

Atomic Kotlin (Deutsche Ausgabe)

Bruce Eckel und Svetlana Isakova
Dieses Buch wird verkauft unter http://leanpub.com/AtomicKotlin-de
Diese Version wurde veroffentlicht am 2024-09-18

ISBN 978-0-9818725-4-4

)

Leanpub

Dies ist ein Leanpub-Buch. Leanpub bietet Autoren und Verlagen, mit Hilfe von
Lean-Publishing, neue Moglichkeiten des Publizierens. Lean Publishing bedeutet
die wiederholte Veroffentlichung neuer Beta-Versionen eines eBooks unter der
Zuhilfenahme schlanker Werkzeuge. Das Feedback der Erstleser hilft dem Autor bei
der Finalisierung und der anschlieSenden Vermarktung des Buches. Lean
Publishing unterstiitzt den Autor darin ein Buch zu schreiben, das auch gelesen
wird.

© 2024 Mindview LLC

http://leanpub.com/AtomicKotlin-de
https://leanpub.com/
https://leanpub.com/manifesto

INHALTSVERZEICHNIS

Inhaltsverzeichnis

Urheberrecht 1

Abschnitt I: Grundlagen der Programmie-

rung ... 5
Einfihrung 6
Warum Kotlin? 13
Hallo, Welt! 29
var &val 32
Datentypen L 36
Funktionen 40
if-Ausdriicke 44
String-Vorlagen 49
Zahlentypen 52
Boolesche Werte 58
Wiederholung mitwhile 62
Schleifen & Bereiche 66
Das in Schliissselwort 72

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

INHALTSVERZEICHNIS

Ausdriicke & Anweisungeno 76
Zusammenfassung 1 L 80

Abschnitt II: Einfithrung in Objekte 9%

Objekte iiberall 95
Klassenerstellen 99
Eigenschaften 104
Konstruktoren 109
Einschrankung der Sichtbarkeit. 114
Pakete 120
Testen 124
Ausnahmen. 131
Listen 136
Variable Argumentlisten 145
Mengen e 151
Karten 154
Eigenschaftszugriffe 158
Zusammenfassung 2 L 163

Abschnitt III: Benutzerfreundlichkeit 189

Erweiterungsfunktionen o L 190

Benannte & Standardargumente 193

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

INHALTSVERZEICHNIS

Uberladung 199

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Urheberrecht

Atomic Kotlin
Von Bruce Eckel, Prasident, MindView, LLC, und Svetlana Isakova, JetBrains sro.

Urheberrecht ©2021, MindView LLC

eBook ISBN 978-0-9818725-4-4
Version 1.0: Dezember 2020
Version 1.1: November 2021

Print-Buch ISBN 978-0-9818725-5-1
Erster Druck: Januar 2021
Zweiter Druck: November 2021

Die Aktualisierungen vom November 2021 beinhalten Anpassungen fiir Kotlin 1.5
und Korrekturen.

Die eBook ISBN deckt die Leanpub und Stepik eBook-Verteilungen ab, beide verfiig-
bar tiber www.AtomicKotlin.com.

Bitte kaufen Sie dieses Buch iiber www.AtomicKotlin.com, um seine fortlaufen-
de Pflege und Aktualisierungen zu unterstiitzen.

Alle Rechte vorbehalten. Gedruckt in den Vereinigten Staaten von Amerika. Diese
Veroffentlichung ist urheberrechtlich geschiitzt, und es muss eine Genehmigung
vom Verlag eingeholt werden, bevor eine unzulassige Vervielfaltigung, Speicherung
in einem Abrufsystem oder Ubertragung in irgendeiner Form oder auf irgendeine
Weise, sei es elektronisch, mechanisch, durch Fotokopien, Aufnahmen oder ahnliches,
erfolgt. Fir Informationen zu Genehmigungen siehe www.AtomicKotlin.com.

Erstellt in Crested Butte, Colorado, USA, und Munchen, Deutschland.

Urheberrecht 2

Text gedruckt in den Vereinigten Staaten.
Umschlaggestaltung von Daniel Will-Harris, www.Will-Harris.com*

Viele der von Herstellern und Verkdufern verwendeten Bezeichnungen, um ih-
re Produkte zu unterscheiden, werden als Markenzeichen beansprucht. Wo diese
Bezeichnungen in diesem Buch erscheinen und der Verlag von einem Marken-
zeichenanspruch wusste, sind die Bezeichnungen mit Anfangsbuchstaben oder in
Grof3buchstaben gedruckt.

Das Kotlin-Markenzeichen gehort der Kotlin Foundation®. Java ist ein Markenzeichen
oder eingetragenes Markenzeichen von Oracle, Inc. in den Vereinigten Staaten
und anderen Landern. Windows ist ein eingetragenes Markenzeichen der Micro-
soft Corporation in den Vereinigten Staaten und anderen Landern. Alle anderen
Produktnamen und Firmennamen, die hierin erwidhnt werden, sind Eigentum ihrer
jeweiligen Inhaber.

Die Autoren und der Verlag haben bei der Erstellung dieses Buches Sorgfalt walten
lassen, tibernehmen jedoch keine ausdriickliche oder stillschweigende Gewahrleis-
tung und tbernehmen keine Verantwortung fiir Fehler oder Auslassungen. Es wird
keine Haftung fiir beildufige oder Folgeschdden im Zusammenhang mit oder aus der
Nutzung der hierin enthaltenen Informationen oder Programme {ibernommen.

Besuchen Sie uns auf www.AtomicKotlin.com.

Quellcode

Der gesamte Quellcode fiir dieses Buch ist als urheberrechtlich geschiitztes Freeware
verfiigbar, verteilt tiber Github®. Um sicherzustellen, dass Sie die aktuellste Version
haben, ist dies die offizielle Code-Vertriebssite. Sie diirfen diesen Code in Klassen-
zimmern und anderen Bildungssituationen verwenden, solange Sie dieses Buch als
Quelle angeben.

Das Hauptziel dieses Urheberrechts besteht darin, sicherzustellen, dass die Quelle
des Codes ordnungsgemaf} angegeben wird, und zu verhindern, dass Sie den Code
ohne Genehmigung neu veréffentlichen. (Solange dieses Buch zitiert wird, ist die

'http://www.Will-Harris.com
*https://kotlinlang.org/foundation/kotlin-foundation.html
*https://github.com/BruceEckel/ AtomicKotlinExamples

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

http://www.will-harris.com/
https://kotlinlang.org/foundation/kotlin-foundation.html
https://github.com/BruceEckel/AtomicKotlinExamples
http://www.will-harris.com/
https://kotlinlang.org/foundation/kotlin-foundation.html
https://github.com/BruceEckel/AtomicKotlinExamples

Urheberrecht 3

Verwendung von Beispielen aus dem Buch in den meisten Medien im Allgemeinen
kein Problem.)

In jeder Quellcodedatei finden Sie einen Verweis auf den folgenden Urheberrechts-
hinweis:

// Copyright.txt
This computer source code is Copyright ©2021 MindView LLC.
All Rights Reserved.

Permission to use, copy, modify, and distribute this
computer source code (Source Code) and its documentation
without fee and without a written agreement for the
purposes set forth below is hereby granted, provided that
the above copyright notice, this paragraph and the
following five numbered paragraphs appear in all copies.

1. Permission is granted to compile the Source Code and to
include the compiled code, in executable format only, in
personal and commercial software programs.

2. Permission is granted to use the Source Code without
modification in classroom situations, including in
presentation materials, provided that the book "Atomic
Kotlin" is cited as the origin.

3. Permission to incorporate the Source Code into printed
media may be obtained by contacting:

MindView LLC, PO Box 969, Crested Butte, CO 81224
MindViewInc@gmail.com

4. The Source Code and documentation are copyrighted by
MindView LLC. The Source code is provided without express
or implied warranty of any kind, including any implied
warranty of merchantability, fitness for a particular
purpose or non-infringement. MindView LLC does not

warrant that the operation of any program that includes the
Source Code will be uninterrupted or error-free. MindView
LLC makes no representation about the suitability of the
Source Code or of any software that includes the Source
Code for any purpose. The entire risk as to the quality

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Urheberrecht 4

and performance of any program that includes the Source
Code is with the user of the Source Code. The user
understands that the Source Code was developed for research
and instructional purposes and is advised not to rely
exclusively for any reason on the Source Code or any
program that includes the Source Code. Should the Source
Code or any resulting software prove defective, the user
assumes the cost of all necessary servicing, repair, or
correction.

5. IN NO EVENT SHALL MINDVIEW LLC, OR ITS PUBLISHER BE
LIABLE TO ANY PARTY UNDER ANY LEGAL THEORY FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,
INCLUDING LOST PROFITS, BUSINESS INTERRUPTION, LOSS OF
BUSINESS INFORMATION, OR ANY OTHER PECUNIARY LOSS, OR FOR
PERSONAL INJURIES, ARISING OUT OF THE USE OF THIS SOURCE
CODE AND ITS DOCUMENTATION, OR ARISING OUT OF THE INABILITY
TO USE ANY RESULTING PROGRAM, EVEN IF MINDVIEW LLC, OR

ITS PUBLISHER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE. MINDVIEW LLC SPECIFICALLY DISCLAIMS ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE SOURCE CODE AND DOCUMENTATION PROVIDED
HEREUNDER IS ON AN "AS IS" BASIS, WITHOUT ANY ACCOMPANYING
SERVICES FROM MINDVIEW LLC, AND MINDVIEW LLC HAS NO
OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
ENHANCEMENTS, OR MODIFICATIONS.

Please note that MindView LLC maintains a Web site which is
the sole distribution point for electronic copies of the
Source Code, where it is freely available under the terms
stated above:

https://github.com/BrucekEckel /AtomicKotlinExamples

If you think you've found an error in the Source Code,
please submit a correction at:
https://github.com/BruceEckel /AtomicKotlinExamples/issues

Sie durfen den Code in Thren Projekten und im Klassenzimmer verwenden (ein-
schliellich Threr Prasentationsmaterialien), solange der Urheberrechtshinweis, der
in jeder Quelldatei erscheint, erhalten bleibt.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Abschnitt I: Grundlagen
der Programmierung

There was something amazingly enticing about programming—Vint Cerf

Dieser Abschnitt ist fiir Leser gedacht, die gerade das Programmieren lernen. Wenn
Sie ein erfahrener Programmierer sind, iberspringen Sie diesen Abschnitt und fahren
Sie mit Zusammenfassung 1 und Zusammenfassung 2 fort.

EinfuUhrung

Dieses Buch ist fiir engagierte Anfanger und erfahrene Programmierer.

Sie sind ein Anfanger, wenn Sie keine Vorkenntnisse im Programmieren haben, aber
“engagiert”, weil wir Thnen gerade genug geben, um es selbst herauszufinden. Wenn
Sie fertig sind, haben Sie eine solide Grundlage in der Programmierung und in Kotlin.

Wenn Sie ein erfahrener Programmierer sind, tiberspringen Sie zu Zusammenfassung
1 und Zusammenfassung 2 und fahren Sie von dort aus fort.

Der “Atomare” Teil des Buchtitels bezieht sich auf Atome als die kleinsten unteilbaren
Einheiten. In diesem Buch versuchen wir, nur ein Konzept pro Kapitel einzufiihren,
sodass die Kapitel nicht weiter unterteilt werden konnen — daher nennen wir sie
Atome.

Konzepte

Alle Programmiersprachen bestehen aus Funktionen. Sie wenden diese Funktionen
an, um Ergebnisse zu erzielen. Kotlin ist machtig — es hat nicht nur eine reiche Menge
an Funktionen, sondern man kann diese Funktionen normalerweise auf verschiedene
Arten ausdriicken.

Wenn alles zu schnell auf Sie einprasselt, konnten Sie denken, Kotlin sei “zu
kompliziert”.

Dieses Buch versucht, Uberforderung zu verhindern. Wir bringen IThnen die Sprache
sorgfaltig und gezielt bei, unter Anwendung der folgenden Prinzipien:

1. Babyschritte und kleine Erfolge. Wir werfen die Tyrannei des Kapitels ab.
Stattdessen présentieren wir jeden kleinen Schritt als ein omares Konzept
oder einfach Atom, das wie ein winziges Kapitel aussieht. Wir versuchen, pro
Atom nur ein neues Konzept vorzustellen. Ein typisches Atom enthalt ein oder
mehrere kleine, ausfiihrbare Codebeispiele und die erzeugte Ausgabe.

Einfihrung 7

2. Keine Vorwirtsverweise. Soweit moglich, vermeiden wir es zu sagen: “Diese
Funktionen werden in einem spateren Atom erklart”

3. Keine Verweise auf andere Programmiersprachen. Wir tun dies nur, wenn es
notwendig ist. Ein Vergleich mit einer Funktion in einer Sprache, die Sie nicht
verstehen, ist nicht hilfreich.

4. Zeigen, nicht erzihlen. Anstatt eine Funktion verbal zu beschreiben, bevorzu-
gen wir Beispiele und Ausgaben. Es ist besser, eine Funktion im Code zu sehen.

5. Praxis vor Theorie. Wir versuchen, zuerst die Mechanik der Sprache zu zeigen
und dann zu erklaren, warum diese Funktionen existieren. Das ist umgekehrt
zur “traditionellen” Lehre, scheint aber oft besser zu funktionieren.

Wenn Sie die Funktionen kennen, konnen Sie die Bedeutung herausfinden. Es ist in
der Regel einfacher, eine einzelne Seite Kotlin zu verstehen als den entsprechenden
Code in einer anderen Sprache.

Wo ist der Index?

Dieses Buch ist in Markdown geschrieben und mit Leanpub produziert. Leider unter-
stiitzen weder Markdown noch Leanpub Indizes. Indem wir jedoch die kleinstmog-
lichen Kapitel (Atome) schaffen, die aus einem einzigen Thema pro Atom bestehen,
fungiert das Inhaltsverzeichnis als eine Art Index. Dariiber hinaus ermdglichen die
eBook-Versionen elektronisches Suchen im gesamten Buch.

Querverweise

Ein Verweis auf ein Atom im Buch sieht so aus: Einfithrung, was in diesem Fall
auf das aktuelle Atom verweist. In den verschiedenen eBook-Formaten erzeugt dies
einen Hyperlink zu diesem Atom.

Formatierung

In diesem Buch:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Einfithrung 8

« Kursiv fithrt einen neuen Begriff oder ein Konzept ein und betont manchmal
eine Idee.

« Schrift mit fester Breite zeigt Programmschliisselworter, Bezeichner und
Dateinamen an. Die Codebeispiele sind ebenfalls in dieser Schriftart und in den
eBook-Versionen des Buches farblich hervorgehoben.

« Im Flie3text folgt auf einen Funktionsnamen leere Klammern, wie in func().
Dies erinnert den Leser daran, dass er eine Funktion betrachtet.

« Um das eBook auf allen Geréten leicht lesbar zu machen und dem Benutzer
zu ermoglichen, die Schriftgréfie zu erhohen, begrenzen wir die Breite unserer
Code-Listings auf 47 Zeichen. Dies erfordert manchmal Kompromisse, aber
wir glauben, dass die Ergebnisse es wert sind. Um diese Breiten zu erreichen,
entfernen wir moglicherweise Leerzeichen, die in vielen Formatierungsstilen
ansonsten enthalten wéren — insbesondere verwenden wir Einriickungen von
zwei Leerzeichen anstelle der standardméafligen vier Leerzeichen.

“Pause”

Gelegentlich sehen Sie:

Dies zeigt eine Pause oder eine Art kleinen Reset an. In diesem Buch erscheint
es oft vor einer kurzen Zusammenfassung des aktuellen Unterabschnitts, wo ein
“Zusammenfassung”-Untertitel Gbertrieben wire. Einige Blicher verwenden einen
Mechanismus wie diesen, um anzuzeigen, dass eine Idee abgeschlossen ist und wir
etwas Neues beginnen, das jedoch noch im gleichen Thema liegt und nicht grof3
genug ist, um einen Unterabschnitt oder einen neuen Abschnitt zu rechtfertigen. Das
Markdown in Leanpub ist ziemlich begrenzt, und die Verwendung von einem oder
mehreren Punkten (mein urspringlicher Versuch) ist nicht moglich. Zwei Striche im
Markdown zu setzen, erzeugt einen Punkt und einen Strich. Es konnte eine bessere
Moglichkeit geben, dies zu tun, aber ich habe sie nicht gefunden, also habe ich mich
darauf festgelegt.

Probieren Sie das Buch aus

Wir bieten eine kostenlose Probe des elektronischen Buches auf AtomicKotlin.com
an. Die Probe enthilt die ersten beiden Abschnitte in voller Lange sowie mehrere

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Einfithrung 9

nachfolgende Atome. So konnen Sie das Buch ausprobieren und entscheiden, ob es
fiir Sie geeignet ist.

Das vollstandige Buch ist sowohl als Druckversion als auch als eBook erhaltlich.
Wenn Thnen gefillt, was wir in der kostenlosen Probe gemacht haben, unterstiitzen
Sie uns bitte und helfen Sie uns, unsere Arbeit fortzusetzen, indem Sie fiir das
bezahlen, was Sie nutzen. Wir hoffen, das Buch hilft Thnen, und wir schitzen IThre
Unterstiitzung.

Im Zeitalter des Internets scheint es unmoglich, irgendein Stiick Information zu
kontrollieren. Sie werden wahrscheinlich die elektronische Version dieses Buches an
zahlreichen Orten finden. Wenn Sie im Moment nicht fiir das Buch zahlen kénnen
und es von einer dieser Seiten herunterladen, ,geben Sie es bitte weiter”. Helfen Sie
beispielsweise jemand anderem, die Sprache zu lernen, sobald Sie sie beherrschen.
Oder helfen Sie jemandem auf irgendeine Weise, wie er es braucht. Vielleicht geht
es Thnen in Zukunft besser, und dann koénnen Sie fur das Buch bezahlen.

Ubungen und Lésungen

Die meisten Atome in Atomic Kotlin werden von einer Handvoll kleiner Ubungen
begleitet. Um Ihr Verstandnis zu verbessern, empfehlen wir, die Ubungen unmittelbar
nach dem Lesen des Atoms zu 16sen. Die meisten Ubungen werden automatisch von
der JetBrains Intelli] IDEA integrierten Entwicklungsumgebung (IDE) Gberpriift, so-
dass Sie Ihren Fortschritt sehen und Hinweise erhalten konnen, wenn Sie feststecken.

Sie finden die folgenden Links unter http://AtomicKotlin.com/exercises/*.

Um die Ubungen zu 16sen, installieren Sie Intelli] IDEA mit dem EduTools-Plugin,
indem Sie diesen Tutorials folgen:

1. Installieren Sie Intelli] IDEA und das EduTools-Plugin®.
2. Offnen Sie den Atomic Kotlin-Kurs und lésen Sie die Ubungen®.

Im Kurs finden Sie Losungen fiir alle Ubungen. Wenn Sie bei einer Ubung feststecken,
schauen Sie nach Hinweisen oder werfen Sie einen Blick auf die Losung. Wir
empfehlen dennoch, sie selbst zu implementieren.

“http://AtomicKotlin.com/exercises/
*https://www.jetbrains.com/help/education/install-edutools-plugin.html
“https://www.jetbrains.com/help/education/learner-start-guide.html?section=Atomic%20Kotlin

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

http://atomickotlin.com/exercises/
https://www.jetbrains.com/help/education/install-edutools-plugin.html
https://www.jetbrains.com/help/education/learner-start-guide.html?section=Atomic%20Kotlin
http://atomickotlin.com/exercises/
https://www.jetbrains.com/help/education/install-edutools-plugin.html
https://www.jetbrains.com/help/education/learner-start-guide.html?section=Atomic%20Kotlin

Einfithrung 10

Wenn Sie Probleme bei der Einrichtung und Ausfithrung des Kurses haben, lesen Sie
bitte den Leitfaden zur Fehlerbehebung’. Wenn das Thr Problem nicht 16st, wenden
Sie sich bitte an das Support-Team, wie im Leitfaden angegeben.

Wenn Sie einen Fehler im Kursinhalt finden (zum Beispiel ein Test fiir eine Aufgabe
liefert das falsche Ergebnis), nutzen Sie bitte unser Issue-Tracker, um das Problem
mit diesem vorausgefiillten Formular® zu melden. Beachten Sie, dass Sie sich bei
YouTrack anmelden missen. Wir schitzen Thre Zeit, um den Kurs zu verbessern!

Seminare

Informationen zu Live-Seminaren und anderen Lernwerkzeugen finden Sie auf
AtomicKotlin.com.

Konferenzen

Bruce organisiert Open-Spaces-Konferenzen wie das Winter Tech Forum’. Treten Sie
der Mailingliste auf AtomicKotlin.com bei, um tiber unsere Aktivitaten und Vortrage
informiert zu bleiben.

Unterstutzen Sie uns

Dies war ein grof3es Projekt. Es hat Zeit und Miihe gekostet, dieses Buch und die
begleitenden Unterstiitzungsmaterialien zu erstellen. Wenn Thnen dieses Buch gefallt
und Sie mehr davon sehen mochten, unterstiitzen Sie uns bitte:

- Bloggen, tweeten Sie, usw. und erzihlen Sie Ihren Freunden davon. Dies
ist eine Graswurzel-Marketing-Bemiithung, daher hilft alles, was Sie tun.

« Kaufen Sie eine eBook- oder Druckversion dieses Buches auf AtomicKot-
lin.com.

« Besuchen Sie AtomicKotlin.com fiir andere Unterstiitzungsprodukte oder Ver-
anstaltungen.

"https://www jetbrains.com/help/education/troubleshooting-guide.html
®https://youtrack.jetbrains.com/newlssue?project=EDC&summary=AtomicKotlin%3A&c=Subsystem%20Kotlin&c=
*http://www.WinterTechForum.com

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

https://www.jetbrains.com/help/education/troubleshooting-guide.html
https://youtrack.jetbrains.com/newIssue?project=EDC&summary=AtomicKotlin:&c=Subsystem%20Kotlin&c=
http://www.wintertechforum.com/
https://www.jetbrains.com/help/education/troubleshooting-guide.html
https://youtrack.jetbrains.com/newIssue?project=EDC&summary=AtomicKotlin:&c=Subsystem%20Kotlin&c=
http://www.wintertechforum.com/

Einfithrung 11

Uber uns

Bruce Eckel ist der Autor der mehrfach ausgezeichneten Biicher Thinking in Java
und Thinking in C++ sowie einer Reihe weiterer Biicher iiber Computerprogrammie-
rung, darunter Atomic Scala®. Er hat weltweit Hunderte von Prasentationen gehal-
ten und alternative Konferenzen und Veranstaltungen wie das Winter Tech Forum™
und Entwickler-Retreats organisiert. Bruce hat einen BS in angewandter Physik und
einen MS in Computertechnik. Sein Blog befindet sich auf www.BruceEckel.com"
und sein Beratungs-, Trainings- und Konferenzunternehmen ist Mindview LLC*".

Svetlana Isakova begann als Mitglied des Kotlin-Compiler-Teams und ist nun
eine Entwickler-Botschafterin fiir JetBrains. Sie unterrichtet Kotlin und spricht auf
Konferenzen weltweit und ist Mitautorin des Buches Kotlin in Action.

Danksagungen

« Das Kotlin-Sprachdesign-Team und die Mitwirkenden.

« Die Entwickler von Leanpub, die das Veroffentlichen dieses Buches so viel
einfacher gemacht haben.

« James Ward fiir die Umwandlung des Gradle-Builds in Kotlin und dafiir, dass
er im Allgemeinen grofartig ist.

Widmungen

Fiir meinen geliebten Vater, E. Wayne Eckel. 1. April 1924—23. November 2016. Du
hast mir zuerst etwas iber Maschinen, Werkzeuge und Design beigebracht.

Fiir meinen Vater, Sergey Lvovich Isakov, der so frith von uns gegangen ist und den
wir immer vermissen werden.

%http://www.atomicscala.com/
"http://www.WinterTechForum.com
*http://www.BruceEckel.com
Phttps://www.mindviewllc.com/

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

http://www.atomicscala.com/
http://www.wintertechforum.com/
http://www.bruceeckel.com/
https://www.mindviewllc.com/
http://www.atomicscala.com/
http://www.wintertechforum.com/
http://www.bruceeckel.com/
https://www.mindviewllc.com/

Einfithrung 12

Uber das Cover

Daniel Will-Harris' gestaltete das Cover basierend auf dem Kotlin-Logo.

“http://www.will-harris.com

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

http://www.will-harris.com/
http://www.will-harris.com/

Warum Kotlin?

Programme sollen so geschrieben werden, dass Menschen sie lesen kénnen,
und erst in zweiter Linie fiir Maschinen, die sie ausfiihren.—Harold
Abelson, Mitautor, Structure and Interpretation of Computer Programs.

Dieses Kapitel bietet einen Uberblick iiber die historische Entwicklung von Program-
miersprachen, damit Sie verstehen, wo Kotlin einzuordnen ist und warum Sie es
lernen mochten. Wir fiihren einige Themen ein, die, wenn Sie ein Anfdinger sind,
momentan zu kompliziert erscheinen mégen. Fiihlen Sie sich frei, dieses Kapitel zu
iiberspringen und spdter darauf zuriickzukommen, nachdem Sie mehr vom Buch
gelesen haben.

Die Gestaltung von Programmiersprachen ist ein evolutionidrer Weg, der von der
Erfillung der Bediirfnisse der Maschine zur Erfiillung der Bediirfnisse des Program-
mierers fiihrt.

Eine Programmiersprache wird von einem Sprachdesigner erfunden und als eines
oder mehrere Programme implementiert, die als Werkzeuge zur Nutzung der Sprache
dienen. Der Implementierer ist in der Regel der Sprachdesigner, zumindest anfangs.

Frithe Sprachen konzentrierten sich auf Hardwarebeschrankungen. Mit zunehmen-
der Rechenleistung der Computer verlagerten sich neuere Sprachen hin zu an-
spruchsvollerer Programmierung mit einem Schwerpunkt auf Zuverlassigkeit. Diese
Sprachen konnen Merkmale basierend auf der Psychologie des Programmierens
wiahlen.

Jede Programmiersprache ist eine Sammlung von Experimenten. Historisch gesehen
war das Design von Programmiersprachen eine Abfolge von Vermutungen und
Annahmen dariiber, was Programmierer produktiver machen konnte. Einige dieser
Experimente scheitern, einige sind maf3ig erfolgreich und einige sind sehr erfolgreich.

Wir lernen aus den Experimenten jeder neuen Sprache. Einige Sprachen befassen
sich mit Problemen, die sich als nebensachlich statt wesentlich erweisen, oder die

Warum Kotlin? 14

Umgebung andert sich (schnellere Prozessoren, giinstigere Speicher, neues Verstand-
nis von Programmierung und Sprachen) und dieses Problem wird weniger wichtig
oder sogar unbedeutend. Wenn diese Ideen veraltet sind und sich die Sprache nicht
weiterentwickelt, verschwindet sie aus der Verwendung.

Die urspriinglichen Programmierer arbeiteten direkt mit Zahlen, die Prozessor-
Maschinenbefehle darstellten. Dieser Ansatz fuhrte zu zahlreichen Fehlern, und
Assemblersprache wurde geschaffen, um die Zahlen durch mnemonische Opcodes—
Worter, die sich Programmierer leichter merken und lesen konnten, zusammen
mit anderen hilfreichen Werkzeugen zu ersetzen. Es gab jedoch immer noch eine
Eins-zu-eins-Entsprechung zwischen Assemblerbefehlen und Maschinenbefehlen,
und Programmierer mussten jede Zeile Assemblercode schreiben. Dariiber hinaus
verwendete jeder Computerprozessor seine eigene spezifische Assemblersprache.

Das Entwickeln von Programmen in Assemblersprache ist dufierst kostspielig. Hohe-
re Programmiersprachen helfen, dieses Problem zu l6sen, indem sie eine Abstrakti-
onsebene von den niedrigeren Assemblersprachen schaffen.

Compiler und Interpreter

Die Anweisungen einer interpretierten Sprache werden direkt von einem Programm
namens Interpreter ausgefithrt. Kotlin wird kompiliert statt interpretiert. Der Quell-
code einer kompilierten Sprache wird in eine andere Darstellung umgewandelt, die
als eigenes Programm lauft, entweder direkt auf einem Hardwareprozessor oder auf
einer virtuellen Maschine, die einen Prozessor emuliert:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Warum Kotlin? 15

Source code

l Compilation

Machine
Instructions
or
Bytecode

l Run

Result

Sprachen wie C, C++, Go und Rust werden in Maschinencode kompiliert, der
direkt auf der zugrunde liegenden Hardware-Zentralverarbeitungseinheit (CPU)
lauft. Sprachen wie Java und Kotlin werden in Bytecode kompiliert, der ein Zwischen-
format ist, das nicht direkt auf der Hardware-CPU lauft, sondern auf einer virtuellen
Maschine, einem Programm, das Bytecode-Anweisungen ausfiihrt. Programme, die
von der JVM-Version von Kotlin erzeugt werden, laufen auf der jJava Virtual Machine
(JVM).

Die Portabilitat ist ein wichtiger Vorteil einer virtuellen Maschine. Der gleiche
Bytecode kann auf jedem Computer laufen, der eine virtuelle Maschine hat. Virtuelle
Maschinen konnen fiir spezielle Hardware optimiert werden und Geschwindigkeits-
probleme l6sen. Die JVM enthalt viele Jahre solcher Optimierungen und wurde auf
vielen Plattformen implementiert.

Zur Kompilierungszeit wird der Code vom Compiler iiberpriift, um Kompilierungs-
fehler zu entdecken. (Intelli] IDEA und andere Entwicklungsumgebungen heben
diese Fehler hervor, wenn Sie den Code eingeben, sodass Sie schnell Probleme
entdecken und beheben konnen). Wenn es keine Kompilierungsfehler gibt, wird der
Quellcode in Bytecode kompiliert.

Ein Laufzeitfehler kann zur Kompilierungszeit nicht entdeckt werden, daher tritt
er erst auf, wenn Sie das Programm ausfithren. Typischerweise sind Laufzeitfehler
schwieriger zu entdecken und teurer zu beheben. Statisch typisierte Sprachen wie
Kotlin entdecken so viele Fehler wie moglich zur Kompilierungszeit, wahrend

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Warum Kotlin? 16

dynamische Sprachen ihre Sicherheitsprifungen zur Laufzeit durchfithren (einige
dynamische Sprachen fithren nicht so viele Sicherheitspriifungen durch, wie sie
konnten).

Sprachen, die Kotlin beeinflusst haben

Kotlin zieht seine Ideen und Merkmale aus vielen Sprachen, und diese Sprachen wur-
den von fritheren Sprachen beeinflusst. Es ist hilfreich, etwas iiber die Geschichte der
Programmiersprachen zu wissen, um Perspektiven zu gewinnen, wie wir zu Kotlin
gekommen sind. Die hier beschriebenen Sprachen wurden wegen ihres Einflusses auf
die nachfolgenden Sprachen ausgewahlt. All diese Sprachen inspirierten letztendlich
das Design von Kotlin, manchmal indem sie ein Beispiel dafiir waren, was man nicht
tun sollte.

FORTRAN: FORmula TRANslation (1957)

Entwickelt fiir den Einsatz durch Wissenschaftler und Ingenieure, war das Ziel von
Fortran, das Codieren von Gleichungen zu erleichtern. Fein abgestimmte und getes-
tete Fortran-Bibliotheken sind noch heute im Einsatz, werden jedoch typischerweise
“umwickelt”, um sie von anderen Sprachen aus aufrufbar zu machen.

LISP: LISt Processor (1958)

Anstatt anwendungsspezifisch zu sein, verkorperte LISP wesentliche Programmier-
konzepte; es war die Sprache der Informatiker und die erste funktionale Program-
miersprache (Sie werden in diesem Buch iiber funktionale Programmierung lernen).
Der Kompromiss fiir seine Macht und Flexibilitat war die Effizienz: LISP war
typischerweise zu teuer, um auf frithen Maschinen ausgefiithrt zu werden, und erst in
den letzten Jahrzehnten wurden Maschinen schnell genug, um eine Wiederbelebung
der Nutzung von LISP zu ermdglichen. Zum Beispiel ist der GNU Emacs-Editor
vollstandig in LISP geschrieben und kann mit LISP erweitert werden.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Warum Kotlin? 17

ALGOL: ALGOrithmic Language (1958)

Wahrscheinlich die einflussreichste der Sprachen der 1950er Jahre, da sie eine Syntax
einfiihrte, die in vielen nachfolgenden Sprachen Bestand hatte. Zum Beispiel sind C
und seine Derivate “ALGOL-&hnliche” Sprachen.

COBOL: COmmon Business-Oriented Language (1959)

Entwickelt fir Geschift, Finanzen und administrative Datenverarbeitung. Es hat
eine englischartige Syntax und sollte selbstdokumentierend und sehr lesbar sein.
Obwohl diese Absicht im Allgemeinen scheiterte—COBOL ist bertichtigt fiir Feh-
ler, die durch ein fehlplatziertes Punktzeichen eingefithrt wurden—zwang das US-
Verteidigungsministerium die weitverbreitete Einfiihrung auf Grofirechnern, und
Systeme laufen (und erfordern Wartung) noch heute.

BASIC: Beginners’ All-purpose Symbolic Instruction
Code (1964)

BASIC war einer der frithen Versuche, Programmieren zuganglich zu machen.
Obwohl sehr erfolgreich, waren seine Funktionen und Syntax begrenzt, sodass es
nur teilweise hilfreich fiir Menschen war, die anspruchsvollere Sprachen lernen
mussten. Es ist iberwiegend eine interpretierte Sprache, was bedeutet, dass man
den urspriinglichen Code fiir das Programm benétigt, um es auszufithren. Trotz-
dem wurden viele niitzliche Programme in BASIC geschrieben, insbesondere als
Skriptsprache fiir Microsofts “Office”-Produkte. BASIC konnte sogar als die erste
“offene” Programmiersprache betrachtet werden, da zahlreiche Variationen davon
erstellt wurden.

Simula 67, die urspriingliche objektorientierte Sprache
(1967)

Eine Simulation beinhaltet typischerweise viele “Objekte”, die miteinander interagie-
ren. Verschiedene Objekte haben unterschiedliche Eigenschaften und Verhaltenswei-
sen. Die zu der Zeit existierenden Sprachen waren unhandlich fiir Simulationen zu

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Warum Kotlin? 18

verwenden, daher wurde Simula (eine weitere “ALGOL-dhnliche” Sprache) entwi-
ckelt, um direkte Unterstiitzung fiir die Erstellung von Simulationsobjekten zu bieten.
Es stellt sich heraus, dass diese Ideen auch fiir allgemeine Programmierung niitzlich
sind, und dies war der Ursprung der objektorientierten (OO) Sprachen.

Pascal (1970)

Pascal erhohte die Kompilierungsgeschwindigkeit, indem es die Sprache so ein-
schrankte, dass sie als Einzelpass-Compiler implementiert werden konnte. Die
Sprache zwang den Programmierer, ihren Code auf eine bestimmte Weise zu
strukturieren und legte etwas umstindliche und weniger lesbare Einschrankungen
fiir die Programmorganisation auf. Da Prozessoren schneller wurden, Speicher
billiger und die Compiler-Technologie besser, wurden die Auswirkungen dieser
Einschrankungen zu kostspielig.

Eine Implementierung von Pascal, Turbo Pascal von Borland, arbeitete zunéchst auf
CP/M-Maschinen und machte dann den Sprung zu frithen MS-DOS (Vorlaufer von
Windows), spater entwickelte es sich zur Delphi-Sprache fiir Windows. Indem alles
im Speicher untergebracht wurde, kompilierte Turbo Pascal in atemberaubender Ge-
schwindigkeit auf sehr leistungsschwachen Maschinen, was das Programmerlebnis
dramatisch verbesserte. Sein Schopfer, Anders Hejlsberg, entwarf spater sowohl C#
als auch TypeScript.

Niklaus Wirth, der Erfinder von Pascal, schuf nachfolgende Sprachen: Modula,
Modula-2 und Oberon. Wie der Name schon sagt, konzentrierte sich Modula auf
die Aufteilung von Programmen in Module, fiir bessere Organisation und schnellere
Kompilierung. Die meisten modernen Sprachen unterstiitzen separate Kompilierung
und eine Form von Modulsystem.

C (1972)

Trotz der zunehmenden Zahl von Hochsprachen schrieben Programmierer immer
noch in Assemblersprache. Dies wird oft als Systemprogrammierung bezeichnet, da
es auf Ebene des Betriebssystems erfolgt, umfasst aber auch eingebettete Program-
mierung fiir spezielle physische Gerate. Dies ist nicht nur mithsam und teuer (Bruce
begann seine Karriere mit dem Schreiben von Assemblersprache fiir eingebettete

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Warum Kotlin? 19

Systeme), sondern es ist auch nicht portabel—Assemblersprache kann nur auf
dem Prozessor laufen, fir den sie geschrieben wurde. C wurde als “hochlevelige
Assemblersprache” entworfen, die dennoch nah genug an der Hardware ist, dass man
selten Assemblersprache schreiben muss. Noch wichtiger ist, dass ein C-Programm
auf jedem Prozessor mit einem C-Compiler lauft. C entkoppelte das Programm vom
Prozessor, was ein grofes und teures Problem loste. Als Ergebnis konnten ehemalige
Assemblersprachen-Programmierer in C weitaus produktiver sein. C war so effektiv,
dass neuere Sprachen (insbesondere Go und Rust) immer noch versuchen, es fiir die
Systemprogrammierung abzuldsen.

Smalltalk (1972)

Von Anfang an als rein objektorientiert konzipiert, hat Smalltalk die OO- und
Sprachtheorie erheblich vorangebracht, indem es eine Plattform fiir Experimente war
und die schnelle Anwendungsentwicklung demonstrierte. Es wurde jedoch in einer
Zeit entwickelt, als Sprachen noch proprietar waren, und der Einstiegspreis fiir ein
Smalltalk-System konnte in die Tausende gehen. Es war interpretiert, sodass man
eine Smalltalk-Umgebung benétigte, um Programme auszufithren. Open-Source-
Smalltalk-Implementierungen erschienen erst, nachdem die Programmierwelt sich
weiterentwickelt hatte. Smalltalk-Programmierer haben groflartige Einblicke gelie-
fert, die spateren OO-Sprachen wie C++ und Java zugutekamen.

C++: Ein besseres C mit Objekten (1983)

Bjarne Stroustrup schuf C++, weil er ein besseres C wollte und Unterstiitzung fiir die
objektorientierten Konstrukte, die er bei der Verwendung von Simula-67 erlebt hatte.
Bruce war acht Jahre lang Mitglied des C++-Normungsausschusses und schrieb drei
Biicher iiber C++, darunter Thinking in C++.

Riickwartskompatibilitdit mit C war ein grundlegendes Prinzip des C++-Designs,
sodass C-Code in C++ mit praktisch keinen Anderungen kompiliert werden kann.
Dies bot einen einfachen Migrationspfad - Programmierer konnten weiterhin in
C programmieren, die Vorteile von C++ nutzen und langsam mit C++-Funktionen
experimentieren, wihrend sie produktiv blieben. Die meisten Kritiken an C++ lassen
sich auf die Einschrankung der Rickwartskompatibilitiat mit C zuriickfithren.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Warum Kotlin? 20

Eines der Probleme bei C war das Thema Speicherverwaltung. Der Programmierer
muss zuerst Speicher erwerben, dann eine Operation mit diesem Speicher ausfiih-
ren und dann den Speicher freigeben. Das Vergessen, Speicher freizugeben, wird
als Speicherleck bezeichnet und kann dazu fiithren, dass der verfiigbare Speicher
aufgebraucht wird und der Prozess abstiirzt. Die anfangliche Version von C++
machte einige Innovationen in diesem Bereich, zusammen mit Konstruktoren, um
eine ordnungsgemafle Initialisierung sicherzustellen. Spétere Versionen der Sprache
haben bedeutende Verbesserungen in der Speicherverwaltung vorgenommen.

Python: Freundlich und flexibel (1990)

Der Designer von Python, Guido Van Rossum, schuf die Sprache basierend auf seiner
Inspiration des ,Programmieren fiir alle®. Seine Pflege der Python-Community hat
ihr den Ruf verliehen, die freundlichste und unterstiitzendste Community in der
Programmierwelt zu sein. Python war eine der ersten Open-Source-Sprachen, was zu
Implementierungen auf praktisch jeder Plattform fiihrte, einschlieBlich eingebetteter
Systeme und maschinellem Lernen. Seine Dynamik und Benutzerfreundlichkeit
machen es ideal fiir die Automatisierung kleiner, sich wiederholender Aufgaben, aber
seine Funktionen unterstiitzen auch die Erstellung grofier, komplexer Programme.

Python ist eine echte “Grassroots”-Sprache; es hatte nie ein Unternehmen, das es
forderte, und die Einstellung seiner Fans war, die Sprache niemals zu pushen, sondern
einfach jedem zu helfen, der sie lernen mochte. Die Sprache verbessert sich stetig, und
in den letzten Jahren ist ihre Popularitét explodiert.

Python konnte die erste Mainstream-Sprache gewesen sein, die funktionale und
OO-Programmierung kombinierte. Es war Java voraus mit automatischer Spei-
cherverwaltung durch Miillabfuhr (normalerweise miissen Sie selbst nie Speicher
zuweisen oder freigeben) und der Fahigkeit, Programme auf mehreren Plattformen
auszufithren.

Haskell: Reine funktionale Programmierung (1990)

Inspiriert von Miranda (1985), einer proprietiren Sprache, wurde Haskell als offener
Standard fiir die Forschung zur reinen funktionalen Programmierung geschaffen,
obwohl es auch fiir Produkte verwendet wurde. Syntax und Ideen von Haskell haben
eine Reihe nachfolgender Sprachen beeinflusst, darunter Kotlin.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Warum Kotlin? 21

Java: Virtuelle Maschinen und Mullabfuhr (1995)

James Gosling und sein Team erhielten die Aufgabe, Code fiir eine TV-Set-Top-Box
zu schreiben. Sie entschieden, dass sie C++ nicht mochten und anstatt die Box zu
erstellen, entwickelten sie die Java-Sprache. Das Unternehmen, Sun Microsystems,
setzte einen enormen Marketingdruck hinter die kostenlose Sprache (damals eine
neue Idee), um die aufkommende Internetlandschaft zu dominieren.

Dieses wahrgenommene Zeitfenster fiir die Internet-Dominanz setzte das Java-
Sprachdesign unter erheblichen Druck, was zu einer betrdchtlichen Anzahl von
Miéngeln fithrte (Das Buch Thinking in Java beleuchtet diese Mangel, damit die
Leser darauf vorbereitet sind, mit ihnen umzugehen). Brian Goetz bei Oracle, der
derzeitige leitende Entwickler von Java, hat bemerkenswerte und iiberraschende
Verbesserungen an Java vorgenommen, trotz der Einschrankungen, die er geerbt hat.
Obwohl Java bemerkenswert erfolgreich war, ist ein wichtiges Kotlin-Designziel, die
Miéngel von Java zu beheben, damit Programmierer produktiver sein konnen.

Der Erfolg von Java beruht auf zwei innovativen Funktionen: einer virtuellen Maschi-
neund Miillabfuhr. Diese waren in anderen Sprachen verfiigbar - zum Beispiel haben
LISP, Smalltalk und Python Miillabfuhr, und UCSD Pascal lief auf einer virtuellen
Maschine -, aber sie wurden nie als praktikabel fiir Mainstream-Sprachen angesehen.
Java anderte das und machte Programmierer dadurch erheblich produktiver.

Eine virtuelle Maschine ist eine Zwischenebene zwischen der Sprache und der
Hardware. Die Sprache muss keinen Maschinencode fiir einen bestimmten Prozessor
erzeugen; sie muss nur eine Zwischen-Sprache (Bytecode) erzeugen, die auf der virtu-
ellen Maschine lauft. Virtuelle Maschinen erfordern Rechenleistung und wurden vor
Java als unpraktisch angesehen. Die Java Virtual Machine (JVM) fithrte zu Javas Slo-
gan “write once, run everywhere.” Dariiber hinaus kénnen andere Sprachen leichter
entwickelt werden, indem sie die JVM anvisieren; Beispiele umfassen Groovy, eine
Java-ahnliche Skriptsprache, und Clojure, eine Version von LISP.

Die Miillabfuhr 16st das Problem, das Freigeben von Speicher zu vergessen, oder
wenn es schwierig ist, zu wissen, wann ein Speicherplatz nicht mehr genutzt wird.
Projekte wurden erheblich verzogert oder sogar abgebrochen wegen Speicherlecks.
Obwohl die Miillabfuhr in einigen fritheren Sprachen vorkommt, galt sie als inak-
zeptabel aufwiandig, bis Java ihre Praktikabilitat demonstrierte.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Warum Kotlin? 22

JavaScript: Nur dem Namen nach Java (1995)

Der urspriingliche Webbrowser kopierte und zeigte einfach Seiten von einem Web-
server an. Webbrowser vervielfaltigten sich und wurden zu einer neuen Program-
mierplattform, die Sprachunterstiitzung benétigte. Java wollte diese Sprache sein,
war aber zu umstandlich fiir den Job. JavaScript begann als LiveScript und wurde
in NetScape Navigator integriert, einen der ersten Webbrowser. Die Umbenennung
in JavaScript war ein Marketingtrick von NetScape, da die Sprache nur eine vage
Ahnlichkeit mit Java hat.

Als das Web aufblithte, wurde JavaScript enorm wichtig. Das Verhalten von Ja-
vaScript war jedoch so unvorhersehbar, dass Douglas Crockford ein Buch mit
dem ironischen Titel JavaScript, the Good Parts schrieb, in dem er alle Probleme
mit der Sprache aufzeigte, damit Programmierer sie vermeiden konnen. Nachfol-
gende Verbesserungen durch das ECMAScript-Komitee haben JavaScript fiir einen
urspriinglichen JavaScript-Programmierer unkenntlich gemacht. Es wird jetzt als
stabile und ausgereifte Sprache betrachtet.

Web-Assembly (WASM) wurde von JavaScript abgeleitet, um eine Art Bytecode fiir
Webbrowser zu sein. Es lauft oft viel schneller als JavaScript und kann von anderen
Sprachen generiert werden. Zum Zeitpunkt des Schreibens arbeitet das Kotlin-Team
daran, WASM als Ziel hinzuzufiigen.

C#: Java fur .NET (2000)

C# wurde entwickelt, um einige der wichtigen Fahigkeiten von Java auf der NET
(Windows) Plattform bereitzustellen, wahrend es den Designern freistellte, sich nicht
an die Java-Sprache zu halten. Das Ergebnis beinhaltete zahlreiche Verbesserungen
gegentiiber Java. Zum Beispiel entwickelte C# das Konzept der Erweiterungsfunktio-
nen, die in Kotlin stark genutzt werden. C# wurde auch deutlich funktionaler als Java.
Viele C#-Funktionen haben offensichtlich das Design von Kotlin beeinflusst.

Scala: SCALAble (2003)

Martin Odersky schuf Scala, um auf der Java Virtual Machine zu laufen: Um auf
der Arbeit auf der JVM aufzubauen, um mit Java-Programmen zu interagieren

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Warum Kotlin? 23

und moglicherweise mit der Idee, dass es Java verdrangen konnte. Als Forscher
nutzten Odersky und sein Team Scala als Plattform, um mit Sprachmerkmalen zu
experimentieren, insbesondere solchen, die nicht in Java enthalten sind.

Diese Experimente waren erhellend, und eine Reihe davon fand in modifizierter
Form ihren Weg nach Kotlin. Zum Beispiel wird die Fahigkeit, Operatoren wie + fiir
spezielle Félle neu zu definieren, als Operatoriiberladung bezeichnet. Dies war in C++
enthalten, aber nicht in Java. Scala fligte die Operatoriiberladung hinzu, erlaubt aber
auch die Erfindung neuer Operatoren durch Kombination beliebiger Zeichenfolgen.
Dies fiihrt oft zu verwirrenderen Code. Eine begrenzte Form der Operatoriiberladung
ist in Kotlin enthalten, aber man kann nur Operatoren tberladen, die bereits
existieren.

Scala ist auch ein objekt-funktionales Hybrid, dhnlich wie Python, aber mit einem
Fokus auf reine Funktionen und strenge Objekte. Dies inspirierte die Entscheidung
von Kotlin, ebenfalls ein objekt-funktionales Hybrid zu sein.

Wie Scala lauft Kotlin auf der JVM, interagiert jedoch viel einfacher mit Java als
Scala (siehe Anhang B). Dariiber hinaus zielt Kotlin auf JavaScript, das Android-
Betriebssystem und erzeugt nativen Code fiir andere Plattformen.

Atomic Kotlin entwickelte sich aus den Ideen und Materialien von Atomic Scala?.

Groovy: Eine dynamische JVM-Sprache (2007)

Dynamische Sprachen sind ansprechend, weil sie interaktiver und préagnanter sind
als statische Sprachen. Es gab zahlreiche Versuche, ein dynamischeres Programmier-
erlebnis auf der JVM zu erreichen, darunter Jython (Python) und Clojure (ein Dialekt
von Lisp). Groovy war die erste, die breite Akzeptanz erreichte.

Auf den ersten Blick erscheint Groovy als bereinigte Version von Java, die ein
angenehmeres Programmiererlebnis bietet. Der meiste Java-Code lauft unverandert
in Groovy, sodass Java-Programmierer schnell produktiv sein konnen und spater die
anspruchsvolleren Funktionen erlernen konnen, die bemerkenswerte Programmier-
verbesserungen gegeniiber Java bieten.

Die Kotlin-Operatoren ?. und ?:, die sich mit dem Problem der Leere beschéftigen,
erschienen zuerst in Groovy.

Phttp://www.AtomicScala.com

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

http://www.atomicscala.com/
http://www.atomicscala.com/

Warum Kotlin? 24

Es gibt zahlreiche Groovy-Funktionen, die in Kotlin erkennbar sind. Einige dieser
Funktionen erscheinen auch in anderen Sprachen, was wahrscheinlich starker dafiir
drangte, dass sie in Kotlin aufgenommen wurden.

Warum Kotlin? (Eingefiihrt 2011, Version 1.0:
2016)

Genauso wie C++ urspriinglich als “ein besseres C” gedacht war, war Kotlin zun4chst
darauf ausgerichtet, “ein besseres Java” zu sein. Es hat sich seitdem erheblich tiber
dieses Ziel hinaus entwickelt.

Kotlin wahlt pragmatisch nur die erfolgreichsten und hilfreichsten Funktionen aus
anderen Programmiersprachen aus—nachdem diese Funktionen in der Praxis getestet
und als besonders wertvoll erwiesen wurden.

Wenn Sie also von einer anderen Sprache kommen, konnten Sie einige Funktionen
dieser Sprache in Kotlin wiedererkennen. Dies ist beabsichtigt: Kotlin maximiert die
Produktivitat, indem es bewéhrte Konzepte nutzt.

Lesbarkeit

Lesbarkeit ist ein Hauptziel bei der Gestaltung der Sprache. Die Kotlin-Syntax ist
pragnant—sie erfordert in den meisten Szenarien keine Formlichkeit, kann aber
dennoch komplexe Ideen ausdriicken.

Werkzeuge
Kotlin stammt von JetBrains, einem Unternehmen, das sich auf Entwicklerwerkzeuge

spezialisiert hat. Es bietet erstklassige Unterstiitzung fiir Werkzeuge, und viele
Sprachmerkmale wurden mit Blick auf Werkzeuge entwickelt.

Multi-Paradigma

Kotlin unterstiitzt mehrere Programmierparadigmen, die in diesem Buch sanft
eingefiithrt werden:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Warum Kotlin? 25

+ Imperatives Programmieren
« Funktionales Programmieren
+ Objektorientiertes Programmieren

Multi-Plattform

Kotlin-Quellcode kann in verschiedene Zielplattformen kompiliert werden:

« JVM. Der Quellcode wird in JVM-Bytecode (.class Dateien) kompiliert, der
dann auf jeder Java Virtual Machine (JVM) ausgefithrt werden kann.

+ Android. Android hat seine eigene Laufzeitumgebung namens ART' (der
Vorgénger hiefl Dalvik). Der Kotlin-Quellcode wird in das Dalvik Executable
Format (.dex Dateien) kompiliert.

« JavaScript, um innerhalb eines Webbrowsers ausgefiihrt zu werden.

« Native Binaries durch die Generierung von Maschinencode fiir spezifische
Plattformen und CPUs.

Dieses Buch konzentriert sich auf die Sprache selbst, wobei die JVM als einzige
Zielplattform verwendet wird. Sobald Sie die Sprache beherrschen, konnen Sie Kotlin
auf verschiedene Anwendungen und Zielplattformen anwenden.

Zwei Kotlin-Funktionen

Dieses Atom setzt nicht voraus, dass Sie ein Programmierer sind, was es schwierig
macht, die meisten Vorteile von Kotlin gegentiber Alternativen zu erklaren. Es gibt
jedoch zwei Themen, die sehr wirkungsvoll sind und zu diesem frithen Zeitpunkt
erklart werden kénnen: Java-Interoperabilitat und das Problem, “keinen Wert” anzu-
zeigen.

Muhelose Java-Interoperabilitat

Um “ein besseres C” zu sein, muss C++ riickwértskompatibel mit der Syntax von C
sein, aber Kotlin muss nicht riickwartskompatibel mit der Syntax von Java sein—es

https://source.android.com/devices/tech/dalvik

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

https://source.android.com/devices/tech/dalvik
https://source.android.com/devices/tech/dalvik

Warum Kotlin? 26

muss nur mit der JVM arbeiten. Dies befreit die Kotlin-Designer, eine viel sauberere
und leistungsfihigere Syntax zu schaffen, ohne das visuelle Rauschen und die
Komplikationen, die Java iiberladen.

Damit Kotlin “ein besseres Java” ist, muss das Erlebnis, es auszuprobieren, angenehm
und reibungslos sein, sodass Kotlin eine miihelose Integration mit bestehenden Java-
Projekten ermdglicht. Sie konnen ein kleines Stiick Kotlin-Funktionalitit schreiben
und es mitten in Thren bestehenden Java-Code einfiigen. Der Java-Code merkt nicht
einmal, dass der Kotlin-Code da ist—er sieht einfach wie weiterer Java-Code aus.

Unternehmen untersuchen oft eine neue Sprache, indem sie ein eigenstandiges
Programm mit dieser Sprache erstellen. Idealerweise ist dieses Programm niitzlich,
aber nicht essentiell, sodass es bei einem Scheitern des Projekts mit minimalem
Schaden beendet werden kann. Nicht jedes Unternehmen mochte die Ressourcen
aufwenden, die fir diese Art von Experimenten erforderlich sind. Da Kotlin sich
nahtlos in ein bestehendes Java-System integriert (und von dessen Tests profitiert),
wird es sehr billig oder sogar kostenlos, Kotlin auszuprobieren, um zu sehen, ob es
passt.

Dariiber hinaus bietet JetBrains, das Unternehmen, das Kotlin erstellt, Intelli] IDEA
in einer “Community” (kostenlosen) Version an, die Unterstiitzung sowohl fir Java
als auch fiir Kotlin beinhaltet und die Moglichkeit bietet, die beiden einfach zu
integrieren. Es gibt sogar ein Tool, das Java-Code nimmt und ihn (grof3tenteils) in
Kotlin umschreibt.

Anhang B behandelt Java-Interoperabilitat.

Darstellung von Leere

Ein besonders vorteilhaftes Kotlin-Feature ist seine Losung fiir ein herausforderndes
Programmierproblem.

Was tun Sie, wenn Thnen jemand ein Worterbuch in die Hand driickt und Sie bittet,
ein Wort nachzuschlagen, das nicht existiert? Sie konnten Ergebnisse garantieren,
indem Sie Definitionen fiir unbekannte Worter erfinden. Ein niitzlicherer Ansatz
ist einfach zu sagen: “Es gibt keine Definition fiir dieses Wort.” Dies zeigt ein
erhebliches Problem in der Programmierung: Wie zeigt man “keinen Wert” fiir einen
Speicherplatz an, der nicht initialisiert ist, oder fiir das Ergebnis einer Operation?

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Warum Kotlin? 27

Die Null-Referenz wurde 1965 fiir ALGOL von Tony Hoare erfunden, der sie spéter
als “meinen Milliarden-Dollar-Fehler” bezeichnete. Ein Problem war, dass sie zu
einfach war—manchmal reicht es nicht aus, zu wissen, dass ein Raum leer ist. Man
muss vielleicht wissen, warum er leer ist. Dies fihrt zum zweiten Problem: der
Implementierung. Aus Effizienzgriinden war es typischerweise nur ein spezieller
Wert, der in eine kleine Menge Speicher passte, und was war besser als der Speicher,
der bereits fiir diese Information bereitgestellt war?

Die urspriingliche C-Sprache initialisierte den Speicher nicht automatisch, was zahl-
reiche Probleme verursachte. C++ verbesserte die Situation, indem neu zugewiesener
Speicher auf null gesetzt wurde. Wenn also ein numerischer Wert nicht initialisiert
ist, ist er einfach eine numerische Null. Das schien nicht so schlimm zu sein, aber es
ermoglichte es, dass nicht initialisierte Werte unbemerkt durchrutschten (neuere C-
und C++-Compiler warnen oft davor). Schlimmer noch, wenn ein Speicherstiick ein
Zeiger war—verwendet, um auf ein anderes Speicherstiick zu verweisen—wiirde ein
Nullzeiger auf die Speicheradresse null zeigen, was fast sicher nicht das ist, was man
will.

Java verhindert Zugriffe auf nicht initialisierte Werte, indem es solche Fehler zur
Laufzeit meldet. Obwohl dies nicht initialisierte Werte entdeckt, 1ost es das Problem
nicht, denn die einzige Moglichkeit, zu tiberpriifen, ob Ihr Programm nicht abstiirzt,
besteht darin, es auszufithren. Es gibt Schwérme dieser Art von Fehlern im Java-Code,
und Programmierer verschwenden enorme Mengen an Zeit, um sie zu finden.

Kotlin 16st dieses Problem, indem es Operationen verhindert, die Nullfehler verursa-
chen konnten, zur Kompilierzeit, bevor das Programm ausgefiihrt werden kann. Dies
ist das am meisten gefeierte Merkmal von Java-Programmierern, die Kotlin tiberneh-
men. Diese eine Funktion kann Java’s Nullfehler minimieren oder eliminieren, was
Threm Projekt erhebliche Mengen an Zeit und Geld spart.

Eine Fulle von Vorteilen

Die beiden Funktionen, die wir hier erklaren konnten (ohne mehr Programmierkennt-
nisse zu erfordern), machen einen grofien Unterschied, unabhéngig davon, ob Sie ein
Java-Programmierer sind oder nicht. Wenn Kotlin Ihre erste Sprache ist und Sie an
einem Projekt arbeiten, das mehr Programmierer benétigt, ist es viel einfacher, einen
der vielen existierenden Java-Programmierer fiir Kotlin zu gewinnen.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Warum Kotlin? 28

Kotlin hat viele weitere Vorteile, die wir erst erkliren konnen, wenn Sie mehr iber
das Programmieren wissen. Dafiir ist der Rest des Buches da.

Sprachen werden oft aus Leidenschaft gewdhlt, nicht aus Vernunft... Ich versuche,
Kotlin zu einer Sprache zu machen, die aus einem Grund geliebt wird—Andrey
Breslav, Kotlin Lead Language Designer.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Hallo, Welt!

“Hello, world!” ist ein Programm, das haufig verwendet wird, um die
grundlegende Syntax von Programmiersprachen zu demonstrieren.

Wir entwickeln dieses Programm in mehreren Schritten, damit Sie seine Teile
verstehen.

Zuerst lassen Sie uns ein leeres Programm untersuchen, das tiberhaupt nichts tut:

// HelloWorld/EmptyProgram.kt

fun main() {
// Program code here ...

}

Das Beispiel beginnt mit einem Kommentar, der ein erlauternder Text ist, der von
Kotlin ignoriert wird. // (zwei Schrégstriche) leitet einen Kommentar ein, der bis
zum Ende der aktuellen Zeile geht:

// Single-l1ine comment

Kotlin ignoriert das // und alles danach bis zum Ende der Zeile. In der folgenden
Zeile wird es wieder beachtet.

Die erste Zeile jedes Beispiels in diesem Buch ist ein Kommentar, der mit dem Namen
des Unterverzeichnisses beginnt, das die Quellcodedatei enthalt (hier HelloWor1d),
gefolgt vom Namen der Datei: EmptyProgram.kt. Das Beispiel-Unterverzeichnis fiir
jedes Atom entspricht dem Namen dieses Atoms.

Schliisselwérter sind von der Sprache reserviert und haben eine spezielle Bedeutung.
Das Schlisselwort fun steht fir Funktion. Eine Funktion ist eine Sammlung von
Code, die unter Verwendung des Namens dieser Funktion ausgefiihrt werden kann
(wir verbringen viel Zeit im Buch mit Funktionen). Der Name der Funktion folgt
dem fun Schlisselwort, in diesem Fall ist es main() (im FlieStext folgen wir dem
Funktionsnamen mit Klammern).

Hallo, Welt! 30

main() ist tatsichlich ein spezieller Name fiir eine Funktion; es zeigt den “Einstiegs-
punkt” fiir ein Kotlin-Programm an. Ein Kotlin-Programm kann viele Funktionen mit
verschiedenen Namen haben, aber main() ist diejenige, die automatisch aufgerufen
wird, wenn Sie das Programm ausfiihren.

Die Parameterliste folgt dem Funktionsnamen und ist in Klammern eingeschlossen.
Hier iibergeben wir nichts an main(), daher ist die Parameterliste leer.

Der Funktionskérper erscheint nach der Parameterliste. Er beginnt mit einer 6ffnen-
den Klammer ({) und endet mit einer schlielenden Klammer (}). Der Funktionskor-
per enthélt Anweisungen und Ausdriicke. Eine Anweisung erzeugt eine Wirkung,
und ein Ausdruck liefert ein Ergebnis.

EmptyProgram.kt enthilt keine Anweisungen oder Ausdriicke im Korper, nur einen
Kommentar.

Lassen Sie das Programm “Hello, world!” anzeigen, indem Sie eine Zeile immain()-
Korper hinzufiigen:

// HelloWorld/HelloWorld.kt

fun main() {
println("Hello, world!")

}

/* Output:
Hello, world!
*/

Die Zeile, die die BegriiBung anzeigt, beginnt mit println(). Wie main(), ist
println() eine Funktion. Diese Zeile ruft die Funktion auf, die dann ihren Koérper
ausfithrt. Man gibt den Funktionsnamen an, gefolgt von Klammern, die einen oder
mehrere Parameter enthalten. In diesem Buch fiigen wir beim Bezug auf eine
Funktion in der Prosa nach dem Namen Klammern hinzu, um daran zu erinnern,
dass es sich um eine Funktion handelt. Hier sagen wir print1n().

println() nimmt einen einzelnen Parameter, der ein String ist. Ein String wird
definiert, indem man Zeichen in Anfithrungszeichen setzt.

println() bewegt den Cursor nach der Anzeige seines Parameters in eine neue
Zeile, sodass nachfolgende Ausgaben in der nichsten Zeile erscheinen. Man kann
stattdessen print () verwenden, das den Cursor in derselben Zeile belésst.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Hallo, Welt! 31

Im Gegensatz zu einigen Sprachen benétigt man in Kotlin kein Semikolon am Ende
eines Ausdrucks. Es ist nur notwendig, wenn man mehr als einen Ausdruck auf eine
einzelne Zeile setzt (was nicht empfohlen wird).

Fiir einige Beispiele im Buch zeigen wir die Ausgabe am Ende der Auflistung in
einem mehrzeiligen Kommentar. Ein mehrzeiliger Kommentar beginnt mit einem /*
(einem Schrégstrich gefolgt von einem Sternchen) und setzt sich fort — einschlieflich
Zeilenumbriichen (die wir neue Zeilen nennen) - bis ein */ (ein Sternchen gefolgt
von einem Schrégstrich) den Kommentar beendet:

/* A multiline comment
Doesn't care
about newlines */

Es ist moglich, Code auf derselben Zeile nach dem schlielenden */ eines Kommen-
tars hinzuzufiigen, aber das ist verwirrend, daher tun es die Leute normalerweise
nicht.

Kommentare fiigen Informationen hinzu, die nicht offensichtlich aus dem Code
hervorgehen. Wenn Kommentare nur wiederholen, was der Code sagt, werden
sie lastig und die Leute beginnen, sie zu ignorieren. Wenn sich der Code andert,
vergessen Programmierer oft, die Kommentare zu aktualisieren, daher ist es eine gute
Praxis, Kommentare sparsam zu verwenden, hauptsachlich um knifflige Aspekte
Thres Codes hervorzuheben.

Ubungen und Losungen finden Sie auf www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

var & val

Wenn ein Bezeichner Daten enthilt, miissen Sie entscheiden, ob er neu
zugewiesen werden kann.

Sie erstellen Bezeichner, um auf Elemente in Threm Programm zu verweisen. Die
grundlegendste Entscheidung fiir einen Datenbezeichner ist, ob er seinen Inhalt
wihrend der Programmausfithrung dndern kann oder ob er nur einmal zugewiesen
werden kann. Dies wird durch zwei Schliisselworter gesteuert:

« var, kurz fir Variable, was bedeutet, dass Sie seinen Inhalt neu zuweisen
konnen.

« val, kurz fur Wert, was bedeutet, dass Sie ihn nur initialisieren konnen; Sie
konnen ihn nicht neu zuweisen.

Sie definieren ein var so:
var identifier = initialization

Das Schliisselwort var wird gefolgt von dem Bezeichner, einem Gleichheitszeichen
und dann dem Initialisierungswert. Der Bezeichner beginnt mit einem Buchstaben
oder einem Unterstrich, gefolgt von Buchstaben, Zahlen und Unterstrichen. Grof3-
und Kleinschreibung werden unterschieden (also sind thisvalue und thisValue
unterschiedlich).

Hier sind einige var Definitionen:

var & val 33

// VarAndVal/Vars.kt

fun main() {
var whole = 11 // [1]
var fractional = 1.4 // [2]
var words = "Twas Brillig" // [3]
println(whole)
println(fractional)
println(words)

}

/* Output:

11

1.4

Twas Brillig

*/

In diesem Buch versehen wir Zeilen mit kommentierten Nummern in eckigen
Klammern, damit wir im Text auf sie verweisen konnen, wie folgt:

« [1] Erstellen Sie eine var namens whole und speichern Sie 11 darin.
« [2] Speichern Sie die “Bruchzahl” 1.4 in der var fractional.
« [3] Speichern Sie etwas Text (einen String) in der var words.

Beachten Sie, dass println() jeden einzelnen Wert als Argument annehmen kann.

Wie der Name Variable impliziert, kann eine var variieren. Das heiflt, Sie konnen
die in einer var gespeicherten Daten dndern. Wir sagen, dass eine var verdnderlich
ist:

// VarAndVal/AVarIsMutable.kt

fun main() {
var sum = 1
sum = sum + 2
sum += 3
println(sum)

}

/* Output:

6

*/

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

var & val 34

Die Zuweisung sum = sum + 2 nimmt den aktuellen Wert von sum, addiert zwei
und weist das Ergebnis zuriick in sum zu.

Die Zuweisung sum += 3 bedeutet dasselbe wie sum = sum + 3. Der += Operator
nimmt den vorher gespeicherten Wert in sum und erhéht ihn um 3, dann weist er
dieses neue Ergebnis zuriick in sum zu.

Den in einer var gespeicherten Wert zu dndern, ist eine niitzliche Methode, um An-
derungen auszudriicken. Wenn jedoch die Komplexitét eines Programms zunimmt,
ist Thr Code klarer, sicherer und leichter zu verstehen, wenn die Werte, die durch
Thre Bezeichner dargestellt werden, sich nicht &ndern kdnnen—das heift, sie konnen
nicht neu zugewiesen werden. Wir spezifizieren einen unveranderlichen Bezeichner,
indem wir statt var das Schlisselwort val verwenden. Ein val kann nur einmal
zugewiesen werden, wenn es erstellt wird:

val identifier = initialization

Das Schliisselwort val stammt von Wert und deutet auf etwas hin, das sich nicht &n-
dern kann—es ist unverdnderlich. Wéhlen Sie wann immer moglich val anstelle von
var. Das Vars.kt-Beispiel am Anfang dieses Abschnitts kann unter Verwendung
von vals umgeschrieben werden:

// VarAndVal/Vals.kt

fun main() {
val whole = 11
// whole = 15 // Error // [1]
val fractional = 1.4
val words = "Twas Brillig"
println(whole)
println(fractional)
println(words)

}

/* Output:

11

1.4

Twas Brillig

*/

« [1] Sobald Sie ein val initialisieren, konnen Sie es nicht neu zuweisen. Wenn
wir versuchen, whole eine andere Zahl zuzuweisen, meldet sich Kotlin mit der
Nachricht “Val kann nicht neu zugewiesen werden.”

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

var & val 35

Beschreibende Namen fiir Thre Bezeichner zu wahlen, macht Thren Code leichter
verstandlich und reduziert oft die Notwendigkeit fir Kommentare. In Vals.kt
haben Sie keine Ahnung, was whole reprasentiert. Wenn Thr Programm die Zahl
11 speichert, um die Tageszeit darzustellen, zu der Sie Kaffee trinken, ist es offen-
sichtlicher fir andere, wenn Sie es cof feetime nennen, und leichter zu lesen, wenn
es coffeeTime ist (gemafl dem Kotlin-Stil, bei dem wir den ersten Buchstaben klein
schreiben).

vars sind niitzlich, wenn sich Daten wéhrend der Ausfithrung des Programms
andern miissen. Dies klingt nach einer haufigen Anforderung, stellt sich jedoch in
der Praxis als vermeidbar heraus. Im Allgemeinen sind Ihre Programme leichter zu
erweitern und zu pflegen, wenn Sie vals verwenden. In seltenen Féllen ist es jedoch
zu komplex, ein Problem nur mit vals zu losen. Aus diesem Grund bietet [hnen Kotlin
die Flexibilitat von vars. Je mehr Zeit Sie jedoch mit vals verbringen, desto mehr
werden Sie entdecken, dass Sie vars fast nie benotigen und dass Ihre Programme
ohne sie sicherer und zuverlassiger sind.

Ubungen und Lésungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Datentypen

Daten konnen unterschiedliche Typen haben.

Um ein mathematisches Problem zu ldsen, schreibt man einen Ausdruck:

5.9 +6

Du weifit, dass das Addieren dieser Zahlen eine weitere Zahl ergibt. Kotlin weif3 das
auch. Du weif3t, dass eine davon eine Dezimalzahl (5. 9) ist, die Kotlin Double nennt,
und die andere eine ganze Zahl (6), die Kotlin Int nennt. Du weif3t, dass das Ergebnis
eine Dezimalzahl ist.

Ein Typ (auch Datentyp genannt) sagt Kotlin, wie du diese Daten verwenden moch-
test. Ein Typ definiert die Menge der Werte, die ein Ausdruck dieses Typs erzeugen
kann. Ein Typ definiert auch die Operationen, die auf den Daten durchgefiihrt
werden konnen, die Bedeutung der Daten und wie Werte dieses Typs gespeichert
werden konnen.

Kotlin verwendet Typen, um zu tberpriifen, ob deine Ausdriicke korrekt sind. Im
obigen Ausdruck erstellt Kotlin einen neuen Wert des Typs Double, um das Ergebnis
zu speichern.

Kotlin versucht, sich an deine Bediirfnisse anzupassen. Wenn du es bittest, etwas
zu tun, das die Typregeln verletzt, erzeugt es eine Fehlermeldung. Zum Beispiel,
versuche, einen String und eine Zahl zu addieren:

Datentypen 37

// DataTypes/StringPlusNumber .kt

fun main() {
println("Sally" + 5.9)

}

/* Output:
Sally5.9
*/

Typen sagen Kotlin, wie sie korrekt verwendet werden. In diesem Fall sagen die
Typregeln Kotlin, wie man eine Zahl zu einem String hinzufiigt: indem die beiden
Werte angehangt werden und ein String erstellt wird, um das Ergebnis zu halten.

Versuchen Sie nun, einen String und ein Double zu multiplizieren, indem Sie das +
in StringPlusNumber .kt durch ein * ersetzen:

"Sally" * 5.9

Das Kombinieren von Typen auf diese Weise ergibt fiir Kotlin keinen Sinn, daher
gibt es einen Fehler aus.

Invar & val haben wir verschiedene Typen gespeichert. Kotlin hat die Typen fiir uns
ermittelt, basierend darauf, wie wir sie verwendet haben. Dies wird type inference
genannt.

Wir konnen ausfithrlicher sein und den Typ angeben:

val identifier: Type = initialization

Du beginnst mit dem Schliisselwort val oder var, gefolgt vom Bezeichner, einem
Doppelpunkt, dem Typ, einem =, und dem Initialisierungswert. Anstatt also zu sagen:

val n =1
var p = 1.2

Du kannst sagen:

val n: Int = 1
var p: Double = 1.2

Wir haben Kotlin gesagt, dass n ein Int und p ein Double ist, anstatt es den Typ
ableiten zu lassen.

Hier sind einige von Kotlins grundlegenden Typen:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Datentypen 38

// DataTypes/Types.kt

fun main() {

val whole: Int = 11 /7 [1]
val fractional: Double = 1.4 // [2]
val trueOrFalse: Boolean = true // [3]
val words: String = "A value" // [4]
val character: Char = 'z' // [5]
val lines: String = """Triple quotes let

you have many lines

in your string""" // [6]
println(whole)
println(fractional)
println(trueOrFalse)
println(words)
println(character)
println(lines)

1

/* Output:

11

1.4

true

A value

z

Triple quotes let
you have many lines
in your string

*/

« [1] Der Int-Datentyp ist ein Ganzzahltyp, was bedeutet, dass er nur ganze
Zahlen speichert.

+ [2] Um Bruchzahlen zu speichern, verwenden Sie einen Double.

« [3] Ein Boolean-Datentyp speichert nur die beiden speziellen Werte true und
false.

« [4] Ein String speichert eine Zeichenfolge. Sie weisen einen Wert mit einem
doppelt-umrahmten String zu.

« [5] Ein Char speichert ein Zeichen.

+ [6] Wenn Sie viele Zeilen und/oder Sonderzeichen haben, umgeben Sie diese
mit dreifachen Anfiihrungszeichen (dies ist ein dreifach-umrahmter String).

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Datentypen 39

Kotlin verwendet Typinferenz, um die Bedeutung gemischter Typen zu bestimmen.
Beim Mischen von Int und Double wahrend der Addition entscheidet Kotlin den
Typ fiir den resultierenden Wert:

// DataTypes/Inference.kt

fun main() {
val n =1 + 1.2
println(n)

}

/* Output:

2.2

*/

Wenn Sie einen Int zu einem Double mit Typinferenz hinzufiigen, bestimmt Kotlin,
dass das Ergebnis n ein Double ist und stellt sicher, dass es alle Regeln fiir Doubles
einhalt.

Die Typinferenz von Kotlin ist Teil seiner Strategie, Arbeit fiir den Programmierer zu
iibernehmen. Wenn Sie die Typdeklaration weglassen, kann Kotlin sie normalerweise
ableiten.

Ubungen und Lésungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Funktionen

Eine Funktion ist wie ein kleines Programm, das einen eigenen Namen
hat und durch das Aufrufen dieses Namens aus einer anderen Funktion
ausgefithrt (aufgerufen) werden kann.

Eine Funktion fasst eine Gruppe von Aktivitaten zusammen und ist die grundlegends-
te Methode, um Thre Programme zu organisieren und Code wiederzuverwenden.

Sie tibergeben Informationen an eine Funktion, und die Funktion verwendet diese
Informationen, um ein Ergebnis zu berechnen und zu erzeugen. Die Grundform einer
Funktion ist:

fun functionName(p1: Typel, p2: Type2, ...): ReturnType {
lines of code
return result

}

p1 und p2 sind die Parameter: die Informationen, die Sie in die Funktion tibergeben.
Jeder Parameter hat einen Bezeichnernamen (p1, p2) gefolgt von einem Doppelpunkt
und dem Typ dieses Parameters. Die schlieende Klammer der Parameterliste wird
von einem Doppelpunkt und dem Typ des von der Funktion erzeugten Ergebnisses
gefolgt. Die Codezeilen im Funktionskérper sind in geschweifte Klammern einge-
schlossen. Der Ausdruck nach dem Schliisselwort return ist das Ergebnis, das die
Funktion erzeugt, wenn sie abgeschlossen ist.

Ein Parameter definiert, was in eine Funktion iibergeben wird — er ist der Platzhalter.
Ein Argument ist der tatsdchliche Wert, den Sie in die Funktion tibergeben.

Die Kombination aus Name, Parametern und Riickgabetyp wird als Funktionssigna-
tur bezeichnet.

Hier ist eine einfache Funktion namens multiplyByTwo():

Funktionen

// Functions/MultiplyByTwo.kt

fun multiplyByTwo(x: Int): Int { // [1]
println("Inside multiplyByTwo") // [2]
return x * 2

}

fun main() {
val r = multiplyByTwo(5) // [3]
println(r)

}

/* Output:

Inside multiplyByTwo

10

*/

41

« [1] Beachten Sie das fun Schliisselwort, den Funktionsnamen und die Parame-

terliste, die aus einem einzigen Parameter besteht. Diese Funktion nimmt einen

Int Parameter und gibt einen Int zuriick.

« [2] Diese zwei Zeilen sind der Korper der Funktion. Die letzte Zeile gibt den
Wert ihrer Berechnung x * 2 als Ergebnis der Funktion zuriick.

« [3] Diese Zeile ruft die Funktion mit einem geeigneten Argument auf und
erfasst das Ergebnis in val r. Ein Funktionsaufruf imitiert die Form seiner
Deklaration: den Funktionsnamen, gefolgt von Argumenten in Klammern.

Der Funktionscode wird durch Aufrufen der Funktion ausgefiihrt, wobei der Funk-

tionsname multiplyByTwo() als Abkiirzung fiir diesen Code dient. Aus diesem

Grund sind Funktionen die grundlegendste Form der Vereinfachung und Wieder-

verwendung von Code in der Programmierung. Sie konnen auch an eine Funktion
als Ausdruck mit austauschbaren Werten (den Parametern) denken.

println() ist ebenfalls ein Funktionsaufruf — er wird einfach von Kotlin bereitge-
stellt. Wir beziehen uns auf von Kotlin definierte Funktionen als Bibliotheksfunktio-

nen.

Wenn die Funktion kein sinnvolles Ergebnis liefert, ist ihr Riickgabetyp Unit. Sie
konnen Unit explizit angeben, wenn Sie mochten, aber Kotlin erlaubt es Thnen, es

wegzulassen:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Funktionen 42

// Functions/SayHello.kt

fun sayHello() {
println("Hallo!")

}

fun sayGoodbye(): Unit {
println("Auf Wiedersehen!")
}

fun main() {
sayHello()
sayGoodbye()

}

/* Output:
Hallo!

Auf Wiedersehen!

*/
Sowohl sayHello() als auch sayGoodbye() geben Unit zuriick, aber sayHello()
lasst die explizite Deklaration weg. Die main()-Funktion gibt ebenfalls Unit zuriick.

Wenn eine Funktion nur einen einzigen Ausdruck enthélt, konnen Sie die abgekiirzte
Syntax mit einem Gleichheitszeichen gefolgt von dem Ausdruck verwenden:

fun functionName(argl: Typel, arg2: Type2, ...): ReturnType = expression

Ein Funktionskdorper, der von geschweiften Klammern umgeben ist, wird als Block-
korper bezeichnet. Ein Funktionskorper, der die Gleichungssyntax verwendet, wird
als Ausdruckskorper bezeichnet.

Hier verwendet multiplyByThree() einen Ausdruckskorper:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Funktionen 43

// Functions/MultiplyByThree.kt
fun multiplyByThree(x: Int): Int = x * 3

fun main() {
println(multiplyByThree(5))

}

/* Output:

15

*/

Dies ist eine kurze Version, um return x * 3 innerhalb eines Blockkdrpers zu
sagen.

Kotlin leitet den Riickgabetyp einer Funktion ab, die einen Ausdruckskorper hat:
// Functions/MultiplyByFour.kt
fun multiplyByFour(x: Int) = x * 4

fun main() {
val result: Int = multiplyByFour(5)
println(result)

}

/* Output:
20

*/

Kotlin leitet ab, dassmultiplyByFour () ein Int zurickgibt.

Kotlin kann Riickgabetypen nur fiir Ausdruckskorper ableiten. Wenn eine Funktion
einen Blockkorper hat und Sie ihren Typ weglassen, gibt diese Funktion Unit zurick.

Beim Schreiben von Funktionen sollten Sie beschreibende Namen wihlen. Dies
macht den Code leichter lesbar und kann oft die Notwendigkeit fiir Codekommentare
reduzieren. Wir konnen nicht immer so beschreibend sein, wie wir es uns wiinschen
wiirden, mit den Funktionsnamen in diesem Buch, weil wir durch die Zeilenbreiten
eingeschrankt sind.

Ubungen und Lésungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

i f-Ausdrucke

Ein i f-Ausdruck trifft eine Entscheidung.

Das if-Schlisselwort priift einen Ausdruck, um festzustellen, ob er wahr oder
falsch ist, und fithrt basierend auf dem Ergebnis eine Aktion aus. Ein Wahr-oder-
Falsch-Ausdruck wird als Boolean bezeichnet, nach dem Mathematiker George Boole,
der die Logik hinter diesen Ausdriicken erfunden hat. Hier ist ein Beispiel mit den
Symbolen > (grofer als) und < (kleiner als):

// IfExpressions/If1.kt

fun main() {
if (1 > Q)
println("It's true!")
if (10 < 11) {
println("10 < 11")
println("ten is less than eleven")

}
}
/* Output:
It's true!
10 < 11
ten is less than eleven
*/

Der Ausdruck in den Klammern nach dem i f muss zu true oder false ausgewertet
werden. Wenn true, wird der folgende Ausdruck ausgefiihrt. Um mehrere Zeilen
auszufiihren, platziere sie in geschweiften Klammern.

Wir konnen einen booleschen Ausdruck an einer Stelle erstellen und an einer anderen
verwenden:

i f-Ausdriicke 45

// IfExpressions/If2.kt

fun main() {
val x: Boolean = 1 >= 1
if (x)
printIn("It's true!")

}
/* Output:
It's true!

*/

Da x ein Boolean ist, kann der i f-Operator es direkt testen, indem er i f(x) sagt.

Der >=-Operator fiir Boolean gibt true zuriick, wenn der Ausdruck auf der linken
Seite des Operators grofSer oder gleich dem auf der rechten Seite ist. Ebenso gibt <=
true zuriick, wenn der Ausdruck auf der linken Seite kleiner oder gleich dem auf der
rechten Seite ist.

Das Schliisselwort else ermoglicht es Thnen, sowohl true- als auch false-Pfade zu

behandeln:
// IfExpressions/If3.kt

fun main() {
val n: Int = -11

if (n > Q)
println("It's positive")
else
println("It's negative or zero")
}
/* Output:
It's negative or zero
*/

Das else-Schliisselwort wird nur in Verbindung mit i f verwendet. Sie sind nicht
auf eine einzelne Prifung beschrankt — Sie konnen mehrere Kombinationen testen,
indem Sie else und i f kombinieren:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

i f-Ausdriicke 46

// IfExpressions/If4.kt

fun main() {
val n: Int = -11
if (n > Q)
printIn("It's positive")
else if (n == 0)
println("It's zero")
else
println("It's negative")
}
/* Output:
It's negative

*/

Hier verwenden wir ==, um zwei Zahlen auf Gleichheit zu priifen. != testet auf
Ungleichheit.

Das typische Muster beginnt mit if, gefolgt von so vielen else if-Klauseln, wie
Sie benotigen, und endet mit einem abschlieBenden else fiir alles, was nicht zu den
vorherigen Tests passt. Wenn ein i f-Ausdruck eine bestimmte Gréfie und Komplexi-
tat erreicht, verwenden Sie wahrscheinlich stattdessen einen when-Ausdruck. when
wird spater im Buch beschrieben, in ,when® Ausdriicke.

Der ,Nicht“-Operator ! testet das Gegenteil eines Booleschen Ausdrucks:
// IfExpressions/If5.kt

fun main() {
val y: Boolean = false
if (ly)
println("!y is true")
}
/* Output:
ly is true

*/

Um if(!y) zu verbalisieren, sagt man “wenn nicht y”

Das gesamte if ist ein Ausdruck, der ein Ergebnis liefern kann:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

i f-Ausdriicke 47

// IfExpressions/If6.kt

fun main() {
val num = 10
val result = if (num > 100) 4 else 42
println(result)

}

/* Output:
42

*/

Hier speichern wir den Wert, der durch den gesamten if Ausdruck erzeugt wird, in
einem Zwischenbezeichner namens result. Wenn die Bedingung erfiillt ist, erzeugt
der erste Zweig result. Wenn nicht, wird der else Wert zu result.

Lassen Sie uns tiben, Funktionen zu erstellen. Hier ist eine, die einen Booleschen
Parameter nimmt:

// IfExpressions/TrueOrFalse.kt

fun trueOrFalse(exp: Boolean): String {

if (exp)
return "It's true!" /7 [1]
return "It's false" /7 [2]

}

fun main() {
val b = 1
println(trueOrFalse(b < 3))
println(trueOrFalse(b >= 3))

}

/* Output:
It's true!
It's false
*/

Der Boolean-Parameter exp wird an die Funktion trueOrFalse() iibergeben. Wenn
das Argument als Ausdruck tibergeben wird, wieb < 3, wird dieser Ausdruck zuerst
ausgewertet und das Ergebnis an die Funktion iibergeben. trueOrFalse() testet exp
und wenn das Ergebnis true ist, wird Zeile [1] ausgefiihrt, andernfalls wird Zeile
[2] ausgefiihrt.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

i f-Ausdriicke 48

e [1] return sagt: “Verlasse die Funktion und liefere diesen Wert als Ergebnis
der Funktion.” Beachten Sie, dass return uberall in einer Funktion erscheinen
kann und nicht am Ende stehen muss.

Anstatt return wie im vorherigen Beispiel zu verwenden, konnen Sie das else-
Schliisselwort verwenden, um das Ergebnis als Ausdruck zu erzeugen:

// IfExpressions/OneOrTheOther.kt

fun oneOrTheOther(exp: Boolean): String =
if (exp)
"True!" // No 'return' necessary
else
"False"

fun main() {
val x = 1
println(oneOrTheOther(x == 1))
println(oneOrTheOther(x == 2))

}

/* Output:
True!
False

*/

Anstelle von zwei Ausdriicken in trueOrFalse() ist oneOrTheOther () ein einzel-
ner Ausdruck. Das Ergebnis dieses Ausdrucks ist das Ergebnis der Funktion, sodass
der i f-Ausdruck zum Funktionskorper wird.

Ubungen und Lésungen finden Sie auf www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

String-Vorlagen

Eine String-Vorlage ist eine programmatische Methode, um einen String
Zu erzeugen.

Wenn Sie ein $ vor einen Bezeichnernamen setzen, fiigt die String-Vorlage den
Inhalt dieses Bezeichners in den String ein:

// StringTemplates/StringTemplates.kt

fun main() {
val answer = 42

println("Found $answer!") /7 [1]
println("printing a $1") /7 [2]
}
/* Output:
Found 42!
printing a $1
*/

« [1] $answer ersetzt den Wert von answer.
« [2] Wenn dem $ nichts folgt, das als Programmbezeichner erkennbar ist,
passiert nichts Besonderes.

Man kann auch Werte in einen String einfiigen, indem man die Verkettung (+)
verwendet:

String-Vorlagen 50

// StringTemplates/StringConcatenation.kt

fun main() {

val s = "hi\n" // \n is a newline character
val n = 11
val d = 3.14
println("first: " + s + "second: " +
n+ ", third: " + d)
}
/* Output:
first: hi
second: 11, third: 3.14
*/

Das Platzieren eines Ausdrucks innerhalb von ${ } wertet ihn aus. Der Riickgabewert
wird in einen String umgewandelt und in den resultierenden String eingefiigt:

// StringTemplates/ExpressionInTemplate.kt

fun main() {
val condition = true

println(
"${if (condition) 'a' else 'b'}") // [1]
val x = 11
println("$x + 4 = ${x + 4}")
}
/* Output:
a
11 + 4 = 15
*/

« [1] if(condition) 'a' else 'b' wird ausgewertet und das Ergebnis wird
durch den gesamten ${} Ausdruck ersetzt.

Wenn eine Zeichenkette ein Sonderzeichen enthalten muss, wie zum Beispiel ein
Anfithrungszeichen, konnen Sie entweder dieses Zeichen mit einem \ (Backslash)
entkommen, oder Sie verwenden ein Zeichenkette Literal in dreifachen Anfih-
rungszeichen:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

String-Vorlagen 51

// StringTemplates/TripleQuotes.kt

fun main() {
val s = "value"
println("s = \"$s\".")
println("""s = "$s".""")

}

/* Output:
s = "value".
s = "value".

*/

Mit dreifachen Anfiihrungszeichen fiigen Sie einen Wert eines Ausdrucks auf die
gleiche Weise ein wie bei einem einfach-quotierten String.

Ubungen und Losungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zahlentypen

Verschiedene Zahlentypen werden auf unterschiedliche Weise gespei-
chert.

Wenn Sie einen Bezeichner erstellen und ihm einen Ganzzahlwert zuweisen, leitet
Kotlin den Int-Typ ab:

// NumberTypes/InferInt.kt

fun main() {
val million = 1_0Q00_000 ,// Infers Int
println(million)

1

/* Output:

1000000

*/

Fiir die Lesbarkeit erlaubt Kotlin Unterstriche innerhalb numerischer Werte.

Die grundlegenden mathematischen Operatoren fiir Zahlen sind diejenigen, die in
den meisten Programmiersprachen verfiigbar sind: Addition (+), Subtraktion (-), Di-
vision (/), Multiplikation (*) und Modulus (%), was den Rest aus der Ganzzahldivision
ergibt:

// NumberTypes/Modulus.kt

fun main() {
val numerator: Int = 19
val denominator: Int = 10
println(numerator % denominator)
}
/* Output:
9
*/

Ganzzahl-Division schneidet das Ergebnis ab:

Zahlentypen 53

// NumberTypes/IntDivisionTruncates.kt

fun main() {
val numerator: Int = 19
val denominator: Int = 10
println(numerator / denominator)

}

/* Output:
1

*/

Wenn die Operation das Ergebnis gerundet hitte, wire die Ausgabe 2.
Die Reihenfolge der Operationen folgt der grundlegenden Arithmetik:

// NumberTypes/OpOrder .kt

fun main() {
println(45 + 5 * 6)

}

/* Output:

75

*/

Die Multiplikation 5 * 6 wird zuerst ausgefiihrt, gefolgt von der Addition 45 + 30.
Wenn Sie mochten, dass 45 + 5 zuerst erfolgt, verwenden Sie Klammern:

// NumberTypes/OpOrderParens.kt

fun main() {
println((45 + 5) * 6)

}

/* Output:

300

*/

Nun berechnen wir den Body-Mass-Index (BMI), der das Gewicht in Kilogramm
dividiert durch das Quadrat der Grofie in Metern ist. Wenn Sie einen BMI von
weniger als 18,5 haben, sind Sie untergewichtig. Zwischen 18,5 und 24,9 ist
Normalgewicht. Ein BMI von 25 und héher ist Ubergewicht. Dieses Beispiel zeigt
auch den bevorzugten Formatierungsstil, wenn Sie die Parameter der Funktion nicht
in eine einzige Zeile passen konnen:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zahlentypen 54

// NumberTypes/BMIMetric.kt

fun bmiMetric(
weight: Double,
height: Double
): String {
val bmi = weight / (height * height) // [1]
return if (bmi < 18.5) "Underweight"
else if (bmi < 25) "Normal weight"
else "Overweight™

}

fun main() {

val weight = 72.57 // 160 Ibs
val height = 1.727 // 68 inches
val status = bmiMetric(weight, height)
println(status)
}
/* Output:
Normal weight
*/

« [1] Wenn Sie die Klammern entfernen, teilen Sie weight durch height und
multiplizieren dann dieses Ergebnis mit height. Das ergibt eine viel grofiere
Zahl und ist die falsche Antwort.

bmiMetric() verwendet Doubles fir das Gewicht und die Grofie. Ein Double kann
sehr grofie und sehr kleine Gleitkommazahlen aufnehmen.

Hier ist eine Version, die englische Einheiten verwendet, dargestellt durch Int-
Parameter:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zahlentypen 55

// NumberTypes/BMIEnglish.kt

fun bmiEnglish(
weight: Int,
height: Int
): String {
val bmi =
weight / (height * height) * 703.07 // [1]
return if (bmi < 18.5) "Underweight"
else if (bmi < 25) "Normal weight"
else "Overweight"

1
fun main() {
val weight = 160
val height = 68
val status = bmiEnglish(weight, height)
println(status)
1
/* Output:
Underweight
*/

Warum unterscheidet sich das Ergebnis von bmiMetric(), das Doubles verwendet?
Wenn Sie eine Ganzzahl durch eine andere Ganzzahl teilen, erzeugt Kotlin ein
Ganzzahlergebnis. Die Standardmethode, um mit dem Rest wahrend der ganzzah-
ligen Division umzugehen, ist das Abschneiden, was bedeutet, “abschneiden und
wegwerfen” (es gibt kein Runden). Wenn Sie also 5 durch 2 teilen, erhalten Sie 2,
und 7/10 ist null. Wenn Kotlin bmi in Ausdruck [1] berechnet, teilt es 160 durch 68
* 68 und erhélt null. Es multipliziert dann null mit 703 .07, um null zu erhalten.

Um dieses Problem zu vermeiden, verschieben Sie 703.07 an den Anfang der
Berechnung. Die Berechnungen werden dann gezwungen, Double zu sein:

val bmi = 703.07 * weight / (height * height)
Die Double Parameter in bmiMetric() verhindern dieses Problem. Rechnen Sie so
frith wie moglich auf den gewtinschten Typ um, um die Genauigkeit zu erhalten.

Alle Programmiersprachen haben Grenzen, was sie innerhalb einer Ganzzahl spei-
chern kénnen. Der Int Typ in Kotlin kann Werte zwischen -2°! und +2°'-1 annehmen,

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zahlentypen 56

eine Einschrankung der 32-Bit Darstellung von Int. Wenn Sie zwei Ints addieren
oder multiplizieren, die grofl genug sind, wird das Ergebnis tiberlaufen:

// NumberTypes/IntegerOverflow.kt

fun main() {
val i: Int = Int.MAX_VALUE
println(i + i)

}

/* Output:

-2

*/

Int.MAX_VALUE ist ein vordefinierter Wert, der die grof3te Zahl darstellt, die ein Int
halten kann.

Der Uberlauf erzeugt ein Ergebnis, das eindeutig falsch ist, da es sowohl negativ als
auch viel kleiner ist, als wir erwarten. Kotlin gibt eine Warnung aus, wann immer es
einen potenziellen Uberlauf erkennt.

Es liegt in Threr Verantwortung als Entwickler, Uberlaufe zu verhindern. Kotlin kann
nicht immer Uberldufe wihrend der Kompilierung erkennen, und es verhindert keine
Uberldufe, da dies eine untragbare Leistungseinbuf3e zur Folge hitte.

Wenn Thr Programm grofle Zahlen enthalt, konnen Sie Longs verwenden, die Werte
von -2% bis +2°*-1 aufnehmen. Um ein val vom Typ Long zu definieren, konnen Sie
den Typ explizit angeben oder ein L am Ende eines numerischen Literals hinzufiigen,
was Kotlin anweist, diesen Wert als Long zu behandeln:

// NumberTypes/LongConstants.kt

fun main() {
val i = 0O // Infers Int
val 11 = 0L // L creates Long
val 12: Long = © // Explicit type
println("$11 $12")

}

/* Output:

0 0

*/

Durch die Verwendung von Longs verhindern wir den Uberlauf in IntegerOver -
flow.kt:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zahlentypen 57

// NumberTypes/Usinglongs.kt

fun main() {
val i = Int.MAX_VALUE

println(oL + i + i) /7 [1]
println(1_000_000 * 1_000_00oL) // [2]
}
/* Output:
4294967294
10000000V
*/

Die Verwendung eines numerischen Literals in sowohl [1] als auch [2] erzwingt
Long-Berechnungen und ergibt ebenfalls ein Ergebnis vom Typ Long. Der Ort,
an dem das L erscheint, ist unwichtig. Wenn einer der Werte Long ist, ist der
resultierende Ausdruck Long.

Obwohl sie viel groflere Werte als Ints halten konnen, haben Longs immer noch
Groflenbeschrankungen:

// NumberTypes/BiggestlLong.kt

fun main() {
println(Long.MAX_VALUE)

}

/* Output :
9223372036854775807
*/

Long.MAX_VALUE ist der grofite Wert, den ein Long halten kann.

Ubungen und Losungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Boolesche Werte

i f-Ausdriicke demonstrierten den Operator “nicht” !, der einen Boole-
scher Wert negiert. Dieses Kapitel fithrt mehr in die Boolesche Algebra

€in.

Wir beginnen mit den Operatoren “und” und “oder”:

+ & (und): Erzeugt wahr nur, wenn der Boolescher Ausdruck links vom
Operator und der rechts beide wahr sind.

« || (oder): Erzeugt wahr, wenn entweder der Ausdruck links oder rechts vom
Operator wahr ist, oder wenn beide wahr sind.

In diesem Beispiel bestimmen wir, ob ein Geschaft geoffnet oder geschlossen ist,
basierend auf der Stunde:

// Booleans/Opent .kt

fun isOpeni(hour: Int) {
val open = 9
val closed = 20
println("Operating hours: $open - $closed")
val status =
if (hour >= open && hour < closed) // [1]
true
else
false
println("Open: $status")

}

fun main() = isOpen1(6)
/* Output:

Operating hours: 9 - 20
Open: false

*/

Boolesche Werte 59

main() ist ein einzelner Funktionsaufruf, daher konnen wir einen Ausdruckskorper
verwenden, wie in Funktionen beschrieben.

Der i f-Ausdruck in [1] prift, ob hour zwischen der Offnungszeit und der Schlief3zeit
liegt, daher kombinieren wir die Ausdriicke mit dem Boolean && (und).

Der i f-Ausdruck kann vereinfacht werden. Das Ergebnis des Ausdrucks i f(cond)
true else false ist einfach cond:

// Booleans/OpenZ2.kt

fun isOpen2(hour: Int) {
val open = 9
val closed = 20
println("Operating hours: $open - $closed")
val status = hour >= open && hour < closed
println("Open: $status")

}

fun main() = isOpen2(6)
/* Output:

Operating hours: 9 - 20
Open: false

*/

Lassen Sie uns die Logik umkehren und tiberpriifen, ob das Geschéft derzeit geschlos-
sen ist. Der “or”-Operator | | liefert true, wenn mindestens eine der Bedingungen
erfillt ist:

// Booleans/Closed.kt

fun isClosed(hour: Int) {
val open = 9
val closed = 20
println("Operating hours: $open - $closed")
val status = hour < open || hour >= closed
println("Closed: $status")

}

fun main() = isClosed(6)
/* Output:
Operating hours: 9 - 20

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Boolesche Werte 60

Closed: true

*/

Boolean-Operatoren ermdglichen komplizierte Logik in kompakten Ausdriicken.
Allerdings kann es leicht verwirrend werden. Streben Sie nach Lesbarkeit und
spezifizieren Sie Ihre Absichten explizit.

Hier ist ein Beispiel fiir einen komplizierten Boolean-Ausdruck, bei dem unterschied-
liche Auswertungsreihenfolgen zu unterschiedlichen Ergebnissen fiihren:

// Booleans/EvaluationOrder .kt

fun main() {
val sunny = true
val hoursSleep = 6
val exercise = false
val temp = 55

/7 1]

val happyl = sunny &% temp > 50 ||
exercise && hoursSleep > 7

println(happy1l)

/7 [2]:

val sameHappyl = (sunny && temp > 50) ||
(exercise && hoursSleep > 7)

println(sameHappy1)

// [3]:
val notSame =
(sunny && temp > 50 || exercise) &&
hoursSleep > 7

println(notSame)
}
/* Output:
true
true
false

*/

Die Boolean-Ausdriicke sind sunny, temp > 50, exercise und hoursSleep > T.
Wir lesen happy1 als “Es ist sonnig und die Temperatur ist grofier als 50 oder ich

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Boolesche Werte 61

habe Sport getrieben und mehr als 7 Stunden geschlafen” Aber hat && Vorrang vor
| | oder umgekehrt?

Der Ausdruck in [1] verwendet die Standardauswertungsreihenfolge von Kotlin.
Dies ergibt dasselbe Ergebnis wie der Ausdruck in [2], da ohne Klammern die
“und”-Operationen zuerst ausgewertet werden, dann das “oder”. Der Ausdruck in
[3] verwendet Klammern, um ein anderes Ergebnis zu erzielen. In [3] sind wir nur
glicklich, wenn wir mindestens 7 Stunden geschlafen haben.

Ubungen und Losungen finden Sie auf www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Wiederholung mitwhile

Computer sind ideal fiir sich wiederholende Aufgaben.

Die grundlegendste Form der Wiederholung verwendet das Schliisselwort while.
Dies wiederholt einen Block, solange der kontrollierende boolesche Ausdruck true
ist:

while (Boolean-expression) {
// Code to be repeated

}

Der boolesche Ausdruck wird einmal zu Beginn der Schleife und erneut vor jeder
weiteren Iteration durch den Block ausgewertet.

// RepetitionWithWhile/WhilelLoop.kt
fun condition(i: Int) = i < 100 // [1]

fun main() {
var i = 0

while (condition(i)) { /7 [2]
print(".")
i+=10 // [3]
}
}
/* Output:
*/

« [1] Der Vergleichsoperator < liefert ein Boolescher Wert Ergebnis, daher
leitet Kotlin Boolescher Wert als Ergebnistyp fiir condition() ab.

« [2] Der bedingte Ausdruck fiir daswhi le besagt: “Wiederhole die Anweisungen
im Korper, solange condition() true zuriickgibt”

« [3] Der += Operator addiert 10 zu i und weist das Ergebnis i in einem einzigen
Vorgang zu (i muss eine var sein, damit dies funktioniert). Dies entspricht:

Wiederholung mit while 63

i=1+10

Es gibt eine zweite Moglichkeit, while in Verbindung mit dem Schliisselwort do zu
verwenden:

do {

// Code to be repeated
} while (Boolean-expression)

Das Umschreiben von WhilelLoop.kt, um eine do-while-Schleife zu verwenden,

ergibt:
// RepetitionWithWhile/DoWhileloop.kt

fun main() {
var i = 0

do {
print(".")
i += 10
} while (condition(i))
}
/* Output:
*/

Der einzige Unterschied zwischen while und do-while besteht darin, dass der
Koérper von do-while immer mindestens einmal ausgefithrt wird, selbst wenn der
boolesche Ausdruck anfianglich false ergibt. Bei einem while wird der Korper nie
ausgefiihrt, wenn die Bedingung beim ersten Mal false ist. In der Praxis ist do-
while weniger verbreitet als while.

Die Kurzformen der Zuweisungsoperatoren sind fiir alle arithmetischen Operationen
verfiiggbar: +=, -=, *=, /= und %=. Hier werden -= und %= verwendet:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Wiederholung mit while 64

// RepetitionWithWhile/AssignmentOperators.kt

fun main() {
var n = 10

val d = 3
print(n)
while (n > d) {
n -=4d
print(" - $4")
}

println(" = $n")

var m = 10
print(m)
m %= d
println(" % $d = $m")
}
/* Output:
19 - 3 - 3 - 3 =1
10 % 3 = 1
*/

Um den Rest der ganzzahligen Division von zwei natiirlichen Zahlen zu berechnen,
beginnen wir mit einer while-Schleife und verwenden dann den Restoperator.

Das Hinzufiigen und Subtrahieren von 1 zu einer Zahl ist so haufig, dass sie eigene
Inkrement- und Dekrementoperatoren haben: ++ und - -. Sie konnen i += 1 durch
i++ ersetzen:

// RepetitionWithWhile/IncrementOperator.kt
fun main() {

var i = 0
while (i < 4) {

print(".")
i++
}
}
/* Output:
¥/

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Wiederholung mit while 65

In der Praxis werden while-Schleifen nicht zum Iterieren uber einen Bereich von

Zahlen verwendet. Stattdessen wird die for-Schleife verwendet. Dies wird im
nachsten Atom behandelt.

Ubungen und Lésungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Schleifen & Bereiche

Das Schlisselwort for fiithrt einen Codeblock fiir jeden Wert in einer
Sequenz aus.

Die Menge der Werte kann ein Bereich von Ganzzahlen, ein String oder, wie Sie spa-
ter im Buch sehen werden, eine Sammlung von Elementen sein. Das Schliisselwort
in zeigt an, dass Sie durch die Werte schreiten:

for (v in values) {
// Do something with v

}

Jedes Mal, wenn die Schleife durchlaufen wird, erhilt v das néichste Element in
values.

Hier ist eine for-Schleife, die eine Aktion eine feste Anzahl von Malen wiederholt:
// LoopingAndRanges/RepeatThreeTimes.kt

fun main() {

for (i in 1..3) {
println("Hey $i!")

}

}

/* Output:

Hey 1!

Hey 2!

Hey 3!

*/

Die Ausgabe zeigt, dass der index i jeden Wert im Bereich von 1 bis 3 erhalt.

Ein range ist ein Intervall von Werten, das durch ein Paar von Endpunkten definiert
wird. Es gibt zwei grundlegende Arten, ranges zu definieren:

Schleifen & Bereiche 67

// LoopingAndRanges/DefiningRanges.kt

fun main() {

val rangel = 1..10 // [1]
val range2 = 0 until 10 /7 [2]
println(rangel)
println(range2)

}

/* Output:

1..10

0..9

*/

« [1] Die Verwendung der . .-Syntax schliefit beide Grenzen im resultierenden
Bereich ein.

« [2] until schliet das Ende aus. Die Ausgabe zeigt, dass 10 nicht Teil des
Bereichs ist.

Die Anzeige eines Bereichs erzeugt ein lesbares Format.

Dies summiert die Zahlen von 10 bis 100:
// LoopingAndRanges/SumUsingRange.kt

fun main() {
var sum = 0
for (n in 10..100) {
sum += n
}
println("sum = $sum")
}
/* Output:
sum = 5005
*/

Sie konnen tiber einen Bereich in umgekehrter Reihenfolge iterieren. Sie konnen auch
einen Schritt-Wert verwenden, um das Intervall vom Standardwert 1 zu dndern:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Schleifen & Bereiche 68

// LoopingAndRanges/ForWithRanges.kt

fun showRange(r: IntProgression) {
for (i in r) {
print("$i ")
}
print(" // $r")
println()
}

fun main() {
showRange(1..5)
showRange (0 until 5)
showRange(5 downTo 1) // [1]
showRange(@..9 step 2) /7 [2]
showRange(@ until 10 step 3) // [3]
showRange(9 downTo 2 step 3)

/* Output:

12345 // 1..5

01234 // 0..4

54321 // 5 downTo 1 step 1
02468 // ©..8 step 2
0369 // 0..9 step 3

96 3 // 9 downTo 3 step 3

*/

« [1] downTo erzeugt einen absteigenden Bereich.

+ [2] step andert das Intervall. Hier wird der Bereich in Schritten von zwei statt
einem durchlaufen.

 [3] until kann auch mit step verwendet werden. Beachten Sie, wie sich dies
auf die Ausgabe auswirkt.

In jedem Fall bilden die Zahlenfolgen eine arithmetische Folge. showRange() ak-
zeptiert einen IntProgression-Parameter, der ein eingebauter Typ ist, der Int-
Bereiche beinhaltet. Beachten Sie, dass die String-Darstellung jeder IntProgres-
sion, wie sie im Ausgabekommentar fiir jede Zeile erscheint, oft anders ist als der
Bereich, der in showRange() tibergeben wird—der IntProgression iibersetzt die
Eingabe in eine gleichwertige gemeinsame Form.

Sie konnen auch einen Bereich von Zeichen erzeugen. Diese for-Schleife iteriert von
a bis z:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Schleifen & Bereiche 69

// LoopingAndRanges/ForWithCharRange.kt

fun main() {

for (c in 'a'..'z") {
print(c)
}
}
/* Output:
abcdefghi jklmnopqgrstuvwxyz
*/

Sie kdnnen iiber einen Bereich von Elementen iterieren, die ganze Mengen sind, wie
Ganzzahlen und Zeichen, aber nicht Gleitkommawerte.

Eckige Klammern greifen tiber den Index auf Zeichen zu. Da wir mit dem Zahlen
der Zeichen in einem String bei Null beginnen, wéhlt s[@] das erste Zeichen des
String s aus. Die Auswahl von s. lastIndex ergibt die letzte Indexnummer:

// LoopingAndRanges/IndexIntoString.kt

fun main() {
val s = "abc
for (i in ©..s.lastlIndex) {
print(s[i] + 1)
}

"

}

/* Output:
bed

*/

Manchmal beschreiben Leute s[@] als “das nullte Zeichen.”

Zeichen werden als Zahlen gespeichert, die ihren Unicode'’-Werten entsprechen.
Dabher ergibt das Hinzufligen einer Ganzzahl zu einem Zeichen ein neues Zeichen,
das dem neuen Codewert entspricht:

https://en.wikipedia.org/wiki/Unicode

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/Unicode

Schleifen & Bereiche 70

// LoopingAndRanges/AddingIntToChar .kt

fun main() {
val ch: Char = 'a
println(ch + 25)
println(ch < 'z')

}

/* Output:

z

true

*/

1

Die zweite println() zeigt, dass man Zeichencodes vergleichen kann.

Eine for-Schleife kann direkt iiber Strings iterieren:
// LoopingAndRanges/IterateOverString.kt

fun main() {
for (ch in "Jnskhm ") {
print(ch + 1)
}
}
/* Output:
Kotlin!
*/

ch empfangt nacheinander jedes Zeichen.

Im folgenden Beispiel durchlduft die Funktion hasChar () den String s und priift,
ob er ein bestimmtes Zeichen ch enthélt. Dasreturn in der Mitte der Funktion stoppt
die Funktion, sobald die Antwort gefunden wird:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Schleifen & Bereiche 71

// LoopingAndRanges/HasChar .kt

fun hasChar(s: String, ch: Char): Boolean {
for (¢ in s) {
if (¢ == ch) return true
}

return false

}

fun main() {
println(hasChar("kotlin", 't'))
println(hasChar("kotlin", 'a'))

1

/* Output:
true
false

*/

Das nichste Atom zeigt, dass hasChar () unnétig ist — Sie konnen stattdessen die
eingebaute Syntax verwenden.

Wenn Sie einfach eine Aktion eine feste Anzahl von Malen wiederholen mochten,
konnen Sie repeat () anstelle einer for-Schleife verwenden:

// LoopingAndRanges/RepeatHi .kt

fun main() {

repeat(2) {
println("hi!")

}

}

/* Output:

hi!

hi!

*/

repeat () ist eine Standardbibliotheksfunktion, kein Schliisselwort. Sie werden viel
spater im Buch sehen, wie sie erstellt wurde.

Ubungen und Lésungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Das in Schlisselwort

Das in Schliisselwort priift, ob ein Wert innerhalb eines Bereichs liegt.

// InKeyword/MembershipInRange.kt

fun main() {
val percent = 35
println(percent in 1..100)

}
/* Output:
true

*/
In Booleans haben Sie gelernt, Grenzen explizit zu iiberpriifen:
// InKeyword/MembershipUsingBounds .kt

fun main() {
val percent = 35
println(@ <= percent && percent <= 100)

}
/* Output:
true

*/

0 <= x && x <= 100 istlogisch gleichwertigzux in ©..100.IntelliJ IDEA schlagt
vor, die erste Form automatisch durch die zweite zu ersetzen, da diese einfacher zu
lesen und zu verstehen ist.

Das Schliisselwort in wird sowohl fiir Iteration als auch fiir Mitgliedschaft verwen-
det. Ein in innerhalb des Steuerungsausdrucks einer for-Schleife bedeutet Iteration,
andernfalls prift in die Mitgliedschaft:

Das in Schliisselwort 73

// InKeyword/IterationVsMembership.kt

fun main() {
val values = 1..3
for (v in values) {
println("iteration $v")
}
val v = 2
if (v in values)
println("$v is a member of $values")
}
/* Output:
iteration 1
iteration 2
iteration 3
2 is a member of 1..3
*/

Das in Schlusselwort ist nicht nur auf Bereiche beschrankt. Sie konnen auch
tiberprifen, ob ein Zeichen Teil eines String ist. Das folgende Beispiel verwendet
in anstelle von hasChar () aus dem vorherigen Atom:

// InKeyword/InString.kt

fun main() {
println('t' in "kotlin")
println('a' in "kotlin")

}

/* Output:

true

false

*/

Spéter im Buch wirst du sehen, dass in auch mit anderen Typen funktioniert.

Hier priift in, ob ein Zeichen zu einem Bereich von Zeichen gehort:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Das in Schliisselwort 74

// InKeyword/CharRange.kt
fun isDigit(ch: Char) = ch in 'Q'..'9'

fun notDigit(ch: Char) =
ch lin '0'..'Q" /7 [1]

fun main() {
println(isDigit('a'))
println(isDigit('5"))
println(notDigit('z"'))

1

/* Output:

false

true

true

*/

o [1] !in prift, dass ein Wert nicht zu einem Bereich gehort.

Sie konnen einen Double-Bereich erstellen, aber Sie konnen ihn nur verwenden, um
die Zugehorigkeit zu iiberpriifen:

// InKeyword/FloatingPointRange.kt

fun inFloatRange(n: Double) {
val r = 1.0..10.0
println("$n in $r? ${n in r}")
}

fun main() {
inFloatRange(©.999999)
inFloatRange(5.09)
inFloatRange(10.0)
inFloatRange(10.0000001)

}

/* Output:

©.999999 in 1.0..10.07 false

5.0 in 1.0..10.0? true

10.0 in 1.0..10.07 true

10.0000001 in 1.0..10.07 false

*/

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Das in Schliisselwort 75

Sie konnen nur . . verwenden, um einen Gleitkomma-Bereich in Kotlin zu definieren.

Sie konnen tiberpriifen, ob ein String ein Mitglied eines Bereichs von Strings ist:
// InKeyword/StringRange.kt

fun main() {

println("ab" in "aa".."az")
println("ba" in "aa".."az")
1
/* Output:
true
false
*/

Hier verwendet Kotlin den alphabetischen Vergleich.

Ubungen und Lésungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Ausdricke & Anweisungen

Anweisungen und Ausdriicke sind die kleinsten niitzlichen Codefragmen-
te in den meisten Programmiersprachen.

Es gibt einen grundlegenden Unterschied: Eine Anweisung hat eine Wirkung, erzeugt
jedoch kein Ergebnis. Ein Ausdruck erzeugt immer ein Ergebnis.

Da eine Anweisung kein Ergebnis erzeugt, muss sie den Zustand ihrer Umgebung
dndern, um niitzlich zu sein. Anders gesagt: “Eine Anweisung wird wegen ihrer
Seiteneffekte aufgerufen” (das heifit, was sie andere als ein Ergebnis zu erzeugen
tut). Als Merkhilfe:

Eine Anweisung dndert den Zustand.

Eine Definition von “ausdriicken” ist “herauspressen”, wie in “den Saft aus einer
Orange ausdriicken”. Also

Ein Ausdruck driickt aus.

Das heifit, er erzeugt ein Ergebnis.

Die for-Schleife ist eine Anweisung in Kotlin. Sie kann nicht zugewiesen werden,
da es kein Ergebnis gibt:

Ausdriicke & Anweisungen 77

// ExpressionsStatements/ForIsAStatement.kt

fun main() {
// Can't do this:
// val f = for(i in 1..10) {}
// Compiler error message:
// for is not an expression, and
// only expressions are allowed here

}

Eine for-Schleife wird aufgrund ihrer Nebeneffekte verwendet.

Ein Ausdruck erzeugt einen Wert, der zugewiesen oder als Teil eines anderen
Ausdrucks verwendet werden kann, wahrend eine Anweisung immer ein Top-Level-
Element ist.

Jeder Funktionsaufruf ist ein Ausdruck. Selbst wenn die Funktion Unit zuriickgibt
und nur aufgrund ihrer Nebeneffekte aufgerufen wird, kann das Ergebnis dennoch
zugewiesen werden:

// ExpressionsStatements/UnitReturnType.kt
fun unitFun() = Unit

fun main() {
println(unitFun())
val ul: Unit = println(42)
println(ut)
val u2 = println(@) // Type inference
println(u2)

}

/* Output:

kotlin.Unit

42

kotlin.Unit

7

kotlin.Unit

*/

Der Unit-Typ enthilt einen einzelnen Wert namens Unit, den Sie direkt zuriickge-
ben konnen, wie inunitFun() zu sehen ist. Der Aufruf vonprintln() gibt ebenfalls

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Ausdriicke & Anweisungen 78

Unit zuriick. Dasval u1 erfasst den Riickgabewert von print1n() und ist explizit
als Unit deklariert, wiahrend u2 Typinferenz verwendet.

if erzeugt einen Ausdruck, sodass Sie dessen Ergebnis zuweisen konnen:

// ExpressionsStatements/AssigningAnIf.kt

fun main() {
val resultl

if (11 > 42) 9 else 5

val result2 = if (1 < 2) {
val a = 11
a + 42

} else 42

val result3 =
if ('x' < 'y
println("x < y")
else
println("x > y")

println(resultl)
println(result2)
println(result3)

}

/* Output:
x <y

5

53
kotlin.Unit
*/

Die erste Ausgabelinie ist x < y, obwohl result3 erst am Ende von main() ange-
zeigt wird. Dies geschieht, weil die Auswertung von result3 println() aufruft
und die Auswertung erfolgt, wenn result3 definiert wird.

Beachten Sie, dass a innerhalb des Codeblocks fiir resul t2 definiert ist. Das Ergebnis
des letzten Ausdrucks wird zum Ergebnis des i f-Ausdrucks; hier ist es die Summe
von 11 und 42. Aber was ist mit a? Sobald Sie den Codeblock verlassen (au3erhalb
der geschweiften Klammern gehen), konnen Sie nicht mehr auf a zugreifen. Es ist
voriibergehend und wird verworfen, sobald Sie den Giiltigkeitsbereich dieses Blocks
verlassen.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Ausdriicke & Anweisungen 79

Der Inkrementoperator i++ ist auch ein Ausdruck, selbst wenn er wie eine Anwei-
sung aussieht. Kotlin folgt dem Ansatz von C-dhnlichen Sprachen und bietet zwei
Versionen von Inkrement- und Dekrementoperatoren mit leicht unterschiedlichen
Semantiken. Der Prafix-Operator erscheint vor dem Operanden, wie in ++i, und
gibt den Wert zuriick, nachdem das Inkrement erfolgt ist. Sie konnen es lesen als
“zuerst das Inkrement durchfithren, dann den resultierenden Wert zuriickgeben”.
Der Postfix-Operator wird nach dem Operanden platziert, wie in i++, und gibt den
Wert von i zuriick, bevor das Inkrement erfolgt. Sie konnen es lesen als “zuerst das
Ergebnis erzeugen, dann das Inkrement durchfithren”.

// ExpressionsStatements/PostfixVsPrefix.kt

fun main() {
var i = 10
println(i++)
println(i)
var j = 20
println(++j)
println(j)

}

/* Output:

10

11

21

21

*/

Der Dekrementoperator hat auch zwei Versionen: --i und i--. Die Verwendung
von Inkrement- und Dekrementoperatoren innerhalb anderer Ausdriicke wird nicht
empfohlen, da dies zu verwirrendem Code fithren kann:

// ExpressionsStatements/Confusing.kt

fun main() {
var i =1
println(i++ + ++i)

}

Versuchen Sie zu erraten, was die Ausgabe sein wird, und tiberpriifen Sie es dann.

Ubungen und Lésungen finden Sie auf www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 1

Dieses Atom fasst die Atome in Abschnitt I zusammen und tberprift sie,
beginnend bei Hallo, Welt! und endend mit Ausdriicke & Anweisungen.

Wenn Sie ein erfahrener Programmierer sind, sollte dies Thr erstes Atom sein. Neue
Programmierer sollten dieses Atom lesen und die Ubungen als Uberpriifung von
Abschnitt I durchfihren.

Wenn Thnen etwas unklar ist, studieren Sie das zugehérige Atom zu diesem Thema
(die Unteriiberschriften entsprechen den Atomtiteln).

Hallo, Welt

Kotlin unterstiitzt sowohl // Einzelzeilenkommentare als auch /*-bis-*/ Mehrzei-
lenkommentare. Der Einstiegspunkt eines Programms ist die Funktion main():

// Summaryl/Hello.kt

fun main() {
println("Hello, world!")

}
/* Output:
Hello, world!

*/

Die erste Zeile jedes Beispiels in diesem Buch ist ein Kommentar, der den Namen des
Unterverzeichnisses des Atoms enthalt, gefolgt von einem / und dem Dateinamen.
Alle extrahierten Code-Beispiele finden Sie unter AtomicKotlin.com™.

println() ist eine Standardbibliotheksfunktion, die einen einzelnen String-Parameter
(oder einen Parameter, der in einen String konvertiert werden kann) nimmt.

*http://AtomicKotlin.com

http://atomickotlin.com/
http://atomickotlin.com/

Zusammenfassung 1 81

println() bewegt den Cursor nach der Ausgabe seines Parameters in eine neue
Zeile, wiahrend print () den Cursor in derselben Zeile lasst.

Kotlin erfordert kein Semikolon am Ende eines Ausdrucks oder einer Anweisung.
Semikolons sind nur notwendig, um mehrere Ausdriicke oder Anweisungen in einer
einzigen Zeile zu trennen.

var & val, Datentypen

Um einen unveranderlichen Bezeichner zu erstellen, verwenden Sie das Schliissel-
wort val, gefolgt vom Bezeichnernamen, einem Doppelpunkt und dem Typ fiir
diesen Wert. Fiigen Sie dann ein Gleichheitszeichen und den Wert hinzu, der diesem
val zugewiesen werden soll:

val identifier: Type = initialization

Sobald einem val ein Wert zugewiesen wurde, kann er nicht neu zugewiesen werden.

Kotlons Typinferenz kann normalerweise den Typ automatisch bestimmen, basie-
rend auf dem Initialisierungswert. Dies fiithrt zu einer einfacheren Definition:

val identifier = initialization
Beide der folgenden sind giiltig:

val daysInFebruary = 28
val daysInMarch: Int = 31

Eine var (Variable) Definition sieht gleich aus, indem var anstelle von val verwen-
det wird:

var identifierl = initialization
var identifier2: Type = initialization

Im Gegensatz zu einem val konnen Sie ein var dndern, daher ist Folgendes zulassig:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 1 82

var hoursSpent = 20
hoursSpent = 25

Allerdings kann der Typ nicht geandert werden, sodass Sie einen Fehler erhalten,
wenn Sie sagen:

hoursSpent = 30.5

Kotlin leitet den Int-Typ ab, wenn hoursSpent definiert wird, daher wird es die
Anderung in einen Gleitkommawert nicht akzeptieren.

Funktionen

Funktionen sind benannte Unterprogramme:

fun functionName(argl: Typel, arg2: Type2, ...): ReturnType {
// Lines of code ...
return result

}

Das Schliisselwort fun wird gefolgt vom Funktionsnamen und der Parameterliste
in Klammern. Jeder Parameter muss einen expliziten Typ haben, da Kotlin die
Parameterarten nicht ableiten kann. Die Funktion selbst hat einen Typ, der auf die
gleiche Weise definiert wird wie bei var oder val (ein Doppelpunkt gefolgt vom
Typ). Der Typ der Funktion ist der Typ des zuriickgegebenen Ergebnisses.

Die Funktionssignatur wird gefolgt vom Funktionskorper, der in geschweiften Klam-
mern enthalten ist. Die return-Anweisung liefert den Riickgabewert der Funktion.

Sie konnen eine abgekiirzte Syntax verwenden, wenn die Funktion aus einem
einzelnen Ausdruck besteht:

fun functionName(argl: Typel, arg2: Type2, ...): ReturnType = result

Diese Form wird als Ausdruckskorper bezeichnet. Anstelle einer 6ffnenden ge-
schweiften Klammer verwenden Sie ein Gleichheitszeichen gefolgt vom Ausdruck.
Sie konnen den Riickgabetyp weglassen, weil Kotlin ihn ableitet.

Hier ist eine Funktion, die den Wiirfel ihres Parameters produziert, und eine andere,
die ein Ausrufezeichen zu einem String hinzufigt:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 1

// Summaryl/BasicFunctions.kt

fun cube(x: Int): Int {
return x * x * x

}
fun bang(s: String) = s + "I"

fun main() {
println(cube(3))
println(bang("pop"))

}

/* Output:

27

pop!

*/

83

cube() hat einen Blockkdrper mit einer expliziten return-Anweisung. bang() ist

ein Ausdruckskorper, der den Riickgabewert der Funktion erzeugt. Kotlin leitet den
Riickgabetyp von bang() als String ab.

Boolesche Werte

Fiir die Boolesche Algebra bietet Kotlin Operatoren wie:

« | (nicht) negiert den Wert logisch (wandelt true in false und umgekehrt).
« && (und) gibt true nur zuriick, wenn beide Bedingungen true sind.

« | | (oder) gibt true zuriick, wenn mindestens eine der Bedingungen true ist.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 1

// Summary1/Booleans.kt

fun main() {

val opens = 9

val closes = 20

println("Operating hours: $opens - $closes")
val hour = 6

println("Current time: " + hour)

val isOpen = hour >= opens && hour < closes
println("Open: " + isOpen)
println("Not open: " + !isOpen)

val isClosed = hour < opens || hour >= closes
println("Closed: " + isClosed)

}

/* Output:

Operating hours: 9 - 20
Current time: 6

Open: false

Not open: true

Closed: true

*/

84

Der Initialisierer von isOpen verwendet &, um zu testen, ob beide Bedingungen
true sind. Die erste Bedingung hour >= opens ist false, sodass das Ergebnis des
gesamten Ausdrucks false wird. Der Initialisierer fiir isClosed verwendet | |, was
true ergibt, wenn mindestens eine der Bedingungen true ist. Der Ausdruck hour

< opens ist true, daher ist der gesamte Ausdruck true.

i f-Ausdrucke

Da if ein Ausdruck ist, liefert es ein Ergebnis. Dieses Ergebnis kann einer var oder
val zugewiesen werden. Hier sehen Sie auch die Verwendung des Schliisselworts
else:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 1 85

// Summaryl/IfResult.kt

fun main() {
val result = if (99 < 100) 4 else 42
println(result)

}

/* Output:

4

*/

Entweder Zweig eines i f-Ausdrucks kann ein mehrzeiliger Codeblock sein, der von
geschweiften Klammern umgeben ist:

// Summaryl/I fExpression.kt

fun main() {
val activity = "swimming"
val hour = 10

val isOpen = if (
activity == "swimming" ||
activity == "ice skating") {
val opens = 9
val closes = 20
println("Operating hours: " +
opens + " - " + closes)
hour >= opens && hour < closes
} else {
false
}
println(isOpen)
}
/* Output:
Operating hours: 9 - 20
true

*/

Ein Wert, der innerhalb eines Codeblocks definiert ist, wie opens, ist auferhalb
des Giiltigkeitsbereichs dieses Blocks nicht zuginglich. Da sie global fiir den 1if-
Ausdruck definiert sind, sind activity und hour innerhalb des if-Ausdrucks
zugénglich.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 1 86

Das Ergebnis eines i f-Ausdrucks ist das Ergebnis des letzten Ausdrucks des gewahl-
ten Zweigs. Hier ist es hour >= opens && hour <= closes, was true ist.

String-Vorlagen

Sie konnen einen Wert innerhalb eines String mit Hilfe von String-Vorlagen
einfiigen. Verwenden Sie ein $ vor dem Bezeichnernamen:

// Summaryl/StrTemplates.kt

fun main() {
val answer = 42

println("Found $answer!") // [1]
val condition = true
println(
"${if (condition) 'a' else 'b'}") // [2]
println("printing a $1") // [3]
}
/* Output:
Found 42!
a
printing a $1
*/

« [1] $answer ersetzt den Wert, der in answer enthalten ist.

o [2] ${if(condition) 'a' else 'b'} wertet den Ausdruck innerhalb von
${} aus und ersetzt das Ergebnis.

+ [3] Wenn dem $ etwas folgt, das nicht als Programmkennzeichner erkennbar
ist, passiert nichts Besonderes.

Verwenden Sie dreifach-angefithrte Strings, um mehrzeiligen Text oder Text mit
Sonderzeichen zu speichern:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 1 87

// Summaryl/ThreeQuotes.kt

fun json(qg: String, a: Int) = """{
"question" : "$q",
"answer" : $a

}u nn

fun main() {
println(json("The Ultimate", 42))

}
/* Output:

{
"question" : "The Ultimate",
"answer" : 42

}
*/

Sie mussen keine Sonderzeichen wie " innerhalb eines dreifach-umrahmten String
maskieren. (In einem reguldren String schreiben Sie \", um ein Anfithrungszeichen
einzufiigen). Wie bei normalen Strings konnen Sie einen Bezeichner oder einen
Ausdruck mit $ innerhalb eines dreifach-umrahmten String einfiigen.

Zahlentypen

Kotlin bietet Ganzzahltypen (Int, Long) und FlieBkommatypen (Double). Eine
Ganzzahlenkonstante ist standardméflig Int und Long, wenn Sie ein L anhéngen.
Eine Konstante ist Double, wenn sie einen Dezimalpunkt enthalt:

// Summary1/NumberTypes.kt

fun main() {
val n = 1000 // Int

val 1 = 1000L // Long
val d = 1000.0 // Double
println("$n $1 $d")

}

/* Output:

1000 1000 1000.0

*/

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 1 88

Ein Int halt Werte zwischen -2°' und +2°'-1. Ganzzahlenwerte konnen einen
Uberlauf verursachen; zum Beispiel verursacht das Hinzufiigen von irgendetwas zu
Int.MAX_VALUE einen Uberlauf:

// Summaryl/Over flow. kt

fun main() {
println(Int.MAX_VALUE + 1)
println(Int.MAX_VALUE + 4L)

}

/* Output:
-2147483648
2147483648

*/

Im zweiten println()-Statement fiigen wir L zu 1 hinzu, wodurch der gesamte
Ausdruck vom Typ Long wird, was den Uberlauf verhindert. (Ein Long kann Werte
zwischen -2% und +2°*-1 aufnehmen).

Wenn Sie ein Int durch ein anderes Int teilen, erzeugt Kotlin ein Int-Ergebnis,
und ein verbleibender Rest wird abgeschnitten. Also ergibt1/2 @. Wenn ein Double
beteiligt ist, wird das Int vor der Operation zu Double hochgestuft, sodass 1.0/2
0.5 ergibt.

Man konnte erwarten, dass d1 im Folgenden 3. 4 ergibt:
// Summaryl/Truncation.kt

fun main() {
val di1: Double = 3.0 + 2 / 5
println(d1)
val d2: Double = 3 + 2.0 / 5
println(d2)

}

/* Output:

3.0

3.4

*/

Aufgrund der Auswertungsreihenfolge tut es das nicht. Kotlin teilt zuerst 2 durch 5,
und Ganzzahlmathematik ergibt 0, was zu einem Ergebnis von 3.0 fiihrt. Dieselbe

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 1 89

Auswertungsreihenfolge erzeugt das erwartete Ergebnis fiir d2. Die Division von 2.0
durch 5 ergibt ©. 4. Die 3 wird zu einem Double hochgestuft, weil wir es zu einem
Double (@.4) addieren, was 3.4 ergibt.

Das Verstandnis der Auswertungsreihenfolge hilft Thnen zu entschliisseln, was ein
Programm macht, sowohl mit logischen Operationen (Boolean-Ausdriicken) als auch
mit mathematischen Operationen. Wenn Sie sich tiber die Auswertungsreihenfolge
unsicher sind, verwenden Sie Klammern, um Ihre Absicht zu erzwingen. Dies macht
es auch fir diejenigen, die Thren Code lesen, klar.

Wiederholung mit while

Eine while-Schleife lauft weiter, solange der kontrollierende Boolean-Ausdruck
true ergibt:

while (Boolean-expression) {
// Code to be repeated

}

Der Boolean expression wird einmal zu Beginn der Schleife und erneut vor jeder
weiteren Iteration ausgewertet.

// Summaryl/While.kt
fun testCondition(i: Int) = i < 100
fun main() {

var i = 0
while (testCondition(i)) {

print(".")
i +=10
}
}
/* Output:
*/

Kotlin leitet Boolean als Ergebnistyp fiir testCondition() ab.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 1 90

Die Kurzformen der Zuweisungsoperatoren sind fiir alle mathematischen Opera-
tionen verfiigbar (+=, -=, *=, /=, %=). Kotlin unterstiitzt auch die Inkrement- und
Dekrementoperatoren ++ und - -, sowohl in Prafix- als auch in Postfix-Form.

while kann mit dem Schlisselwort do verwendet werden:
do {

// Code to be repeated
} while (Boolean-expression)

Umschreiben von While.kt:
// Summaryl/DoWhile.kt

fun main() {
var i = 0

do {
print(".")
i += 10
} while (testCondition(i))
}
/* Output:
*/

Der einzige Unterschied zwischen while und do-while besteht darin, dass der
Koérper von do-while immer mindestens einmal ausgefithrt wird, selbst wenn der
boolesche Ausdruck beim ersten Mal false ergibt.

Schleifen & Bereiche

Viele Programmiersprachen greifen auf ein iterierbares Objekt zu, indem sie durch
ganze Zahlen gehen. Kotlins for erlaubt es Ihnen, Elemente direkt aus iterierbaren
Objekten wie Bereichen und Strings zu entnehmen. Zum Beispiel wahlt diese for-
Schleife jedes Zeichen in der Zeichenkette "Kotlin" aus:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 1 91

// Summaryl/Stringlteration.kt

fun main() {
for (¢ in "Kotlin") {
print("$c ")
// ¢ += 1 // error:
// val cannot be reassigned

}
}
/* Output:
Kotlin
*/

¢ kann nicht explizit als entweder var oder val definiert werden—Kotlin macht es
automatisch zu einem val und leitet seinen Typ als Char ab (man kann den Typ
explizit angeben, aber in der Praxis wird dies selten getan).

Sie konnen durch ganze Zahlenwerte mit Bereichen iterieren:
// Summaryl/RangeOfInt.kt

fun main() {
for (i in 1..10) {

print("$i ")
}
}
/* Output:
123456178910
*/

Einen Bereich mit . . zu erstellen, schlief3t beide Grenzen ein, aber until schlief3t das
obere Ende aus: 1 bis 10 ist dasselbe wie 1. .9. Sie kénnen einen Inkrementwert
mit step angeben: 1. .21 Schritt 3.

Das in Schlusselwort

Dasselbe in, das die Iteration in for Schleifen ermoglicht, erlaubt es Thnen auch,
die Zugehorigkeit zu einem Bereich zu tiberpriifen. ! in gibt true zuriick, wenn der
getestete Wert nicht im Bereich liegt:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 1 92

// Summaryl/Membership.kt

fun inNumRange(n: Int) = n in 50..100

' 1 1 1

fun notLowerCase(ch: Char) = ch !'in 'a'..'z

fun main() {

val i1 = 11

val i2 = 100
val c1 = 'K'
val c2 = 'k'

println("$i1 ${inNumRange(i1)}")
println("$i2 ${inNumRange(i2)}")
println("$ct1 ${notLowerCase(c1)}")
println("$c2 ${notLowerCase(c2)}")

}

/* Output:
11 false
100 true
K true

k false

*/

in kann auch verwendet werden, um die Zugehorigkeit zu Gleitkomma-Bereichen
zu testen, obwohl solche Bereiche nur mit . . und nicht mit until definiert werden
konnen.

Ausdricke & Statements

Das kleinste niitzliche Codefragment in den meisten Programmiersprachen ist entwe-
der ein Statement oder ein Ausdruck. Diese haben einen grundlegenden Unterschied:

« Ein Statement dndert den Zustand.
« Ein Ausdruck driickt aus.

Das heifit, ein Ausdruck liefert ein Ergebnis, wiahrend ein Statement das nicht tut.
Weil es nichts zuriickgibt, muss ein Statement den Zustand seiner Umgebung dndern
(das heif3t, einen Seiteneffekt erzeugen), um etwas Niitzliches zu tun.

Fast alles in Kotlin ist ein Ausdruck:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 1 93

val hours = 10
val minutesPerHour = 60
val minutes = hours * minutesPerHour

In jedem Fall ist alles rechts vom = ein Ausdruck, der ein Ergebnis liefert, das der
Bezeichnung links zugewiesen wird.

Funktionen wie print1n() scheinen kein Ergebnis zu erzeugen, aber da sie immer
noch Ausdriicke sind, miissen sie etwas zuriickgeben. Kotlin hat dafiir einen speziel-
len Typ namens Unit:

// Summaryl/UnitReturn.kt

fun main() {
val result = println("returns Unit")
println(result)

}

/* Output:
returns Unit
kotlin.Unit

*/

Erfahrene Programmierer sollten nach dem Bearbeiten der Ubungen fiir dieses Atom
zu Zusammenfassung 2 gehen.

Ubungen und Losungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Abschnitt II: Einfuhrung in
Objekte

Objekte sind die Grundlage fiir zahlreiche moderne Sprachen, einschlief3-
lich Kotlin.

In einer objektorientierten (OO) Programmiersprache entdecken Sie “Nomen” in dem
Problem, das Sie losen, und tibersetzen diese Nomen in Objekte. Objekte halten Daten

und fithren Aktionen aus. Eine objektorientierte Sprache erstellt und verwendet
Objekte.

Kotlin ist nicht nur objektorientiert; es ist auch funktional. Funktionale Sprachen
konzentrieren sich auf die Aktionen, die Sie ausfithren (“Verben”). Kotlin ist eine
hybride objekt-funktionale Sprache.

« Dieser Abschnitt erklart die Grundlagen der objektorientierten Programmie-
rung.

« Abschnitt IV: Funktionale Programmierung fiihrt in die funktionale Program-
mierung ein.

« Abschnitt V: Objektorientierte Programmierung behandelt die objektorientierte
Programmierung im Detail.

Objekte Uberall

Objekte speichern Daten mithilfe von Eigenschaften (vals und vars) und
fithren Operationen mit diesen Daten mithilfe von Funktionen durch.

Einige Definitionen:

« Klasse: Definiert Eigenschaften und Funktionen fiir das, was im Wesentlichen
ein neuer Datentyp ist. Klassen werden auch als benutzerdefinierte Typen
bezeichnet.

« Mitglied: Entweder eine Eigenschaft oder eine Funktion einer Klasse.

« Mitgliedsfunktion: Eine Funktion, die nur mit einer bestimmten Klasse von
Objekten arbeitet.

« Ein Objekt erstellen: Ein val oder var einer Klasse erstellen. Auch als eine
Instanz dieser Klasse erstellen bezeichnet.

Da Klassen Zustand und Verhalten definieren, konnen wir sogar Instanzen von
eingebauten Typen wie Double oder Boolean als Objekte bezeichnen.

Betrachten Sie die IntRange-Klasse von Kotlin:
// ObjectsEverywhere/IntRanges.kt

fun main() {
val r1 = IntRange(0, 10)
val r2 = IntRange(5, 7)
println(r1)
println(r2)

}

/* Output:

0..10

5..7

*/

Objekte tiberall 96

Wir erstellen zwei Objekte (Instanzen) der Klasse IntRange. Jedes Objekt hat seinen
eigenen Speicherplatz im Speicher. IntRange ist eine Klasse, aber ein bestimmter
Bereich r1 von 0 bis 10 ist ein Objekt, das sich von dem Bereich r2 unterscheidet.

Fiir ein IntRange-Objekt stehen zahlreiche Operationen zur Verfiigung. Einige sind
einfach, wie sum(), und andere erfordern mehr Verstandnis, bevor Sie sie verwenden
kénnen. Wenn Sie versuchen, eine aufzurufen, die Argumente benétigt, wird die IDE
nach diesen Argumenten fragen.

Um mehr tber eine bestimmte Mitgliedsfunktion zu erfahren, schlagen Sie in der
Kotlin-Dokumentation® nach. Beachten Sie das Lupensymbol im oberen rechten
Bereich der Seite. Klicken Sie darauf und geben Sie IntRange in das Suchfeld ein. Kli-
cken Sie auf kotlin.ranges > IntRange aus der resultierenden Suche. Sie sehen
die Dokumentation fiir die IntRange-Klasse. Sie konnen alle Mitgliedsfunktionen—
die Programmierschnittstelle (API)—der Klasse studieren. Obwohl Sie die meisten
davon zu diesem Zeitpunkt nicht verstehen werden, ist es hilfreich, sich daran zu
gewohnen, in der Kotlin-Dokumentation nachzuschlagen.

Ein IntRange ist eine Art von Objekt, und ein charakteristisches Merkmal eines
Objekts ist, dass Sie Operationen darauf ausfithren. Statt “eine Operation ausfihren”
sagen wir eine Mitgliedsfunktion aufrufen. Um eine Mitgliedsfunktion fiir ein Objekt
aufzurufen, beginnen Sie mit dem Objektbezeichner, dann ein Punkt, dann der Name
der Operation:

// ObjectsEverywhere/RangeSum.kt

fun main() {
val r = IntRange(0, 10)
println(r.sum())

}

/* Output:

55

*/

Da sum() eine Mitgliedsfunktion ist, die fiir IntRange definiert ist, rufen Sie sie auf,
indem Sie r.sum() schreiben. Dies summiert alle Zahlen in diesem IntRange.

Frihere objektorientierte Sprachen verwendeten den Ausdruck “eine Nachricht
senden”, um das Aufrufen einer Mitgliedsfunktion fiir ein Objekt zu beschreiben.
Manchmal sieht man diese Terminologie noch.

“https://kotlinlang.org/api/latest/jvm/stdlib/index.html

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

https://kotlinlang.org/api/latest/jvm/stdlib/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/index.html

Objekte tiberall 97

Klassen konnen viele Operationen (Mitgliedsfunktionen) haben. Es ist einfach, Klas-
sen mit einer IDE (integrierte Entwicklungsumgebung) zu erkunden, die eine Funk-
tion namens Code-Vervollstindigung enthalt. Wenn Sie zum Beispiel . s nach einem
Objektbezeichner in Intelli] IDEA eingeben, zeigt es alle Mitglieder dieses Objekts
an, die mit s beginnen:

val r = IntRange(@, 10)
r.

start Int
v step Int
m & spliterator() Spliterator<Int>
A & sum() Int
A & single() Int
A & single {...} Int
A & singleOrNull() Int?
A = singleOrNull {...} Int?
A = sortedBy {...} List<Int>
A & sorted() List<Int>
LY cartadBvNacrandina T 1 lice+ T+~

Did you know that Quick Definition View (_Space) works in completion lookups as well? >> 1T

Code-Vervollstindigung

Versuchen Sie, die Code-Vervollstaindigung bei anderen Objekten zu verwenden.
Zum Beispiel konnen Sie einen String umkehren oder alle Zeichen in Kleinbuch-
staben umwandeln:

// ObjectsEverywhere/Strings.kt

fun main() {
val s = "AbcD"
println(s.reversed())
println(s.lowercase())

}

/* Output:

DcbA

abcd

*/

Du kannst einen String leicht in einen integer umwandeln und zuriick:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Objekte tiberall 98

// ObjectsEverywhere/Conversion.kt

fun main() {
val s = "123"
println(s.tolnt())
val i = 1283
println(i.toString())

}

/* Output:
123

123

*/

Spéter im Buch besprechen wir Strategien, um Situationen zu bewéltigen, wenn der
String, den Sie konvertieren mochten, keinen korrekten Integer-Wert darstellt.

Sie konnen auch von einem Zahlentyp zu einem anderen konvertieren. Um Ver-
wirrung zu vermeiden, sind Konvertierungen zwischen Zahlentypen explizit. Zum
Beispiel konvertieren Sie ein Int i zu einem Long, indem Sie i . toLong() aufrufen,
oder zu einem Double mit i . toDouble():

// ObjectsEverywhere/NumberConversions.kt

fun fraction(numerator: Long, denom: Long) =
numerator .toDouble() / denom

fun main() {
val num = 1
val den = 2
val f = fraction(num.tolLong(), den.tolLong())
println(f)
}
/* Output:
0.5
*/

Gut definierte Klassen sind fiir einen Programmierer leicht zu verstehen und erzeu-
gen Code, der leicht zu lesen ist.

Ubungen und Lésungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Klassen erstellen

Sie konnen nicht nur vordefinierte Typen wie IntRange und String
verwenden, sondern auch Ihre eigenen Objekttypen erstellen.

Tatsachlich besteht ein Grof3teil der Aktivitaten in der objektorientierten Program-
mierung darin, neue Typen zu erstellen. Sie erstellen neue Typen, indem Sie Klassen
definieren.

Ein Objekt ist ein Teil der Losung fiir ein Problem, das Sie zu losen versuchen.
Beginnen Sie damit, Objekte als Ausdruck von Konzepten zu betrachten. Als erste
Annéherung, wenn Sie ein “Ding” in Threm Problem entdecken, reprasentieren Sie
dieses Ding als Objekt in Ihrer Losung.

Angenommen, Sie mochten ein Programm erstellen, um Tiere in einem Zoo zu
verwalten. Es ist sinnvoll, die verschiedenen Tierarten basierend darauf zu kategori-
sieren, wie sie sich verhalten, welche Bediirfnisse sie haben, mit welchen Tieren sie
sich vertragen und mit welchen sie kimpfen. Alles, was eine Tierart unterscheidet,
wird in der Klassifizierung des Objekts dieses Tieres erfasst. Kotlin verwendet das
Schliisselwort class, um einen neuen Objekttyp zu erstellen:

// CreatingClasses/Animals.kt

// Create some classes:
class Giraffe

class Bear

class Hippo

fun main() {
// Create some objects:
val g1 = Giraffe()
val g2 = Giraffe()
val b = Bear()
val h = Hippo()

// Each object() is unique:

Klassen erstellen 100

println(gl)
println(g2)
println(h)
println(b)

}
/* Sample output:

Giraffe@28d93b30
Giraffe@1b6d3586
Hippo@4554617c
Bear@74a14482

*/

Um eine Klasse zu definieren, beginnen Sie mit dem Schliisselwort class, gefolgt von
einem Bezeichner fiir Thre neue Klasse. Der Klassenname muss mit einem Buchstaben
(A-Z, Grof3- oder Kleinbuchstaben) beginnen, kann jedoch Zahlen und Unterstriche
enthalten. Nach Konvention wird der erste Buchstabe eines Klassennamens grofige-
schrieben, wahrend der erste Buchstabe aller vals und vars kleingeschrieben wird.

Animals.kt beginnt mit der Definition von drei neuen Klassen und erstellt dann
vier Objekte (auch Instanzen genannt) dieser Klassen.

Giraffe ist eine Klasse, aber eine bestimmte flinfjahrige méannliche Giraffe, die in
Botswana lebt, ist ein Objekt. Jedes Objekt unterscheidet sich von allen anderen,
daher geben wir ihnen Namen wie g1 und g2.

Beachten Sie die etwas kryptische Ausgabe der letzten vier Zeilen. Der Teil vor dem
@ ist der Klassenname und die Zahl nach dem @ ist die Adresse, an der sich das
Objekt im Speicher Thres Computers befindet. Ja, das ist eine Zahl, auch wenn sie
einige Buchstaben enthélt - das nennt man “hexadezimale Notation”*°. Jedes Objekt
in Threm Programm hat seine eigene eindeutige Adresse.

Die hier definierten Klassen (Giraffe, Bear und Hippo) sind so einfach wie moglich:
die gesamte Klassendefinition besteht aus einer einzigen Zeile. Komplexere Klassen
verwenden geschweifte Klammern ({ und }), um einen Klassenkdérper zu erstellen,
der die Merkmale und Verhaltensweisen dieser Klasse enthilt.

Eine innerhalb einer Klasse definierte Funktion gehort zu dieser Klasse. In Kotlin
nennen wir sie Mitgliedsfunktionen der Klasse. Einige objektorientierte Program-
miersprachen wie Java entscheiden sich dafiir, sie Methoden zu nennen, ein Begriff,

**https://en.wikipedia.org/wiki/Hexadecimal

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

https://en.wikipedia.org/wiki/Hexadecimal
https://en.wikipedia.org/wiki/Hexadecimal

Klassen erstellen 101

der aus frithen objektorientierten Sprachen wie Smalltalk stammt. Um die funktiona-
le Natur von Kotlin zu betonen, entschieden sich die Designer, den Begriff Methode
wegzulassen, da einige Anfanger die Unterscheidung verwirrend fanden. Stattdessen
wird in der gesamten Sprache der Begriff Funktion verwendet.

Wenn es eindeutig ist, sagen wir einfach “Funktion”. Wenn wir die Unterscheidung
treffen miissen:

« Mitgliedsfunktionen gehoren zu einer Klasse.
« Top-Level-Funktionen existieren fiir sich und sind nicht Teil einer Klasse.

Hier gehort bark () zur Dog-Klasse:

// CreatingClasses/Dog.kt

class Dog {
fun bark() = "yip!"
}

fun main() {
val dog = Dog()

}

Inmain() erstellen wir ein Dog-Objekt und weisen es val dog zu. Kotlin gibt eine
Warnung aus, weil wir dog nie verwenden.

Mitgliedsfunktionen werden aufgerufen (invoked), indem man den Objektnamen
verwendet, gefolgt von einem . (Punkt), gefolgt vom Funktionsnamen und der
Parameterliste. Hier rufen wir die Funktion meow() auf und zeigen das Ergebnis an:

// CreatingClasses/Cat.kt

class Cat {
fun meow() = "mrrrow!"

}

fun main() {
val cat = Cat()
// Call 'meow()' for 'cat':
val m1 = cat.meow()
println(mi)

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Klassen erstellen 102

/* Output:
mrrrow!

*/

Eine Mitgliedsfunktion wirkt auf eine bestimmte Instanz einer Klasse. Wenn Sie
meow() aufrufen, miissen Sie es mit einem Objekt aufrufen. Wahrend des Aufrufs
kann meow() auf andere Mitglieder dieses Objekts zugreifen.

Beim Aufrufen einer Mitgliedsfunktion verfolgt Kotlin das betreffende Objekt, indem
es leise eine Referenz auf dieses Objekt tibergibt. Diese Referenz ist innerhalb der
Mitgliedsfunktion mit dem Schliisselwort this verfiigbar.

Mitgliedsfunktionen haben einen speziellen Zugriff auf andere Elemente innerhalb
einer Klasse, indem sie einfach diese Elemente benennen. Sie konnen den Zugriff auf
diese Elemente auch explizit mit this qualifizieren. Hier ruft exercise() speak()
mit und ohne Qualifizierung auf:

// CreatingClasses/Hamster.kt

class Hamster {
fun speak() = "Squeak!
fun exercise() =
this.speak() + // Qualified with 'this'
speak() + // Without 'this'
"Running on wheel™

"

}

fun main() {
val hamster = Hamster()
println(hamster.exercise())

}

/* Output:

Squeak! Squeak! Running on wheel
*/

In exercise(), rufen wir zuerst speak () mit einem expliziten this auf und lassen
dann die Qualifikation weg.

Manchmal sieht man Code, der ein unnétiges explizites this enthalt. Solcher Code
stammt oft von Programmierern, die eine andere Sprache kennen, in der this
entweder erforderlich ist oder Teil des Stils ist. Die unnotige Verwendung eines

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Klassen erstellen 103

Features ist verwirrend fiir den Leser, der Zeit damit verbringt, herauszufinden,
warum Sie es tun. Wir empfehlen, die unnétige Verwendung von this zu vermeiden.

Auflerhalb der Klasse muss man hamster.exercise() und hamster.speak()
sagen.

Ubungen und Lésungen finden Sie auf www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Eigenschaften

Eine Eigenschaft ist ein var oder val, das Teil einer Klasse ist.

Das Definieren einer Eigenschaft beibehdlt den Zustand innerhalb einer Klasse. Das
Beibehalten des Zustands ist der Hauptmotivationsgrund, eine Klasse zu erstellen,
anstatt nur eine oder mehrere eigenstandige Funktionen zu schreiben.

Eine var-Eigenschaft kann neu zugewiesen werden, wahrend eine val-Eigenschaft
dies nicht kann. Jedes Objekt erhélt seinen eigenen Speicher fiir Eigenschaften:

// Properties/Cup.kt

class Cup {
var percentFull = 0

}

fun main() {
val c1 = Cup()
cl.percentFull = 50
val c2 = Cup()
c2.percentFull

100

println(ci.percentFull)
println(c2.percentFull)

}

/* Output:
50

100

*/

Das Definieren eines var oder val innerhalb einer Klasse sieht genauso aus wie das
Definieren innerhalb einer Funktion. Allerdings wird das var oder val Teil dieser
Klasse, und Sie miissen darauf verweisen, indem Sie das Objekt mit Punktnotation
angeben, wobei Sie einen Punkt zwischen das Objekt und den Namen der Eigenschaft
setzen. Sie konnen die Punktnotation bei jedem Verweis auf percentFull sehen.

Eigenschaften 105

Die Eigenschaft percentFull reprasentiert den Zustand des entsprechenden Cup-
Objekts. c1.percentFull und c2.percentFull enthalten unterschiedliche Werte,
was zeigt, dass jedes Objekt tiber seinen eigenen Speicherplatz verfiigt.

Eine Mitgliedsfunktion kann auf eine Eigenschaft innerhalb ihres Objekts verweisen,
ohne die Punktnotation zu verwenden (das heif3t, ohne sie zu qualifizieren):

// Properties/Cup2.kt

class Cup2 {

var percentFull = 0

val max = 100

fun add(increase: Int): Int {
percentFull += increase
if (percentFull > max)

percentFull = max

return percentFull

}
}

fun main() {
val cup = Cup2()
cup.add(50)
println(cup.percentFull)
cup.add(70)
println(cup.percentFull)

}

/* Output:
50

100

*/
Die add()-Mitgliedsfunktion versucht, increase zu percentFull hinzuzufiigen,
stellt jedoch sicher, dass es nicht iiber 100 % hinausgeht.

Eigenschaften und Mitgliedsfunktionen miissen von auf3erhalb einer Klasse qualifi-
ziert werden.

Man kann Eigenschaften auf oberster Ebene definieren:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Eigenschaften 106

// Properties/ToplLevelProperty.kt
val constant = 42
var counter = 0

fun inc() {
counter++

}

Die Definition eines val auf oberster Ebene ist sicher, da es nicht verandert werden
kann. Die Definition einer verdnderbaren (var) Eigenschaft auf oberster Ebene wird
jedoch als Antimuster angesehen. Wenn Thr Programm komplizierter wird, wird es
schwieriger, den gemeinsamen verdnderbaren Zustand korrekt zu verstehen. Wenn
jeder in Threm Code Zugriff auf den var Z&hler hat, konnen Sie nicht garantieren,
dass er korrekt verandert wird: Wahrend inc() den Zahler um eins erhoht, konnte
ein anderer Teil des Programms den Z&hler um zehn verringern, was zu schwer
nachvollziehbaren Fehlern fuhrt. Es ist am besten, veranderbaren Zustand innerhalb
einer Klasse zu schiitzen. In Sichtbarkeit einschranken wird gezeigt, wie man ihn
wirklich verstecken kann.

Zu sagen, dass vars verandert werden konnen, wahrend vals dies nicht konnen, ist
eine Vereinfachung. Als Analogie konnen Sie ein Haus als val betrachten und ein
Sofa imHaus als var. Sie konnen das Sofa veridndern, weil es ein var ist. Sie konnen
jedoch das Haus nicht neu zuweisen, da es ein val ist:

// Properties/ChangingAVal.kt

class House {
var sofa: String = ""

}

fun main() {
val house = House()
house.sofa = "Simple sleeper sofa: $89.00"
println(house.sofa)
house.sofa = "New leather sofa: $3,099.00"
println(house.sofa)
// Cannot reassign the val to a new House:
// house = House()

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Eigenschaften 107

}

/* Output:

Simple sleeper sofa: $89.00
New leather sofa: $3,099.00

*/

Obwohl house ein val ist, kann sein Objekt modifiziert werden, weil sofa in class
House ein var ist. Die Definition von house als val verhindert nur, dass es einem
neuen Objekt neu zugewiesen wird.

Wenn wir eine Eigenschaft als val definieren, kann sie nicht neu zugewiesen werden:
// Properties/AnUnchangingVar .kt

class Sofa {
val cover: String = "Loveseat cover"

}

fun main() {
var sofa = Sofa()
// Not allowed:
// sofa.cover = "New cover"
// Reassigning a var:
sofa = Sofa()

Auch wenn sofa eine var ist, kann sein Objekt nicht modifiziert werden, weil
cover inclass Sofa einval ist. sofa kann jedoch einem neuen Objekt zugewiesen
werden.

Wir haben tiber Bezeichner wie house und sofa gesprochen, als waren sie Objekte.
Tatsachlich sind sie Referenzen auf Objekte. Eine Moglichkeit, dies zu sehen, ist zu
beobachten, dass zwei Bezeichner auf dasselbe Objekt verweisen konnen:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Eigenschaften 108

// Properties/References.kt

class Kitchen {
var table: String = "Round table"

}

fun main() {
val kitchen1l = Kitchen()
val kitchen2 = kitchen1
println("kitchenl: ${kitcheni.table}")
println("kitchen2: ${kitchen2.table}")
kitchenl.table = "Square table"
println("kitchenl: ${kitcheni1.table}")
println("kitchen2: ${kitchen2.table}")

}

/* Output:

kitchenil: Round table

kitchenZ2: Round table

kitchenil: Square table

kitchenZ2: Square table

*/

Wenn kitchen1 table verdndert, sieht kitchen2 die Anderung. kitcheni.table
und kitchen2.table zeigen die gleiche Ausgabe.

Denken Sie daran, dass var und val Referenzen anstelle von Objekten steuern.
Ein var ermoglicht es Thnen, eine Referenz auf ein anderes Objekt neu zu binden,
wiahrend ein val dies verhindert.

Verdnderlichkeit bedeutet, dass ein Objekt seinen Zustand dndern kann. In den obi-
gen Beispielen definieren class House und class Kitchen veranderliche Objekte,
wiahrend class Sofa unverdnderliche Objekte definiert.

Ubungen und Lésungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Konstruktoren

Sie initialisieren ein neues Objekt, indem Sie Informationen an einen
Konstruktor iibergeben.

Jedes Objekt ist eine isolierte Welt. Ein Programm ist eine Sammlung von Objekten,
daher 16st die korrekte Initialisierung jedes einzelnen Objekts einen groflen Teil
des Initialisierungsproblems. Kotlin enthalt Mechanismen, um eine ordnungsgeméfie
Initialisierung von Objekten zu gewahrleisten.

Ein Konstruktor ist wie eine spezielle Mitgliedsfunktion, die ein neues Objekt initia-
lisiert. Die einfachste Form eines Konstruktors ist eine einzeilige Klassendefinition:

// Constructors/Wombat .kt
class Wombat

fun main() {
val wombat = Wombat()

}

In main(), das Aufrufen von Wombat () erstellt ein Wombat-Objekt. Wenn Sie aus
einer anderen objektorientierten Sprache kommen, konnten Sie erwarten, hier ein
new-Schliisselwort zu sehen, aber new wiare in Kotlin tberflissig, also wurde es
weggelassen.

Sie ibergeben Informationen an einen Konstruktor mit einer Parameterliste, genau
wie bei einer Funktion. Hier nimmt der Alien-Konstruktor ein einziges Argument
entgegen:

Konstruktoren 110

// Constructors/Arg.kt

class Alien(name: String)
val greeting = "Poor $name!"

}

fun main() {
val alien = Alien("Mr. Meeseeks")
println(alien.greeting)
// alien.name // Error /7 [1]

}
/* Output:
Poor Mr. Meeseeks!

*/

Um ein Alien-Objekt zu erstellen, ist ein Argument erforderlich (versuchen Sie es
ohne eines). name initialisiert die greeting-Eigenschaft innerhalb des Konstruktors,
ist jedoch aulerhalb des Konstruktors nicht zuganglich — versuchen Sie, die Zeile [1]
zu entkommentieren.

Wenn Sie mochten, dass der Konstruktor-Parameter auflerhalb des Klassenkorpers
zuganglich ist, definieren Sie ihn als var oder val in der Parameterliste:

// Constructors/VisibleArgs.kt
class MutableNameAlien(var name: String)
class FixedNameAlien(val name: String)

fun main() {
val alienl =
MutableNameAlien("Reverse Giraffe")
val alien2 =
FixedNameAlien("Krombopulos Michael™)

alien1l.name = "Parasite"

// Can't do this:

// alien2.name = "Parasite"
}

Diese Klassendefinitionen haben keine expliziten Klassenkorper—die Korper sind
implizit.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Konstruktoren 111

Wenn name als var oder val definiert wird, wird es zu einer Eigenschaft und ist
somit aulerhalb des Konstruktors zugénglich. val-Konstruktorparameter kénnen
nicht geandert werden, wahrend var-Konstruktorparameter veranderbar sind.

Thre Klasse kann zahlreiche Konstruktorparameter haben:
// Constructors/MultipleArgs.kt

class AlienSpecies(
val name: String,
val eyes: Int,
val hands: Int,
val legs: Int

) |
fun describe() =
"$name with $eyes eyes, " +
"$hands hands and $legs legs"
}

fun main() {
val kevin =
AlienSpecies("Zigerion", 2, 2, 2)
val mortyJr =
AlienSpecies("Gazorpian", 2, 6, 2)
println(kevin.describe())
println(mortyJr.describe())
}
/* Output:
Zigerion with 2 eyes, 2 hands and 2 legs
Gazorpian with 2 eyes, 6 hands and 2 legs
*/

In Komplexe Konstruktoren, werden Sie sehen, dass Konstruktoren auch komplexe
Initialisierungslogik enthalten konnen.

Wenn ein Objekt verwendet wird, wenn ein String erwartet wird, ruft Kotlin die
toString()-Mitgliedsfunktion des Objekts auf. Wenn Sie keine schreiben, erhalten
Sie trotzdem eine Standard-toString():

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Konstruktoren 112

// Constructors/DisplayAlienSpecies.kt

fun main() {
val krombopulosMichael =
AlienSpecies("Gromflomite", 2, 2, 2)
println(krombopulosMichael)

}
/* Sample output:

AlienSpecies@4d7e1886
*/

Der Standard-toString() ist nicht sehr niitzlich—er gibt den Klassennamen und die
physikalische Adresse des Objekts aus (dies variiert von einer Programmausfithrung
zur néachsten). Sie konnen Thre eigene toString() definieren:

// Constructors/Scientist.kt

class Scientist(val name: String) ({
override fun toString() =
"Scientist('$name')"

}

fun main() {
val zeep = Scientist("Zeep Xanflorp")
println(zeep)

}

/* Output:

Scientist('Zeep Xanflorp')
*/

override ist ein neues Schliisselwort fiir uns. Es ist hier erforderlich, weil toString()
bereits eine Definition hat, die eine primitive Ausgabe erzeugt. override teilt Kotlin
mit, dass wir tatsachlich die Standarddefinition von toString() durch unsere eigene
Definition ersetzen mochten. Die Deutlichkeit von override macht den Code klarer
und verhindert Fehler.

Ein toString(), das den Inhalt eines Objekts in einer praktischen Form anzeigt,
ist niitzlich, um Programmierfehler zu finden und zu beheben. Um den Prozess des
Debuggens zu vereinfachen, bieten IDEs Debugger®' an, die es Thnen ermdglichen,

*Thttps://www.jetbrains.com/help/idea/debugging-code.html

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

https://www.jetbrains.com/help/idea/debugging-code.html
https://www.jetbrains.com/help/idea/debugging-code.html

Konstruktoren 113

jeden Schritt der Programmausfithrung zu beobachten und in Ihre Objekte hinein zu
sehen.

Ubungen und Lésungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Einschrankung der Sichtbarkeit

Wenn Sie ein Stiick Code fiir ein paar Tage oder Wochen liegen lassen und
dann zuriickkehren, sehen Sie moglicherweise eine viel bessere Moglich-
keit, es zu schreiben.

Dies ist eine der Hauptmotivationen fiir das Refactoring, das funktionierenden Code
umschreibt, um ihn lesbarer, verstindlicher und damit wartbarer zu machen.

Es gibt eine Spannung in diesem Wunsch, Thren Code zu dndern und zu verbessern.
Verbraucher (Anwenderprogrammierer) erfordern, dass Aspekte Thres Codes stabil
bleiben. Sie mdchten es d&ndern, und sie wollen, dass es gleich bleibt.

Dies ist besonders wichtig fiir Bibliotheken. Verbraucher einer Bibliothek wollen
nicht den Code fiir eine neue Version dieser Bibliothek umschreiben. Der Bibliotheks-
entwickler muss jedoch frei sein, Anderungen und Verbesserungen vorzunehmen,
mit der Gewissheit, dass der Client-Code von diesen Anderungen nicht betroffen
sein wird.

Daher ist eine priméare Uberlegung im Softwaredesign:
Trenne Dinge, die sich dndern, von Dingen, die gleich bleiben.

Um die Sichtbarkeit zu steuern, bieten Kotlin und einige andere Sprachen Zugriffsmo-
difikatoren. Bibliotheksentwickler entscheiden mit den Modifikatoren public, pri-
vate, protected und internal, was fiir den Anwenderprogrammierer zugéanglich
ist und was nicht. Dieses Kapitel behandelt public und private, mit einer kurzen
Einfithrung in internal. Wir erkldren protected spater im Buch.

Ein Zugriffsmodifikator wie private erscheint vor der Definition einer Klasse,
Funktion oder Eigenschaft. Ein Zugriffsmodifikator steuert nur den Zugriff fur diese
spezielle Definition.

Eine public Definition ist fiir Anwenderprogrammierer zuganglich, sodass Ande-
rungen an dieser Definition den Client-Code direkt beeinflussen. Wenn Sie keinen

Einschrankung der Sichtbarkeit 115

Modifikator angeben, ist Thre Definition automatisch public, daher ist public
technisch gesehen redundant. Manchmal geben Sie dennoch public zur Klarstellung
an.

Eine private Definition ist verborgen und nur von anderen Mitgliedern derselben
Klasse zuginglich. Anderungen oder sogar das Entfernen einer private Definition
beeinflussen die Anwenderprogrammierer nicht direkt.

private Klassen, Top-Level-Funktionen und Top-Level-Eigenschaften sind nur in-
nerhalb dieser Datei zugénglich:

// Visibility/RecordAnimals.kt
private var index = 0 // [1]

private class Animal(val name: String) // [2]

private fun recordAnimal(// [3]
animal: Animal

) o
println("Animal #$index: ${animal.name}")
index++

}

fun recordAnimals() {
recordAnimal (Animal("Tiger"))
recordAnimal (Animal("Antelope"))

}

fun recordAnimalsCount() {
println("$index animals are here!")

}

Sie konnen auf private Top-Level-Eigenschaften ([1]), Klassen ([2]) und Funktio-
nen ([3]) von anderen Funktionen und Klassen innerhalb von RecordAnimals.kt
zugreifen. Kotlin verhindert, dass Sie auf ein private Top-Level-Element aus einer
anderen Datei zugreifen, indem es Thnen mitteilt, dass es in der Datei private ist:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Einschréankung der Sichtbarkeit 116

// Visibility/ObserveAnimals.kt

fun main() {
// Can't access private members
// declared in another file.
// Class is private:
// val rabbit = Animal("Rabbit")
// Function is private:
// recordAnimal (rabbit)
// Property is private:
// index++

recordAnimals()
recordAnimalsCount()
}
/* Output:
Animal #0: Tiger
Animal #1: Antelope
2 animals are here!

*/
Sichtbarkeit wird am haufigsten fiir Mitglieder einer Klasse verwendet:
// Visibility/Cookie.kt

class Cookie(
private var isReady: Boolean // [1]
) |
private fun crumble() = /7 [2]
println("crumble")

public fun bite() = /7 [3]
println("bite")

fun eat() { /7 [4]
isReady = true // [5]
crumble()
bite()

}

}

fun main() {

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Einschréankung der Sichtbarkeit 117

val x = Cookie(false)

x.bite()

// Can't access private members:
// x.1isReady

// x.crumble()

x.eat()

}

/* Output:
bite
crumble
bite

*/

« [1] Eine private Eigenschaft, die auflerhalb der umgebenden Klasse nicht
zuganglich ist.

« [2] Eine private Mitgliedsfunktion.

« [3] Eine public Mitgliedsfunktion, die fiir jeden zuganglich ist.

« [4] Kein Zugriffsmodifikator bedeutet public.

« [5] Nur Mitglieder derselben Klasse konnen auf private Mitglieder zugreifen.

Das Schlisselwort private bedeutet, dass niemand auf dieses Mitglied zugreifen
kann, aufler anderen Mitgliedern dieser Klasse. Andere Klassen konnen nicht auf
private Mitglieder zugreifen, sodass es so ist, als wiirden Sie die Klasse auch gegen
sich selbst und Ihre Mitarbeiter abschirmen. Mit private konnen Sie dieses Mitglied
nach Belieben &ndern, ohne sich Sorgen machen zu miissen, ob es eine andere
Klasse im selben Paket betrifft. Als Bibliotheksentwickler werden Sie typischerweise
so viel wie moglich als private halten und nur Funktionen und Klassen fiir die
Benutzerprogrammierer freigeben.

Jede Mitgliedsfunktion, die eine Hilfsfunktion fiir eine Klasse ist, kann private
gemacht werden, um sicherzustellen, dass Sie sie nicht versehentlich anderswo im
Paket verwenden und sich dadurch daran hindern, diese Funktion zu dndern oder zu
entfernen.

Dasselbe gilt fiir eine private Eigenschaft innerhalb einer Klasse. Es sei denn,
Sie miissen die zugrunde liegende Implementierung offenlegen (was weniger wahr-
scheinlich ist, als Sie vielleicht denken), machen Sie Eigenschaften private. Aller-
dings bedeutet eine private Referenz auf ein Objekt innerhalb einer Klasse nicht,
dass ein anderes Objekt nicht eine public Referenz auf dasselbe Objekt haben kann:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Einschrankung der Sichtbarkeit 118

// Visibility/MultipleRef.kt

class Counter(var start: Int) {
fun increment() {
start += 1

}
override fun toString() = start.toString()

}

class CounterHolder(counter: Counter) ({
private val ctr = counter
override fun toString() =
"CounterHolder: " + ctr

}

fun main() {
val ¢ = Counter(11) /7 [1]
val ch = CounterHolder(c) /7 [2]
println(ch)
c.increment() // [3]
println(ch)
val ch2 = CounterHolder(Counter(9)) // [4]
println(ch2)

}

/* Output:
CounterHolder: 11
CounterHolder: 12
CounterHolder: 9

*/

o [1] c ist jetzt im Geltungsbereich definiert, der die Erstellung des CounterHol -
der-Objekts in der folgenden Zeile umgibt.

+ [2] ¢ als Argument an den CounterHolder-Konstruktor zu tibergeben, bedeu-
tet, dass der neue CounterHolder nun auf dasselbe Counter-Objekt verweist,
auf das auch ¢ verweist.

« [3] Der Counter, der angeblich privat innerhalb von ch ist, kann dennoch
tiber ¢ manipuliert werden.

« [4] Counter(9) hat keine anderen Referenzen auf3er innerhalb von Counter -
Holder, daher kann es nicht von etwas anderem als ch2 zugegriffen oder
modifiziert werden.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Einschrankung der Sichtbarkeit 119

Mehrere Referenzen auf ein einzelnes Objekt zu haben, wird als Aliasing bezeichnet
und kann tiberraschendes Verhalten hervorrufen.

Module

Im Gegensatz zu den kleinen Beispielen in diesem Buch sind reale Programme oft
grofl. Es kann hilfreich sein, solche Programme in ein oder mehrere Module zu
unterteilen. Ein Modul ist ein logisch unabhangiger Teil eines Codebestands. Die
Art und Weise, wie Sie ein Projekt in Module unterteilen, hangt vom Build-System
ab (wie Gradle?” oder Maven®) und liegt auflerhalb des Rahmens dieses Buches.

Eine interne Definition ist nur innerhalb des Moduls zuganglich, in dem sie
definiert ist. Intern liegt irgendwo zwischen privat und 6ffentlich—verwenden
Sie es, wenn privat zu restriktiv ist, Sie aber nicht mochten, dass ein Element Teil
der 6ffentlichen API ist. Wir verwenden intern nicht in den Beispielen oder
Ubungen des Buches.

Module sind ein hoheres Konzept. Der folgende Abschnitt fithrt Pakete ein, die eine
feinere Strukturierung erméglichen. Eine Bibliothek ist oft ein einziges Modul, das
aus mehreren Paketen besteht, sodass interne Elemente innerhalb der Bibliothek
verfiigbar sind, jedoch nicht von den Verbrauchern dieser Bibliothek zugénglich sind.

Ubungen und Lésungen finden Sie unter www.AtomicKotlin.com.

*https://gradle.org/
*https://maven.apache.org/

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

https://gradle.org/
https://maven.apache.org/
https://gradle.org/
https://maven.apache.org/

Pakete

Ein grundlegendes Prinzip in der Programmierung ist das Akronym DRY:
Wiederhole dich nicht.

Mehrere identische Codefragmente erfordern Wartung, wann immer Sie Korrekturen
oder Verbesserungen vornehmen. Das Duplizieren von Code ist also nicht nur
zusitzliche Arbeit—jede Duplikation bietet Chancen fiir Fehler.

Das Schliisselwort import wiederverwendet Code aus anderen Dateien. Eine Mog-
lichkeit, import zu verwenden, besteht darin, einen Klassen-, Funktions- oder
Eigenschaftsnamen anzugeben:

import packagename.ClassName
import packagename. functionName
import packagename.propertyName

Ein Paket ist eine zugehorige Sammlung von Code. Jedes Paket ist normalerweise da-
fiir ausgelegt, ein bestimmtes Problem zu l9sen, und enthéalt oft mehrere Funktionen
und Klassen. Zum Beispiel konnen wir mathematische Konstanten und Funktionen
aus der kotlin.math Bibliothek importieren:

// Packages/ImportClass.kt
import kotlin.math.PI
import kotlin.math.cos // Cosine

fun main() {
println(PI)
println(cos(PI))
println(cos(2 * PI))

}

/* Output:

3.141592653589793

-1.0

1.0

*/

Pakete 121

Manchmal méchte man mehrere Drittanbieter-Bibliotheken verwenden, die Klassen
oder Funktionen mit demselben Namen enthalten. Das Schliisselwort as ermoglicht
es Thnen, beim Importieren Namen zu dndern:

// Packages/ImportNameChange. kt
import kotlin.math.PI as circleRatio
import kotlin.math.cos as cosine

fun main() {
println(circleRatio)
println(cosine(circleRatio))
println(cosine(2 * circleRatio))

}

/* Output:

3.141592653589793

-1.0

1.0

*/

as ist niitzlich, wenn der Bibliotheksname schlecht gewahlt oder iibermaflig lang ist.

Sie konnen einen Import im Hauptteil Thres Codes vollstindig qualifizieren. Im
folgenden Beispiel konnte der Code aufgrund der expliziten Paketnamen weniger
lesbar sein, aber die Herkunft jedes Elements ist absolut klar:

// Packages/FullyQualify.kt

fun main() {
println(kotlin.math.PI)
println(kotlin.math.cos(kotlin.math.PI))
println(kotlin.math.cos(2 * kotlin.math.PI))

}

/* Output:

3.141592653589793

-1.0

1.0

*/

Um alles aus einem Paket zu importieren, verwenden Sie einen Stern:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Pakete 122

// Packages/ImportEverything.kt
import kotlin.math.*

fun main() {
println(E)
println(E.roundTolInt())
println(E.toInt())

}

/* Output:
2.718281828459045
3

2

*/

Das kotlin.math-Paket enthéilt eine praktische Funktion roundToInt(), die den
Double-Wert auf die nachste ganze Zahl aufrundet, im Gegensatz zu toInt(), das
einfach alles nach einem Dezimalpunkt abschneidet.

Um Thren Code wiederzuverwenden, erstellen Sie ein Paket mit dem Schliisselwort
package. Die package-Anweisung muss die erste nicht-kommentare Anweisung in
der Datei sein. package wird gefolgt vom Namen Thres Pakets, der konventionell
komplett in Kleinbuchstaben geschrieben wird:

// Packages/PythagoreanTheorem. kt
package pythagorean
import kotlin.math.sqrt

class RightTriangle(
val a: Double,
val b: Double

) |
fun hypotenuse() = sqrt(a * a + b * b)
fun area() = a * b / 2

}

Sie konnen die Quellcodedatei beliebig benennen, im Gegensatz zu Java, das erfor-
dert, dass der Dateiname mit dem Klassennamen identisch ist.

Kotlin erlaubt Thnen, einen beliebigen Namen fiir Thr Paket zu wahlen, aber es wird
als guter Stil betrachtet, wenn der Paketname mit dem Verzeichnisnamen identisch
ist, in dem sich die Paketdateien befinden (dies wird nicht immer der Fall fiir die
Beispiele in diesem Buch sein).

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Pakete 123

Die Elemente im pythagorean Paket sind jetzt mit import verfigbar:

// Packages/ImportPythagorean.kt
import pythagorean.RightTriangle

fun main() {
val rt = RightTriangle(3.0, 4.0)
println(rt.hypotenuse())
println(rt.area())

}

/* Output:
5.0

6.0

*/

Im Rest dieses Buches verwenden wir package-Anweisungen fiir jede Datei, die
Funktionen, Klassen usw. auflerhalb von main() definiert, um Namenskonflikte
mit anderen Dateien im Buch zu vermeiden. In der Regel werden wir jedoch keine
package-Anweisung in einer Datei platzieren, die nur ein main() enthalt.

Ubungen und Lésungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Testen

Konstantes Testen ist unerlasslich fiir eine schnelle Programmentwick-
lung.

Wenn das Andern eines Teils Thres Codes anderen Code beschidigt, zeigen Thre
Tests das Problem sofort auf. Wenn Sie es nicht sofort herausfinden, hiufen sich
die Anderungen an und Sie konnen nicht mehr feststellen, welche Anderung das
Problem verursacht hat. Sie werden viel langer brauchen, um es zu verfolgen.

Testen ist eine entscheidende Praxis, daher fuhren wir es frith ein und verwenden es
im gesamten Rest des Buches. Auf diese Weise gewohnen Sie sich daran, Tests als
Standardteil des Programmierprozesses zu betrachten.

println() zu verwenden, um die Korrektheit des Codes zu tberpriifen, ist ein
schwacher Ansatz—Sie miissen jedes Mal die Ausgabe genau priifen und bewusst
sicherstellen, dass sie korrekt ist.

Um Thre Erfahrung beim Verwenden dieses Buches zu vereinfachen, haben wir unser
eigenes kleines Testsystem erstellt. Das Ziel ist ein minimaler Ansatz, der:

1. Das erwartete Ergebnis von Ausdriicken zeigt.

2. Eine Ausgabe liefert, damit Sie wissen, dass das Programm lauft, selbst wenn
alle Tests erfolgreich sind.

3. Das Konzept des Testens frithzeitig in Ihrer Praxis verankert.

Obwohl es fiir dieses Buch niitzlich ist, ist unseres kein Testsystem fiir den Arbeits-
platz. Andere haben lange und hart gearbeitet, um solche Testsysteme zu erstellen.
Zum Beispiel:

 JUnit** ist eines der beliebtesten Java-Testframeworks und kann leicht in Kotlin
verwendet werden.

« Kotest™ ist speziell fiir Kotlin entwickelt und nutzt die Funktionen der Kotlin-
Sprache.

**https://junit.org
*https://github.com/kotest/kotest

https://junit.org/
https://github.com/kotest/kotest
https://junit.org/
https://github.com/kotest/kotest

Testen 125

« Das Spek Framework? produziert eine andere Form des Testens, genannt
Spezifikationstests.

Um unser Testframework zu verwenden, miissen wir es zuerst importieren. Die
grundlegenden Elemente des Frameworks sind eq (gleich) und neq (nicht gleich):

// Testing/TestingExample.kt
import atomictest.*

fun main() {
val v1 = 11
val v2 = "Ontology"

// 'eq' means "equals":
vl eq 11
v2 eq "Ontology"

// 'neq' means "not equal"
v2 neq "Epistemology"

// [Error] Epistemology != Ontology
// v2 eq "Epistemology"

}

/* Output:
11
Ontology
Ontology
*/

Der Code fiir das Paket atomictest befindet sich in Appendix A: AtomicTest. Es
ist nicht beabsichtigt, dass Sie alles in AtomicTest .kt sofort verstehen, da es einige
Funktionen verwendet, die erst spater im Buch erscheinen werden.

Um ein klares, angenehmes Erscheinungsbild zu erzeugen, verwendet AtomicTest
eine Kotlin-Funktion, die Sie noch nicht gesehen haben: die Fahigkeit, einen Funkti-
onsaufruf a. function(b) in der textihnlichen Form a function b zu schreiben.
Dies wird als Infix-Notation bezeichnet. Nur Funktionen, die mit dem Schliisselwort
infix definiert sind, konnen auf diese Weise aufgerufen werden. AtomicTest .kt
definiert die infix-Funktionen eq und neq, die in TestingExample.kt verwendet

werden:
*https://spekframework.org/

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

https://spekframework.org/
https://spekframework.org/

Testen 126

expression eq expected
expression neq expected

eq und neq sind flexibel — fast alles funktioniert als Testausdruck. Wenn erwartet ein
String ist, wird Ausdruck in einen String umgewandelt und die beiden Strings
werden verglichen. Andernfalls werden Ausdruck und erwartet direkt verglichen
(ohne sie vorher umzuwandeln). In jedem Fall erscheint das Ergebnis von Ausdruck
auf der Konsole, sodass Sie etwas sehen, wenn das Programm lauft. Selbst wenn die
Tests erfolgreich sind, sehen Sie das Ergebnis links von eq oder neq. Wenn Ausdruck
und erwartet nicht gleichwertig sind, zeigt AtomicTest einen Fehler an, wenn das
Programm lauft.

Der letzte Test in TestingExample. kt schlagt absichtlich fehl, damit Sie ein Beispiel
fiir eine Fehlerausgabe sehen. Wenn die beiden Werte nicht gleich sind, zeigt Kotlin
die entsprechende Nachricht an, die mit [Error] beginnt. Wenn Sie die letzte
Zeile auskommentieren und das obige Beispiel ausfithren, sehen Sie nach allen
erfolgreichen Tests:

[Error] Epistemology != Ontology

Der tatsdchliche Wert, der in v2 gespeichert ist, entspricht nicht dem, was im
Ausdruck “erwartet” behauptet wird. AtomicTest zeigt die String-Darstellungen
sowohl fur erwartete als auch fur tatsachliche Werte an.

eq und neq sind die grundlegenden (infix) Funktionen, die fiir AtomicTest definiert
sind - es ist wirklich ein minimalistisches Testsystem. Wenn Sie eq- und neg-
Ausdriicke in Thren Beispielen verwenden, erstellen Sie sowohl einen Test als auch
eine Konsolenausgabe. Sie tiberpriifen die Korrektheit des Programms, indem Sie es
ausfithren.

Es gibt ein zweites Werkzeug in AtomicTest. Das trace-Objekt erfasst die Ausgabe
fiir einen spateren Vergleich:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Testen 127

// Testing/Tracel.kt
import atomictest.*

fun main() {

trace("line 1")
trace(47)
trace("line 2")
trace eq """

line 1

47

line 2

non

}

Das Hinzufligen von Ergebnissen zu trace sieht aus wie ein Funktionsaufruf, daher
konnen Sie println() effektiv durch trace() ersetzen.

In fritheren Atomen haben wir die Ausgabe angezeigt und uns auf die menschliche vi-
suelle Inspektion verlassen, um Unstimmigkeiten zu erkennen. Das ist unzuverlassig;
selbst in einem Buch, in dem wir den Code immer wieder genau priifen, haben wir
gelernt, dass man der visuellen Inspektion nicht trauen kann, um Fehler zu finden.
Von nun an verwenden wir selten kommentierte Ausgabeblocke, da AtomicTest
alles fir uns erledigen wird. Manchmal fiigen wir jedoch immer noch kommentierte
Ausgabeblocke ein, wenn dies einen niitzlicheren Effekt hat.

Die Vorteile des Testens im gesamten restlichen Buch sollten Thnen helfen, das Testen
in Ihren Programmierprozess zu integrieren. Sie werden sich wahrscheinlich unwohl
fithlen, wenn Sie Code sehen, der keine Tests hat. Sie konnten sogar entscheiden, dass
Code ohne Tests per Definition fehlerhaft ist.

Testen als Teil der Programmierung

Testen ist am effektivsten, wenn es in Thren Softwareentwicklungsprozess integriert
ist. Das Schreiben von Tests stellt sicher, dass Sie die erwarteten Ergebnisse erhalten.
Viele Leute befiirworten das Schreiben von Tests vor dem Schreiben des Implemen-
tierungscodes - Sie lassen zuerst den Test fehlschlagen, bevor Sie den Code schreiben,
um ihn erfolgreich zu machen. Diese Technik, genannt Testgetriebene Entwicklung
(TDD), ist eine Moglichkeit sicherzustellen, dass Sie wirklich das testen, was Sie

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Testen 128

denken. Eine vollstandigere Beschreibung von TDD finden Sie auf Wikipedia (suchen
Sie nach “Testgetriebene Entwicklung”).

Es gibt einen weiteren Vorteil beim testbaren Schreiben - es verandert die Art und
Weise, wie Sie Ihren Code gestalten. Sie konnten die Ergebnisse einfach auf der
Konsole anzeigen. Aber im Testdenken fragen Sie sich: “Wie werde ich das testen?”
Wenn Sie eine Funktion erstellen, entscheiden Sie, dass Sie etwas aus der Funktion
zurlickgeben sollten, wenn auch nur, um dieses Ergebnis zu testen. Funktionen, die
nichts anderes tun, als Eingaben zu nehmen und Ausgaben zu erzeugen, neigen dazu,
auch bessere Designs zu erzeugen.

Hier ist ein vereinfachtes Beispiel, das TDD verwendet, um die BMI-Berechnung
aus Zahlentypen zu implementieren. Zuerst schreiben wir die Tests sowie eine
anfangliche Implementierung, die fehlschlagt (weil wir die Funktionalitit noch nicht
implementiert haben):

// Testing/TDDFail .kt
package testingl
import atomictest.eq

fun main() {

calculateBMI(160, 68) eq "Normal weight"
// calculateBMI(100, 68) eq "Underweight"
// calculateBMI(200, 68) eq "Overweight'"

}

fun calculateBMI(lbs: Int, height: Int) =
"Normal weight"

Nur der erste Test besteht. Die anderen Tests schlagen fehl und sind kommentiert.
Als nichstes fiigen wir Code hinzu, um zu bestimmen, welche Gewichte in welchen
Kategorien sind. Jetzt schlagen alle Tests fehl:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Testen

// Testing/TDDStillFails.kt
package testing2
import atomictest.eq

fun main() {
// Everything fails:
// calculateBMI(160, 68) eqg "Normal weight"
// calculateBMI(100, 68) eqg "Underweight"
// calculateBMI(200, 68) eq "Overweight"

}

fun calculateBMI(
lbs: Int,
height: Int
): String {
val bmi = 1lbs / (height * height) * 703.07
return if (bmi < 18.5) "Underweight"
else if (bmi < 25) "Normal weight"
else "Overweight"

}

Wir verwenden Ints anstelle von Doubles, was zu einem Nullergebnis fiihrt.

Tests fithren uns zur Losung:

// Testing/TDDWorks.kt
package testing3
import atomictest.eq

fun main() {
calculateBMI(160.0, 68.0) eq "Normal weight"
calculateBMI(100.0, 68.0) eq "Underweight"
calculateBMI(200.0, 68.0) eq "Overweight"

}

fun calculateBMI(
1bs: Double,
height: Double
): String {
val bmi = lbs / (height * height) * 703.07
return if (bmi < 18.5) "Underweight"
else if (bmi < 25) "Normal weight"
else "Overweight"

129

Die

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Testen 130

Sie konnen zusétzliche Tests fiir die Randbedingungen hinzufiigen.

In den Ubungen fiir dieses Buch haben wir Tests enthalten, die Thr Code bestehen
muss.

Ubungen und Lésungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Ausnahmen

Das Wort “Ausnahme” wird im gleichen Sinne verwendet wie der Aus-
druck “Ich nehme Anstof§ daran.”

Eine auflergewohnliche Bedingung verhindert die Fortsetzung der aktuellen Funkti-
on oder des aktuellen Bereichs. An dem Punkt, an dem das Problem auftritt, wissen
Sie moglicherweise nicht, was Sie damit tun sollen, aber Sie konnen im aktuellen
Kontext nicht fortfahren. Sie haben nicht geniigend Informationen, um das Problem
zu beheben. Daher miissen Sie stoppen und das Problem an einen anderen Kontext
iibergeben, der geeignete Maf3inahmen ergreifen kann.

Dieses Atom behandelt die Grundlagen von Ausnahmen als ein Mechanismus zur
Fehlerberichterstattung. In Abschnitt VI: Fehlervermeidung betrachten wir andere
Moglichkeiten, mit Problemen umzugehen.

Es ist wichtig, eine auflergewdhnliche Bedingung von einem normalen Problem
zu unterscheiden. Ein normales Problem verfiigt tiber geniigend Informationen im
aktuellen Kontext, um das Problem zu bewaltigen. Bei einer auflergewohnlichen
Bedingung konnen Sie die Verarbeitung nicht fortsetzen. Alles, was Sie tun kénnen,
ist zu gehen und das Problem einem externen Kontext zu tiberlassen. Dies ist der
Fall, wenn Sie eine Ausnahme werfen. Die Ausnahme ist das Objekt, das vom Ort
des Fehlers “geworfen” wird.

Betrachten Sie toInt(), das einen String in einen Int umwandelt. Was passiert,
wenn Sie diese Funktion fiir einen String aufrufen, der keinen ganzzahligen Wert
enthalt?

Ausnahmen 132

// Exceptions/ToIntException.kt
package exceptions

fun erroneousCode() {
// Uncomment this line to get an exception:
// val i = "1$".tolInt() /7 1]

}

fun main() {
erroneousCode()

}

Das Auskommentieren der Zeile [1] fithrt zu einer Ausnahme. Hier ist die fehlerhafte
Zeile kommentiert, damit der Aufbau des Buches nicht gestoppt wird, das tiberprift,
ob jedes Beispiel wie erwartet kompiliert und ausgefiihrt wird.

Wenn eine Ausnahme ausgelost wird, stoppt der Ausfithrungspfad—derjenige, der
nicht fortgesetzt werden kann—und das Ausnahmeobjekt wird aus dem aktuellen
Kontext herausgeworfen. Hier verlasst es den Kontext von erroneousCode() und
geht in den Kontext von main(). In diesem Fall meldet Kotlin nur den Fehler; der
Programmierer hat vermutlich einen Fehler gemacht und muss den Code korrigieren.

Wenn eine Ausnahme nicht abgefangen wird, bricht das Programm ab und zeigt
einen Stack-Trace mit detaillierten Informationen an. Das Auskommentieren der
Zeile [1] in ToIntException.kt fiihrt zu folgendem Output:

Exception in thread "main" java.lang.NumberFormatException: For input s\
tring: "1$"

at java.lang.NumberFormatException. forInputString(NumberFormatExcepti\
on.java:65)

at java.lang.Integer.parselnt(Integer. java:580)

at java.lang.Integer.parselnt(Integer. java:615)

at ToIntExceptionKt.erroneousCode(at TolntException.kt:6)

at TolntExceptionKt.main(at ToIntException.kt:10)

Der Stack-Trace liefert Details wie die Datei und die Zeile, in der die Ausnahme
aufgetreten ist, sodass Sie das Problem schnell entdecken konnen. Die letzten beiden
Zeilen zeigen das Problem: In Zeile 10 vonmain() rufen wir erroneousCode() auf.
Dann, genauer gesagt, in Zeile 6 von erroneousCode() rufen wir toInt() auf.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Ausnahmen 133

Um das Kommentieren und Auskommentieren von Code zur Anzeige von Aus-
nahmen zu vermeiden, verwenden wir die Funktion capture() aus dem Paket
AtomicTest:

// Exceptions/IntroducingCapture.kt
import atomictest.*

fun main() {
capture {
"1$" toInt()
} eq "NumberFormatException:
"""For input string: "1$ """

"oy

}

Mit capture() vergleichen wir die generierte Ausnahme mit der erwarteten Feh-
lermeldung. capture() ist nicht sehr hilfreich fiir normale Programmierung - es
ist speziell fiir dieses Buch entworfen, damit Sie die Ausnahme sehen und wissen
konnen, dass die Ausgabe vom Build-System des Buches tiberpriift wurde.

Eine weitere Strategie, wenn Sie das erwartete Ergebnis nicht erfolgreich erzielen
konnen, besteht darin, null zuriickzugeben, eine spezielle Konstante, die “kein Wert”
bedeutet. Sie konnen null anstelle eines Wertes jeden Typs zuriickgeben. Spater in
Nullable Typen besprechen wir, wie null den Typ des resultierenden Ausdrucks
beeinflusst.

Die Kotlin-Standardbibliothek enthéilt String.toIntOrNull(), das die Umwand-
lung durchfithrt, wenn der String eine ganze Zahl enthélt, oder null produziert,
wenn die Umwandlung unméglich ist - null ist eine einfache Moglichkeit, einen
Fehler anzuzeigen:

// Exceptions/IntroducingNull.kt
import atomictest.eq

fun main() {
"1$" . toIntOrNull() eq null

}

Angenommen, wir berechnen das durchschnittliche Einkommen iiber einen Zeit-
raum von Monaten:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Ausnahmen 134

// Exceptions/Averagelncome.kt
package firstversion
import atomictest.*

fun averagelncome(income: Int, months: Int) =
income / months

fun main() {
averagelIncome(3300, 3) eq 1100
capture {
averagelncome (5000, 0)
} eq "ArithmeticException: / by zero"

}

Wenn months null ist, wirft die Division in averageIncome() eine ArithmeticEx-
ception. Leider sagt uns dies nichts dariiber, warum der Fehler aufgetreten ist, was
der Nenner bedeutet und ob er tiberhaupt null sein darf. Dies ist eindeutig ein Fehler
im Code—averageIncome() sollte mit einem months von @ so umgehen, dass ein
Division durch Null Fehler vermieden wird.

Lassen Sie uns averageIncome() modifizieren, um mehr Informationen tiber die
Quelle des Problems zu liefern. Wenn months null ist, konnen wir keinen normalen
Ganzzahlwert als Ergebnis zuriickgeben. Eine Strategie ist es, null zuriickzugeben:

// Exceptions/AverageIncomeWithNull .kt
package withnull
import atomictest.eq

fun averagelncome(income: Int, months: Int) =
if (months == 0)
null
else
income / months

fun main() {
averagelIncome(3300, 3) eq 1100
averagelIncome (5000, 0) eq null

}

Wenn eine Funktion null zurtickgeben kann, verlangt Kotlin, dass Sie das Ergebnis
iiberpriifen, bevor Sie es verwenden (dies wird in Nullable Typen behandelt). Selbst

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Ausnahmen 135

wenn Sie nur dem Benutzer eine Ausgabe anzeigen mochten, ist es besser zu sagen:
“Es sind keine vollen Monatszeitraume vergangen,” anstatt “Thr durchschnittliches
Einkommen fiir den Zeitraum ist: null”

Anstatt averageIncome() mit den falschen Argumenten auszufiihren, konnen Sie
eine Ausnahme auslosen — entkommen und einen anderen Teil des Programms zwin-
gen, das Problem zu verwalten. Sie kénnten die Standard-ArithmeticException
zulassen, aber es ist oft niitzlicher, eine spezifische Ausnahme mit einer detaillierten
Fehlermeldung zu werfen. Wenn Ihre Anwendung nach ein paar Jahren im Einsatz
plotzlich eine Ausnahme auslost, weil eine neue Funktion averageIncome() aufruft,
ohne die Argumente richtig zu tiberpriifen, werden Sie fiir diese Nachricht dankbar
sein:

// Exceptions/AveragelncomeWithException.kt

package properexception
import atomictest.*

fun averagelncome(income: Int, months: Int) =
if (months == 0)
throw IllegalArgumentException(/7 [1]
"Months can't be zero")
else
income / months

fun main() {
averagelncome (3300, 3) eq 1100
capture {
averagelncome(5000, 0)
} eq "IllegalArgumentException: " +
"Months can't be zero"

« [1] Beim Auslosen einer Ausnahme wird das Schliisselwort throw gefolgt
von der Ausnahme, die ausgelost werden soll, zusammen mit allen Argu-
menten, die sie moglicherweise benétigt. Hier verwenden wir die Standard-
Ausnahmeklasse I11egalArgumentException.

Thr Ziel ist es, die niitzlichsten Nachrichten zu generieren, um die Unterstiitzung Threr
Anwendung in Zukunft zu vereinfachen. Spéter lernen Sie, Ihre eigenen Ausnahme-
Typen zu definieren und sie spezifisch auf Thre Umstédnde abzustimmen.

Ubungen und Lésungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Listen

Eine List ist ein Behdlter, also ein Objekt, das andere Objekte enthalt.

Behalter werden auch als Sammlungen bezeichnet. Wenn wir einen grundlegenden
Behalter fiir die Beispiele in diesem Buch benétigen, verwenden wir normalerweise
eine List.

Lists sind Teil des Standard-Kotlin-Pakets, daher benétigen sie keinen import.

Das folgende Beispiel erstellt eine List, die mit Ints gefiillt ist, indem die Standard-
bibliotheksfunktion 1istOf() mit Initialisierungswerten aufgerufen wird:

// Lists/Lists.kt
import atomictest.eq

fun main() {
val ints = 1istOf(99, 3, 5, 7, 11, 13)
ints eq "[99, 3, 5, 7, 11, 13]" // [1]

// Select each element in the List:

var result = ""

for (i in ints) { /7 [2]
result += "$i "

}
result eq "99 3 5 7 11 13"

// "Indexing" into the List:
ints[4] eq 11 /7 [3]

« [1] Eine List verwendet eckige Klammern, um sich selbst darzustellen.

« [2] for-Schleifen funktionieren gut mitLists: for (i in ints) bedeutet, dass
i jeden Wert in ints erhélt. Sie deklarieren val i nicht und geben auch
nicht seinen Typ an; Kotlin erkennt aus dem Kontext, dass i ein for-Schleifen-
Identifikator ist.

Listen 137

« [3] Eckige Klammern indexieren in eine List. Eine List behalt ihre Elemente
in der Initialisierungsreihenfolge bei, und Sie wihlen sie einzeln nach Nummer
aus. Wie in den meisten Programmiersprachen beginnt Kotlin das Indexieren
beim Element Null, was in diesem Fall den Wert 99 ergibt. Somit ergibt ein
Index von 4 den Wert 11.

Das Vergessen, dass das Indexieren bei Null beginnt, fithrt zum sogenannten Eins-zu-
viel-Fehler. In einer Sprache wie Kotlin wahlen wir oft nicht Elemente einzeln aus,
sondern iterieren stattdessen durch einen gesamten Container mit in. Dies eliminiert
Eins-zu-viel-Fehler.

Wenn Sie einen Index tiber das letzte Element in einer List hinaus verwenden, wirft
Kotlin eine ArrayIndexOutOfBoundsException:

// Lists/OutOfBounds.kt
import atomictest.*

fun main() {
val ints = listOf(1, 2, 3)
capture {
ints[3]
} contains
1listOf("ArrayIndexOutOfBoundsException")
}

Eine List kann alle verschiedenen Typen halten. Hier ist eine List von Doubles
und eine List von Strings:

// Lists/ListUsefulFunction.kt
import atomictest.eq

fun main() {
val doubles =
1istOf(1.1, 2.2, 3.3, 4.4)
doubles.sum() eq 11.0

val strings = listOf("Twas", "Brillig",
"And", "Slithy", "Toves")

strings eq listOf("Twas", "Brillig",
"And", "Slithy", "Toves")

strings.sorted() eq listOf("And",

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Listen 138

"Brillig", "Slithy", "Toves", "Twas")
strings.reversed() eq listOf("Toves",
"Slithy", "And", "Brillig", "Twas")
strings.first() eq "Twas"
strings.takelast(2) eq
1istOf("Slithy", "Toves")
}

Dies zeigt einige der Operationen von List. Beachten Sie den Namen “sorted”
anstelle von “sort”. Wenn Sie sorted() aufrufen, erzeugt es eine neue List, die
die gleichen Elemente wie die alte in sortierter Reihenfolge enthalt—aber es lasst die
urspriingliche List unverandert. Es “sort” zu nennen, impliziert, dass die urspring-
liche List direkt verdndert wird (auch bekannt als sortiert an Ort und Stelle). In
Kotlin sieht man haufig diese Tendenz, “das urspriingliche Objekt unverandert zu
lassen und ein neues Objekt zu erzeugen.” reversed() erzeugt ebenfalls eine neue
List.

Parametrisierte Typen

Wir betrachten es als gute Praxis, Typinferenz zu verwenden—es neigt dazu, den
Code sauberer und leichter lesbar zu machen. Manchmal jedoch beschwert sich
Kotlin, dass es nicht herausfinden kann, welchen Typ es verwenden soll, und in
anderen Fallen macht Explizitheit den Code verstandlicher. So teilen wir Kotlin mit,
welchen Typ eine List enthélt:

// Lists/ParameterizedTypes.kt
import atomictest.eq

fun main() {
// Type is inferred:
val numbers = 1istOf(1, 2, 3)
val strings =
1listOf("one", "two", "three")
// Exactly the same, but explicitly typed:
val numbers2: List<Int> = 1listOf(1, 2, 3)
val strings2: List<String> =
listOf("one", "two", "three")
numbers eq numbers?2

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Listen 139

strings eq strings2

}

Kotlin verwendet die Initialisierungswerte, um abzuleiten, dass numbers eine List
von Ints enthélt, wihrend strings eine List von Strings enthalt.

numbers2 und strings2 sind explizit typisierte Versionen von numbers und strings,
erstellt durch das Hinzufiigen der Typdeklarationen List<Int> und List<String>.
Sie haben Winkelklammern noch nicht gesehen - sie kennzeichnen einen Typparame-
ter, der es Thnen ermoglicht zu sagen: “Dieser Container enthélt ‘Parameter’-Objekte.”
Wir sprechen List<Int> als “List von Int” aus.

Typparameter sind niitzlich fiir Komponenten, die keine Container sind, aber man
sieht sie oft bei containerihnlichen Objekten.

Riickgabewerte konnen ebenfalls Typparameter haben:

// Lists/ParameterizedReturn.kt
package lists
import atomictest.eq

// Return type is inferred:
fun inferred(p: Char, q: Char) =
listOf(p, q)

// Explicit return type:
fun explicit(p: Char, gq: Char): List<Char> =
listOf(p, q)

fun main() {
inferred('a', 'b') eq "[a, b]"
explicit('y', 'z') eq "ly, z]
}

Kotlin leitet den Riickgabetyp fiir inferred() ab, wihrend explicit() den Riick-
gabetyp der Funktion angibt. Man kann nicht einfach sagen, dass es eine List zu-
riickgibt; Kotlin wird beanstanden, also muss man auch den Typ-Parameter angeben.
Wenn Sie den Riickgabetyp einer Funktion angeben, setzt Kotlin Thre Absicht durch.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Listen 140

Schreibgeschiutzte und veranderbare Listen

Wenn Sie nicht ausdriicklich sagen, dass Sie eine veranderbare List mdchten,
erhalten Sie keine. 1istOf() erzeugt eine schreibgeschiitzte List, die keine veran-
derbaren Funktionen hat.

Wenn Sie eine List schrittweise erstellen (das heif3t, Sie haben nicht alle Elemente
zum Zeitpunkt der Erstellung), verwenden Sie mutablelListOf(). Dies erzeugt eine
Mutablelist, die verandert werden kann:

// Lists/MutablelList.kt
import atomictest.eq

fun main() {
val list = mutablelListOf<Int>()

list.add(1)
list.addAll(listOf(2, 3))

list += 4
list += 1istOf(5, 6)

list eq l1istOf(1, 2, 3, 4, 5, 6)
}

Da list keine anfanglichen Elemente hat, miissen wir Kotlin mitteilen, welchen Typ
es hat, indem wir die <Int>-Spezifikation im Aufruf vonmutablelListOf() angeben.
Sie konnen Elemente zu einer MutablelList mit add() und addAl11() hinzufiigen
oder den Operator += verwenden, der entweder ein einzelnes Element oder eine
andere Sammlung hinzufigt.

Fine MutablelList kann als List behandelt werden, in diesem Fall kann sie nicht
geandert werden. Sie konnen jedoch eine schreibgeschiitzte List nicht als Mutable-
List behandeln:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Listen 141

// Lists/MutlListIslList.kt
package lists
import atomictest.eq

fun makelList(): List<Int> =
mutableListOf(1, 2, 3)

fun main() {
// makelist() produces a read-only List:
val list = makelList()
// list.add(3) // Unresolved reference: add
list eq listOf(1, 2, 3)

}

list fehlt es an Mutationsfunktionen, obwohl es urspriinglich mit mutablelis-
t0f() innerhalb von makeList () erstellt wurde. Beachten Sie, dass der Ergebnistyp
von makelList() List<Int> ist. Das urspriingliche Objekt ist immer noch eine
MutablelList, wird aber durch die Linse einer List betrachtet.

Eine List ist schreibgeschiitzt—Sie konnen ihren Inhalt lesen, aber nicht schreiben.
Wenn die zugrunde liegende Implementierung eine Mutablel ist ist und Sie eine
veranderbare Referenz auf diese Implementierung beibehalten, kénnen Sie sie wei-
terhin tiber diese veridnderbare Referenz modifizieren, und alle schreibgeschiitzten
Referenzen werden diese Anderungen sehen. Dies ist ein weiteres Beispiel fiir
Aliasing, eingefiihrt in Einschranken der Sichtbarkeit:

// Lists/MultiplelListRefs.kt
import atomictest.eq

fun main() {
val first = mutableListOf(1)
val second: List<Int> = first
second eq 1istOf(1)
first.add(2)
// second sees the change:
second eq 1istOf(1, 2)

}

first ist eine unverinderliche Referenz (val) auf das verinderliche Objekt, das von
mutablelListOf(1) erzeugt wird. Wenn second auf first aliasiert wird, wird es zu
einer Ansicht desselben Objekts. second ist schreibgeschiitzt, weil List<Int> keine

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Listen 142

Anderungsfunktionen beinhaltet. Ohne die explizite List<Int> Typdeklaration
wiirde Kotlin annehmen, dass second ebenfalls eine Referenz auf ein veranderliches
Objekt ist.

Wir konnen dem Objekt ein Element (2) hinzufiigen, weil first eine Referenz
auf eine veranderliche Liste ist. Beachten Sie, dass second diese Anderungen
beobachtet—es kann die L i ste nicht &ndern, obwohl dieListe iiber first geandert
wird.

Das += Ratsel

Der += Operator kann den Anschein erwecken, dass eine unveranderliche Liste
tatsachlich veranderlich ist:

// Lists/ApparentlyMutablelist.kt
import atomictest.eq

fun main() {
var list = 1istOf('X"') // Immutable
list += 'Y' // Appears to be mutable
list eq "[X, Y]"

}

1istOf() erzeugt eine unveranderlicheList, aber 1ist += 'Y' scheint dieseList
zu andern. Verstofit += irgendwie gegen die Unveranderlichkeit?

Dies passiert nur, weil 1ist ein var ist. Hier ist ein detaillierteres Beispiel, das
die verschiedenen Kombinationen von veranderlichen/unveranderlichen Lists mit
val/var zeigt:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Listen 143

// Lists/PlusAssignPuzzle.kt
import atomictest.eq

fun main() {
// Mutable List assigned to a 'val'/'var':
val list1 = mutableListOf('A') // or 'var'
list1 += 'A" // Is the same as:
list1.plusAssign('A") /7 [1]

// Immutable List assigned to a 'val':

val list2 = listOf('B')

// list2 += 'B' // Is the same as:

// list2 = list2 + 'B’ /7 (2]

1

// Immutable List assigned to a 'var':
var list3 = listOf('C')

list3 += 'C' // Is the same as:

val newList = 1ist3 + 'C' /7 [3]
1list3 = newlList /7 [4]

list1 eq "[A, A, A]"
list2 eq "[B]"
list3 eq "[C, C, C]"

« [1] 1ist1 bezieht sich auf ein veranderbares Objekt, das daher vor Ort modifi-
ziert werden kann. Der Compiler iibersetzt += zum Aufruf von plusAssign().
Es spielt keine Rolle, ob 1ist1 ein val oder ein var ist, da 1ist1 nach der
Erstellung niemals neu zugewiesen wird—es verweist immer auf die gleiche
veranderbare Liste. Wenn man es zu einem var macht, weist Intelli] darauf hin,
dass es sich nie dndert und schlagt vor, es zu einem val zu machen.

« [2] Dies versucht, eine neueList zu erstellen, indem 1ist2 und 'B' kombiniert
werden, aber es kann diese neue List nicht 1ist2 neu zuweisen, da 1ist2 ein
val ist. Ohne die Moglichkeit, diese Neuzuweisung durchzufithren, kann +=
nicht kompiliert werden.

o [3] Erstellt newList ohne die bestehende unverinderliche List zu modifizie-
ren, auf die 1ist3 verweist.

+ [4] Dalist3 ein var ist, weist der Compiler newList zuriick in 1ist3 zu. Der
vorherige Inhalt von 1ist3 wird dann vergessen, und es erscheint, als ob 1ist3

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Listen 144

verandert wurde. Tatsachlich wurde das alte 1ist3 verworfen und durch das
neu erstellte newList ersetzt, was die [llusion erzeugt, dass 1ist3 veranderbar
ist.

Dieses Verhalten von += tritt auch bei anderen Sammlungen auf. Die daraus resultie-
rende Verwirrung ist ein weiterer Grund, val gegeniiber var fiir Ihre Bezeichner zu
bevorzugen.

Ubungen und Lésungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Variable Argumentlisten

Das Schliisselwort vararg erzeugt eine flexibel dimensionierte Argument-
liste.

In Listen haben wir 1istOf() eingefiihrt, das eine beliebige Anzahl von Parametern
akzeptiert und eine Liste erzeugt:

// Varargs/ListOf.kt
import atomictest.eq

fun main() {
1istOf(1) eq "[1]"
listOf("a", "b") eq "[a, b]"
}

Mit dem Schlisselwort vararg konnen Sie eine Funktion definieren, die eine
beliebige Anzahl von Argumenten annimmt, genau wie 1istOf(). vararg ist die
Abkiirzung fiir variable Argumentliste:

// Varargs/VariableArglist.kt
package varargs

fun v(s: String, vararg d: Double) {}

fun main() {
v("abc", 1
v("def", 1
v("ghi", 1
1

Eine Funktionsdefinition kann nur einen Parameter als vararg angeben. Obwohl es
moglich ist, ein beliebiges Element in der Parameterliste als vararg anzugeben, ist
es normalerweise am einfachsten, dies fiir das letzte zu tun.

0, 2.
0, 2.
0, 2

vararg ermdglicht es Ihnen, eine beliebige Anzahl (einschliefilich null) von Argu-
menten zu ibergeben. Alle Argumente miissen vom angegebenen Typ sein. Auf
vararg-Argumente wird mit dem Parameternamen zugegriffen, der zu einem Array
wird:

Variable Argumentlisten 146

// Varargs/VarargSum.kt
package varargs
import atomictest.eq

fun sum(vararg numbers: Int): Int {
var total = 0
for (n in numbers) {
total += n

}

return total

}

fun main() {
sum(13, 27, 44) eq 84
sum(1, 3, 5, 7, 9, 11) eq 36
sum() eq 0

}

Obwohl Arrays und Lists dhnlich aussehen, sind sie unterschiedlich implementiert
— List ist eine regulédre Bibliotheksklasse, wahrend Array spezielle Unterstiitzung
auf niedriger Ebene hat. Array stammt aus der Anforderung von Kotlin, mit anderen
Sprachen, insbesondere Java, kompatibel zu sein.

Im téaglichen Programmieren verwenden Sie eine List, wenn Sie eine einfache
Sequenz bendtigen. Verwenden Sie Arrays nur, wenn eine Drittanbieter-API ein
Array erfordert oder wenn Sie mit varargs arbeiten.

In den meisten Féllen konnen Sie einfach ignorieren, dass vararg ein Array erzeugt,
und es behandeln, als ob es eine List wére:

// Varargs/VararglLikelList.kt
package varargs
import atomictest.eq

fun evaluate(vararg ints: Int) =
"Size: ${ints.size}\n" +
"Sum: ${ints.sum()}\n" +
"Average: ${ints.average()}"

fun main() {
evaluate(10, -3, 8, 1, 9) eq """
Size: 5

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Variable Argumentlisten 147

Sum: 25
Average: 5.0

nwnn

}

Sie konnen ein Array von Elementen iberall dort iibergeben, wo ein vararg
akzeptiert wird. Um ein Array zu erstellen, verwenden Sie arrayOf() auf die gleiche
Weise wie 1istOf(). Ein Array ist immer verdnderbar. Um ein Array in eine Folge
von Argumenten (nicht nur ein einzelnes Element des Typs Array) zu konvertieren,
verwenden Sie den Spread-Operator, *:

// Varargs/SpreadOperator .kt
import varargs.sum
import atomictest.eq

fun main() {
val array = intArrayOf(4, 5)
sum(1, 2, 3, *array, 6) eq 21 // [1]
// Doesn't compile:
// sum(1, 2, 3, array, 6)

val list = 1listOf(9, 10, 11)
sum(*¥list.tolntArray()) eq 30 // [2]
}

Wenn Sie ein Array von primitiven Typen (wie Int, Double oder Boolean) wie im
obigen Beispiel iibergeben, muss die Array-Erstellungsfunktion spezifisch typisiert
sein. Wenn Sie arrayOf(4, 5) anstelle von intArrayOf(4, 5) verwenden, wird
Zeile [1] einen Fehler erzeugen, der besagt, dass der abgeleitete Typ ist Array<Int>,
aber IntArray wurde erwartet.

Der Streuoperator funktioniert nur mit Arrays. Wenn Sie eine L ist haben, die Sie als
Folge von Argumenten iibergeben mochten, konvertieren Sie sie zuerst in ein Array
und wenden Sie dann den Streuoperator an, wie in [2]. Da das Ergebnis ein Array
eines primitiven Typs ist, miissen wir erneut die spezifische Konvertierungsfunktion
toIntArray() verwenden.

Der Streuoperator ist besonders hilfreich, wenn Sie vararg-Argumente an eine
andere Funktion iibergeben miissen, die ebenfalls varargs erwartet:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Variable Argumentlisten 148

// Varargs/TwoFunctionsWithVarargs.kt
package varargs
import atomictest.eq

fun first(vararg numbers: Int): String {
var result = ""
for (i in numbers) {
result += "[$i]"

}

return result

}

fun second(vararg numbers: Int) =
first(*numbers)

fun main() {
second(7, 9, 32) eq "[7][9][32]"
}

Kommandozeilenargumente

Beim Aufrufen eines Programms auf der Kommandozeile konnen Sie ihm eine
variable Anzahl von Argumenten iibergeben. Um Kommandozeilenargumente zu
erfassen, missen Sie main() einen bestimmten Parameter bereitstellen:

// Varargs/MainArgs.kt

fun main(args: Array<String>) {
for (a in args) {
println(a)
}
}

Der Parameter wird traditionell args genannt (obwohl Sie ihn beliebig nennen
konnen), und der Typ fiir args kann nur Array<String> (Array von String) sein.

Wenn Sie Intelli] IDEA verwenden, konnen Sie Programmargumente tiber die
Bearbeitung der entsprechenden “Run-Konfiguration” iibergeben, wie im letzten
Ubungsteil fir dieses Atom gezeigt.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Variable Argumentlisten 149

Sie konnen auch den kot1inc-Compiler verwenden, um ein Befehlszeilenprogramm
zu erstellen. Wenn kot 1inc nicht auf Threm Computer vorhanden ist, folgen Sie den
Anweisungen auf der Kotlin-Hauptseite?”. Nachdem Sie den Code fiir MainArgs.kt
eingegeben und gespeichert haben, geben Sie Folgendes an einer Eingabeaufforde-
rung ein:

kotlinc MainArgs.kt

Sie geben die command-line arguments nach dem program invocation ein, so:

kotlin MainArgsKt hamster 42 3.14159

Sie werden diese Ausgabe sehen:

hamster
42
3.14159

Wenn Sie einen String-Parameter in einen spezifischen Typ umwandeln mdchten,
stellt Kotlin Konvertierungsfunktionen bereit, wie zum Beispiel toInt() fir die
Umwandlung in einen Int und toFloat () fiir die Umwandlung in einen Float. Bei
der Verwendung dieser Funktionen wird angenommen, dass die Kommandozeilenar-
gumente in einer bestimmten Reihenfolge erscheinen. Hier erwartet das Programm
einen String, gefolgt von etwas, das in einen Int umwandelbar ist, gefolgt von
etwas, das in einen Float umwandelbar ist:

// Varargs/MainArgConversion.kt

fun main(args: Array<String>) ({
if (args.size < 3) return
val first = args|[0]
val second = args[1].tolnt()
val third = args[2].toFloat()
println("$first $second $third")

}

Die erste Zeile inmain() beendet das Programm, wenn nicht geniigend Argumente
vorhanden sind. Wenn Sie nichts angeben, das in ein Int und ein Float umgewan-
delt werden kann, als zweites und drittes Kommandozeilenargument, werden Sie
Laufzeitfehler sehen (versuchen Sie es, um die Fehler zu sehen).

*"https://kotlinlang.org/

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

https://kotlinlang.org/
https://kotlinlang.org/

Variable Argumentlisten 150

Kompilieren und fithren Sie MainArgConversion.kt mit denselben Kommandozei-
lenargumenten aus, die wir zuvor verwendet haben, und Sie werden sehen:

hamster 42 3.14159

Ubungen und Lésungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Mengen

Ein Set ist eine Sammlung, die nur ein Element jedes Wertes zulasst.

Die haufigste Set-Aktivitat ist der Test auf Mitgliedschaft mit in oder contains():

// Sets/Sets.kt
import atomictest.eq

fun main() {
val intSet = setOf(1, 1, 2, 3, 9, 9, 4)
// No duplicates:
intSet eq setOf(41, 2, 3, 4, 9)

// Element order is unimportant:
setOf(1, 2) eq set0f(2, 1)

// Set membership:
(9 in intSet) eq true
(99 in intSet) eq false

intSet.contains(9) eq true
intSet.contains(99) eq false

// Does this set contain another set?
intSet.containsAll(setOf(1, 9, 2)) eq true

// Set union:
intSet.union(set0f(3, 4, 5, 6)) eq
setOf(1, 2, 3, 4, 5, 6, 9)

// Set intersection:
intSet intersect setOf(0, 1, 2, 7, 8) eq
setOf(1, 2)

// Set difference:
intSet subtract setOf(0, 1, 9, 10) eq

Mengen 152

setOf(2, 3, 4)
intSet - set0f(@, 1, 9, 10) eq
set0f(2, 3, 4)
}

Dieses Beispiel zeigt:

1. Das Platzieren von doppelten Elementen in einem Set entfernt diese Duplikate
automatisch.

2. Die Reihenfolge der Elemente ist bei Mengen nicht wichtig. Zwei Mengen sind
gleich, wenn sie die gleichen Elemente enthalten.

3. Sowohl in als auch contains() testen auf Mitgliedschaft.

4. Sie konnen die iiblichen Venn-Diagramm-Operationen wie Uberpriifung auf
Teilmengen, Vereinigung, Schnittmenge und Differenz durchfiithren, entweder
mit Punktnotation (set.union(other)) oder Infix-Notation (set intersect
other). Die Funktionen union, intersect und subtract konnen mit Infix-
Notation verwendet werden.

5. Die Mengendifferenz kann entweder mitsubtract () oder dem Minus-Operator
ausgedriickt werden.

Um Duplikate aus einer Liste zu entfernen, konvertieren Sie sie in ein Set:

// Sets/RemoveDuplicates.kt
import atomictest.eq

fun main() {
val list = 1istOf(3, 3, 2, 1, 2)
list.toSet() eq setOf(1, 2, 3)
list.distinct() eq 1istOf(3, 2, 1)
"abbcec".toSet() eq setOf('a', 'b', 'c')
}

Sie konnen auch distinct() verwenden, das eine List zuriickgibt. Sie konnen
toSet() auf einem String aufrufen, um ihn in eine Menge einzigartiger Zeichen
umzuwandeln.

Wie bei List bietet Kotlin zwei Erstellungsfunktionen fiir Set. Das Ergebnis von
setOf() ist schreibgeschiitzt. Um ein verdnderbares Set zu erstellen, verwenden
Sie mutableSetOf():

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Mengen 153

// Sets/MutableSet.kt
import atomictest.eq

fun main() {
val mutableSet = mutableSetOf<Int>()
mutableSet += 42
mutableSet += 42
mutableSet eq set0f(42)
mutableSet -= 42
mutableSet eq setOf<Int>()

}

Die Operatoren += und -= fligen Elemente zu Sets hinzu bzw. entfernen sie, genau
wie bei Lists.

Ubungen und Losungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Karten

Eine Map verbindet keys mit values und sucht einen Wert anhand eines
Schliissels.

Sie erstellen eine Map, indem Sie mapOf() Schliissel-Wert-Paare bereitstellen. Mit to
trennen wir jeden Schliissel von seinem zugehorigen Wert:

// Maps/Maps .kt
import atomictest.eq

fun main() {

val constants = mapOf(
"Pi" to 3.141,
"e" to 2.718,
"phi" to 1.618

)

constants eq
"{Pi=3.141, e=2.718, phi=1.618}"

// Look up a value from a key:

constants["e"] eq 2.718 /7 [1]

constants.keys eq setOf("Pi", "e", "phi")

constants.values eq "[3.141, 2.718, 1.618]"

var s = ""

// Iterate through key-value pairs:

for (entry in constants) { /7 [2]
s += "${entry.key}=${entry.value}, "

}

s eq "Pi=3.141, e=2.718, phi=1.618,"

g = v

// Unpack during iteration:

for ((key, value) in constants) // [3]
s += "$key=%value, "

s eq "Pi=3.141, e=2.718, phi=1.618,"

Karten 155

« [1] Der [] Operator sucht einen Wert mithilfe eines Schliissels. Sie konnen
alle Schliissel mit keys und alle Werte mit values erzeugen. Der Aufruf von
keys erzeugt eine Set, da alle Schliissel in einem Map einzigartig sein miissen,
andernfalls gibe es eine Mehrdeutigkeit bei einer Suche.

« [2] Das Iterieren durch ein Map erzeugt Schliissel-Wert-Paare als Mapeintrage.

« [3] Sie konnen Schliissel und Werte beim Iterieren entpacken.

Ein einfaches Map ist schreibgeschiitzt. Hier ist ein MutableMap:

// Maps/MutableMaps.kt
import atomictest.eq

fun main() {
val m =
mutableMapOf(5 to "five", 6 to "six"
m[5] eq "five"
m[5] = "Bive"
m[5] eq "Bive"
m += 4 to "four"
m eq mapOf(5 to "Sive",
4 to "four", 6 to "six"

}

map [key] = value fligt den Wert hinzu oder dndert ihn, der mit dem Schlissel
verkniipft ist. Sie konnen auch explizit ein Paar hinzufiigen, indem Sie map += key
to value verwenden.

mapOf() und mutableMapOf() bewahren die Reihenfolge, in der die Elemente in
die Map eingefiigt werden. Dies ist nicht fiir andere Typen von Map garantiert.

Eine schreibgeschiitzte Map erlaubt keine Anderungen:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Karten 156

// Maps/ReadOnlyMaps.kt
import atomictest.eq

fun main() {
val m = mapOf(5 to "five", 6 to "six"
m[5] eq "five"
// m[5] = "5ive" // Fails
// m += (4 to "four") // Fails
m + (4 to "four") // Doesn't change m
m eq mapOf(5 to "five", 6 to "six"
val m2 = m + (4 to "four")
m2 eq mapOf(
5 to "five", 6 to "six", 4 to "four")

}

Die Definition von m erstellt eine Map, die Ints mit Strings verknipft. Wenn wir
versuchen, einen String zu ersetzen, gibt Kotlin einen Fehler aus.

Ein Ausdruck mit + erstellt eine neue Map, die sowohl die alten Elemente als auch das
neue enthalt, aber die urspriingliche Map nicht beeinflusst. Die einzige Moglichkeit,
ein Element zu einer unveranderlichen Map “hinzuzufiigen”, besteht darin, eine neue
Map zu erstellen.

Eine Map gibt null zuriick, wenn sie keinen Eintrag fiir einen gegebenen Schliissel
enthalt. Wenn Sie ein Ergebnis benétigen, das nicht null sein kann, verwenden Sie
getValue() und fangen Sie NoSuchElementException ab, falls der Schlissel fehlt:

// Maps/GetValue.kt
import atomictest.*

fun main() {
val map = mapOf('a' to "attempt")
map['b'] eq null
capture {
map.getValue('b")
} eq "NoSuchElementException: " +
"Key b is missing in the map."
map.getOrDefault('a', "??") eq "attempt"
map.getOrDefault('b', "??") eq "??"
}

getOrDefault() ist normalerweise eine angenehmere Alternative zu null oder
einer Ausnahme.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Karten 157

Sie konnen Klasseninstanzen als Werte in einem Map speichern. Hier ist ein Map, das
einen Contact anhand eines Zahlen-String abruft:

// Maps/ContactMap.kt
package maps
import atomictest.eq

class Contact(
val name: String,
val phone: String

) Ao

override fun toString() =
"Contact('$name', '$phone')"
}

fun main() {

val miffy = Contact("Miffy", "1-234-567890")
val cleo = Contact("Cleo", "098-765-4321")
val contacts = mapOf(

miffy.phone to miffy,

cleo.phone to cleo)
contacts["1-234-567890"] eq miffy
contacts["1-111-111111"] eq null

}

Es ist moglich, Klasseninstanzen als Schliissel in einer Map zu verwenden, aber das
ist komplizierter, daher besprechen wir es spater im Buch.

Maps sehen aus wie einfache kleine Datenbanken. Sie werden manchmal assoziative
Arrays genannt, weil sie Schliissel mit Werten verkniipfen. Obwohl sie im Vergleich
zu einer voll ausgestatteten Datenbank ziemlich begrenzt sind, sind sie dennoch
bemerkenswert niitzlich (und weitaus effizienter als eine Datenbank).

Ubungen und Lésungen finden Sie auf www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Eigenschaftszugriffe

Um eine Eigenschaft zu lesen, verwenden Sie ihren Namen. Um einer
veranderlichen Eigenschaft einen Wert zuzuweisen, verwenden Sie den
Zuweisungsoperator =.

Dies liest und schreibt die Eigenschaft i:

// PropertyAccessors/Data.kt
package propertyaccessors
import atomictest.eq

class Data(var i: Int)

fun main() {
val data = Data(10)
data.i eq 10 // Read the 'i' property
data.i = 20 // Write to the 'i' property

}

Dies scheint ein direkter Zugrift auf das Speicherelement namens i zu sein. Aller-
dings ruft Kotlin Funktionen auf, um die Lese- und Schreiboperationen durchzufiih-
ren. Wie erwartet, lesen und schreiben diese Funktionen standardmaf3ig die in i ge-
speicherten Daten. In diesem Abschnitt lernen Sie, Thre eigenen Eigenschaftszugriffe
zu schreiben, um die Lese- und Schreibaktionen anzupassen.

Der Zugriff, der verwendet wird, um den Wert einer Eigenschaft zu erhalten, wird
Getter genannt. Sie erstellen einen Getter, indem Sie get() direkt nach der Eigen-
schaftsdefinition definieren. Der Zugriff, der verwendet wird, um eine dnderbare
Eigenschaft zu modifizieren, wird Setter genannt. Sie erstellen einen Setter, indem
Sie set () direkt nach der Eigenschaftsdefinition definieren.

Die in dem folgenden Beispiel definierten Eigenschaftszugriffe imitieren die von Kot-
lin generierten Standardimplementierungen. Wir zeigen zusétzliche Informationen
an, damit Sie sehen konnen, dass die Eigenschaftszugriffe tatsachlich wahrend der

Eigenschaftszugriffe 159

Lese- und Schreibvorgédnge aufgerufen werden. Wir riicken get() und set() ein,
um sie visuell mit der Eigenschaft zu verkniipfen, aber die eigentliche Verkniipfung
erfolgt, weil get() und set() direkt nach dieser Eigenschaft definiert sind (Kotlin
kiimmert sich nicht um die Einrtickung):

// PropertyAccessors/Default.kt
package propertyaccessors
import atomictest.*

class Default {
var i: Int = 0
get() {
trace("get()")
return field /7 [1]
}
set(value) {
trace("set($value)")
field = value /7 [2]
}
}

fun main() {
val d = Default()
d.i =2
trace(d.i)
trace eq """
set(2)

get()
2

nnn

}

Die Reihenfolge der Definition von get() und set() ist unwichtig. Sie kénnen
get() definieren, ohne set() zu definieren, und umgekehrt.

Das Standardverhalten einer Eigenschaft gibt ihren gespeicherten Wert iiber einen
Getter zuriick und modifiziert ihn mit einem Setter—die Aktionen von [1] und
[2]. Innerhalb des Getters und Setters wird der gespeicherte Wert indirekt mit
dem Schliisselwort field manipuliert, das nur innerhalb dieser beiden Funktionen
zugénglich ist.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Eigenschaftszugriffe 160

Das néchste Beispiel verwendet die Standardimplementierung des Getters und fiigt
einen Setter hinzu, um Anderungen an der Eigenschaft n nachzuverfolgen:

// PropertyAccessors/LogChanges.kt
package propertyaccessors
import atomictest.*

class LogChanges
var n: Int = 0
set(value) {
trace("$field becomes $value")
field = value

}

fun main() {
val lc = LogChanges()
le.n eq ©
le.n = 2
le.n eq 2
trace eq "0 becomes 2"

}

Wenn Sie eine Eigenschaft als private definieren, werden beide Zugriffsmethoden
private. Sie konnen auch den Setter private machen und den Getter public. Dann
konnen Sie die Eigenschaft auf3erhalb der Klasse lesen, aber ihren Wert nur innerhalb
der Klasse dndern:

// PropertyAccessors/Counter .kt
package propertyaccessors
import atomictest.eq

class Counter {
var value: Int = 0
private set
fun inc() = value++

}

fun main() {
val counter = Counter()
repeat(10) {
counter.inc()

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Eigenschaftszugriffe 161

}

counter.value eq 10

}

Mit private set kontrollieren wir die Eigenschaft value, sodass sie nur um eins
erhoht werden kann.

Normale Eigenschaften speichern ihre Daten in einem Feld. Man kann auch eine
Eigenschaft erstellen, die kein Feld hat:

// PropertyAccessors/Hamsters.kt
package propertyaccessors
import atomictest.eq

class Hamster(val name: String)

class Cage(private val maxCapacity: Int) {
private val hamsters =
mutablelListOf<Hamster> ()
val capacity: Int
get() = maxCapacity - hamsters.size
val full: Boolean
get() = hamsters.size == maxCapacity
fun put(hamster: Hamster): Boolean =
if (full)
false
else {
hamsters += hamster
true
}
fun take(): Hamster =
hamsters.removeAt(0)

}

fun main() {

val cage = Cage(2)

cage. full eq false

cage.capacity eq 2
cage.put(Hamster("Alice")) eq true
cage.put(Hamster("Bob")) eq true
cage.full eq true

cage.capacity eq ©

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Eigenschaftszugriffe 162

cage.put(Hamster("Charlie")) eq false
cage.take()
cage.capacity eq 1

}

Die Eigenschaften capacity und full enthalten keinen zugrunde liegenden Zustand—
sie werden zum Zeitpunkt jedes Zugriffs berechnet. Sowohl capacity als auch full
sind dhnlich wie Funktionen, und Sie konnen sie als solche definieren:

// PropertyAccessors/Hamsters2.kt
package propertyaccessors

class Cage2(private val maxCapacity: Int) {
private val hamsters =
mutablelListOf<Hamster> ()
fun capacity(): Int =
maxCapacity - hamsters.size
fun isFull(): Boolean =
hamsters.size == maxCapacity

}

In diesem Fall verbessert die Verwendung von Eigenschaften die Lesbarkeit, da
Kapazitat und Fiille Eigenschaften des Kéfigs sind. Wandeln Sie jedoch nicht einfach
alle Thre Funktionen in Eigenschaften um—sehen Sie sich zuerst an, wie sie sich lesen.

Die Kotlin-Stilrichtlinie bevorzugt Eigenschaften gegeniiber Funktionen, wenn der
Wert giinstig zu berechnen ist und die Eigenschaft bei jedem Aufruf dasselbe
Ergebnis liefert, solange sich der Objektzustand nicht geédndert hat.

Eigenschaftszugriffe bieten eine Art Schutz fiir Eigenschaften. Viele objektorientierte
Sprachen verlassen sich darauf, ein physisches Feld private zu machen, um den
Zugriff auf diese Eigenschaft zu kontrollieren. Mit Eigenschaftszugriffen kénnen Sie
Code hinzufiigen, um diesen Zugriff zu kontrollieren oder zu verandern, wahrend
Sie jedem erlauben, eine Eigenschaft zu verwenden.

Ubungen und Lésungen finden Sie auf www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 2

Dieses Atom fasst die Atome in Abschnitt I zusammen und tberpriift sie,
von Objects Everywhere bis Property Accessors.

Wenn Sie ein erfahrener Programmierer sind, ist dies Thr nichstes Atom nach
Summary 1, und Sie werden die Atome danach der Reihe nach durchgehen.

Neue Programmierer sollten dieses Atom lesen und die Ubungen zur Uberpriifung
durchfithren. Wenn Thnen hier Informationen unklar sind, gehen Sie zuriick und
studieren Sie das Atom zu diesem Thema.

Die Themen erscheinen in einer geeigneten Reihenfolge fiir erfahrene Program-
mierer, was nicht der gleichen Reihenfolge der Atome im Buch entspricht. Zum
Beispiel beginnen wir mit der Einfithrung von Paketen und Importen, damit wir
unser minimales Test-Framework fiir den Rest des Atoms verwenden konnen.

Pakete & Testen

Eine beliebige Anzahl von wiederverwendbaren Bibliothekskomponenten kann un-
ter einem einzigen Bibliotheksnamen mit dem package-Schliisselwort gebtindelt
werden:

// SummaryZ2/ALibrary.kt
package com.yoururl.libraryname

// Components to reuse ...
fun f() = "result"

Sie konnen mehrere Komponenten in einer einzigen Datei platzieren oder Kompo-
nenten auf mehrere Dateien mit demselben Paketnamen verteilen. Hier haben wir
£() als einzige Komponente definiert.

Zusammenfassung 2 164

Um es eindeutig zu machen, beginnt der Paketname konventionell mit Threm umge-
kehrten Domain-Namen. In diesem Beispiel ist der Domain-Name yoururl.com.

In Kotlin kann der Paketname unabhéngig von dem Verzeichnis sein, in dem sich
seine Inhalte befinden. Java verlangt, dass die Verzeichnisstruktur mit dem vollquali-
fizierten Paketnamen tibereinstimmt, sodass das Paket com.yoururl.libraryname
im Verzeichnis com/yoururl/libraryname liegen sollte. Fiir gemischte Kotlin-
und Java-Projekte empfiehlt der Kotlin-Stilfihrer dieselbe Praxis. Fiir reine Kotlin-
Projekte platzieren Sie das Verzeichnis libraryname auf der obersten Ebene der
Verzeichnisstruktur Thres Projekts.

Eine Importanweisung bringt einen oder mehrere Namen in den aktuellen Namens-
raum:

// Summary2/UseAlL ibrary.kt
import com.yoururl.libraryname.*

fun main() {
val x = f()
}

Der Stern nach 1ibraryname weist Kotlin an, alle Komponenten einer Bibliothek zu
importieren. Sie konnen auch Komponenten einzeln auswihlen; Details finden Sie
unter Pakete.

Im restlichen Teil dieses Buches verwenden wir package-Anweisungen fiir jede
Datei, die Funktionen, Klassen usw. aufierhalb vonmain() definiert. Dies verhindert
Namenskonflikte mit anderen Dateien im Buch. In der Regel setzen wir keine
package-Anweisung in eine Datei, die nur ein main() enthalt.

Eine wichtige Bibliothek fiir dieses Buch ist atomictest, unser einfaches Test-
Framework. atomictest ist definiert in Anhang A: AtomicTest, obwohl es Sprach-
merkmale verwendet, die Sie zu diesem Zeitpunkt im Buch noch nicht verstehen
werden.

Nach dem Importieren von atomictest verwenden Sie eq (gleich) und neq (un-
gleich) fast so, als waren sie Sprachschliisselworter:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 2 165

// Summary2/UsingAtomicTest .kt
import atomictest.*

fun main() {
val pi = 3.14
val pie = "A round dessert"
pi eq 3.14
pie eq "A round dessert"
pi neq pie

}

/* Output:

3.14

A round dessert

3.14

*/

Die Fahigkeit, eq/neq ohne Punkte oder Klammern zu verwenden, wird als Infix-
Notation bezeichnet. Sie konnen infix-Funktionen entweder auf die regulare Weise
aufrufen: pi.eq(3.14), oder unter Verwendung der Infix-Notation: pi eq 3.14.
Sowohl eq als auch neq sind Wahrheitsaussagen, die das Ergebnis von der linken Sei-
te der eq/neq-Anweisung anzeigen, sowie eine Fehlermeldung, wenn der Ausdruck
auf der rechten Seite von eq nicht gleichwertig zur linken ist (oder gleichwertig ist,
im Fall von neq). Auf diese Weise sehen Sie verifizierte Ergebnisse im Quellcode.

atomictest.trace verwendet die Funktionsaufruf-Syntax, um Ergebnisse hinzuzu-
figen, die dann mit eq validiert werden konnen:

// Testing/UsingTrace.kt
import atomictest.*

fun main() {

trace("Hello,")
trace(47)
trace("World!")
trace eq """

Hello,

47

World!

[ININT]

}

Sie kénnen print1n() effektiv durch trace() ersetzen.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 2 166

Objekte uberall

Kotlin ist eine hybrid objekt-funktionale Sprache: Sie unterstiitzt sowohl objektori-
entierte als auch funktionale Programmierparadigmen.

Objekte enthalten vals und vars, um Daten zu speichern (diese werden Eigenschaf-
ten genannt) und fithren Operationen mit Funktionen aus, die innerhalb einer Klasse
definiert sind, sogenannte Mitgliedsfunktionen (wenn es eindeutig ist, sagen wir
einfach “Funktionen”). Eine Klasse definiert Eigenschaften und Mitgliedsfunktionen
fiir das, was im Wesentlichen ein neuer, benutzerdefinierter Datentyp ist. Wenn Sie
ein val oder var einer Klasse erstellen, nennt man dies ein Objekt erstellen oder eine
Instanz erstellen.

Eine besonders niitzliche Art von Objekt ist der Container, auch Sammlung genannt.
Ein Container ist ein Objekt, das andere Objekte hélt. In diesem Buch verwenden wir
oft dieList, dasie die vielseitigste Sequenz ist. Hier fithren wir mehrere Operationen
an einer List durch, die Doubles enthilt. 1istOf () erstellt eine neuelList aus ihren
Argumenten:

// Summary2/ListCollection.kt
import atomictest.eq

fun main() {
val lst = 1istOf(19.2, 88.3, 22.1)
1st[1] eq 88.3 // Indexing
lst.reversed() eq listOf(22.1, 88.3, 19.2)
Ist.sorted() eq 1ist0f(19.2, 22.1, 88.3)
Ist.sum() eq 129.6

}

Kein import-Statement ist erforderlich, um eine List zu verwenden.

Kotlin verwendet eckige Klammern fiir die Indexierung in Sequenzen. Die Indexie-
rung beginnt bei Null.

Dieses Beispiel zeigt auch einige der vielen Standardbibliotheksfunktionen, die fiir
Lists verfiigbar sind: sorted(), reversed(), und sum(). Um diese Funktionen zu
verstehen, konsultieren Sie die Kotlin Dokumentation®® online.

*https://kotlinlang.org/docs/reference/

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/

Zusammenfassung 2 167

Wenn Sie sorted() oder reversed() aufrufen, wird 1st nicht verandert. Stattdes-
sen wird eine neue List erstellt und zuriickgegeben, die das gewiinschte Ergebnis
enthalt. Dieser Ansatz, das Originalobjekt niemals zu verandern, ist durchgehend in
den Kotlin-Bibliotheken konsistent, und Sie sollten bestrebt sein, diesem Muster zu
folgen, wenn Sie Thren eigenen Code schreiben.

Klassen erstellen

Eine Klassendefinition besteht aus dem Schliisselwort class, einem Namen fiir die
Klasse und einem optionalen Korper. Der Korper enthalt Eigenschaftsdefinitionen
(vals und vars) und Funktionsdefinitionen.

Dieses Beispiel definiert eine NoBody-Klasse ohne Kérper und Klassen mit val-
Eigenschaften:

// SummaryZ2/ClassBodies. kt
package summary2

class NoBody

class SomeBody {
val name = "Janet Doe"

}

class EveryBody {
val all = listOf(SomeBody(),
SomeBody (), SomeBody())
1

fun main() {
val nb = NoBody()
val sb = SomeBody()
val eb = EveryBody()

}

Um eine Instanz einer Klasse zu erstellen, setzen Sie Klammern nach ihrem Namen,
sowie Argumente, falls diese erforderlich sind.

Eigenschaften innerhalb von Klassenkoérpern konnen jeden Typ haben. SomeBody
enthalt eine Eigenschaft vom Typ String, und die Eigenschaft von EveryBody ist
eine List, die SomeBody-Objekte halt.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 2 168

Hier ist eine Klasse mit Mitgliedsfunktionen:

// Summary2/Temperature.kt
package summary2
import atomictest.eq

class Temperature {

var current = 0.0

var scale = "f"

fun setFahrenheit(now: Double) {
current = now
scale = "f"

}

fun setCelsius(now: Double) {
current = now

scale = "¢"
}
fun getFahrenheit(): Double =
if (scale == "f")
current
else

current * 9.0 / 5.0 + 32.0
fun getCelsius(): Double =
if (scale == "c¢")
current
else
(current - 32.0) * 5.0 / 9.0

}

fun main() {
val temp = Temperature() // [1]
temp.setFahrenheit(98.6)
temp.getFahrenheit() eq 98.6
temp.getCelsius() eq 37.0
temp.setCelsius(100.0)
temp.getFahrenheit() eq 212.0

}

Diese Mitgliedsfunktionen sind genau wie die auf oberster Ebene definierten Funktio-
nen aufSerhalb von Klassen, auler dass sie zur Klasse gehdren und uneingeschrank-
ten Zugriff auf die anderen Mitglieder der Klasse haben, wie current und scale.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 2 169

Mitgliedsfunktionen konnen auch andere Mitgliedsfunktionen in derselben Klasse
ohne Qualifikation aufrufen.

« [1] Obwohl temp ein val ist, modifizieren wir spater das Temperature-Objekt.
Die val-Definition verhindert, dass die Referenz temp auf ein neues Objekt
umgeschrieben wird, schriankt jedoch das Verhalten des Objekts selbst nicht
ein.

Die folgenden zwei Klassen sind die Basis eines Tic-Tac-Toe-Spiels:

// Summary2/TicTacToe.kt
package summary?2
import atomictest.eq

class Cell {

var entry = ' ' // [1]
fun setValue(e: Char): String = // [2]
if (entry == ' ' &&
(e == X' || e=="10")) {

entry = e

"Successful move"
} else

"Invalid move"

}

class Grid {
val cells = 1istOf(
1istOf(Cell(), Cell(), Cell()),
1ist0f(Cell(), Cell(), Cell()),
1istOf(Cell(), Cell(), Cell())
)
fun play(e: Char, x: Int, y: Int): String =
if (x 'in 0..2 || y 'in 0..2)
"Invalid move"
else
cells([x][y].setValue(e) // [3]

}

fun main() {
val grid = Grid()
grid.play('X', 1, 1) eq "Successful move"
grid.play('X', 1, 1) eq "Invalid move"

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 2 170

grid.play('0', 1, 3) eq "Invalid move"
}

Die Grid-Klasse enthélt eine List, die drei Lists enthélt, von denen jede dreiCells
enthilt — eine Matrix.

« [1] Die entry-Eigenschaft in Cell ist ein var, sodass sie modifiziert werden
kann. Die einfachen Anfithrungszeichen in der Initialisierung erzeugen einen
Char-Typ, daher miissen alle Zuweisungen zu entry ebenfalls Chars sein.

« [2] setValue() prift, ob die Cell verfiighar ist und ob Sie das richtige
Zeichen tibergeben haben. Es gibt ein String-Ergebnis zuriick, um Erfolg oder
Misserfolg anzuzeigen.

« [3] play() iiberpriift, ob die x- und y-Argumente im Bereich liegen, und indi-
ziert dann in die Matrix, wobei es sich auf die von setValue() durchgefithrten
Tests stiitzt.

Konstruktoren

Konstruktoren erstellen neue Objekte. Sie iibergeben Informationen an einen Kon-
struktor mithilfe seiner Parameterliste, die direkt nach dem Klassennamen in Klam-
mern gesetzt wird. Ein Konstruktoraufruf sieht daher wie ein Funktionsaufruf aus,
aufler dass der Anfangsbuchstabe des Namens grof3geschrieben wird (geméafl dem
Kotlin-Stilguide). Der Konstruktor gibt ein Objekt der Klasse zuriick:

// Summary2/WildAnimals.kt
package summary?2
import atomictest.eq

class Badger(id: String, years: Int) {
val name = id
val age = years
override fun toString() =
"Badger: $name, age: $age"

}

class Snake(
var type: String,
var length: Double

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 2 171

) |

override fun toString() =
"Snake: $type, length: $length”
}

class Moose(
val age: Int,
val height: Double

) Ao

override fun toString() =
"Moose, age: $age, height: $height"
}

fun main() {
Badger("Bob", 11) eq "Badger: Bob, age: 11"
Snake("Garden", 2.4) eq
"Snake: Garden, length: 2.4"
Moose(16, 7.2) eq
"Moose, age: 16, height: 7.2"
}

Die Parameter id und years in Badger sind nur im Konstruktor-Korper verfiigbar.
Der Konstruktor-Korper besteht aus den Codezeilen, die keine Funktionsdefinitionen
sind; in diesem Fall die Definitionen fiir name und age.

Oft mochte man, dass die Konstruktor-Parameter in Teilen der Klasse verfiigbar sind,
die nicht zum Konstruktor-Koérper gehoren, ohne dass man neue Bezeichner explizit
definieren muss, wie wir es bei name und age getan haben. Wenn Sie Ihre Parameter
als vars oder vals definieren, werden sie zu Eigenschaften und sind iiberall in der
Klasse zuganglich. Sowohl Snake als auch Moose verwenden diesen Ansatz, und
Sie konnen sehen, dass die Konstruktor-Parameter jetzt innerhalb ihrer jeweiligen
toString()-Funktionen verfigbar sind.

Mit val deklarierte Konstruktor-Parameter konnen nicht geandert werden, aber die
mit var deklarierten schon.

Wann immer Sie ein Objekt in einer Situation verwenden, die einen String erwartet,
erzeugt Kotlin eine String-Darstellung dieses Objekts, indem es seine toString()-
Mitgliedsfunktion aufruft. Um eine toString() zu definieren, missen Sie ein neues
Schliisselwort verstehen: override. Dies ist notwendig (Kotlin besteht darauf), weil
toString() bereits definiert ist. override teilt Kotlin mit, dass wir tatsiachlich die

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 2 172

Standard-toString() durch unsere eigene Definition ersetzen wollen. Die Explizitat
von override macht dies dem Leser klar und hilft, Fehler zu vermeiden.

Beachten Sie das Format der mehrzeiligen Parameterliste fiir Snake und Moose —
dies ist der empfohlene Standard, wenn Sie zu viele Parameter haben, um sie in eine
Zeile zu passen, sowohl fiir Konstruktoren als auch fiir Funktionen.

Einschrankung der Sichtbarkeit

Kotlin bietet Zugriffsmodifikatoren, die denen in anderen Sprachen wie C++ oder
Java dhnlich sind. Diese ermoglichen es den Erstellern von Komponenten, zu
entscheiden, was fiir den Client-Programmierer verfiigbar ist. Zu den Zugriffsmo-
difikatoren von Kotlin gehoren die Schliisselworter public, private, protected
und internal. protected wird spater erklart.

Ein Zugriffsmodifikator wie public oder private erscheint vor der Definition einer
Klasse, Funktion oder Eigenschaft. Jeder Zugriffsmodifikator steuert nur den Zugriff
auf diese spezifische Definition.

Eine public-Definition ist fiir jeden verfiigbar, insbesondere fiir den Client-Programmierer,
der diese Komponente verwendet. Daher wirken sich alle Anderungen an einer
public-Definition auf den Client-Code aus.

Wenn Sie keinen Modifikator angeben, ist Ihre Definition automatisch public.
Aus Griinden der Klarheit geben Programmierer in bestimmten Féllen manchmal
trotzdem redundant public an.

Wenn Sie eine Klasse, eine top-level Funktion oder Eigenschaft als private definie-
ren, ist sie nur innerhalb dieser Datei verfiigbar:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 2

// SummaryZ2/Boxes. kt
package summary2
import atomictest.*

private var count = 0

// [1]

private class Box(val dimension: Int) { // [2]

fun volume() =

dimension * dimension * dimension
override fun toString() =

"Box volume: ${volume()}"

}

private fun countBox(box: Box) {
trace("$box")
count++

}

fun countBoxes() {
countBox(Box(4))
countBox(Box(5))

}

fun main() {
countBoxes()
trace("$count boxes")
trace eq """
Box volume: 64
Box volume: 125
2 boxes

[ININT]

}

// [3]

173

Sie konnen auf private Eigenschaften ([1]), Klassen ([2]) und Funktionen ([3])
nur von anderen Funktionen und Klassen in der Datei Boxes .kt zugreifen. Kotlin
verhindert, dass Sie auf private Top-Level-Elemente von einer anderen Datei aus

zugreifen.

Klassenmitglieder konnen private sein:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 2 174

// Summary2/JetPack .kt
package summary2
import atomictest.eq

class JetPack(
private var fuel: Double // [1]

) o
private var warning = false
private fun burn() = /7 [2]
if (fuel - 1 <=0) {
fuel = 0.0
warning = true
} else
fuel -= 1
public fun fly() = burn() // [3]
fun check() = /7 [4]
if (warning) // [5]
"Warning"
else
"OK ™
}

fun main() {
val jetPack = JetPack(3.0)
while (jetPack.check() != "Warning") {
jetPack.check() eq "OK"
jetPack. fly()

}
jetPack.check() eq "Warning"

}

« [1] fuel und warning sind beide private Eigenschaften und kénnen nicht
von Nicht-Mitgliedern von JetPack verwendet werden.

« [2] burn() ist private und somit nur innerhalb von JetPack zugénglich.

 [3] f1y() und check() sind public und kénnen iiberall verwendet werden.

« [4] Kein Zugriffsmodifizierer bedeutet public Sichtbarkeit.

« [5] Nur Mitglieder derselben Klasse konnen auf private Mitglieder zugreifen.

Da eine private Definition nicht fiir alle verfiigbar ist, kann man sie im Allgemeinen
andern, ohne sich um den Client-Programmierer zu sorgen. Als Bibliotheksdesigner

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 2 175

halt man normalerweise alles so private wie moglich und gibt nur Funktionen
und Klassen frei, die Client-Programmierer verwenden sollen. Um die Gréfie und
Komplexitat der Beispielauflistungen in diesem Buch zu begrenzen, verwenden wir
private nur in speziellen Féllen.

Jede Funktion, bei der Sie sicher sind, dass es sich nur um eine Hilfsfunktion handelt,
kann private gemacht werden, um sicherzustellen, dass Sie sie nicht versehentlich
anderswo verwenden und sich damit verbieten, die Funktion zu dndern oder zu
entfernen.

Es kann niitzlich sein, grof3e Programme in Module zu unterteilen. Ein Modul ist
ein logisch unabhangiger Teil einer Codebasis. Eine internal Definition ist nur
innerhalb des Moduls zugénglich, in dem sie definiert ist. Die Art und Weise, wie
Sie ein Projekt in Module unterteilen, hangt vom Build-System ab (wie Gradle® oder
Maven®) und liegt aufierhalb des Rahmens dieses Buches.

Module sind ein Konzept auf hoherer Ebene, wahrend Pakete eine feiner abgestufte
Strukturierung erméglichen.

Ausnahmen

Betrachten Sie toDouble(), das einen String in ein Double umwandelt. Was
passiert, wenn Sie es fiir einen String aufrufen, der nicht in ein Double iibersetzt
wird?

// SummaryZ2/ToDoubleException.kt

fun main() {
// val i = "$1.9".toDouble()
}

Das Auskommentieren der Zeile in main() erzeugt eine Ausnahme. Hier ist die
fehlerhafte Zeile auskommentiert, damit der Bau des Buches nicht gestoppt wird
(der Gberpriift, ob jedes Beispiel wie erwartet kompiliert und ausgefiithrt wird).

Wenn eine Ausnahme ausgelost wird, stoppt der aktuelle Ausfithrungspfad, und das
Ausnahmeobjekt wird aus dem aktuellen Kontext herausgeschleudert. Wenn eine

*https://gradle.org/
*https://maven.apache.org/

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

https://gradle.org/
https://maven.apache.org/
https://gradle.org/
https://maven.apache.org/

Zusammenfassung 2 176

Ausnahme nicht abgefangen wird, bricht das Programm ab und zeigt einen Stack-
Trace mit detaillierten Informationen an.

Um das Anzeigen von Ausnahmen durch Kommentieren und Auskommentieren
von Code zu vermeiden, speichert atomictest.capture() die Ausnahme und
vergleicht sie mit dem, was wir erwarten:

// SummaryZ2/AtomicTestCapture.kt
import atomictest.*

fun main() {
capture {
"$1.9".toDouble()
} eq "NumberFormatException: " +
"""For input string: "$1.9""""
}

capture() ist speziell fiir dieses Buch konzipiert, damit Sie die Ausnahme sehen und
wissen, dass die Ausgabe vom Build-System des Buches tiberpriift wurde.

Eine weitere Strategie, wenn Ihre Funktion das erwartete Ergebnis nicht erfolgreich
liefern kann, ist die Riickgabe von null. Spater in Nullable Types diskutieren wir,
wie null den Typ des resultierenden Ausdrucks beeinflusst.

Um eine Ausnahme zu werfen, verwenden Sie das Schliisselwort throw, gefolgt
von der Ausnahme, die Sie werfen mochten, zusammen mit allen Argumenten, die
sie moglicherweise benotigt. quadraticZeroes() im folgenden Beispiel 16st die
quadratische Gleichung®', die eine Parabel definiert:

ax’+bx+c=0

Die Losung ist die quadratische Formel:

—bx b? — dac
2a

Die quadratische Formel

X =

Das Beispiel findet die Nullstellen der Parabel, wo die Linien die x-Achse schneiden.
Wir werfen Ausnahmen fiir zwei Einschrankungen:

*'https://en.wikipedia.org/wiki/Quadratic_formula

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

https://en.wikipedia.org/wiki/Quadratic_formula
https://en.wikipedia.org/wiki/Quadratic_formula

Zusammenfassung 2 177

1. a darf nicht null sein.
2. Damit Nullstellen existieren, darf b? - 4ac nicht negativ sein.

Wenn Nullstellen existieren, gibt es zwei, daher erstellen wir die Roots-Klasse, um
die Riickgabewerte zu halten:

// Summary2/Quadratic.kt
package summary2

import kotlin.math.sqrt
import atomictest.*

class Roots(
val rooti1: Double,
val root2: Double

fun quadraticZeroes(
a: Double,
b: Double,
c: Double
): Roots {
if (a == 0.0)
throw IllegalArgumentException(
"a is zero"
val underRadical = b *b - 4 * a * ¢
if (underRadical < Q)
throw IllegalArgumentException(
"Negative underRadical: $underRadical")
val squareRoot = sqgrt(underRadical)
val root1 = (-b - squareRoot) / (2 * a)
val root2 = (-b + squareRoot) / (2 * a)
return Roots(rooti1, root2)

}

fun main() {

capture {
quadraticZeroes(0.0, 4.0, 5.0)

} eq "IllegalArgumentException: " +
"a is zero"

capture {
quadraticZeroes(3.0, 4.0, 5.0)

} eq "IllegalArgumentException: " +

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 2 178

"Negative underRadical: -44.0"
val roots = quadraticZeroes(1.0, 2.0, -8.0)
roots.rootl eq -4.0
roots.root2 eq 2.0

}

Hier verwenden wir die Standard-Ausnahmeklasse I11egalArgumentException.
Spater werden Sie lernen, Ihre eigenen Ausnahmetypen zu definieren und sie spezi-
fisch an Thre Umstédnde anzupassen. Ihr Ziel ist es, die niitzlichsten Nachrichten zu
generieren, um die Unterstiitzung Threr Anwendung in der Zukunft zu vereinfachen.

Listen

Lists sind Kotlins grundlegender sequentieller Containertyp. Sie erstellen eine
schreibgeschiitzte Liste mit 1istOf() und eine veranderbare Liste mit mutableli-
StOf():

// Summary2/ReadonlyVsMutablelList.kt
import atomictest.*

fun main() {

val ints = listOf(5, 13, 9)
// ints.add(11) // 'add()' not available
for (i in ints) {

if (i > 10) {

trace(i)

}
}
val chars = mutableListOf('a', 'b', 'c')
chars.add('d') // 'add()' available
chars += 'e'
trace(chars)
trace eq """

13

[a, b, ¢, d, e]

[ININT]

}

Eine grundlegende Liste ist schreibgeschiitzt und enthélt keine Anderungsfunktio-
nen. Daher funktioniert die Anderungsfunktion add() nicht mit ints.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 2 179

for Schleifen funktionieren gut mitListen: for(i in ints) bedeutet, dass i jeden
Wert in ints erhalt.

chars wird als VeranderbarelListe erstellt; sie kann mit Funktionen wie add()
oder remove() modifiziert werden. Sie konnen auch += und -= verwenden, um
Elemente hinzuzufiigen oder zu entfernen.

Eine schreibgeschiitzte Liste ist nicht dasselbe wie eine unverdnderliche Liste, die
iiberhaupt nicht modifiziert werden kann. Hier weisen wir first, eine veranderbare
Liste, second zu, einer schreibgeschiitzten L iste-Referenz. Die schreibgeschiitzte
Eigenschaft von second verhindert nicht, dass sich die Liste iiber first éndert:

// Summary2/Multiplel istReferences.kt
import atomictest.eq

fun main() {
val first = mutableListOf(1)
val second: List<Int> = first
second eq 1istOf(1)
first += 2
// second sees the change:
second eq 1istOf(1, 2)

}

first und second verweisen auf dasselbe Objekt im Speicher. Wir verandern die
List iiber die first Referenz und beobachten dann diese Anderung in der second
Referenz.

Hier ist eine List von Strings, die durch das Aufteilen eines dreifach-quotierten
Absatzes erstellt wurde. Dies zeigt die Leistungsfahigkeit einiger Funktionen der
Standardbibliothek. Beachten Sie, wie diese Funktionen verkettet werden konnen:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 2 180

// Summary2/L istOfStrings.kt
import atomictest.*

fun main() {
val wocky =
Twas brillig, and the slithy toves
Did gyre and gimble in the wabe:
All mimsy were the borogoves,
And the mome raths outgrabe.
" otrim().split(Regex("\\W+"))
trace(wocky.take(5))
trace(wocky.slice(6..12))
trace(wocky.slice(6..18 step 2))
trace(wocky.sorted().takelLast(5))
trace(wocky.sorted().distinct().takelLast(5))
trace eq """
[Twas, brillig, and, the, slithy]
[Did, gyre, and, gimble, in, the, wabe]
[Did, and, in, wabe, mimsy, the, And]
[the, the, toves, wabe, were]
[

[IRIRT]

slithy, the, toves, wabe, were]

}

trim() erzeugt einen neuen String, bei dem die fithrenden und nachfolgenden Leer-
zeichen (einschliefilich Zeilenumbriiche) entfernt wurden. split() teilt den String
gemaf seinem Argument. In diesem Fall verwenden wir ein Regex-Objekt, das einen
reguldren Ausdruck erstellt—ein Muster, das die zu trennenden Teile abgleicht. \W ist
ein spezielles Muster, das “kein Wortzeichen” bedeutet, und + bedeutet “eines oder
mehrere der vorhergehenden”. Somit wird split() an einem oder mehreren Nicht-
Wortzeichen brechen und somit den Textblock in seine einzelnen Worter aufteilen.

In einem String-Literal steht \ vor einem speziellen Zeichen und erzeugt zum
Beispiel ein Zeilenumbruchzeichen (\n) oder ein Tabulatorzeichen (\t). Um einen
tatsachlichen \ im resultierenden String zu erzeugen, benétigen Sie zwei Backslashes:
"\\". Daher erfordern alle regularen Ausdriicke einen zusatzlichen \, um einen
Backslash einzufiigen, es sei denn, Sie verwenden einen dreifach zitierten String:
RS

take(n) erzeugt eine neue L ist, die die ersten n Elemente enthalt. slice() erzeugt
eine neue List, die die durch das Range-Argument ausgewahlten Elemente enthilt,

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 2 181

und dieser Range kann einen step einschliefien.

Beachten Sie den Namen sorted() anstelle von sort (). Wenn Sie sorted() aufru-
fen, erzeugt es eine sortierte List und lasst die urspriingliche List unangetastet.
sort() funktioniert nur mit einer MutablelList, und diese Liste wird vor Ort
sortiert—die urspriingliche List wird verandert.

Wie der Name schon sagt, erzeugt takeLast(n) eine neue List der letzten n
Elemente. An der Ausgabe konnen Sie sehen, dass “the” dupliziert ist. Dies wird
durch Hinzufiigen der distinct()-Funktion zur Aufrufkette beseitigt.

Parametrisierte Typen

Typparameter ermdglichen es uns, zusammengesetzte Typen zu beschreiben, am
haufigsten Container. Insbesondere spezifizieren Typparameter, was ein Container
enthélt. Hier sagen wir Kotlin, dass numbers eine List von Int enthilt, wahrend
strings eine List von String enthilt:

// Summary2/ExplicitTyping.kt
package summary?2
import atomictest.eq

fun main() {
val numbers: List<Int> = 1istOf(1, 2, 3)
val strings: List<String> =
1istOf("one", "two", "three")
numbers eq "[1, 2, 3]"
strings eq "[one, two, three]"
toCharList("seven") eq "[s, e, v, e, n]

}

fun toCharList(s: String): List<Char> =
s.tolList()

Sowohl bei den Definitionen von numbers als auch strings fiigen wir Doppel-
punkte und die Typdeklarationen List<Int> und List<String> hinzu. Die spitzen
Klammern bezeichnen einen Typ-Parameter, der es uns ermoglicht zu sagen, “der
Container enthalt ‘Parameter’-Objekte” Man spricht List<Int> typischerweise als
“List von Int” aus.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 2 182

Ein Riickgabewert kann ebenfalls einen Typ-Parameter haben, wie in toCharList()
zu sehen ist. Man kann nicht einfach sagen, dass es eine List zuriickgibt—Kotlin
beschwert sich, also muss man den Typ-Parameter ebenfalls angeben.

Variable Argumentlisten

Das Schliisselwort vararg steht fiir variable Argumentliste und erlaubt es einer Funk-
tion, eine beliebige Anzahl von Argumenten (einschlieflich null) des angegebenen
Typs zu akzeptieren. Das vararg wird zu einem Array, das dhnlich wie eine List
ist:

// Summary2/VarArgs.kt
package summary2
import atomictest.*

fun varargs(s: String, vararg ints: Int) {
for (i in ints) {
trace("$i")
}

trace(s)

}

fun main() {
varargs("primes", 5, 7, 11, 13, 17, 19, 23)
trace eq "5 7 11 13 17 19 23 primes"”

}

Eine Funktionsdefinition kann nur einen Parameter als vararg spezifizieren. Jeder
Parameter in der Liste kann das vararg sein, aber der letzte ist im Allgemeinen der
einfachste.

Sie konnen ein Array von Elementen iiberall dort ibergeben, wo ein vararg
akzeptiert wird. Um ein Array zu erstellen, verwenden Sie arrayOf() auf die
gleiche Weise wie 1istOf(). Ein Array ist immer verdnderbar. Um ein Array in
eine Sequenz von Argumenten (nicht nur ein einzelnes Element des Typs Array) zu
konvertieren, verwenden Sie den Spread-Operator *:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 2 183

// Summary2/ArraySpread.kt
import summary2.varargs
import atomictest.trace

fun main() {
val array = intArrayOf(4, 5) /7 [1]
varargs("x", 1, 2, 3, *array, 6) // [2]
val list = 1listOf(9, 10, 11)
varargs(
"y", 7, 8, *list.tolntArray()) // [3]
trace eq "1 23 456x 789 10 11 y"

}

Wenn Sie ein Array von Primitivtypen wie im obigen Beispiel iibergeben, muss
die Array-Erstellungsfunktion spezifisch typisiert sein. Wenn [1] arrayOf(4, 5)
anstelle von intArrayOf(4, 5) verwendet, erzeugt [2] einen Fehler: inferred type
is Array<Int> but IntArray was expected.

Der Spread-Operator funktioniert nur mit Arrays. Wenn Sie eine List als Sequenz
von Argumenten Ubergeben mochten, konvertieren Sie sie zuerst in ein Array
und wenden Sie dann den Spread-Operator an, wie in [3]. Da das Ergebnis ein
Array eines Primitivtyps ist, miissen wir die spezifische Konvertierungsfunktion
toIntArray() verwenden.

Sets

Sets sind Sammlungen, die nur ein Element jedes Wertes zulassen. Ein Set verhin-
dert automatisch Duplikate.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 2 184

// SummaryZ2/ColorSet.kt
package summary2
import atomictest.eq

val colors =
"Yellow Green Green Blue"

.split(Regex("""\W+""")).sorted() // [1]

fun main() {

colors eq
1listOf("Blue", "Green", "Green", "Yellow")
val colorSet = colors.toSet() /7 [2]

colorSet eq

setOf("Yellow", "Green", "Blue")
(colorSet + colorSet) eq colorSet /7 [3]
val mSet = colorSet.toMutableSet() // [4]

mSet -= "Blue"
mSet += "Red" // [5]
mSet eq

setOf("Yellow", "Green", "Red")
// Set membership:
("Green" in colorSet) eq true // [6]
colorSet.contains("Red") eq false

« [1] Der String wird mit einem reguldren Ausdruck aufgeteilt (split()), wie
zuvor fir ListOfStrings.kt beschrieben.

« [2] Wenn colors in das schreibgeschiitzte Set colorSet kopiert wird, wird
einer der beiden "Green"-Strings entfernt, da es sich um ein Duplikat handelt.

« [3] Hier erstellen und anzeigen wir ein neues Set mit dem +-Operator. Das
Einfiigen von doppelten Elementen in ein Set entfernt diese Duplikate automa-
tisch.

+ [4] toMutableSet() erzeugt aus einem schreibgeschiitzten Set ein neues
MutableSet.

« [5] Fir ein MutableSet fiigen die Operatoren += und -= Elemente hinzu bzw.
entfernen sie, wie sie es auch bei MutablelLists tun.

« [6] Testen Sie die Mitgliedschaft in einem Set mit in oder contains()

Die normalen mathematischen Mengenoperationen wie Vereinigung, Schnittmenge,
Differenz usw. sind alle verfiigbar.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 2 185

Maps

Ein Map verbindet Schliissel mit Werten und sucht einen Wert anhand eines Schliis-
sels. Sie erstellen ein Map, indem Sie Schlussel-Wert-Paare zu mapOf () bereitstellen.
Mit to trennen wir jeden Schliissel von seinem zugehorigen Wert:

// Summary2/ASCIIMap.kt
import atomictest.eq

fun main() {

val ascii = mapOf(

"A" to 65,

"B" to 66,

"C" to 67,

"I to 73,

"J" to 74,

"K" to 75
)
ascii eq

"{A=65, B=66, C=67, I1=73, J=T74, K=75}"
ascii["B"] eq 66 /7 [1]
ascii.keys eq "[A, B, C, I, J, K]"
ascii.values eq

"[65, 66, 67, T3, 74, T5]"

var kv = ""

for (entry in ascii) { // [2]
kv += "${entry.key}:${entry.value},k"

}

kv eq "A:65,B:66,C:67,1:73,J:74,K:T75,"

kv = "

for ((key, value) in ascii) // [3]

kv += "$key:$value,"
kv eq "A:65,B:66,C:67,1:73,J:74,K:75,"
val mutable = ascii.toMutableMap() // [4]
mutable.remove("I")
mutable eq

"{A=65, B=66, C=67, J=T4, K=T75}"
mutable.put("Z", 90)
mutable eq

"{A=65, B=66, C=67, J=T4, K=75, Z=90}"
mutable.clear()

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 2 186

mutable["A"] = 100
mutable eq "{A=100}"

}

« [1] Ein Schlissel ("B") wird verwendet, um mit dem [] Operator einen Wert
nachzuschlagen. Sie konnen alle Schliissel mit keys und alle Werte mit values
erzeugen. Der Zugriff auf keys erzeugt ein Set, da alle Schliissel in einer Map
bereits eindeutig sein miissen (ansonsten hatten Sie Mehrdeutigkeiten bei einem
Nachschlagen).

« [2] Beim Iterieren durch eine Map entstehen Schliissel-Wert-Paare als Map-
Eintrage.

« [3] Sie kénnen Schliissel-Wert-Paare wahrend des Iterierens entpacken.

« [4] Sie konnen eine MutableMap aus einer Nur-Lese-Map mit toMutableMap()
erstellen. Nun konnen wir Operationen durchfithren, die mutable verindern,
wie remove(), put(), und clear(). Eckige Klammern konnen ein neues
Schliissel-Wert-Paar in mutable zuweisen. Sie konnen auch ein Paar hinzufii-
gen, indem Sie sagen map += key to value.

Eigenschafts-Accessoren

Der Zugriff auf die Eigenschaft i scheint unkompliziert:

// Summary2/PropertyReadWrite.kt
package summary?2
import atomictest.eq

class Holder(var i: Int)

fun main() {
val holder = Holder(10)
holder.i eq 10 // Read the 'i' property
holder.i = 20 // Write to the 'i' property

}

Allerdings ruft Kotlin Funktionen auf, um die Lese- und Schreiboperationen durchzu-
fithren. Das Standardverhalten dieser Funktionen besteht darin, die in i gespeicher-
ten Daten zu lesen und zu schreiben. Durch die Erstellung von Eigenschaftszugriffen
andern Sie die Aktionen, die beim Lesen und Schreiben auftreten.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 2 187

Der Zugriff, der zum Abrufen des Werts einer Eigenschaft verwendet wird, wird als
Getter bezeichnet. Um einen eigenen Getter zu erstellen, definieren Sie get () direkt
nach der Eigenschaftsdeklaration. Der Zugriff, der zum Andern einer verinderbaren
Eigenschaft verwendet wird, wird als Setter bezeichnet. Um einen eigenen Setter
zu erstellen, definieren Sie set() direkt nach der Eigenschaftsdeklaration. Die
Reihenfolge der Definition von Gettern und Settern ist unwichtig, und Sie konnen
einen ohne den anderen definieren.

Die Eigenschaftszugriffe im folgenden Beispiel imitieren die Standardimplementie-
rungen und zeigen zusétzliche Informationen an, damit Sie sehen koénnen, dass die
Eigenschaftszugriffe tatsachlich wahrend der Lese- und Schreibvorgénge aufgerufen
werden. Wir riicken die get()- und set()-Funktionen ein, um sie visuell mit der
Eigenschaft zu verkniipfen, aber die tatsdchliche Verkniipfung erfolgt, weil sie direkt
nach dieser Eigenschaft definiert sind:

// Summary2/GetterAndSetter.kt
package summary?2
import atomictest.*

class GetterAndSetter
var i: Int = 0

get() {
trace("get()")
return field

}

set(value) {
trace("set($value)")
field = value

}

fun main() {
val gs = GetterAndSetter()
gs.i = 2
trace(gs.i)
trace eq """
set(2)
get()
2

[IRIRT]

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Zusammenfassung 2 188

Innerhalb des Getters und Setters wird der gespeicherte Wert indirekt mit dem field-
Schliisselwort manipuliert, das nur innerhalb dieser beiden Funktionen zugénglich
ist. Es ist auch moglich, eine Eigenschaft zu erstellen, die kein field besitzt, sondern
einfach den Getter aufruft, um ein Ergebnis zu erzeugen.

Wenn Sie eine private Eigenschaft deklarieren, werden beide Accessoren private.
Sie konnen den Setter private und den Getter public machen. Das bedeutet, dass
Sie die Eigenschaft aulerhalb der Klasse lesen, aber ihren Wert nur innerhalb der
Klasse dndern konnen.

Ubungen und Losungen finden Sie auf www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Abschnitt llI:
Benutzerfreundlichkeit

Programmiersprachen unterscheiden sich nicht so sehr darin, was sie
moglich machen, sondern darin, was sie einfach machen—Larry Wall,
Erfinder der Perl-Sprache

Erweiterungsfunktionen

Angenommen, Sie entdecken eine Bibliothek, die fast alles tut, was Sie
brauchen... fast. Wenn sie nur ein oder zwei zusatzliche Mitgliedsfunktio-
nen hétte, wiirde sie Ihr Problem perfekt 16sen.

Aber es ist nicht Ihr Code — entweder haben Sie keinen Zugriff auf den Quellcode
oder Sie kontrollieren ihn nicht. Sie miissten Thre Anderungen bei jeder neuen
Version wiederholen.

Kotlin’s extension functions fiigen bestehenden Klassen effektiv Mitgliedsfunktionen
hinzu. Der Typ, den Sie erweitern, wird receiver genannt. Um eine Erweiterungsfunk-
tion zu definieren, setzen Sie den Typ des Empfangers vor den Funktionsnamen:

fun ReceiverType.extensionFunction() { ... }
Dies fiigt der String-Klasse zwei Erweiterungsfunktionen hinzu:
// ExtensionFunctions/Quoting.kt

package extensionfunctions
import atomictest.eq

n l$thisl n
l|\||$this\u "

fun String.singleQuote()
fun String.doubleQuote()

fun main() {
"Hi".singleQuote() eq "'Hi
"Hi".doubleQuote() eq "\"Hi\""
1

T

Sie rufen Erweiterungsfunktionen auf, als ob sie Mitglieder der Klasse waren.

Um Erweiterungen aus einem anderen Paket zu verwenden, missen Sie sie importie-
ren:

Erweiterungsfunktionen 191

// ExtensionFunctions/Quote.kt
package other

import atomictest.eq

import extensionfunctions.doubleQuote
import extensionfunctions.singleQuote

fun main() {
"Single".singleQuote() eq "'Single""
"Double".doubleQuote() eq "\"Double\""
}

Sie kdnnen auf Mitgliederfunktionen oder andere Erweiterungen mit dem Schliissel-
wort this zugreifen. this kann auch weggelassen werden, ebenso wie es innerhalb
einer Klasse weggelassen werden kann, sodass Sie keine explizite Qualifizierung
bendtigen:

// ExtensionFunctions/StrangeQuote.kt
package extensionfunctions
import atomictest.eq

// Apply two sets of single quotes:
fun String.strangeQuote() =
this.singleQuote().singleQuote() // [1]

fun String.tooManyQuotes() =
doubleQuote() .doubleQuote() /7 [2]

fun main() {
"Hi".strangeQuote() eq "''Hi
"Hi".tooManyQuotes() eq "\"\"Hi\"\""

[

}

« [1] this bezieht sich auf den String-Empfanger.

« [2] Wir lassen das Empfangerobjekt (this) beim ersten Aufruf der Funktion
doubleQuote() weg.

Die Erweiterung Ihrer eigenen Klassen kann manchmal zu einfacherer Code fithren:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Erweiterungsfunktionen 192

// ExtensionFunctions/BookExtensions.kt
package extensionfunctions
import atomictest.eq

class Book(val title: String)

fun Book.categorize(category: String) =
"""title: "$title", category: $category

nmun

fun main() {
Book("Dracula").categorize("Vampire") eq
"""title: "Dracula", category: Vampire

nun

}

Innerhalb von categorize() greifen wir ohne explizite Qualifikation auf dietitle-
Eigenschaft zu.

Erweiterungsfunktionen konnen nur auf 6ffentliche Elemente des zu erweitern-
den Typs zugreifen. Daher konnen Erweiterungen dieselben Aktionen wie regula-
re Funktionen ausfithren. Sie konnen Book .categorize(String) als categori-
ze(Book, String) umschreiben. Der einzige Grund fiir die Verwendung einer
Erweiterungsfunktion ist die Syntax, aber dieser syntaktische Zucker ist machtig. Fiir
den aufrufenden Code sehen Erweiterungen genauso aus wie Mitgliedsfunktionen,
und IDEs zeigen Erweiterungen an, wenn sie die Funktionen auflisten, die Sie fiir ein
Objekt aufrufen konnen.

Ubungen und Lésungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Benannte &
Standardargumente

Sie konnen wahrend eines Funktionsaufrufs Argumentnamen angeben.

Benannte Argumente verbessern die Code-Lesbarkeit. Dies gilt besonders fiir lange
und komplexe Argumentlisten — benannte Argumente kénnen so klar sein, dass der
Leser einen Funktionsaufruf verstehen kann, ohne die Dokumentation anzusehen.

In diesem Beispiel sind alle Parameter Int. Benannte Argumente verdeutlichen ihre
Bedeutung:

// NamedAndDe faul tArgs/NamedArguments. kt
package color1l
import atomictest.eq

fun color(red: Int, green: Int, blue: Int) =
"($red, $green, $blue)"

fun main() {

color(41, 2, 3) eq "(1, 2,)" // [1]

color(
red = 76, /7 2]
green = 89,
blue = 0

) eq "(76, 89, 0)"

color(52, 34, blue = 0) eq // [3]
"(52, 34, 0)"

« [1] Dies sagt Ihnen nicht viel. Sie miissen die Dokumentation einsehen, um zu
verstehen, was die Argumente bedeuten.

+ [2] Die Bedeutung jedes Arguments ist klar.

« [3] Es ist nicht erforderlich, alle Argumente zu benennen.

Benannte Argumente ermoglichen es Ihnen, die Reihenfolge der Farben zu &ndern.
Hier geben wir blue zuerst an:

Benannte & Standardargumente 194

// NamedAndDe faul tArgs/ArgumentOrder . kt
import colori.color
import atomictest.eq

fun main() {
color(blue = 0, red = 99, green = 52) eq
"(99, 52, @)"
color(red = 255, 255, 0) eq
"(255, 255, Q)"
}

Sie konnen benannte und regulare (positionale) Argumente mischen. Wenn Sie die
Reihenfolge der Argumente dndern, sollten Sie benannte Argumente im gesamten
Aufruf verwenden—nicht nur der Lesbarkeit halber, sondern oft muss der Compiler
wissen, wo die Argumente sind.

Benannte Argumente sind noch niitzlicher, wenn sie mit Standardargumenten kom-
biniert werden, die Standardwerte fiir Argumente sind, die in der Funktionsdefinition
angegeben sind:

// NamedAndDe faul tArgs/Color2.kt
package color2
import atomictest.eq

fun color(
red: Int = O,
green: Int = O,
blue: Int = 0,
) = "($red, $green, $blue)"

fun main() {
color(139) eq "(139, 0, 0)"
color(blue = 139) eq "(Q, @, 139)"
color(255, 165) eq "(255, 165, 0)"
color(red = 128, blue = 128) eq
"(128, @, 128)"
}

Jedes Argument, das Sie nicht angeben, erhalt seinen Standardwert. Daher miissen
Sie nur die Argumente angeben, die von den Standardwerten abweichen. Wenn Sie
eine lange Argumentliste haben, vereinfacht dies den resultierenden Code, was das
Schreiben und—was noch wichtiger ist—das Lesen erleichtert.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Benannte & Standardargumente 195

Dieses Beispiel verwendet auch ein nachgestelltes Komma in der Definition von
color (). Das nachgestellte Komma ist das zusétzliche Komma nach dem letzten
Parameter (blue). Dies ist niitzlich, wenn Thre Parameter oder Werte iber mehrere
Zeilen geschrieben sind. Mit einem nachgestellten Komma kdnnen Sie neue Elemente
hinzufiigen und ihre Reihenfolge &ndern, ohne Kommas hinzuzufiigen oder zu
entfernen.

Benannte und Standardargumente (sowie nachgestellte Kommas) funktionieren auch
tiir Konstruktoren:

// NamedAndDe faul tArgs/Color3.kt
package color3
import atomictest.eq

class Color(
val red: Int = 0,
val green: Int = 0O,
val blue: Int = 0O,
) |

override fun toString() =
"($red, $green, $blue)"
}

fun main() {
Color(red = 77).toString() eq "(77, 0, @)"
}

joinToString() ist eine Standardbibliotheksfunktion, die Standardargumente ver-
wendet. Sie kombiniert die Inhalte eines iterierbaren Objekts (einer Liste, Menge oder
eines Bereichs) zu einem String. Sie konnen einen Trennzeichen, ein Prifixelement
und ein Suffixelement angeben:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Benannte & Standardargumente 196

// NamedAndDefaul tArgs/CreateString.kt
import atomictest.eq

fun main() {
val list = listOf(1, 2, 3,)
list.toString() eq "[1, 2, 3]"
list.joinToString() eq "1, 2, 3"

"

list. joinToString(prefix = "(",
postfix = ")") eq "(1, 2, 3)"
list. joinToString(separator = ":") eq
"1:2:3"
1

Der Standardwert von toString() fiir eine List gibt den Inhalt in eckigen Klam-
mern zuriick, was moglicherweise nicht das ist, was Sie wollen. Die Standardwerte
fur die Parameter von joinToString() sind ein Komma fir separator und leere
Strings fiir prefix und postfix. Im obigen Beispiel verwenden wir benannte
und Standardargumente, um nur die Argumente zu spezifizieren, die wir dndern
mochten.

Der Initialisierer fur 1ist beinhaltet ein abschlielendes Komma. Normalerweise
verwenden Sie ein abschlielendes Komma nur, wenn jedes Element in einer eigenen
Zeile steht.

Wenn Sie ein Objekt als Standardargument verwenden, wird bei jedem Aufruf eine
neue Instanz dieses Objekts erstellt:

Wenn Sie eine Objektinstanz als Standardargument tibergeben (da innerhalb von g()
im folgenden Beispiel), wird dieselbe Instanz fiir jeden Aufruf von g() verwendet.
Wenn Sie die Syntax fiir einen Konstruktoraufruf iibergeben (DefaultArg() inner-
halb von h()), wird dieser Konstruktor jedes Mal aufgerufen, wenn Sie h() aufrufen:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Benannte & Standardargumente 197

// NamedAndDefaultArgs/Evaluation.kt
package namedanddefault

class DefaultArg
val da = DefaultArg()

fun g(d: DefaultArg = da) = println(d)

fun h(d: DefaultArg = DefaultArg()) =
println(d)

fun main() {

a()

a()

h()

h()
}
/* Sample output:
namedanddefault.Defaul tArg@7440e464
namedanddefault.Defaul tArg@7440e464
namedanddefault.Defaul tArg@49476842
namedanddefault.Defaul tArg@78308db1
*/

Die Ausgabe der beiden g() Aufrufe zeigt identische Objektadressen. Bei den beiden
Aufrufen von h() sind die Adressen der DefaultArg Objekte unterschiedlich, was
zeigt, dass es zwei verschiedene Objekte gibt.

Geben Sie Argumentnamen an, wenn sie die Lesbarkeit verbessern. Vergleichen Sie
die folgenden beiden Aufrufe von joinToString():

// NamedAndDe faul tArgs/CreateString2.kt
import atomictest.eq

fun main() {
val list = listOf(1, 2, 3)

list. joinToString(". ", "", "I") eq
"1. 2. 3"

list. joinToString(separator = ". ",
postfix = "!") eq "1. 2. 31"

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Benannte & Standardargumente 198

Es ist schwer zu erraten, ob ". " oder "" ein Trennzeichen ist, es sei denn, man
merkt sich die Reihenfolge der Parameter, was unpraktisch ist.

Ein weiteres Beispiel fiir Standardargumente ist die trimMargin()-Funktion der
Standardbibliothek, die mehrzeilige Strings formatiert. Sie verwendet einen Randpréafix-
String, um den Anfang jeder Zeile festzulegen. trimMargin() entfernt fithrende
Leerzeichen, gefolgt von dem Randprifix, aus jeder Zeile des Quell-String. Es
entfernt die erste und letzte Zeile, wenn sie leer sind:

// NamedAndDefaultArgs/TrimMargin.kt
import atomictest.eq

fun main() {
val poem =
| ->Last night I saw upon the stair
[->A little man who wasn't there
| ->He wasn't there again today
[->0h, how I wish he'd go away."""
poem.trimMargin() eq
"""_>Last night I saw upon the stair
->A little man who wasn't there
->He wasn't there again today
->0h, how I wish he'd go away."""
poem.trimMargin(marginPrefix = "[->") eq
"""Last night I saw upon the stair
A little man who wasn't there
He wasn't there again today
Oh, how I wish he'd go away.

}

nnn

nwnn

Das | (“Pipe”) ist das Standardargument fiir das Randpréfix, und Sie konnen es durch
einen String Threr Wahl ersetzen.

Ubungen und Lésungen finden Sie auf www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Uberladung

Sprachen ohne Unterstiitzung fiir Standardargumente verwenden oft Uber-
ladung, um dieses Merkmal zu imitieren.

Der Begriff Uberladung bezieht sich auf den Namen einer Funktion: Sie verwenden
denselben Namen (“tiberladen” diesen Namen) fiir verschiedene Funktionen, solange
sich die Parameterlisten unterscheiden. Hier iiberladen wir die Memberfunktion £():

// Overloading/Overloading.kt
package overloading
import atomictest.eq

class Overloading {

fun f() = 0

fun f(n: Int) = n + 2
}

fun main() {
val o = Overloading()
o.f() eq 0
o.f(11) eq 13

}

InOverloading sehen Sie zwei Funktionen mit demselben Namen, £(). Die Signatur
einer Funktion besteht aus dem Namen, der Parameterliste und dem Riickgabetyp.
Kotlin unterscheidet eine Funktion von einer anderen, indem es die Signaturen
vergleicht. Beim Uberladen von Funktionen miissen die Parameterlisten einzigartig
sein—man kann nicht nur iber die Riickgabetypen iiberladen.

Die Aufrufe zeigen, dass es sich tatsdchlich um unterschiedliche Funktionen handelt.
Eine Funktionssignatur beinhaltet auch Informationen tber die umschlieffende
Klasse (oder den Empfangstyp, wenn es sich um eine Erweiterungsfunktion handelt).

Wenn eine Klasse bereits eine Mitgliedsfunktion mit derselben Signatur wie eine Er-
weiterungsfunktion hat, bevorzugt Kotlin die Mitgliedsfunktion. Sie kénnen jedoch
die Mitgliedsfunktion mit einer Erweiterungsfunktion tiberladen:

Uberladung 200

// Overloading/MemberVsExtension.kt
package overloading
import atomictest.eq

class My {
fun foo() = 0

}
fun My.foo() =1 /7 [1]
fun My.foo(i: Int) =i +2 // [2]

fun main() {

My().foo() eq ©
My().foo(1) eq 3
}

« [1] Es ist sinnlos, eine Erweiterung zu deklarieren, die ein Mitglied dupliziert,
da sie niemals aufgerufen werden kann.

« [2] Sie konnen eine Mitgliedsfunktion mit einer Erweiterungsfunktion iiberla-
den, indem Sie eine andere Parameterliste bereitstellen.

Verwenden Sie das Uberladen nicht, um Standardargumente zu imitieren. Das heifit,
tun Sie dies nicht:

// Overloading/WithoutDefaul tArguments.kt
package withoutdefaultarguments
import atomictest.eq

fun f(n: Int) = n + 373
fun f() = £(0)

fun main() {
f() eq 373
}

Die Funktion ohne Parameter ruft einfach die erste Funktion auf. Die beiden
Funktionen konnen durch eine einzelne Funktion ersetzt werden, indem ein Stan-
dardargument verwendet wird:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Uberladung 201

// Overloading/WithDefaul tArguments.kt
package withdefaultarguments
import atomictest.eq

fun f(n: Int = Q) = n + 373

fun main() {
f() eq 373
}

In beiden Beispielen konnen Sie die Funktion entweder ohne ein Argument oder
durch Ubergeben eines Ganzzahlwerts aufrufen. Bevorzugen Sie die Form in With-
DefaultArguments.kt.

Bei der Verwendung von iiberladenen Funktionen zusammen mit Standardargumen-
ten sucht der Aufruf der iiberladenen Funktion nach der “nichsten” Ubereinstim-
mung. Im folgenden Beispiel ruft der foo()-Aufrufinmain() nicht die erste Version
der Funktion mit ihrem Standardargument von 99 auf, sondern stattdessen die zweite
Version, die ohne Parameter:

// Overloading/OverloadedVsDefaultArg.kt
package overloadingvsdefaultargs
import atomictest.*

fun foo(n: Int = 99) = trace("foo-1-$n")

fun foo() {
trace("foo-2")
foo(14)

}

fun main() {
foo()
trace eq
foo-2
foo-1-14

nwnn

nmon

}

Sie konnen das Standardargument 99 niemals nutzen, da foo() immer die zweite
Version von f() aufruft.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

Uberladung 202

Warum ist das Uberladen niitzlich? Es erméglicht Thnen, “Variationen eines Themas”
klarer auszudriicken, als wenn Sie gezwungen wiren, unterschiedliche Funktionsna-
men zu verwenden. Angenommen, Sie mochten Additionsfunktionen:

// Overloading/OverloadingAdd. kt
package overloading
import atomictest.eq

fun addInt(i: Int, j: Int) =i + j
fun addDouble(i: Double, j: Double) = i + j

fun add(i: Int, j: Int) =

i+
fun add(i: Double, j: Double) =

i+

fun main() {
addInt(5, 6) eq add(5, 6)
addDouble(56.23, 44.77) eq
add(56.23, 44.77)

}

addInt() nimmt zwei Ints und gibt ein Int zuriick, wahrend addDouble() zwei
Doubles nimmt und ein Double zuriickgibt. Ohne Uberladen kann man die Opera-
tion nicht einfach add() nennen, daher kombinieren Programmierer typischerweise
was mit wie, um eindeutige Namen zu erzeugen (man kann auch eindeutige Namen
mit zufalligen Zeichen erstellen, aber das typische Muster ist die Verwendung von
aussagekraftigen Informationen wie Parametertypen). Im Gegensatz dazu ist das
iiberladene add() viel klarer.

Das Fehlen des Uberladens in einer Sprache ist keine groie Biirde, aber das Feature
bietet wertvolle Vereinfachung, wodurch der Code lesbarer wird. Mit Uberladung
sagt man einfach was, was die Abstraktionsebene erhoht und die geistige Belastung
fir den Leser verringert. Wenn man wissen will wie, schaut man sich die Parameter
an. Beachten Sie auch, dass Uberladen Redundanz reduziert: Wenn wir addInt()
und addDouble() sagen miissen, wiederholen wir im Wesentlichen die Parameter-
informationen im Funktionsnamen.

Ubungen und Losungen finden Sie auf www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

	Inhaltsverzeichnis
	Urheberrecht
	Abschnitt I: Grundlagen der Programmierung
	Einführung
	Warum Kotlin?
	Hallo, Welt!
	var & val
	Datentypen
	Funktionen
	if-Ausdrücke
	String-Vorlagen
	Zahlentypen
	Boolesche Werte
	Wiederholung mit while
	Schleifen & Bereiche
	Das in Schlüsselwort
	Ausdrücke & Anweisungen
	Zusammenfassung 1

	Abschnitt II: Einführung in Objekte
	Objekte überall
	Klassen erstellen
	Eigenschaften
	Konstruktoren
	Einschränkung der Sichtbarkeit
	Pakete
	Testen
	Ausnahmen
	Listen
	Variable Argumentlisten
	Mengen
	Karten
	Eigenschaftszugriffe
	Zusammenfassung 2

	Abschnitt III: Benutzerfreundlichkeit
	Erweiterungsfunktionen
	Benannte & Standardargumente
	Überladung

