Dr. Holger Schwichtenberg

C# 10.0 Crashkurs

Die Syntax der Programmiersprache C#
fior die Softwareentwicklung
in .NET Framework, .NET Core, .NET 5.0 und .NET 6.0

1 // Globale Using Directiven
2 -ilglobal using Hilfsklassen;
3 global using ITVisions;
4 global using static System.Console;
5
6 // Uberfliissig, da implizite Namespace-Imports in .NET 6 aktiv!
7 System;
8 System.Threading. Tasks;
9
10 // Namensraumdeklaration auf Dateiebene
11 namespace CSCrashkurs;
12
13 // Record Struct statt Record Class
14 public record struct Person(int ID, string Name, string Firma);
15
16
17 L4
18
19
20
21
22 const stro S .ame M "H M jer"; - N4 ! S~
23 const string Nachname = "Schwichtenberg";
24 // Konstanter interpolierter String
25 const string GanzerName = $"Dr. {Vorname} {Nachname}";
26
27 - Task.Run(() =>
28 {
29 // Verwendung der Record Struct
30 var hs = new Derson(lZB, GanzerName, "www.IT—Visions\de");
31
32 // Ausgabe: Person { ID = 123, Name = Dr. Holger Schwichtenberg, Firma = www.IT-Visions.de }
33 WriteLineChs); // == Console.Writeline duuch Global Static Using
34

/www.?T—Visions.dc(eE

_/
Dr. Holger Schwichtenberg

Inhaltsverzeichnis (Hauptkapitel)

Buchversion:

Verlag:

Sprachliche Korrektur:

ISBN:

Bezugsquelle Druck:
Bezugsquelle Kindle:
Bezugsquelle PDF:

5.7.0 13.11.2021 N
vom _—vwww.IT-Visions.de

www.|T-Visions.de, Fahrenberg 40b, D-45257 Essen Dr. Holgerm

Matthias Bloch, M.A.

978-3-934-27941-4
www.amazon.de/exec/obidos/ASIN/3934279414/itvisions-21
www.amazon.de/exec/obidos/ASIN/BO9G2RG7 JB/itvisions-21
www.leanpub.com/CSharp10

http://www.amazon.de/exec/obidos/ASIN/3934279414/itvisions-21
http://www.leanpub.com/CSharp8

Inhaltsverzeichnis (Hauptkapitel) 3

1

O o0 3 N DN B~ W N =

W W W NN N N N N N N N N o o e e e e e e e e
[I N e e I =) T, T S VS B S == RN I e S RN Vs S =)

Inhaltsverzeichnis (Hauptkapitel)

Inhaltsverzeichnis (HauptKapitel)coooveciiriiirieieieeieeie et 3
Inhaltsverzeichnis (DEtails).........ccuerierieriieiieieeierterie ettt ettt e e eseesaesnneees 5
VIOTWOTL ..ttt ettt ettt e bt ettt e bt e sttt s bt e sab et e bt e sabeeebeesabeesneenane 13
UDEE AEN AULOT <.ttt n s n et 15
UbEr dieSeS BUCKouviiecieeeceeeeee et 16
FaKen ZU CH ...ttt ettt ettt ettt et aee b nean 27
Grundkonzepte VON CHooiiiiiiieieeeee ettt ettt e b e sae et enee e 48
Der CH-COMPILET ...ttt ettt sb ettt e et e eneeeneeeneenneas 52
Erste C#-Schritte mit Visual Studio.......coceeoieierininiiiiieieeseer e 61
LD 1753 01 o2 4 OO ORI ORUPRRRRPRROt 81
L0315 110 (<) 1 USROS OTRPSR 96
SCRICITEI ...ttt ettt st sbe et 104
VEIZWEIGUINZEILvvevveeieteenieeereeeteeetestteseeesseeseesseessesssesssesssesseesseessesssesssesssesseesseenseessenssenns 106
KIaSSENAETINIEION ..ottt ettt st eb e 115
Attribute (Fields und Properties).........coeieeiierieiiee ettt 122
LY (11 4 Lo 13 PSSP 131
Konstruktoren und Destruktoren...........eiieiieiieiieie et 140
Aufzihlungstypen (ENUMETation)ccoeeiierierreiie ettt ee 143
Expression-bodied MEMmDETS.c.ccoueiiiiiiiieiieit ettt 144
Behandlung von NUIL...........ooioiiiiiiiiiicccceee ettt be e enne e 145
Partielle KIaSSEIN......oouiiiiiiiiieieeieee ettt st 156
Partielle MethOenc..coiuiiiiiiiiieiieieee ettt 158
Erweiterungsmethoden (Extension Methods)cccceoeevciiieiiieiiiieeiiesiieeiee e 160
Annotationen ((NET-AUIIDULE)........ccoiiirieriiieeiieeiieeite ettt etee st eveesbeeennee s 162
GeneriSChe KIASSEIc.uiiuiiiiiiiiiii ettt ettt s 165
Objektmengen (Arrays und CollECHIONS)......co.eeveruirierieieieniinieneeeeie ettt 170
ImplementierungSVErerDUNGcccveiieiieiierie ettt ete e s esaeenseeneeenne e 176
Schnittstellen (INtErfACES)vvovieieiieiieiieit ettt et e e e enseas 178
Namensraume (INAMESPACES)veevrerreerrreierrerresriesteesseeteeseeeesseesseessesssesssessessaesseesseessenns 184
ANONYINE TYPCIitiiiiiiiiieeiie ettt ettt ettt ettt et e sit e e sbt e st e e bt e e sbae ettt esbaeesateesaneenaees 192
OperatoriiberladUungccieiiieiiiiiieeeee ettt ettt et eenbesanesneeens 193
SHUKEUTEIL. ...ttt ettt et b et e bt et eateeaeesbeenbeenneas 194

Inhaltsverzeichnis (Hauptkapitel)

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

RECOTA-TYPON .cntieiiieieeeeeee ettt ettt et e e ettt e st e e sabe e sabeessbeessseensseessbaensseessseeseas 206
IMMULADIE ODBJECLS.eeeeieiietiee ettt ettt ettt et sbe e b e b enneas 224
TUPECL ettt ettt ettt e et e b e e b et e e s e e s e e st enbeenteenteesaenseenteennenn 228
Funktionale Programmierung in C# (Delegates / Lambdas)cccccevveevieciiecienienienieenenn 233
ETCIENISSE ..uvieuvieirieitieiieeieeeiee st et et et et e et e ete e te e st e beesseessessbesseesseessaenseenseanseessenseenseensennsens 243
IDisposable / USING-BIOCKE.........ccoiiriiiiiiiieieciesiteeeie ettt s 245
LaufZeItfRRIETc.eeiiiiriieieeicct ettt 249
MOAUI-INIHALISIETET ...ttt ettt 252
Kommentare und XML-DoKUMENTAtIONcc.eeruieriieiieiieieeie et 254
Asynchrone Ausfithrung mit async und await............cecceeoiriiiienieniee e 256
TEEIALOTEI ..ttt et ettt e b e e sbt e e s bt e bt e e nbee e 259
ZRIGRIPIOGIAMNIMICTUIEe.eeeteenteeteenteeneeeueeeueenteenteenteenteenseaneesseesseesseenseenseenseeneesseenseenseensenn 264
Abfrageausdriicke/Language Integrated Query (LINQ)cccooiiiiiiiiiieiieieeeeeeeeee 269
SOUrCE COAE-GENETALOTEIL «.....euveiiiiiieieeiieniertete ettt ettt sttt ettt et e be st st sbe bt eneeneen 297
PerformanCeOptiMICIUNZENcveeruieiieteeeieetieeteesteeteebeeaeereseaeseeesseesseesseesseessessaenseesseensens 301
Syntaxreferenz: C# versus Visual Basic NETc.ccccoviiiiinieniieiicieceeseeeeee e 305
QUETIEN TM INTEINEL......viiiiiiieiiicieecte ettt ettt et et e et e e eteeeeteeeetaeeeareeeaneennas 312
Versionsgeschichte dieses BUCKSocuiiiiiiiiiiiiieiieeeece et 313
Stichwortverzeichnis (INAEX).......c.eevvieiirieriieiieieete ettt ettt ebeesbeessessaeseeeseas 317

Werbung in eigener SAChe © ..o 325

Inhaltsverzeichnis (Details) 5

2

(O I VS I]

Inhaltsverzeichnis (Details)

Inhaltsverzeichnis (HauptKapitel)coooveciiriiirieieieeieeie et 3

Inhaltsverzeichnis (DEtails).........ccuerierieriieiieieeierterie ettt ettt e e eseesaesnneees 5

VIOTWOTL ..ttt ettt ettt e bt ettt e bt e sttt s bt e sab et e bt e sabeeebeesabeesneenane 13

UDEE AEN AULOT <.ttt n s n et 15

UbEr dieSeS BUCKouviiecieeeceeeeee et 16
5.1 Bezugsquelle fiir AKtUaliSIETUNZENc..eeiuieiiiiieiieiieieeeee e 16
5.2 Versionsgeschichte dieses BUChS..........ccoiiiiiiiiiiiiiieee e 16
53 Hinweise zur Breite und Tiefe dieses Buch — Sie haben Einfluss!...........c.ccoccoeeenee 16
54 Geplante TREMENccuieiieieiieiieieeieete et ste et e et et esaeesteesbeessesssessnesseesseeseesseensenns 17
5.5 Programmcodebeispiele zu diesem Buch............cccooveiienieniieiieiieeeeeee e 17
5.6 Hilfsklasse zur Konsolenausgabe (CUL)cccocveviieiieienieniieieeieee e 20
5.7 Qualitdtssicherung der Programmcodebeispieleccuevveeieiierienienieiieieeieeeesieeeen 25
5.8 Ihre Belohnung, wenn Sie helfen, dieses Buch zu verbessern!ccccoeevveivnvennnenen. 26

FaKten ZU CH ...ttt ettt sttt 27
6.1 DEr NAME CH ...ttt sttt st e et e b e e bee e 27
6.2 UTSPIUNEZE VON CH ..ottt ettt ettt ettt et e st e sbee e 27
6.3 NET als Basis fUr CHoeeeieiee ettt es 27
6.4 Status der Programmiersprache C#cocoeviieiiriieeeeceeeeee e 28
6.5 VersionSZeSCHICHLE.cc.iiiiiiiiiie e 30
6.6 StaNAardiSIEIUNG.ccveieieriieitieie ettt ettt be et eeae e e steesaeesseesseessesssesssesssenseessens 32
6.7 Implementierung des CH-COMPILETSocevieiiieeiieiiieeiee ettt eeeeieeeeeeebee e 33
6.8 OPEI SOUICE.....vieeirieeieeeiteeiteeteeette ettt esereeteeestaeeseeessseenseeesseenseeessaesseensseensseenssesnses 33
6.9 Paritit und Co-Evolution mit Visual Basic .NETcccccoiiiininiiniiininenceceee 34
6.10 POPUIAritat VON CH ...oooiieiiieeiee ettt sttt et e eteeeabaeeteeenbaeenaeesnbeeenseesnns 34
6.11 Editoren fUI CH..cooueeeiiiiiieeeeeeee ettt st sttt 41
6.12 Neuerungen N CH 9.0c.coiiiiiiiiiiiiineeeeet ettt 42
6.13 Neuerungen in CH 10.0ccoeiiiiieiieieeie ettt sae e sreenseenseenneens 43
6.14 Blick in die ZUKUnftcocooiiiiiiiiiiec s 45

Grundkonzepte VON CHoovieiiiieiieiieie ettt ettt ettt teensessaessaesseesseenseenseens 48
7.1 N 2 Te] 114 0 101U 48
7.2 GrofB3- und KIeinSChreibUunG..........c.oouieiieiiieiieieeieeeeeee e 48

7.3 Schliisselworter der SPrachec..oecuievciieeiiieiiie e e e s 48

6 Inhaltsverzeichnis (Details)

7.4 Namensregeln und Namenskonventionenccceeceeereerieneenieneenie e 49
7.5 Blockbildung und UmbIiiche.cccooiiiiiiiiiii e 50
7.6 HEIO WOTI ..ottt 50
7.7 Eingebaute FUNKHONENcccviiieiiieiieieeie ettt eae e seae e s enseessessaesseenseenseas 51

8 Dl CH-COMPILET....c.eiiiieiiiiecieetete ettt ettt et et e st esse e teesbeesseensesssesseesseenseenseensenes 52
8.1 Der urspriingliche (alte) CH-COmPILET..........ccceevvieriieiieieeieiieieee e es 52
8.1.1 KOMPIIErUNG MIt CSC.EXE .eeuvreiieurieiieriieriieieeieeteetestesseeseenseessesseessaesseesesssesnnes 52
8.1.2 Kommandozeilenparameter.............c.eeververieeiieeienieseeseeneeeeeeeesseesseesseensesssesnnes 52

8.2 Der aktuelle (neue) CH-COMPILEToveiiiiiiiiiee e 55
8.2.1 Versionsnummern des COMPILErS.......c.oevueeiuiriiirienieiiereee e 57
8.2.2 Kommandozeilenparameter.............ccoveereereeierierie et 57

9 Erste C#-Schritte mit Visual StUdiocooveiiiiiiiiiieeeeee e 61
9.1 Hello World mit dem klassischen .NET Frameworkccccocooeiiniiiiiiiiiiniecee 61
9.2 Hello World mit modernem NETc.ccccoiiiiiiiiiiiiieeeeee e 68
9.3 Programme ohne Main() (Top-Level Statements).........c.cccevvereerieeeierieiieeneeneesveenens 74
9.4 Festlegung der COMPIlerVerSiON.........coueevieiieieeriesiieteereereseesee e eseeseesseessesssesseeseas 75
9.5 Eingabeunterstiitzung in Visual Studioccceovieviiiiiiiinierieieeeee e 79
LI B 1753 11 o <) OO USRS 81
10.1 VariablendeKIarationen.coeieeieieiiriiniereei ettt st 82
10.2 TypinitialiSICITUNGooouieiieiieieeeeteee ettt ettt et et e st et enteenaeseeesneeene 82
10.3 Literale fiir Zeichen und Zeichenketten............covveiieiieiieiieeeeceeeeee e 83
10.4 String INterpolation.......c..ccueririiiiririeicieteere ettt 85
10.5 Zahlenliteraleccoueeiieie ettt ettt ettt e st ettt e enbeenne e ens 87
10.6 DatumSHEETale. . .. eevuieiieie ettt ettt ettt e st et et enseenneennesnneens 88
10.7 Lokale Typableitung (Local Variable Type Inference)c.ccoceeveeeecvenencnenenccenennens 88
10.8 Giiltigkeit vOn Variablenc.oeeceeriiieiiiieeiie ettt esaae e 89
10.9 TYPPIUIUNGEN ..ottt ettt et e et e e et e staeesaeentaeesbeesseensseennes 89
10.10 TYPKONVETHETUNE ...eecuveeeeiieeiieeiieeieeeteeeieeeieeeteeeieeeseeesseessseesseeenssesseeenssesnssessssesnsnes 90
10.11 Dynamische TyPIiSIEIUNGcceviriieriieiieieeie ittt ettt s 91
10.12 Wertelose Wertetypen (Nullable Value TYPES)....ccccvierveeriierieeiieerieeiie e 92
L O 1 21101 (21 DO OO PO PSP SUUPTRPPRRTPN 96
11.1 Uberblick {iber die OPEratorenceoeveveeueveveeeeeeeeeeeeeeeeeseeeeseeesesseeeeeseeseneseenans 96

11.2 Null CoaleScing OPErator ?7........ccceereerieerueeieeeeeseeseeesieesseeseeeessesseesseesseessesssesssesnesses 99

Inhaltsverzeichnis (Details) 7

11.3 Null Coalescing ASSIZNMENE 777ccovuieriieirierieerieeseeesreesteesbeesreesseesseesseesseess 99
11.4 Null Conditional OPerator 2.cooeeuieiiiierieieeteee ettt et eseeeneas 99
11.5 Operator NAMEOT() . ..uevverierierieeieeieeiesteest et etesae st esreeaeesse s e ssaesseenseenseessesasesnneses 100
11.6 Index und Range (CH# 8.0)cevvieiieiieieiieieeieee ettt ae e ees 101
T1.6.1 TIACX cutiiiiiieitieteee ettt ettt et 101
T1.6.2 RANZE coevieiieiiieeeeete ettt ettt ettt st sa e et e e st e e sabe e sabeesabeesabaeeabee s 102
11.6.3 Weitere BEiSPIClecuvevuieiieiieeieeiieeeeeeteee ettt 102
11.6.4 EinSCRIrANKUNZENceoviiiiieiieiecieetee ettt enneseneeeas 103

LT 11131 1<) A PO 104
I3 VEIZWEIZUNZEIL ..ottt ettt ettt ettt e at et e et emteeseesaeesaeeeeeneeenteenseeneanseensenn 106
13.1 Einfache Verzweigungen mit if...€1S€ccooierieiiiiiiiieeeceeee e 106
13.2 Mehrfachverzweigungen mit SWItChcoovoieiieiiiiieiieieeeeeee e 107
13.3 Switch Expressions (S€it CH 8.0).....ceouiiiieiiiieiierieerie ettt e 107
13.4 Pattern MatChINgc.cccveviiriieiieie ettt sttt ae e e etsesse e seesbeessesenesaneses 110
13.4.1 Pattern Matching in Bedingungen mit is und iS N0tc.oecvevverierieesieeienenenne. 110
13.4.2 Pattern Matching bei SWItCh........c.ccveviieriieiiiieiieciee e 111

14 KlassendefINItioNcccuerieriiriiiiie ettt ettt st st 115
14.1 KlassendefINItONEN.c..couiiiririieiieieieiese ettt ettt st eneeneas 115
14.2 Instanzierung mit dem OPErator NEWc.ccvieeverieriereenieereereereseesseesseesessessaesens 117
14.2.1 Angabe der Konstruktorparametercceeeverierieneerieieeiesiesieee e 117
14.2.2 SChIUSSCIWOIT VAL ...c.eeiiiiiieieeie ettt ettt e eees 117
14.2.3 Verwendung des Operators new ohne Typangabe (Target-Typed New Expression)

118

14.3 ObjektinitialiSIETUNG.eoviriiriirtiriieiieteteeerteet ettt sttt ettt eneen 119
14.4 Geschachtelte Klassen (eingebettete KIassen)ccoeverirerierieiencnenenenceeeeennes 120
14.5 Sichtbarkeiten/ ZugriffSmodifiZIErercccvvevieeiiiiiiieii e 120
14.6 StatisChe KIASSEN....cc..oiiiiiiiiiiiiiieieee ettt 121
15 Attribute (Fields und Properti€s).........ccueecuirereeriiieeriieeiieerteeieeeiteeiee e esiaeesveeseveeseveeenas 122
15.1 Abweichungen von der Lehreoocoevieiiiiiiiiiiiiec e 122
15.2 Felder (Field-AttriDULE)c.eeeiuiieiieeiieeiie et erte ettt ere et e siae et esaaeeaaeessaeeneees 123
15.2.1 Deklaration von Feldern.........ccccoueiiirininininiiiiiinienencececcteesese e 123
15.2.2 Felder mit readonlycccveviiiiirieiieieieeie et e 123

15.3 Eigenschaften (Property-AttribUute)ccerierureiieiiieiierieie ettt 124

15.3.1 Explizite Properties mit Field..........ccccooririiiieiiiiieieeeeeeee e 125

Inhaltsverzeichnis (Details)

16

17
18
19
20

21
22
23
24
25

15.3.2 AutomatisChe ProPerti€s.......cceviierieeiiieiieeiie ettt 126

15.3.3 Properties, die nach Initialisierung unverénderlich sind (Init Only Properties).. 127

15.3.4 Init Only Setters in .NET Framework und .NET Standard...........c.ccccecuenenenins 129
15.3.5 Zusammenfassung zu PrOPertiescceveuervveriierierieenieeieeieeeeseesieeieseresnesenes 129
IMEROAEIL.....ceeee ettt sttt et ettt sttt 131
16.1 Methodendefinition und RUCKZADEWEITE........ccuvevieiieiecieieieeeee e 131
16.2 MethOdeNPArameELer.........cccveeuieiierieieeiestesteesteete e eeresetesseeseesseessesssesssesseesseensesnsenns 131
16.3 Optionale und benannte Parameter...........ccocvveruieriieriieienieeieseeie e 132
164 RefUNA OUL ..o ettt et ettt e e e e eee 133
16.5 Statische Methode als globale Funktionencccocevienieiiiiinieniesceceeee e 134
16.6 Lokale Funktion (ab C# 7.0)...c..ccoiieiiieieeiii ettt ettt sive e sveeseaeeseae e 135
16.7 Statische lokale Funktionen (ab C# 8.0).........cccueeviieiiieiiierieeie e 135
16.8 Caller-Info-ANNOtAtIONEIeeuieiieieeeieetieieete ettt ettt eee e sneeeees 136
16.9 Caller Argument EXPIreSSIONSc.eecvirverierierteeriieieetestesseesseesseesesssesssesssesseesseassenns 138
Konstruktoren und DeStruKLOTENcc.evueiieiirieieriiiieeiceeetetee ettt 140
Aufzihlungstypen (ENUMETatioNn)..........c.ceevieierierieeniieieeieeeesreseesseesseeseeseessesssesseesseessens 143
EXpression-bodied MEMDETScccccuiiiiiiieieeiesieeieeie e eee st seeesreeaeesseeseeesessaesseeseensens 144
Behandlung von nUlL...........c.ooiiiiiiiiiiicceeeceeee ettt 145
20.1 NullReferenCeEXCEPtION.cccuiitieiieiieteiie it reeste et ettt esteesbeeebesaeseaesaeesseesseenneees 145
20.2 Null-Priifung und Toleranz gegeniiber Nullcccoooiiiiiiiiieiieeee e 145
20.3 Null-Referenz-Priifung / Non-Nullable Reference Types (C# 8.0) ..c.ceeveeveeenvenerenennns 147
20.3.1 Neue Compiler-FEatures..........coceveririeiiniininienieieeeteteseese et 148
20.3.2 Compiler erkennt die Programmierfehler nichtc..ccccoevvenininiceicncncncnns 150
20.3.3 Aktivieren der Null-Referenz-Prifung.......c..cccoceeevoieiiiiinininininciicicicicnns 152
20.3.4 Verbessertes Programm..........coccoceeieiiiiiiiininiiniiiniececse et 153
20.3.5 Null FOrgiveness-Operatorccccccueerveerueerieenieenieeneeesreesaeesseessseessseessseesns 155
Partielle KIaSSEI.......evuiiiiiiiiiieieee ettt ettt 156
Partielle MethOen.ccuoiiiiiiiiiiii ettt 158
Erweiterungsmethoden (Extension Methods).........ccceeoueriiiiiiiiniinieniic e 160
Annotationen ((NET-AUIIDULE)cccveeiiiieeiiieiiieeieecieeeie ettt steesae e aeesereesaae s 162
GeneriSChe KIASSENcoeiuiiiiiiiiiniiiereteer ettt e 165
25.1 Definition einer generischen KIasseccoccverierieiiiriieienieieeee e 165

25.2 Verwendung einer generischen KIassecooveviiiiiiiiienieieceie e 165

Inhaltsverzeichnis (Details) 9

25.3 FEinschrankungen fiir generische Typparameter (Generic Constraints)..........c..ccc.c..... 166
25.4 Kovarianz fir TYPParametercoeouirieruieniieieeieeie ettt ettt sb e 166
26 Objektmengen (Arrays Und CollECtiONS).......ccvervierierierierierierieeieeeeeve e stee e eeeeaeseae e 170
26.1 EINTACKE ATTAYS...ccuieiiiiieiieiiieieeie ettt ettt teesaeeseeseeeasessaasaenseenseensesnnenes 170
26.2 UntypiSierte COIECHONSccuieriieiieieeieeiieeerie et etestesteesaeeaeeaeseseesaesseeseeseensesnneses 170
26.3 Typisierte COILECTIONSeevvieriieiieieeieeiesieeieeteetestesteesaeeaeeaessaessaeseensesnsesssessnenns 171
20,4 INAEXET ..ttt ettt bbbttt 173
27 ImplementierungSVErCIDUNGccvevvieieeieriietieieeteeteseresaeeseeseessessaesseenseenseessesssesseenns 176
28 Schnittstellen (INTETTACES) ...ccviiieiiieiieicieeiieecee ettt e e e eeetee e raeeaae e eaeenenes 178
28.1 Deklaration einer SChnittStellecccvirierieiieiieie et 178
28.2 Verwendung von Schnittstellencoocooiiiiiiiiiiiieee e 178
28.3 Standardimplementierungen in Schnittstellen............ccoooerieiiiiiniiniieeeeee 179
28.3.1 Realisierung einer Standardimplementierung in einer Schnittstelle.................... 179
28.3.2 Einfaches BeiSPICl.......cccivciiiiiiiiiiiiieii ettt ettt enee e 179
28.3.3 Uberschreiben der IMplementierung..............cocoevevveeeereneviveeeeeeeeeesnesesesesenenen 181
28.3.4 KompleXeres BEISPIC]ccccuiiiiiiiriiiiieiiciieieetteteeie et ee e sreesse e esse e 181

29 Namensraume (NAMESPACES) ...cveeerrrerrreerrureerrrersieeerresnseeersseesseeesseesseeesssesssseesssesssseesssesssnes 184
29.1 Softwarekomponenten versus NamMenSIraUuMec.cccverreerueerveerueeveneeseesseesseessesnenes 184
29.2 Vergabe der NamensraumbezeiChner............covveviviiiiiriiniieiecieeeeeeeeeie e 185
29.3 Vergabe der TYPNamMENcc.eeiuieiiieiieieeiieeeieete ettt ettt eee e seeeenes 186
29.4 Namensraume deKlarieren.occoeviriirierieriee e 186
29.5 Import von NamMENSIAUMENccc.cocvirieriieiierieteete e nieeae et eeee st ereesneenesanenaee 188
29.6 Verweis auf Wurzelnamensraumecceevveereerieiienienieie e eieeseeee e 190
30 ANONYME TYPEN....ciiiiiiiiiiiiiiitet ettt ettt et sttt e e s s 192
31 Operatorliberladungc..coccoiririiiiiiiiieeec ettt 193
32 SHUKIUIEI. .ottt ettt et et et et s atesb et e bt e bt et e entesaeesaeenae 194
32.1 Wertetyp versus REfEI@NZEYPccvveevvieiiiieiieiiieeiie ettt s 194
32.2 Deklaration von STrUKTUIEIcceertieiiiiiiiiiiieiienceeec ettt 197
32.3 Verwendung von StrUKLUIENccciiiiieiiiieiiieeiie et ciee et sreesveesbeeeaeesbeeenee s 197
32.4 Strukturen mit Readonly (ab CH# 7.2) ccccueeeviieiiieeiieeieeeee ettt 198
32.5 Readonly fiir einzelne Mitglieder einer Struktur (ab C# 8.0)......cccvvvveriveciieieeierne, 199
32,6 With-AUSAITCKEeoiiiiiiiiiiiiecc et 201

32.7 Strukturen mit parameterlosem Konstruktor...........ccocoevieiieciieienienieiceeee e 204

10 Inhaltsverzeichnis (Details)

33 RECOTA-TYPOI.ceiiiiiiiieiiiieeie ettt e et e et e e bt e st eessbeessbeeesseessbaeenseesnseeanseesnsaeenseesnsseenseesnns 206
33.1 Records deKIarierencooueeuiiieiieiieseee et 206
33.2 Record-Typen mit Primarkonstruktor..........ccveevieiieienienieiieieeie et 212
33.3 RecOrds VEIWENACNccuviiiiiiieiieiieiieienteteste ettt ettt sttt eneen 215
33.4 Uberschreiben von TOSING()covvveeevieeeeeeeeeeeeeeeseeeeeseseeesee e eeeseneeeenens 217
335 RECOTA SEIUCES ..euviiiiiieiieiiterie ettt ettt et s be b ebe e eneen 218
33.6 Exkurs: Primérkonstruktoren fiir normale KIassen...........c.ccocevverieienencniencncniennenes 222

T I 11011018721 o) (S @ o T £ PSRRI 224
34.1 Immutable Objects auf Basis von Readonly Fieldsccccoooeeiiniiiiiiiniies 224
342 Immutable Objects auf Basis von Properties mit Init Only Setter...........ccccocceevreeenns 225
343 Immutable Objects auf Basis von Recordsccoecueriiiiiiiiiieiiie e 226
34.4 Praxisbeispiel: Immutable Objects mit Record-Typen beim Flux-/Redux-Pattern......227

TS T 1 1311 PSSR 228
35.1 Alte Tupelimplementierung mit System.Collections. Tupelcccooveervervenienirennens 228
35.2 Neue Tupelimplementierung in der SPrachSyntax..........cccoeeeeveecverceerieeseereeneenneennens 228
35.3 Tupel-DeKonStruKtiON.ccvieviiieiieiieieecie ettt ebeseaesaesreesaeeseenneesneees 229
35.4 Serialisierung von TUPEIN........ccceviiiieiiiriiiii ettt ettt esee e saeeveeneesne e 231
35.5 Vergleich von Tupeln (CH# 7.3) c..couiiieiieiieieeieeee ettt ettt sve b enne e 231

36 Funktionale Programmierung in C# (Delegates / Lambdas)c.cccoevveeieveenieenieenenene. 233
30.1 DEICGALESeeeeeiietietiee ettt ettt ettt et ettt ettt ettt eeaeenneeneenneens 233
36.2 Vordefinierte Delegates Action<T> und Func<T>cccccoooiriiiiiiiiniinenieeee 235
36.3 Pradikate mit Predicate<T>..........cccocoiiiiiiiiieieceeeeee et 237
36.4 Lambda-AuSAITCKec.ooouieiiiieiieiieseet et 237

36.4.1 Einzeilige Lambda-Ausdrickec.ccoceevieiieiiinininiiiiicicicnencneeeeecee e 238
36.4.2 Einsatzbeispiele fliir Lambda-Ausdriicke..........c.ccocevereriieniinininienineneciccnns 239
36.4.3 Mehrzeilige Lambda-Ausdriickecccveeeiieriiiiniiiieiie e 241

37 BICIGNISSE .eveeeveeiiieeieeiiieeieesieeeteesteesteessteessbeessteeasseesnseeasseesssaeanseesnseeanseesnseeanseesnseeaseesnne 243
37.1 Definition VON Erei@niSSeNcccueeiiiiriiiiieenieeiieeeie e et sve e esreeseveeseveeseveeseveenenas 243
37.2 Erei@nis QUSIOSEI ...cciuuieeiieiiieeieeiiieeeteesteeseteeseteestteestaeeeaeessbeesseessseesseensseesseensseensees 243
37.3 Ereignisbehandlungcoccooiiiiiiiiiniii e 244

38 IDisposable / USING-BIOCKE.cceoieiiieiieieeieieieeie sttt ettt eae e enes 245
38.1 Hintergriinde zur Speicher- und Ressourcenverwaltung in NET...........cccccoovveirennn. 245

38.2 Schnittstelle IDIiSPOSADIEeecveruieiieiieriieie ettt ettt eseene e e 245

Inhaltsverzeichnis (Details) 11

383 USING-BIOCKE ..c.eviiiiiiieiieciiecee ettt ettt ae e s eb e e s sbaesnaeesnsaeennee s 247
38.4 Vereinfachte Using-Deklarationen (C# 8.0)ooceerieiiiiiiiiiienieieeeeee e 247
38.5 IDispose fiir Strukturen auf dem Stackccoocvevieiieniiiieiieeeee e 248
39 LaufZeitfenler....c..couiiiiiiiee e et 249
39.1 Fehler abfangen.......cccccuveiiiiieiiiieiieeete ettt ae e nes 249
39.2 Fehler @USIOSEN.c.eiiiriiieiiiteeieetet ettt 250
39.3 Eigene FehlerKlassen..........ccieiirieriieiiieiieie ettt 251
40 MOAUI-TNITALISIETET ..c..eveenteiiiertesieet ettt ettt sttt ettt s sbeeieesseneens 252
41 Kommentare und XML-DoKumentation............ccceceeuerieiienieneenie e 254
42 Asynchrone Ausfithrung mit async und awaitccoeoerierienieiieeeeeeee e 256
42.1 Async und await mit der NET-Klassenbibliothek.............ccoccoeiiniiniiiiiniiiieee 256
42.2 Async und await mit eigenen Threadscoccoooiriiiiiiiiien e 257
423 Weitere MOGIChKEItENoouiiiiiiiiiieieeee e e 258
43 TEETALOTEIL....ceueitieiiieiteeit ettt ettt ettt ettt be et et sat e sb b et e b e e b enbeesaesaeenaee 259
43.1 Iterator-Implementierung mit yield (Yield Continuations)cceecvevveerreerrervenenenne. 259
43.2 Praxisbeispie]l flr Yield........cccoovieviiiiiiieiieeeeee et 260
43.3 Asynchrone Streams / await foreach (ab C# 8.0)cccovvevuieriieiieiieiecieeeeee e 261
44 ZIZEIPIrOZIAMIMUICTUINGoeivveriereerreeseesteeseesseesseessenssesssesssesseessessseessesssessesssesssesssesssssssesses 264
44,1 Zeigerprogrammierung mit UNSALE..........ccovvevvieciiriiiiiierieriete ettt 264
442 Zeigerprogrammierung mit ref (Managed Pointer)...........cceoveieienienienieneeeee 266
45 Abfrageausdriicke/Language Integrated Query (LINQ)......ccceevieiiieiiieienienieneeeeee e 269
45.1 Einfihrung und MOtIVAION.........ccceeiiitiriirininieeeetcteree et 269
452 LINQ-PrOVIAETccueeoiiiieiieiieit ettt sttt ettt e st et enseenseennesnneens 270
45.2.1 LINQ-Provider von Microsoft im .NET..........ccccceriiiieiiniiie e 270
4522 Andere LINQ-Providerccccceiiiiieiiieii ettt 271
4523 Formen von LINQccoiiiiiiiiiiiie ettt 271
45.2.4 Einflihrung in die LINQ-SYNTAX......cccceririieirieiiieeieeeiieeieesieeereesreesveesveeenneens 271
Ubersicht {iber die LINQ-BEfEhle.............cocovoiuimieieeieieeeeeeeeeeeeeeeeee e 275

453 LINQ t0 ODJECLS..uuieiurieiuiieiieeitieesteestteeste ettt eseeeteeessaeesseeessseenseeessseesseesssaenssesssseensees 282
453.1 LINQ to Objects mit elementaren Datentypen.........ccccceeeeeuereenieneeneenieenieeiens 282
45.3.2 LINQ to Objects mit komplexen Typen des .NET Frameworkccoccuvneenn. 286
45.3.3 LINQ to Objects mit eigenen Geschéftsobjekten...........coevvreercienienienrenireen, 290

454 Parallel LINQ (PLINQ) ... orvveceeooeeeeeeeeseeeeesesesseessessssssesssessssesssessssessesessssesessesseens 294

12 Inhaltsverzeichnis (Details)

46 SoUICe Code-GENETAOTEIovuiiuietieiieiieeitesite st et et et e etteste et e bt enbeeatesaeesbeesbeenbeeneeeneeens 297
46.1 Aufbau eines Source Code-Generators...........coeeruieriereerieriienieenieeeeeee e sieeseeeneeeeeens 297
460.2 PraxiSDEISPICL.....cceevuieiiiiiiiieeiieiieteete ettt ettt ettt ae s aesaeenseeneenne e 299

47 PerformanCeOPtMICTUNZENeeeuverreerrrereererrestesseesseeseessessaesseessesssesssesssessaesseesseessesssenns 301
7.1 XOA VEISUS X80 ..ueeiniiiuiiiiiiiiiinieeitettete ettt ettt ettt ettt st sae bt eneeane e 301
47.2 Debug Versus REICASEcuevieriieiieiieie et stesie ettt e e sbesaesaesseenseenseenneees 302
47.3 Vermeidung von Laufzeitfehlern (EXCEPtions)ccvevvevienieniiesieiienie e 303

48 Syntaxreferenz: C# versus Visual Basic .INETcccccooviriiiiinieiceeece e 305

49 Quellen 1M INTEITICT.cccuieetiieiieeieeetee et eeteete e ee e e et e e ea e e s beesaaeesebeessseesasaessseesnseansseens 312

50 Versionsgeschichte dieses BUChSc.oooiiiiiiiiiieii e 313

51 Stichwortverzeichnis (INAEX).......c.eeiciieeiiiiiiieciieciie ettt e e e e e eereeereeeseeenns 317

52 Werbung in eigener Sache © ..o 325
52.1 DICNStICISTUNZEIeiutieiieiieiieeiie ettt ettt ettt et et eteeeteseeesseeseeeseeeeeeneeneeens 325
52.2 Aktion "Buch fiir Buchrezension"ccccocoviiiiiiieninieniceseeeeee e 326

52.3 AKLON "BUCKH-ADO"ooioeieieeeeeeeee e e 327

Vorwort 13

3 Vorwort

Liebe Leserinnen und Leser,

der "C# Crashkurs" ist ein prignanter Uberblick iiber die Syntax der Programmiersprache C# in
der aktuellen Version 10.0.

Dieses Buch ist geeignet fiir Softwareentwickler, die von einer anderen objektorientierten
Programmiersprache (z.B. C++, Java, JavaScript, Visual Basic .NET, Delphi oder PHP) auf C#
umsteigen wollen oder bereits C# einsetzen und ihr Wissen erweitern insbesondere die neusten
Sprachfeatures kennenlernen wollen. Wir schulen bei www.IT-Visions.de jedes Jahr hunderte
Entwickler auf C# bzw. die neuste Version der Sprache um. Da es viele Umsteiger von Visual
Basic .NET zu C# gibt, werden hier die Unterschiede von C# gegeniiber Visual Basic .NET an
einigen Stellen im Buch hervorgehoben.

Fiir Neueinsteiger, die mit C# erstmals iiberhaupt eine objektorientiere Programmiersprache (OOP)
erlernen wollen, ist dieses Werk hingegen nicht geeignet, denn es werden die OO-Grundkonzepte
nicht erklart, da die meisten Softwareentwickler heutzutage diese aus anderen Sprachen kennen
und das Buch nicht mit diesen Grundlagen unnétig in die Lénge gezogen werden soll.

Dieser Crashkurs erhebt nicht den Anspruch, alle syntaktischen Details zu C# aufzuzeigen, sondern
nur die in der Praxis wichtigsten Konstrukte.

In diesem Buch werden bewusst alle Syntaxbeispiele anhand von Konsolenanwendungen gezeigt.
So brauchen Sie als Leser kein Wissen iiber irgendeine (oft kurzlebige) GUI-Bibliothek und die
Beispiele sind prignant fokussiert auf die Syntax.

Dieses Buch wird vertrieben:

= PDF-E-Book bei Leanpub.com ab 19,99 Dollar (der Autor erhdlt ca. 14,00 Euro):
www.leanpub.com/CSharpl0

= gedruckt (Print-on-Demand) bei Amazon.de fiir 29,99 Euro (der Autor erhilt 12,52 Euro):
www.amazon.de/exec/obidos/ASIN/39342794 14/itvisions-21

= Kindle-E-Book bei Amazon.de fiir 9,99 Euro (der Autor erhdlt 6,29 Euro):
www.amazon.de/exec/obidos/ASIN/BO9G2RG7JB/itvisions-21

Tipp: Als Kéufer bei Leanpub.com kdnnen jederzeit Aktualisierungen des PDF-Buchs (gleiche
Hauptversion) kostenfrei dort beziehen. Amazon erlaubt dies leider nicht! Ich biete daher
Kéufern bei Amazon die PDF-Version zum Sonderpreis von 9,99 Dollar an:
www.leanpub.com/CSharp10/c/Sloborn

Ich habe mich fiir den Vertriebsweg des gedruckten Buchs {iber Amazon entschieden, weil ich
dort stindig Updates zu dem Buch einreichen kann. Per Print-on-Demand erhalten Leser dann
immer das topaktuelle Buch. Oft liefert Amazon dennoch am Tag nach der Bestellung das Buch
schon aus. Der Vertrieb dieses Buch iiber klassische IT-Verlage, die leider heutzutage immer
noch grofere Auflagen vorproduzieren, sind fiir ein sehr agiles Softwareprodukt wie .NET/C#
keine Alternative mehr.

Da solch niedrige Preise leider nicht nennenswert dazu beitragen kénnen, den Lebensunterhalt
meiner Familie zu bestreiten, ist dieses Projekt ein Hobby. Dementsprechend kann ich nicht
garantieren, wann es Updates zu diesem Buch geben wird. Ich werde dann an diesem Buch
arbeiten, wenn ich neben meinem Beruf als Softwarearchitekt, Berater und Dozent und meinen
sportlichen Betdtigungen noch etwas Zeit fiir das Fachbuchautorenhobby iibrig habe.

http://www.amazon.de/exec/obidos/ASIN/3934279414/itvisions-21
file:///H:/Pub/2018_CSCrashkurs/5.4/www.leanpub.com/CSharp10/c/Sloborn

14 Vorwort

Falls mir in diesem Buch oder den zugehorigen Downloads menschliche Fehler passiert sind,
mdchte ich mich dafiir schon jetzt in aller Form entschuldigen bei Ihnen. Bitte geben Sie mir einen
freundlichen, genau beschriebenen Hinweis auf meine Fehler. Ich freue mich immer iiber
konstruktives Feedback und Verbesserungsvorschldge. Bitte verwenden Sie dazu das
Kontaktformular: www.dotnet-doktor.de/Leserfeedback

Tipp: Ich belohne Sie mit E-Books fiir gemeldete Fehler, siche Kapitel
"Uber dieses Buch / Thre Belohnung, wenn Sie helfen, dieses Buch zu verbessern".

Ich helfe Thnen gerne, Thren eigenen Programmcode zu schreiben, aber ich hoffe, Sie verstehen,
dass ich dies nicht ehrenamtlich tun kann. Wenn Sie technische Hilfe zu Entity Framework und
Entity Framework Core oder anderen Themen rund um die Entwicklung und den Betrieb von
Anwendungen (Desktop, Web und Mobile) sowie Server und Cloud benétigen, stehe ich Thnen
im Rahmen meiner beruflichen Tétigkeit fiir die Firmen www.IT-Visions.de (Beratung, Schulung,
Support) und MAXIMAGO GmbH (Softwareentwicklung, siche www. MAXIMAGO.de) gerne zur
Verfiigung. Bitte wenden Sie sich fiir ein Angebot an das jeweilige Kundenteam. Bitte kontaktieren
Sie die Firmen aber nicht fiir Feedback und Verbesserungsvorschlidge zu diesem Buch, da dieses
Buch reine Privatsache ist.

Auf der von mir ehrenamtlich betriebenen Leser-Website unter www.IT-Visions.de/Leser, konnen
Sie die Beispiele zu diesem Buch herunterladen. Dort miissen Sie sich registrieren. Bei der
Registrierung wird ein Losungswort abgefragt. Bitte geben Sie dort bei der Registrierung das
Losungswort Sloborn ein.

Herzliche Griifle aus Essen, dem Herzen der Metropole Ruhrgebiet

Holger Schwichtenberg

http://www.dotnet-doktor.de/Leserfeedback
http://www.it-visions.de/
http://www.it-visions.de/Leser

Uber den Autor

15

4 Uber den Autor

Studienabschluss Diplom-Wirtschaftsinformatik an der Universitit Essen

Promotion an der Universitit Essen im Fachgebiet komponentenbasierter
Softwareentwicklung

Seit 1996 selbststindig als unabhéngiger Berater, Dozent, Softwarearchitekt und
Fachjournalist

Fachlicher Leiter des Expertenteams bei www./T-Visions.de in Essen

Chief Technology Expert (CTE) der Softwareentwicklung bei der MAXIMAGO
GmbH in Dortmund (Wwww.MAXIMAGO.de)

Uber 80 Fachbiicher beim Carl Hanser Verlag, bei O'Reilly, Microsoft Press,
APress und Addison-Wesley sowie mehr als 1300 Beitrdge in Fachzeitschriften
Gutachter in den Wettbewerbsverfahren der EU gegen Microsoft (2006-2009)

Stindiger Mitarbeiter der Zeitschriften iX (seit 1999), dotnetpro (seit 2000) und
Windows Developer (seit 2010) sowie beim Online-Portal heise.de (seit 2008)

RegelméBiger Sprecher auf nationalen und internationalen Fachkonferenzen (z.B.
BASTA!, enter]S, Microsoft TechEd, Microsoft Summit, Microsoft IT Forum,

/m'.l?-visions.d;
slons.ce -

Dr. Holger Schwichtenberg

©

MAXIMAGO

OOP, IT Tage, .NET Architecture Camp, Advanced Developers Conference, Developer Week, DOTNET
Cologne, MD DevDays, Community in Motion, DOTNET-Konferenz, VS One, NRW.Conf, Net.Object

Days, Windows Forum, Container Conf)
Zertifikate und Auszeichnungen von Microsoft:

o Microsoft Most Valuable Professional (MVP), kontinuierlich ausgezeichnet seit 2004

o Microsoft Certified Solution Developer (MCSD)
Thematische Schwerpunkte:

o Softwarearchitektur, mehrschichtige Softwareentwicklung, Softwarekomponenten

o Visual Studio, Continous Integration (CI) und Continous Delivery (CD) mit Azure DevOps

o Microsoft NET (.NET Framework, .NET Core), C#, Visual Basic

o .NET-Architektur/Auswahl von .NET-Techniken

o Einfiihrung von .NET und Visual Studio/Migration auf .NET

o Webanwendungsentwicklung und Cross-Plattform-Anwendungen mit HTML, ASP.NET (Core),
JavaScript/TypeScript und Webframeworks wie Angular, Vue.js und Blazor

o Enterprise .NET, verteilte Systeme/Webservices mit .NET, insbesondere WebAPI, gRPC und WCF
Relationale Datenbanken, XML, Datenzugriffsstrategien

o Objekt-Relationales Mapping (ORM), insbesondere ADO.NET Entity Framework und Entity
Framework Core

o PowerShell = Kontakt fiir Anfragen zu

o Architektur- und Code-Reviews Schulung und Beratung:

o Performance-Analysen und -Optimierung kundenteam@IT-Visions.de

o Entwicklungsrichtlinien

Ehrenamtliche Community-Tétigkeiten:

Telefon 0201 / 64 95 90 - 50

= Kontakt fiir Anfragen zu
Softwareentwicklungsprojekten:

o Vortragender fiir die International NET Association hsc@MAXIMAGO.de

(INETA) und .NET Foundation
o Betrieb diverser Community-Websites:

Telefon 0231 /58 69 67 - 12

www.dotnet-lexikon.de, www.dotnetframework.de, = Kontakt fiir Feedback zu diesem
www.windows-scripting.de, www.aspnetdev.de . a. Buch:
Firmenwebsites: www./T-Visions.de und www.MAXIMAGO.de www.dotnet-doktor.de/
Leserfeedback

Weblog: www.dotnet-doktor.de

http://www.it-visions.de/
http://www.it-visions.de/

16 Uber dieses Buch

5 Uber dieses Buch

5.1 Bezugsquelle fiir Aktualisierungen

Sie konnen jederzeit Aktualisierungen des PDF-Buchs (gleiche Hauptversion!) kostenfrei bei
Leanpub.com beziehen.

Kaufer der Kindle- oder Druck-Version konnen die aktuelle PDF-Version zum Preis von 9,99
Dollar (zzgl. 7% Mehrwertsteuer) unter folgender Webadresse beziehen:

https://leanpub.com/CSharp 10/c/Sloborn

Hinweise: Leider erlauben Amazon u.a. Buchhindler aufgrund der Buchpreisbindungsgesetze
in Deutschland den Autoren grundsitzlich nicht, dass Leser eine Aktualisierung im Kindle-
Format oder in gedruckter Form vergiinstigt erhalten.

Bitte beachten Sie auch, dass die ISBN-Regularien erfordern, dass bei einer Titeldnderung bei
neuer Produktversion eine neue ISBN vergeben werden muss und damit auch ein neues
Buchprojekt bei Amazon und Leanpub.com erstellt werden muss.

5.2 Versionsgeschichte dieses Buchs

Die Versionsgeschichte dieses Buch finden Sie in einem eigenen Kapitel am Ende des Buchs.

Hinweis: Die Versionsgeschichte ist eine wichtige Referenz fiir die Leser, die sich aktuelle
Versionen des Buchs beschaffen (z.B. tiber Leanpub.com) und wissen wollen, was sich gedndert
hat. Wenn Sie das Buch erstmalig lesen, miissen Sie die Versionsgeschichte nicht lesen.

5.3 Hinweise zur Breite und Tiefe dieses Buch - Sie
haben Einfluss!

Ein Fachbuch, das ein riesengroBes Themengebiet wie C# behandelt, kann nicht jedes Teilgebiet
und jeden Aspekt der Programmiersprache behandeln, zumindest nicht in gleicher Tiefe. Dann
wiirde solch ein Fachbuch iiber eintausend Seiten, in einigen Féllen sogar mehrere tausend Seiten
umfassen.

Ich denke, dass ich nach aktuellem Stand der Technik und meinem Wissenstand etwa 1000 zur C#-
Syntax und -Tools sowie 3000 Seiten zu den C#-Bibliotheken schreiben konnte. Wiirden Sie so
ein dickes (und entsprechend teures) Buch kaufen und lesen wollen?

Wie jeder Fachautor lese auch ich immer wieder Kritik, dass ein(e) Leser*in ein bestimmtes Thema
nicht oder nicht in ausreichender Tiefe behandelt sei in dem Buch. Das ist aus der Sicht der
einzelnen Leser*in sicherlich gerechtfertigt, aber wie jeder Fachautor muss ich eben zwingend eine
Auswahl der Themen treffen. Gerne dokumentiere ich hier, wie ich personlich diese Auswahl fiir
meine Biicher treffe:

= Jch behandele im Buch die Themen, die wir in unserer Firma selbst in der Praxis brauchen.

= Ich behandele zusitzlich die Themen, die unsere Kunden in Beratungsgesprichen behandelt
haben mdchten.

Folglich sind die Themen, die ich im Buch nicht oder nur kurz behandele fiir uns und unsere
Kunden nicht relevant bzw. so selbsterklarend, dass es keine Fragen dazu gibt.

Uber dieses Buch 17

Natiirlich kann das fiir Sie anders sein. Sie konnen mir immer gerne schreiben, wenn Sie ein Thema
im Buch behandelt haben mochten. Ich sammele diese Anregungen und wenn es mehrere
Zuschriften zu einem Thema gibt, dann kommt das Thema auf weit oben auf die Priorititenliste.
Ich denke, das ist ein faires Verfahren.

5.4 Geplante Themen

Folgende Themen sind fiir kommenden Ausgaben dieses Buchs geplant:
= Aliase fiir referenzierte Assemblies

= (Clean Code-Programmierung mit C#

= Covariant Return Types (seit C# 9.0)

= Design Pattern in C#

= Dekompilierung mit ILSpy

= Extension Method GetEnumerator() (seit C# 9.0)

= Implicit Cast Operator [docs.microsoft.com/de-de/dotnet/csharp/language-
reference/keywords/implicit|

= Inkrementelle Source-Generatoren (seit C# 10)

= Nullable-Annotationen wie [AllowNull], [DisallowNull], [return: NotNulllfNotNull("xy")],
[DoesNotReturn], [return: MaybeNull], MaybeNullWhen(bool), NotNullWhen(bool)

= Span<T>/Memory<T> (seit C# 7.2)
= Statische Codeanalyse
= Strukturen auf dem Stack (ref struct) seit C# 7.2

= Unmanaged Constructed Types (seit C# 8.0)

5.5 Programmcodebeispiele zu diesem Buch

Die Programmcodebeispiele zu diesem Buch konnen Sie auf der auf der von mir ehrenamtlich
betriebenen Leserwebsite www.[T-Visions.de/Leser herunterladen. Dort miissen Sie sich
registrieren. Bei der Registrierung wird ein Losungswort abgefragt. Bitte geben Sie dort das
Losungswort Sloborn ein.

Alle Programmbeispiele aus diesem Buch sind in einer Visual Studio 2022-Projektmappe mit zwei
Projekten enthalten. Es muss seit C# 8.0 zwei Projekte geben, weil einige Sprachfeatures von C#
8.0 nicht mehr im klassischen .NET Framework laufen und C# seit Version 9.0 gar nicht mehr dort
lauft. Die beiden Projekte enthalten:

= CSharpSprachsyntax NETClassic (.NET Framework 4.8): Alle Sprachfeatures von C# 1.0 bis
7.3 und solche von C# 8.0, die auch auf klassischen .NET Framework laufen

= CSharpSprachsyntax NET (.NET 6.0): Alle Sprachfeatures von C# 8.0, die NICHT auf .NET
Framework laufen sowie alle Sprachfeatures ab C# 9.0

Die Beispiele sind in Unterordnern nach Sprachversionen aufgeteilt. Dies heifit, dass Sie zum
Beispiel Sprachfeatures von C# 9.0 im Ordner CS090 finden bzw. C# 10.0 in CS100.

https://docs.microsoft.com/de-de/dotnet/csharp/language-reference/keywords/implicit
https://docs.microsoft.com/de-de/dotnet/csharp/language-reference/keywords/implicit

18 Uber dieses Buch
Wie im Vorwort bereits erwéhnt handelt es sich um den Anwendungstyp "Konsolenanwendung".
So brauchen Sie als Leser kein Wissen iiber irgendeine GUI-Bibliothek und die Beispiele sind
priagnant fokussiert auf die Syntax. Bitte beachten Sie das nédchste Kapitel zum Hilfsklasse "CUI".

Uber dieses Buch

hid o-96 £={R
Search Solution Explorer [Ctrl+0)
=] ﬁ Solution "CSharpSprachsyntax’ (5 of 5 projects)
b E1 solution Items
b 1 sonstiges
b & [CSharpSourceCodeGenerators
b &8 Dependencies
b &[] Code fir Buchcover
b EJ cs080_Sep2019
4 [CS090_Nov2020
I 8 CH 59 CheatSheet.cs
P 8 C® C59_PartialMethods.cs
b 8 C® 59 PatternMatching.cs
P 8C® CS9 Records.cs
P & CH £S89 Sonstiges.cs
b B3 cs100_Nov2021
b &[] ImmutableObjects
2] S CSharpSprachsyntax_MET.csprajvspsce
b B8CH LiveCoding.cs
b &C# Performance.cs
P B C® Program.cs
FEE] CSharp5prachsyntax_METClassic
[El)' Properties
& References
£ cs-Poster 2015 (zu CS60)
E3 cs10_NET10_2002
£3 csz20 NET20 2005
7 cs30 NET35 2008
3 cs40 NET40 2010
7 csso_nET45_2012
£ cse0_NET46_2015
E3 cs70_NET46_2017
B3 cs71_aAugz0i7
3 cs72_Nov2017
3 cs573_Aug2018
7 csso_sep2019
£/ Objektmodell Fluggesellschaft
£1 objektmadell Uni
£ WeitereBeispiele
&[] .editorconfig
ﬁ{:l App.config
8 C#® GlobalSuppressions.cs
ﬂ{j packages.config
P & C# Program.cs
a8 @ readme. txt
b &[] Hilfsklassen

v v v vV vV vV vV vV vy v v vy vy vy vYv

20 Uber dieses Buch

Abbildung: Programmcodebeispiele zu diesem Buch in zwei Visual Studio-
Konsolenanwendungen (EXE) plus Hilfsbibliotheken (DLLs)

5.6 Hilfsklasse zur Konsolenausgabe (CUI)

Fiir die Bildschirmausgabe an der Konsole wird in diesem Buch oft nicht nur Console. WriteLine()
verwendet, sondern auch Hilfsroutinen kommen zur Anwendung, die farbige Bildschirmausgaben
erzeugen. Diese Hilfsroutinen sind in der Klasse [7Visions.CUI (CUI besteht dabei fiir
Commandline User Interface) implementiert. Diese Klasse ist Teil des NuGet-Pakets
ITV.AppUtil...nupkg, welches bei den herunterladbaren Projekten zu diesem Buch in Form
mitgeliefert und via <packageSource> in der Datei NuGet.config einbezogen wird.

Dies wichtigsten Hilfsroutinen in der Klasse CUI sind im Folgenden zum besseren Verstindnis
abgedruckt.

Listing: Klasse CUI mit Hilfsroutinen fiir die Bildschirmausgabe an der Konsole

using System;

using System.Runtime.InteropServices;
using System.Web;

using ITVisions.UI;

using System.Diagnostics;

namespace ITVisions
{
/// <summary>
/// Helper utilities for console UIs
/// (C) Dr. Holger Schwichtenberg 2002-2018
/// </summary>
public static class CUI
{
public static bool IsDebug = false;
public static bool IsVerbose = false;

#region Print only under certain conditions
public static void PrintDebug (object s)
{

PrintDebug (s, System.Console.ForegroundColor) ;

}

public static void PrintVerbose (object s)
{

PrintVerbose (s, System.Console.ForegroundColor) ;

}

#endregion

#region Issues with predefined colors
public static void MainHeadline (string s)

{

Print (s, ConsoleColor.Black, ConsoleColor.Yellow) ;

}
public static void Headline(string s)

{

Uber dieses Buch

21

Print (s, ConsoleColor.Yellow) ;

}

public static void HeaderFooter (string s)

{

Console.ForegroundColor = ConsoleColor.Green;
Console.WritelLine(s) ;

Console.ForegroundColor = ConsoleColor.Gray;

}

public static void SubHeadline(string s)
{

Print (s, ConsoleColor.White) ;

}

public static void PrintSuccess (object s)

{

Print (s, ConsoleColor.Green) ;

}

public static void H1l (string s)
{

MainHeadline (s) ;

}

public static void H2(string s)
{

Headline(s) ;

}

public static void H3(string s)

{
SubHeadline (s) ;

}

public static void PrintGreen(string s)
{

Print (s, ConsoleColor.Green) ;

}

public static void PrintYellow(string s)
{

Print (s, ConsoleColor.Yellow) ;

}

public static void PrintRed(string s)
{

Print (s, ConsoleColor.Red) ;

}

public static void PrintSuccess (object s)

{

Print (s, ConsoleColor.Green) ;

}

22 Uber dieses Buch

public static void PrintStep (object s)
{

Print (s, ConsoleColor.Cyan) ;

}

public static void PrintDebugSuccess (object s)

{

PrintDebug (s, ConsoleColor.Green) ;

}

public static void PrintVerboseSuccess (object s)

{

PrintVerbose (s, ConsoleColor.Green) ;

}

public static void PrintWarning(object s)
{

Print (s, ConsoleColor.Cyan) ;

}

public static void PrintDebugWarning(object s)
{

PrintDebug (s, ConsoleColor.Cyan) ;

}

public static void PrintVerboseWarning(object s)

{

PrintVerbose (s, ConsoleColor.Cyan);

}

public static void PrintError (object s)

{

Print (s, ConsoleColor.White, ConsoleColor.Red) ;

}

public static void PrintDebugError (object s)

{
PrintDebug (s, ConsoleColor.White, ConsoleColor.Red) ;

}

public static void PrintVerboseError (object s)

{

Print (s, ConsoleColor.White, ConsoleColor.Red) ;

}

public static void Print(object s)
{

PrintInternal (s, null);

}

#endregion

#iregion Print with selectable color

Uber dieses Buch 23

public static void Print(object s, ConsoleColor farbe, ConsoleColor?
hintergrundfarbe = null)
{

PrintInternal (s, farbe, hintergrundfarbe) ;

}

public static void PrintDebug(object s, ConsoleColor farbe, ConsoleColor?
hintergrundfarbe = null)
{
if (IsDebug || IsVerbose) PrintDebugOrVerbose (s, farbe, hintergrundfarbe) ;

}

public static void PrintVerbose (object s, ConsoleColor farbe)
{

if (!'IsVerbose) return;

PrintDebugOrVerbose (s, farbe) ;

}

#endregion
#region Print with additional data

/// <summary>

/// Print with Thread-ID

/// </summary>

public static void PrintWithThreadID(string s, ConsoleColor c =
ConsoleColor.White)

{

var ausgabe = String.Format("Thread #{0:00} {1:}: {2}",
System.Threading.Thread.CurrentThread.ManagedThreadId,
DateTime.Now.ToLongTimeString (), s);

CUI.Print (ausgabe, c);
}

/// <summary>

/// Print with time

/// </summary>

public static void PrintWithTime (object s, ConsoleColor c = ConsoleColor.White)

{
CUI.Print (DateTime.Now.Second + "." + DateTime.Now.Millisecond + ":" + s);

}

private static long count;
/// <summary>
/// Print with counter
/// </summary>
private static void PrintWithCounter (object s, ConsoleColor farbe,
ConsoleColor? hintergrundfarbe = null)
{
count += 1;
s = $"{count:0000}: {s}";
CUI.Print(s, farbe, hintergrundfarbe) ;
}

24 Uber dieses Buch

#endregion

#region internal helper routines
private static void PrintDebugOrVerbose (object s, ConsoleColor farbe,
ConsoleColor? hintergrundfarbe = null)
{
count += 1;
s = $"{count:0000}: {s}";
Print (s, farbe, hintergrundfarbe) ;
Debug.WriteLine(s) ;
Trace.WriteLine(s) ;
Trace.Flush() ;

/// <summary>

/// Output to console, trace and file

/// </summary>

/// <param name="s"></param>

[DebuggerStepThrough ()]

private static void PrintInternal (object s, ConsoleColor? farbe = null,
ConsoleColor? hintergrundfarbe = null)

{

if (s == null) return;

if (HttpContext.Current != null)
{
try
{
if (farbe '= null)

{
HttpContext.Current.Response.Write ("<span style='color:" +
farbe.Value.DrawingColor () .Name + "'>");

}

if ('HttpContext.Current.Request.Url.ToString() .ToLower () .Contains(".asmx")
&& 'HttpContext.Current.Request.Url.ToString() .ToLower () .Contains(".svc") &&
'HttpContext.Current.Request.Url.ToString () . ToLower () .Contains ("/api/"))
HttpContext.Current.Response.Write(s.ToString() + "
");

if (farbe '= null)
{
HttpContext.Current.Response.Write ("") ;
}
}
catch (Exception)
{
}
}
else
{
object x = 1;
lock (x)
{
ConsoleColor alteFarbe = Console.ForegroundColor;
ConsoleColor alteHFarbe = Console.BackgroundColor;

Uber dieses Buch 25

if (farbe '= null) Console.ForegroundColor = farbe.Value;

if (hintergrundfarbe '= null) Console.BackgroundColor =
hintergrundfarbe.Value;

//if (farbe.ToString().Contains("Dark")) Console.BackgroundColor =
ConsoleColor.White;

//else Console.BackgroundColor = ConsoleColor.Black;

Console.WriteLine (s) ;
Console.ForegroundColor alteFarbe;
Console.BackgroundColor = alteHFarbe;
}

}

}

#endregion

#region Set the position of the console window
[D1lImport ("kernel32.dl1l", ExactSpelling = true)]
private static extern IntPtr GetConsoleWindow() ;
private static IntPtr MyConsole = GetConsoleWindow () ;

[D1lImport("user32.dl1l", EntryPoint = "SetWindowPos")]
public static extern IntPtr SetWindowPos (IntPtr hWnd, int hWndInsertAfter, int
x, int Y, int cx, int cy, int wFlags);

// Set the position of the console window without size
public static void SetConsolePos (int xpos, int ypos)

{

const int SWP_NOSIZE = 0x0001;

SetWindowPos (MyConsole, 0, xpos, ypos, 0, 0, SWP_NOSIZE) ;
}

// Set the position of the console window with size
public static void SetConsolePos (int xpos, int ypos, int w, int h)
{
SetWindowPos (MyConsole, 0, xpos, ypos, w, h, 0);
}
#endregion
}
}

5.7 Qualitatssicherung der Programmcodebeispiele

Ich versichere Thnen, dass die Programmcodebeispiele auf zwei meiner Entwicklungssysteme
kompilierten und liefen, bevor ich sie per Kopieren & Einfligen in das Manuskript zu diesem Buch
iibernommen habe und auf der Leser-Website zum Download verdffentlicht habe.

Dennoch gibt es leider Griinde, warum die Beispiele bei Ihnen als Leser nicht laufen:

= Eine abweichende Systemkonfiguration (in der heutigen komplexen Welt der vielen Varianten
und Versionen von Betriebssystemen und Anwendungen nicht unwahrscheinlich). Es ist
einem Autor nicht moglich, alle Konfigurationen durchzutesten.

26 Uber dieses Buch

» Anderungen, die sich seit der Erstellung der Beispiele ergeben haben (von den vielen Breaking
Changes, die die neueren .NET-Versionen immer wieder durch Microsoft erhalten, konnen
auch Beispiele betroffen sein, was nicht immer leicht zu entdecken ist)

= SchlieBlich sind auch menschliche Fehler des Autors moglich. Bitte bedenken Sie, dass das
Fachbuchschreiben — wie im Vorwort erwéhnt — nur ein Hobby ist. Es gibt nur sehr wenige
Menschen in Deutschland, die hauptberuflich als Fachbuchautor arbeiten und so professionell
Programmcodebeispiele erstellen und testen konnen wie kommerziellen (bezahlten)
Programmcode.

Falls dennoch Beispiele bei Ihnen nicht laufen, kontaktieren Sie mich bitte unter
www.dotnet-doktor.de/Leserfeedback
mit einer sehr genauen Fehlerbeschreibung. Ich bemiihe mich, Thnen binnen zwei Wochen zu

antworten. Im Einzelfall kann es wegen dienstlicher oder privater Abwesenheit aber auch linger
dauern.

5.8 lhre Belohnung, wenn Sie helfen, dieses Buch zu
verbessern!
Wenn Sie Fehler in diesem oder einem anderen selbstverlegten Fachbuch (sieche www./7-

Visions.de/Verlag) finden, bin ich Thnen nicht nur wirklich sehr dankbar, sondern Sie bekommen
auch eine Belohnung in Form von aktualisierten oder weiteren E-Books.

Fehlerart E-Book-Guthaben
Inhaltlicher Fehler Pro Fehler 20 Euro
Sprachlicher Fehler Pro Fehler 4 Euro

Ein Beispiel: Wenn Sie einen inhaltlichen Fehler und fiinf Rechtschreibfehler in diesem Buch
finden, dann haben Sie bei mir 40 Euro gut. Dafiir kdnnen Sie dann eins meiner selbstverlegten
Biicher als E-Book bekommen.

Melden Sie die Fehler bitte per Webformular: www.dotnet-doktor.de/Leserfeedback

Bitte geben Sie dabei unbedingt nicht nur den Namen des Buchs, sondern auch die
Versionsnummer (siehe Impressum) und die genaue Fundstelle (Kapitel, Seitenzahl, Absatz) an.

Schreiben Sie bitte dabei, welches E-Book Sie wiinschen. Das Buch schicke ich Thnen dann per E-
Mail zu.

Tipp: Auch Fehler auf meiner personlichen Website www.dotnet-doktor.de und der
Firmenwebsite www.IT-Visions.de zahlen mit!

Ich freue mich auf Ihre Fehlermeldung!
Holger Schwichtenberg

P.S. Falls Sie Thre Fehlermeldung sich auf eine Ausgabe des Buchs bezieht, die <er als ein Jahr
ist und der Fehler in der aktuellsten Ausgabe schon behoben ist, dann zéhlt das leider nicht.

http://www.dotnet-doktor.de/Leserfeedback
http://www.it-visions.de/Verlag
http://www.it-visions.de/Verlag
http://www.dotnet-doktor.de/Leserfeedback
http://www.dotnet-doktor.de/
http://www.it-visions.de/

Fakten zu C# 27

6 Fakten zu C#
6.1 Der Name C#

C# wird gesprochen ,,C Sharp®. Das # konnte man auch in ein vierfaches Pluszeichen aufspalten
(also C++++, eine Weiterentwicklung von C++). Urspriinglich sollte die Sprache "Cool" heifen.
Eine Zeit lang wurde auch "C# .NET" verwendet; das ist heute aber nicht mehr iiblich. Microsoft
spricht aber gelegentlich noch von "Visual C#", z.B. meldet sich der Kommandozeilencompiler
von C# auch in der aktuellen Version mit "Microsoft (R) Visual C# Compiler".

6.2 Urspriinge von C#

C# ist das Ergebnis eines Projektes bei Microsoft, welches im Dezember 1998 gestartet wurde,
nachdem die Firma Sun Microsoft die Verdnderung der von Sun entwickelten Programmiersprache
Java verboten hatte. Vater von C# ist Anders Hejlsberg [de.wikipedia.org/wiki/Anders Hejlsberg],
der zuvor auch Turbo Pascal und Borland Delphi erschaffen hat. Er war frither bei Borland und
arbeitet seit 1996 bei Microsoft. Heutzutage ist er auch verantwortlich fiir die Sprache TypeScript.

6.3 .NET als Basis fiir C#

Die Programmiersprache C# ist sehr eng verbunden mit der Softwareentwicklungsplattform
Microsoft .NET. C#-Programmcode lduft immer auf Basis einer .NET-Laufzeitumgebung und
benoétigt Klassen aus der .NET-Basisklassenbibliothek. So besitzt C# selbst keine Datentypen: Alle
Datentypen, die man in C# verwendet, z.B. string, sind in Wirklichkeit Klassen aus der .NET-
Basisklassenbibliothek (string = System.String). Auch andere Sprachkonstrukte in C# basieren
auf Schnittstellen und Klassen der .NET-Basisklassenbibliothek, z.B. foreach(...) { ... } basiert
auf der Schnittstelle System.Collections.IEnumerable und await foreach(...) { ... } basiert auf
System.Collections.Generic.IAsyncEnumerable<T>.

Im Laufe der Geschichte von .NET (seit dem Jahr 2001) gab es zahlreiche Implementierungen von
NET (.NET Framework, Mono, .NET Compact Framework, .NET Framework Client Profile,
NET Micro Framework, Silverlight, XNA, .NET Profile fiir Windows Runtime, .NET Core,
Universal Windows Platform). Derzeit sind noch in signifikantem Umfang in Einsatz:

= NET Framework

= NET Core

= Universal Windows Platform (UWP)
= Mono/Xamarin

= NET ab Version 5.0

Hinweis: Mit NET 6.0 fiihrt Microsoft diese Implementierungen zu einer einheitlichen
Plattform zusammen. Alle anderen Implementierungen werden nicht mehr entwickelt.

Zumindest das ".NET Framework" wird aber noch viele Jahre eine Bedeutung im Markt haben,

weil Microsoft dafiir zumindest noch Updates im Bereich Fehlerbehebung, Zuverléssigkeit und
Sicherheit liefert. Fiir alle anderen Implementierungen wird auch dieser Support bald enden.

https://de.wikipedia.org/wiki/Anders_Hejlsberg

28 Fakten zu C#

Die .NET-Familie 2021/2022

© Dr. Holger Schwichtenberg, www.IT-Visions.de, Stand 09.11.2021

C# 7.x + Teile von C# 8. 0/9 0/10.0 Alle Sprachfeatures von C# 10
nur ASP.NET Core 5.0 Konsole WPF & NET Blazor
vLx+ Windows Web-
v2.x auch (MVC, Razor Pages, Windows Forms Windows .NET for .NET for Assembly
auf SignalR, WebAPI, Services/ (.NET Core ul Android i0S/mac0s
JNET “Full” 8RPC, Blazor Server) Linux Desktop Library 3
Framework Daemons Runtime) (Winui3)

nur Entity Framework Core 1.x, 2.x, 3.1 Entity Framework Core 1.x bis 6.0

nurvi.x+ .NET Standard Library 2.1 (System.*, Microsoft.*)
v2.0 Math Collections Data 10 XML LINQ ization Security Threading Text TCP/IP ..

Windows Compatibility Pack (System.*, Microsoft.*)
Registry | ODBC Drawing LDAP WMI CodeDOM Caching WCF-Client ...

.NET 6.0-spezifische Klassen (Microsoft.Extensions.*)

Configuration Logging DI Caching Hosting Options ...

.NET Framework 4.8 .NET Core Runtime in .NET 6.0 Mono Runtime in .NET 6
19.04.2019 09.11.2021 09.11.2021
- Windows, Linux, macOS, Tizen Windows Windows 10 Android ios Browser
- Windows ab7 in allen Varianten
2 g‘-] ul - ‘ €Ce
« L . L oe

Abbildung: Die NET-Familie mit NET Framework 4.8 und .NET 6.0

6.4 Status der Programmiersprache C#

Frither gab es einen wahren Glaubenskrieg in der .NET-Entwicklergemeinde um die Wahl der
»richtigen« Programmiersprache. C# oder Visual Basic .NET hie die Frage, die viele
Projektteams bewegt hat. Auch wenn Visual Basic .NET in allen wesentlichen Punkten syntaktisch
ebenbiirtig war, hat C# klar gewonnen.

C# ist heute nicht nur eine von vielen Programmiersprachen fiir .NET, es hat sich durchgesetzt als
DIE Programmiersprache fiir .NET. Gegenwirtig gibt es nur noch wenige .NET-Projekte, die
Visual Basic .NET, F# oder C++/CLI oder exotischere Sprachen verwenden.

Schaut man in die aktuelle Dokumentation der .NET-Klassen auf docs.microsofi.com, sieht man
dort nur noch Beispiele fiir C#, wihrend die alte MSDN-Dokumentation noch Beispiele in C#,
Visual Basic .NET, und C++ enthielt.

Fakten zu C#

29

8% NET AP| Browser | Micre X/ (_

e

Abbildung: Beispiele in vier Sprachen in der alten MSDN-Dokumentation der .NET-Klassen

e

v

Process Class (System.Di: X

X | @ Sicher | https;//msdn.microsoft.com/library/system.diagnostics.pracess(v=vs.110).aspx?cs-save-lang=18cs-lang=csharp#code-snippet-1

€

VLT FISITEWUTR Cldss LIDTary

PerformanceCounterType
Enumeration

PresentationTracelevel
Enumeration

PresentationTraceSources Class

Process Class
» Process Methods
» Process Properties
» Process Events
Process Constructor
ProcessModule Class

ProcessModuleCollection Class

ProcessPriorityClass Enumeration

ProcessStartinfo Class

ProcessThread Class

ProcessThreadCollection Class

ProcessWindowStyle Enumeration

SourceFilter Class

Sourcelevels Enumeration

SourceSwitch Class

StackFrame Class

& YSIENLUIGYTIUSLILS NdITEspidues ~

.NET Framework (current version)

SYSENLUIGYIIUSLILS =

Process Class

Other Versions «

System_CAPS_note Note

The .NET APl Reference documentation has a new home, Visit the .NET APl Browser on
docs.microsoft.com to see the new experience.

Provides access te local and remote processes and enables you to start and stop local systam
processes.

To browse the .NET Framework source code for this type, see the Reference Source.

Namespace: System.Diagnostics
Assembly: System (in System.dll)

Inheritance Hierarchy

System.Object
System.MarshalByRefObject
System.ComponentModel.Compeonent
System.Diagnostics.Process

Syntax

|C#‘C++|F£|VB|

[PermissionSetAttribute(SecurityAction.LinkDemand, Wame = “"FullTrust™)]
[HostProtectionAttribute(Securityaction. LinkDemand, SharedState = trus,

Synchronization = true, ExternalProcessMgmt = true, SelfAffecting
[PermissionSetAttribute(SecurityAction.InheritanceDemand, MName = "FullTri

public class Process : Component

4

30 Fakten zu C#

B2 Process Class (SystemDi- X

&« C' | @ sicher | https;//docs.microsoft.com/en-us/dotnet/api/system.diagnostics ew=netframework-4.7.1
= Microsoft Technologies Documentation ~ Resources ~
NET APIs .NET Core .NET Framework ASP.NET Xamarin Azure

Docs / .NET / .NET API Browser / System.Diagnostics / Process

NET Framework 471+ Process C|aSS

Search Namespace: System.Diagnostics

Assemblies: System.Diagnostics.Process.dll, System.dll, netstandard.dll

PerformanceCounter

! Provides access to local and remote processes and enables you to start and stop local system processes.
PermissionAttribute

PerformanceCounter c#

PermissionEntry

PerformanceCounter public class Process : System.ComponentModel.Component
PermissionEntryCollection

PerformanceCounterType) . .
Inheritance Object > MarshalByRefObject -» Component -> Process
PresentationTracelevel

PresentationTraceSources

Examples

Constructors)
The following example uses an instance of the Process class to start a process.

> Properties
> Methods c#

> Events
using System;

> ProcessModule using System.Diagnostics;

> ProcessModuleCollection U=nepsysteatlonnonentiodel;

ProcessPriorityClass namespace MyProcessSample

{

> ProcessStartinfo

Abbildung: In der neuen .NET-Klassendokumentation gibt es nur noch Beispiele in C#

6.5 Versionsgeschichte

Hinsichtlich der Versionsnummern der Sprache C# herrschte frither etwas Verwirrung. Es gab
einerseits eine offizielle Zdhlung mit Versionsnummer (parallel zum .NET Framework),
andererseits mit Jahreszahlen (parallel zu Visual Studio). Intern wird eine dritte Z&hlung fiir den
Compiler verwendet. Die erste Version von C# im Rahmen des .NET Framework 1.0 trug intern
die Versionsnummer 7.0. Zu .NET 1.1 gab es dann C# 7.1, im .NET Framework 2.0 und 3.0 meldet
sich der C#-Compiler mit Version 8.0. Ab .NET Framework 3.5 hat Microsoft dies aber bereinigt.
Dort meldet sich der Compiler nun auch mit Version 3.5.

Die folgende Liste dokumentiert die Versionsgeschichte von C# einschlieflich der verschiedenen
Namen, die es jeweils gibt.

= C# 1.0 ist erschienen am 05.01.2002 (in Visual Studio.NET 2002+2003 / .NET Framework
1.0 und 1.1. Erste Version des ISO-Standards fiir C#.)

= C#2.0 isterschienen am 07.11.2005 (C# 2005 / in Visual Studio.NET 2005 / NET Framework
2.0 und 3.0. Zweite Version des ISO-Standards fiir C#.)

= C#3.0 isterschienen am 15.08.2008 (C# 2008 / in Visual Studio.NET 2008 / NET Framework
3.5)

= C#4.0isterschienen am 12.04.2010 (C# 2010/ in Visual Studio.NET 2010/ .NET Framework
4.0)

= C#5.0isterschienen am 12.08.2012 (C# 2012/ in Visual Studio.NET 2012 / NET Framework
4.5)

Fakten zu C#

C# 6.0 ist erschienen am 20.07.2015 (C# 2015 / in Visual Studio.NET 2015 / .NET Framework

4.6)

C# 7.0 ist erschienen am 05.03.2017 (C# 2017 / in Visual Studio 2017 v15.0)
C# 7.1 ist erschienen am 14.08.2017 (in Visual Studio 2017 v15.3)
C# 7.2 ist erschienen am 15.11.2017 (in Visual Studio 2017 v15.5)
C# 7.3 ist erschienen am 02.08.2018 (in Visual Studio 2017 v15.7)
C# 8.0 ist erschienen am 23.09.2019 (in Visual Studio 2019 v16.3)
C# 9.0 ist erschienen am 10.11.2020 (in Visual Studio 2019 v16.8)
C# 10.0 ist erschienen am 8.11.2021 (in Visual Studio 2022, v17.0)

Version der

Sprachsyntax mit

Ausgeliefert mit

Version der
Sprachsyntax

Interne
Versionsnummer des

Versionsnummer mit Jahreszahl C#-Compilers

C#1.0 NET Framework 1.0 | Visual C# 2002 7.0 (alter Compiler)

C#1.1 NET Framework 1.1 | Visual C# 2003 7.1 (alter Compiler)

C#2.0 NET Framework 2.0 | Visual C# 2005 8.0 (alter Compiler)

C#2.0 NET Framework 3.0 | Visual C# 2005 8.0 (alter Compiler)

C#3.0 NET Framework 3.5 | Visual C# 2008 3.5 (alter Compiler)

C#4.0 NET Framework 4.0 | Visual C# 2010 4.0 (alter Compiler)

C#5.0 NET Framework 4.5 | Visual C# 2012 4.5 (alter Compiler)

C#6.0 NET Framework 4.6 | Visual C# 2015 1.x (Neuer Compiler)
/ NET Core 1.0

C#7.0 Visual Studio 2017 Visual C# 2017 2.0 (Neuer Compiler)
15.0 / NET Core 2.0

C#7.1 Visual Studio 2017 Visual C# 2017 2.3 (Neuer Compiler)
15.4/ NET Core 2.0

C#17.2 Visual Studio 2017 Visual C# 2017 2.7 (Neuer Compiler)
15.5/ .NET Core 2.0

C#173 Visual Studio 2017 Visual C# 2017 2.8 +2.9+2.10 (Neuer

15.7/ NET Core 2.1

Compiler)

C# 8.0 Preview

Visual Studio 2019
16.0 bis 16.2 / NET
Core 3.0 Preview

Visual C# 2018

3.0 + 3.1 +3.2 (Neuer
Compiler)

C# 8.0 RTM Visual Studio 2019 Visual C# 2018 3.3 bis 3.7 (Neuer
16.3 / NET Core 3.x Compiler)

C#9.0 Visual Studio 2019 Visual C# 2020 ab v3.8 (Neuer
16.8/ NET 5.0 Compiler)

32 Fakten zu C#

Version der Ausgeliefert mit Version der Interne
Sprachsyntax mit Sprachsyntax Versionsnummer des
Versionsnummer mit Jahreszahl C#-Compilers
C#10 Visual Studio 2022 Visual C# 2022 ab v4.0 (Neuer

17.0/ .NET 6.0 Compiler)

Tabelle: Verschiedene Versionsnummernzdihlungen fiir die Sprache C#

6.6 Standardisierung

Microsoft hat einige Teile des .NET Framework unter dem Namen Common Language
Infrastructure (CLI) standardisieren lassen. Die CLI wurde erstmals im Dezember 2001 von der
European Computer Manufacturers Association (ECMA) standardisiert (ECMA-Standard 335,
Arbeitsgruppe TC49 / TG3, frither: TC39 / TG3, siche [ECMAO1]); mit kleinen Anderungen
wurde der Standard im Dezember 2002 von der weltweit wichtigsten
Standardisierungsorganisation, der International Standardization Organization (ISO),
iibernommen als ISO / IEC 23271.

Die Begriffe lauten in den Standards zum Teil allerdings anders als bei Microsoft: Was im .NET
Framework Microsoft Intermediate Language (MSIL) heif3t, entspricht im Standard der Common
Intermediate Language (CIL). Anstelle der Framework Class Library (FCL) spricht man von der
CLI Class Library. Von der Standardisierung ausgenommen sind jedoch z.B. die
Datenbankschnittstelle ADO.NET und die Benutzeroberflichen-Bibliotheken Windows Forms
und ASP.NET Webforms. Auch die neueren .NET-Bibliotheken (WPF, WCF und WF) sind nicht
standardisiert.

Auch die Programmiersprache C# ist von beiden Gremien akzeptiert (ECMA-334 bzw. ISO / IEC
23270). Die Standardisierung bezieht sich aber auf éltere Versionen. Die letzten C#-Versionen hat
Microsoft nicht mehr standardisieren lassen. Die Standardisierung ist im Méarz 2021 auf dem Stand
C# 5.0 [www.ecma-international.org/publications-and-standards/standards/ecma-334/].

https://www.ecma-international.org/publications-and-standards/standards/ecma-334/

Fakten zu C# 33

MICROSOFT VISUAL C# CORRESPONDING ECMA CORRESPONDING I1SO/IEC
VERSION STANDARD STANDARD

va.ao ;CM;\-SS;QO% 1S0/1 ;C ;32?0:;006

V4.0 non; none

V6.0 ;BD_ _ TBD - |

Abbildung: Standard der C#-Standardisierung [Quelle: www.ecma-
international.org/publications-and-standards/standards/ecma-334]

Ein weiterer, von Microsoft initiierter Standard ist von der ECMA im Dezember 2005 unter
ECMA-372 (Arbeitsgruppe TC49 / TGS, frither: TC39 / TG5) verabschiedet worden: C++ / CLI
ist eine Spracherweiterung fiir C++ (ISO / IEC 14882:2003), die eine elegantere Nutzung von C++
auf der CLI-Plattform ermdglicht, als dies bisher mit den Managed Extensions for C++ (alias
Managed C++) moglich war.

6.7 Implementierung des C#-Compilers

Die urspriingliche Version des C#-Compilers (csc.exe) wurde in C++ implementiert. Auch der C#-
Compiler im Mono-Projekt ist in C++ geschrieben.

Mit dem Projekt "Roslyn" (alias: NET Compiler Platform) hat Microsoft selbst den Compiler neu
in C# implementiert. Die erste Version des neuen Compilers war C# 6.0.

6.8 Open Source

Bereits zu C# 1.0 gab es eine quelloffene Version im Projekt "Rotor" im Rahmen der
Standardisierung von C#. Diese war jedoch nicht "Open Source", sondern nur "Shared Source",
d.h. der Quellcode durfte betrachtet, aber nicht weiterverwendet werden. Seit C# 6.0 ist der neue
Compiler im Rahmen der .NET Compiler Platform "Roslyn" ein Open Source-Projekt auf Github.

Projekt fiir das Design der Programmiersprache:
github.com/dotnet/csharplang
Projekt fiir die Implementierung der Programmiersprache:

github.com/dotnet/roslyn

https://github.com/dotnet/csharplang
https://github.com/dotnet/roslyn

34 Fakten zu C#

6.9 Paritat und Co-Evolution mit Visual Basic .NET

Im Jahr 2010 hatte Microsoft verkiindet, die Programmiersprache C# und Visual Basic .NET
hinsichtlich ihrer Funktionalitit anzugleichen. »Die Sprachen sollen sich in Stil und Gefiihl
unterscheiden, nicht in ihrem Funktionsumfang«, schrieb Mads Torgersen, Produktmanager fiir C#
damals. Scott Wiltamuth fiihrt den Begriff "Co-Evolution" ein
[blogs.msdn.microsoft.com/scottwil/2010/03/09/vb-and-c-coevolution].

Einige Jahre hat Microsoft diese Strategie tatsdchlich umgesetzt und bestehende Sprachfeatures,
die nur eine Sprache hatte, in der anderen Sprache nachgeriistet und neue Sprachfeatures
gleichzeitig oder zumindest zeitnah in beiden Sprachen verdffentlicht.

Im Jahr 2017 hat Microsoft sich von Paritit und Co-Evolution wieder verabschiedet. Die parallel
zu C# 7.0 erschienene Version 15 von Visual Basic .NET bietet daher lediglich Tupel und binére
Literale als neue Sprachfeatures an. Zudem kann Visual Basic .NET 15 C#-Methoden nutzen, die
Zeiger mit ref liefern, selbst aber solche Methoden nicht implementieren.

Im Mirz 2020 hat Microsoft verkiindet, die Programmiersprache Visual Basic .NET hinsichtlich
der Syntax nicht mehr weiter zu entwickeln, die die Sprache aber zumindest bei einigen
Projektarten in .NET weiterhin zu unterstiitzen [devblogs.microsoft.com/vbteam/visual-basic-in-
net-core-3-0/]. Zentrale Aussagen darin waren:

= "Going forward, we do not plan to evolve Visual Basic as a language."

= "Future features of .NET Core that require language changes may not be supported in Visual
Basic. "

= "Due to differences in the platform, there will be some differences between Visual Basic on
.NET Framework and .NET Core."

Visual Basic .NET ist dennoch nach C# weiterhin die zweitwichtigste Programmiersprache in
der .NET-Welt. Telemetriedaten [blogs.msdn.microsoft.com/dotnet/2017/02/01/the-net-
language-strategy] von Microsoft zeigen einerseits, dass Visual Basic .NET hauptséchlich zur
Programmierung mit <eren .NET-Techniken wie Windows Forms und ASP.NET Webforms
zum Einsatz kommt. Andererseits beginnen viele neue .NET-Entwickler mit Visual Basic .NET,
bevor sie sich an C# herantrauen.

6.10 Popularitat von C#

Fiir die Beliebtheit von Programmiersprachen gibt es verschiedene Erhebungen. Sehr beliebt ist
der Tiobe Index [www.tiobe.com/tiobe-index], der monatlich durch eine Auswertung von
Internetseiten ermittelt wird. Hier liegt C# in der Regel in der Mitte der Top 10, hinter Java, C,
C++ und Python. Knapp hinter C# liegt Visual Basic .NET.

https://blogs.msdn.microsoft.com/scottwil/2010/03/09/vb-and-c-coevolution
https://devblogs.microsoft.com/vbteam/visual-basic-in-net-core-3-0/
https://devblogs.microsoft.com/vbteam/visual-basic-in-net-core-3-0/
https://blogs.msdn.microsoft.com/dotnet/2017/02/01/the-net-language-strategy
https://blogs.msdn.microsoft.com/dotnet/2017/02/01/the-net-language-strategy
https://www.tiobe.com/tiobe-index/

Fakten zu C#

35

Oct 2021

20

Abbildung: Beliebtheit der Programmiersprachen (Quelle: www.tiobe.com/tiobe-index)

Oct 2020

22

Change

»

»

«

»

&

Programming Language

a,

Js

' 0O

§

QOO0 291 ¢

Python

C#

Visual Basic

JavaScript

SaL

PHP

Assembly language

Classic Visual Basic

Go

MATLAB

Groovy

Ruby

Swift

Fortran

Perl

Delphi/Object Pascal

Ratings

11.27%

11.16%

10.46%

7.50%

5.26%

5.24%

2.19%

217%

2.10%

2.06%

1.83%

1.28%

1.20%

1.20%

1.18%

1.12%

1.11%

1.08%

0.93%

0.93%

Change

-0.00%

-5.79%

-2.11%

+0.57%

+1.10%

+1.27%

+0.05%

+0.61%

+0.01%

+0.99%

+1.06%

+0.13%

+0.08%

-0.79%

-0.05%

-0.05%

+0.02%

+0.70%

-0.49%

+0.22%

https://www.tiobe.com/tiobe-index/

36 Fakten zu C#

TIOBE Programming Community Index

Source: www.tiobe.com

25

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Python == (C Java C++ (:‘n:? == Visual Basic JavaScript == SQL == PHP Assembly language
J

Abbildung: Beliebtheit von C# von 2002 bis 2021 (Quelle: www.tiobe.com/tiobe-index)

Das Ranking der IEEE (Institute of Electrical and Electronics Engineers) basiert auf der
Auswertung mehrerer Datenquellen (CareerBuilder, GitHub, Google, Hacker News, IEEE, Reddit,
Stack Overflow und Twitter).

Rank Language Tyoe Score.

n Pythonv ® D @ 1000
n Javav ® 0 O 95.4
n Cv 0 Q @& 947
n Ciiv 00O @ s24
n JavaScriptv -] 881
n cHe ® 0 O ® 824
Rv [m} 817
n Gov ® (] 777
H HTML (-] 75.4
n Swiftv o Q 70.4
n Arduino- @ 68.4

n Matlab~ [m] 68.3
n PHP 2] 68.0
n Dartv @ 0 67.7
ﬂ SQLv [m] 65.0

Abbildung: IEEE Ranking 2021 [spectrum.ieee.org/top-programming-languages/#toggle-gdpr]

https://www.tiobe.com/tiobe-index/
https://spectrum.ieee.org/top-programming-languages/%23toggle-gdpr

Fakten zu C#

Beim IEEE-Ranking kann man nach Einsatzgebieten filtern. C# liegt so:

Auch das IT-Marktforschungsunternehmen RedMonk liefert ein Programmiersprachenranking
basierend auf GitHub und Stackoverflow.com. C# liegt dort zusammen mit C++ und CSS auf Platz

Web: Platz 4 hinter Python, Java und JavaScript
Enterprise: Platz 5 hinter Python, Java, C und C++
Mobile: Platz 4 hinter Java, C und C++
Embedded: Platz 4 hinter Python, C und C++
Alle: Platz 6

5. Davor sind JavaScript, Python, Java und PHP.

38 Fakten zu C#

RedMonk Q321 Programming Language Rankings

100 -

aScript
R
VBA
Visual Basic
Matlab Shell
Kotlin Go
: ; it Assembly Has
. GCC Machine Description Groovy
& Lua Rust
= Arduino = Clojure
5 Cuda ColdFusion
= - ASP FOR
2 QML Erlang CoffeeScript
by ActionScript 9 e
é GLSL Scheme J
2 Tel oCaml
0 5 Processing
x " RobotFramework VHDlg,
2 ckelyarilog S
o Mathematica P Y
5 - URERYcs Lisp
= Freel Ss
= MaERhverilog
g Solidity o
< Coq Pascal
2 Standard ML (b RS
2 WebAssembly kU
a Haxgmalltalk
g ioci SaltStack 8
26 - Objective-C++ BitBake
Modelica Gherkin
PostScript Vala
Stylus Crystal Nix
PureScript .
Reason Nim :
Ballerina Chapel GDScript
Hack
HCL
Jsonnet ShaderLab
Sy Vim script
ar
0- $h Text Format Roff
6 Z’ﬁ E.IZ' T‘G T[’IIJ

Popularity Rank on GitHub (by # of Projects)

Abbildung: Programmiersprachen-Ranking von RedMonk, drittes Quartal 2021: Diagramm
korreliert GitHub-Pull-Requests (x-Achse) zum Rang bei Stack Overflow (v-Achse)
[redmonk.com/sogrady/2021/08/05/language-rankings-6-21]

Fakten zu C# 39

RedMonk Language Rankings

September 2012 - June 2021

]

[

-

&

o

Abbildung: Jahresauswertungen von RedMonk 2012 bis 2021
[redmonk.com/sogrady/2021/08/05/language-rankings-6-21/]

Eine weitere viel beachtete Statistik ist die jahrliche Umfrage von Stackoverflow.com. In der
Jahresumfrage 2020 (2019, 2018) war C#

= Auf Platz 7 (7, 8) der am meisten eingesetzten Programmiersprachen mit 31,4 % (31,9%,
35,35%)

= AufPlatz 8 (10, 8) der beliebtesten Programmiersprachen mit 59,7% (67,0%, 60,4%)

= AufPlatz 18 (in 2019 und 2020) in der Liste der 25 gefiirchtetsten Programmiersprachen (nicht
unter den Top 25 in 2018)

40 Fakten zu C#

Most Loved, Dreaded, and Wanted Languages Most Loved, Dreaded, and Wanted Languages.

Programming, Scripting, and Markup Languages

[P

. . R —
R Rt T [T
e r— I
€35 B Prion CofeeSarpt B2.7%
I T AT o
Jw 5N o -
I PR Jr——
PR P [
o s o s
e roan
L Cows s3E
< am [—— e
s s LR ———
s g ¢ am
- R p——
pr——— s mm e
- ol S35 [—
—— . P
— F— [oa—
R oA LT Ruby 268
e L. " ae
i amm e P
. ars o Jra—
Goy 455 [[
sab asn e e _—
[— A

Pt a2

Abbildung: C# in der Jahresumfrage 2018 von stackoverflow.com
[insights.stackoverflow.com/survey/2018]

Programming, Scripting, and Markup Languages

MRaspondas Profossional Davciopers

Lood | Drended eniod

Most Loved, Dreaded, and Wanted Languages

Most Loved, Dreaded, and Wanted Languages

Loved Orssed wanted

JaveSoript 66.7% Ret 835% I
s s I s 131 Copahe s 607% E——
e o E— Trpsgeis TL1% E—— ey]
Py 3045 EE— ot 720% E—— e EE—
Java 382% enassomtey 690.5% PHE 542
BusnShelPoweeShet 37.9% eit 652% I B —
2 o Clrs 613% Ll —
pre 20 E— e o E— A E—
Tpesa 215% EE— O — o s EE—
Cor 204v NS co 5 dra sern
e v m— et o6, sl a7 EE—
Ry oo O 66, I ErShtPounhel 05—
G o EEE oL suin E— Fr o
sen cre [PP r— WIS 17—
o 64% o T E— s e EE—
A s mm P a3 E—
- el 3 E— s 3125 E—
Chipcties 5% HH e S E— Cs 1 EEEEE—
e] G s, — G v EE—
s 4% W o E— e 1. —
R 1 W Ry 50— Cicers 317, E—
[ERTN Ern 4145, — o 00—
EEREN | P L — ensaseny 0. NS
Copae 155 1 ¢ oo EE— Ko 21,45, E—
——— | Aoy 358% L —

Abbildung: C# in der Jahresumfrage 2019 von stackoverflow.com
[insights.stackoverflow.com/survey/2019]

Fakten zu C# 41

]

5
5

»

==‘
EI]
3

B oA og
LI 1

5
s 3§

E
3

5
]

B

I
¥
H

1
3%

%y
L]
,II

Abbildung: C# in der Jahresumfrage 2020 von stackoverflow.com
[insights.stackoverflow.com/survey/2020]

6.11 Editoren fur C#

Microsoft liefert fiir C# selbst drei Editoren:

= Visual Studio: nur fiir Windows. Kostenfreie Community-Version nur fiir Open Source-
Projekte, Freiberufler und kleine Unternehmen.
visualstudio.microsoft.com/de/downloads

= Visual Studio for Mac: kostenfrei (Nachfolger des fritheren Xamarin Studio)
visualstudio.microsoft.com/de/vs/mac

= Visual Studio Code: kostenfrei fiir Windows, macOS und Linux.

code.visualstudio.com

CH+#-Erweiterungen muss installiert sein! Diese beinhaltet aber nicht alle Werkzeuge aus de,
groflen Visual Studio, z.B. keine grafischen UI-Designer
marketplace.visualstudio.com/items?item Name=ms-dotnettools.csharp

Zudem liefert Microsoft mit OmniSharp [www.omnisharp.net] eine Basis filir die Integration in
anderen (plattformneutrale) Editoren wie ATOM, Brackets, Emacs, Sublime und Vim (siche
Abbildung). Hier wird nicht nur Syntax-Farbeinfidrbung, sondern auch Eingabeunterstiitzung
(IntelliSense) angeboten. Auch die Visual Studio Code-Erweiterung fiir C# basiert auf OmniSharp.

https://visualstudio.microsoft.com/de/downloads
https://visualstudio.microsoft.com/de/vs/mac/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-dotnettools.csharp
http://www.omnisharp.net/

42 Fakten zu C#

ABOUT INTEGRATIONS TEAM

HERE'S HOW YOU CAN TOO

Es gibt weitere einfache Editoren, die fiir die C#-Syntax nur Einfdrbung, aber keine
Eingabeunterstiitzung bieten.

Einen weiteren professionellen C#-Editor mit viele Eingabeunterstiitzung und Refactoring-
Funktionen liefert die Firma JetBrains mit ihrem Produkt "Rider" (kostenpflichtig,
www.jetbrains.com/rider).

6.12 Neuerungen in C#9.0

Dieses Kapitel bleibt auch in der C# 10-Version des Buchs erhalten, weil viele Unternehmen
erst jetzt vom klassisches .NET Framework mit C# 8 auf die moderne .NET-Welt mit C# 10
umsteigen und daher die Neuerungen in C# 9.0 erst jetzt nutzen konnen.

Die fertige Version von C# 9.0 ist am 10.11.2020 im Rahmen von .NET 5.0 und Visual Studio
2019 v16.8 erschienen.

Hinweise: C# 9.0 wird offiziell von Microsoft nur ab .NET 5.0 unterstiitzt ("C# 9.0 is supported
only on .NET 5 and newer versions." [docs.microsoft.com/en-us/dotnet/csharp/language-
reference/configure-language-version]. Man kann allerdings die meisten (aber nicht alle!) C#
9.0-Sprachfeatures auch in .NET Core, .NET Framework und Xamarin nutzen. Dazu muss man
die <LangVersion> in der Projektdatei erhohen. Dies wird im Kapitel "Erste C#-
Schritte/Festlegen der Compilerversion" beschrieben.

Notwendige Visual Studio-Version fiir C# 9.0 ist Visual Studio 2019 v16.8 oder hoher.

Die wichtigsten Neuerungen in C# 9.0 sind:

» Record-Typen - siche Kapitel "Record-Typen"
» Programme ohne Main() = Siehe Kapitel "Top-Level Statements"

http://www.jetbrains.com/rider
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version

Fakten zu C# 43

Properties, die nach Initialisierung unveridnderlich sind (Init Only Properties mit Init Only
Setters) = Siehe Kapitel "Attribute/Properties, die nach Initialisierung unverédnderlich sind"

Verwendung des Operators new ohne Typangabe (Target-Typed New Expression) = Siehe
Kapitel "Klassendefinition/Instanzierung mit dem Operator new")

Authebung der Restriktionen fiir partielle Methoden - Siehe Kapitel "Partielle Methoden"

Statische anonyme Funktionen und Discard-Variablen in Lambdas = Siehe Kapitel "Lambda-
Ausdriicke"

Annotationen auf lokale Funktionen - Siehe Kapitel "Lokale Funktion"
Erweiterung des Pattern Matching - Siehe Kapitel "Verzweigungen/Pattern Matching"
Modul-Initialisierer = Siehe Kapitel "Modul-Initialisierer".

Source Code-Generatoren: Mit diesen neuen Code-Generatoren kann ein Entwickler
zusitzlichen Programmcode zur Kompilierungszeit erzeugen, der zusammen mit dem
eigentlichen Programmcode kompiliert wird. Damit kann man z.B. Annotationen eine
Bedeutung geben. = Siche Kapitel "Source Code-Generatoren".

6.13 Neuerungen in C# 10.0
C# 10.0 ist zusammen mit Visual Studio 2022 und .NET 6 am 8.11.2021 erschienen.

Hinweise: C# 10.0 wird offiziell von Microsoft nur ab .NET 6.0 unterstiitzt ("C# 10.0 is
supported only on NET 6 and newer versions." [docs.microsoft.com/en-
us/dotnet/csharp/language-reference/configure-language-version]. Man kann allerdings die
meisten (aber nicht alle!) C# 10.0-Sprachfeatures auch in .NET Core, .NET Framework und
Xamarin nutzen. Dazu muss man die <LangVersion> in der Projektdatei auf "10.0" erh6hen.
Dies wird im Kapitel "Erste C#-Schritte/Festlegen der Compilerversion" beschrieben.
Notwendige Visual Studio-Version fiir C# 9.0 ist Visual Studio 2022 v17.0 oder hoéher. Eine
Verwendung von C# 10.0 sowohl mit Visual Studio for Mac 2022 als auch einer aktuellen
Version von Visual Studio Code und anderen OmniSharp-kompatiblen Editoren
[www.omnisharp.net] ist moglich.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/configure-language-version
http://www.omnisharp.net/

44 Fakten zu C#

C#10.0 - .NET 6 and Visual Studio 2022 version 17.0

Record structs and with expressions on structs (record struct Point(int X, int ¥);, var newPoint = peint with { X = 108 };).

Global using directives: global using directives avoid repeating the same using directives across many files in your program.

* Improved definite assignment: definite assignment and nullability analysis better handle common patterns such as
dictionary?.TryGetValue(key, out value) == true.
* Constant interpolated strings: interpolated strings composed of constants are themselves constants.

Extended property patterns: property patterns allow accessing nested members (if (e is MethodCallexpression { Method.Name:
"MethodName™ })).

Sealed record ToString: a record can inherit a base record with a sealed ToString .

® Incremental source generators: improve the source generation experience in large projects by breaking down the source generation
pipeline and caching intermediate results.
* Mixed deconstructions: deconstruction-assignments and deconstruction-declarations can be blended together ((existinglLocal, var

declaredlocal) = expression).

Method-level AsyncMethodBuilder: the AsyncMethodBuilder used to compile an async method can be overridden locally.

#line span directive: allow source generators like Razor fine-grained control of the line mapping with #line directives that specify the
destination span (#line (startLine, startChar) - (endLine, endChar) char0ffset "fileName").

¢ Lambda improvements: attributes and return types are allowed on lambdas; lambdas and methed groups have a natural delegate type
(var £ = short () => 1;).

¢ Interpolated string handlers: interpolated string handler types allow efficient formatting of interpolated strings in assignments and
invocations.

¢ File-scoped namespaces: files with a single namespace don't need extra braces or indentation { namespace X.Y.Z;).

® Parameterless struct constructors: support parameterless constructors and instance field initializers for struct types.

e CallerArgumentExpression: this attribute allows capturing the expressions passed to a method as strings.

Abbildung: Ubersicht iiber die Neuerungen in C# 10
Quelle: Microsoft
[github.com/dotnet/csharplang/blob/main/Language-Version-History.md]

Das folgende Bild realisiert das kleine Kunststiick, fast alle neuen C# 10-Sprachfeatures in 2
iiberschaubare und kommentierte Listings unterzubringen, die zusammen auch noch Sinn machen.
Verstehen Sie dies als Kurzreferenz. Natiirlich finden Sie eine ausfiihrliche Beschreibung in den
verschiedenen Kapiteln dieses Buchs.

s x .o -
- L - P e R
1 /7 Global Using Directives - 1 /7 File-Scoped Names, -
2 Eglobal using System; 2 namespace Heise.Developer;
3 global using static System.Console; 3
0 using Heise.Developer; 1l /I Readonly Record Struct auf dem Stack | |
5 B 5§ Spublic readonly record struct futor(int ID,
6 WriteLine("C# 10 Demo fir heise Developer®); 6 string Name,
7 7 string Artikelstatus = “unbekannt®)
& // Constant interpolated Strings | | 8 '
5 const string Vorname = “Holger"; 9 public readonly DateTine ObjektErzeugungsZeitpunkt { get; }
16 const string Nachname = "Schwichtenberg"; 10 = new DateTine(1998, 9, 7, 23, 8,1);

11 const string GanzerMame = $"Dr. {Vorname} [Machname}";

/4 Readonly Record Struct instanzieren
var hsl = nem Autor(123, GanzerMame);
/1 nieht mBglich,mweil readonly: hsl.Artikelstatus = "abgegeben®;

/1 Verinderten Klon erstellen

18 var hs2 = hsl with { Artikelstatus = "abgegeben® };
19 WriteLine(hs2);

2 // Wixed Deconstruction

22 int id;

(id, string name, _) = hs2;
WriteLine($"Autor #{id}: {name}");

// Extended Property Pattern
sbject o = hs2;
=if (o is Autor { ObjektErzeugungsZeitpunkt.Year: 1998 })

€
writeLine("Jahr des ersten Artikels stimmt!");
]

EE] // Funktion via Lambda mit Typherleitung deklarieren

34 var status = (Auter a) => §"Artikel von {a.Mame} ist im Status:
{a.Artikelstatus}”;

35 // Funnktion verwenden

36 Writeline(status(hs2));

Abbildung: Fast alle neuen C# 10.0-Features auf einen Blick.

Sie finden in diesem Buch:

= Kapitel "Datentypen": Neuerungen zu Interpolated Strings

https://github.com/dotnet/csharplang/blob/main/Language-Version-History.md

Fakten zu C# 45

= Kapitel "Verzweigungen/ Pattern Matching": Neuerungen zum Pattern Matching
= Kapitel "Methoden": Caller Argument Expressions

= Kapitel "Namensrdume": Alle Neuerungen zu den Namensraumen (File-Scoped
Namespaces, Global Using Directives, Implicit Using Directives)

= Kapitel "Record-Typen": Alle Neuerungen zu Record-Typen (record class, record struct,
sealed ToString())

= Kapitel "Strukturen/With-Ausdriicke": Einsatz von Klonen mit with bei Strukturen und
anonymen Typen.

= Kapitel "Strukturen/Strukturen mit parameterlosem Konstruktor": Strukturen mit
parameterlosem Konstruktor

= Kapitel "Tupel": Mixed Deconstruction

= Kapitel "Funktionale Programmierung/Lambda-Ausdriicke": Typherleitung, explizite
Riickgabetypen und Annotationen/Attribute fiir Lambda-Ausdriicke

6.14 Blick in die Zukunft

Die kommende Version C# 11.0 soll im November 2022 zusammen mit .NET 7 erscheinen.
Vorschlage fiir kiinftige Sprachversionen finden Sie unter

github.com/dotnet/csharplang/tree/main/proposals

Jedermann kann Vorschldge flir neue Sprachfeatures einreichen; die Hiirden zur Annahme sind
aber recht hoch.

Die Liste der Sprachfeatures, an denen Microsoft aktiv arbeitet, findet man unter

github.com/dotnet/roslyn/blob/main/docs/Language%20F eature%20Status.md

https://github.com/dotnet/csharplang/tree/main/proposals
https://github.com/dotnet/roslyn/blob/main/docs/Language%20Feature%20Status.md

46

Fakten zu C#

C# Next

Feature Branch State Developer Reviewer
nameof(parameter) main In Progress jcouv TBD

Relax ordering of ref and

ref-partial In Progress alrz after
partial modifiers 2 g 2
. param- RikkiGibson, o
Parameter null-checking . In Progress cston, chsienki
nullchecking fayrose
)) Merged into 17.0p4 . . RikkiGibson,
Generic attributes generic-attributes A AviAvni .
(preview langver) Jjoouv
Default in deconstruction decon-default Implemented jcouv gafter
List patterns list-patterns In Progress alrz jeouv, 333fred
Raw string literals RawStringLiterals In Progress CyrusNajmabadi Jjcouv
semi-auto-
Semi-auto-properties . In Progress Youssef1313 TBD
properties
. i required-
Required properties . In Progress 333fred TBD
properties
Top Level stat: t attribut : .
°p 'e‘ve statement attribute main-attributes In Progress chsienki TBD
specifiers
. rimary-
Primary Constructors P Y In Progress TBD TBD
constructors
Params Span + Stackalloc any
params-span In Progress cston TBD
array type
Newlines in interpolations main In Progress CyrusNajmabadi jeouv, TBD

Abbildung: Fiir C# 11.0 geplante Sprachfeatures

Sprachfeatures, die sich bereits in der Entwicklung befinden aber noch
Sprachcompilers sind, kdnnen Sie ausprobieren auf dieser Website:

sharplab.io

LDM Champ

jcouv

jeouv

jaredpar

mattwar

jcouv
333fred

CyrusNajmabadi

CyrusNajmabadi

333fred

jaredpar

MadsTorgersen

jaredpar

CyrusNajmabadi

nicht Teil des

https://sharplab.io/

Fakten zu C# 47

A sharotab x | SR i o

“ a Q 8 hitpsy/sharplabiio/#v2-EVLgZgpghylarghwg ZwlQBsCWyaoAGwwQIBZyANACYDUAPGAIBMAAL ABODAZAATOB AwrwDenXhPSBGAFMBZABOBK UeMKB ThaAs = = o

using System;

public class € { Platforms
public void M() {
i3

erservices;

i NET Framework (x86) sstons;
.NET Framework (x64) ations(8)]

Roslyn branches 1ity(WraphonExceptionThrows = true)] ‘
pgableAttribute.DebuggingModes.Default | DebuggableAttribute.Det
main (3 Nov 2021) on(SecurityAction.RequestMinimum, SkipVerification = true)]

C# Next: Attributes on local functions (21 Feb 2020) "e.0.0.0M)]
C# Next: Caller expression attribute (18 Jul 2021)

Ci# Next: Constant Interpolated Strings (30 Nov 2020)

C# Next: Default in deconstruction (16 Jul 2021)

C# Next: Extended property pattems (3 Jun 2021)

C# Next: File-scoped namespace (9 Jul 2021)

C# Next: Generic attributes (12 Aug 2021)

C# Next: Global Using Directive (23 Apr 2021)

C# Next: Impraved Definite Assignment (8 Jun 2021)

C# Next: Interpolated string improvements (8 Jul 2021)
C# Next: List patterns (29 Oct 2021)

Ci# Next: Parameter nullcheckrrté (2 Nov 2021)

C# Next: Paramelerless struct constructors (22 Jul 2021)

hitps://github.com/dotnet/csharplangfissuesi3435

Latest commit 2b44455 by Julien Couvreur:
List-patterns: Add declarations of public APls (#57434) " -

Editor: Default | Theme: Auto Builtby Andrey Shehekin (@asheing) — see SharpLab on Github.

Abbildung: www.sharplab.io

