

[image: Blazor 快速體驗]

 Blazor 快速體驗

 Hands-On Lab 動手練習

 Vulcan Lee

 這本書的網址是 http://leanpub.com/Blazor-Quick-Overview

 此版本發布於 2020-01-13

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2020 Vulcan Lee (李進興)

 書籍目錄

 	
 關於本書

 	
 這本書能提供什麼

 	
 誰適合閱讀這本書

 	
 練習專案原始碼

 	
 1. 建立 Blazor Server Side 伺服器端的專案

 	
 1.1 執行這個專案

 	
 1.2 結論

 	
 2. 開始設計 CRUD 的新增與刪除功能

 	
 2.1 建立專案會用到的資料模型

 	
 2.2 建立與設計 Blazor 元件 - 顯示所有記事紀錄

 	
 2.3 在 Blazor 專案首頁，加入此元件

 	
 2.4 執行這個專案

 	
 2.5 結論

 	
 版權頁

 Guide

 	
 Begin Reading

關於本書

這是一本帶領對於 Blazor 有興趣的新手開發者，可以快速體驗這個微軟最新的網頁開發框架技術的開發過程，在這本書中，將不會講解枯澀的相關技術內容，而是設計一個應用情境，也就是一般常用的 CRUD (新增 Create, 查詢 Retrive, 更新 Update, 刪除 Delete) 的記事應用程式需求開發，從無到有的帶領讀者透過 Visual Studio 2019 這個開發工具，設計出的 Blazor 伺服器端的這樣應用程式。

所以，購買本書的讀者，將會強烈建議讀者要跟著本書的內容，逐一進行專案的設計與練習，在每個練習階段，都會有不同要帶給讀者的學習方向；透過這樣的練習開發過程，就會明瞭 Blazor 這個開發框架技術究竟可以做到什麼樣的強大功能；不過，這本書中並不會詳盡說明各種 Blazor 開發技術內容，而是提供一個動手練習實作的說明操作步驟，體驗 Blazor 專案開發過程。因此，若您沒有這樣的興趣或者這樣的需求，請不要購買這本書。

因此，當讀者完成所有的專案練習開發，相信您對於 Blazor 這個優秀的開發框架必定有更清楚的認識，了解到不需要使用到繁雜的 JavaScript 程式語言，僅使用 Blazor 就可以做到那些網站設計上的功能。

這本書能提供什麼

在這本書裡面，將會提供 8 章的內容，分別是

 	建立 Blazor Server Side 伺服器端的專案
 了解如何透過 Visual Studio 2019 開發工具，開始建立一個 伺服器端的 Blazor 專案。

 	開始設計CRUD 的新增與刪除功能
 首先，這裡將會透過剛剛建立的 Blazor Server Side 伺服器端 專案，設計出一個使用記憶體作為儲存空間的 CRUD 應用程式，不過，在這裡將會先設計出新增與刪除的功能，在下一章內容才會介紹如何使用對話窗來強化新增與修改的功能；另外，在這兩章的內容裡，會將 CRUD 的各項程式碼，直接寫 Blazor Component 元件裡，還是那句話，這裡完全不會使用到任何 JavaScript 程式碼，僅僅使用到 C# 程式語言 與 HTML 宣告式標記語言而已。

 	增加 CRUD 的新增與修改對話窗功能
 延續上一章的開發結果，將會繼續開發新增與修改功能，不過，對於要新增與修改的紀錄，可以透過 BootStrap 的對話窗功能來進行記錄輸入；不過，在這裡將不是透過呼叫 jQuery 的方式，而是透過 C# 資料綁定的處理機制來顯示這個對話窗。

 	建立記事服務並且使用相依性注入服務
 為了要能夠設計出一個容易維護的專案程式碼，因此需要套用 SRP 原則，因此，在這裡將會設計一個抽象介面與實作該介面的具體服務類別，將相關記事紀錄處理用到的程式碼分離到這個具體服務類別內，並且透過 ASP.NET Core 提供的相依性注入 Dependency Injection 服務，把所需要的具體服務類別執行個體，注入到 Blazor Component 元件內，如此，便可以在 Blazor 元件內使用這個具體服務類別物件，來進行 CRUD 的存取。透過這樣的設計技巧，可以讓這個專案具有高度鬆散耦合關係。

 	使用資料庫來儲存記事服務相關紀錄
 接下來將會使用 Entity Framework Core 套件，設計一個新的提供資料庫(這裡將會使用 SQLite 資料庫做為操作範例)具體服務類別；一旦完成這個資料庫存取的具體服務類別，只需要在 Startup 類別內(在專案根目錄下，可以找到 Startup.cs 這個檔案)，註冊這個新建立的資料庫存取具體服務類別，這樣，在不修改原先 Blazor 元件的程式碼下，便可以直接讓這個原有 Blazor 專案，瞬間華麗變換成為不再使用記憶體作為存取目媒介，而是使用資料庫作為存取媒介的應用程式了。

 	在 Blazor 專案內呼叫 JavaScript 程式碼
 在這一章中，將會展示如何透過 C# 來呼叫 JavaScript 的設計過程；這裡會先修改原先的 CRUD 元件中使用的對話窗功能，當要進行新增與修改的時候，將會透過 C# 來呼叫 jQuery 程式碼，讓這個對話窗顯示窗來；另外，將會使用已經包裝好的一個 Blazor NuGet 套件，該套件可以透過 C# 程式碼的呼叫，動態的顯示出一個對話窗，這裡將會針對 刪除 按鈕來進行重新設計，當使用點選 刪除 按鈕之後，將會透過 Blazored.Modal 元件來顯示一個對話窗，詢問使用者是否要刪除這筆紀錄，若回答是肯定的，將會立即刪除這筆紀錄。

 	在 Blazor 專案內設計 Web API 服務
 在這之前，已經完成了一個 CRUD 應用程式，並且會將資料記錄存取到資料庫內的功能，現在，將可以在 Blazor 專案內啟用 RESTful Web API 服務功能，讓這個網站也可以提供 Web API 的服務；所以，透過這章的開發練習，將會知道如何在 Blazor 專案內來設計出 RESTful Web API 的服務。

 	使用 Web API 來儲存記事服務相關紀錄
 最後，將會需要新設計一個存取 Web API 的具體服務類別，並且將這個服務註冊到 ASP.NET Core 內的 DI Container 容器中，當然，也無須修改原有 Blazor 專案內的元件設計程式碼，便可以讓這個 Blazor 專案，立即使用透過呼叫 Web API 服務，來進行記事紀錄之 CRUD 應用。

誰適合閱讀這本書

對於任何想要學習 Blazor 這個開發技術，可以透過本書的開發練習說明，逐步了解到如何真正的設計出一個 Blazor 實用專案。

讀者必須具備 .NET / C# 的開發經驗、HTML / CSS 的基本認識即可，對於開發工具而言，本書是在 Windows 10 作業系統下，使用任何 Visual Studio 2019 的版本，就可以進行開發。

練習專案原始碼

本電子書中的練習專案原始碼，可以從 https://github.com/vulcanlee/Blazor-Quick-Overview 取得

1. 建立 Blazor Server Side 伺服器端的專案

首先，先要來學習如何透過 Visual Studio 2019 開發工具來建立一個 Blazor 伺服器端的專案

 這本書的所有內容將會是在 Windows 10 專業版 (版本 1909 / 組建 18363.535) 與 Visual Studio 2019 Enterprise (Version 16.4.2) 下所建立出來的，當然，任何 Visual Studio 2019 的版本皆可，不一定要使用 Enterprise 版本，Community / Professioal 版本也可以。

 在安裝的時候，記得在 [工作負載] 頁次中，勾選 [ASP.NET 與網頁程式開發] 和 [.NET Core 跨平台開發]

 [image: Visual Studio 2019 Installer 之工作負載選擇]
 Visual Studio 2019 Installer 之工作負載選擇

 	打開 Visual Studio 2019 開發工具

 	當 [Visual Studio 2019] 對話窗出現之後，點選右下方的 [建立新的專案] 按鈕

 [image: Visual Studio 建立新的專案 按鈕]
 Visual Studio 建立新的專案 按鈕

 	在 [建立新專案] 對話窗內，請找出 [Blazor 應用程式] 這個專案開發範本，並且點選這個專案開發範本

 	請點選右下角 [下一步] 按鈕

 [image: 選擇 使用 Blazor 應用程式 專案範本]
 選擇 使用 Blazor 應用程式 專案範本

 	出現 [設定新的專案] 對話窗，輸入適當的 [專案名稱] 、 [位置] ，完成後，請點選右下角 [建立] 按鈕

 [image: Blazor 應用程式 設定新的專案]
 Blazor 應用程式 設定新的專案

 說明

 在這個範例程式碼中，將會建立一個 BlazorOverview 專案名稱

 	接下來將會看到 [建立新的 Blazor 應用程式] 對話窗，這裡可以根據當時開發專案需要，自行決定是否有調整 Blazor 專案的其他特性，不過，在這裡將不需要做任何額外的設定，請點選右下角的 [建立] 按鈕

 [image: Blazor 應用程式 建立新的 Blazor 應用程式]
 Blazor 應用程式 建立新的 Blazor 應用程式

 注意事項

 在建立練習專案的時候，無須在 [建立新的 Blazor 應用程式] 對話窗下，點選該對話窗右上方的 [驗證] 設定選項，也就是，維持 [驗證] 選項為 [無驗證]

 	現在，這個 Blazor 專案已經建立完成

 	完成後的 Blazor 專案，將會有底下的方案結構

 [image: Blazor 方案結構]
 Blazor 方案結構

1.1 執行這個專案

 	請點選工具列上方的綠色三角形，或者按下 F5 ，開始執行這個 Blazor 專案

 	此時，將會在瀏覽器上出現底下畫面

 [image: Blazor 專案第一次執行結果]
 Blazor 專案第一次執行結果

1.2 結論

現在已經完成建立一個 Blazor 開發用的專案了

2. 開始設計 CRUD 的新增與刪除功能

現在要來先建立一個 Blazor 專案的 CRUD之新增與修改功能，不過，在這裡的新增功能將不會有記事紀錄輸入畫面，而是自動產生一筆隨機記事紀錄。

2.1 建立專案會用到的資料模型

 	滑鼠右擊專案節點

 	在彈出功能表點選 [加入] > [新增資料夾]

 	使用 Models 作為該新資料夾的名稱

 	滑鼠右擊 [Models] 資料夾節點

 	在彈出功能表點選 [加入] > [類別]

 	出現 [新增項目 - BlazorOverview] 對話窗

 	請在 [名稱] 欄位，輸入 MyNote.cs

 	最後，請點選 [新增] 按鈕

 [image: 建立 MyNote 資料模型類別]
 建立 MyNote 資料模型類別

 	使用底下程式碼來替換到這個檔案內的所有內容

 [image: 設計 MyNote 類別成員]
 設計 MyNote 類別成員

namespace BlazorOverview.Models
{
 public class MyNote
 {
 public string Title { get; set; }
 }
}

2.2 建立與設計 Blazor 元件 - 顯示所有記事紀錄

 	滑鼠右擊 [Pages] 資料夾節點

 	在彈出功能表點選 [加入] > [新增項目]

 	出現 [新增項目 - BlazorOverview] 對話窗

 	請確認該對話窗左方的清單位於 [已安裝] > [Visual C#] > [ASP.NET Core] 節點上

 	在該對話窗的中間區域，點選 [Blazor 元件] 這個選項

 	請在 [名稱] 欄位，輸入 MyNotes.razor

 	最後，請點選 [新增] 按鈕

 [image: 建立一個 MyNotes 之 Blazor 元件]
 建立一個 MyNotes 之 Blazor 元件

 說明

 每一個 Blazor 元件都可以成為具有路由的實際網頁 URL，不過，在這裡的練習過程中，將會簡化這些設計內容，將整個 CRUD 應用程式，濃縮在一個 Blazor Component 元件上，也讓讀者可以體會到 Blazor 的一個很重要的特色，那就是 Blazor 的元件是可以做到重複使用的目的。

 	使用底下 Razor 程式碼來替換到這個檔案內的所有內容

 [image: MyNotes 元件的設計結果]
 MyNotes 元件的設計結果

@using BlazorOverview.Models

<h3>我的記事</h3>

@*這裡是 HTML 的標記宣告*@
<table class="table">
 <thead>
 <tr>
 <th>事項</th>
 <th>修改</th>
 <th>刪除</th>
 </tr>
 </thead>
 <tbody>
 @*列出集合清單中的每一筆紀錄到 HTML Table 內*@
 @foreach (var NoteItem in Notes)
 {
 <tr>
 @*透過資料綁定，把集合清單內的紀錄屬性，顯示在網頁上*@
 <td>@NoteItem.Title</td>
 @*這個按鈕尚未進行任何設計*@
 <td><input type="button" class="btn btn-primary" value="修改" /></td>
 <td>
 @*透過 Blazor 的資料綁定，將刪除按鈕的點選事件，綁定到 C# 的委派處理方法*@
 <input type="button" class="btn btn-danger" value="刪除"
 @onclick="()=>Delete(NoteItem)" />
 </td>
 </tr>
 }
 </tbody>
</table>
<div>
 @*透過 Blazor 的資料綁定，將新增按鈕的點選事件，*@
 @*綁定到 C# 的委派處理方法*@
 <input type="button" class="btn btn-primary" @onclick="Add" value="新增" />
</div>

@code {
 // 儲存要顯示的集合清單內的所有紀錄
 public List<MyNote> Notes { get; set; } = new List<MyNote>();

 // 元件建立的時候，所要執行的初始化工作
 protected override void OnInitialized()
 {
 // 預設建立的集合清單紀錄
 Notes = new List<MyNote>()
 {
 new MyNote { Title= "買蘋果" },
 new MyNote { Title="買西瓜" }
 };
 }
 // 新增按鈕的點選事件之處理委派方法
 private void Add()
 {
 //加入一筆紀錄到集合清單內
 Notes.Add(new MyNote { Title = $"新事項 {DateTime.Now.ToString()}" });
 }
 // 刪除按鈕的點選事件之處理委派方法
 private void Delete(MyNote note)
 {
 //從集合清單中刪除所選擇的紀錄
 Notes.Remove(note);
 }
}

 提示

 對於上述的程式碼與HTML標記，代表什麼意思，可以參考上面相關註解文字內容。

 說明

 每個 Blazor 元件就是一個 Razor 元件檔案，附檔案名稱為 .razor，其是由 HTML 標記與 C# 程式語言所組成；在上面的 MyNotes.razor 檔案， @code{...} 區塊為要設計的 C# 程式語言，其他的部分則是 HTML 宣告標記語言，不過，可以使用 @ 符號，讓 HTML 標記宣告語言參雜 C# 程式語言在其中。

2.3 在 Blazor 專案首頁，加入此元件

 	在 [Pages] 資料夾中找到 [Index.razor] 這個檔案

 	打開這個檔案

 	使用底下 Razor 程式碼來替換到這個檔案內的所有內容

 說明

 想要在 Blazor 專案內的元件，使用該專案內的其他元件，可以把每個元件都是為一個 HTML 標籤，在這裡僅加入 <MyNotes /> 這個元件參考，讓這個剛剛設計的新 Blazor 元件，可以顯示在首頁上

@page "/"

<h1>Hello, world!</h1>

Welcome to your new app.

@*使用 HTML Tag 標籤宣告方式，宣告這裡要顯示 MyNotes 這個 Blazor 元件*@
<MyNotes />

 提示

 每個 Blazor 元件於設計完成之後，只要相對應的命名空間有宣告，便可以在 HTML 標記文件中，直接使用這個元件名稱作為一個 HTML 標記來使用，可謂相當的直覺與容易使用。

 說明

 透過這樣的練習設計，簡化了每次執行專案的時候，就可以立即在首頁上看到這次設計的 CRUD 應用的元件了。

2.4 執行這個專案

 	請點選工具列上方的綠色三角形，或者按下 F5 ，開始執行這個 Blazor 專案

 	此時，將會在瀏覽器上出現底下畫面

 [image: Blazor 專案具有新增與刪除執行結果]
 Blazor 專案具有新增與刪除執行結果

 說明

 這裡會預先看到兩筆記事紀錄，這是因為在該 MyNotes.razor 元件建立的時候，透過 OnInitialized 方法呼叫，就已經預先產生兩筆記事紀錄了，不過，由於這些記事紀錄都是使用電腦記憶體作為儲存之用，因此，每次重啟這個專案的時候，這些記事紀錄都會消失不見。

 	點選 [新增] 按鈕兩次

 	此時將會自動加入兩筆紀錄到集合清單內

 	這裡是透過 Blazor 內建的資料綁定 Data Binding 機制，將會顯示在瀏覽器網頁上，如下面螢幕截圖

 [image: 新增兩筆紀錄]
 新增兩筆紀錄

 	點選到數第二筆紀錄的 紅色 [刪除] 按鈕

 	此時，該筆紀錄將會從集合清單內刪除掉，並且即時更新在網頁上，如下面螢幕截圖

 [image: 刪除其中一筆紀錄的執行結果]
 刪除其中一筆紀錄的執行結果

2.5 結論

現在已經完成具有新增與刪除 Blazor 專案了，不過，所有集合清單資料，都是儲存在記憶體內，一旦專案關閉結束並且重新執行，這些集合清單資料將會消失不見，這個問題將會在稍後，使用資料庫的方式來解決。

版權頁

 Blazor Quick Overview Hands-On Lab 動手練習

檔案格式：EPUB3、PDF、MOBI

版本： 1.0
日期： 2020.01

作者： Vulcan Lee 李進興

 版權所有，請勿非法複製、散佈。

 	

OEBPS/images/leanpub_info-circle.png

OEBPS/images/leanpub_warning.png

OEBPS/images/leanpub_key.png

OEBPS/images/Images----BlazorQO993.png
FREE - BlazorOvenview

? X
‘== #EE BB

- 28 (Cul+p)
4 Visual C#
4 ASPNET Core

—&

o
o CO) &id Visual C#
4 ‘f’z’ X === Visual G
Xamarin Forms
b e
ZEN)

MyNote.cs

OEBPS/images/Images----BlazorQO992.png
04 BlazorOverview

180%

lazorOverview

- B x
<] % BlazorOvenview:Models MyNo -] ¥ Title]
1 IEnamespace BlazorOverview.Models f
2 { [
0 fEz%
3 =] public class MyNote
4 {
0 {EH2%

5 public string Title { get; set; }
6 3
7)

o #REEARE A > @7 Fm2 SC CRIF

OEBPS/images/Images----BlazorQO991.png
$EEE - BlazorOvenview
=

4 Visual C#
4 ASPNET Core
—=
=5
=
b Web
Xamarin Forms

(13

ZEN) MyNotes.razor

#EE (B

& =
0 7%

RS

APl Z3jEER

o
e

o

Razor 5

B

Razor 8%

B

Razor FERE

B

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

23 (Crl+E)

BE: Visual G
5 Razor EEZTEEERL Ul T

OEBPS/images/Images----BlazorQO997.png
REMER

Blazor B ©# Unx ma0s Windows E& Web

BREEN)

i1}

D\Vulean\Projects -

EREEZEM @

BlazorOverview

[gesrzasssrmass=0)

s

OEBPS/images/Images----BlazorQO996.png
ZEIIHRY Blazor FEFRE

Blazor Rk EMAET

 AEEEAENTRDS HER
BEREDY - fRsIARAERRgE

2 HTTPS(C)
[[] &5 Docker TE(E)
(R Docker Deskiop)

Linux

{8 Microsoft
3 NET Core 310

BEESHEERS

OEBPS/images/Images----BlazorQO995.png
HE

ES

GE-o-sam@
ERE (Cult)

3] E55% BlazorOvenview' (1 BEE -+ 1)
4 [BlazorOverview

&p Connected Services

o Properties

Counterrazor
Erorrzor
FetchData.razor
Indexrazor

‘l Shared
MainLayoutrszor
NavMenurszor
mporsrazor
Apprazor

& appsettingsjon

& Program.cs

@ Strupes

OEBPS/images/Images----BlazorQO994.png
| B slazoroverview

O |a

BlazorOverview

A Home

=+ counter

htps//localhostS001

x|+ v

Hello, world!

Welcome to your new app.

OEBPS/images/Images----BlazorQO957.png
A1 - Visual Studio Enterprise 2019 - 1642

IfF&E EBGLAF ESEN

Web S5 (4)

BEUE

@ ASPNET UBRTZSRIER
{8 ASP.NET Core » ASP.NET ~ HTML/JavaScript B8 (i
$ Docker 1) 3z Web FERZR -

é Python &
8t Python SEFTIREE - (438 » BEVAAIRRIASMIEN

Visual Studio FIARTIERIE
SEIEAR Visual Studio AMEERMEATIR © BIFHATR
4 EABATENTARE -

A 18R C+ AT LinuxBES
SERBIARE Lnox BEPHITRIERIER -

fir®
CAProgram Files (xB6)\Microsoft Visual Studio\2019\Enterprise

B VisualStudio KRR~
-

A 3
FRRMER NET Core 1 NET Framevork BEREDRERIER
RSRUEFA Azure SOK - TRRER » DESEAEN

@ Node s B2
{EFFERIHEIB1HEBE) JavaScript BITREEE Nodejs BT
R -

EI Office/SharePoint RS
{8 C# ~ V8 i JavaSeript 237 Office ! SharePoint 83
%5~ SharePoint BB bR VSTO #3%K -

NET Core BF &8
{85 NET Core + ASP.NET Core ~ HTM/JavaScript Bi&F88
(8345 Docker %18) * RERFLEMER -

L LSS T SBRARISRR Visual Studio —HBIERR - — e = JE8 O RRRMINIBEATE » HONIA SRS

TEGFAER

> Visual Studio 2 4888 8
> ASPNET SZEHESES
> NET 2EHS

> 55 Windows T£EE
> EF NET ETT8HHES
> .NET Core BT £ES

> B3TH

HTEEEE

Fimafagits 901G

OEBPS/images/Images----BlazorQO999.png
Y RUFHEEN)

EEERE Scafiolding SETRBILEEE
&

OEBPS/images/Images----BlazorQO998.png
E ﬁ %‘ﬁ' % 7% EBHE A+9)S)

BHEANERERR) RS

2EERO)

- EETEE - Web -

D ASP.NET Core Web BHEX C# ASP.NET Core Web BRES =

DU FRLLNET Core 5t NET Framework EIIBAR Windows « Linux 7] macOS 2
ASP.NET Core Web RS2

& \Web AP| (S EE S - T Angular » React 5.
@ blozor mRES o React + Redux 1 Razor Pages » MVC 318~ RERMEX. (5PA) 21 Web %A
==
ANV BT B B 3 =5 & @ E
B HE (NETStandard) O @ Lo ERE=

FREIE ASPNET Core BBEXSEEE L3t WebAssembly EHESS0T2

Blazor EREANERDS - EERFIARSERASENBERENE U) 6
ZEEEEES (NETCore) C* eb ERES

@
¢ lnx maOS Windows E® Web
Rl z=5%
ASP.NET Web RS (NET Framework)
&l

) TARERI ASPNET EREXNTEDS - & ASPNET & » (TEILT ASPNET
Web Forms + MVC 5 Web AP| RIS, » RAASFSEHMEE -

VisualBasic Windows Ei Web

=pemmEs (NET
B Famework

(=1 WPF App (NET Core) o

RPC 3
ASP.NET Web RS (NET grec &

s

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/title_page.png
Blazor REfEEs HOL
Hands-on Lab

BFRERT

RS
e B

Vulcan Lee &

OEBPS/images/Images----BlazorQO990.png
04 BlazorOverview

80% -

@using BlazorOverview.Models
<h3>FRAYELHE</h3>

E‘<lab]e class="table">
& <thead>
= <tr>
<th>FEIE</ th>
<th>fE5</ th>
<th>fflfR</ th>
</tr>
</thead>
= <tbody>

© wrRERRE <

>

b St FR1SPC CRIF

OEBPS/images/Images----BlazorQO989.png
& | 5 slazooveniew X |+ v

« > 0

& | hitps//localhost’5001/

BlazorOverview

A Home

=+ counter

Fefch data

Hello, world!

‘Welcome to your new app.
HHACE

BE B

LIS

LS

LS

OEBPS/images/Images----BlazorQO988.png
& | 5 slazooveniew X |+ v = o

& = O | anps/ocahostsoot/ o | = 2 @

BlazorOverview

A tome Hello, world!

‘Welcome to your new app.

HHTE

=+ counter

) iEE B
BEBZ

BAK TS
HEE 38:11

HEE :18 F

OEBPS/images/Images----BlazorQO987.png
& | 5 slazooveniew X |+ v

< - O & | https//localhost5001/ *

BlazorOverview

£ G Hello, world!

+ counter Welcome o your new app.
HHTE

R B

BAEK

HEEI 18

