor Server)
System.Web

Windows
UI

Library 3
(WinUI3)

.NET Framework 4.8
19.04.2019

.NET Core Runtime in .NET 6.0
09.11.2021

Mono Runtime in .NET 6
09.11.2021

Collections IO

© Dr. Holger Schwichtenberg, www.IT-Visions.de, Stand 09.11.2021

Die .NET-Familie 2021/2022

Windows

Windows 10
in allen Varianten

Windows, Linux, macOS, Tizen

Konsole

Windows
Services/

Linux
Daemons

Configuration

Data

Logging Hosting

XML

 Entity Framework Core 1.x bis 6.0

...

DI Caching

Windows Compatibility Pack (System.*, Microsoft.*)

Math

Registry ODBC Drawing

.NET for
Android

...

WPF &
Windows

Forms
(.NET Core

Desktop
Runtime)

Windows
ab 7

nur
v1.x +

v2.x auch
auf

.NET Full
Framework

 nur v1.x +
v2.0

 LDAP WMI

...

Blazor
Web-

Assembly

Entity Framework 6.3/6.4

nur Entity Framework Core 1.x, 2.x, 3.1

CodeDOM Caching WCF-Client

LINQ Globalization Security Threading Text TCP/IP

Options

C# 7.x + Teile von C# 8.0/9.0/10.0 Alle Sprachfeatures von C# 10

.NET for
iOS/macOS

Android

.NET MAUI

Abbildung: Die .NET-Familie mit .NET Framework 4.8 und .NET 6.0

6.4 Status der Programmiersprache C#

Früher gab es einen wahren Glaubenskrieg in der .NET-Entwicklergemeinde um die Wahl der

»richtigen« Programmiersprache. C# oder Visual Basic .NET hieß die Frage, die viele

Projektteams bewegt hat. Auch wenn Visual Basic .NET in allen wesentlichen Punkten syntaktisch

ebenbürtig war, hat C# klar gewonnen.

C# ist heute nicht nur eine von vielen Programmiersprachen für .NET, es hat sich durchgesetzt als

DIE Programmiersprache für .NET. Gegenwärtig gibt es nur noch wenige .NET-Projekte, die

Visual Basic .NET, F# oder C++/CLI oder exotischere Sprachen verwenden.

Schaut man in die aktuelle Dokumentation der .NET-Klassen auf docs.microsoft.com, sieht man

dort nur noch Beispiele für C#, während die alte MSDN-Dokumentation noch Beispiele in C#,

Visual Basic .NET, und C++ enthielt.

Fakten zu C# 29

Abbildung: Beispiele in vier Sprachen in der alten MSDN-Dokumentation der .NET-Klassen

30 Fakten zu C#

Abbildung: In der neuen .NET-Klassendokumentation gibt es nur noch Beispiele in C#

6.5 Versionsgeschichte

Hinsichtlich der Versionsnummern der Sprache C# herrschte früher etwas Verwirrung. Es gab

einerseits eine offizielle Zählung mit Versionsnummer (parallel zum .NET Framework),

andererseits mit Jahreszahlen (parallel zu Visual Studio). Intern wird eine dritte Zählung für den

Compiler verwendet. Die erste Version von C# im Rahmen des .NET Framework 1.0 trug intern

die Versionsnummer 7.0. Zu .NET 1.1 gab es dann C# 7.1, im .NET Framework 2.0 und 3.0 meldet

sich der C#-Compiler mit Version 8.0. Ab .NET Framework 3.5 hat Microsoft dies aber bereinigt.

Dort meldet sich der Compiler nun auch mit Version 3.5.

Die folgende Liste dokumentiert die Versionsgeschichte von C# einschließlich der verschiedenen

Namen, die es jeweils gibt.

▪ C# 1.0 ist erschienen am 05.01.2002 (in Visual Studio.NET 2002+2003 / .NET Framework

1.0 und 1.1. Erste Version des ISO-Standards für C#.)

▪ C# 2.0 ist erschienen am 07.11.2005 (C# 2005 / in Visual Studio.NET 2005 / .NET Framework

2.0 und 3.0. Zweite Version des ISO-Standards für C#.)

▪ C# 3.0 ist erschienen am 15.08.2008 (C# 2008 / in Visual Studio.NET 2008 / .NET Framework

3.5)

▪ C# 4.0 ist erschienen am 12.04.2010 (C# 2010 / in Visual Studio.NET 2010 / .NET Framework

4.0)

▪ C# 5.0 ist erschienen am 12.08.2012 (C# 2012 / in Visual Studio.NET 2012 / .NET Framework

4.5)

Fakten zu C# 31

▪ C# 6.0 ist erschienen am 20.07.2015 (C# 2015 / in Visual Studio.NET 2015 / .NET Framework

4.6)

▪ C# 7.0 ist erschienen am 05.03.2017 (C# 2017 / in Visual Studio 2017 v15.0)

▪ C# 7.1 ist erschienen am 14.08.2017 (in Visual Studio 2017 v15.3)

▪ C# 7.2 ist erschienen am 15.11.2017 (in Visual Studio 2017 v15.5)

▪ C# 7.3 ist erschienen am 02.08.2018 (in Visual Studio 2017 v15.7)

▪ C# 8.0 ist erschienen am 23.09.2019 (in Visual Studio 2019 v16.3)

▪ C# 9.0 ist erschienen am 10.11.2020 (in Visual Studio 2019 v16.8)

▪ C# 10.0 ist erschienen am 8.11.2021 (in Visual Studio 2022, v17.0)

Version der

Sprachsyntax mit

Versionsnummer

Ausgeliefert mit Version der

Sprachsyntax

mit Jahreszahl

Interne

Versionsnummer des

C#-Compilers

C# 1.0 .NET Framework 1.0 Visual C# 2002 7.0 (alter Compiler)

C# 1.1 .NET Framework 1.1 Visual C# 2003 7.1 (alter Compiler)

C# 2.0 .NET Framework 2.0 Visual C# 2005 8.0 (alter Compiler)

C# 2.0 .NET Framework 3.0 Visual C# 2005 8.0 (alter Compiler)

C# 3.0 .NET Framework 3.5 Visual C# 2008 3.5 (alter Compiler)

C# 4.0 .NET Framework 4.0 Visual C# 2010 4.0 (alter Compiler)

C# 5.0 .NET Framework 4.5 Visual C# 2012 4.5 (alter Compiler)

C# 6.0 .NET Framework 4.6

/ .NET Core 1.0

Visual C# 2015 1.x (Neuer Compiler)

C# 7.0 Visual Studio 2017

15.0 / .NET Core 2.0

Visual C# 2017 2.0 (Neuer Compiler)

C# 7.1 Visual Studio 2017

15.4 / .NET Core 2.0

Visual C# 2017 2.3 (Neuer Compiler)

C# 7.2 Visual Studio 2017

15.5 / .NET Core 2.0

Visual C# 2017 2.7 (Neuer Compiler)

C# 7.3 Visual Studio 2017

15.7 / .NET Core 2.1

Visual C# 2017 2.8 + 2.9 + 2.10 (Neuer

Compiler)

C# 8.0 Preview Visual Studio 2019

16.0 bis 16.2 / .NET

Core 3.0 Preview

Visual C# 2018 3.0 + 3.1 + 3.2 (Neuer

Compiler)

C# 8.0 RTM Visual Studio 2019

16.3 / .NET Core 3.x

Visual C# 2018 3.3 bis 3.7 (Neuer

Compiler)

C# 9.0 Visual Studio 2019

16.8 / .NET 5.0

Visual C# 2020 ab v3.8 (Neuer

Compiler)

32 Fakten zu C#

Version der

Sprachsyntax mit

Versionsnummer

Ausgeliefert mit Version der

Sprachsyntax

mit Jahreszahl

Interne

Versionsnummer des

C#-Compilers

C# 10 Visual Studio 2022

17.0 / .NET 6.0

Visual C# 2022 ab v4.0 (Neuer

Compiler)

Tabelle: Verschiedene Versionsnummernzählungen für die Sprache C#

6.6 Standardisierung

Microsoft hat einige Teile des .NET Framework unter dem Namen Common Language

Infrastructure (CLI) standardisieren lassen. Die CLI wurde erstmals im Dezember 2001 von der

European Computer Manufacturers Association (ECMA) standardisiert (ECMA-Standard 335,

Arbeitsgruppe TC49 / TG3, früher: TC39 / TG3, siehe [ECMA01]); mit kleinen Änderungen

wurde der Standard im Dezember 2002 von der weltweit wichtigsten

Standardisierungsorganisation, der International Standardization Organization (ISO),

übernommen als ISO / IEC 23271.

Die Begriffe lauten in den Standards zum Teil allerdings anders als bei Microsoft: Was im .NET

Framework Microsoft Intermediate Language (MSIL) heißt, entspricht im Standard der Common

Intermediate Language (CIL). Anstelle der Framework Class Library (FCL) spricht man von der

CLI Class Library. Von der Standardisierung ausgenommen sind jedoch z.B. die

Datenbankschnittstelle ADO.NET und die Benutzeroberflächen-Bibliotheken Windows Forms

und ASP.NET Webforms. Auch die neueren .NET-Bibliotheken (WPF, WCF und WF) sind nicht

standardisiert.

Auch die Programmiersprache C# ist von beiden Gremien akzeptiert (ECMA-334 bzw. ISO / IEC

23270). Die Standardisierung bezieht sich aber auf ältere Versionen. Die letzten C#-Versionen hat

Microsoft nicht mehr standardisieren lassen. Die Standardisierung ist im März 2021 auf dem Stand

C# 5.0 [www.ecma-international.org/publications-and-standards/standards/ecma-334/].

https://www.ecma-international.org/publications-and-standards/standards/ecma-334/

Fakten zu C# 33

Abbildung: Standard der C#-Standardisierung [Quelle: www.ecma-

international.org/publications-and-standards/standards/ecma-334]

Ein weiterer, von Microsoft initiierter Standard ist von der ECMA im Dezember 2005 unter

ECMA-372 (Arbeitsgruppe TC49 / TG5, früher: TC39 / TG5) verabschiedet worden: C++ / CLI

ist eine Spracherweiterung für C++ (ISO / IEC 14882:2003), die eine elegantere Nutzung von C++

auf der CLI-Plattform ermöglicht, als dies bisher mit den Managed Extensions for C++ (alias

Managed C++) möglich war.

6.7 Implementierung des C#-Compilers

Die ursprüngliche Version des C#-Compilers (csc.exe) wurde in C++ implementiert. Auch der C#-

Compiler im Mono-Projekt ist in C++ geschrieben.

Mit dem Projekt "Roslyn" (alias: .NET Compiler Platform) hat Microsoft selbst den Compiler neu

in C# implementiert. Die erste Version des neuen Compilers war C# 6.0.

6.8 Open Source

Bereits zu C# 1.0 gab es eine quelloffene Version im Projekt "Rotor" im Rahmen der

Standardisierung von C#. Diese war jedoch nicht "Open Source", sondern nur "Shared Source",

d.h. der Quellcode durfte betrachtet, aber nicht weiterverwendet werden. Seit C# 6.0 ist der neue

Compiler im Rahmen der .NET Compiler Platform "Roslyn" ein Open Source-Projekt auf Github.

Projekt für das Design der Programmiersprache:

github.com/dotnet/csharplang

Projekt für die Implementierung der Programmiersprache:

github.com/dotnet/roslyn

https://github.com/dotnet/csharplang
https://github.com/dotnet/roslyn

34 Fakten zu C#

6.9 Parität und Co-Evolution mit Visual Basic .NET

Im Jahr 2010 hatte Microsoft verkündet, die Programmiersprache C# und Visual Basic .NET

hinsichtlich ihrer Funktionalität anzugleichen. »Die Sprachen sollen sich in Stil und Gefühl

unterscheiden, nicht in ihrem Funktionsumfang«, schrieb Mads Torgersen, Produktmanager für C#

damals. Scott Wiltamuth führt den Begriff "Co-Evolution" ein

[blogs.msdn.microsoft.com/scottwil/2010/03/09/vb-and-c-coevolution].

Einige Jahre hat Microsoft diese Strategie tatsächlich umgesetzt und bestehende Sprachfeatures,

die nur eine Sprache hatte, in der anderen Sprache nachgerüstet und neue Sprachfeatures

gleichzeitig oder zumindest zeitnah in beiden Sprachen veröffentlicht.

Im Jahr 2017 hat Microsoft sich von Parität und Co-Evolution wieder verabschiedet. Die parallel

zu C# 7.0 erschienene Version 15 von Visual Basic .NET bietet daher lediglich Tupel und binäre

Literale als neue Sprachfeatures an. Zudem kann Visual Basic .NET 15 C#-Methoden nutzen, die

Zeiger mit ref liefern, selbst aber solche Methoden nicht implementieren.

Im März 2020 hat Microsoft verkündet, die Programmiersprache Visual Basic .NET hinsichtlich

der Syntax nicht mehr weiter zu entwickeln, die die Sprache aber zumindest bei einigen

Projektarten in .NET weiterhin zu unterstützen [devblogs.microsoft.com/vbteam/visual-basic-in-

net-core-3-0/]. Zentrale Aussagen darin waren:

▪ "Going forward, we do not plan to evolve Visual Basic as a language."

▪ "Future features of .NET Core that require language changes may not be supported in Visual

Basic. "

▪ "Due to differences in the platform, there will be some differences between Visual Basic on

.NET Framework and .NET Core."

Visual Basic .NET ist dennoch nach C# weiterhin die zweitwichtigste Programmiersprache in

der .NET-Welt. Telemetriedaten [blogs.msdn.microsoft.com/dotnet/2017/02/01/the-net-

language-strategy] von Microsoft zeigen einerseits, dass Visual Basic .NET hauptsächlich zur

Programmierung mit älteren .NET-Techniken wie Windows Forms und ASP.NET Webforms

zum Einsatz kommt. Andererseits beginnen viele neue .NET-Entwickler mit Visual Basic .NET,

bevor sie sich an C# herantrauen.

6.10 Popularität von C#

Für die Beliebtheit von Programmiersprachen gibt es verschiedene Erhebungen. Sehr beliebt ist

der Tiobe Index [www.tiobe.com/tiobe-index], der monatlich durch eine Auswertung von

Internetseiten ermittelt wird. Hier liegt C# in der Regel in der Mitte der Top 10, hinter Java, C,

C++ und Python. Knapp hinter C# liegt Visual Basic .NET.

https://blogs.msdn.microsoft.com/scottwil/2010/03/09/vb-and-c-coevolution
https://devblogs.microsoft.com/vbteam/visual-basic-in-net-core-3-0/
https://devblogs.microsoft.com/vbteam/visual-basic-in-net-core-3-0/
https://blogs.msdn.microsoft.com/dotnet/2017/02/01/the-net-language-strategy
https://blogs.msdn.microsoft.com/dotnet/2017/02/01/the-net-language-strategy
https://www.tiobe.com/tiobe-index/

Fakten zu C# 35

Abbildung: Beliebtheit der Programmiersprachen (Quelle: www.tiobe.com/tiobe-index)

https://www.tiobe.com/tiobe-index/

36 Fakten zu C#

Abbildung: Beliebtheit von C# von 2002 bis 2021 (Quelle: www.tiobe.com/tiobe-index)

Das Ranking der IEEE (Institute of Electrical and Electronics Engineers) basiert auf der

Auswertung mehrerer Datenquellen (CareerBuilder, GitHub, Google, Hacker News, IEEE, Reddit,

Stack Overflow und Twitter).

Abbildung: IEEE Ranking 2021 [spectrum.ieee.org/top-programming-languages/#toggle-gdpr]

https://www.tiobe.com/tiobe-index/
https://spectrum.ieee.org/top-programming-languages/%23toggle-gdpr

Fakten zu C# 37

Beim IEEE-Ranking kann man nach Einsatzgebieten filtern. C# liegt so:

▪ Web: Platz 4 hinter Python, Java und JavaScript

▪ Enterprise: Platz 5 hinter Python, Java, C und C++

▪ Mobile: Platz 4 hinter Java, C und C++

▪ Embedded: Platz 4 hinter Python, C und C++

▪ Alle: Platz 6

Auch das IT-Marktforschungsunternehmen RedMonk liefert ein Programmiersprachenranking

basierend auf GitHub und Stackoverflow.com. C# liegt dort zusammen mit C++ und CSS auf Platz

5. Davor sind JavaScript, Python, Java und PHP.

38 Fakten zu C#

Abbildung: Programmiersprachen-Ranking von RedMonk, drittes Quartal 2021: Diagramm

korreliert GitHub-Pull-Requests (x-Achse) zum Rang bei Stack Overflow (y-Achse)

[redmonk.com/sogrady/2021/08/05/language-rankings-6-21]

Fakten zu C# 39

Abbildung: Jahresauswertungen von RedMonk 2012 bis 2021

[redmonk.com/sogrady/2021/08/05/language-rankings-6-21/]

Eine weitere viel beachtete Statistik ist die jährliche Umfrage von Stackoverflow.com. In der

Jahresumfrage 2020 (2019, 2018) war C#

▪ Auf Platz 7 (7, 8) der am meisten eingesetzten Programmiersprachen mit 31,4 % (31,9%,

35,35%)

▪ Auf Platz 8 (10, 8) der beliebtesten Programmiersprachen mit 59,7% (67,0%, 60,4%)

▪ Auf Platz 18 (in 2019 und 2020) in der Liste der 25 gefürchtetsten Programmiersprachen (nicht

unter den Top 25 in 2018)

40 Fakten zu C#

Abbildung: C# in der Jahresumfrage 2018 von stackoverflow.com

[insights.stackoverflow.com/survey/2018]

Abbildung: C# in der Jahresumfrage 2019 von stackoverflow.com

[insights.stackoverflow.com/survey/2019]

Fakten zu C# 41

Abbildung: C# in der Jahresumfrage 2020 von stackoverflow.com

[insights.stackoverflow.com/survey/2020]

6.11 Editoren für C#

Microsoft liefert für C# selbst drei Editoren:

▪ Visual Studio: nur für Windows. Kostenfreie Community-Version nur für Open Source-

Projekte, Freiberufler und kleine Unternehmen.

visualstudio.microsoft.com/de/downloads

▪ Visual Studio for Mac: kostenfrei (Nachfolger des früheren Xamarin Studio)

visualstudio.microsoft.com/de/vs/mac

▪ Visual Studio Code: kostenfrei für Windows, macOS und Linux.

code.visualstudio.com

C+#-Erweiterungen muss installiert sein! Diese beinhaltet aber nicht alle Werkzeuge aus de,

großen Visual Studio, z.B. keine grafischen UI-Designer

marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp

Zudem liefert Microsoft mit OmniSharp [www.omnisharp.net] eine Basis für die Integration in

anderen (plattformneutrale) Editoren wie ATOM, Brackets, Emacs, Sublime und Vim (siehe

Abbildung). Hier wird nicht nur Syntax-Farbeinfärbung, sondern auch Eingabeunterstützung

(IntelliSense) angeboten. Auch die Visual Studio Code-Erweiterung für C# basiert auf OmniSharp.

https://visualstudio.microsoft.com/de/downloads
https://visualstudio.microsoft.com/de/vs/mac/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
http://www.omnisharp.net/

42 Fakten zu C#

Es gibt weitere einfache Editoren, die für die C#-Syntax nur Einfärbung, aber keine

Eingabeunterstützung bieten.

Einen weiteren professionellen C#-Editor mit viele Eingabeunterstützung und Refactoring-

Funktionen liefert die Firma JetBrains mit ihrem Produkt "Rider" (kostenpflichtig,

www.jetbrains.com/rider).

6.12 Neuerungen in C# 9.0

Dieses Kapitel bleibt auch in der C# 10-Version des Buchs erhalten, weil viele Unternehmen

erst jetzt vom klassisches .NET Framework mit C# 8 auf die moderne .NET-Welt mit C# 10

umsteigen und daher die Neuerungen in C# 9.0 erst jetzt nutzen können.

Die fertige Version von C# 9.0 ist am 10.11.2020 im Rahmen von .NET 5.0 und Visual Studio

2019 v16.8 erschienen.

Hinweise: C# 9.0 wird offiziell von Microsoft nur ab .NET 5.0 unterstützt ("C# 9.0 is supported

only on .NET 5 and newer versions." [docs.microsoft.com/en-us/dotnet/csharp/language-

reference/configure-language-version]. Man kann allerdings die meisten (aber nicht alle!) C#

9.0-Sprachfeatures auch in .NET Core, .NET Framework und Xamarin nutzen. Dazu muss man

die <LangVersion> in der Projektdatei erhöhen. Dies wird im Kapitel "Erste C#-

Schritte/Festlegen der Compilerversion" beschrieben.

Notwendige Visual Studio-Version für C# 9.0 ist Visual Studio 2019 v16.8 oder höher.

Die wichtigsten Neuerungen in C# 9.0 sind:

▪ Record-Typen → siehe Kapitel "Record-Typen"

▪ Programme ohne Main() → Siehe Kapitel "Top-Level Statements"

http://www.jetbrains.com/rider
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version

Fakten zu C# 43

▪ Properties, die nach Initialisierung unveränderlich sind (Init Only Properties mit Init Only

Setters) → Siehe Kapitel "Attribute/Properties, die nach Initialisierung unveränderlich sind"

▪ Verwendung des Operators new ohne Typangabe (Target-Typed New Expression) → Siehe

Kapitel "Klassendefinition/Instanzierung mit dem Operator new")

▪ Aufhebung der Restriktionen für partielle Methoden → Siehe Kapitel "Partielle Methoden"

▪ Statische anonyme Funktionen und Discard-Variablen in Lambdas → Siehe Kapitel "Lambda-

Ausdrücke"

▪ Annotationen auf lokale Funktionen → Siehe Kapitel "Lokale Funktion"

▪ Erweiterung des Pattern Matching → Siehe Kapitel "Verzweigungen/Pattern Matching"

▪ Modul-Initialisierer → Siehe Kapitel "Modul-Initialisierer".

▪ Source Code-Generatoren: Mit diesen neuen Code-Generatoren kann ein Entwickler

zusätzlichen Programmcode zur Kompilierungszeit erzeugen, der zusammen mit dem

eigentlichen Programmcode kompiliert wird. Damit kann man z.B. Annotationen eine

Bedeutung geben. → Siehe Kapitel "Source Code-Generatoren".

6.13 Neuerungen in C# 10.0

C# 10.0 ist zusammen mit Visual Studio 2022 und .NET 6 am 8.11.2021 erschienen.

Hinweise: C# 10.0 wird offiziell von Microsoft nur ab .NET 6.0 unterstützt ("C# 10.0 is

supported only on .NET 6 and newer versions." [docs.microsoft.com/en-

us/dotnet/csharp/language-reference/configure-language-version]. Man kann allerdings die

meisten (aber nicht alle!) C# 10.0-Sprachfeatures auch in .NET Core, .NET Framework und

Xamarin nutzen. Dazu muss man die <LangVersion> in der Projektdatei auf "10.0" erhöhen.

Dies wird im Kapitel "Erste C#-Schritte/Festlegen der Compilerversion" beschrieben.

Notwendige Visual Studio-Version für C# 9.0 ist Visual Studio 2022 v17.0 oder höher. Eine

Verwendung von C# 10.0 sowohl mit Visual Studio for Mac 2022 als auch einer aktuellen

Version von Visual Studio Code und anderen OmniSharp-kompatiblen Editoren

[www.omnisharp.net] ist möglich.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
http://www.omnisharp.net/

44 Fakten zu C#

Abbildung: Übersicht über die Neuerungen in C# 10

Quelle: Microsoft

[github.com/dotnet/csharplang/blob/main/Language-Version-History.md]

Das folgende Bild realisiert das kleine Kunststück, fast alle neuen C# 10-Sprachfeatures in 2

überschaubare und kommentierte Listings unterzubringen, die zusammen auch noch Sinn machen.

Verstehen Sie dies als Kurzreferenz. Natürlich finden Sie eine ausführliche Beschreibung in den

verschiedenen Kapiteln dieses Buchs.

Abbildung: Fast alle neuen C# 10.0-Features auf einen Blick.

Sie finden in diesem Buch:

▪ Kapitel "Datentypen": Neuerungen zu Interpolated Strings

https://github.com/dotnet/csharplang/blob/main/Language-Version-History.md

Fakten zu C# 45

▪ Kapitel "Verzweigungen/ Pattern Matching": Neuerungen zum Pattern Matching

▪ Kapitel "Methoden": Caller Argument Expressions

▪ Kapitel "Namensräume": Alle Neuerungen zu den Namensräumen (File-Scoped

Namespaces, Global Using Directives, Implicit Using Directives)

▪ Kapitel "Record-Typen": Alle Neuerungen zu Record-Typen (record class, record struct,

sealed ToString())

▪ Kapitel "Strukturen/With-Ausdrücke": Einsatz von Klonen mit with bei Strukturen und

anonymen Typen.

▪ Kapitel "Strukturen/Strukturen mit parameterlosem Konstruktor": Strukturen mit

parameterlosem Konstruktor

▪ Kapitel "Tupel": Mixed Deconstruction

▪ Kapitel "Funktionale Programmierung/Lambda-Ausdrücke": Typherleitung, explizite

Rückgabetypen und Annotationen/Attribute für Lambda-Ausdrücke

6.14 Blick in die Zukunft

Die kommende Version C# 11.0 soll im November 2022 zusammen mit .NET 7 erscheinen.

Vorschläge für künftige Sprachversionen finden Sie unter

github.com/dotnet/csharplang/tree/main/proposals

Jedermann kann Vorschläge für neue Sprachfeatures einreichen; die Hürden zur Annahme sind

aber recht hoch.

Die Liste der Sprachfeatures, an denen Microsoft aktiv arbeitet, findet man unter

github.com/dotnet/roslyn/blob/main/docs/Language%20Feature%20Status.md

https://github.com/dotnet/csharplang/tree/main/proposals
https://github.com/dotnet/roslyn/blob/main/docs/Language%20Feature%20Status.md

46 Fakten zu C#

Abbildung: Für C# 11.0 geplante Sprachfeatures

Sprachfeatures, die sich bereits in der Entwicklung befinden aber noch nicht Teil des

Sprachcompilers sind, können Sie ausprobieren auf dieser Website:

sharplab.io

https://sharplab.io/

Fakten zu C# 47

Abbildung: www.sharplab.io

