


Atomic Kotlin (Deutsche Ausgabe)

Bruce Eckel und Svetlana Isakova

Dieses Buch wird verkauft unter http://leanpub.com/AtomicKotlin-de

Diese Version wurde veröffentlicht am 2024-09-18

ISBN 978-0-9818725-4-4

Dies ist ein Leanpub-Buch. Leanpub bietet Autoren und Verlagen, mit Hilfe von
Lean-Publishing, neue Möglichkeiten des Publizierens. Lean Publishing bedeutet
die wiederholte Veröffentlichung neuer Beta-Versionen eines eBooks unter der
Zuhilfenahme schlanker Werkzeuge. Das Feedback der Erstleser hilft dem Autor bei
der Finalisierung und der anschließenden Vermarktung des Buches. Lean
Publishing unterstützt den Autor darin ein Buch zu schreiben, das auch gelesen
wird.

© 2024 Mindview LLC

http://leanpub.com/AtomicKotlin-de
https://leanpub.com/
https://leanpub.com/manifesto


INHALTSVERZEICHNIS

Inhaltsverzeichnis

Urheberrecht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Abschnitt I: Grundlagen der Programmie-
rung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Einführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Warum Kotlin? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Hallo, Welt! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

var & val . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Datentypen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Funktionen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

if-Ausdrücke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

String-Vorlagen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Zahlentypen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Boolesche Werte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Wiederholung mit while . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Schleifen & Bereiche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Das in Schlüsselwort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



INHALTSVERZEICHNIS

Ausdrücke & Anweisungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Zusammenfassung 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Abschnitt II: Einführung in Objekte . . . . . . . 94

Objekte überall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Klassen erstellen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Eigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Konstruktoren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Einschränkung der Sichtbarkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Pakete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Testen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Ausnahmen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Listen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Variable Argumentlisten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Mengen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Karten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Eigenschaftszugriffe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Zusammenfassung 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Abschnitt III: Benutzerfreundlichkeit . . . . . . 189

Erweiterungsfunktionen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Benannte & Standardargumente . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



INHALTSVERZEICHNIS

Überladung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Urheberrecht
Atomic Kotlin

Von Bruce Eckel, Präsident, MindView, LLC, und Svetlana Isakova, JetBrains sro.

Urheberrecht ©2021, MindView LLC

eBook ISBN 978-0-9818725-4-4

    Version 1.0: Dezember 2020

    Version 1.1: November 2021

Print-Buch ISBN 978-0-9818725-5-1

    Erster Druck: Januar 2021

    Zweiter Druck: November 2021

Die Aktualisierungen vom November 2021 beinhalten Anpassungen für Kotlin 1.5
und Korrekturen.

Die eBook ISBN deckt die Leanpub und Stepik eBook-Verteilungen ab, beide verfüg-
bar über www.AtomicKotlin.com.

Bitte kaufen Sie dieses Buch über www.AtomicKotlin.com, um seine fortlaufen-
de Pflege und Aktualisierungen zu unterstützen.

Alle Rechte vorbehalten. Gedruckt in den Vereinigten Staaten von Amerika. Diese
Veröffentlichung ist urheberrechtlich geschützt, und es muss eine Genehmigung
vom Verlag eingeholt werden, bevor eine unzulässige Vervielfältigung, Speicherung
in einem Abrufsystem oder Übertragung in irgendeiner Form oder auf irgendeine
Weise, sei es elektronisch, mechanisch, durch Fotokopien, Aufnahmen oder ähnliches,
erfolgt. Für Informationen zu Genehmigungen siehe www.AtomicKotlin.com.

Erstellt in Crested Butte, Colorado, USA, und München, Deutschland.



Urheberrecht 2

Text gedruckt in den Vereinigten Staaten.

Umschlaggestaltung von Daniel Will-Harris, www.Will-Harris.com¹

Viele der von Herstellern und Verkäufern verwendeten Bezeichnungen, um ih-
re Produkte zu unterscheiden, werden als Markenzeichen beansprucht. Wo diese
Bezeichnungen in diesem Buch erscheinen und der Verlag von einem Marken-
zeichenanspruch wusste, sind die Bezeichnungen mit Anfangsbuchstaben oder in
Großbuchstaben gedruckt.

Das Kotlin-Markenzeichen gehört der Kotlin Foundation². Java ist einMarkenzeichen
oder eingetragenes Markenzeichen von Oracle, Inc. in den Vereinigten Staaten
und anderen Ländern. Windows ist ein eingetragenes Markenzeichen der Micro-
soft Corporation in den Vereinigten Staaten und anderen Ländern. Alle anderen
Produktnamen und Firmennamen, die hierin erwähnt werden, sind Eigentum ihrer
jeweiligen Inhaber.

Die Autoren und der Verlag haben bei der Erstellung dieses Buches Sorgfalt walten
lassen, übernehmen jedoch keine ausdrückliche oder stillschweigende Gewährleis-
tung und übernehmen keine Verantwortung für Fehler oder Auslassungen. Es wird
keine Haftung für beiläufige oder Folgeschäden im Zusammenhang mit oder aus der
Nutzung der hierin enthaltenen Informationen oder Programme übernommen.

Besuchen Sie uns auf www.AtomicKotlin.com.

Quellcode

Der gesamte Quellcode für dieses Buch ist als urheberrechtlich geschütztes Freeware
verfügbar, verteilt über Github³. Um sicherzustellen, dass Sie die aktuellste Version
haben, ist dies die offizielle Code-Vertriebssite. Sie dürfen diesen Code in Klassen-
zimmern und anderen Bildungssituationen verwenden, solange Sie dieses Buch als
Quelle angeben.

Das Hauptziel dieses Urheberrechts besteht darin, sicherzustellen, dass die Quelle
des Codes ordnungsgemäß angegeben wird, und zu verhindern, dass Sie den Code
ohne Genehmigung neu veröffentlichen. (Solange dieses Buch zitiert wird, ist die

¹http://www.Will-Harris.com
²https://kotlinlang.org/foundation/kotlin-foundation.html
³https://github.com/BruceEckel/AtomicKotlinExamples

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

http://www.will-harris.com/
https://kotlinlang.org/foundation/kotlin-foundation.html
https://github.com/BruceEckel/AtomicKotlinExamples
http://www.will-harris.com/
https://kotlinlang.org/foundation/kotlin-foundation.html
https://github.com/BruceEckel/AtomicKotlinExamples


Urheberrecht 3

Verwendung von Beispielen aus dem Buch in den meisten Medien im Allgemeinen
kein Problem.)

In jeder Quellcodedatei finden Sie einen Verweis auf den folgenden Urheberrechts-
hinweis:

// Copyright.txt
This computer source code is Copyright ©2021 MindView LLC.
All Rights Reserved.

Permission to use, copy, modify, and distribute this
computer source code (Source Code) and its documentation
without fee and without a written agreement for the
purposes set forth below is hereby granted, provided that
the above copyright notice, this paragraph and the
following five numbered paragraphs appear in all copies.

1. Permission is granted to compile the Source Code and to
include the compiled code, in executable format only, in
personal and commercial software programs.

2. Permission is granted to use the Source Code without
modification in classroom situations, including in
presentation materials, provided that the book "Atomic
Kotlin" is cited as the origin.

3. Permission to incorporate the Source Code into printed
media may be obtained by contacting:

MindView LLC, PO Box 969, Crested Butte, CO 81224
MindViewInc@gmail.com

4. The Source Code and documentation are copyrighted by
MindView LLC. The Source code is provided without express
or implied warranty of any kind, including any implied
warranty of merchantability, fitness for a particular
purpose or non-infringement. MindView LLC does not
warrant that the operation of any program that includes the
Source Code will be uninterrupted or error-free. MindView
LLC makes no representation about the suitability of the
Source Code or of any software that includes the Source
Code for any purpose. The entire risk as to the quality

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Urheberrecht 4

and performance of any program that includes the Source
Code is with the user of the Source Code. The user
understands that the Source Code was developed for research
and instructional purposes and is advised not to rely
exclusively for any reason on the Source Code or any
program that includes the Source Code. Should the Source
Code or any resulting software prove defective, the user
assumes the cost of all necessary servicing, repair, or
correction.

5. IN NO EVENT SHALL MINDVIEW LLC, OR ITS PUBLISHER BE
LIABLE TO ANY PARTY UNDER ANY LEGAL THEORY FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,
INCLUDING LOST PROFITS, BUSINESS INTERRUPTION, LOSS OF
BUSINESS INFORMATION, OR ANY OTHER PECUNIARY LOSS, OR FOR
PERSONAL INJURIES, ARISING OUT OF THE USE OF THIS SOURCE
CODE AND ITS DOCUMENTATION, OR ARISING OUT OF THE INABILITY
TO USE ANY RESULTING PROGRAM, EVEN IF MINDVIEW LLC, OR
ITS PUBLISHER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE. MINDVIEW LLC SPECIFICALLY DISCLAIMS ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE SOURCE CODE AND DOCUMENTATION PROVIDED
HEREUNDER IS ON AN "AS IS" BASIS, WITHOUT ANY ACCOMPANYING
SERVICES FROM MINDVIEW LLC, AND MINDVIEW LLC HAS NO
OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
ENHANCEMENTS, OR MODIFICATIONS.

Please note that MindView LLC maintains a Web site which is
the sole distribution point for electronic copies of the
Source Code, where it is freely available under the terms
stated above:

https://github.com/BruceEckel/AtomicKotlinExamples

If you think you've found an error in the Source Code,
please submit a correction at:
https://github.com/BruceEckel/AtomicKotlinExamples/issues

Sie dürfen den Code in Ihren Projekten und im Klassenzimmer verwenden (ein-
schließlich Ihrer Präsentationsmaterialien), solange der Urheberrechtshinweis, der
in jeder Quelldatei erscheint, erhalten bleibt.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Abschnitt I: Grundlagen
der Programmierung

There was something amazingly enticing about programming—Vint Cerf

Dieser Abschnitt ist für Leser gedacht, die gerade das Programmieren lernen. Wenn
Sie ein erfahrener Programmierer sind, überspringen Sie diesen Abschnitt und fahren
Sie mit Zusammenfassung 1 und Zusammenfassung 2 fort.



Einführung
Dieses Buch ist für engagierte Anfänger und erfahrene Programmierer.

Sie sind ein Anfänger, wenn Sie keine Vorkenntnisse im Programmieren haben, aber
“engagiert”, weil wir Ihnen gerade genug geben, um es selbst herauszufinden. Wenn
Sie fertig sind, haben Sie eine solide Grundlage in der Programmierung und in Kotlin.

Wenn Sie ein erfahrener Programmierer sind, überspringen Sie zu Zusammenfassung
1 und Zusammenfassung 2 und fahren Sie von dort aus fort.

Der “Atomare” Teil des Buchtitels bezieht sich auf Atome als die kleinsten unteilbaren
Einheiten. In diesem Buch versuchen wir, nur ein Konzept pro Kapitel einzuführen,
sodass die Kapitel nicht weiter unterteilt werden können — daher nennen wir sie
Atome.

Konzepte

Alle Programmiersprachen bestehen aus Funktionen. Sie wenden diese Funktionen
an, umErgebnisse zu erzielen. Kotlin ist mächtig — es hat nicht nur eine reicheMenge
an Funktionen, sondern man kann diese Funktionen normalerweise auf verschiedene
Arten ausdrücken.

Wenn alles zu schnell auf Sie einprasselt, könnten Sie denken, Kotlin sei “zu
kompliziert”.

Dieses Buch versucht, Überforderung zu verhindern. Wir bringen Ihnen die Sprache
sorgfältig und gezielt bei, unter Anwendung der folgenden Prinzipien:

1. Babyschritte und kleine Erfolge. Wir werfen die Tyrannei des Kapitels ab.
Stattdessen präsentieren wir jeden kleinen Schritt als ein omares Konzept
oder einfach Atom, das wie ein winziges Kapitel aussieht. Wir versuchen, pro
Atom nur ein neues Konzept vorzustellen. Ein typisches Atom enthält ein oder
mehrere kleine, ausführbare Codebeispiele und die erzeugte Ausgabe.



Einführung 7

2. Keine Vorwärtsverweise. Soweit möglich, vermeiden wir es zu sagen: “Diese
Funktionen werden in einem späteren Atom erklärt.”

3. Keine Verweise auf andere Programmiersprachen. Wir tun dies nur, wenn es
notwendig ist. Ein Vergleich mit einer Funktion in einer Sprache, die Sie nicht
verstehen, ist nicht hilfreich.

4. Zeigen, nicht erzählen. Anstatt eine Funktion verbal zu beschreiben, bevorzu-
gen wir Beispiele und Ausgaben. Es ist besser, eine Funktion im Code zu sehen.

5. Praxis vor Theorie. Wir versuchen, zuerst die Mechanik der Sprache zu zeigen
und dann zu erklären, warum diese Funktionen existieren. Das ist umgekehrt
zur “traditionellen” Lehre, scheint aber oft besser zu funktionieren.

Wenn Sie die Funktionen kennen, können Sie die Bedeutung herausfinden. Es ist in
der Regel einfacher, eine einzelne Seite Kotlin zu verstehen als den entsprechenden
Code in einer anderen Sprache.

Wo ist der Index?

Dieses Buch ist in Markdown geschrieben und mit Leanpub produziert. Leider unter-
stützen weder Markdown noch Leanpub Indizes. Indem wir jedoch die kleinstmög-
lichen Kapitel (Atome) schaffen, die aus einem einzigen Thema pro Atom bestehen,
fungiert das Inhaltsverzeichnis als eine Art Index. Darüber hinaus ermöglichen die
eBook-Versionen elektronisches Suchen im gesamten Buch.

Querverweise

Ein Verweis auf ein Atom im Buch sieht so aus: Einführung, was in diesem Fall
auf das aktuelle Atom verweist. In den verschiedenen eBook-Formaten erzeugt dies
einen Hyperlink zu diesem Atom.

Formatierung

In diesem Buch:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Einführung 8

• Kursiv führt einen neuen Begriff oder ein Konzept ein und betont manchmal
eine Idee.

• Schrift mit fester Breite zeigt Programmschlüsselwörter, Bezeichner und
Dateinamen an. Die Codebeispiele sind ebenfalls in dieser Schriftart und in den
eBook-Versionen des Buches farblich hervorgehoben.

• Im Fließtext folgt auf einen Funktionsnamen leere Klammern, wie in func().
Dies erinnert den Leser daran, dass er eine Funktion betrachtet.

• Um das eBook auf allen Geräten leicht lesbar zu machen und dem Benutzer
zu ermöglichen, die Schriftgröße zu erhöhen, begrenzen wir die Breite unserer
Code-Listings auf 47 Zeichen. Dies erfordert manchmal Kompromisse, aber
wir glauben, dass die Ergebnisse es wert sind. Um diese Breiten zu erreichen,
entfernen wir möglicherweise Leerzeichen, die in vielen Formatierungsstilen
ansonsten enthalten wären — insbesondere verwenden wir Einrückungen von
zwei Leerzeichen anstelle der standardmäßigen vier Leerzeichen.

“Pause”

Gelegentlich sehen Sie:

• -

Dies zeigt eine Pause oder eine Art kleinen Reset an. In diesem Buch erscheint
es oft vor einer kurzen Zusammenfassung des aktuellen Unterabschnitts, wo ein
“Zusammenfassung”-Untertitel übertrieben wäre. Einige Bücher verwenden einen
Mechanismus wie diesen, um anzuzeigen, dass eine Idee abgeschlossen ist und wir
etwas Neues beginnen, das jedoch noch im gleichen Thema liegt und nicht groß
genug ist, um einen Unterabschnitt oder einen neuen Abschnitt zu rechtfertigen. Das
Markdown in Leanpub ist ziemlich begrenzt, und die Verwendung von einem oder
mehreren Punkten (mein ursprünglicher Versuch) ist nicht möglich. Zwei Striche im
Markdown zu setzen, erzeugt einen Punkt und einen Strich. Es könnte eine bessere
Möglichkeit geben, dies zu tun, aber ich habe sie nicht gefunden, also habe ich mich
darauf festgelegt.

Probieren Sie das Buch aus

Wir bieten eine kostenlose Probe des elektronischen Buches auf AtomicKotlin.com
an. Die Probe enthält die ersten beiden Abschnitte in voller Länge sowie mehrere

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Einführung 9

nachfolgende Atome. So können Sie das Buch ausprobieren und entscheiden, ob es
für Sie geeignet ist.

Das vollständige Buch ist sowohl als Druckversion als auch als eBook erhältlich.
Wenn Ihnen gefällt, was wir in der kostenlosen Probe gemacht haben, unterstützen
Sie uns bitte und helfen Sie uns, unsere Arbeit fortzusetzen, indem Sie für das
bezahlen, was Sie nutzen. Wir hoffen, das Buch hilft Ihnen, und wir schätzen Ihre
Unterstützung.

Im Zeitalter des Internets scheint es unmöglich, irgendein Stück Information zu
kontrollieren. Sie werden wahrscheinlich die elektronische Version dieses Buches an
zahlreichen Orten finden. Wenn Sie im Moment nicht für das Buch zahlen können
und es von einer dieser Seiten herunterladen, „geben Sie es bitte weiter“. Helfen Sie
beispielsweise jemand anderem, die Sprache zu lernen, sobald Sie sie beherrschen.
Oder helfen Sie jemandem auf irgendeine Weise, wie er es braucht. Vielleicht geht
es Ihnen in Zukunft besser, und dann können Sie für das Buch bezahlen.

Übungen und Lösungen

Die meisten Atome in Atomic Kotlin werden von einer Handvoll kleiner Übungen
begleitet. Um Ihr Verständnis zu verbessern, empfehlenwir, die Übungen unmittelbar
nach dem Lesen des Atoms zu lösen. Die meisten Übungen werden automatisch von
der JetBrains IntelliJ IDEA integrierten Entwicklungsumgebung (IDE) überprüft, so-
dass Sie Ihren Fortschritt sehen und Hinweise erhalten können, wenn Sie feststecken.

Sie finden die folgenden Links unter http://AtomicKotlin.com/exercises/⁴.

Um die Übungen zu lösen, installieren Sie IntelliJ IDEA mit dem EduTools-Plugin,
indem Sie diesen Tutorials folgen:

1. Installieren Sie IntelliJ IDEA und das EduTools-Plugin⁵.
2. Öffnen Sie den Atomic Kotlin-Kurs und lösen Sie die Übungen⁶.

Im Kurs finden Sie Lösungen für alle Übungen.Wenn Sie bei einer Übung feststecken,
schauen Sie nach Hinweisen oder werfen Sie einen Blick auf die Lösung. Wir
empfehlen dennoch, sie selbst zu implementieren.

⁴http://AtomicKotlin.com/exercises/
⁵https://www.jetbrains.com/help/education/install-edutools-plugin.html
⁶https://www.jetbrains.com/help/education/learner-start-guide.html?section=Atomic%20Kotlin

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

http://atomickotlin.com/exercises/
https://www.jetbrains.com/help/education/install-edutools-plugin.html
https://www.jetbrains.com/help/education/learner-start-guide.html?section=Atomic%20Kotlin
http://atomickotlin.com/exercises/
https://www.jetbrains.com/help/education/install-edutools-plugin.html
https://www.jetbrains.com/help/education/learner-start-guide.html?section=Atomic%20Kotlin


Einführung 10

Wenn Sie Probleme bei der Einrichtung und Ausführung des Kurses haben, lesen Sie
bitte den Leitfaden zur Fehlerbehebung⁷. Wenn das Ihr Problem nicht löst, wenden
Sie sich bitte an das Support-Team, wie im Leitfaden angegeben.

Wenn Sie einen Fehler im Kursinhalt finden (zum Beispiel ein Test für eine Aufgabe
liefert das falsche Ergebnis), nutzen Sie bitte unser Issue-Tracker, um das Problem
mit diesem vorausgefüllten Formular⁸ zu melden. Beachten Sie, dass Sie sich bei
YouTrack anmelden müssen. Wir schätzen Ihre Zeit, um den Kurs zu verbessern!

Seminare

Informationen zu Live-Seminaren und anderen Lernwerkzeugen finden Sie auf
AtomicKotlin.com.

Konferenzen

Bruce organisiert Open-Spaces-Konferenzen wie das Winter Tech Forum⁹. Treten Sie
der Mailingliste auf AtomicKotlin.com bei, um über unsere Aktivitäten und Vorträge
informiert zu bleiben.

Unterstützen Sie uns

Dies war ein großes Projekt. Es hat Zeit und Mühe gekostet, dieses Buch und die
begleitenden Unterstützungsmaterialien zu erstellen. Wenn Ihnen dieses Buch gefällt
und Sie mehr davon sehen möchten, unterstützen Sie uns bitte:

• Bloggen, tweeten Sie, usw. und erzählen Sie Ihren Freunden davon. Dies
ist eine Graswurzel-Marketing-Bemühung, daher hilft alles, was Sie tun.

• Kaufen Sie eine eBook- oder Druckversion dieses Buches auf AtomicKot-
lin.com.

• Besuchen Sie AtomicKotlin.com für andere Unterstützungsprodukte oder Ver-
anstaltungen.

⁷https://www.jetbrains.com/help/education/troubleshooting-guide.html
⁸https://youtrack.jetbrains.com/newIssue?project=EDC&summary=AtomicKotlin%3A&c=Subsystem%20Kotlin&c=
⁹http://www.WinterTechForum.com

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

https://www.jetbrains.com/help/education/troubleshooting-guide.html
https://youtrack.jetbrains.com/newIssue?project=EDC&summary=AtomicKotlin:&c=Subsystem%20Kotlin&c=
http://www.wintertechforum.com/
https://www.jetbrains.com/help/education/troubleshooting-guide.html
https://youtrack.jetbrains.com/newIssue?project=EDC&summary=AtomicKotlin:&c=Subsystem%20Kotlin&c=
http://www.wintertechforum.com/


Einführung 11

Über uns

Bruce Eckel ist der Autor der mehrfach ausgezeichneten Bücher Thinking in Java
und Thinking in C++ sowie einer Reihe weiterer Bücher über Computerprogrammie-
rung, darunter Atomic Scala¹⁰. Er hat weltweit Hunderte von Präsentationen gehal-
ten und alternative Konferenzen und Veranstaltungen wie das Winter Tech Forum¹¹
und Entwickler-Retreats organisiert. Bruce hat einen BS in angewandter Physik und
einen MS in Computertechnik. Sein Blog befindet sich auf www.BruceEckel.com¹²
und sein Beratungs-, Trainings- und Konferenzunternehmen ist Mindview LLC¹³.

Svetlana Isakova begann als Mitglied des Kotlin-Compiler-Teams und ist nun
eine Entwickler-Botschafterin für JetBrains. Sie unterrichtet Kotlin und spricht auf
Konferenzen weltweit und ist Mitautorin des Buches Kotlin in Action.

Danksagungen

• Das Kotlin-Sprachdesign-Team und die Mitwirkenden.
• Die Entwickler von Leanpub, die das Veröffentlichen dieses Buches so viel
einfacher gemacht haben.

• James Ward für die Umwandlung des Gradle-Builds in Kotlin und dafür, dass
er im Allgemeinen großartig ist.

Widmungen

Für meinen geliebten Vater, E. Wayne Eckel. 1. April 1924—23. November 2016. Du
hast mir zuerst etwas über Maschinen, Werkzeuge und Design beigebracht.

Für meinen Vater, Sergey Lvovich Isakov, der so früh von uns gegangen ist und den
wir immer vermissen werden.

¹⁰http://www.atomicscala.com/
¹¹http://www.WinterTechForum.com
¹²http://www.BruceEckel.com
¹³https://www.mindviewllc.com/

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

http://www.atomicscala.com/
http://www.wintertechforum.com/
http://www.bruceeckel.com/
https://www.mindviewllc.com/
http://www.atomicscala.com/
http://www.wintertechforum.com/
http://www.bruceeckel.com/
https://www.mindviewllc.com/


Einführung 12

Über das Cover

Daniel Will-Harris¹⁴ gestaltete das Cover basierend auf dem Kotlin-Logo.

¹⁴http://www.will-harris.com

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

http://www.will-harris.com/
http://www.will-harris.com/


Warum Kotlin?
Programme sollen so geschrieben werden, dass Menschen sie lesen können,
und erst in zweiter Linie für Maschinen, die sie ausführen.—Harold
Abelson, Mitautor, Structure and Interpretation of Computer Programs.

Dieses Kapitel bietet einen Überblick über die historische Entwicklung von Program-
miersprachen, damit Sie verstehen, wo Kotlin einzuordnen ist und warum Sie es
lernen möchten. Wir führen einige Themen ein, die, wenn Sie ein Anfänger sind,
momentan zu kompliziert erscheinen mögen. Fühlen Sie sich frei, dieses Kapitel zu
überspringen und später darauf zurückzukommen, nachdem Sie mehr vom Buch
gelesen haben.

Die Gestaltung von Programmiersprachen ist ein evolutionärer Weg, der von der
Erfüllung der Bedürfnisse der Maschine zur Erfüllung der Bedürfnisse des Program-
mierers führt.

Eine Programmiersprache wird von einem Sprachdesigner erfunden und als eines
oder mehrere Programme implementiert, die alsWerkzeuge zur Nutzung der Sprache
dienen. Der Implementierer ist in der Regel der Sprachdesigner, zumindest anfangs.

Frühe Sprachen konzentrierten sich auf Hardwarebeschränkungen. Mit zunehmen-
der Rechenleistung der Computer verlagerten sich neuere Sprachen hin zu an-
spruchsvollerer Programmierung mit einem Schwerpunkt auf Zuverlässigkeit. Diese
Sprachen können Merkmale basierend auf der Psychologie des Programmierens
wählen.

Jede Programmiersprache ist eine Sammlung von Experimenten. Historisch gesehen
war das Design von Programmiersprachen eine Abfolge von Vermutungen und
Annahmen darüber, was Programmierer produktiver machen könnte. Einige dieser
Experimente scheitern, einige sindmäßig erfolgreich und einige sind sehr erfolgreich.

Wir lernen aus den Experimenten jeder neuen Sprache. Einige Sprachen befassen
sich mit Problemen, die sich als nebensächlich statt wesentlich erweisen, oder die



Warum Kotlin? 14

Umgebung ändert sich (schnellere Prozessoren, günstigere Speicher, neues Verständ-
nis von Programmierung und Sprachen) und dieses Problem wird weniger wichtig
oder sogar unbedeutend. Wenn diese Ideen veraltet sind und sich die Sprache nicht
weiterentwickelt, verschwindet sie aus der Verwendung.

Die ursprünglichen Programmierer arbeiteten direkt mit Zahlen, die Prozessor-
Maschinenbefehle darstellten. Dieser Ansatz führte zu zahlreichen Fehlern, und
Assemblersprache wurde geschaffen, um die Zahlen durch mnemonische Opcodes—
Wörter, die sich Programmierer leichter merken und lesen konnten, zusammen
mit anderen hilfreichen Werkzeugen zu ersetzen. Es gab jedoch immer noch eine
Eins-zu-eins-Entsprechung zwischen Assemblerbefehlen und Maschinenbefehlen,
und Programmierer mussten jede Zeile Assemblercode schreiben. Darüber hinaus
verwendete jeder Computerprozessor seine eigene spezifische Assemblersprache.

Das Entwickeln von Programmen in Assemblersprache ist äußerst kostspielig. Höhe-
re Programmiersprachen helfen, dieses Problem zu lösen, indem sie eine Abstrakti-
onsebene von den niedrigeren Assemblersprachen schaffen.

Compiler und Interpreter

Die Anweisungen einer interpretierten Sprache werden direkt von einem Programm
namens Interpreter ausgeführt. Kotlin wird kompiliert statt interpretiert. Der Quell-
code einer kompilierten Sprache wird in eine andere Darstellung umgewandelt, die
als eigenes Programm läuft, entweder direkt auf einem Hardwareprozessor oder auf
einer virtuellen Maschine, die einen Prozessor emuliert:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Warum Kotlin? 15

Sprachen wie C, C++, Go und Rust werden in Maschinencode kompiliert, der
direkt auf der zugrunde liegenden Hardware-Zentralverarbeitungseinheit (CPU)
läuft. Sprachenwie Java und Kotlin werden in Bytecode kompiliert, der ein Zwischen-
format ist, das nicht direkt auf der Hardware-CPU läuft, sondern auf einer virtuellen
Maschine, einem Programm, das Bytecode-Anweisungen ausführt. Programme, die
von der JVM-Version von Kotlin erzeugt werden, laufen auf der Java Virtual Machine
(JVM).

Die Portabilität ist ein wichtiger Vorteil einer virtuellen Maschine. Der gleiche
Bytecode kann auf jedem Computer laufen, der eine virtuelle Maschine hat. Virtuelle
Maschinen können für spezielle Hardware optimiert werden und Geschwindigkeits-
probleme lösen. Die JVM enthält viele Jahre solcher Optimierungen und wurde auf
vielen Plattformen implementiert.

Zur Kompilierungszeit wird der Code vom Compiler überprüft, um Kompilierungs-
fehler zu entdecken. (IntelliJ IDEA und andere Entwicklungsumgebungen heben
diese Fehler hervor, wenn Sie den Code eingeben, sodass Sie schnell Probleme
entdecken und beheben können). Wenn es keine Kompilierungsfehler gibt, wird der
Quellcode in Bytecode kompiliert.

Ein Laufzeitfehler kann zur Kompilierungszeit nicht entdeckt werden, daher tritt
er erst auf, wenn Sie das Programm ausführen. Typischerweise sind Laufzeitfehler
schwieriger zu entdecken und teurer zu beheben. Statisch typisierte Sprachen wie
Kotlin entdecken so viele Fehler wie möglich zur Kompilierungszeit, während

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Warum Kotlin? 16

dynamische Sprachen ihre Sicherheitsprüfungen zur Laufzeit durchführen (einige
dynamische Sprachen führen nicht so viele Sicherheitsprüfungen durch, wie sie
könnten).

Sprachen, die Kotlin beeinflusst haben

Kotlin zieht seine Ideen und Merkmale aus vielen Sprachen, und diese Sprachen wur-
den von früheren Sprachen beeinflusst. Es ist hilfreich, etwas über die Geschichte der
Programmiersprachen zu wissen, um Perspektiven zu gewinnen, wie wir zu Kotlin
gekommen sind. Die hier beschriebenen Sprachenwurdenwegen ihres Einflusses auf
die nachfolgenden Sprachen ausgewählt. All diese Sprachen inspirierten letztendlich
das Design von Kotlin, manchmal indem sie ein Beispiel dafür waren, was man nicht
tun sollte.

FORTRAN: FORmula TRANslation (1957)

Entwickelt für den Einsatz durch Wissenschaftler und Ingenieure, war das Ziel von
Fortran, das Codieren von Gleichungen zu erleichtern. Fein abgestimmte und getes-
tete Fortran-Bibliotheken sind noch heute im Einsatz, werden jedoch typischerweise
“umwickelt”, um sie von anderen Sprachen aus aufrufbar zu machen.

LISP: LISt Processor (1958)

Anstatt anwendungsspezifisch zu sein, verkörperte LISP wesentliche Programmier-
konzepte; es war die Sprache der Informatiker und die erste funktionale Program-
miersprache (Sie werden in diesem Buch über funktionale Programmierung lernen).
Der Kompromiss für seine Macht und Flexibilität war die Effizienz: LISP war
typischerweise zu teuer, um auf frühen Maschinen ausgeführt zu werden, und erst in
den letzten Jahrzehnten wurden Maschinen schnell genug, um eine Wiederbelebung
der Nutzung von LISP zu ermöglichen. Zum Beispiel ist der GNU Emacs-Editor
vollständig in LISP geschrieben und kann mit LISP erweitert werden.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Warum Kotlin? 17

ALGOL: ALGOrithmic Language (1958)

Wahrscheinlich die einflussreichste der Sprachen der 1950er Jahre, da sie eine Syntax
einführte, die in vielen nachfolgenden Sprachen Bestand hatte. Zum Beispiel sind C
und seine Derivate “ALGOL-ähnliche” Sprachen.

COBOL: COmmon Business-Oriented Language (1959)

Entwickelt für Geschäft, Finanzen und administrative Datenverarbeitung. Es hat
eine englischartige Syntax und sollte selbstdokumentierend und sehr lesbar sein.
Obwohl diese Absicht im Allgemeinen scheiterte—COBOL ist berüchtigt für Feh-
ler, die durch ein fehlplatziertes Punktzeichen eingeführt wurden—zwang das US-
Verteidigungsministerium die weitverbreitete Einführung auf Großrechnern, und
Systeme laufen (und erfordern Wartung) noch heute.

BASIC: Beginners’ All-purpose Symbolic Instruction
Code (1964)

BASIC war einer der frühen Versuche, Programmieren zugänglich zu machen.
Obwohl sehr erfolgreich, waren seine Funktionen und Syntax begrenzt, sodass es
nur teilweise hilfreich für Menschen war, die anspruchsvollere Sprachen lernen
mussten. Es ist überwiegend eine interpretierte Sprache, was bedeutet, dass man
den ursprünglichen Code für das Programm benötigt, um es auszuführen. Trotz-
dem wurden viele nützliche Programme in BASIC geschrieben, insbesondere als
Skriptsprache für Microsofts “Office”-Produkte. BASIC könnte sogar als die erste
“offene” Programmiersprache betrachtet werden, da zahlreiche Variationen davon
erstellt wurden.

Simula 67, die ursprüngliche objektorientierte Sprache
(1967)

Eine Simulation beinhaltet typischerweise viele “Objekte”, die miteinander interagie-
ren. Verschiedene Objekte haben unterschiedliche Eigenschaften und Verhaltenswei-
sen. Die zu der Zeit existierenden Sprachen waren unhandlich für Simulationen zu

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Warum Kotlin? 18

verwenden, daher wurde Simula (eine weitere “ALGOL-ähnliche” Sprache) entwi-
ckelt, um direkte Unterstützung für die Erstellung von Simulationsobjekten zu bieten.
Es stellt sich heraus, dass diese Ideen auch für allgemeine Programmierung nützlich
sind, und dies war der Ursprung der objektorientierten (OO) Sprachen.

Pascal (1970)

Pascal erhöhte die Kompilierungsgeschwindigkeit, indem es die Sprache so ein-
schränkte, dass sie als Einzelpass-Compiler implementiert werden konnte. Die
Sprache zwang den Programmierer, ihren Code auf eine bestimmte Weise zu
strukturieren und legte etwas umständliche und weniger lesbare Einschränkungen
für die Programmorganisation auf. Da Prozessoren schneller wurden, Speicher
billiger und die Compiler-Technologie besser, wurden die Auswirkungen dieser
Einschränkungen zu kostspielig.

Eine Implementierung von Pascal, Turbo Pascal von Borland, arbeitete zunächst auf
CP/M-Maschinen und machte dann den Sprung zu frühen MS-DOS (Vorläufer von
Windows), später entwickelte es sich zur Delphi-Sprache für Windows. Indem alles
im Speicher untergebracht wurde, kompilierte Turbo Pascal in atemberaubender Ge-
schwindigkeit auf sehr leistungsschwachen Maschinen, was das Programmerlebnis
dramatisch verbesserte. Sein Schöpfer, Anders Hejlsberg, entwarf später sowohl C#
als auch TypeScript.

Niklaus Wirth, der Erfinder von Pascal, schuf nachfolgende Sprachen: Modula,
Modula-2 und Oberon. Wie der Name schon sagt, konzentrierte sich Modula auf
die Aufteilung von Programmen in Module, für bessere Organisation und schnellere
Kompilierung. Die meisten modernen Sprachen unterstützen separate Kompilierung
und eine Form von Modulsystem.

C (1972)

Trotz der zunehmenden Zahl von Hochsprachen schrieben Programmierer immer
noch in Assemblersprache. Dies wird oft als Systemprogrammierung bezeichnet, da
es auf Ebene des Betriebssystems erfolgt, umfasst aber auch eingebettete Program-
mierung für spezielle physische Geräte. Dies ist nicht nur mühsam und teuer (Bruce
begann seine Karriere mit dem Schreiben von Assemblersprache für eingebettete

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Warum Kotlin? 19

Systeme), sondern es ist auch nicht portabel—Assemblersprache kann nur auf
dem Prozessor laufen, für den sie geschrieben wurde. C wurde als “hochlevelige
Assemblersprache” entworfen, die dennoch nah genug an der Hardware ist, dass man
selten Assemblersprache schreiben muss. Noch wichtiger ist, dass ein C-Programm
auf jedem Prozessor mit einem C-Compiler läuft. C entkoppelte das Programm vom
Prozessor, was ein großes und teures Problem löste. Als Ergebnis konnten ehemalige
Assemblersprachen-Programmierer in C weitaus produktiver sein. C war so effektiv,
dass neuere Sprachen (insbesondere Go und Rust) immer noch versuchen, es für die
Systemprogrammierung abzulösen.

Smalltalk (1972)

Von Anfang an als rein objektorientiert konzipiert, hat Smalltalk die OO- und
Sprachtheorie erheblich vorangebracht, indem es eine Plattform für Experimente war
und die schnelle Anwendungsentwicklung demonstrierte. Es wurde jedoch in einer
Zeit entwickelt, als Sprachen noch proprietär waren, und der Einstiegspreis für ein
Smalltalk-System konnte in die Tausende gehen. Es war interpretiert, sodass man
eine Smalltalk-Umgebung benötigte, um Programme auszuführen. Open-Source-
Smalltalk-Implementierungen erschienen erst, nachdem die Programmierwelt sich
weiterentwickelt hatte. Smalltalk-Programmierer haben großartige Einblicke gelie-
fert, die späteren OO-Sprachen wie C++ und Java zugutekamen.

C++: Ein besseres C mit Objekten (1983)

Bjarne Stroustrup schuf C++, weil er ein besseres C wollte und Unterstützung für die
objektorientierten Konstrukte, die er bei der Verwendung von Simula-67 erlebt hatte.
Bruce war acht Jahre lang Mitglied des C++-Normungsausschusses und schrieb drei
Bücher über C++, darunter Thinking in C++.

Rückwärtskompatibilität mit C war ein grundlegendes Prinzip des C++-Designs,
sodass C-Code in C++ mit praktisch keinen Änderungen kompiliert werden kann.
Dies bot einen einfachen Migrationspfad - Programmierer konnten weiterhin in
C programmieren, die Vorteile von C++ nutzen und langsam mit C++-Funktionen
experimentieren, während sie produktiv blieben. Die meisten Kritiken an C++ lassen
sich auf die Einschränkung der Rückwärtskompatibilität mit C zurückführen.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Warum Kotlin? 20

Eines der Probleme bei C war das Thema Speicherverwaltung. Der Programmierer
muss zuerst Speicher erwerben, dann eine Operation mit diesem Speicher ausfüh-
ren und dann den Speicher freigeben. Das Vergessen, Speicher freizugeben, wird
als Speicherleck bezeichnet und kann dazu führen, dass der verfügbare Speicher
aufgebraucht wird und der Prozess abstürzt. Die anfängliche Version von C++
machte einige Innovationen in diesem Bereich, zusammen mit Konstruktoren, um
eine ordnungsgemäße Initialisierung sicherzustellen. Spätere Versionen der Sprache
haben bedeutende Verbesserungen in der Speicherverwaltung vorgenommen.

Python: Freundlich und flexibel (1990)

Der Designer von Python, Guido Van Rossum, schuf die Sprache basierend auf seiner
Inspiration des „Programmieren für alle“. Seine Pflege der Python-Community hat
ihr den Ruf verliehen, die freundlichste und unterstützendste Community in der
Programmierwelt zu sein. Pythonwar eine der ersten Open-Source-Sprachen, was zu
Implementierungen auf praktisch jeder Plattform führte, einschließlich eingebetteter
Systeme und maschinellem Lernen. Seine Dynamik und Benutzerfreundlichkeit
machen es ideal für die Automatisierung kleiner, sich wiederholender Aufgaben, aber
seine Funktionen unterstützen auch die Erstellung großer, komplexer Programme.

Python ist eine echte “Grassroots”-Sprache; es hatte nie ein Unternehmen, das es
förderte, und die Einstellung seiner Fanswar, die Sprache niemals zu pushen, sondern
einfach jedem zu helfen, der sie lernenmöchte. Die Sprache verbessert sich stetig, und
in den letzten Jahren ist ihre Popularität explodiert.

Python könnte die erste Mainstream-Sprache gewesen sein, die funktionale und
OO-Programmierung kombinierte. Es war Java voraus mit automatischer Spei-
cherverwaltung durch Müllabfuhr (normalerweise müssen Sie selbst nie Speicher
zuweisen oder freigeben) und der Fähigkeit, Programme auf mehreren Plattformen
auszuführen.

Haskell: Reine funktionale Programmierung (1990)

Inspiriert von Miranda (1985), einer proprietären Sprache, wurde Haskell als offener
Standard für die Forschung zur reinen funktionalen Programmierung geschaffen,
obwohl es auch für Produkte verwendet wurde. Syntax und Ideen von Haskell haben
eine Reihe nachfolgender Sprachen beeinflusst, darunter Kotlin.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Warum Kotlin? 21

Java: Virtuelle Maschinen und Müllabfuhr (1995)

James Gosling und sein Team erhielten die Aufgabe, Code für eine TV-Set-Top-Box
zu schreiben. Sie entschieden, dass sie C++ nicht mochten und anstatt die Box zu
erstellen, entwickelten sie die Java-Sprache. Das Unternehmen, Sun Microsystems,
setzte einen enormen Marketingdruck hinter die kostenlose Sprache (damals eine
neue Idee), um die aufkommende Internetlandschaft zu dominieren.

Dieses wahrgenommene Zeitfenster für die Internet-Dominanz setzte das Java-
Sprachdesign unter erheblichen Druck, was zu einer beträchtlichen Anzahl von
Mängeln führte (Das Buch Thinking in Java beleuchtet diese Mängel, damit die
Leser darauf vorbereitet sind, mit ihnen umzugehen). Brian Goetz bei Oracle, der
derzeitige leitende Entwickler von Java, hat bemerkenswerte und überraschende
Verbesserungen an Java vorgenommen, trotz der Einschränkungen, die er geerbt hat.
Obwohl Java bemerkenswert erfolgreich war, ist ein wichtiges Kotlin-Designziel, die
Mängel von Java zu beheben, damit Programmierer produktiver sein können.

Der Erfolg von Java beruht auf zwei innovativen Funktionen: einer virtuellenMaschi-
ne undMüllabfuhr. Diese waren in anderen Sprachen verfügbar - zumBeispiel haben
LISP, Smalltalk und Python Müllabfuhr, und UCSD Pascal lief auf einer virtuellen
Maschine -, aber sie wurden nie als praktikabel für Mainstream-Sprachen angesehen.
Java änderte das und machte Programmierer dadurch erheblich produktiver.

Eine virtuelle Maschine ist eine Zwischenebene zwischen der Sprache und der
Hardware. Die Sprache muss keinen Maschinencode für einen bestimmten Prozessor
erzeugen; sie muss nur eine Zwischen-Sprache (Bytecode) erzeugen, die auf der virtu-
ellen Maschine läuft. Virtuelle Maschinen erfordern Rechenleistung und wurden vor
Java als unpraktisch angesehen. Die Java Virtual Machine (JVM) führte zu Javas Slo-
gan “write once, run everywhere.” Darüber hinaus können andere Sprachen leichter
entwickelt werden, indem sie die JVM anvisieren; Beispiele umfassen Groovy, eine
Java-ähnliche Skriptsprache, und Clojure, eine Version von LISP.

Die Müllabfuhr löst das Problem, das Freigeben von Speicher zu vergessen, oder
wenn es schwierig ist, zu wissen, wann ein Speicherplatz nicht mehr genutzt wird.
Projekte wurden erheblich verzögert oder sogar abgebrochen wegen Speicherlecks.
Obwohl die Müllabfuhr in einigen früheren Sprachen vorkommt, galt sie als inak-
zeptabel aufwändig, bis Java ihre Praktikabilität demonstrierte.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Warum Kotlin? 22

JavaScript: Nur dem Namen nach Java (1995)

Der ursprüngliche Webbrowser kopierte und zeigte einfach Seiten von einem Web-
server an. Webbrowser vervielfältigten sich und wurden zu einer neuen Program-
mierplattform, die Sprachunterstützung benötigte. Java wollte diese Sprache sein,
war aber zu umständlich für den Job. JavaScript begann als LiveScript und wurde
in NetScape Navigator integriert, einen der ersten Webbrowser. Die Umbenennung
in JavaScript war ein Marketingtrick von NetScape, da die Sprache nur eine vage
Ähnlichkeit mit Java hat.

Als das Web aufblühte, wurde JavaScript enorm wichtig. Das Verhalten von Ja-
vaScript war jedoch so unvorhersehbar, dass Douglas Crockford ein Buch mit
dem ironischen Titel JavaScript, the Good Parts schrieb, in dem er alle Probleme
mit der Sprache aufzeigte, damit Programmierer sie vermeiden können. Nachfol-
gende Verbesserungen durch das ECMAScript-Komitee haben JavaScript für einen
ursprünglichen JavaScript-Programmierer unkenntlich gemacht. Es wird jetzt als
stabile und ausgereifte Sprache betrachtet.

Web-Assembly (WASM) wurde von JavaScript abgeleitet, um eine Art Bytecode für
Webbrowser zu sein. Es läuft oft viel schneller als JavaScript und kann von anderen
Sprachen generiert werden. Zum Zeitpunkt des Schreibens arbeitet das Kotlin-Team
daran, WASM als Ziel hinzuzufügen.

C#: Java für .NET (2000)

C# wurde entwickelt, um einige der wichtigen Fähigkeiten von Java auf der .NET
(Windows) Plattform bereitzustellen, während es den Designern freistellte, sich nicht
an die Java-Sprache zu halten. Das Ergebnis beinhaltete zahlreiche Verbesserungen
gegenüber Java. Zum Beispiel entwickelte C# das Konzept der Erweiterungsfunktio-
nen, die in Kotlin stark genutzt werden. C# wurde auch deutlich funktionaler als Java.
Viele C#-Funktionen haben offensichtlich das Design von Kotlin beeinflusst.

Scala: SCALAble (2003)

Martin Odersky schuf Scala, um auf der Java Virtual Machine zu laufen: Um auf
der Arbeit auf der JVM aufzubauen, um mit Java-Programmen zu interagieren

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Warum Kotlin? 23

und möglicherweise mit der Idee, dass es Java verdrängen könnte. Als Forscher
nutzten Odersky und sein Team Scala als Plattform, um mit Sprachmerkmalen zu
experimentieren, insbesondere solchen, die nicht in Java enthalten sind.

Diese Experimente waren erhellend, und eine Reihe davon fand in modifizierter
Form ihren Weg nach Kotlin. Zum Beispiel wird die Fähigkeit, Operatoren wie + für
spezielle Fälle neu zu definieren, alsOperatorüberladung bezeichnet. Dies war in C++
enthalten, aber nicht in Java. Scala fügte die Operatorüberladung hinzu, erlaubt aber
auch die Erfindung neuer Operatoren durch Kombination beliebiger Zeichenfolgen.
Dies führt oft zu verwirrenderen Code. Eine begrenzte Form der Operatorüberladung
ist in Kotlin enthalten, aber man kann nur Operatoren überladen, die bereits
existieren.

Scala ist auch ein objekt-funktionales Hybrid, ähnlich wie Python, aber mit einem
Fokus auf reine Funktionen und strenge Objekte. Dies inspirierte die Entscheidung
von Kotlin, ebenfalls ein objekt-funktionales Hybrid zu sein.

Wie Scala läuft Kotlin auf der JVM, interagiert jedoch viel einfacher mit Java als
Scala (siehe Anhang B). Darüber hinaus zielt Kotlin auf JavaScript, das Android-
Betriebssystem und erzeugt nativen Code für andere Plattformen.

Atomic Kotlin entwickelte sich aus den Ideen und Materialien von Atomic Scala¹⁵.

Groovy: Eine dynamische JVM-Sprache (2007)

Dynamische Sprachen sind ansprechend, weil sie interaktiver und prägnanter sind
als statische Sprachen. Es gab zahlreiche Versuche, ein dynamischeres Programmier-
erlebnis auf der JVM zu erreichen, darunter Jython (Python) und Clojure (ein Dialekt
von Lisp). Groovy war die erste, die breite Akzeptanz erreichte.

Auf den ersten Blick erscheint Groovy als bereinigte Version von Java, die ein
angenehmeres Programmiererlebnis bietet. Der meiste Java-Code läuft unverändert
in Groovy, sodass Java-Programmierer schnell produktiv sein können und später die
anspruchsvolleren Funktionen erlernen können, die bemerkenswerte Programmier-
verbesserungen gegenüber Java bieten.

Die Kotlin-Operatoren ?. und ?:, die sich mit dem Problem der Leere beschäftigen,
erschienen zuerst in Groovy.

¹⁵http://www.AtomicScala.com

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

http://www.atomicscala.com/
http://www.atomicscala.com/


Warum Kotlin? 24

Es gibt zahlreiche Groovy-Funktionen, die in Kotlin erkennbar sind. Einige dieser
Funktionen erscheinen auch in anderen Sprachen, was wahrscheinlich stärker dafür
drängte, dass sie in Kotlin aufgenommen wurden.

Warum Kotlin? (Eingeführt 2011, Version 1.0:
2016)

Genauso wie C++ ursprünglich als “ein besseres C” gedacht war, war Kotlin zunächst
darauf ausgerichtet, “ein besseres Java” zu sein. Es hat sich seitdem erheblich über
dieses Ziel hinaus entwickelt.

Kotlin wählt pragmatisch nur die erfolgreichsten und hilfreichsten Funktionen aus
anderen Programmiersprachen aus—nachdem diese Funktionen in der Praxis getestet
und als besonders wertvoll erwiesen wurden.

Wenn Sie also von einer anderen Sprache kommen, könnten Sie einige Funktionen
dieser Sprache in Kotlin wiedererkennen. Dies ist beabsichtigt: Kotlin maximiert die
Produktivität, indem es bewährte Konzepte nutzt.

Lesbarkeit

Lesbarkeit ist ein Hauptziel bei der Gestaltung der Sprache. Die Kotlin-Syntax ist
prägnant—sie erfordert in den meisten Szenarien keine Förmlichkeit, kann aber
dennoch komplexe Ideen ausdrücken.

Werkzeuge

Kotlin stammt von JetBrains, einemUnternehmen, das sich auf Entwicklerwerkzeuge
spezialisiert hat. Es bietet erstklassige Unterstützung für Werkzeuge, und viele
Sprachmerkmale wurden mit Blick auf Werkzeuge entwickelt.

Multi-Paradigma

Kotlin unterstützt mehrere Programmierparadigmen, die in diesem Buch sanft
eingeführt werden:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Warum Kotlin? 25

• Imperatives Programmieren
• Funktionales Programmieren
• Objektorientiertes Programmieren

Multi-Plattform

Kotlin-Quellcode kann in verschiedene Zielplattformen kompiliert werden:

• JVM. Der Quellcode wird in JVM-Bytecode (.class Dateien) kompiliert, der
dann auf jeder Java Virtual Machine (JVM) ausgeführt werden kann.

• Android. Android hat seine eigene Laufzeitumgebung namens ART¹⁶ (der
Vorgänger hieß Dalvik). Der Kotlin-Quellcode wird in das Dalvik Executable
Format (.dex Dateien) kompiliert.

• JavaScript, um innerhalb eines Webbrowsers ausgeführt zu werden.
• Native Binaries durch die Generierung von Maschinencode für spezifische
Plattformen und CPUs.

Dieses Buch konzentriert sich auf die Sprache selbst, wobei die JVM als einzige
Zielplattform verwendet wird. Sobald Sie die Sprache beherrschen, können Sie Kotlin
auf verschiedene Anwendungen und Zielplattformen anwenden.

Zwei Kotlin-Funktionen

Dieses Atom setzt nicht voraus, dass Sie ein Programmierer sind, was es schwierig
macht, die meisten Vorteile von Kotlin gegenüber Alternativen zu erklären. Es gibt
jedoch zwei Themen, die sehr wirkungsvoll sind und zu diesem frühen Zeitpunkt
erklärt werden können: Java-Interoperabilität und das Problem, “keinen Wert” anzu-
zeigen.

Mühelose Java-Interoperabilität

Um “ein besseres C” zu sein, muss C++ rückwärtskompatibel mit der Syntax von C
sein, aber Kotlin muss nicht rückwärtskompatibel mit der Syntax von Java sein—es

¹⁶https://source.android.com/devices/tech/dalvik

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

https://source.android.com/devices/tech/dalvik
https://source.android.com/devices/tech/dalvik


Warum Kotlin? 26

muss nur mit der JVM arbeiten. Dies befreit die Kotlin-Designer, eine viel sauberere
und leistungsfähigere Syntax zu schaffen, ohne das visuelle Rauschen und die
Komplikationen, die Java überladen.

Damit Kotlin “ein besseres Java” ist, muss das Erlebnis, es auszuprobieren, angenehm
und reibungslos sein, sodass Kotlin eine mühelose Integration mit bestehenden Java-
Projekten ermöglicht. Sie können ein kleines Stück Kotlin-Funktionalität schreiben
und es mitten in Ihren bestehenden Java-Code einfügen. Der Java-Code merkt nicht
einmal, dass der Kotlin-Code da ist—er sieht einfach wie weiterer Java-Code aus.

Unternehmen untersuchen oft eine neue Sprache, indem sie ein eigenständiges
Programm mit dieser Sprache erstellen. Idealerweise ist dieses Programm nützlich,
aber nicht essentiell, sodass es bei einem Scheitern des Projekts mit minimalem
Schaden beendet werden kann. Nicht jedes Unternehmen möchte die Ressourcen
aufwenden, die für diese Art von Experimenten erforderlich sind. Da Kotlin sich
nahtlos in ein bestehendes Java-System integriert (und von dessen Tests profitiert),
wird es sehr billig oder sogar kostenlos, Kotlin auszuprobieren, um zu sehen, ob es
passt.

Darüber hinaus bietet JetBrains, das Unternehmen, das Kotlin erstellt, IntelliJ IDEA
in einer “Community” (kostenlosen) Version an, die Unterstützung sowohl für Java
als auch für Kotlin beinhaltet und die Möglichkeit bietet, die beiden einfach zu
integrieren. Es gibt sogar ein Tool, das Java-Code nimmt und ihn (größtenteils) in
Kotlin umschreibt.

Anhang B behandelt Java-Interoperabilität.

Darstellung von Leere

Ein besonders vorteilhaftes Kotlin-Feature ist seine Lösung für ein herausforderndes
Programmierproblem.

Was tun Sie, wenn Ihnen jemand ein Wörterbuch in die Hand drückt und Sie bittet,
ein Wort nachzuschlagen, das nicht existiert? Sie könnten Ergebnisse garantieren,
indem Sie Definitionen für unbekannte Wörter erfinden. Ein nützlicherer Ansatz
ist einfach zu sagen: “Es gibt keine Definition für dieses Wort.” Dies zeigt ein
erhebliches Problem in der Programmierung: Wie zeigt man “keinen Wert” für einen
Speicherplatz an, der nicht initialisiert ist, oder für das Ergebnis einer Operation?

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Warum Kotlin? 27

Die Null-Referenz wurde 1965 für ALGOL von Tony Hoare erfunden, der sie später
als “meinen Milliarden-Dollar-Fehler” bezeichnete. Ein Problem war, dass sie zu
einfach war—manchmal reicht es nicht aus, zu wissen, dass ein Raum leer ist. Man
muss vielleicht wissen, warum er leer ist. Dies führt zum zweiten Problem: der
Implementierung. Aus Effizienzgründen war es typischerweise nur ein spezieller
Wert, der in eine kleine Menge Speicher passte, und was war besser als der Speicher,
der bereits für diese Information bereitgestellt war?

Die ursprüngliche C-Sprache initialisierte den Speicher nicht automatisch, was zahl-
reiche Probleme verursachte. C++ verbesserte die Situation, indem neu zugewiesener
Speicher auf null gesetzt wurde. Wenn also ein numerischer Wert nicht initialisiert
ist, ist er einfach eine numerische Null. Das schien nicht so schlimm zu sein, aber es
ermöglichte es, dass nicht initialisierte Werte unbemerkt durchrutschten (neuere C-
und C++-Compiler warnen oft davor). Schlimmer noch, wenn ein Speicherstück ein
Zeiger war—verwendet, um auf ein anderes Speicherstück zu verweisen—würde ein
Nullzeiger auf die Speicheradresse null zeigen, was fast sicher nicht das ist, was man
will.

Java verhindert Zugriffe auf nicht initialisierte Werte, indem es solche Fehler zur
Laufzeit meldet. Obwohl dies nicht initialisierte Werte entdeckt, löst es das Problem
nicht, denn die einzige Möglichkeit, zu überprüfen, ob Ihr Programm nicht abstürzt,
besteht darin, es auszuführen. Es gibt Schwärme dieser Art von Fehlern im Java-Code,
und Programmierer verschwenden enorme Mengen an Zeit, um sie zu finden.

Kotlin löst dieses Problem, indem es Operationen verhindert, die Nullfehler verursa-
chen könnten, zur Kompilierzeit, bevor das Programm ausgeführt werden kann. Dies
ist das am meisten gefeierte Merkmal von Java-Programmierern, die Kotlin überneh-
men. Diese eine Funktion kann Java’s Nullfehler minimieren oder eliminieren, was
Ihrem Projekt erhebliche Mengen an Zeit und Geld spart.

Eine Fülle von Vorteilen

Die beiden Funktionen, die wir hier erklären konnten (ohnemehr Programmierkennt-
nisse zu erfordern), machen einen großen Unterschied, unabhängig davon, ob Sie ein
Java-Programmierer sind oder nicht. Wenn Kotlin Ihre erste Sprache ist und Sie an
einem Projekt arbeiten, das mehr Programmierer benötigt, ist es viel einfacher, einen
der vielen existierenden Java-Programmierer für Kotlin zu gewinnen.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Warum Kotlin? 28

Kotlin hat viele weitere Vorteile, die wir erst erklären können, wenn Sie mehr über
das Programmieren wissen. Dafür ist der Rest des Buches da.

• -

Sprachen werden oft aus Leidenschaft gewählt, nicht aus Vernunft… Ich versuche,
Kotlin zu einer Sprache zu machen, die aus einem Grund geliebt wird.—Andrey
Breslav, Kotlin Lead Language Designer.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Hallo, Welt!
“Hello, world!” ist ein Programm, das häufig verwendet wird, um die
grundlegende Syntax von Programmiersprachen zu demonstrieren.

Wir entwickeln dieses Programm in mehreren Schritten, damit Sie seine Teile
verstehen.

Zuerst lassen Sie uns ein leeres Programm untersuchen, das überhaupt nichts tut:

// HelloWorld/EmptyProgram.kt

fun main() {
// Program code here ...

}

Das Beispiel beginnt mit einem Kommentar, der ein erläuternder Text ist, der von
Kotlin ignoriert wird. // (zwei Schrägstriche) leitet einen Kommentar ein, der bis
zum Ende der aktuellen Zeile geht:

// Single-line comment

Kotlin ignoriert das // und alles danach bis zum Ende der Zeile. In der folgenden
Zeile wird es wieder beachtet.

Die erste Zeile jedes Beispiels in diesem Buch ist ein Kommentar, der mit demNamen
des Unterverzeichnisses beginnt, das die Quellcodedatei enthält (hier HelloWorld),
gefolgt vomNamen der Datei: EmptyProgram.kt. Das Beispiel-Unterverzeichnis für
jedes Atom entspricht dem Namen dieses Atoms.

Schlüsselwörter sind von der Sprache reserviert und haben eine spezielle Bedeutung.
Das Schlüsselwort fun steht für Funktion. Eine Funktion ist eine Sammlung von
Code, die unter Verwendung des Namens dieser Funktion ausgeführt werden kann
(wir verbringen viel Zeit im Buch mit Funktionen). Der Name der Funktion folgt
dem fun Schlüsselwort, in diesem Fall ist es main() (im Fließtext folgen wir dem
Funktionsnamen mit Klammern).



Hallo, Welt! 30

main() ist tatsächlich ein spezieller Name für eine Funktion; es zeigt den “Einstiegs-
punkt” für ein Kotlin-Programm an. Ein Kotlin-Programm kann viele Funktionenmit
verschiedenen Namen haben, aber main() ist diejenige, die automatisch aufgerufen
wird, wenn Sie das Programm ausführen.

Die Parameterliste folgt dem Funktionsnamen und ist in Klammern eingeschlossen.
Hier übergeben wir nichts an main(), daher ist die Parameterliste leer.

Der Funktionskörper erscheint nach der Parameterliste. Er beginnt mit einer öffnen-
den Klammer ({) und endet mit einer schließenden Klammer (}). Der Funktionskör-
per enthält Anweisungen und Ausdrücke. Eine Anweisung erzeugt eine Wirkung,
und ein Ausdruck liefert ein Ergebnis.

EmptyProgram.kt enthält keine Anweisungen oder Ausdrücke im Körper, nur einen
Kommentar.

Lassen Sie das Programm “Hello, world!” anzeigen, indem Sie eine Zeile im main()-
Körper hinzufügen:

// HelloWorld/HelloWorld.kt

fun main() {
println("Hello, world!")

}
/* Output:
Hello, world!
*/

Die Zeile, die die Begrüßung anzeigt, beginnt mit println(). Wie main(), ist
println() eine Funktion. Diese Zeile ruft die Funktion auf, die dann ihren Körper
ausführt. Man gibt den Funktionsnamen an, gefolgt von Klammern, die einen oder
mehrere Parameter enthalten. In diesem Buch fügen wir beim Bezug auf eine
Funktion in der Prosa nach dem Namen Klammern hinzu, um daran zu erinnern,
dass es sich um eine Funktion handelt. Hier sagen wir println().

println() nimmt einen einzelnen Parameter, der ein String ist. Ein String wird
definiert, indem man Zeichen in Anführungszeichen setzt.

println() bewegt den Cursor nach der Anzeige seines Parameters in eine neue
Zeile, sodass nachfolgende Ausgaben in der nächsten Zeile erscheinen. Man kann
stattdessen print() verwenden, das den Cursor in derselben Zeile belässt.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Hallo, Welt! 31

Im Gegensatz zu einigen Sprachen benötigt man in Kotlin kein Semikolon am Ende
eines Ausdrucks. Es ist nur notwendig, wenn man mehr als einen Ausdruck auf eine
einzelne Zeile setzt (was nicht empfohlen wird).

Für einige Beispiele im Buch zeigen wir die Ausgabe am Ende der Auflistung in
einemmehrzeiligen Kommentar. Ein mehrzeiliger Kommentar beginnt mit einem /*
(einem Schrägstrich gefolgt von einem Sternchen) und setzt sich fort – einschließlich
Zeilenumbrüchen (die wir neue Zeilen nennen) – bis ein */ (ein Sternchen gefolgt
von einem Schrägstrich) den Kommentar beendet:

/* A multiline comment
Doesn't care
about newlines */

Es ist möglich, Code auf derselben Zeile nach dem schließenden */ eines Kommen-
tars hinzuzufügen, aber das ist verwirrend, daher tun es die Leute normalerweise
nicht.

Kommentare fügen Informationen hinzu, die nicht offensichtlich aus dem Code
hervorgehen. Wenn Kommentare nur wiederholen, was der Code sagt, werden
sie lästig und die Leute beginnen, sie zu ignorieren. Wenn sich der Code ändert,
vergessen Programmierer oft, die Kommentare zu aktualisieren, daher ist es eine gute
Praxis, Kommentare sparsam zu verwenden, hauptsächlich um knifflige Aspekte
Ihres Codes hervorzuheben.

Übungen und Lösungen finden Sie auf www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



var & val

Wenn ein Bezeichner Daten enthält, müssen Sie entscheiden, ob er neu
zugewiesen werden kann.

Sie erstellen Bezeichner, um auf Elemente in Ihrem Programm zu verweisen. Die
grundlegendste Entscheidung für einen Datenbezeichner ist, ob er seinen Inhalt
während der Programmausführung ändern kann oder ob er nur einmal zugewiesen
werden kann. Dies wird durch zwei Schlüsselwörter gesteuert:

• var, kurz für Variable, was bedeutet, dass Sie seinen Inhalt neu zuweisen
können.

• val, kurz für Wert, was bedeutet, dass Sie ihn nur initialisieren können; Sie
können ihn nicht neu zuweisen.

Sie definieren ein var so:

var identifier = initialization

Das Schlüsselwort var wird gefolgt von dem Bezeichner, einem Gleichheitszeichen
und dann dem Initialisierungswert. Der Bezeichner beginnt mit einem Buchstaben
oder einem Unterstrich, gefolgt von Buchstaben, Zahlen und Unterstrichen. Groß-
und Kleinschreibung werden unterschieden (also sind thisvalue und thisValue
unterschiedlich).

Hier sind einige var Definitionen:



var & val 33

// VarAndVal/Vars.kt

fun main() {
var whole = 11 // [1]
var fractional = 1.4 // [2]
var words = "Twas Brillig" // [3]
println(whole)
println(fractional)
println(words)

}
/* Output:
11
1.4
Twas Brillig
*/

In diesem Buch versehen wir Zeilen mit kommentierten Nummern in eckigen
Klammern, damit wir im Text auf sie verweisen können, wie folgt:

• [1] Erstellen Sie eine var namens whole und speichern Sie 11 darin.
• [2] Speichern Sie die “Bruchzahl” 1.4 in der var fractional.
• [3] Speichern Sie etwas Text (einen String) in der var words.

Beachten Sie, dass println() jeden einzelnen Wert als Argument annehmen kann.

Wie der Name Variable impliziert, kann eine var variieren. Das heißt, Sie können
die in einer var gespeicherten Daten ändern. Wir sagen, dass eine var veränderlich
ist:

// VarAndVal/AVarIsMutable.kt

fun main() {
var sum = 1
sum = sum + 2
sum += 3
println(sum)

}
/* Output:
6
*/

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



var & val 34

Die Zuweisung sum = sum + 2 nimmt den aktuellen Wert von sum, addiert zwei
und weist das Ergebnis zurück in sum zu.

Die Zuweisung sum += 3 bedeutet dasselbe wie sum = sum + 3. Der += Operator
nimmt den vorher gespeicherten Wert in sum und erhöht ihn um 3, dann weist er
dieses neue Ergebnis zurück in sum zu.

Den in einer var gespeicherten Wert zu ändern, ist eine nützliche Methode, um Än-
derungen auszudrücken. Wenn jedoch die Komplexität eines Programms zunimmt,
ist Ihr Code klarer, sicherer und leichter zu verstehen, wenn die Werte, die durch
Ihre Bezeichner dargestellt werden, sich nicht ändern können—das heißt, sie können
nicht neu zugewiesen werden. Wir spezifizieren einen unveränderlichen Bezeichner,
indem wir statt var das Schlüsselwort val verwenden. Ein val kann nur einmal
zugewiesen werden, wenn es erstellt wird:

val identifier = initialization

Das Schlüsselwort val stammt vonWert und deutet auf etwas hin, das sich nicht än-
dern kann—es ist unveränderlich. Wählen Sie wann immer möglich val anstelle von
var. Das Vars.kt-Beispiel am Anfang dieses Abschnitts kann unter Verwendung
von vals umgeschrieben werden:

// VarAndVal/Vals.kt

fun main() {
val whole = 11
// whole = 15 // Error // [1]
val fractional = 1.4
val words = "Twas Brillig"
println(whole)
println(fractional)
println(words)

}
/* Output:
11
1.4
Twas Brillig
*/

• [1] Sobald Sie ein val initialisieren, können Sie es nicht neu zuweisen. Wenn
wir versuchen, whole eine andere Zahl zuzuweisen, meldet sich Kotlin mit der
Nachricht “Val kann nicht neu zugewiesen werden.”

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



var & val 35

Beschreibende Namen für Ihre Bezeichner zu wählen, macht Ihren Code leichter
verständlich und reduziert oft die Notwendigkeit für Kommentare. In Vals.kt
haben Sie keine Ahnung, was whole repräsentiert. Wenn Ihr Programm die Zahl
11 speichert, um die Tageszeit darzustellen, zu der Sie Kaffee trinken, ist es offen-
sichtlicher für andere, wenn Sie es coffeetime nennen, und leichter zu lesen, wenn
es coffeeTime ist (gemäß dem Kotlin-Stil, bei dem wir den ersten Buchstaben klein
schreiben).

• -

vars sind nützlich, wenn sich Daten während der Ausführung des Programms
ändern müssen. Dies klingt nach einer häufigen Anforderung, stellt sich jedoch in
der Praxis als vermeidbar heraus. Im Allgemeinen sind Ihre Programme leichter zu
erweitern und zu pflegen, wenn Sie vals verwenden. In seltenen Fällen ist es jedoch
zu komplex, ein Problem nurmit vals zu lösen. Aus diesemGrund bietet Ihnen Kotlin
die Flexibilität von vars. Je mehr Zeit Sie jedoch mit vals verbringen, desto mehr
werden Sie entdecken, dass Sie vars fast nie benötigen und dass Ihre Programme
ohne sie sicherer und zuverlässiger sind.

Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Datentypen
Daten können unterschiedliche Typen haben.

Um ein mathematisches Problem zu lösen, schreibt man einen Ausdruck:

5.9 + 6

Du weißt, dass das Addieren dieser Zahlen eine weitere Zahl ergibt. Kotlin weiß das
auch. Du weißt, dass eine davon eine Dezimalzahl (5.9) ist, die Kotlin Double nennt,
und die andere eine ganze Zahl (6), die Kotlin Int nennt. Du weißt, dass das Ergebnis
eine Dezimalzahl ist.

Ein Typ (auch Datentyp genannt) sagt Kotlin, wie du diese Daten verwenden möch-
test. Ein Typ definiert die Menge der Werte, die ein Ausdruck dieses Typs erzeugen
kann. Ein Typ definiert auch die Operationen, die auf den Daten durchgeführt
werden können, die Bedeutung der Daten und wie Werte dieses Typs gespeichert
werden können.

Kotlin verwendet Typen, um zu überprüfen, ob deine Ausdrücke korrekt sind. Im
obigen Ausdruck erstellt Kotlin einen neuenWert des Typs Double, um das Ergebnis
zu speichern.

Kotlin versucht, sich an deine Bedürfnisse anzupassen. Wenn du es bittest, etwas
zu tun, das die Typregeln verletzt, erzeugt es eine Fehlermeldung. Zum Beispiel,
versuche, einen String und eine Zahl zu addieren:



Datentypen 37

// DataTypes/StringPlusNumber.kt

fun main() {
println("Sally" + 5.9)

}
/* Output:
Sally5.9
*/

Typen sagen Kotlin, wie sie korrekt verwendet werden. In diesem Fall sagen die
Typregeln Kotlin, wie man eine Zahl zu einem String hinzufügt: indem die beiden
Werte angehängt werden und ein String erstellt wird, um das Ergebnis zu halten.

Versuchen Sie nun, einen String und ein Double zu multiplizieren, indem Sie das +
in StringPlusNumber.kt durch ein * ersetzen:

"Sally" * 5.9

Das Kombinieren von Typen auf diese Weise ergibt für Kotlin keinen Sinn, daher
gibt es einen Fehler aus.

In var& val habenwir verschiedene Typen gespeichert. Kotlin hat die Typen für uns
ermittelt, basierend darauf, wie wir sie verwendet haben. Dies wird type inference
genannt.

Wir können ausführlicher sein und den Typ angeben:

val identifier: Type = initialization

Du beginnst mit dem Schlüsselwort val oder var, gefolgt vom Bezeichner, einem
Doppelpunkt, dem Typ, einem =, und dem Initialisierungswert. Anstatt also zu sagen:

val n = 1
var p = 1.2

Du kannst sagen:

val n: Int = 1
var p: Double = 1.2

Wir haben Kotlin gesagt, dass n ein Int und p ein Double ist, anstatt es den Typ
ableiten zu lassen.

Hier sind einige von Kotlins grundlegenden Typen:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Datentypen 38

// DataTypes/Types.kt

fun main() {
val whole: Int = 11 // [1]
val fractional: Double = 1.4 // [2]
val trueOrFalse: Boolean = true // [3]
val words: String = "A value" // [4]
val character: Char = 'z' // [5]
val lines: String = """Triple quotes let

you have many lines
in your string""" // [6]
println(whole)
println(fractional)
println(trueOrFalse)
println(words)
println(character)
println(lines)

}
/* Output:
11
1.4
true
A value
z
Triple quotes let
you have many lines
in your string
*/

• [1] Der Int-Datentyp ist ein Ganzzahltyp, was bedeutet, dass er nur ganze
Zahlen speichert.

• [2] Um Bruchzahlen zu speichern, verwenden Sie einen Double.
• [3] Ein Boolean-Datentyp speichert nur die beiden speziellen Werte true und
false.

• [4] Ein String speichert eine Zeichenfolge. Sie weisen einen Wert mit einem
doppelt-umrahmten String zu.

• [5] Ein Char speichert ein Zeichen.
• [6] Wenn Sie viele Zeilen und/oder Sonderzeichen haben, umgeben Sie diese
mit dreifachen Anführungszeichen (dies ist ein dreifach-umrahmter String).

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Datentypen 39

Kotlin verwendet Typinferenz, um die Bedeutung gemischter Typen zu bestimmen.
Beim Mischen von Int und Double während der Addition entscheidet Kotlin den
Typ für den resultierenden Wert:

// DataTypes/Inference.kt

fun main() {
val n = 1 + 1.2
println(n)

}
/* Output:
2.2
*/

Wenn Sie einen Int zu einem Doublemit Typinferenz hinzufügen, bestimmt Kotlin,
dass das Ergebnis n ein Double ist und stellt sicher, dass es alle Regeln für Doubles
einhält.

Die Typinferenz von Kotlin ist Teil seiner Strategie, Arbeit für den Programmierer zu
übernehmen.Wenn Sie die Typdeklarationweglassen, kann Kotlin sie normalerweise
ableiten.

Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Funktionen
Eine Funktion ist wie ein kleines Programm, das einen eigenen Namen
hat und durch das Aufrufen dieses Namens aus einer anderen Funktion
ausgeführt (aufgerufen) werden kann.

Eine Funktion fasst eine Gruppe vonAktivitäten zusammen und ist die grundlegends-
te Methode, um Ihre Programme zu organisieren und Code wiederzuverwenden.

Sie übergeben Informationen an eine Funktion, und die Funktion verwendet diese
Informationen, um ein Ergebnis zu berechnen und zu erzeugen. Die Grundform einer
Funktion ist:

fun functionName(p1: Type1, p2: Type2, ...): ReturnType {
lines of code
return result

}

p1 und p2 sind die Parameter : die Informationen, die Sie in die Funktion übergeben.
Jeder Parameter hat einen Bezeichnernamen (p1, p2) gefolgt von einemDoppelpunkt
und dem Typ dieses Parameters. Die schließende Klammer der Parameterliste wird
von einem Doppelpunkt und dem Typ des von der Funktion erzeugten Ergebnisses
gefolgt. Die Codezeilen im Funktionskörper sind in geschweifte Klammern einge-
schlossen. Der Ausdruck nach dem Schlüsselwort return ist das Ergebnis, das die
Funktion erzeugt, wenn sie abgeschlossen ist.

Ein Parameter definiert, was in eine Funktion übergeben wird — er ist der Platzhalter.
Ein Argument ist der tatsächliche Wert, den Sie in die Funktion übergeben.

Die Kombination aus Name, Parametern und Rückgabetyp wird als Funktionssigna-
tur bezeichnet.

Hier ist eine einfache Funktion namens multiplyByTwo():



Funktionen 41

// Functions/MultiplyByTwo.kt

fun multiplyByTwo(x: Int): Int { // [1]
println("Inside multiplyByTwo") // [2]
return x * 2

}

fun main() {
val r = multiplyByTwo(5) // [3]
println(r)

}
/* Output:
Inside multiplyByTwo
10
*/

• [1] Beachten Sie das fun Schlüsselwort, den Funktionsnamen und die Parame-
terliste, die aus einem einzigen Parameter besteht. Diese Funktion nimmt einen
Int Parameter und gibt einen Int zurück.

• [2] Diese zwei Zeilen sind der Körper der Funktion. Die letzte Zeile gibt den
Wert ihrer Berechnung x * 2 als Ergebnis der Funktion zurück.

• [3] Diese Zeile ruft die Funktion mit einem geeigneten Argument auf und
erfasst das Ergebnis in val r. Ein Funktionsaufruf imitiert die Form seiner
Deklaration: den Funktionsnamen, gefolgt von Argumenten in Klammern.

Der Funktionscode wird durch Aufrufen der Funktion ausgeführt, wobei der Funk-
tionsname multiplyByTwo() als Abkürzung für diesen Code dient. Aus diesem
Grund sind Funktionen die grundlegendste Form der Vereinfachung und Wieder-
verwendung von Code in der Programmierung. Sie können auch an eine Funktion
als Ausdruck mit austauschbaren Werten (den Parametern) denken.

println() ist ebenfalls ein Funktionsaufruf – er wird einfach von Kotlin bereitge-
stellt. Wir beziehen uns auf von Kotlin definierte Funktionen als Bibliotheksfunktio-
nen.

Wenn die Funktion kein sinnvolles Ergebnis liefert, ist ihr Rückgabetyp Unit. Sie
können Unit explizit angeben, wenn Sie möchten, aber Kotlin erlaubt es Ihnen, es
wegzulassen:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Funktionen 42

// Functions/SayHello.kt

fun sayHello() {
println("Hallo!")

}

fun sayGoodbye(): Unit {
println("Auf Wiedersehen!")

}

fun main() {
sayHello()
sayGoodbye()

}
/* Output:
Hallo!
Auf Wiedersehen!
*/

Sowohl sayHello() als auch sayGoodbye() geben Unit zurück, aber sayHello()
lässt die explizite Deklaration weg. Die main()-Funktion gibt ebenfalls Unit zurück.

Wenn eine Funktion nur einen einzigen Ausdruck enthält, können Sie die abgekürzte
Syntax mit einem Gleichheitszeichen gefolgt von dem Ausdruck verwenden:

fun functionName(arg1: Type1, arg2: Type2, ...): ReturnType = expression

Ein Funktionskörper, der von geschweiften Klammern umgeben ist, wird als Block-
körper bezeichnet. Ein Funktionskörper, der die Gleichungssyntax verwendet, wird
als Ausdruckskörper bezeichnet.

Hier verwendet multiplyByThree() einen Ausdruckskörper:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Funktionen 43

// Functions/MultiplyByThree.kt

fun multiplyByThree(x: Int): Int = x * 3

fun main() {
println(multiplyByThree(5))

}
/* Output:
15
*/

Dies ist eine kurze Version, um return x * 3 innerhalb eines Blockkörpers zu
sagen.

Kotlin leitet den Rückgabetyp einer Funktion ab, die einen Ausdruckskörper hat:

// Functions/MultiplyByFour.kt

fun multiplyByFour(x: Int) = x * 4

fun main() {
val result: Int = multiplyByFour(5)
println(result)

}
/* Output:
20
*/

Kotlin leitet ab, dass multiplyByFour() ein Int zurückgibt.

Kotlin kann Rückgabetypen nur für Ausdruckskörper ableiten. Wenn eine Funktion
einen Blockkörper hat und Sie ihren Typ weglassen, gibt diese Funktion Unit zurück.

• -

Beim Schreiben von Funktionen sollten Sie beschreibende Namen wählen. Dies
macht den Code leichter lesbar und kann oft die Notwendigkeit für Codekommentare
reduzieren. Wir können nicht immer so beschreibend sein, wie wir es uns wünschen
würden, mit den Funktionsnamen in diesem Buch, weil wir durch die Zeilenbreiten
eingeschränkt sind.

Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



if-Ausdrücke
Ein if-Ausdruck trifft eine Entscheidung.

Das if-Schlüsselwort prüft einen Ausdruck, um festzustellen, ob er wahr oder
falsch ist, und führt basierend auf dem Ergebnis eine Aktion aus. Ein Wahr-oder-
Falsch-Ausdruckwird als Boolean bezeichnet, nach demMathematiker George Boole,
der die Logik hinter diesen Ausdrücken erfunden hat. Hier ist ein Beispiel mit den
Symbolen > (größer als) und < (kleiner als):

// IfExpressions/If1.kt

fun main() {
if (1 > 0)
println("It's true!")

if (10 < 11) {
println("10 < 11")
println("ten is less than eleven")

}
}
/* Output:
It's true!
10 < 11
ten is less than eleven
*/

Der Ausdruck in den Klammern nach dem ifmuss zu true oder false ausgewertet
werden. Wenn true, wird der folgende Ausdruck ausgeführt. Um mehrere Zeilen
auszuführen, platziere sie in geschweiften Klammern.

Wir können einen booleschenAusdruck an einer Stelle erstellen und an einer anderen
verwenden:



if-Ausdrücke 45

// IfExpressions/If2.kt

fun main() {
val x: Boolean = 1 >= 1
if (x)
println("It's true!")

}
/* Output:
It's true!
*/

Da x ein Boolean ist, kann der if-Operator es direkt testen, indem er if(x) sagt.

Der >=-Operator für Boolean gibt true zurück, wenn der Ausdruck auf der linken
Seite des Operators größer oder gleich dem auf der rechten Seite ist. Ebenso gibt <=
true zurück, wenn der Ausdruck auf der linken Seite kleiner oder gleich dem auf der
rechten Seite ist.

Das Schlüsselwort else ermöglicht es Ihnen, sowohl true- als auch false-Pfade zu
behandeln:

// IfExpressions/If3.kt

fun main() {
val n: Int = -11
if (n > 0)
println("It's positive")

else
println("It's negative or zero")

}
/* Output:
It's negative or zero
*/

Das else-Schlüsselwort wird nur in Verbindung mit if verwendet. Sie sind nicht
auf eine einzelne Prüfung beschränkt — Sie können mehrere Kombinationen testen,
indem Sie else und if kombinieren:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



if-Ausdrücke 46

// IfExpressions/If4.kt

fun main() {
val n: Int = -11
if (n > 0)
println("It's positive")

else if (n == 0)
println("It's zero")

else
println("It's negative")

}
/* Output:
It's negative
*/

Hier verwenden wir ==, um zwei Zahlen auf Gleichheit zu prüfen. != testet auf
Ungleichheit.

Das typische Muster beginnt mit if, gefolgt von so vielen else if-Klauseln, wie
Sie benötigen, und endet mit einem abschließenden else für alles, was nicht zu den
vorherigen Tests passt. Wenn ein if-Ausdruck eine bestimmte Größe und Komplexi-
tät erreicht, verwenden Sie wahrscheinlich stattdessen einen when-Ausdruck. when
wird später im Buch beschrieben, in „when“ Ausdrücke.

Der „Nicht“-Operator ! testet das Gegenteil eines Booleschen Ausdrucks:

// IfExpressions/If5.kt

fun main() {
val y: Boolean = false
if (!y)
println("!y is true")

}
/* Output:
!y is true
*/

Um if(!y) zu verbalisieren, sagt man “wenn nicht y.”

Das gesamte if ist ein Ausdruck, der ein Ergebnis liefern kann:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



if-Ausdrücke 47

// IfExpressions/If6.kt

fun main() {
val num = 10
val result = if (num > 100) 4 else 42
println(result)

}
/* Output:
42
*/

Hier speichern wir den Wert, der durch den gesamten if Ausdruck erzeugt wird, in
einem Zwischenbezeichner namens result. Wenn die Bedingung erfüllt ist, erzeugt
der erste Zweig result. Wenn nicht, wird der elseWert zu result.

Lassen Sie uns üben, Funktionen zu erstellen. Hier ist eine, die einen Booleschen
Parameter nimmt:

// IfExpressions/TrueOrFalse.kt

fun trueOrFalse(exp: Boolean): String {
if (exp)
return "It's true!" // [1]

return "It's false" // [2]
}

fun main() {
val b = 1
println(trueOrFalse(b < 3))
println(trueOrFalse(b >= 3))

}
/* Output:
It's true!
It's false
*/

Der Boolean-Parameter expwird an die Funktion trueOrFalse() übergeben.Wenn
das Argument als Ausdruck übergeben wird, wie b < 3, wird dieser Ausdruck zuerst
ausgewertet und das Ergebnis an die Funktion übergeben. trueOrFalse() testet exp
und wenn das Ergebnis true ist, wird Zeile [1] ausgeführt, andernfalls wird Zeile
[2] ausgeführt.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



if-Ausdrücke 48

• [1] return sagt: “Verlasse die Funktion und liefere diesen Wert als Ergebnis
der Funktion.” Beachten Sie, dass return überall in einer Funktion erscheinen
kann und nicht am Ende stehen muss.

Anstatt return wie im vorherigen Beispiel zu verwenden, können Sie das else-
Schlüsselwort verwenden, um das Ergebnis als Ausdruck zu erzeugen:

// IfExpressions/OneOrTheOther.kt

fun oneOrTheOther(exp: Boolean): String =
if (exp)
"True!" // No 'return' necessary

else
"False"

fun main() {
val x = 1
println(oneOrTheOther(x == 1))
println(oneOrTheOther(x == 2))

}
/* Output:
True!
False
*/

Anstelle von zwei Ausdrücken in trueOrFalse() ist oneOrTheOther() ein einzel-
ner Ausdruck. Das Ergebnis dieses Ausdrucks ist das Ergebnis der Funktion, sodass
der if-Ausdruck zum Funktionskörper wird.

Übungen und Lösungen finden Sie auf www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



String-Vorlagen
Eine String-Vorlage ist eine programmatischeMethode, um einen String
zu erzeugen.

Wenn Sie ein $ vor einen Bezeichnernamen setzen, fügt die String-Vorlage den
Inhalt dieses Bezeichners in den String ein:

// StringTemplates/StringTemplates.kt

fun main() {
val answer = 42
println("Found $answer!") // [1]
println("printing a $1") // [2]

}
/* Output:
Found 42!
printing a $1
*/

• [1] $answer ersetzt den Wert von answer.
• [2] Wenn dem $ nichts folgt, das als Programmbezeichner erkennbar ist,
passiert nichts Besonderes.

Man kann auch Werte in einen String einfügen, indem man die Verkettung (+)
verwendet:



String-Vorlagen 50

// StringTemplates/StringConcatenation.kt

fun main() {
val s = "hi\n" // \n is a newline character
val n = 11
val d = 3.14
println("first: " + s + "second: " +
n + ", third: " + d)

}
/* Output:
first: hi
second: 11, third: 3.14
*/

Das Platzieren eines Ausdrucks innerhalb von ${}wertet ihn aus. Der Rückgabewert
wird in einen String umgewandelt und in den resultierenden String eingefügt:

// StringTemplates/ExpressionInTemplate.kt

fun main() {
val condition = true
println(
"${if (condition) 'a' else 'b'}") // [1]

val x = 11
println("$x + 4 = ${x + 4}")

}
/* Output:
a
11 + 4 = 15
*/

• [1] if(condition) 'a' else 'b' wird ausgewertet und das Ergebnis wird
durch den gesamten ${} Ausdruck ersetzt.

Wenn eine Zeichenkette ein Sonderzeichen enthalten muss, wie zum Beispiel ein
Anführungszeichen, können Sie entweder dieses Zeichen mit einem \ (Backslash)
entkommen, oder Sie verwenden ein Zeichenkette Literal in dreifachen Anfüh-
rungszeichen:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



String-Vorlagen 51

// StringTemplates/TripleQuotes.kt

fun main() {
val s = "value"
println("s = \"$s\".")
println("""s = "$s".""")

}
/* Output:
s = "value".
s = "value".
*/

Mit dreifachen Anführungszeichen fügen Sie einen Wert eines Ausdrucks auf die
gleiche Weise ein wie bei einem einfach-quotierten String.

Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zahlentypen
Verschiedene Zahlentypen werden auf unterschiedliche Weise gespei-
chert.

Wenn Sie einen Bezeichner erstellen und ihm einen Ganzzahlwert zuweisen, leitet
Kotlin den Int-Typ ab:

// NumberTypes/InferInt.kt

fun main() {
val million = 1_000_000 // Infers Int
println(million)

}
/* Output:
1000000
*/

Für die Lesbarkeit erlaubt Kotlin Unterstriche innerhalb numerischer Werte.

Die grundlegenden mathematischen Operatoren für Zahlen sind diejenigen, die in
den meisten Programmiersprachen verfügbar sind: Addition (+), Subtraktion (-), Di-
vision (/), Multiplikation (*) undModulus (%), was den Rest aus der Ganzzahldivision
ergibt:

// NumberTypes/Modulus.kt

fun main() {
val numerator: Int = 19
val denominator: Int = 10
println(numerator % denominator)

}
/* Output:
9
*/

Ganzzahl-Division schneidet das Ergebnis ab:



Zahlentypen 53

// NumberTypes/IntDivisionTruncates.kt

fun main() {
val numerator: Int = 19
val denominator: Int = 10
println(numerator / denominator)

}
/* Output:
1
*/

Wenn die Operation das Ergebnis gerundet hätte, wäre die Ausgabe 2.

Die Reihenfolge der Operationen folgt der grundlegenden Arithmetik:

// NumberTypes/OpOrder.kt

fun main() {
println(45 + 5 * 6)

}
/* Output:
75
*/

Die Multiplikation 5 * 6 wird zuerst ausgeführt, gefolgt von der Addition 45 + 30.

Wenn Sie möchten, dass 45 + 5 zuerst erfolgt, verwenden Sie Klammern:

// NumberTypes/OpOrderParens.kt

fun main() {
println((45 + 5) * 6)

}
/* Output:
300
*/

Nun berechnen wir den Body-Mass-Index (BMI), der das Gewicht in Kilogramm
dividiert durch das Quadrat der Größe in Metern ist. Wenn Sie einen BMI von
weniger als 18,5 haben, sind Sie untergewichtig. Zwischen 18,5 und 24,9 ist
Normalgewicht. Ein BMI von 25 und höher ist Übergewicht. Dieses Beispiel zeigt
auch den bevorzugten Formatierungsstil, wenn Sie die Parameter der Funktion nicht
in eine einzige Zeile passen können:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zahlentypen 54

// NumberTypes/BMIMetric.kt

fun bmiMetric(
weight: Double,
height: Double

): String {
val bmi = weight / (height * height) // [1]
return if (bmi < 18.5) "Underweight"
else if (bmi < 25) "Normal weight"
else "Overweight"

}

fun main() {
val weight = 72.57 // 160 lbs
val height = 1.727 // 68 inches
val status = bmiMetric(weight, height)
println(status)

}
/* Output:
Normal weight
*/

• [1] Wenn Sie die Klammern entfernen, teilen Sie weight durch height und
multiplizieren dann dieses Ergebnis mit height. Das ergibt eine viel größere
Zahl und ist die falsche Antwort.

bmiMetric() verwendet Doubles für das Gewicht und die Größe. Ein Double kann
sehr große und sehr kleine Gleitkommazahlen aufnehmen.

Hier ist eine Version, die englische Einheiten verwendet, dargestellt durch Int-
Parameter:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zahlentypen 55

// NumberTypes/BMIEnglish.kt

fun bmiEnglish(
weight: Int,
height: Int

): String {
val bmi =
weight / (height * height) * 703.07 // [1]

return if (bmi < 18.5) "Underweight"
else if (bmi < 25) "Normal weight"
else "Overweight"

}

fun main() {
val weight = 160
val height = 68
val status = bmiEnglish(weight, height)
println(status)

}
/* Output:
Underweight
*/

Warum unterscheidet sich das Ergebnis von bmiMetric(), das Doubles verwendet?
Wenn Sie eine Ganzzahl durch eine andere Ganzzahl teilen, erzeugt Kotlin ein
Ganzzahlergebnis. Die Standardmethode, um mit dem Rest während der ganzzah-
ligen Division umzugehen, ist das Abschneiden, was bedeutet, “abschneiden und
wegwerfen” (es gibt kein Runden). Wenn Sie also 5 durch 2 teilen, erhalten Sie 2,
und 7/10 ist null. Wenn Kotlin bmi in Ausdruck [1] berechnet, teilt es 160 durch 68
* 68 und erhält null. Es multipliziert dann null mit 703.07, um null zu erhalten.

Um dieses Problem zu vermeiden, verschieben Sie 703.07 an den Anfang der
Berechnung. Die Berechnungen werden dann gezwungen, Double zu sein:

val bmi = 703.07 * weight / (height * height)

Die Double Parameter in bmiMetric() verhindern dieses Problem. Rechnen Sie so
früh wie möglich auf den gewünschten Typ um, um die Genauigkeit zu erhalten.

Alle Programmiersprachen haben Grenzen, was sie innerhalb einer Ganzzahl spei-
chern können. Der Int Typ in Kotlin kannWerte zwischen -2³¹ und +2³¹-1 annehmen,

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zahlentypen 56

eine Einschränkung der 32-Bit Darstellung von Int. Wenn Sie zwei Ints addieren
oder multiplizieren, die groß genug sind, wird das Ergebnis überlaufen:

// NumberTypes/IntegerOverflow.kt

fun main() {
val i: Int = Int.MAX_VALUE
println(i + i)

}
/* Output:
-2
*/

Int.MAX_VALUE ist ein vordefinierter Wert, der die größte Zahl darstellt, die ein Int
halten kann.

Der Überlauf erzeugt ein Ergebnis, das eindeutig falsch ist, da es sowohl negativ als
auch viel kleiner ist, als wir erwarten. Kotlin gibt eine Warnung aus, wann immer es
einen potenziellen Überlauf erkennt.

Es liegt in Ihrer Verantwortung als Entwickler, Überläufe zu verhindern. Kotlin kann
nicht immer Überläufe während der Kompilierung erkennen, und es verhindert keine
Überläufe, da dies eine untragbare Leistungseinbuße zur Folge hätte.

Wenn Ihr Programm große Zahlen enthält, können Sie Longs verwenden, die Werte
von -2⁶³ bis +2⁶³-1 aufnehmen. Um ein val vom Typ Long zu definieren, können Sie
den Typ explizit angeben oder ein L am Ende eines numerischen Literals hinzufügen,
was Kotlin anweist, diesen Wert als Long zu behandeln:

// NumberTypes/LongConstants.kt

fun main() {
val i = 0 // Infers Int
val l1 = 0L // L creates Long
val l2: Long = 0 // Explicit type
println("$l1 $l2")

}
/* Output:
0 0
*/

Durch die Verwendung von Longs verhindern wir den Überlauf in IntegerOver-
flow.kt:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zahlentypen 57

// NumberTypes/UsingLongs.kt

fun main() {
val i = Int.MAX_VALUE
println(0L + i + i) // [1]
println(1_000_000 * 1_000_000L) // [2]

}
/* Output:
4294967294
1000000000000
*/

Die Verwendung eines numerischen Literals in sowohl [1] als auch [2] erzwingt
Long-Berechnungen und ergibt ebenfalls ein Ergebnis vom Typ Long. Der Ort,
an dem das L erscheint, ist unwichtig. Wenn einer der Werte Long ist, ist der
resultierende Ausdruck Long.

Obwohl sie viel größere Werte als Ints halten können, haben Longs immer noch
Größenbeschränkungen:

// NumberTypes/BiggestLong.kt

fun main() {
println(Long.MAX_VALUE)

}
/* Output:
9223372036854775807
*/

Long.MAX_VALUE ist der größte Wert, den ein Long halten kann.

Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Boolesche Werte
if-Ausdrücke demonstrierten den Operator “nicht” !, der einen Boole-
scher Wert negiert. Dieses Kapitel führt mehr in die Boolesche Algebra
ein.

Wir beginnen mit den Operatoren “und” und “oder”:

• && (und): Erzeugt wahr nur, wenn der Boolescher Ausdruck links vom
Operator und der rechts beide wahr sind.

• || (oder): Erzeugt wahr, wenn entweder der Ausdruck links oder rechts vom
Operator wahr ist, oder wenn beide wahr sind.

In diesem Beispiel bestimmen wir, ob ein Geschäft geöffnet oder geschlossen ist,
basierend auf der Stunde:

// Booleans/Open1.kt

fun isOpen1(hour: Int) {
val open = 9
val closed = 20
println("Operating hours: $open - $closed")
val status =
if (hour >= open && hour < closed) // [1]

true
else

false
println("Open: $status")

}

fun main() = isOpen1(6)
/* Output:
Operating hours: 9 - 20
Open: false
*/



Boolesche Werte 59

main() ist ein einzelner Funktionsaufruf, daher können wir einen Ausdruckskörper
verwenden, wie in Funktionen beschrieben.

Der if-Ausdruck in [1] prüft, ob hour zwischen der Öffnungszeit und der Schließzeit
liegt, daher kombinieren wir die Ausdrücke mit dem Boolean && (und).

Der if-Ausdruck kann vereinfacht werden. Das Ergebnis des Ausdrucks if(cond)
true else false ist einfach cond:

// Booleans/Open2.kt

fun isOpen2(hour: Int) {
val open = 9
val closed = 20
println("Operating hours: $open - $closed")
val status = hour >= open && hour < closed
println("Open: $status")

}

fun main() = isOpen2(6)
/* Output:
Operating hours: 9 - 20
Open: false
*/

Lassen Sie uns die Logik umkehren und überprüfen, ob das Geschäft derzeit geschlos-
sen ist. Der “or”-Operator || liefert true, wenn mindestens eine der Bedingungen
erfüllt ist:

// Booleans/Closed.kt

fun isClosed(hour: Int) {
val open = 9
val closed = 20
println("Operating hours: $open - $closed")
val status = hour < open || hour >= closed
println("Closed: $status")

}

fun main() = isClosed(6)
/* Output:
Operating hours: 9 - 20

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Boolesche Werte 60

Closed: true
*/

Boolean-Operatoren ermöglichen komplizierte Logik in kompakten Ausdrücken.
Allerdings kann es leicht verwirrend werden. Streben Sie nach Lesbarkeit und
spezifizieren Sie Ihre Absichten explizit.

Hier ist ein Beispiel für einen komplizierten Boolean-Ausdruck, bei dem unterschied-
liche Auswertungsreihenfolgen zu unterschiedlichen Ergebnissen führen:

// Booleans/EvaluationOrder.kt

fun main() {
val sunny = true
val hoursSleep = 6
val exercise = false
val temp = 55

// [1]:
val happy1 = sunny && temp > 50 ||
exercise && hoursSleep > 7

println(happy1)

// [2]:
val sameHappy1 = (sunny && temp > 50) ||
(exercise && hoursSleep > 7)

println(sameHappy1)

// [3]:
val notSame =
(sunny && temp > 50 || exercise) &&

hoursSleep > 7
println(notSame)

}
/* Output:
true
true
false
*/

Die Boolean-Ausdrücke sind sunny, temp > 50, exercise und hoursSleep > 7.
Wir lesen happy1 als “Es ist sonnig und die Temperatur ist größer als 50 oder ich

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Boolesche Werte 61

habe Sport getrieben und mehr als 7 Stunden geschlafen.” Aber hat && Vorrang vor
|| oder umgekehrt?

Der Ausdruck in [1] verwendet die Standardauswertungsreihenfolge von Kotlin.
Dies ergibt dasselbe Ergebnis wie der Ausdruck in [2], da ohne Klammern die
“und”-Operationen zuerst ausgewertet werden, dann das “oder”. Der Ausdruck in
[3] verwendet Klammern, um ein anderes Ergebnis zu erzielen. In [3] sind wir nur
glücklich, wenn wir mindestens 7 Stunden geschlafen haben.

Übungen und Lösungen finden Sie auf www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Wiederholung mit while
Computer sind ideal für sich wiederholende Aufgaben.

Die grundlegendste Form der Wiederholung verwendet das Schlüsselwort while.
Dies wiederholt einen Block, solange der kontrollierende boolesche Ausdruck true
ist:

while (Boolean-expression) {
// Code to be repeated

}

Der boolesche Ausdruck wird einmal zu Beginn der Schleife und erneut vor jeder
weiteren Iteration durch den Block ausgewertet.

// RepetitionWithWhile/WhileLoop.kt

fun condition(i: Int) = i < 100 // [1]

fun main() {
var i = 0
while (condition(i)) { // [2]
print(".")
i += 10 // [3]

}
}
/* Output:
..........
*/

• [1] Der Vergleichsoperator < liefert ein Boolescher Wert Ergebnis, daher
leitet Kotlin Boolescher Wert als Ergebnistyp für condition() ab.

• [2]Der bedingte Ausdruck für das while besagt: “Wiederhole die Anweisungen
im Körper, solange condition() true zurückgibt.”

• [3]Der +=Operator addiert 10 zu i und weist das Ergebnis i in einem einzigen
Vorgang zu (i muss eine var sein, damit dies funktioniert). Dies entspricht:



Wiederholung mit while 63

i = i + 10

Es gibt eine zweite Möglichkeit, while in Verbindung mit dem Schlüsselwort do zu
verwenden:

do {
// Code to be repeated

} while (Boolean-expression)

Das Umschreiben von WhileLoop.kt, um eine do-while-Schleife zu verwenden,
ergibt:

// RepetitionWithWhile/DoWhileLoop.kt

fun main() {
var i = 0
do {
print(".")
i += 10

} while (condition(i))
}
/* Output:
..........
*/

Der einzige Unterschied zwischen while und do-while besteht darin, dass der
Körper von do-while immer mindestens einmal ausgeführt wird, selbst wenn der
boolesche Ausdruck anfänglich false ergibt. Bei einem while wird der Körper nie
ausgeführt, wenn die Bedingung beim ersten Mal false ist. In der Praxis ist do-
while weniger verbreitet als while.

Die Kurzformen der Zuweisungsoperatoren sind für alle arithmetischen Operationen
verfügbar: +=, -=, *=, /=, und %=. Hier werden -= und %= verwendet:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Wiederholung mit while 64

// RepetitionWithWhile/AssignmentOperators.kt

fun main() {
var n = 10
val d = 3
print(n)
while (n > d) {
n -= d
print(" - $d")

}
println(" = $n")

var m = 10
print(m)
m %= d
println(" % $d = $m")

}
/* Output:
10 - 3 - 3 - 3 = 1
10 % 3 = 1
*/

Um den Rest der ganzzahligen Division von zwei natürlichen Zahlen zu berechnen,
beginnen wir mit einer while-Schleife und verwenden dann den Restoperator.

Das Hinzufügen und Subtrahieren von 1 zu einer Zahl ist so häufig, dass sie eigene
Inkrement- und Dekrementoperatoren haben: ++ und --. Sie können i += 1 durch
i++ ersetzen:

// RepetitionWithWhile/IncrementOperator.kt

fun main() {
var i = 0
while (i < 4) {
print(".")
i++

}
}
/* Output:
....
*/

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Wiederholung mit while 65

In der Praxis werden while-Schleifen nicht zum Iterieren über einen Bereich von
Zahlen verwendet. Stattdessen wird die for-Schleife verwendet. Dies wird im
nächsten Atom behandelt.

Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Schleifen & Bereiche
Das Schlüsselwort for führt einen Codeblock für jeden Wert in einer
Sequenz aus.

DieMenge derWerte kann ein Bereich von Ganzzahlen, ein String oder, wie Sie spä-
ter im Buch sehen werden, eine Sammlung von Elementen sein. Das Schlüsselwort
in zeigt an, dass Sie durch die Werte schreiten:

for (v in values) {
// Do something with v

}

Jedes Mal, wenn die Schleife durchlaufen wird, erhält v das nächste Element in
values.

Hier ist eine for-Schleife, die eine Aktion eine feste Anzahl von Malen wiederholt:

// LoopingAndRanges/RepeatThreeTimes.kt

fun main() {
for (i in 1..3) {
println("Hey $i!")

}
}
/* Output:
Hey 1!
Hey 2!
Hey 3!
*/

Die Ausgabe zeigt, dass der index i jeden Wert im Bereich von 1 bis 3 erhält.

Ein range ist ein Intervall von Werten, das durch ein Paar von Endpunkten definiert
wird. Es gibt zwei grundlegende Arten, ranges zu definieren:



Schleifen & Bereiche 67

// LoopingAndRanges/DefiningRanges.kt

fun main() {
val range1 = 1..10 // [1]
val range2 = 0 until 10 // [2]
println(range1)
println(range2)

}
/* Output:
1..10
0..9
*/

• [1] Die Verwendung der ..-Syntax schließt beide Grenzen im resultierenden
Bereich ein.

• [2] until schließt das Ende aus. Die Ausgabe zeigt, dass 10 nicht Teil des
Bereichs ist.

Die Anzeige eines Bereichs erzeugt ein lesbares Format.

Dies summiert die Zahlen von 10 bis 100:

// LoopingAndRanges/SumUsingRange.kt

fun main() {
var sum = 0
for (n in 10..100) {
sum += n

}
println("sum = $sum")

}
/* Output:
sum = 5005
*/

Sie können über einen Bereich in umgekehrter Reihenfolge iterieren. Sie können auch
einen Schritt-Wert verwenden, um das Intervall vom Standardwert 1 zu ändern:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Schleifen & Bereiche 68

// LoopingAndRanges/ForWithRanges.kt

fun showRange(r: IntProgression) {
for (i in r) {
print("$i ")

}
print(" // $r")
println()

}

fun main() {
showRange(1..5)
showRange(0 until 5)
showRange(5 downTo 1) // [1]
showRange(0..9 step 2) // [2]
showRange(0 until 10 step 3) // [3]
showRange(9 downTo 2 step 3)

}
/* Output:
1 2 3 4 5 // 1..5
0 1 2 3 4 // 0..4
5 4 3 2 1 // 5 downTo 1 step 1
0 2 4 6 8 // 0..8 step 2
0 3 6 9 // 0..9 step 3
9 6 3 // 9 downTo 3 step 3
*/

• [1] downTo erzeugt einen absteigenden Bereich.
• [2] step ändert das Intervall. Hier wird der Bereich in Schritten von zwei statt
einem durchlaufen.

• [3] until kann auch mit step verwendet werden. Beachten Sie, wie sich dies
auf die Ausgabe auswirkt.

In jedem Fall bilden die Zahlenfolgen eine arithmetische Folge. showRange() ak-
zeptiert einen IntProgression-Parameter, der ein eingebauter Typ ist, der Int-
Bereiche beinhaltet. Beachten Sie, dass die String-Darstellung jeder IntProgres-
sion, wie sie im Ausgabekommentar für jede Zeile erscheint, oft anders ist als der
Bereich, der in showRange() übergeben wird—der IntProgression übersetzt die
Eingabe in eine gleichwertige gemeinsame Form.

Sie können auch einen Bereich von Zeichen erzeugen. Diese for-Schleife iteriert von
a bis z:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Schleifen & Bereiche 69

// LoopingAndRanges/ForWithCharRange.kt

fun main() {
for (c in 'a'..'z') {

print(c)
}

}
/* Output:
abcdefghijklmnopqrstuvwxyz
*/

Sie können über einen Bereich von Elementen iterieren, die ganze Mengen sind, wie
Ganzzahlen und Zeichen, aber nicht Gleitkommawerte.

Eckige Klammern greifen über den Index auf Zeichen zu. Da wir mit dem Zählen
der Zeichen in einem String bei Null beginnen, wählt s[0] das erste Zeichen des
String s aus. Die Auswahl von s.lastIndex ergibt die letzte Indexnummer:

// LoopingAndRanges/IndexIntoString.kt

fun main() {
val s = "abc"
for (i in 0..s.lastIndex) {
print(s[i] + 1)

}
}
/* Output:
bcd
*/

Manchmal beschreiben Leute s[0] als “das nullte Zeichen.”

Zeichen werden als Zahlen gespeichert, die ihren Unicode¹⁷-Werten entsprechen.
Daher ergibt das Hinzufügen einer Ganzzahl zu einem Zeichen ein neues Zeichen,
das dem neuen Codewert entspricht:

¹⁷https://en.wikipedia.org/wiki/Unicode

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/Unicode


Schleifen & Bereiche 70

// LoopingAndRanges/AddingIntToChar.kt

fun main() {
val ch: Char = 'a'
println(ch + 25)
println(ch < 'z')

}
/* Output:
z
true
*/

Die zweite println() zeigt, dass man Zeichencodes vergleichen kann.

Eine for-Schleife kann direkt über Strings iterieren:

// LoopingAndRanges/IterateOverString.kt

fun main() {
for (ch in "Jnskhm ") {

print(ch + 1)
}

}
/* Output:
Kotlin!
*/

ch empfängt nacheinander jedes Zeichen.

Im folgenden Beispiel durchläuft die Funktion hasChar() den String s und prüft,
ob er ein bestimmtes Zeichen ch enthält. Das return in derMitte der Funktion stoppt
die Funktion, sobald die Antwort gefunden wird:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Schleifen & Bereiche 71

// LoopingAndRanges/HasChar.kt

fun hasChar(s: String, ch: Char): Boolean {
for (c in s) {
if (c == ch) return true

}
return false

}

fun main() {
println(hasChar("kotlin", 't'))
println(hasChar("kotlin", 'a'))

}
/* Output:
true
false
*/

Das nächste Atom zeigt, dass hasChar() unnötig ist — Sie können stattdessen die
eingebaute Syntax verwenden.

Wenn Sie einfach eine Aktion eine feste Anzahl von Malen wiederholen möchten,
können Sie repeat() anstelle einer for-Schleife verwenden:

// LoopingAndRanges/RepeatHi.kt

fun main() {
repeat(2) {
println("hi!")

}
}
/* Output:
hi!
hi!
*/

repeat() ist eine Standardbibliotheksfunktion, kein Schlüsselwort. Sie werden viel
später im Buch sehen, wie sie erstellt wurde.

Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Das in Schlüsselwort
Das in Schlüsselwort prüft, ob ein Wert innerhalb eines Bereichs liegt.

// InKeyword/MembershipInRange.kt

fun main() {
val percent = 35
println(percent in 1..100)

}
/* Output:
true
*/

In Booleans haben Sie gelernt, Grenzen explizit zu überprüfen:

// InKeyword/MembershipUsingBounds.kt

fun main() {
val percent = 35
println(0 <= percent && percent <= 100)

}
/* Output:
true
*/

0 <= x && x <= 100 ist logisch gleichwertig zu x in 0..100. IntelliJ IDEA schlägt
vor, die erste Form automatisch durch die zweite zu ersetzen, da diese einfacher zu
lesen und zu verstehen ist.

Das Schlüsselwort in wird sowohl für Iteration als auch für Mitgliedschaft verwen-
det. Ein in innerhalb des Steuerungsausdrucks einer for-Schleife bedeutet Iteration,
andernfalls prüft in die Mitgliedschaft:



Das in Schlüsselwort 73

// InKeyword/IterationVsMembership.kt

fun main() {
val values = 1..3
for (v in values) {
println("iteration $v")

}
val v = 2
if (v in values)
println("$v is a member of $values")

}
/* Output:
iteration 1
iteration 2
iteration 3
2 is a member of 1..3
*/

Das in Schlüsselwort ist nicht nur auf Bereiche beschränkt. Sie können auch
überprüfen, ob ein Zeichen Teil eines String ist. Das folgende Beispiel verwendet
in anstelle von hasChar() aus dem vorherigen Atom:

// InKeyword/InString.kt

fun main() {
println('t' in "kotlin")
println('a' in "kotlin")

}
/* Output:
true
false
*/

Später im Buch wirst du sehen, dass in auch mit anderen Typen funktioniert.

Hier prüft in, ob ein Zeichen zu einem Bereich von Zeichen gehört:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Das in Schlüsselwort 74

// InKeyword/CharRange.kt

fun isDigit(ch: Char) = ch in '0'..'9'

fun notDigit(ch: Char) =
ch !in '0'..'9' // [1]

fun main() {
println(isDigit('a'))
println(isDigit('5'))
println(notDigit('z'))

}
/* Output:
false
true
true
*/

• [1] !in prüft, dass ein Wert nicht zu einem Bereich gehört.

Sie können einen Double-Bereich erstellen, aber Sie können ihn nur verwenden, um
die Zugehörigkeit zu überprüfen:

// InKeyword/FloatingPointRange.kt

fun inFloatRange(n: Double) {
val r = 1.0..10.0
println("$n in $r? ${n in r}")

}

fun main() {
inFloatRange(0.999999)
inFloatRange(5.0)
inFloatRange(10.0)
inFloatRange(10.0000001)

}
/* Output:
0.999999 in 1.0..10.0? false
5.0 in 1.0..10.0? true
10.0 in 1.0..10.0? true
10.0000001 in 1.0..10.0? false
*/

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Das in Schlüsselwort 75

Sie können nur .. verwenden, um einen Gleitkomma-Bereich in Kotlin zu definieren.

Sie können überprüfen, ob ein String ein Mitglied eines Bereichs von Strings ist:

// InKeyword/StringRange.kt

fun main() {
println("ab" in "aa".."az")
println("ba" in "aa".."az")

}
/* Output:
true
false
*/

Hier verwendet Kotlin den alphabetischen Vergleich.

Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Ausdrücke & Anweisungen
Anweisungen und Ausdrücke sind die kleinsten nützlichen Codefragmen-
te in den meisten Programmiersprachen.

Es gibt einen grundlegendenUnterschied: Eine Anweisung hat eineWirkung, erzeugt
jedoch kein Ergebnis. Ein Ausdruck erzeugt immer ein Ergebnis.

Da eine Anweisung kein Ergebnis erzeugt, muss sie den Zustand ihrer Umgebung
ändern, um nützlich zu sein. Anders gesagt: “Eine Anweisung wird wegen ihrer
Seiteneffekte aufgerufen” (das heißt, was sie andere als ein Ergebnis zu erzeugen
tut). Als Merkhilfe:

Eine Anweisung ändert den Zustand.

Eine Definition von “ausdrücken” ist “herauspressen”, wie in “den Saft aus einer
Orange ausdrücken”. Also

Ein Ausdruck drückt aus.

Das heißt, er erzeugt ein Ergebnis.

Die for-Schleife ist eine Anweisung in Kotlin. Sie kann nicht zugewiesen werden,
da es kein Ergebnis gibt:



Ausdrücke & Anweisungen 77

// ExpressionsStatements/ForIsAStatement.kt

fun main() {
// Can't do this:
// val f = for(i in 1..10) {}
// Compiler error message:
// for is not an expression, and
// only expressions are allowed here

}

Eine for-Schleife wird aufgrund ihrer Nebeneffekte verwendet.

Ein Ausdruck erzeugt einen Wert, der zugewiesen oder als Teil eines anderen
Ausdrucks verwendet werden kann, während eine Anweisung immer ein Top-Level-
Element ist.

Jeder Funktionsaufruf ist ein Ausdruck. Selbst wenn die Funktion Unit zurückgibt
und nur aufgrund ihrer Nebeneffekte aufgerufen wird, kann das Ergebnis dennoch
zugewiesen werden:

// ExpressionsStatements/UnitReturnType.kt

fun unitFun() = Unit

fun main() {
println(unitFun())
val u1: Unit = println(42)
println(u1)
val u2 = println(0) // Type inference
println(u2)

}
/* Output:
kotlin.Unit
42
kotlin.Unit
0
kotlin.Unit
*/

Der Unit-Typ enthält einen einzelnen Wert namens Unit, den Sie direkt zurückge-
ben können, wie in unitFun() zu sehen ist. Der Aufruf von println() gibt ebenfalls

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Ausdrücke & Anweisungen 78

Unit zurück. Das val u1 erfasst den Rückgabewert von println() und ist explizit
als Unit deklariert, während u2 Typinferenz verwendet.

if erzeugt einen Ausdruck, sodass Sie dessen Ergebnis zuweisen können:

// ExpressionsStatements/AssigningAnIf.kt

fun main() {
val result1 = if (11 > 42) 9 else 5

val result2 = if (1 < 2) {
val a = 11
a + 42

} else 42

val result3 =
if ('x' < 'y')

println("x < y")
else

println("x > y")

println(result1)
println(result2)
println(result3)

}
/* Output:
x < y
5
53
kotlin.Unit
*/

Die erste Ausgabelinie ist x < y, obwohl result3 erst am Ende von main() ange-
zeigt wird. Dies geschieht, weil die Auswertung von result3 println() aufruft
und die Auswertung erfolgt, wenn result3 definiert wird.

Beachten Sie, dass a innerhalb des Codeblocks für result2 definiert ist. Das Ergebnis
des letzten Ausdrucks wird zum Ergebnis des if-Ausdrucks; hier ist es die Summe
von 11 und 42. Aber was ist mit a? Sobald Sie den Codeblock verlassen (außerhalb
der geschweiften Klammern gehen), können Sie nicht mehr auf a zugreifen. Es ist
vorübergehend und wird verworfen, sobald Sie den Gültigkeitsbereich dieses Blocks
verlassen.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Ausdrücke & Anweisungen 79

Der Inkrementoperator i++ ist auch ein Ausdruck, selbst wenn er wie eine Anwei-
sung aussieht. Kotlin folgt dem Ansatz von C-ähnlichen Sprachen und bietet zwei
Versionen von Inkrement- und Dekrementoperatoren mit leicht unterschiedlichen
Semantiken. Der Präfix-Operator erscheint vor dem Operanden, wie in ++i, und
gibt den Wert zurück, nachdem das Inkrement erfolgt ist. Sie können es lesen als
“zuerst das Inkrement durchführen, dann den resultierenden Wert zurückgeben”.
Der Postfix-Operator wird nach dem Operanden platziert, wie in i++, und gibt den
Wert von i zurück, bevor das Inkrement erfolgt. Sie können es lesen als “zuerst das
Ergebnis erzeugen, dann das Inkrement durchführen”.

// ExpressionsStatements/PostfixVsPrefix.kt

fun main() {
var i = 10
println(i++)
println(i)
var j = 20
println(++j)
println(j)

}
/* Output:
10
11
21
21
*/

Der Dekrementoperator hat auch zwei Versionen: --i und i--. Die Verwendung
von Inkrement- und Dekrementoperatoren innerhalb anderer Ausdrücke wird nicht
empfohlen, da dies zu verwirrendem Code führen kann:

// ExpressionsStatements/Confusing.kt

fun main() {
var i = 1
println(i++ + ++i)

}

Versuchen Sie zu erraten, was die Ausgabe sein wird, und überprüfen Sie es dann.

Übungen und Lösungen finden Sie auf www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 1
Dieses Atom fasst die Atome in Abschnitt I zusammen und überprüft sie,
beginnend bei Hallo, Welt! und endend mit Ausdrücke & Anweisungen.

Wenn Sie ein erfahrener Programmierer sind, sollte dies Ihr erstes Atom sein. Neue
Programmierer sollten dieses Atom lesen und die Übungen als Überprüfung von
Abschnitt I durchführen.

Wenn Ihnen etwas unklar ist, studieren Sie das zugehörige Atom zu diesem Thema
(die Unterüberschriften entsprechen den Atomtiteln).

Hallo, Welt

Kotlin unterstützt sowohl // Einzelzeilenkommentare als auch /*-bis-*/ Mehrzei-
lenkommentare. Der Einstiegspunkt eines Programms ist die Funktion main():

// Summary1/Hello.kt

fun main() {
println("Hello, world!")

}
/* Output:
Hello, world!
*/

Die erste Zeile jedes Beispiels in diesem Buch ist ein Kommentar, der den Namen des
Unterverzeichnisses des Atoms enthält, gefolgt von einem / und dem Dateinamen.
Alle extrahierten Code-Beispiele finden Sie unter AtomicKotlin.com¹⁸.

println() ist eine Standardbibliotheksfunktion, die einen einzelnen String-Parameter
(oder einen Parameter, der in einen String konvertiert werden kann) nimmt.

¹⁸http://AtomicKotlin.com

http://atomickotlin.com/
http://atomickotlin.com/


Zusammenfassung 1 81

println() bewegt den Cursor nach der Ausgabe seines Parameters in eine neue
Zeile, während print() den Cursor in derselben Zeile lässt.

Kotlin erfordert kein Semikolon am Ende eines Ausdrucks oder einer Anweisung.
Semikolons sind nur notwendig, um mehrere Ausdrücke oder Anweisungen in einer
einzigen Zeile zu trennen.

var & val, Datentypen

Um einen unveränderlichen Bezeichner zu erstellen, verwenden Sie das Schlüssel-
wort val, gefolgt vom Bezeichnernamen, einem Doppelpunkt und dem Typ für
diesen Wert. Fügen Sie dann ein Gleichheitszeichen und den Wert hinzu, der diesem
val zugewiesen werden soll:

val identifier: Type = initialization

Sobald einem val einWert zugewiesen wurde, kann er nicht neu zugewiesen werden.

Kotlons Typinferenz kann normalerweise den Typ automatisch bestimmen, basie-
rend auf dem Initialisierungswert. Dies führt zu einer einfacheren Definition:

val identifier = initialization

Beide der folgenden sind gültig:

val daysInFebruary = 28
val daysInMarch: Int = 31

Eine var (Variable) Definition sieht gleich aus, indem var anstelle von val verwen-
det wird:

var identifier1 = initialization
var identifier2: Type = initialization

Im Gegensatz zu einem val können Sie ein var ändern, daher ist Folgendes zulässig:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 1 82

var hoursSpent = 20
hoursSpent = 25

Allerdings kann der Typ nicht geändert werden, sodass Sie einen Fehler erhalten,
wenn Sie sagen:

hoursSpent = 30.5

Kotlin leitet den Int-Typ ab, wenn hoursSpent definiert wird, daher wird es die
Änderung in einen Gleitkommawert nicht akzeptieren.

Funktionen

Funktionen sind benannte Unterprogramme:

fun functionName(arg1: Type1, arg2: Type2, ...): ReturnType {
// Lines of code ...
return result

}

Das Schlüsselwort fun wird gefolgt vom Funktionsnamen und der Parameterliste
in Klammern. Jeder Parameter muss einen expliziten Typ haben, da Kotlin die
Parameterarten nicht ableiten kann. Die Funktion selbst hat einen Typ, der auf die
gleiche Weise definiert wird wie bei var oder val (ein Doppelpunkt gefolgt vom
Typ). Der Typ der Funktion ist der Typ des zurückgegebenen Ergebnisses.

Die Funktionssignatur wird gefolgt vom Funktionskörper, der in geschweiften Klam-
mern enthalten ist. Die return-Anweisung liefert den Rückgabewert der Funktion.

Sie können eine abgekürzte Syntax verwenden, wenn die Funktion aus einem
einzelnen Ausdruck besteht:

fun functionName(arg1: Type1, arg2: Type2, ...): ReturnType = result

Diese Form wird als Ausdruckskörper bezeichnet. Anstelle einer öffnenden ge-
schweiften Klammer verwenden Sie ein Gleichheitszeichen gefolgt vom Ausdruck.
Sie können den Rückgabetyp weglassen, weil Kotlin ihn ableitet.

Hier ist eine Funktion, die den Würfel ihres Parameters produziert, und eine andere,
die ein Ausrufezeichen zu einem String hinzufügt:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 1 83

// Summary1/BasicFunctions.kt

fun cube(x: Int): Int {
return x * x * x

}

fun bang(s: String) = s + "!"

fun main() {
println(cube(3))
println(bang("pop"))

}
/* Output:
27
pop!
*/

cube() hat einen Blockkörper mit einer expliziten return-Anweisung. bang() ist
ein Ausdruckskörper, der den Rückgabewert der Funktion erzeugt. Kotlin leitet den
Rückgabetyp von bang() als String ab.

Boolesche Werte

Für die Boolesche Algebra bietet Kotlin Operatoren wie:

• ! (nicht) negiert den Wert logisch (wandelt true in false und umgekehrt).
• && (und) gibt true nur zurück, wenn beide Bedingungen true sind.
• || (oder) gibt true zurück, wenn mindestens eine der Bedingungen true ist.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 1 84

// Summary1/Booleans.kt

fun main() {
val opens = 9
val closes = 20
println("Operating hours: $opens - $closes")
val hour = 6
println("Current time: " + hour)

val isOpen = hour >= opens && hour < closes
println("Open: " + isOpen)
println("Not open: " + !isOpen)

val isClosed = hour < opens || hour >= closes
println("Closed: " + isClosed)

}
/* Output:
Operating hours: 9 - 20
Current time: 6
Open: false
Not open: true
Closed: true
*/

Der Initialisierer von isOpen verwendet &&, um zu testen, ob beide Bedingungen
true sind. Die erste Bedingung hour >= opens ist false, sodass das Ergebnis des
gesamten Ausdrucks falsewird. Der Initialisierer für isClosed verwendet ||, was
true ergibt, wenn mindestens eine der Bedingungen true ist. Der Ausdruck hour
< opens ist true, daher ist der gesamte Ausdruck true.

if-Ausdrücke

Da if ein Ausdruck ist, liefert es ein Ergebnis. Dieses Ergebnis kann einer var oder
val zugewiesen werden. Hier sehen Sie auch die Verwendung des Schlüsselworts
else:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 1 85

// Summary1/IfResult.kt

fun main() {
val result = if (99 < 100) 4 else 42
println(result)

}
/* Output:
4
*/

Entweder Zweig eines if-Ausdrucks kann ein mehrzeiliger Codeblock sein, der von
geschweiften Klammern umgeben ist:

// Summary1/IfExpression.kt

fun main() {
val activity = "swimming"
val hour = 10

val isOpen = if (
activity == "swimming" ||
activity == "ice skating") {
val opens = 9
val closes = 20
println("Operating hours: " +

opens + " - " + closes)
hour >= opens && hour < closes

} else {
false

}
println(isOpen)

}
/* Output:
Operating hours: 9 - 20
true
*/

Ein Wert, der innerhalb eines Codeblocks definiert ist, wie opens, ist außerhalb
des Gültigkeitsbereichs dieses Blocks nicht zugänglich. Da sie global für den if-
Ausdruck definiert sind, sind activity und hour innerhalb des if-Ausdrucks
zugänglich.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 1 86

Das Ergebnis eines if-Ausdrucks ist das Ergebnis des letzten Ausdrucks des gewähl-
ten Zweigs. Hier ist es hour >= opens && hour <= closes, was true ist.

String-Vorlagen

Sie können einen Wert innerhalb eines String mit Hilfe von String-Vorlagen
einfügen. Verwenden Sie ein $ vor dem Bezeichnernamen:

// Summary1/StrTemplates.kt

fun main() {
val answer = 42
println("Found $answer!") // [1]
val condition = true
println(
"${if (condition) 'a' else 'b'}") // [2]

println("printing a $1") // [3]
}
/* Output:
Found 42!
a
printing a $1
*/

• [1] $answer ersetzt den Wert, der in answer enthalten ist.
• [2] ${if(condition) 'a' else 'b'} wertet den Ausdruck innerhalb von
${} aus und ersetzt das Ergebnis.

• [3] Wenn dem $ etwas folgt, das nicht als Programmkennzeichner erkennbar
ist, passiert nichts Besonderes.

Verwenden Sie dreifach-angeführte Strings, um mehrzeiligen Text oder Text mit
Sonderzeichen zu speichern:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 1 87

// Summary1/ThreeQuotes.kt

fun json(q: String, a: Int) = """{
"question" : "$q",
"answer" : $a

}"""

fun main() {
println(json("The Ultimate", 42))

}
/* Output:
{
"question" : "The Ultimate",
"answer" : 42

}
*/

Sie müssen keine Sonderzeichen wie " innerhalb eines dreifach-umrahmten String
maskieren. (In einem regulären String schreiben Sie \", um ein Anführungszeichen
einzufügen). Wie bei normalen Strings können Sie einen Bezeichner oder einen
Ausdruck mit $ innerhalb eines dreifach-umrahmten String einfügen.

Zahlentypen

Kotlin bietet Ganzzahltypen (Int, Long) und Fließkommatypen (Double). Eine
Ganzzahlenkonstante ist standardmäßig Int und Long, wenn Sie ein L anhängen.
Eine Konstante ist Double, wenn sie einen Dezimalpunkt enthält:

// Summary1/NumberTypes.kt

fun main() {
val n = 1000 // Int
val l = 1000L // Long
val d = 1000.0 // Double
println("$n $l $d")

}
/* Output:
1000 1000 1000.0
*/

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 1 88

Ein Int hält Werte zwischen -2³¹ und +2³¹-1. Ganzzahlenwerte können einen
Überlauf verursachen; zum Beispiel verursacht das Hinzufügen von irgendetwas zu
Int.MAX_VALUE einen Überlauf:

// Summary1/Overflow.kt

fun main() {
println(Int.MAX_VALUE + 1)
println(Int.MAX_VALUE + 1L)

}
/* Output:
-2147483648
2147483648
*/

Im zweiten println()-Statement fügen wir L zu 1 hinzu, wodurch der gesamte
Ausdruck vom Typ Long wird, was den Überlauf verhindert. (Ein Long kann Werte
zwischen -2⁶³ und +2⁶³-1 aufnehmen).

Wenn Sie ein Int durch ein anderes Int teilen, erzeugt Kotlin ein Int-Ergebnis,
und ein verbleibender Rest wird abgeschnitten. Also ergibt 1/2 0. Wenn ein Double
beteiligt ist, wird das Int vor der Operation zu Double hochgestuft, sodass 1.0/2
0.5 ergibt.

Man könnte erwarten, dass d1 im Folgenden 3.4 ergibt:

// Summary1/Truncation.kt

fun main() {
val d1: Double = 3.0 + 2 / 5
println(d1)
val d2: Double = 3 + 2.0 / 5
println(d2)

}
/* Output:
3.0
3.4
*/

Aufgrund der Auswertungsreihenfolge tut es das nicht. Kotlin teilt zuerst 2 durch 5,
und Ganzzahlmathematik ergibt 0, was zu einem Ergebnis von 3.0 führt. Dieselbe

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 1 89

Auswertungsreihenfolge erzeugt das erwartete Ergebnis für d2. Die Division von 2.0
durch 5 ergibt 0.4. Die 3 wird zu einem Double hochgestuft, weil wir es zu einem
Double (0.4) addieren, was 3.4 ergibt.

Das Verständnis der Auswertungsreihenfolge hilft Ihnen zu entschlüsseln, was ein
Programmmacht, sowohl mit logischen Operationen (Boolean-Ausdrücken) als auch
mit mathematischen Operationen. Wenn Sie sich über die Auswertungsreihenfolge
unsicher sind, verwenden Sie Klammern, um Ihre Absicht zu erzwingen. Dies macht
es auch für diejenigen, die Ihren Code lesen, klar.

Wiederholung mit while

Eine while-Schleife läuft weiter, solange der kontrollierende Boolean-Ausdruck
true ergibt:

while (Boolean-expression) {
// Code to be repeated

}

Der Boolean expression wird einmal zu Beginn der Schleife und erneut vor jeder
weiteren Iteration ausgewertet.

// Summary1/While.kt

fun testCondition(i: Int) = i < 100

fun main() {
var i = 0
while (testCondition(i)) {
print(".")
i += 10

}
}
/* Output:
..........
*/

Kotlin leitet Boolean als Ergebnistyp für testCondition() ab.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 1 90

Die Kurzformen der Zuweisungsoperatoren sind für alle mathematischen Opera-
tionen verfügbar (+=, -=, *=, /=, %=). Kotlin unterstützt auch die Inkrement- und
Dekrementoperatoren ++ und --, sowohl in Präfix- als auch in Postfix-Form.

while kann mit dem Schlüsselwort do verwendet werden:

do {
// Code to be repeated

} while (Boolean-expression)

Umschreiben von While.kt:

// Summary1/DoWhile.kt

fun main() {
var i = 0
do {
print(".")
i += 10

} while (testCondition(i))
}
/* Output:
..........
*/

Der einzige Unterschied zwischen while und do-while besteht darin, dass der
Körper von do-while immer mindestens einmal ausgeführt wird, selbst wenn der
boolesche Ausdruck beim ersten Mal false ergibt.

Schleifen & Bereiche

Viele Programmiersprachen greifen auf ein iterierbares Objekt zu, indem sie durch
ganze Zahlen gehen. Kotlins for erlaubt es Ihnen, Elemente direkt aus iterierbaren
Objekten wie Bereichen und Strings zu entnehmen. Zum Beispiel wählt diese for-
Schleife jedes Zeichen in der Zeichenkette "Kotlin" aus:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 1 91

// Summary1/StringIteration.kt

fun main() {
for (c in "Kotlin") {

print("$c ")
// c += 1 // error:
// val cannot be reassigned

}
}
/* Output:
K o t l i n
*/

c kann nicht explizit als entweder var oder val definiert werden—Kotlin macht es
automatisch zu einem val und leitet seinen Typ als Char ab (man kann den Typ
explizit angeben, aber in der Praxis wird dies selten getan).

Sie können durch ganze Zahlenwerte mit Bereichen iterieren:

// Summary1/RangeOfInt.kt

fun main() {
for (i in 1..10) {
print("$i ")

}
}
/* Output:
1 2 3 4 5 6 7 8 9 10
*/

Einen Bereichmit .. zu erstellen, schließt beide Grenzen ein, aber until schließt das
obere Ende aus: 1 bis 10 ist dasselbe wie 1..9. Sie können einen Inkrementwert
mit step angeben: 1..21 Schritt 3.

Das in Schlüsselwort

Dasselbe in, das die Iteration in for Schleifen ermöglicht, erlaubt es Ihnen auch,
die Zugehörigkeit zu einem Bereich zu überprüfen. !in gibt true zurück, wenn der
getestete Wert nicht im Bereich liegt:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 1 92

// Summary1/Membership.kt

fun inNumRange(n: Int) = n in 50..100

fun notLowerCase(ch: Char) = ch !in 'a'..'z'

fun main() {
val i1 = 11
val i2 = 100
val c1 = 'K'
val c2 = 'k'
println("$i1 ${inNumRange(i1)}")
println("$i2 ${inNumRange(i2)}")
println("$c1 ${notLowerCase(c1)}")
println("$c2 ${notLowerCase(c2)}")

}
/* Output:
11 false
100 true
K true
k false
*/

in kann auch verwendet werden, um die Zugehörigkeit zu Gleitkomma-Bereichen
zu testen, obwohl solche Bereiche nur mit .. und nicht mit until definiert werden
können.

Ausdrücke & Statements

Das kleinste nützliche Codefragment in denmeisten Programmiersprachen ist entwe-
der ein Statement oder einAusdruck. Diese haben einen grundlegenden Unterschied:

• Ein Statement ändert den Zustand.
• Ein Ausdruck drückt aus.

Das heißt, ein Ausdruck liefert ein Ergebnis, während ein Statement das nicht tut.
Weil es nichts zurückgibt, muss ein Statement den Zustand seiner Umgebung ändern
(das heißt, einen Seiteneffekt erzeugen), um etwas Nützliches zu tun.

Fast alles in Kotlin ist ein Ausdruck:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 1 93

val hours = 10
val minutesPerHour = 60
val minutes = hours * minutesPerHour

In jedem Fall ist alles rechts vom = ein Ausdruck, der ein Ergebnis liefert, das der
Bezeichnung links zugewiesen wird.

Funktionen wie println() scheinen kein Ergebnis zu erzeugen, aber da sie immer
noch Ausdrücke sind, müssen sie etwas zurückgeben. Kotlin hat dafür einen speziel-
len Typ namens Unit:

// Summary1/UnitReturn.kt

fun main() {
val result = println("returns Unit")
println(result)

}
/* Output:
returns Unit
kotlin.Unit
*/

Erfahrene Programmierer sollten nach dem Bearbeiten der Übungen für dieses Atom
zu Zusammenfassung 2 gehen.

Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Abschnitt II: Einführung in
Objekte

Objekte sind die Grundlage für zahlreiche moderne Sprachen, einschließ-
lich Kotlin.

In einer objektorientierten (OO) Programmiersprache entdecken Sie “Nomen” in dem
Problem, das Sie lösen, und übersetzen diese Nomen inObjekte. Objekte haltenDaten
und führen Aktionen aus. Eine objektorientierte Sprache erstellt und verwendet
Objekte.

Kotlin ist nicht nur objektorientiert; es ist auch funktional. Funktionale Sprachen
konzentrieren sich auf die Aktionen, die Sie ausführen (“Verben”). Kotlin ist eine
hybride objekt-funktionale Sprache.

• Dieser Abschnitt erklärt die Grundlagen der objektorientierten Programmie-
rung.

• Abschnitt IV: Funktionale Programmierung führt in die funktionale Program-
mierung ein.

• Abschnitt V: Objektorientierte Programmierung behandelt die objektorientierte
Programmierung im Detail.



Objekte überall
Objekte speichern Daten mithilfe von Eigenschaften (vals und vars) und
führen Operationen mit diesen Daten mithilfe von Funktionen durch.

Einige Definitionen:

• Klasse: Definiert Eigenschaften und Funktionen für das, was im Wesentlichen
ein neuer Datentyp ist. Klassen werden auch als benutzerdefinierte Typen
bezeichnet.

• Mitglied: Entweder eine Eigenschaft oder eine Funktion einer Klasse.
• Mitgliedsfunktion: Eine Funktion, die nur mit einer bestimmten Klasse von
Objekten arbeitet.

• Ein Objekt erstellen: Ein val oder var einer Klasse erstellen. Auch als eine
Instanz dieser Klasse erstellen bezeichnet.

Da Klassen Zustand und Verhalten definieren, können wir sogar Instanzen von
eingebauten Typen wie Double oder Boolean als Objekte bezeichnen.

Betrachten Sie die IntRange-Klasse von Kotlin:

// ObjectsEverywhere/IntRanges.kt

fun main() {
val r1 = IntRange(0, 10)
val r2 = IntRange(5, 7)
println(r1)
println(r2)

}
/* Output:
0..10
5..7
*/



Objekte überall 96

Wir erstellen zwei Objekte (Instanzen) der Klasse IntRange. Jedes Objekt hat seinen
eigenen Speicherplatz im Speicher. IntRange ist eine Klasse, aber ein bestimmter
Bereich r1 von 0 bis 10 ist ein Objekt, das sich von dem Bereich r2 unterscheidet.

Für ein IntRange-Objekt stehen zahlreiche Operationen zur Verfügung. Einige sind
einfach, wie sum(), und andere erfordern mehr Verständnis, bevor Sie sie verwenden
können. Wenn Sie versuchen, eine aufzurufen, die Argumente benötigt, wird die IDE
nach diesen Argumenten fragen.

Um mehr über eine bestimmte Mitgliedsfunktion zu erfahren, schlagen Sie in der
Kotlin-Dokumentation¹⁹ nach. Beachten Sie das Lupensymbol im oberen rechten
Bereich der Seite. Klicken Sie darauf und geben Sie IntRange in das Suchfeld ein. Kli-
cken Sie auf kotlin.ranges > IntRange aus der resultierenden Suche. Sie sehen
die Dokumentation für die IntRange-Klasse. Sie können alle Mitgliedsfunktionen—
die Programmierschnittstelle (API)—der Klasse studieren. Obwohl Sie die meisten
davon zu diesem Zeitpunkt nicht verstehen werden, ist es hilfreich, sich daran zu
gewöhnen, in der Kotlin-Dokumentation nachzuschlagen.

Ein IntRange ist eine Art von Objekt, und ein charakteristisches Merkmal eines
Objekts ist, dass Sie Operationen darauf ausführen. Statt “eine Operation ausführen”
sagen wir eine Mitgliedsfunktion aufrufen. Um eineMitgliedsfunktion für ein Objekt
aufzurufen, beginnen Sie mit dem Objektbezeichner, dann ein Punkt, dann der Name
der Operation:

// ObjectsEverywhere/RangeSum.kt

fun main() {
val r = IntRange(0, 10)
println(r.sum())

}
/* Output:
55
*/

Da sum() eine Mitgliedsfunktion ist, die für IntRange definiert ist, rufen Sie sie auf,
indem Sie r.sum() schreiben. Dies summiert alle Zahlen in diesem IntRange.

Frühere objektorientierte Sprachen verwendeten den Ausdruck “eine Nachricht
senden”, um das Aufrufen einer Mitgliedsfunktion für ein Objekt zu beschreiben.
Manchmal sieht man diese Terminologie noch.

¹⁹https://kotlinlang.org/api/latest/jvm/stdlib/index.html

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

https://kotlinlang.org/api/latest/jvm/stdlib/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/index.html


Objekte überall 97

Klassen können viele Operationen (Mitgliedsfunktionen) haben. Es ist einfach, Klas-
sen mit einer IDE (integrierte Entwicklungsumgebung) zu erkunden, die eine Funk-
tion namens Code-Vervollständigung enthält. Wenn Sie zum Beispiel .s nach einem
Objektbezeichner in IntelliJ IDEA eingeben, zeigt es alle Mitglieder dieses Objekts
an, die mit s beginnen:

Code-Vervollständigung

Versuchen Sie, die Code-Vervollständigung bei anderen Objekten zu verwenden.
Zum Beispiel können Sie einen String umkehren oder alle Zeichen in Kleinbuch-
staben umwandeln:

// ObjectsEverywhere/Strings.kt

fun main() {
val s = "AbcD"
println(s.reversed())
println(s.lowercase())

}
/* Output:
DcbA
abcd
*/

Du kannst einen String leicht in einen integer umwandeln und zurück:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Objekte überall 98

// ObjectsEverywhere/Conversion.kt

fun main() {
val s = "123"
println(s.toInt())
val i = 123
println(i.toString())

}
/* Output:
123
123
*/

Später im Buch besprechen wir Strategien, um Situationen zu bewältigen, wenn der
String, den Sie konvertieren möchten, keinen korrekten Integer-Wert darstellt.

Sie können auch von einem Zahlentyp zu einem anderen konvertieren. Um Ver-
wirrung zu vermeiden, sind Konvertierungen zwischen Zahlentypen explizit. Zum
Beispiel konvertieren Sie ein Int i zu einem Long, indem Sie i.toLong() aufrufen,
oder zu einem Double mit i.toDouble():

// ObjectsEverywhere/NumberConversions.kt

fun fraction(numerator: Long, denom: Long) =
numerator.toDouble() / denom

fun main() {
val num = 1
val den = 2
val f = fraction(num.toLong(), den.toLong())
println(f)

}
/* Output:
0.5
*/

Gut definierte Klassen sind für einen Programmierer leicht zu verstehen und erzeu-
gen Code, der leicht zu lesen ist.

Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Klassen erstellen
Sie können nicht nur vordefinierte Typen wie IntRange und String
verwenden, sondern auch Ihre eigenen Objekttypen erstellen.

Tatsächlich besteht ein Großteil der Aktivitäten in der objektorientierten Program-
mierung darin, neue Typen zu erstellen. Sie erstellen neue Typen, indem Sie Klassen
definieren.

Ein Objekt ist ein Teil der Lösung für ein Problem, das Sie zu lösen versuchen.
Beginnen Sie damit, Objekte als Ausdruck von Konzepten zu betrachten. Als erste
Annäherung, wenn Sie ein “Ding” in Ihrem Problem entdecken, repräsentieren Sie
dieses Ding als Objekt in Ihrer Lösung.

Angenommen, Sie möchten ein Programm erstellen, um Tiere in einem Zoo zu
verwalten. Es ist sinnvoll, die verschiedenen Tierarten basierend darauf zu kategori-
sieren, wie sie sich verhalten, welche Bedürfnisse sie haben, mit welchen Tieren sie
sich vertragen und mit welchen sie kämpfen. Alles, was eine Tierart unterscheidet,
wird in der Klassifizierung des Objekts dieses Tieres erfasst. Kotlin verwendet das
Schlüsselwort class, um einen neuen Objekttyp zu erstellen:

// CreatingClasses/Animals.kt

// Create some classes:
class Giraffe
class Bear
class Hippo

fun main() {
// Create some objects:
val g1 = Giraffe()
val g2 = Giraffe()
val b = Bear()
val h = Hippo()

// Each object() is unique:



Klassen erstellen 100

println(g1)
println(g2)
println(h)
println(b)

}
/* Sample output:
Giraffe@28d93b30
Giraffe@1b6d3586
Hippo@4554617c
Bear@74a14482
*/

Umeine Klasse zu definieren, beginnen Siemit dem Schlüsselwort class, gefolgt von
einemBezeichner für Ihre neue Klasse. Der Klassennamemussmit einemBuchstaben
(A-Z, Groß- oder Kleinbuchstaben) beginnen, kann jedoch Zahlen und Unterstriche
enthalten. Nach Konvention wird der erste Buchstabe eines Klassennamens großge-
schrieben, während der erste Buchstabe aller vals und vars kleingeschrieben wird.

Animals.kt beginnt mit der Definition von drei neuen Klassen und erstellt dann
vier Objekte (auch Instanzen genannt) dieser Klassen.

Giraffe ist eine Klasse, aber eine bestimmte fünfjährige männliche Giraffe, die in
Botswana lebt, ist ein Objekt. Jedes Objekt unterscheidet sich von allen anderen,
daher geben wir ihnen Namen wie g1 und g2.

Beachten Sie die etwas kryptische Ausgabe der letzten vier Zeilen. Der Teil vor dem
@ ist der Klassenname und die Zahl nach dem @ ist die Adresse, an der sich das
Objekt im Speicher Ihres Computers befindet. Ja, das ist eine Zahl, auch wenn sie
einige Buchstaben enthält - das nennt man “hexadezimale Notation”²⁰. Jedes Objekt
in Ihrem Programm hat seine eigene eindeutige Adresse.

Die hier definierten Klassen (Giraffe, Bear und Hippo) sind so einfach wie möglich:
die gesamte Klassendefinition besteht aus einer einzigen Zeile. Komplexere Klassen
verwenden geschweifte Klammern ({ und }), um einen Klassenkörper zu erstellen,
der die Merkmale und Verhaltensweisen dieser Klasse enthält.

Eine innerhalb einer Klasse definierte Funktion gehört zu dieser Klasse. In Kotlin
nennen wir sie Mitgliedsfunktionen der Klasse. Einige objektorientierte Program-
miersprachen wie Java entscheiden sich dafür, sie Methoden zu nennen, ein Begriff,

²⁰https://en.wikipedia.org/wiki/Hexadecimal

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

https://en.wikipedia.org/wiki/Hexadecimal
https://en.wikipedia.org/wiki/Hexadecimal


Klassen erstellen 101

der aus frühen objektorientierten Sprachen wie Smalltalk stammt. Um die funktiona-
le Natur von Kotlin zu betonen, entschieden sich die Designer, den Begriff Methode
wegzulassen, da einige Anfänger die Unterscheidung verwirrend fanden. Stattdessen
wird in der gesamten Sprache der Begriff Funktion verwendet.

Wenn es eindeutig ist, sagen wir einfach “Funktion”. Wenn wir die Unterscheidung
treffen müssen:

• Mitgliedsfunktionen gehören zu einer Klasse.
• Top-Level-Funktionen existieren für sich und sind nicht Teil einer Klasse.

Hier gehört bark() zur Dog-Klasse:

// CreatingClasses/Dog.kt

class Dog {
fun bark() = "yip!"

}

fun main() {
val dog = Dog()

}

In main() erstellen wir ein Dog-Objekt und weisen es val dog zu. Kotlin gibt eine
Warnung aus, weil wir dog nie verwenden.

Mitgliedsfunktionen werden aufgerufen (invoked), indem man den Objektnamen
verwendet, gefolgt von einem . (Punkt), gefolgt vom Funktionsnamen und der
Parameterliste. Hier rufen wir die Funktion meow() auf und zeigen das Ergebnis an:

// CreatingClasses/Cat.kt

class Cat {
fun meow() = "mrrrow!"

}

fun main() {
val cat = Cat()
// Call 'meow()' for 'cat':
val m1 = cat.meow()
println(m1)

}

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Klassen erstellen 102

/* Output:
mrrrow!
*/

Eine Mitgliedsfunktion wirkt auf eine bestimmte Instanz einer Klasse. Wenn Sie
meow() aufrufen, müssen Sie es mit einem Objekt aufrufen. Während des Aufrufs
kann meow() auf andere Mitglieder dieses Objekts zugreifen.

BeimAufrufen einerMitgliedsfunktion verfolgt Kotlin das betreffende Objekt, indem
es leise eine Referenz auf dieses Objekt übergibt. Diese Referenz ist innerhalb der
Mitgliedsfunktion mit dem Schlüsselwort this verfügbar.

Mitgliedsfunktionen haben einen speziellen Zugriff auf andere Elemente innerhalb
einer Klasse, indem sie einfach diese Elemente benennen. Sie können den Zugriff auf
diese Elemente auch explizit mit this qualifizieren. Hier ruft exercise() speak()
mit und ohne Qualifizierung auf:

// CreatingClasses/Hamster.kt

class Hamster {
fun speak() = "Squeak! "
fun exercise() =
this.speak() + // Qualified with 'this'

speak() + // Without 'this'
"Running on wheel"

}

fun main() {
val hamster = Hamster()
println(hamster.exercise())

}
/* Output:
Squeak! Squeak! Running on wheel
*/

In exercise(), rufen wir zuerst speak() mit einem expliziten this auf und lassen
dann die Qualifikation weg.

Manchmal sieht man Code, der ein unnötiges explizites this enthält. Solcher Code
stammt oft von Programmierern, die eine andere Sprache kennen, in der this
entweder erforderlich ist oder Teil des Stils ist. Die unnötige Verwendung eines

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Klassen erstellen 103

Features ist verwirrend für den Leser, der Zeit damit verbringt, herauszufinden,
warum Sie es tun. Wir empfehlen, die unnötige Verwendung von this zu vermeiden.

Außerhalb der Klasse muss man hamster.exercise() und hamster.speak()
sagen.

Übungen und Lösungen finden Sie auf www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Eigenschaften
Eine Eigenschaft ist ein var oder val, das Teil einer Klasse ist.

Das Definieren einer Eigenschaft beibehält den Zustand innerhalb einer Klasse. Das
Beibehalten des Zustands ist der Hauptmotivationsgrund, eine Klasse zu erstellen,
anstatt nur eine oder mehrere eigenständige Funktionen zu schreiben.

Eine var-Eigenschaft kann neu zugewiesen werden, während eine val-Eigenschaft
dies nicht kann. Jedes Objekt erhält seinen eigenen Speicher für Eigenschaften:

// Properties/Cup.kt

class Cup {
var percentFull = 0

}

fun main() {
val c1 = Cup()
c1.percentFull = 50
val c2 = Cup()
c2.percentFull = 100

println(c1.percentFull)
println(c2.percentFull)

}
/* Output:
50
100
*/

Das Definieren eines var oder val innerhalb einer Klasse sieht genauso aus wie das
Definieren innerhalb einer Funktion. Allerdings wird das var oder val Teil dieser
Klasse, und Sie müssen darauf verweisen, indem Sie das Objekt mit Punktnotation
angeben, wobei Sie einen Punkt zwischen das Objekt und denNamen der Eigenschaft
setzen. Sie können die Punktnotation bei jedem Verweis auf percentFull sehen.



Eigenschaften 105

Die Eigenschaft percentFull repräsentiert den Zustand des entsprechenden Cup-
Objekts. c1.percentFull und c2.percentFull enthalten unterschiedliche Werte,
was zeigt, dass jedes Objekt über seinen eigenen Speicherplatz verfügt.

Eine Mitgliedsfunktion kann auf eine Eigenschaft innerhalb ihres Objekts verweisen,
ohne die Punktnotation zu verwenden (das heißt, ohne sie zu qualifizieren):

// Properties/Cup2.kt

class Cup2 {
var percentFull = 0
val max = 100
fun add(increase: Int): Int {
percentFull += increase
if (percentFull > max)

percentFull = max
return percentFull

}
}

fun main() {
val cup = Cup2()
cup.add(50)
println(cup.percentFull)
cup.add(70)
println(cup.percentFull)

}
/* Output:
50
100
*/

Die add()-Mitgliedsfunktion versucht, increase zu percentFull hinzuzufügen,
stellt jedoch sicher, dass es nicht über 100 % hinausgeht.

Eigenschaften und Mitgliedsfunktionen müssen von außerhalb einer Klasse qualifi-
ziert werden.

Man kann Eigenschaften auf oberster Ebene definieren:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Eigenschaften 106

// Properties/TopLevelProperty.kt

val constant = 42

var counter = 0

fun inc() {
counter++

}

Die Definition eines val auf oberster Ebene ist sicher, da es nicht verändert werden
kann. Die Definition einer veränderbaren (var) Eigenschaft auf oberster Ebene wird
jedoch als Antimuster angesehen. Wenn Ihr Programm komplizierter wird, wird es
schwieriger, den gemeinsamen veränderbaren Zustand korrekt zu verstehen. Wenn
jeder in Ihrem Code Zugriff auf den var Zähler hat, können Sie nicht garantieren,
dass er korrekt verändert wird: Während inc() den Zähler um eins erhöht, könnte
ein anderer Teil des Programms den Zähler um zehn verringern, was zu schwer
nachvollziehbaren Fehlern führt. Es ist am besten, veränderbaren Zustand innerhalb
einer Klasse zu schützen. In Sichtbarkeit einschränken wird gezeigt, wie man ihn
wirklich verstecken kann.

Zu sagen, dass vars verändert werden können, während vals dies nicht können, ist
eine Vereinfachung. Als Analogie können Sie ein Haus als val betrachten und ein
Sofa im Haus als var. Sie können das Sofa verändern, weil es ein var ist. Sie können
jedoch das Haus nicht neu zuweisen, da es ein val ist:

// Properties/ChangingAVal.kt

class House {
var sofa: String = ""

}

fun main() {
val house = House()
house.sofa = "Simple sleeper sofa: $89.00"
println(house.sofa)
house.sofa = "New leather sofa: $3,099.00"
println(house.sofa)
// Cannot reassign the val to a new House:
// house = House()

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Eigenschaften 107

}
/* Output:
Simple sleeper sofa: $89.00
New leather sofa: $3,099.00
*/

Obwohl house ein val ist, kann sein Objekt modifiziert werden, weil sofa in class
House ein var ist. Die Definition von house als val verhindert nur, dass es einem
neuen Objekt neu zugewiesen wird.

Wennwir eine Eigenschaft als val definieren, kann sie nicht neu zugewiesen werden:

// Properties/AnUnchangingVar.kt

class Sofa {
val cover: String = "Loveseat cover"

}

fun main() {
var sofa = Sofa()
// Not allowed:
// sofa.cover = "New cover"
// Reassigning a var:
sofa = Sofa()

}

Auch wenn sofa eine var ist, kann sein Objekt nicht modifiziert werden, weil
cover in class Sofa ein val ist. sofa kann jedoch einem neuen Objekt zugewiesen
werden.

Wir haben über Bezeichner wie house und sofa gesprochen, als wären sie Objekte.
Tatsächlich sind sie Referenzen auf Objekte. Eine Möglichkeit, dies zu sehen, ist zu
beobachten, dass zwei Bezeichner auf dasselbe Objekt verweisen können:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Eigenschaften 108

// Properties/References.kt

class Kitchen {
var table: String = "Round table"

}

fun main() {
val kitchen1 = Kitchen()
val kitchen2 = kitchen1
println("kitchen1: ${kitchen1.table}")
println("kitchen2: ${kitchen2.table}")
kitchen1.table = "Square table"
println("kitchen1: ${kitchen1.table}")
println("kitchen2: ${kitchen2.table}")

}
/* Output:
kitchen1: Round table
kitchen2: Round table
kitchen1: Square table
kitchen2: Square table
*/

Wenn kitchen1 table verändert, sieht kitchen2 die Änderung. kitchen1.table
und kitchen2.table zeigen die gleiche Ausgabe.

Denken Sie daran, dass var und val Referenzen anstelle von Objekten steuern.
Ein var ermöglicht es Ihnen, eine Referenz auf ein anderes Objekt neu zu binden,
während ein val dies verhindert.

Veränderlichkeit bedeutet, dass ein Objekt seinen Zustand ändern kann. In den obi-
gen Beispielen definieren class House und class Kitchen veränderliche Objekte,
während class Sofa unveränderliche Objekte definiert.

Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Konstruktoren
Sie initialisieren ein neues Objekt, indem Sie Informationen an einen
Konstruktor übergeben.

Jedes Objekt ist eine isolierte Welt. Ein Programm ist eine Sammlung von Objekten,
daher löst die korrekte Initialisierung jedes einzelnen Objekts einen großen Teil
des Initialisierungsproblems. Kotlin enthält Mechanismen, um eine ordnungsgemäße
Initialisierung von Objekten zu gewährleisten.

Ein Konstruktor ist wie eine spezielle Mitgliedsfunktion, die ein neues Objekt initia-
lisiert. Die einfachste Form eines Konstruktors ist eine einzeilige Klassendefinition:

// Constructors/Wombat.kt

class Wombat

fun main() {
val wombat = Wombat()

}

In main(), das Aufrufen von Wombat() erstellt ein Wombat-Objekt. Wenn Sie aus
einer anderen objektorientierten Sprache kommen, könnten Sie erwarten, hier ein
new-Schlüsselwort zu sehen, aber new wäre in Kotlin überflüssig, also wurde es
weggelassen.

Sie übergeben Informationen an einen Konstruktor mit einer Parameterliste, genau
wie bei einer Funktion. Hier nimmt der Alien-Konstruktor ein einziges Argument
entgegen:



Konstruktoren 110

// Constructors/Arg.kt

class Alien(name: String) {
val greeting = "Poor $name!"

}

fun main() {
val alien = Alien("Mr. Meeseeks")
println(alien.greeting)
// alien.name // Error // [1]

}
/* Output:
Poor Mr. Meeseeks!
*/

Um ein Alien-Objekt zu erstellen, ist ein Argument erforderlich (versuchen Sie es
ohne eines). name initialisiert die greeting-Eigenschaft innerhalb des Konstruktors,
ist jedoch außerhalb des Konstruktors nicht zugänglich – versuchen Sie, die Zeile [1]
zu entkommentieren.

Wenn Sie möchten, dass der Konstruktor-Parameter außerhalb des Klassenkörpers
zugänglich ist, definieren Sie ihn als var oder val in der Parameterliste:

// Constructors/VisibleArgs.kt

class MutableNameAlien(var name: String)

class FixedNameAlien(val name: String)

fun main() {
val alien1 =
MutableNameAlien("Reverse Giraffe")

val alien2 =
FixedNameAlien("Krombopulos Michael")

alien1.name = "Parasite"
// Can't do this:
// alien2.name = "Parasite"

}

Diese Klassendefinitionen haben keine expliziten Klassenkörper—die Körper sind
implizit.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Konstruktoren 111

Wenn name als var oder val definiert wird, wird es zu einer Eigenschaft und ist
somit außerhalb des Konstruktors zugänglich. val-Konstruktorparameter können
nicht geändert werden, während var-Konstruktorparameter veränderbar sind.

Ihre Klasse kann zahlreiche Konstruktorparameter haben:

// Constructors/MultipleArgs.kt

class AlienSpecies(
val name: String,
val eyes: Int,
val hands: Int,
val legs: Int

) {
fun describe() =
"$name with $eyes eyes, " +

"$hands hands and $legs legs"
}

fun main() {
val kevin =
AlienSpecies("Zigerion", 2, 2, 2)

val mortyJr =
AlienSpecies("Gazorpian", 2, 6, 2)

println(kevin.describe())
println(mortyJr.describe())

}
/* Output:
Zigerion with 2 eyes, 2 hands and 2 legs
Gazorpian with 2 eyes, 6 hands and 2 legs
*/

In Komplexe Konstruktoren, werden Sie sehen, dass Konstruktoren auch komplexe
Initialisierungslogik enthalten können.

Wenn ein Objekt verwendet wird, wenn ein String erwartet wird, ruft Kotlin die
toString()-Mitgliedsfunktion des Objekts auf. Wenn Sie keine schreiben, erhalten
Sie trotzdem eine Standard-toString():

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Konstruktoren 112

// Constructors/DisplayAlienSpecies.kt

fun main() {
val krombopulosMichael =
AlienSpecies("Gromflomite", 2, 2, 2)

println(krombopulosMichael)
}
/* Sample output:
AlienSpecies@4d7e1886
*/

Der Standard-toString() ist nicht sehr nützlich—er gibt den Klassennamen und die
physikalische Adresse des Objekts aus (dies variiert von einer Programmausführung
zur nächsten). Sie können Ihre eigene toString() definieren:

// Constructors/Scientist.kt

class Scientist(val name: String) {
override fun toString() =
"Scientist('$name')"

}

fun main() {
val zeep = Scientist("Zeep Xanflorp")
println(zeep)

}
/* Output:
Scientist('Zeep Xanflorp')
*/

override ist ein neues Schlüsselwort für uns. Es ist hier erforderlich, weil toString()
bereits eine Definition hat, die eine primitive Ausgabe erzeugt. override teilt Kotlin
mit, dass wir tatsächlich die Standarddefinition von toString() durch unsere eigene
Definition ersetzen möchten. Die Deutlichkeit von overridemacht den Code klarer
und verhindert Fehler.

Ein toString(), das den Inhalt eines Objekts in einer praktischen Form anzeigt,
ist nützlich, um Programmierfehler zu finden und zu beheben. Um den Prozess des
Debuggens zu vereinfachen, bieten IDEs Debugger²¹ an, die es Ihnen ermöglichen,

²¹https://www.jetbrains.com/help/idea/debugging-code.html

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

https://www.jetbrains.com/help/idea/debugging-code.html
https://www.jetbrains.com/help/idea/debugging-code.html


Konstruktoren 113

jeden Schritt der Programmausführung zu beobachten und in Ihre Objekte hinein zu
sehen.

Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Einschränkung der Sichtbarkeit
Wenn Sie ein Stück Code für ein paar Tage oder Wochen liegen lassen und
dann zurückkehren, sehen Sie möglicherweise eine viel bessere Möglich-
keit, es zu schreiben.

Dies ist eine der Hauptmotivationen für das Refactoring, das funktionierenden Code
umschreibt, um ihn lesbarer, verständlicher und damit wartbarer zu machen.

Es gibt eine Spannung in diesem Wunsch, Ihren Code zu ändern und zu verbessern.
Verbraucher (Anwenderprogrammierer) erfordern, dass Aspekte Ihres Codes stabil
bleiben. Sie möchten es ändern, und sie wollen, dass es gleich bleibt.

Dies ist besonders wichtig für Bibliotheken. Verbraucher einer Bibliothek wollen
nicht den Code für eine neue Version dieser Bibliothek umschreiben. Der Bibliotheks-
entwickler muss jedoch frei sein, Änderungen und Verbesserungen vorzunehmen,
mit der Gewissheit, dass der Client-Code von diesen Änderungen nicht betroffen
sein wird.

Daher ist eine primäre Überlegung im Softwaredesign:

Trenne Dinge, die sich ändern, von Dingen, die gleich bleiben.

Umdie Sichtbarkeit zu steuern, bieten Kotlin und einige andere SprachenZugriffsmo-
difikatoren. Bibliotheksentwickler entscheiden mit den Modifikatoren public, pri-
vate, protected und internal, was für den Anwenderprogrammierer zugänglich
ist und was nicht. Dieses Kapitel behandelt public und private, mit einer kurzen
Einführung in internal. Wir erklären protected später im Buch.

Ein Zugriffsmodifikator wie private erscheint vor der Definition einer Klasse,
Funktion oder Eigenschaft. Ein Zugriffsmodifikator steuert nur den Zugriff für diese
spezielle Definition.

Eine public Definition ist für Anwenderprogrammierer zugänglich, sodass Ände-
rungen an dieser Definition den Client-Code direkt beeinflussen. Wenn Sie keinen



Einschränkung der Sichtbarkeit 115

Modifikator angeben, ist Ihre Definition automatisch public, daher ist public
technisch gesehen redundant. Manchmal geben Sie dennoch public zur Klarstellung
an.

Eine private Definition ist verborgen und nur von anderen Mitgliedern derselben
Klasse zugänglich. Änderungen oder sogar das Entfernen einer private Definition
beeinflussen die Anwenderprogrammierer nicht direkt.

private Klassen, Top-Level-Funktionen und Top-Level-Eigenschaften sind nur in-
nerhalb dieser Datei zugänglich:

// Visibility/RecordAnimals.kt

private var index = 0 // [1]

private class Animal(val name: String) // [2]

private fun recordAnimal( // [3]
animal: Animal

) {
println("Animal #$index: ${animal.name}")
index++

}

fun recordAnimals() {
recordAnimal(Animal("Tiger"))
recordAnimal(Animal("Antelope"))

}

fun recordAnimalsCount() {
println("$index animals are here!")

}

Sie können auf private Top-Level-Eigenschaften ([1]), Klassen ([2]) und Funktio-
nen ([3]) von anderen Funktionen und Klassen innerhalb von RecordAnimals.kt
zugreifen. Kotlin verhindert, dass Sie auf ein private Top-Level-Element aus einer
anderen Datei zugreifen, indem es Ihnen mitteilt, dass es in der Datei private ist:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Einschränkung der Sichtbarkeit 116

// Visibility/ObserveAnimals.kt

fun main() {
// Can't access private members
// declared in another file.
// Class is private:
// val rabbit = Animal("Rabbit")
// Function is private:
// recordAnimal(rabbit)
// Property is private:
// index++

recordAnimals()
recordAnimalsCount()

}
/* Output:
Animal #0: Tiger
Animal #1: Antelope
2 animals are here!
*/

Sichtbarkeit wird am häufigsten für Mitglieder einer Klasse verwendet:

// Visibility/Cookie.kt

class Cookie(
private var isReady: Boolean // [1]

) {
private fun crumble() = // [2]
println("crumble")

public fun bite() = // [3]
println("bite")

fun eat() { // [4]
isReady = true // [5]
crumble()
bite()

}
}

fun main() {

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Einschränkung der Sichtbarkeit 117

val x = Cookie(false)
x.bite()
// Can't access private members:
// x.isReady
// x.crumble()
x.eat()

}
/* Output:
bite
crumble
bite
*/

• [1] Eine private Eigenschaft, die außerhalb der umgebenden Klasse nicht
zugänglich ist.

• [2] Eine privateMitgliedsfunktion.
• [3] Eine publicMitgliedsfunktion, die für jeden zugänglich ist.
• [4] Kein Zugriffsmodifikator bedeutet public.
• [5] Nur Mitglieder derselben Klasse können auf privateMitglieder zugreifen.

Das Schlüsselwort private bedeutet, dass niemand auf dieses Mitglied zugreifen
kann, außer anderen Mitgliedern dieser Klasse. Andere Klassen können nicht auf
privateMitglieder zugreifen, sodass es so ist, als würden Sie die Klasse auch gegen
sich selbst und Ihre Mitarbeiter abschirmen. Mit private können Sie dieses Mitglied
nach Belieben ändern, ohne sich Sorgen machen zu müssen, ob es eine andere
Klasse im selben Paket betrifft. Als Bibliotheksentwickler werden Sie typischerweise
so viel wie möglich als private halten und nur Funktionen und Klassen für die
Benutzerprogrammierer freigeben.

Jede Mitgliedsfunktion, die eine Hilfsfunktion für eine Klasse ist, kann private
gemacht werden, um sicherzustellen, dass Sie sie nicht versehentlich anderswo im
Paket verwenden und sich dadurch daran hindern, diese Funktion zu ändern oder zu
entfernen.

Dasselbe gilt für eine private Eigenschaft innerhalb einer Klasse. Es sei denn,
Sie müssen die zugrunde liegende Implementierung offenlegen (was weniger wahr-
scheinlich ist, als Sie vielleicht denken), machen Sie Eigenschaften private. Aller-
dings bedeutet eine private Referenz auf ein Objekt innerhalb einer Klasse nicht,
dass ein anderes Objekt nicht eine public Referenz auf dasselbe Objekt haben kann:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Einschränkung der Sichtbarkeit 118

// Visibility/MultipleRef.kt

class Counter(var start: Int) {
fun increment() {
start += 1

}
override fun toString() = start.toString()

}

class CounterHolder(counter: Counter) {
private val ctr = counter
override fun toString() =
"CounterHolder: " + ctr

}

fun main() {
val c = Counter(11) // [1]
val ch = CounterHolder(c) // [2]
println(ch)
c.increment() // [3]
println(ch)
val ch2 = CounterHolder(Counter(9)) // [4]
println(ch2)

}
/* Output:
CounterHolder: 11
CounterHolder: 12
CounterHolder: 9
*/

• [1] c ist jetzt im Geltungsbereich definiert, der die Erstellung des CounterHol-
der-Objekts in der folgenden Zeile umgibt.

• [2] c als Argument an den CounterHolder-Konstruktor zu übergeben, bedeu-
tet, dass der neue CounterHolder nun auf dasselbe Counter-Objekt verweist,
auf das auch c verweist.

• [3] Der Counter, der angeblich privat innerhalb von ch ist, kann dennoch
über c manipuliert werden.

• [4] Counter(9) hat keine anderen Referenzen außer innerhalb von Counter-
Holder, daher kann es nicht von etwas anderem als ch2 zugegriffen oder
modifiziert werden.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Einschränkung der Sichtbarkeit 119

Mehrere Referenzen auf ein einzelnes Objekt zu haben, wird als Aliasing bezeichnet
und kann überraschendes Verhalten hervorrufen.

Module

Im Gegensatz zu den kleinen Beispielen in diesem Buch sind reale Programme oft
groß. Es kann hilfreich sein, solche Programme in ein oder mehrere Module zu
unterteilen. Ein Modul ist ein logisch unabhängiger Teil eines Codebestands. Die
Art und Weise, wie Sie ein Projekt in Module unterteilen, hängt vom Build-System
ab (wie Gradle²² oder Maven²³) und liegt außerhalb des Rahmens dieses Buches.

Eine interne Definition ist nur innerhalb des Moduls zugänglich, in dem sie
definiert ist. Intern liegt irgendwo zwischen privat und öffentlich—verwenden
Sie es, wenn privat zu restriktiv ist, Sie aber nicht möchten, dass ein Element Teil
der öffentlichen API ist. Wir verwenden intern nicht in den Beispielen oder
Übungen des Buches.

Module sind ein höheres Konzept. Der folgende Abschnitt führt Pakete ein, die eine
feinere Strukturierung ermöglichen. Eine Bibliothek ist oft ein einziges Modul, das
aus mehreren Paketen besteht, sodass interne Elemente innerhalb der Bibliothek
verfügbar sind, jedoch nicht von den Verbrauchern dieser Bibliothek zugänglich sind.

Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

²²https://gradle.org/
²³https://maven.apache.org/

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

https://gradle.org/
https://maven.apache.org/
https://gradle.org/
https://maven.apache.org/


Pakete
Ein grundlegendes Prinzip in der Programmierung ist das Akronym DRY:
Wiederhole dich nicht.

Mehrere identische Codefragmente erfordernWartung, wann immer Sie Korrekturen
oder Verbesserungen vornehmen. Das Duplizieren von Code ist also nicht nur
zusätzliche Arbeit—jede Duplikation bietet Chancen für Fehler.

Das Schlüsselwort import wiederverwendet Code aus anderen Dateien. Eine Mög-
lichkeit, import zu verwenden, besteht darin, einen Klassen-, Funktions- oder
Eigenschaftsnamen anzugeben:

import packagename.ClassName
import packagename.functionName
import packagename.propertyName

Ein Paket ist eine zugehörige Sammlung von Code. Jedes Paket ist normalerweise da-
für ausgelegt, ein bestimmtes Problem zu lösen, und enthält oft mehrere Funktionen
und Klassen. Zum Beispiel können wir mathematische Konstanten und Funktionen
aus der kotlin.math Bibliothek importieren:

// Packages/ImportClass.kt
import kotlin.math.PI
import kotlin.math.cos // Cosine

fun main() {
println(PI)
println(cos(PI))
println(cos(2 * PI))

}
/* Output:
3.141592653589793
-1.0
1.0
*/



Pakete 121

Manchmal möchte man mehrere Drittanbieter-Bibliotheken verwenden, die Klassen
oder Funktionen mit demselben Namen enthalten. Das Schlüsselwort as ermöglicht
es Ihnen, beim Importieren Namen zu ändern:

// Packages/ImportNameChange.kt
import kotlin.math.PI as circleRatio
import kotlin.math.cos as cosine

fun main() {
println(circleRatio)
println(cosine(circleRatio))
println(cosine(2 * circleRatio))

}
/* Output:
3.141592653589793
-1.0
1.0
*/

as ist nützlich, wenn der Bibliotheksname schlecht gewählt oder übermäßig lang ist.

Sie können einen Import im Hauptteil Ihres Codes vollständig qualifizieren. Im
folgenden Beispiel könnte der Code aufgrund der expliziten Paketnamen weniger
lesbar sein, aber die Herkunft jedes Elements ist absolut klar:

// Packages/FullyQualify.kt

fun main() {
println(kotlin.math.PI)
println(kotlin.math.cos(kotlin.math.PI))
println(kotlin.math.cos(2 * kotlin.math.PI))

}
/* Output:
3.141592653589793
-1.0
1.0
*/

Um alles aus einem Paket zu importieren, verwenden Sie einen Stern:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Pakete 122

// Packages/ImportEverything.kt
import kotlin.math.*

fun main() {
println(E)
println(E.roundToInt())
println(E.toInt())

}
/* Output:
2.718281828459045
3
2
*/

Das kotlin.math-Paket enthält eine praktische Funktion roundToInt(), die den
Double-Wert auf die nächste ganze Zahl aufrundet, im Gegensatz zu toInt(), das
einfach alles nach einem Dezimalpunkt abschneidet.

Um Ihren Code wiederzuverwenden, erstellen Sie ein Paket mit dem Schlüsselwort
package. Die package-Anweisung muss die erste nicht-kommentare Anweisung in
der Datei sein. package wird gefolgt vom Namen Ihres Pakets, der konventionell
komplett in Kleinbuchstaben geschrieben wird:

// Packages/PythagoreanTheorem.kt
package pythagorean
import kotlin.math.sqrt

class RightTriangle(
val a: Double,
val b: Double

) {
fun hypotenuse() = sqrt(a * a + b * b)
fun area() = a * b / 2

}

Sie können die Quellcodedatei beliebig benennen, im Gegensatz zu Java, das erfor-
dert, dass der Dateiname mit dem Klassennamen identisch ist.

Kotlin erlaubt Ihnen, einen beliebigen Namen für Ihr Paket zu wählen, aber es wird
als guter Stil betrachtet, wenn der Paketname mit dem Verzeichnisnamen identisch
ist, in dem sich die Paketdateien befinden (dies wird nicht immer der Fall für die
Beispiele in diesem Buch sein).

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Pakete 123

Die Elemente im pythagorean Paket sind jetzt mit import verfügbar:

// Packages/ImportPythagorean.kt
import pythagorean.RightTriangle

fun main() {
val rt = RightTriangle(3.0, 4.0)
println(rt.hypotenuse())
println(rt.area())

}
/* Output:
5.0
6.0
*/

Im Rest dieses Buches verwenden wir package-Anweisungen für jede Datei, die
Funktionen, Klassen usw. außerhalb von main() definiert, um Namenskonflikte
mit anderen Dateien im Buch zu vermeiden. In der Regel werden wir jedoch keine
package-Anweisung in einer Datei platzieren, die nur ein main() enthält.

Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Testen
Konstantes Testen ist unerlässlich für eine schnelle Programmentwick-
lung.

Wenn das Ändern eines Teils Ihres Codes anderen Code beschädigt, zeigen Ihre
Tests das Problem sofort auf. Wenn Sie es nicht sofort herausfinden, häufen sich
die Änderungen an und Sie können nicht mehr feststellen, welche Änderung das
Problem verursacht hat. Sie werden viel länger brauchen, um es zu verfolgen.

Testen ist eine entscheidende Praxis, daher führen wir es früh ein und verwenden es
im gesamten Rest des Buches. Auf diese Weise gewöhnen Sie sich daran, Tests als
Standardteil des Programmierprozesses zu betrachten.

println() zu verwenden, um die Korrektheit des Codes zu überprüfen, ist ein
schwacher Ansatz—Sie müssen jedes Mal die Ausgabe genau prüfen und bewusst
sicherstellen, dass sie korrekt ist.

Um Ihre Erfahrung beim Verwenden dieses Buches zu vereinfachen, haben wir unser
eigenes kleines Testsystem erstellt. Das Ziel ist ein minimaler Ansatz, der:

1. Das erwartete Ergebnis von Ausdrücken zeigt.
2. Eine Ausgabe liefert, damit Sie wissen, dass das Programm läuft, selbst wenn

alle Tests erfolgreich sind.
3. Das Konzept des Testens frühzeitig in Ihrer Praxis verankert.

Obwohl es für dieses Buch nützlich ist, ist unseres kein Testsystem für den Arbeits-
platz. Andere haben lange und hart gearbeitet, um solche Testsysteme zu erstellen.
Zum Beispiel:

• JUnit²⁴ ist eines der beliebtesten Java-Testframeworks und kann leicht in Kotlin
verwendet werden.

• Kotest²⁵ ist speziell für Kotlin entwickelt und nutzt die Funktionen der Kotlin-
Sprache.

²⁴https://junit.org
²⁵https://github.com/kotest/kotest

https://junit.org/
https://github.com/kotest/kotest
https://junit.org/
https://github.com/kotest/kotest


Testen 125

• Das Spek Framework²⁶ produziert eine andere Form des Testens, genannt
Spezifikationstests.

Um unser Testframework zu verwenden, müssen wir es zuerst importieren. Die
grundlegenden Elemente des Frameworks sind eq (gleich) und neq (nicht gleich):

// Testing/TestingExample.kt
import atomictest.*

fun main() {
val v1 = 11
val v2 = "Ontology"

// 'eq' means "equals":
v1 eq 11
v2 eq "Ontology"

// 'neq' means "not equal"
v2 neq "Epistemology"

// [Error] Epistemology != Ontology
// v2 eq "Epistemology"

}
/* Output:
11
Ontology
Ontology
*/

Der Code für das Paket atomictest befindet sich in Appendix A: AtomicTest. Es
ist nicht beabsichtigt, dass Sie alles in AtomicTest.kt sofort verstehen, da es einige
Funktionen verwendet, die erst später im Buch erscheinen werden.

Um ein klares, angenehmes Erscheinungsbild zu erzeugen, verwendet AtomicTest
eine Kotlin-Funktion, die Sie noch nicht gesehen haben: die Fähigkeit, einen Funkti-
onsaufruf a.function(b) in der textähnlichen Form a function b zu schreiben.
Dies wird als Infix-Notation bezeichnet. Nur Funktionen, die mit dem Schlüsselwort
infix definiert sind, können auf diese Weise aufgerufen werden. AtomicTest.kt
definiert die infix-Funktionen eq und neq, die in TestingExample.kt verwendet
werden:

²⁶https://spekframework.org/

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

https://spekframework.org/
https://spekframework.org/


Testen 126

expression eq expected
expression neq expected

eq und neq sind flexibel – fast alles funktioniert als Testausdruck. Wenn erwartet ein
String ist, wird Ausdruck in einen String umgewandelt und die beiden Strings
werden verglichen. Andernfalls werden Ausdruck und erwartet direkt verglichen
(ohne sie vorher umzuwandeln). In jedem Fall erscheint das Ergebnis von Ausdruck
auf der Konsole, sodass Sie etwas sehen, wenn das Programm läuft. Selbst wenn die
Tests erfolgreich sind, sehen Sie das Ergebnis links von eq oder neq. Wenn Ausdruck
und erwartet nicht gleichwertig sind, zeigt AtomicTest einen Fehler an, wenn das
Programm läuft.

Der letzte Test in TestingExample.kt schlägt absichtlich fehl, damit Sie ein Beispiel
für eine Fehlerausgabe sehen. Wenn die beiden Werte nicht gleich sind, zeigt Kotlin
die entsprechende Nachricht an, die mit [Error] beginnt. Wenn Sie die letzte
Zeile auskommentieren und das obige Beispiel ausführen, sehen Sie nach allen
erfolgreichen Tests:

[Error] Epistemology != Ontology

Der tatsächliche Wert, der in v2 gespeichert ist, entspricht nicht dem, was im
Ausdruck “erwartet” behauptet wird. AtomicTest zeigt die String-Darstellungen
sowohl für erwartete als auch für tatsächliche Werte an.

eq und neq sind die grundlegenden (infix) Funktionen, die für AtomicTest definiert
sind – es ist wirklich ein minimalistisches Testsystem. Wenn Sie eq- und neq-
Ausdrücke in Ihren Beispielen verwenden, erstellen Sie sowohl einen Test als auch
eine Konsolenausgabe. Sie überprüfen die Korrektheit des Programms, indem Sie es
ausführen.

Es gibt ein zweites Werkzeug in AtomicTest. Das trace-Objekt erfasst die Ausgabe
für einen späteren Vergleich:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Testen 127

// Testing/Trace1.kt
import atomictest.*

fun main() {
trace("line 1")
trace(47)
trace("line 2")
trace eq """
line 1
47
line 2

"""
}

Das Hinzufügen von Ergebnissen zu trace sieht aus wie ein Funktionsaufruf, daher
können Sie println() effektiv durch trace() ersetzen.

In früheren Atomen habenwir die Ausgabe angezeigt und uns auf die menschliche vi-
suelle Inspektion verlassen, um Unstimmigkeiten zu erkennen. Das ist unzuverlässig;
selbst in einem Buch, in dem wir den Code immer wieder genau prüfen, haben wir
gelernt, dass man der visuellen Inspektion nicht trauen kann, um Fehler zu finden.
Von nun an verwenden wir selten kommentierte Ausgabeblöcke, da AtomicTest
alles für uns erledigen wird. Manchmal fügen wir jedoch immer noch kommentierte
Ausgabeblöcke ein, wenn dies einen nützlicheren Effekt hat.

Die Vorteile des Testens im gesamten restlichen Buch sollten Ihnen helfen, das Testen
in Ihren Programmierprozess zu integrieren. Sie werden sich wahrscheinlich unwohl
fühlen, wenn Sie Code sehen, der keine Tests hat. Sie könnten sogar entscheiden, dass
Code ohne Tests per Definition fehlerhaft ist.

Testen als Teil der Programmierung

Testen ist am effektivsten, wenn es in Ihren Softwareentwicklungsprozess integriert
ist. Das Schreiben von Tests stellt sicher, dass Sie die erwarteten Ergebnisse erhalten.
Viele Leute befürworten das Schreiben von Tests vor dem Schreiben des Implemen-
tierungscodes - Sie lassen zuerst den Test fehlschlagen, bevor Sie den Code schreiben,
um ihn erfolgreich zu machen. Diese Technik, genannt Testgetriebene Entwicklung
(TDD), ist eine Möglichkeit sicherzustellen, dass Sie wirklich das testen, was Sie

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Testen 128

denken. Eine vollständigere Beschreibung von TDD finden Sie aufWikipedia (suchen
Sie nach “Testgetriebene Entwicklung”).

Es gibt einen weiteren Vorteil beim testbaren Schreiben - es verändert die Art und
Weise, wie Sie Ihren Code gestalten. Sie könnten die Ergebnisse einfach auf der
Konsole anzeigen. Aber im Testdenken fragen Sie sich: “Wie werde ich das testen?”
Wenn Sie eine Funktion erstellen, entscheiden Sie, dass Sie etwas aus der Funktion
zurückgeben sollten, wenn auch nur, um dieses Ergebnis zu testen. Funktionen, die
nichts anderes tun, als Eingaben zu nehmen und Ausgaben zu erzeugen, neigen dazu,
auch bessere Designs zu erzeugen.

Hier ist ein vereinfachtes Beispiel, das TDD verwendet, um die BMI-Berechnung
aus Zahlentypen zu implementieren. Zuerst schreiben wir die Tests sowie eine
anfängliche Implementierung, die fehlschlägt (weil wir die Funktionalität noch nicht
implementiert haben):

// Testing/TDDFail.kt
package testing1
import atomictest.eq

fun main() {
calculateBMI(160, 68) eq "Normal weight"

// calculateBMI(100, 68) eq "Underweight"
// calculateBMI(200, 68) eq "Overweight"
}

fun calculateBMI(lbs: Int, height: Int) =
"Normal weight"

Nur der erste Test besteht. Die anderen Tests schlagen fehl und sind kommentiert.
Als nächstes fügen wir Code hinzu, um zu bestimmen, welche Gewichte in welchen
Kategorien sind. Jetzt schlagen alle Tests fehl:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Testen 129

// Testing/TDDStillFails.kt
package testing2
import atomictest.eq

fun main() {
// Everything fails:
// calculateBMI(160, 68) eq "Normal weight"
// calculateBMI(100, 68) eq "Underweight"
// calculateBMI(200, 68) eq "Overweight"

}

fun calculateBMI(
lbs: Int,
height: Int

): String {
val bmi = lbs / (height * height) * 703.07
return if (bmi < 18.5) "Underweight"
else if (bmi < 25) "Normal weight"
else "Overweight"

}

Wir verwenden Ints anstelle von Doubles, was zu einem Nullergebnis führt. Die
Tests führen uns zur Lösung:

// Testing/TDDWorks.kt
package testing3
import atomictest.eq

fun main() {
calculateBMI(160.0, 68.0) eq "Normal weight"
calculateBMI(100.0, 68.0) eq "Underweight"
calculateBMI(200.0, 68.0) eq "Overweight"

}

fun calculateBMI(
lbs: Double,
height: Double

): String {
val bmi = lbs / (height * height) * 703.07
return if (bmi < 18.5) "Underweight"
else if (bmi < 25) "Normal weight"
else "Overweight"

}

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Testen 130

Sie können zusätzliche Tests für die Randbedingungen hinzufügen.

In den Übungen für dieses Buch haben wir Tests enthalten, die Ihr Code bestehen
muss.

Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Ausnahmen
Das Wort “Ausnahme” wird im gleichen Sinne verwendet wie der Aus-
druck “Ich nehme Anstoß daran.”

Eine außergewöhnliche Bedingung verhindert die Fortsetzung der aktuellen Funkti-
on oder des aktuellen Bereichs. An dem Punkt, an dem das Problem auftritt, wissen
Sie möglicherweise nicht, was Sie damit tun sollen, aber Sie können im aktuellen
Kontext nicht fortfahren. Sie haben nicht genügend Informationen, um das Problem
zu beheben. Daher müssen Sie stoppen und das Problem an einen anderen Kontext
übergeben, der geeignete Maßnahmen ergreifen kann.

Dieses Atom behandelt die Grundlagen von Ausnahmen als ein Mechanismus zur
Fehlerberichterstattung. In Abschnitt VI: Fehlervermeidung betrachten wir andere
Möglichkeiten, mit Problemen umzugehen.

Es ist wichtig, eine außergewöhnliche Bedingung von einem normalen Problem
zu unterscheiden. Ein normales Problem verfügt über genügend Informationen im
aktuellen Kontext, um das Problem zu bewältigen. Bei einer außergewöhnlichen
Bedingung können Sie die Verarbeitung nicht fortsetzen. Alles, was Sie tun können,
ist zu gehen und das Problem einem externen Kontext zu überlassen. Dies ist der
Fall, wenn Sie eine Ausnahme werfen. Die Ausnahme ist das Objekt, das vom Ort
des Fehlers “geworfen” wird.

Betrachten Sie toInt(), das einen String in einen Int umwandelt. Was passiert,
wenn Sie diese Funktion für einen String aufrufen, der keinen ganzzahligen Wert
enthält?



Ausnahmen 132

// Exceptions/ToIntException.kt
package exceptions

fun erroneousCode() {
// Uncomment this line to get an exception:
// val i = "1$".toInt() // [1]

}

fun main() {
erroneousCode()

}

Das Auskommentieren der Zeile [1] führt zu einer Ausnahme. Hier ist die fehlerhafte
Zeile kommentiert, damit der Aufbau des Buches nicht gestoppt wird, das überprüft,
ob jedes Beispiel wie erwartet kompiliert und ausgeführt wird.

Wenn eine Ausnahme ausgelöst wird, stoppt der Ausführungspfad—derjenige, der
nicht fortgesetzt werden kann—und das Ausnahmeobjekt wird aus dem aktuellen
Kontext herausgeworfen. Hier verlässt es den Kontext von erroneousCode() und
geht in den Kontext von main(). In diesem Fall meldet Kotlin nur den Fehler; der
Programmierer hat vermutlich einen Fehler gemacht und muss den Code korrigieren.

Wenn eine Ausnahme nicht abgefangen wird, bricht das Programm ab und zeigt
einen Stack-Trace mit detaillierten Informationen an. Das Auskommentieren der
Zeile [1] in ToIntException.kt führt zu folgendem Output:

Exception in thread "main" java.lang.NumberFormatException: For input s\
tring: "1$"
at java.lang.NumberFormatException.forInputString(NumberFormatExcepti\

on.java:65)
at java.lang.Integer.parseInt(Integer.java:580)
at java.lang.Integer.parseInt(Integer.java:615)
at ToIntExceptionKt.erroneousCode(at ToIntException.kt:6)
at ToIntExceptionKt.main(at ToIntException.kt:10)

Der Stack-Trace liefert Details wie die Datei und die Zeile, in der die Ausnahme
aufgetreten ist, sodass Sie das Problem schnell entdecken können. Die letzten beiden
Zeilen zeigen das Problem: In Zeile 10 von main() rufen wir erroneousCode() auf.
Dann, genauer gesagt, in Zeile 6 von erroneousCode() rufen wir toInt() auf.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Ausnahmen 133

Um das Kommentieren und Auskommentieren von Code zur Anzeige von Aus-
nahmen zu vermeiden, verwenden wir die Funktion capture() aus dem Paket
AtomicTest:

// Exceptions/IntroducingCapture.kt
import atomictest.*

fun main() {
capture {
"1$".toInt()

} eq "NumberFormatException: " +
"""For input string: "1$""""

}

Mit capture() vergleichen wir die generierte Ausnahme mit der erwarteten Feh-
lermeldung. capture() ist nicht sehr hilfreich für normale Programmierung - es
ist speziell für dieses Buch entworfen, damit Sie die Ausnahme sehen und wissen
können, dass die Ausgabe vom Build-System des Buches überprüft wurde.

Eine weitere Strategie, wenn Sie das erwartete Ergebnis nicht erfolgreich erzielen
können, besteht darin, null zurückzugeben, eine spezielle Konstante, die “keinWert”
bedeutet. Sie können null anstelle eines Wertes jeden Typs zurückgeben. Später in
Nullable Typen besprechen wir, wie null den Typ des resultierenden Ausdrucks
beeinflusst.

Die Kotlin-Standardbibliothek enthält String.toIntOrNull(), das die Umwand-
lung durchführt, wenn der String eine ganze Zahl enthält, oder null produziert,
wenn die Umwandlung unmöglich ist - null ist eine einfache Möglichkeit, einen
Fehler anzuzeigen:

// Exceptions/IntroducingNull.kt
import atomictest.eq

fun main() {
"1$".toIntOrNull() eq null

}

Angenommen, wir berechnen das durchschnittliche Einkommen über einen Zeit-
raum von Monaten:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Ausnahmen 134

// Exceptions/AverageIncome.kt
package firstversion
import atomictest.*

fun averageIncome(income: Int, months: Int) =
income / months

fun main() {
averageIncome(3300, 3) eq 1100
capture {
averageIncome(5000, 0)

} eq "ArithmeticException: / by zero"
}

Wenn months null ist, wirft die Division in averageIncome() eine ArithmeticEx-
ception. Leider sagt uns dies nichts darüber, warum der Fehler aufgetreten ist, was
der Nenner bedeutet und ob er überhaupt null sein darf. Dies ist eindeutig ein Fehler
im Code—averageIncome() sollte mit einem months von 0 so umgehen, dass ein
Division durch Null Fehler vermieden wird.

Lassen Sie uns averageIncome() modifizieren, um mehr Informationen über die
Quelle des Problems zu liefern. Wenn months null ist, können wir keinen normalen
Ganzzahlwert als Ergebnis zurückgeben. Eine Strategie ist es, null zurückzugeben:

// Exceptions/AverageIncomeWithNull.kt
package withnull
import atomictest.eq

fun averageIncome(income: Int, months: Int) =
if (months == 0)
null

else
income / months

fun main() {
averageIncome(3300, 3) eq 1100
averageIncome(5000, 0) eq null

}

Wenn eine Funktion null zurückgeben kann, verlangt Kotlin, dass Sie das Ergebnis
überprüfen, bevor Sie es verwenden (dies wird in Nullable Typen behandelt). Selbst

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Ausnahmen 135

wenn Sie nur dem Benutzer eine Ausgabe anzeigen möchten, ist es besser zu sagen:
“Es sind keine vollen Monatszeiträume vergangen,” anstatt “Ihr durchschnittliches
Einkommen für den Zeitraum ist: null.”

Anstatt averageIncome() mit den falschen Argumenten auszuführen, können Sie
eine Ausnahme auslösen – entkommen und einen anderen Teil des Programms zwin-
gen, das Problem zu verwalten. Sie könnten die Standard-ArithmeticException
zulassen, aber es ist oft nützlicher, eine spezifische Ausnahme mit einer detaillierten
Fehlermeldung zu werfen. Wenn Ihre Anwendung nach ein paar Jahren im Einsatz
plötzlich eine Ausnahme auslöst, weil eine neue Funktion averageIncome() aufruft,
ohne die Argumente richtig zu überprüfen, werden Sie für diese Nachricht dankbar
sein:

// Exceptions/AverageIncomeWithException.kt
package properexception
import atomictest.*

fun averageIncome(income: Int, months: Int) =
if (months == 0)
throw IllegalArgumentException( // [1]

"Months can't be zero")
else
income / months

fun main() {
averageIncome(3300, 3) eq 1100
capture {
averageIncome(5000, 0)

} eq "IllegalArgumentException: " +
"Months can't be zero"

}

• [1] Beim Auslösen einer Ausnahme wird das Schlüsselwort throw gefolgt
von der Ausnahme, die ausgelöst werden soll, zusammen mit allen Argu-
menten, die sie möglicherweise benötigt. Hier verwenden wir die Standard-
Ausnahmeklasse IllegalArgumentException.

Ihr Ziel ist es, die nützlichsten Nachrichten zu generieren, um die Unterstützung Ihrer
Anwendung in Zukunft zu vereinfachen. Später lernen Sie, Ihre eigenen Ausnahme-
Typen zu definieren und sie spezifisch auf Ihre Umstände abzustimmen.

Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Listen
Eine List ist ein Behälter, also ein Objekt, das andere Objekte enthält.

Behälter werden auch als Sammlungen bezeichnet. Wenn wir einen grundlegenden
Behälter für die Beispiele in diesem Buch benötigen, verwenden wir normalerweise
eine List.

Lists sind Teil des Standard-Kotlin-Pakets, daher benötigen sie keinen import.

Das folgende Beispiel erstellt eine List, die mit Ints gefüllt ist, indem die Standard-
bibliotheksfunktion listOf() mit Initialisierungswerten aufgerufen wird:

// Lists/Lists.kt
import atomictest.eq

fun main() {
val ints = listOf(99, 3, 5, 7, 11, 13)
ints eq "[99, 3, 5, 7, 11, 13]" // [1]

// Select each element in the List:
var result = ""
for (i in ints) { // [2]
result += "$i "

}
result eq "99 3 5 7 11 13"

// "Indexing" into the List:
ints[4] eq 11 // [3]

}

• [1] Eine List verwendet eckige Klammern, um sich selbst darzustellen.
• [2] for-Schleifen funktionieren gut mit Lists: for(i in ints) bedeutet, dass
i jeden Wert in ints erhält. Sie deklarieren val i nicht und geben auch
nicht seinen Typ an; Kotlin erkennt aus dem Kontext, dass i ein for-Schleifen-
Identifikator ist.



Listen 137

• [3] Eckige Klammern indexieren in eine List. Eine List behält ihre Elemente
in der Initialisierungsreihenfolge bei, und Sie wählen sie einzeln nach Nummer
aus. Wie in den meisten Programmiersprachen beginnt Kotlin das Indexieren
beim Element Null, was in diesem Fall den Wert 99 ergibt. Somit ergibt ein
Index von 4 den Wert 11.

Das Vergessen, dass das Indexieren bei Null beginnt, führt zum sogenannten Eins-zu-
viel-Fehler. In einer Sprache wie Kotlin wählen wir oft nicht Elemente einzeln aus,
sondern iterieren stattdessen durch einen gesamten Container mit in. Dies eliminiert
Eins-zu-viel-Fehler.

Wenn Sie einen Index über das letzte Element in einer List hinaus verwenden, wirft
Kotlin eine ArrayIndexOutOfBoundsException:

// Lists/OutOfBounds.kt
import atomictest.*

fun main() {
val ints = listOf(1, 2, 3)
capture {
ints[3]

} contains
listOf("ArrayIndexOutOfBoundsException")

}

Eine List kann alle verschiedenen Typen halten. Hier ist eine List von Doubles
und eine List von Strings:

// Lists/ListUsefulFunction.kt
import atomictest.eq

fun main() {
val doubles =
listOf(1.1, 2.2, 3.3, 4.4)

doubles.sum() eq 11.0

val strings = listOf("Twas", "Brillig",
"And", "Slithy", "Toves")

strings eq listOf("Twas", "Brillig",
"And", "Slithy", "Toves")

strings.sorted() eq listOf("And",

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Listen 138

"Brillig", "Slithy", "Toves", "Twas")
strings.reversed() eq listOf("Toves",
"Slithy", "And", "Brillig", "Twas")

strings.first() eq "Twas"
strings.takeLast(2) eq

listOf("Slithy", "Toves")
}

Dies zeigt einige der Operationen von List. Beachten Sie den Namen “sorted”
anstelle von “sort”. Wenn Sie sorted() aufrufen, erzeugt es eine neue List, die
die gleichen Elemente wie die alte in sortierter Reihenfolge enthält—aber es lässt die
ursprüngliche List unverändert. Es “sort” zu nennen, impliziert, dass die ursprüng-
liche List direkt verändert wird (auch bekannt als sortiert an Ort und Stelle). In
Kotlin sieht man häufig diese Tendenz, “das ursprüngliche Objekt unverändert zu
lassen und ein neues Objekt zu erzeugen.” reversed() erzeugt ebenfalls eine neue
List.

Parametrisierte Typen

Wir betrachten es als gute Praxis, Typinferenz zu verwenden—es neigt dazu, den
Code sauberer und leichter lesbar zu machen. Manchmal jedoch beschwert sich
Kotlin, dass es nicht herausfinden kann, welchen Typ es verwenden soll, und in
anderen Fällen macht Explizitheit den Code verständlicher. So teilen wir Kotlin mit,
welchen Typ eine List enthält:

// Lists/ParameterizedTypes.kt
import atomictest.eq

fun main() {
// Type is inferred:
val numbers = listOf(1, 2, 3)
val strings =
listOf("one", "two", "three")

// Exactly the same, but explicitly typed:
val numbers2: List<Int> = listOf(1, 2, 3)
val strings2: List<String> =
listOf("one", "two", "three")

numbers eq numbers2

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Listen 139

strings eq strings2
}

Kotlin verwendet die Initialisierungswerte, um abzuleiten, dass numbers eine List
von Ints enthält, während strings eine List von Strings enthält.

numbers2 und strings2 sind explizit typisierte Versionen von numbers und strings,
erstellt durch das Hinzufügen der Typdeklarationen List<Int> und List<String>.
Sie habenWinkelklammern noch nicht gesehen - sie kennzeichnen einen Typparame-
ter, der es Ihnen ermöglicht zu sagen: “Dieser Container enthält ‘Parameter’-Objekte.”
Wir sprechen List<Int> als “List von Int” aus.

Typparameter sind nützlich für Komponenten, die keine Container sind, aber man
sieht sie oft bei containerähnlichen Objekten.

Rückgabewerte können ebenfalls Typparameter haben:

// Lists/ParameterizedReturn.kt
package lists
import atomictest.eq

// Return type is inferred:
fun inferred(p: Char, q: Char) =
listOf(p, q)

// Explicit return type:
fun explicit(p: Char, q: Char): List<Char> =
listOf(p, q)

fun main() {
inferred('a', 'b') eq "[a, b]"
explicit('y', 'z') eq "[y, z]"

}

Kotlin leitet den Rückgabetyp für inferred() ab, während explicit() den Rück-
gabetyp der Funktion angibt. Man kann nicht einfach sagen, dass es eine List zu-
rückgibt; Kotlin wird beanstanden, also muss man auch den Typ-Parameter angeben.
Wenn Sie den Rückgabetyp einer Funktion angeben, setzt Kotlin Ihre Absicht durch.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Listen 140

Schreibgeschützte und veränderbare Listen

Wenn Sie nicht ausdrücklich sagen, dass Sie eine veränderbare List möchten,
erhalten Sie keine. listOf() erzeugt eine schreibgeschützte List, die keine verän-
derbaren Funktionen hat.

Wenn Sie eine List schrittweise erstellen (das heißt, Sie haben nicht alle Elemente
zum Zeitpunkt der Erstellung), verwenden Sie mutableListOf(). Dies erzeugt eine
MutableList, die verändert werden kann:

// Lists/MutableList.kt
import atomictest.eq

fun main() {
val list = mutableListOf<Int>()

list.add(1)
list.addAll(listOf(2, 3))

list += 4
list += listOf(5, 6)

list eq listOf(1, 2, 3, 4, 5, 6)
}

Da list keine anfänglichen Elemente hat, müssen wir Kotlin mitteilen, welchen Typ
es hat, indemwir die <Int>-Spezifikation imAufruf von mutableListOf() angeben.
Sie können Elemente zu einer MutableList mit add() und addAll() hinzufügen
oder den Operator += verwenden, der entweder ein einzelnes Element oder eine
andere Sammlung hinzufügt.

Eine MutableList kann als List behandelt werden, in diesem Fall kann sie nicht
geändert werden. Sie können jedoch eine schreibgeschützte List nicht als Mutable-
List behandeln:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Listen 141

// Lists/MutListIsList.kt
package lists
import atomictest.eq

fun makeList(): List<Int> =
mutableListOf(1, 2, 3)

fun main() {
// makeList() produces a read-only List:
val list = makeList()
// list.add(3) // Unresolved reference: add
list eq listOf(1, 2, 3)

}

list fehlt es an Mutationsfunktionen, obwohl es ursprünglich mit mutableLis-
tOf() innerhalb von makeList() erstellt wurde. Beachten Sie, dass der Ergebnistyp
von makeList() List<Int> ist. Das ursprüngliche Objekt ist immer noch eine
MutableList, wird aber durch die Linse einer List betrachtet.

Eine List ist schreibgeschützt—Sie können ihren Inhalt lesen, aber nicht schreiben.
Wenn die zugrunde liegende Implementierung eine MutableList ist und Sie eine
veränderbare Referenz auf diese Implementierung beibehalten, können Sie sie wei-
terhin über diese veränderbare Referenz modifizieren, und alle schreibgeschützten
Referenzen werden diese Änderungen sehen. Dies ist ein weiteres Beispiel für
Aliasing, eingeführt in Einschränken der Sichtbarkeit:

// Lists/MultipleListRefs.kt
import atomictest.eq

fun main() {
val first = mutableListOf(1)
val second: List<Int> = first
second eq listOf(1)
first.add(2)
// second sees the change:
second eq listOf(1, 2)

}

first ist eine unveränderliche Referenz (val) auf das veränderliche Objekt, das von
mutableListOf(1) erzeugt wird. Wenn second auf first aliasiert wird, wird es zu
einer Ansicht desselben Objekts. second ist schreibgeschützt, weil List<Int> keine

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Listen 142

Änderungsfunktionen beinhaltet. Ohne die explizite List<Int> Typdeklaration
würde Kotlin annehmen, dass second ebenfalls eine Referenz auf ein veränderliches
Objekt ist.

Wir können dem Objekt ein Element (2) hinzufügen, weil first eine Referenz
auf eine veränderliche Liste ist. Beachten Sie, dass second diese Änderungen
beobachtet—es kann die Liste nicht ändern, obwohl die Liste über first geändert
wird.

Das += Rätsel

Der += Operator kann den Anschein erwecken, dass eine unveränderliche Liste
tatsächlich veränderlich ist:

// Lists/ApparentlyMutableList.kt
import atomictest.eq

fun main() {
var list = listOf('X') // Immutable
list += 'Y' // Appears to be mutable
list eq "[X, Y]"

}

listOf() erzeugt eine unveränderliche List, aber list += 'Y' scheint diese List
zu ändern. Verstößt += irgendwie gegen die Unveränderlichkeit?

Dies passiert nur, weil list ein var ist. Hier ist ein detaillierteres Beispiel, das
die verschiedenen Kombinationen von veränderlichen/unveränderlichen Lists mit
val/var zeigt:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Listen 143

// Lists/PlusAssignPuzzle.kt
import atomictest.eq

fun main() {
// Mutable List assigned to a 'val'/'var':
val list1 = mutableListOf('A') // or 'var'
list1 += 'A' // Is the same as:
list1.plusAssign('A') // [1]

// Immutable List assigned to a 'val':
val list2 = listOf('B')
// list2 += 'B' // Is the same as:
// list2 = list2 + 'B' // [2]

// Immutable List assigned to a 'var':
var list3 = listOf('C')
list3 += 'C' // Is the same as:
val newList = list3 + 'C' // [3]
list3 = newList // [4]

list1 eq "[A, A, A]"
list2 eq "[B]"
list3 eq "[C, C, C]"

}

• [1] list1 bezieht sich auf ein veränderbares Objekt, das daher vor Ort modifi-
ziert werden kann. Der Compiler übersetzt += zum Aufruf von plusAssign().
Es spielt keine Rolle, ob list1 ein val oder ein var ist, da list1 nach der
Erstellung niemals neu zugewiesen wird—es verweist immer auf die gleiche
veränderbare Liste. Wenn man es zu einem varmacht, weist IntelliJ darauf hin,
dass es sich nie ändert und schlägt vor, es zu einem val zu machen.

• [2]Dies versucht, eine neue List zu erstellen, indem list2 und 'B' kombiniert
werden, aber es kann diese neue List nicht list2 neu zuweisen, da list2 ein
val ist. Ohne die Möglichkeit, diese Neuzuweisung durchzuführen, kann +=
nicht kompiliert werden.

• [3] Erstellt newList ohne die bestehende unveränderliche List zu modifizie-
ren, auf die list3 verweist.

• [4] Da list3 ein var ist, weist der Compiler newList zurück in list3 zu. Der
vorherige Inhalt von list3wird dann vergessen, und es erscheint, als ob list3

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Listen 144

verändert wurde. Tatsächlich wurde das alte list3 verworfen und durch das
neu erstellte newList ersetzt, was die Illusion erzeugt, dass list3 veränderbar
ist.

Dieses Verhalten von += tritt auch bei anderen Sammlungen auf. Die daraus resultie-
rende Verwirrung ist ein weiterer Grund, val gegenüber var für Ihre Bezeichner zu
bevorzugen.

Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Variable Argumentlisten
Das Schlüsselwort vararg erzeugt eine flexibel dimensionierte Argument-
liste.

In Listen haben wir listOf() eingeführt, das eine beliebige Anzahl von Parametern
akzeptiert und eine Liste erzeugt:

// Varargs/ListOf.kt
import atomictest.eq

fun main() {
listOf(1) eq "[1]"
listOf("a", "b") eq "[a, b]"

}

Mit dem Schlüsselwort vararg können Sie eine Funktion definieren, die eine
beliebige Anzahl von Argumenten annimmt, genau wie listOf(). vararg ist die
Abkürzung für variable Argumentliste:

// Varargs/VariableArgList.kt
package varargs

fun v(s: String, vararg d: Double) {}

fun main() {
v("abc", 1.0, 2.0)
v("def", 1.0, 2.0, 3.0, 4.0)
v("ghi", 1.0, 2.0, 3.0, 4.0, 5.0, 6.0)

}

Eine Funktionsdefinition kann nur einen Parameter als vararg angeben. Obwohl es
möglich ist, ein beliebiges Element in der Parameterliste als vararg anzugeben, ist
es normalerweise am einfachsten, dies für das letzte zu tun.

vararg ermöglicht es Ihnen, eine beliebige Anzahl (einschließlich null) von Argu-
menten zu übergeben. Alle Argumente müssen vom angegebenen Typ sein. Auf
vararg-Argumente wird mit dem Parameternamen zugegriffen, der zu einem Array
wird:



Variable Argumentlisten 146

// Varargs/VarargSum.kt
package varargs
import atomictest.eq

fun sum(vararg numbers: Int): Int {
var total = 0
for (n in numbers) {
total += n

}
return total

}

fun main() {
sum(13, 27, 44) eq 84
sum(1, 3, 5, 7, 9, 11) eq 36
sum() eq 0

}

Obwohl Arrays und Lists ähnlich aussehen, sind sie unterschiedlich implementiert
— List ist eine reguläre Bibliotheksklasse, während Array spezielle Unterstützung
auf niedriger Ebene hat. Array stammt aus der Anforderung von Kotlin, mit anderen
Sprachen, insbesondere Java, kompatibel zu sein.

Im täglichen Programmieren verwenden Sie eine List, wenn Sie eine einfache
Sequenz benötigen. Verwenden Sie Arrays nur, wenn eine Drittanbieter-API ein
Array erfordert oder wenn Sie mit varargs arbeiten.

In den meisten Fällen können Sie einfach ignorieren, dass vararg ein Array erzeugt,
und es behandeln, als ob es eine List wäre:

// Varargs/VarargLikeList.kt
package varargs
import atomictest.eq

fun evaluate(vararg ints: Int) =
"Size: ${ints.size}\n" +
"Sum: ${ints.sum()}\n" +
"Average: ${ints.average()}"

fun main() {
evaluate(10, -3, 8, 1, 9) eq """
Size: 5

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Variable Argumentlisten 147

Sum: 25
Average: 5.0

"""
}

Sie können ein Array von Elementen überall dort übergeben, wo ein vararg
akzeptiert wird. Um ein Array zu erstellen, verwenden Sie arrayOf() auf die gleiche
Weise wie listOf(). Ein Array ist immer veränderbar. Um ein Array in eine Folge
von Argumenten (nicht nur ein einzelnes Element des Typs Array) zu konvertieren,
verwenden Sie den Spread-Operator, *:

// Varargs/SpreadOperator.kt
import varargs.sum
import atomictest.eq

fun main() {
val array = intArrayOf(4, 5)
sum(1, 2, 3, *array, 6) eq 21 // [1]
// Doesn't compile:
// sum(1, 2, 3, array, 6)

val list = listOf(9, 10, 11)
sum(*list.toIntArray()) eq 30 // [2]

}

Wenn Sie ein Array von primitiven Typen (wie Int, Double oder Boolean) wie im
obigen Beispiel übergeben, muss die Array-Erstellungsfunktion spezifisch typisiert
sein. Wenn Sie arrayOf(4, 5) anstelle von intArrayOf(4, 5) verwenden, wird
Zeile [1] einen Fehler erzeugen, der besagt, dass der abgeleitete Typ ist Array<Int>,
aber IntArray wurde erwartet.

Der Streuoperator funktioniert nur mit Arrays. Wenn Sie eine List haben, die Sie als
Folge von Argumenten übergeben möchten, konvertieren Sie sie zuerst in ein Array
und wenden Sie dann den Streuoperator an, wie in [2]. Da das Ergebnis ein Array
eines primitiven Typs ist, müssen wir erneut die spezifische Konvertierungsfunktion
toIntArray() verwenden.

Der Streuoperator ist besonders hilfreich, wenn Sie vararg-Argumente an eine
andere Funktion übergeben müssen, die ebenfalls varargs erwartet:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Variable Argumentlisten 148

// Varargs/TwoFunctionsWithVarargs.kt
package varargs
import atomictest.eq

fun first(vararg numbers: Int): String {
var result = ""
for (i in numbers) {
result += "[$i]"

}
return result

}

fun second(vararg numbers: Int) =
first(*numbers)

fun main() {
second(7, 9, 32) eq "[7][9][32]"

}

Kommandozeilenargumente

Beim Aufrufen eines Programms auf der Kommandozeile können Sie ihm eine
variable Anzahl von Argumenten übergeben. Um Kommandozeilenargumente zu
erfassen, müssen Sie main() einen bestimmten Parameter bereitstellen:

// Varargs/MainArgs.kt

fun main(args: Array<String>) {
for (a in args) {
println(a)

}
}

Der Parameter wird traditionell args genannt (obwohl Sie ihn beliebig nennen
können), und der Typ für args kann nur Array<String> (Array von String) sein.

Wenn Sie IntelliJ IDEA verwenden, können Sie Programmargumente über die
Bearbeitung der entsprechenden “Run-Konfiguration” übergeben, wie im letzten
Übungsteil für dieses Atom gezeigt.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Variable Argumentlisten 149

Sie können auch den kotlinc-Compiler verwenden, um ein Befehlszeilenprogramm
zu erstellen. Wenn kotlinc nicht auf Ihrem Computer vorhanden ist, folgen Sie den
Anweisungen auf der Kotlin-Hauptseite²⁷. Nachdem Sie den Code für MainArgs.kt
eingegeben und gespeichert haben, geben Sie Folgendes an einer Eingabeaufforde-
rung ein:

kotlinc MainArgs.kt

Sie geben die command-line arguments nach dem program invocation ein, so:

kotlin MainArgsKt hamster 42 3.14159

Sie werden diese Ausgabe sehen:

hamster
42
3.14159

Wenn Sie einen String-Parameter in einen spezifischen Typ umwandeln möchten,
stellt Kotlin Konvertierungsfunktionen bereit, wie zum Beispiel toInt() für die
Umwandlung in einen Int und toFloat() für die Umwandlung in einen Float. Bei
der Verwendung dieser Funktionen wird angenommen, dass die Kommandozeilenar-
gumente in einer bestimmten Reihenfolge erscheinen. Hier erwartet das Programm
einen String, gefolgt von etwas, das in einen Int umwandelbar ist, gefolgt von
etwas, das in einen Float umwandelbar ist:

// Varargs/MainArgConversion.kt

fun main(args: Array<String>) {
if (args.size < 3) return
val first = args[0]
val second = args[1].toInt()
val third = args[2].toFloat()
println("$first $second $third")

}

Die erste Zeile in main() beendet das Programm, wenn nicht genügend Argumente
vorhanden sind. Wenn Sie nichts angeben, das in ein Int und ein Float umgewan-
delt werden kann, als zweites und drittes Kommandozeilenargument, werden Sie
Laufzeitfehler sehen (versuchen Sie es, um die Fehler zu sehen).

²⁷https://kotlinlang.org/

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

https://kotlinlang.org/
https://kotlinlang.org/


Variable Argumentlisten 150

Kompilieren und führen Sie MainArgConversion.kt mit denselben Kommandozei-
lenargumenten aus, die wir zuvor verwendet haben, und Sie werden sehen:

hamster 42 3.14159

Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Mengen
Ein Set ist eine Sammlung, die nur ein Element jedes Wertes zulässt.

Die häufigste Set-Aktivität ist der Test auf Mitgliedschaft mit in oder contains():

// Sets/Sets.kt
import atomictest.eq

fun main() {
val intSet = setOf(1, 1, 2, 3, 9, 9, 4)
// No duplicates:
intSet eq setOf(1, 2, 3, 4, 9)

// Element order is unimportant:
setOf(1, 2) eq setOf(2, 1)

// Set membership:
(9 in intSet) eq true
(99 in intSet) eq false

intSet.contains(9) eq true
intSet.contains(99) eq false

// Does this set contain another set?
intSet.containsAll(setOf(1, 9, 2)) eq true

// Set union:
intSet.union(setOf(3, 4, 5, 6)) eq
setOf(1, 2, 3, 4, 5, 6, 9)

// Set intersection:
intSet intersect setOf(0, 1, 2, 7, 8) eq
setOf(1, 2)

// Set difference:
intSet subtract setOf(0, 1, 9, 10) eq



Mengen 152

setOf(2, 3, 4)
intSet - setOf(0, 1, 9, 10) eq

setOf(2, 3, 4)
}

Dieses Beispiel zeigt:

1. Das Platzieren von doppelten Elementen in einem Set entfernt diese Duplikate
automatisch.

2. Die Reihenfolge der Elemente ist bei Mengen nicht wichtig. Zwei Mengen sind
gleich, wenn sie die gleichen Elemente enthalten.

3. Sowohl in als auch contains() testen auf Mitgliedschaft.
4. Sie können die üblichen Venn-Diagramm-Operationen wie Überprüfung auf
Teilmengen, Vereinigung, Schnittmenge und Differenz durchführen, entweder
mit Punktnotation (set.union(other)) oder Infix-Notation (set intersect
other). Die Funktionen union, intersect und subtract können mit Infix-
Notation verwendet werden.

5. DieMengendifferenz kann entwedermit subtract() oder demMinus-Operator
ausgedrückt werden.

Um Duplikate aus einer Liste zu entfernen, konvertieren Sie sie in ein Set:

// Sets/RemoveDuplicates.kt
import atomictest.eq

fun main() {
val list = listOf(3, 3, 2, 1, 2)
list.toSet() eq setOf(1, 2, 3)
list.distinct() eq listOf(3, 2, 1)
"abbcc".toSet() eq setOf('a', 'b', 'c')

}

Sie können auch distinct() verwenden, das eine List zurückgibt. Sie können
toSet() auf einem String aufrufen, um ihn in eine Menge einzigartiger Zeichen
umzuwandeln.

Wie bei List bietet Kotlin zwei Erstellungsfunktionen für Set. Das Ergebnis von
setOf() ist schreibgeschützt. Um ein veränderbares Set zu erstellen, verwenden
Sie mutableSetOf():

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Mengen 153

// Sets/MutableSet.kt
import atomictest.eq

fun main() {
val mutableSet = mutableSetOf<Int>()
mutableSet += 42
mutableSet += 42
mutableSet eq setOf(42)
mutableSet -= 42
mutableSet eq setOf<Int>()

}

Die Operatoren += und -= fügen Elemente zu Sets hinzu bzw. entfernen sie, genau
wie bei Lists.

Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Karten
Eine Map verbindet keys mit values und sucht einen Wert anhand eines
Schlüssels.

Sie erstellen eine Map, indem Sie mapOf() Schlüssel-Wert-Paare bereitstellen. Mit to
trennen wir jeden Schlüssel von seinem zugehörigen Wert:

// Maps/Maps.kt
import atomictest.eq

fun main() {
val constants = mapOf(
"Pi" to 3.141,
"e" to 2.718,
"phi" to 1.618

)
constants eq
"{Pi=3.141, e=2.718, phi=1.618}"

// Look up a value from a key:
constants["e"] eq 2.718 // [1]
constants.keys eq setOf("Pi", "e", "phi")
constants.values eq "[3.141, 2.718, 1.618]"

var s = ""
// Iterate through key-value pairs:
for (entry in constants) { // [2]
s += "${entry.key}=${entry.value}, "

}
s eq "Pi=3.141, e=2.718, phi=1.618,"

s = ""
// Unpack during iteration:
for ((key, value) in constants) // [3]
s += "$key=$value, "

s eq "Pi=3.141, e=2.718, phi=1.618,"
}



Karten 155

• [1] Der [] Operator sucht einen Wert mithilfe eines Schlüssels. Sie können
alle Schlüssel mit keys und alle Werte mit values erzeugen. Der Aufruf von
keys erzeugt eine Set, da alle Schlüssel in einem Map einzigartig sein müssen,
andernfalls gäbe es eine Mehrdeutigkeit bei einer Suche.

• [2] Das Iterieren durch ein Map erzeugt Schlüssel-Wert-Paare als Mapeinträge.
• [3] Sie können Schlüssel und Werte beim Iterieren entpacken.

Ein einfaches Map ist schreibgeschützt. Hier ist ein MutableMap:

// Maps/MutableMaps.kt
import atomictest.eq

fun main() {
val m =
mutableMapOf(5 to "five", 6 to "six")

m[5] eq "five"
m[5] = "5ive"
m[5] eq "5ive"
m += 4 to "four"
m eq mapOf(5 to "5ive",
4 to "four", 6 to "six")

}

map[key] = value fügt den Wert hinzu oder ändert ihn, der mit dem Schlüssel
verknüpft ist. Sie können auch explizit ein Paar hinzufügen, indem Sie map += key
to value verwenden.

mapOf() und mutableMapOf() bewahren die Reihenfolge, in der die Elemente in
die Map eingefügt werden. Dies ist nicht für andere Typen von Map garantiert.

Eine schreibgeschützte Map erlaubt keine Änderungen:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Karten 156

// Maps/ReadOnlyMaps.kt
import atomictest.eq

fun main() {
val m = mapOf(5 to "five", 6 to "six")
m[5] eq "five"
// m[5] = "5ive" // Fails
// m += (4 to "four") // Fails
m + (4 to "four") // Doesn't change m
m eq mapOf(5 to "five", 6 to "six")
val m2 = m + (4 to "four")
m2 eq mapOf(
5 to "five", 6 to "six", 4 to "four")

}

Die Definition von m erstellt eine Map, die Ints mit Strings verknüpft. Wenn wir
versuchen, einen String zu ersetzen, gibt Kotlin einen Fehler aus.

Ein Ausdruck mit + erstellt eine neue Map, die sowohl die alten Elemente als auch das
neue enthält, aber die ursprüngliche Map nicht beeinflusst. Die einzige Möglichkeit,
ein Element zu einer unveränderlichen Map “hinzuzufügen”, besteht darin, eine neue
Map zu erstellen.

Eine Map gibt null zurück, wenn sie keinen Eintrag für einen gegebenen Schlüssel
enthält. Wenn Sie ein Ergebnis benötigen, das nicht null sein kann, verwenden Sie
getValue() und fangen Sie NoSuchElementException ab, falls der Schlüssel fehlt:

// Maps/GetValue.kt
import atomictest.*

fun main() {
val map = mapOf('a' to "attempt")
map['b'] eq null
capture {
map.getValue('b')

} eq "NoSuchElementException: " +
"Key b is missing in the map."

map.getOrDefault('a', "??") eq "attempt"
map.getOrDefault('b', "??") eq "??"

}

getOrDefault() ist normalerweise eine angenehmere Alternative zu null oder
einer Ausnahme.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Karten 157

Sie können Klasseninstanzen als Werte in einem Map speichern. Hier ist ein Map, das
einen Contact anhand eines Zahlen-String abruft:

// Maps/ContactMap.kt
package maps
import atomictest.eq

class Contact(
val name: String,
val phone: String

) {
override fun toString() =
"Contact('$name', '$phone')"

}

fun main() {
val miffy = Contact("Miffy", "1-234-567890")
val cleo = Contact("Cleo", "098-765-4321")
val contacts = mapOf(
miffy.phone to miffy,
cleo.phone to cleo)

contacts["1-234-567890"] eq miffy
contacts["1-111-111111"] eq null

}

Es ist möglich, Klasseninstanzen als Schlüssel in einer Map zu verwenden, aber das
ist komplizierter, daher besprechen wir es später im Buch.

• -

Maps sehen aus wie einfache kleine Datenbanken. Sie werden manchmal assoziative
Arrays genannt, weil sie Schlüssel mit Werten verknüpfen. Obwohl sie im Vergleich
zu einer voll ausgestatteten Datenbank ziemlich begrenzt sind, sind sie dennoch
bemerkenswert nützlich (und weitaus effizienter als eine Datenbank).

Übungen und Lösungen finden Sie auf www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Eigenschaftszugriffe
Um eine Eigenschaft zu lesen, verwenden Sie ihren Namen. Um einer
veränderlichen Eigenschaft einen Wert zuzuweisen, verwenden Sie den
Zuweisungsoperator =.

Dies liest und schreibt die Eigenschaft i:

// PropertyAccessors/Data.kt
package propertyaccessors
import atomictest.eq

class Data(var i: Int)

fun main() {
val data = Data(10)
data.i eq 10 // Read the 'i' property
data.i = 20 // Write to the 'i' property

}

Dies scheint ein direkter Zugriff auf das Speicherelement namens i zu sein. Aller-
dings ruft Kotlin Funktionen auf, um die Lese- und Schreiboperationen durchzufüh-
ren. Wie erwartet, lesen und schreiben diese Funktionen standardmäßig die in i ge-
speicherten Daten. In diesem Abschnitt lernen Sie, Ihre eigenen Eigenschaftszugriffe
zu schreiben, um die Lese- und Schreibaktionen anzupassen.

Der Zugriff, der verwendet wird, um den Wert einer Eigenschaft zu erhalten, wird
Getter genannt. Sie erstellen einen Getter, indem Sie get() direkt nach der Eigen-
schaftsdefinition definieren. Der Zugriff, der verwendet wird, um eine änderbare
Eigenschaft zu modifizieren, wird Setter genannt. Sie erstellen einen Setter, indem
Sie set() direkt nach der Eigenschaftsdefinition definieren.

Die in dem folgenden Beispiel definierten Eigenschaftszugriffe imitieren die von Kot-
lin generierten Standardimplementierungen. Wir zeigen zusätzliche Informationen
an, damit Sie sehen können, dass die Eigenschaftszugriffe tatsächlich während der



Eigenschaftszugriffe 159

Lese- und Schreibvorgänge aufgerufen werden. Wir rücken get() und set() ein,
um sie visuell mit der Eigenschaft zu verknüpfen, aber die eigentliche Verknüpfung
erfolgt, weil get() und set() direkt nach dieser Eigenschaft definiert sind (Kotlin
kümmert sich nicht um die Einrückung):

// PropertyAccessors/Default.kt
package propertyaccessors
import atomictest.*

class Default {
var i: Int = 0
get() {

trace("get()")
return field // [1]

}
set(value) {

trace("set($value)")
field = value // [2]

}
}

fun main() {
val d = Default()
d.i = 2
trace(d.i)
trace eq """
set(2)
get()
2

"""
}

Die Reihenfolge der Definition von get() und set() ist unwichtig. Sie können
get() definieren, ohne set() zu definieren, und umgekehrt.

Das Standardverhalten einer Eigenschaft gibt ihren gespeicherten Wert über einen
Getter zurück und modifiziert ihn mit einem Setter—die Aktionen von [1] und
[2]. Innerhalb des Getters und Setters wird der gespeicherte Wert indirekt mit
dem Schlüsselwort field manipuliert, das nur innerhalb dieser beiden Funktionen
zugänglich ist.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Eigenschaftszugriffe 160

Das nächste Beispiel verwendet die Standardimplementierung des Getters und fügt
einen Setter hinzu, um Änderungen an der Eigenschaft n nachzuverfolgen:

// PropertyAccessors/LogChanges.kt
package propertyaccessors
import atomictest.*

class LogChanges {
var n: Int = 0
set(value) {

trace("$field becomes $value")
field = value

}
}

fun main() {
val lc = LogChanges()
lc.n eq 0
lc.n = 2
lc.n eq 2
trace eq "0 becomes 2"

}

Wenn Sie eine Eigenschaft als private definieren, werden beide Zugriffsmethoden
private. Sie können auch den Setter privatemachen und denGetter public. Dann
können Sie die Eigenschaft außerhalb der Klasse lesen, aber ihrenWert nur innerhalb
der Klasse ändern:

// PropertyAccessors/Counter.kt
package propertyaccessors
import atomictest.eq

class Counter {
var value: Int = 0
private set

fun inc() = value++
}

fun main() {
val counter = Counter()
repeat(10) {
counter.inc()

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Eigenschaftszugriffe 161

}
counter.value eq 10

}

Mit private set kontrollieren wir die Eigenschaft value, sodass sie nur um eins
erhöht werden kann.

Normale Eigenschaften speichern ihre Daten in einem Feld. Man kann auch eine
Eigenschaft erstellen, die kein Feld hat:

// PropertyAccessors/Hamsters.kt
package propertyaccessors
import atomictest.eq

class Hamster(val name: String)

class Cage(private val maxCapacity: Int) {
private val hamsters =
mutableListOf<Hamster>()

val capacity: Int
get() = maxCapacity - hamsters.size

val full: Boolean
get() = hamsters.size == maxCapacity

fun put(hamster: Hamster): Boolean =
if (full)

false
else {

hamsters += hamster
true

}
fun take(): Hamster =
hamsters.removeAt(0)

}

fun main() {
val cage = Cage(2)
cage.full eq false
cage.capacity eq 2
cage.put(Hamster("Alice")) eq true
cage.put(Hamster("Bob")) eq true
cage.full eq true
cage.capacity eq 0

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Eigenschaftszugriffe 162

cage.put(Hamster("Charlie")) eq false
cage.take()
cage.capacity eq 1

}

Die Eigenschaften capacity und full enthalten keinen zugrunde liegenden Zustand—
sie werden zum Zeitpunkt jedes Zugriffs berechnet. Sowohl capacity als auch full
sind ähnlich wie Funktionen, und Sie können sie als solche definieren:

// PropertyAccessors/Hamsters2.kt
package propertyaccessors

class Cage2(private val maxCapacity: Int) {
private val hamsters =
mutableListOf<Hamster>()

fun capacity(): Int =
maxCapacity - hamsters.size

fun isFull(): Boolean =
hamsters.size == maxCapacity

}

In diesem Fall verbessert die Verwendung von Eigenschaften die Lesbarkeit, da
Kapazität und Fülle Eigenschaften des Käfigs sind. Wandeln Sie jedoch nicht einfach
alle Ihre Funktionen in Eigenschaften um—sehen Sie sich zuerst an, wie sie sich lesen.

• -

Die Kotlin-Stilrichtlinie bevorzugt Eigenschaften gegenüber Funktionen, wenn der
Wert günstig zu berechnen ist und die Eigenschaft bei jedem Aufruf dasselbe
Ergebnis liefert, solange sich der Objektzustand nicht geändert hat.

Eigenschaftszugriffe bieten eine Art Schutz für Eigenschaften. Viele objektorientierte
Sprachen verlassen sich darauf, ein physisches Feld private zu machen, um den
Zugriff auf diese Eigenschaft zu kontrollieren. Mit Eigenschaftszugriffen können Sie
Code hinzufügen, um diesen Zugriff zu kontrollieren oder zu verändern, während
Sie jedem erlauben, eine Eigenschaft zu verwenden.

Übungen und Lösungen finden Sie auf www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 2
Dieses Atom fasst die Atome in Abschnitt II zusammen und überprüft sie,
von Objects Everywhere bis Property Accessors.

Wenn Sie ein erfahrener Programmierer sind, ist dies Ihr nächstes Atom nach
Summary 1, und Sie werden die Atome danach der Reihe nach durchgehen.

Neue Programmierer sollten dieses Atom lesen und die Übungen zur Überprüfung
durchführen. Wenn Ihnen hier Informationen unklar sind, gehen Sie zurück und
studieren Sie das Atom zu diesem Thema.

Die Themen erscheinen in einer geeigneten Reihenfolge für erfahrene Program-
mierer, was nicht der gleichen Reihenfolge der Atome im Buch entspricht. Zum
Beispiel beginnen wir mit der Einführung von Paketen und Importen, damit wir
unser minimales Test-Framework für den Rest des Atoms verwenden können.

Pakete & Testen

Eine beliebige Anzahl von wiederverwendbaren Bibliothekskomponenten kann un-
ter einem einzigen Bibliotheksnamen mit dem package-Schlüsselwort gebündelt
werden:

// Summary2/ALibrary.kt
package com.yoururl.libraryname

// Components to reuse ...
fun f() = "result"

Sie können mehrere Komponenten in einer einzigen Datei platzieren oder Kompo-
nenten auf mehrere Dateien mit demselben Paketnamen verteilen. Hier haben wir
f() als einzige Komponente definiert.



Zusammenfassung 2 164

Um es eindeutig zu machen, beginnt der Paketname konventionell mit Ihrem umge-
kehrten Domain-Namen. In diesem Beispiel ist der Domain-Name yoururl.com.

In Kotlin kann der Paketname unabhängig von dem Verzeichnis sein, in dem sich
seine Inhalte befinden. Java verlangt, dass die Verzeichnisstruktur mit dem vollquali-
fizierten Paketnamen übereinstimmt, sodass das Paket com.yoururl.libraryname
im Verzeichnis com/yoururl/libraryname liegen sollte. Für gemischte Kotlin-
und Java-Projekte empfiehlt der Kotlin-Stilführer dieselbe Praxis. Für reine Kotlin-
Projekte platzieren Sie das Verzeichnis libraryname auf der obersten Ebene der
Verzeichnisstruktur Ihres Projekts.

Eine Importanweisung bringt einen oder mehrere Namen in den aktuellen Namens-
raum:

// Summary2/UseALibrary.kt
import com.yoururl.libraryname.*

fun main() {
val x = f()

}

Der Stern nach librarynameweist Kotlin an, alle Komponenten einer Bibliothek zu
importieren. Sie können auch Komponenten einzeln auswählen; Details finden Sie
unter Pakete.

Im restlichen Teil dieses Buches verwenden wir package-Anweisungen für jede
Datei, die Funktionen, Klassen usw. außerhalb von main() definiert. Dies verhindert
Namenskonflikte mit anderen Dateien im Buch. In der Regel setzen wir keine
package-Anweisung in eine Datei, die nur ein main() enthält.

Eine wichtige Bibliothek für dieses Buch ist atomictest, unser einfaches Test-
Framework. atomictest ist definiert in Anhang A: AtomicTest, obwohl es Sprach-
merkmale verwendet, die Sie zu diesem Zeitpunkt im Buch noch nicht verstehen
werden.

Nach dem Importieren von atomictest verwenden Sie eq (gleich) und neq (un-
gleich) fast so, als wären sie Sprachschlüsselwörter:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 2 165

// Summary2/UsingAtomicTest.kt
import atomictest.*

fun main() {
val pi = 3.14
val pie = "A round dessert"
pi eq 3.14
pie eq "A round dessert"
pi neq pie

}
/* Output:
3.14
A round dessert
3.14
*/

Die Fähigkeit, eq/neq ohne Punkte oder Klammern zu verwenden, wird als Infix-
Notation bezeichnet. Sie können infix-Funktionen entweder auf die reguläre Weise
aufrufen: pi.eq(3.14), oder unter Verwendung der Infix-Notation: pi eq 3.14.
Sowohl eq als auch neq sindWahrheitsaussagen, die das Ergebnis von der linken Sei-
te der eq/neq-Anweisung anzeigen, sowie eine Fehlermeldung, wenn der Ausdruck
auf der rechten Seite von eq nicht gleichwertig zur linken ist (oder gleichwertig ist,
im Fall von neq). Auf diese Weise sehen Sie verifizierte Ergebnisse im Quellcode.

atomictest.trace verwendet die Funktionsaufruf-Syntax, um Ergebnisse hinzuzu-
fügen, die dann mit eq validiert werden können:

// Testing/UsingTrace.kt
import atomictest.*

fun main() {
trace("Hello,")
trace(47)
trace("World!")
trace eq """
Hello,
47
World!

"""
}

Sie können println() effektiv durch trace() ersetzen.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 2 166

Objekte überall

Kotlin ist eine hybrid objekt-funktionale Sprache: Sie unterstützt sowohl objektori-
entierte als auch funktionale Programmierparadigmen.

Objekte enthalten vals und vars, um Daten zu speichern (diese werden Eigenschaf-
ten genannt) und führen Operationen mit Funktionen aus, die innerhalb einer Klasse
definiert sind, sogenannte Mitgliedsfunktionen (wenn es eindeutig ist, sagen wir
einfach “Funktionen”). Eine Klasse definiert Eigenschaften und Mitgliedsfunktionen
für das, was im Wesentlichen ein neuer, benutzerdefinierter Datentyp ist. Wenn Sie
ein val oder var einer Klasse erstellen, nennt man dies ein Objekt erstellen oder eine
Instanz erstellen.

Eine besonders nützliche Art von Objekt ist der Container, auch Sammlung genannt.
Ein Container ist ein Objekt, das andere Objekte hält. In diesem Buch verwenden wir
oft die List, da sie die vielseitigste Sequenz ist. Hier führenwir mehrere Operationen
an einer List durch, die Doubles enthält. listOf() erstellt eine neue List aus ihren
Argumenten:

// Summary2/ListCollection.kt
import atomictest.eq

fun main() {
val lst = listOf(19.2, 88.3, 22.1)
lst[1] eq 88.3 // Indexing
lst.reversed() eq listOf(22.1, 88.3, 19.2)
lst.sorted() eq listOf(19.2, 22.1, 88.3)
lst.sum() eq 129.6

}

Kein import-Statement ist erforderlich, um eine List zu verwenden.

Kotlin verwendet eckige Klammern für die Indexierung in Sequenzen. Die Indexie-
rung beginnt bei Null.

Dieses Beispiel zeigt auch einige der vielen Standardbibliotheksfunktionen, die für
Lists verfügbar sind: sorted(), reversed(), und sum(). Um diese Funktionen zu
verstehen, konsultieren Sie die Kotlin Dokumentation²⁸ online.

²⁸https://kotlinlang.org/docs/reference/

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/


Zusammenfassung 2 167

Wenn Sie sorted() oder reversed() aufrufen, wird lst nicht verändert. Stattdes-
sen wird eine neue List erstellt und zurückgegeben, die das gewünschte Ergebnis
enthält. Dieser Ansatz, das Originalobjekt niemals zu verändern, ist durchgehend in
den Kotlin-Bibliotheken konsistent, und Sie sollten bestrebt sein, diesem Muster zu
folgen, wenn Sie Ihren eigenen Code schreiben.

Klassen erstellen

Eine Klassendefinition besteht aus dem Schlüsselwort class, einem Namen für die
Klasse und einem optionalen Körper. Der Körper enthält Eigenschaftsdefinitionen
(vals und vars) und Funktionsdefinitionen.

Dieses Beispiel definiert eine NoBody-Klasse ohne Körper und Klassen mit val-
Eigenschaften:

// Summary2/ClassBodies.kt
package summary2

class NoBody

class SomeBody {
val name = "Janet Doe"

}

class EveryBody {
val all = listOf(SomeBody(),
SomeBody(), SomeBody())

}

fun main() {
val nb = NoBody()
val sb = SomeBody()
val eb = EveryBody()

}

Um eine Instanz einer Klasse zu erstellen, setzen Sie Klammern nach ihrem Namen,
sowie Argumente, falls diese erforderlich sind.

Eigenschaften innerhalb von Klassenkörpern können jeden Typ haben. SomeBody
enthält eine Eigenschaft vom Typ String, und die Eigenschaft von EveryBody ist
eine List, die SomeBody-Objekte hält.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 2 168

Hier ist eine Klasse mit Mitgliedsfunktionen:

// Summary2/Temperature.kt
package summary2
import atomictest.eq

class Temperature {
var current = 0.0
var scale = "f"
fun setFahrenheit(now: Double) {
current = now
scale = "f"

}
fun setCelsius(now: Double) {

current = now
scale = "c"

}
fun getFahrenheit(): Double =
if (scale == "f")

current
else

current * 9.0 / 5.0 + 32.0
fun getCelsius(): Double =
if (scale == "c")

current
else

(current - 32.0) * 5.0 / 9.0
}

fun main() {
val temp = Temperature() // [1]
temp.setFahrenheit(98.6)
temp.getFahrenheit() eq 98.6
temp.getCelsius() eq 37.0
temp.setCelsius(100.0)
temp.getFahrenheit() eq 212.0

}

DieseMitgliedsfunktionen sind genauwie die auf oberster Ebene definierten Funktio-
nen außerhalb von Klassen, außer dass sie zur Klasse gehören und uneingeschränk-
ten Zugriff auf die anderen Mitglieder der Klasse haben, wie current und scale.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 2 169

Mitgliedsfunktionen können auch andere Mitgliedsfunktionen in derselben Klasse
ohne Qualifikation aufrufen.

• [1] Obwohl temp ein val ist, modifizieren wir später das Temperature-Objekt.
Die val-Definition verhindert, dass die Referenz temp auf ein neues Objekt
umgeschrieben wird, schränkt jedoch das Verhalten des Objekts selbst nicht
ein.

Die folgenden zwei Klassen sind die Basis eines Tic-Tac-Toe-Spiels:

// Summary2/TicTacToe.kt
package summary2
import atomictest.eq

class Cell {
var entry = ' ' // [1]
fun setValue(e: Char): String = // [2]
if (entry == ' ' &&

(e == 'X' || e == 'O')) {
entry = e
"Successful move"

} else
"Invalid move"

}

class Grid {
val cells = listOf(
listOf(Cell(), Cell(), Cell()),
listOf(Cell(), Cell(), Cell()),
listOf(Cell(), Cell(), Cell())

)
fun play(e: Char, x: Int, y: Int): String =
if (x !in 0..2 || y !in 0..2)

"Invalid move"
else

cells[x][y].setValue(e) // [3]
}

fun main() {
val grid = Grid()
grid.play('X', 1, 1) eq "Successful move"
grid.play('X', 1, 1) eq "Invalid move"

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 2 170

grid.play('O', 1, 3) eq "Invalid move"
}

Die Grid-Klasse enthält eine List, die drei Lists enthält, von denen jede drei Cells
enthält — eine Matrix.

• [1] Die entry-Eigenschaft in Cell ist ein var, sodass sie modifiziert werden
kann. Die einfachen Anführungszeichen in der Initialisierung erzeugen einen
Char-Typ, daher müssen alle Zuweisungen zu entry ebenfalls Chars sein.

• [2] setValue() prüft, ob die Cell verfügbar ist und ob Sie das richtige
Zeichen übergeben haben. Es gibt ein String-Ergebnis zurück, um Erfolg oder
Misserfolg anzuzeigen.

• [3] play() überprüft, ob die x- und y-Argumente im Bereich liegen, und indi-
ziert dann in die Matrix, wobei es sich auf die von setValue() durchgeführten
Tests stützt.

Konstruktoren

Konstruktoren erstellen neue Objekte. Sie übergeben Informationen an einen Kon-
struktor mithilfe seiner Parameterliste, die direkt nach dem Klassennamen in Klam-
mern gesetzt wird. Ein Konstruktoraufruf sieht daher wie ein Funktionsaufruf aus,
außer dass der Anfangsbuchstabe des Namens großgeschrieben wird (gemäß dem
Kotlin-Stilguide). Der Konstruktor gibt ein Objekt der Klasse zurück:

// Summary2/WildAnimals.kt
package summary2
import atomictest.eq

class Badger(id: String, years: Int) {
val name = id
val age = years
override fun toString() =
"Badger: $name, age: $age"

}

class Snake(
var type: String,
var length: Double

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 2 171

) {
override fun toString() =
"Snake: $type, length: $length"

}

class Moose(
val age: Int,
val height: Double

) {
override fun toString() =
"Moose, age: $age, height: $height"

}

fun main() {
Badger("Bob", 11) eq "Badger: Bob, age: 11"
Snake("Garden", 2.4) eq
"Snake: Garden, length: 2.4"

Moose(16, 7.2) eq
"Moose, age: 16, height: 7.2"

}

Die Parameter id und years in Badger sind nur im Konstruktor-Körper verfügbar.
Der Konstruktor-Körper besteht aus den Codezeilen, die keine Funktionsdefinitionen
sind; in diesem Fall die Definitionen für name und age.

Oft möchte man, dass die Konstruktor-Parameter in Teilen der Klasse verfügbar sind,
die nicht zum Konstruktor-Körper gehören, ohne dass man neue Bezeichner explizit
definieren muss, wie wir es bei name und age getan haben. Wenn Sie Ihre Parameter
als vars oder vals definieren, werden sie zu Eigenschaften und sind überall in der
Klasse zugänglich. Sowohl Snake als auch Moose verwenden diesen Ansatz, und
Sie können sehen, dass die Konstruktor-Parameter jetzt innerhalb ihrer jeweiligen
toString()-Funktionen verfügbar sind.

Mit val deklarierte Konstruktor-Parameter können nicht geändert werden, aber die
mit var deklarierten schon.

Wann immer Sie ein Objekt in einer Situation verwenden, die einen String erwartet,
erzeugt Kotlin eine String-Darstellung dieses Objekts, indem es seine toString()-
Mitgliedsfunktion aufruft. Um eine toString() zu definieren, müssen Sie ein neues
Schlüsselwort verstehen: override. Dies ist notwendig (Kotlin besteht darauf), weil
toString() bereits definiert ist. override teilt Kotlin mit, dass wir tatsächlich die

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 2 172

Standard-toString() durch unsere eigeneDefinition ersetzenwollen. Die Explizität
von override macht dies dem Leser klar und hilft, Fehler zu vermeiden.

Beachten Sie das Format der mehrzeiligen Parameterliste für Snake und Moose —
dies ist der empfohlene Standard, wenn Sie zu viele Parameter haben, um sie in eine
Zeile zu passen, sowohl für Konstruktoren als auch für Funktionen.

Einschränkung der Sichtbarkeit

Kotlin bietet Zugriffsmodifikatoren, die denen in anderen Sprachen wie C++ oder
Java ähnlich sind. Diese ermöglichen es den Erstellern von Komponenten, zu
entscheiden, was für den Client-Programmierer verfügbar ist. Zu den Zugriffsmo-
difikatoren von Kotlin gehören die Schlüsselwörter public, private, protected
und internal. protected wird später erklärt.

Ein Zugriffsmodifikator wie public oder private erscheint vor der Definition einer
Klasse, Funktion oder Eigenschaft. Jeder Zugriffsmodifikator steuert nur den Zugriff
auf diese spezifische Definition.

Eine public-Definition ist für jeden verfügbar, insbesondere für denClient-Programmierer,
der diese Komponente verwendet. Daher wirken sich alle Änderungen an einer
public-Definition auf den Client-Code aus.

Wenn Sie keinen Modifikator angeben, ist Ihre Definition automatisch public.
Aus Gründen der Klarheit geben Programmierer in bestimmten Fällen manchmal
trotzdem redundant public an.

Wenn Sie eine Klasse, eine top-level Funktion oder Eigenschaft als private definie-
ren, ist sie nur innerhalb dieser Datei verfügbar:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 2 173

// Summary2/Boxes.kt
package summary2
import atomictest.*

private var count = 0 // [1]

private class Box(val dimension: Int) { // [2]
fun volume() =
dimension * dimension * dimension

override fun toString() =
"Box volume: ${volume()}"

}

private fun countBox(box: Box) { // [3]
trace("$box")
count++

}

fun countBoxes() {
countBox(Box(4))
countBox(Box(5))

}

fun main() {
countBoxes()
trace("$count boxes")
trace eq """
Box volume: 64
Box volume: 125
2 boxes

"""
}

Sie können auf private Eigenschaften ([1]), Klassen ([2]) und Funktionen ([3])
nur von anderen Funktionen und Klassen in der Datei Boxes.kt zugreifen. Kotlin
verhindert, dass Sie auf private Top-Level-Elemente von einer anderen Datei aus
zugreifen.

Klassenmitglieder können private sein:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 2 174

// Summary2/JetPack.kt
package summary2
import atomictest.eq

class JetPack(
private var fuel: Double // [1]

) {
private var warning = false
private fun burn() = // [2]
if (fuel - 1 <= 0) {

fuel = 0.0
warning = true

} else
fuel -= 1

public fun fly() = burn() // [3]
fun check() = // [4]
if (warning) // [5]

"Warning"
else

"OK"
}

fun main() {
val jetPack = JetPack(3.0)
while (jetPack.check() != "Warning") {
jetPack.check() eq "OK"
jetPack.fly()

}
jetPack.check() eq "Warning"

}

• [1] fuel und warning sind beide private Eigenschaften und können nicht
von Nicht-Mitgliedern von JetPack verwendet werden.

• [2] burn() ist private und somit nur innerhalb von JetPack zugänglich.
• [3] fly() und check() sind public und können überall verwendet werden.
• [4] Kein Zugriffsmodifizierer bedeutet public Sichtbarkeit.
• [5] Nur Mitglieder derselben Klasse können auf privateMitglieder zugreifen.

Da eine privateDefinition nicht für alle verfügbar ist, kannman sie imAllgemeinen
ändern, ohne sich um den Client-Programmierer zu sorgen. Als Bibliotheksdesigner

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 2 175

hält man normalerweise alles so private wie möglich und gibt nur Funktionen
und Klassen frei, die Client-Programmierer verwenden sollen. Um die Größe und
Komplexität der Beispielauflistungen in diesem Buch zu begrenzen, verwenden wir
private nur in speziellen Fällen.

Jede Funktion, bei der Sie sicher sind, dass es sich nur um eine Hilfsfunktion handelt,
kann private gemacht werden, um sicherzustellen, dass Sie sie nicht versehentlich
anderswo verwenden und sich damit verbieten, die Funktion zu ändern oder zu
entfernen.

Es kann nützlich sein, große Programme in Module zu unterteilen. Ein Modul ist
ein logisch unabhängiger Teil einer Codebasis. Eine internal Definition ist nur
innerhalb des Moduls zugänglich, in dem sie definiert ist. Die Art und Weise, wie
Sie ein Projekt in Module unterteilen, hängt vom Build-System ab (wie Gradle²⁹ oder
Maven³⁰) und liegt außerhalb des Rahmens dieses Buches.

Module sind ein Konzept auf höherer Ebene, während Pakete eine feiner abgestufte
Strukturierung ermöglichen.

Ausnahmen

Betrachten Sie toDouble(), das einen String in ein Double umwandelt. Was
passiert, wenn Sie es für einen String aufrufen, der nicht in ein Double übersetzt
wird?

// Summary2/ToDoubleException.kt

fun main() {
// val i = "$1.9".toDouble()

}

Das Auskommentieren der Zeile in main() erzeugt eine Ausnahme. Hier ist die
fehlerhafte Zeile auskommentiert, damit der Bau des Buches nicht gestoppt wird
(der überprüft, ob jedes Beispiel wie erwartet kompiliert und ausgeführt wird).

Wenn eine Ausnahme ausgelöst wird, stoppt der aktuelle Ausführungspfad, und das
Ausnahmeobjekt wird aus dem aktuellen Kontext herausgeschleudert. Wenn eine

²⁹https://gradle.org/
³⁰https://maven.apache.org/

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

https://gradle.org/
https://maven.apache.org/
https://gradle.org/
https://maven.apache.org/


Zusammenfassung 2 176

Ausnahme nicht abgefangen wird, bricht das Programm ab und zeigt einen Stack-
Trace mit detaillierten Informationen an.

Um das Anzeigen von Ausnahmen durch Kommentieren und Auskommentieren
von Code zu vermeiden, speichert atomictest.capture() die Ausnahme und
vergleicht sie mit dem, was wir erwarten:

// Summary2/AtomicTestCapture.kt
import atomictest.*

fun main() {
capture {
"$1.9".toDouble()

} eq "NumberFormatException: " +
"""For input string: "$1.9""""

}

capture() ist speziell für dieses Buch konzipiert, damit Sie die Ausnahme sehen und
wissen, dass die Ausgabe vom Build-System des Buches überprüft wurde.

Eine weitere Strategie, wenn Ihre Funktion das erwartete Ergebnis nicht erfolgreich
liefern kann, ist die Rückgabe von null. Später in Nullable Types diskutieren wir,
wie null den Typ des resultierenden Ausdrucks beeinflusst.

Um eine Ausnahme zu werfen, verwenden Sie das Schlüsselwort throw, gefolgt
von der Ausnahme, die Sie werfen möchten, zusammen mit allen Argumenten, die
sie möglicherweise benötigt. quadraticZeroes() im folgenden Beispiel löst die
quadratische Gleichung³¹, die eine Parabel definiert:

ax² + bx + c = 0

Die Lösung ist die quadratische Formel:

Die quadratische Formel

Das Beispiel findet die Nullstellen der Parabel, wo die Linien die x-Achse schneiden.
Wir werfen Ausnahmen für zwei Einschränkungen:

³¹https://en.wikipedia.org/wiki/Quadratic_formula

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC

https://en.wikipedia.org/wiki/Quadratic_formula
https://en.wikipedia.org/wiki/Quadratic_formula


Zusammenfassung 2 177

1. a darf nicht null sein.
2. Damit Nullstellen existieren, darf b² - 4ac nicht negativ sein.

Wenn Nullstellen existieren, gibt es zwei, daher erstellen wir die Roots-Klasse, um
die Rückgabewerte zu halten:

// Summary2/Quadratic.kt
package summary2
import kotlin.math.sqrt
import atomictest.*

class Roots(
val root1: Double,
val root2: Double

)

fun quadraticZeroes(
a: Double,
b: Double,
c: Double

): Roots {
if (a == 0.0)
throw IllegalArgumentException(

"a is zero")
val underRadical = b * b - 4 * a * c
if (underRadical < 0)
throw IllegalArgumentException(

"Negative underRadical: $underRadical")
val squareRoot = sqrt(underRadical)
val root1 = (-b - squareRoot) / (2 * a)
val root2 = (-b + squareRoot) / (2 * a)
return Roots(root1, root2)

}

fun main() {
capture {
quadraticZeroes(0.0, 4.0, 5.0)

} eq "IllegalArgumentException: " +
"a is zero"

capture {
quadraticZeroes(3.0, 4.0, 5.0)

} eq "IllegalArgumentException: " +

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 2 178

"Negative underRadical: -44.0"
val roots = quadraticZeroes(1.0, 2.0, -8.0)
roots.root1 eq -4.0
roots.root2 eq 2.0

}

Hier verwenden wir die Standard-Ausnahmeklasse IllegalArgumentException.
Später werden Sie lernen, Ihre eigenen Ausnahmetypen zu definieren und sie spezi-
fisch an Ihre Umstände anzupassen. Ihr Ziel ist es, die nützlichsten Nachrichten zu
generieren, um die Unterstützung Ihrer Anwendung in der Zukunft zu vereinfachen.

Listen

Lists sind Kotlins grundlegender sequentieller Containertyp. Sie erstellen eine
schreibgeschützte Liste mit listOf() und eine veränderbare Liste mit mutableLi-
stOf():

// Summary2/ReadonlyVsMutableList.kt
import atomictest.*

fun main() {
val ints = listOf(5, 13, 9)
// ints.add(11) // 'add()' not available
for (i in ints) {
if (i > 10) {

trace(i)
}

}
val chars = mutableListOf('a', 'b', 'c')
chars.add('d') // 'add()' available
chars += 'e'
trace(chars)
trace eq """
13
[a, b, c, d, e]

"""
}

Eine grundlegende Liste ist schreibgeschützt und enthält keine Änderungsfunktio-
nen. Daher funktioniert die Änderungsfunktion add() nicht mit ints.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 2 179

for Schleifen funktionieren gut mit Listen: for(i in ints) bedeutet, dass i jeden
Wert in ints erhält.

chars wird als VeränderbareListe erstellt; sie kann mit Funktionen wie add()
oder remove() modifiziert werden. Sie können auch += und -= verwenden, um
Elemente hinzuzufügen oder zu entfernen.

Eine schreibgeschützte Liste ist nicht dasselbe wie eine unveränderliche Liste, die
überhaupt nicht modifiziert werden kann. Hier weisen wir first, eine veränderbare
Liste, second zu, einer schreibgeschützten Liste-Referenz. Die schreibgeschützte
Eigenschaft von second verhindert nicht, dass sich die Liste über first ändert:

// Summary2/MultipleListReferences.kt
import atomictest.eq

fun main() {
val first = mutableListOf(1)
val second: List<Int> = first
second eq listOf(1)
first += 2
// second sees the change:
second eq listOf(1, 2)

}

first und second verweisen auf dasselbe Objekt im Speicher. Wir verändern die
List über die first Referenz und beobachten dann diese Änderung in der second
Referenz.

Hier ist eine List von Strings, die durch das Aufteilen eines dreifach-quotierten
Absatzes erstellt wurde. Dies zeigt die Leistungsfähigkeit einiger Funktionen der
Standardbibliothek. Beachten Sie, wie diese Funktionen verkettet werden können:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 2 180

// Summary2/ListOfStrings.kt
import atomictest.*

fun main() {
val wocky = """
Twas brillig, and the slithy toves

Did gyre and gimble in the wabe:
All mimsy were the borogoves,

And the mome raths outgrabe.
""".trim().split(Regex("\\W+"))
trace(wocky.take(5))
trace(wocky.slice(6..12))
trace(wocky.slice(6..18 step 2))
trace(wocky.sorted().takeLast(5))
trace(wocky.sorted().distinct().takeLast(5))
trace eq """
[Twas, brillig, and, the, slithy]
[Did, gyre, and, gimble, in, the, wabe]
[Did, and, in, wabe, mimsy, the, And]
[the, the, toves, wabe, were]
[slithy, the, toves, wabe, were]

"""
}

trim() erzeugt einen neuen String, bei dem die führenden und nachfolgenden Leer-
zeichen (einschließlich Zeilenumbrüche) entfernt wurden. split() teilt den String
gemäß seinemArgument. In diesem Fall verwenden wir ein Regex-Objekt, das einen
regulären Ausdruck erstellt—ein Muster, das die zu trennenden Teile abgleicht. \W ist
ein spezielles Muster, das “kein Wortzeichen” bedeutet, und + bedeutet “eines oder
mehrere der vorhergehenden”. Somit wird split() an einem oder mehreren Nicht-
Wortzeichen brechen und somit den Textblock in seine einzelnen Wörter aufteilen.

In einem String-Literal steht \ vor einem speziellen Zeichen und erzeugt zum
Beispiel ein Zeilenumbruchzeichen (\n) oder ein Tabulatorzeichen (\t). Um einen
tatsächlichen \ im resultierenden String zu erzeugen, benötigen Sie zwei Backslashes:
"\\". Daher erfordern alle regulären Ausdrücke einen zusätzlichen \, um einen
Backslash einzufügen, es sei denn, Sie verwenden einen dreifach zitierten String:
"""\W+""".

take(n) erzeugt eine neue List, die die ersten n Elemente enthält. slice() erzeugt
eine neue List, die die durch das Range-Argument ausgewählten Elemente enthält,

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 2 181

und dieser Range kann einen step einschließen.

Beachten Sie den Namen sorted() anstelle von sort(). Wenn Sie sorted() aufru-
fen, erzeugt es eine sortierte List und lässt die ursprüngliche List unangetastet.
sort() funktioniert nur mit einer MutableList, und diese Liste wird vor Ort
sortiert—die ursprüngliche List wird verändert.

Wie der Name schon sagt, erzeugt takeLast(n) eine neue List der letzten n
Elemente. An der Ausgabe können Sie sehen, dass “the” dupliziert ist. Dies wird
durch Hinzufügen der distinct()-Funktion zur Aufrufkette beseitigt.

Parametrisierte Typen

Typparameter ermöglichen es uns, zusammengesetzte Typen zu beschreiben, am
häufigsten Container. Insbesondere spezifizieren Typparameter, was ein Container
enthält. Hier sagen wir Kotlin, dass numbers eine List von Int enthält, während
strings eine List von String enthält:

// Summary2/ExplicitTyping.kt
package summary2
import atomictest.eq

fun main() {
val numbers: List<Int> = listOf(1, 2, 3)
val strings: List<String> =
listOf("one", "two", "three")

numbers eq "[1, 2, 3]"
strings eq "[one, two, three]"
toCharList("seven") eq "[s, e, v, e, n]"

}

fun toCharList(s: String): List<Char> =
s.toList()

Sowohl bei den Definitionen von numbers als auch strings fügen wir Doppel-
punkte und die Typdeklarationen List<Int> und List<String> hinzu. Die spitzen
Klammern bezeichnen einen Typ-Parameter, der es uns ermöglicht zu sagen, “der
Container enthält ‘Parameter’-Objekte.” Man spricht List<Int> typischerweise als
“List von Int” aus.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 2 182

Ein Rückgabewert kann ebenfalls einen Typ-Parameter haben, wie in toCharList()
zu sehen ist. Man kann nicht einfach sagen, dass es eine List zurückgibt—Kotlin
beschwert sich, also muss man den Typ-Parameter ebenfalls angeben.

Variable Argumentlisten

Das Schlüsselwort vararg steht für variable Argumentliste und erlaubt es einer Funk-
tion, eine beliebige Anzahl von Argumenten (einschließlich null) des angegebenen
Typs zu akzeptieren. Das vararg wird zu einem Array, das ähnlich wie eine List
ist:

// Summary2/VarArgs.kt
package summary2
import atomictest.*

fun varargs(s: String, vararg ints: Int) {
for (i in ints) {
trace("$i")

}
trace(s)

}

fun main() {
varargs("primes", 5, 7, 11, 13, 17, 19, 23)
trace eq "5 7 11 13 17 19 23 primes"

}

Eine Funktionsdefinition kann nur einen Parameter als vararg spezifizieren. Jeder
Parameter in der Liste kann das vararg sein, aber der letzte ist im Allgemeinen der
einfachste.

Sie können ein Array von Elementen überall dort übergeben, wo ein vararg
akzeptiert wird. Um ein Array zu erstellen, verwenden Sie arrayOf() auf die
gleiche Weise wie listOf(). Ein Array ist immer veränderbar. Um ein Array in
eine Sequenz von Argumenten (nicht nur ein einzelnes Element des Typs Array) zu
konvertieren, verwenden Sie den Spread-Operator *:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 2 183

// Summary2/ArraySpread.kt
import summary2.varargs
import atomictest.trace

fun main() {
val array = intArrayOf(4, 5) // [1]
varargs("x", 1, 2, 3, *array, 6) // [2]
val list = listOf(9, 10, 11)
varargs(
"y", 7, 8, *list.toIntArray()) // [3]

trace eq "1 2 3 4 5 6 x 7 8 9 10 11 y"
}

Wenn Sie ein Array von Primitivtypen wie im obigen Beispiel übergeben, muss
die Array-Erstellungsfunktion spezifisch typisiert sein. Wenn [1] arrayOf(4, 5)
anstelle von intArrayOf(4, 5) verwendet, erzeugt [2] einen Fehler: inferred type
is Array<Int> but IntArray was expected.

Der Spread-Operator funktioniert nur mit Arrays. Wenn Sie eine List als Sequenz
von Argumenten übergeben möchten, konvertieren Sie sie zuerst in ein Array
und wenden Sie dann den Spread-Operator an, wie in [3]. Da das Ergebnis ein
Array eines Primitivtyps ist, müssen wir die spezifische Konvertierungsfunktion
toIntArray() verwenden.

Sets

Sets sind Sammlungen, die nur ein Element jedes Wertes zulassen. Ein Set verhin-
dert automatisch Duplikate.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 2 184

// Summary2/ColorSet.kt
package summary2
import atomictest.eq

val colors =
"Yellow Green Green Blue"
.split(Regex("""\W+""")).sorted() // [1]

fun main() {
colors eq
listOf("Blue", "Green", "Green", "Yellow")

val colorSet = colors.toSet() // [2]
colorSet eq
setOf("Yellow", "Green", "Blue")

(colorSet + colorSet) eq colorSet // [3]
val mSet = colorSet.toMutableSet() // [4]
mSet -= "Blue"
mSet += "Red" // [5]
mSet eq
setOf("Yellow", "Green", "Red")

// Set membership:
("Green" in colorSet) eq true // [6]
colorSet.contains("Red") eq false

}

• [1] Der String wird mit einem regulären Ausdruck aufgeteilt (split()), wie
zuvor für ListOfStrings.kt beschrieben.

• [2] Wenn colors in das schreibgeschützte Set colorSet kopiert wird, wird
einer der beiden "Green"-Strings entfernt, da es sich um ein Duplikat handelt.

• [3] Hier erstellen und anzeigen wir ein neues Set mit dem +-Operator. Das
Einfügen von doppelten Elementen in ein Set entfernt diese Duplikate automa-
tisch.

• [4] toMutableSet() erzeugt aus einem schreibgeschützten Set ein neues
MutableSet.

• [5] Für ein MutableSet fügen die Operatoren += und -= Elemente hinzu bzw.
entfernen sie, wie sie es auch bei MutableLists tun.

• [6] Testen Sie die Mitgliedschaft in einem Set mit in oder contains()

Die normalen mathematischen Mengenoperationen wie Vereinigung, Schnittmenge,
Differenz usw. sind alle verfügbar.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 2 185

Maps

Ein Map verbindet Schlüssel mit Werten und sucht einen Wert anhand eines Schlüs-
sels. Sie erstellen ein Map, indem Sie Schlüssel-Wert-Paare zu mapOf() bereitstellen.
Mit to trennen wir jeden Schlüssel von seinem zugehörigen Wert:

// Summary2/ASCIIMap.kt
import atomictest.eq

fun main() {
val ascii = mapOf(
"A" to 65,
"B" to 66,
"C" to 67,
"I" to 73,
"J" to 74,
"K" to 75

)
ascii eq
"{A=65, B=66, C=67, I=73, J=74, K=75}"

ascii["B"] eq 66 // [1]
ascii.keys eq "[A, B, C, I, J, K]"
ascii.values eq
"[65, 66, 67, 73, 74, 75]"

var kv = ""
for (entry in ascii) { // [2]
kv += "${entry.key}:${entry.value},"

}
kv eq "A:65,B:66,C:67,I:73,J:74,K:75,"
kv = ""
for ((key, value) in ascii) // [3]
kv += "$key:$value,"

kv eq "A:65,B:66,C:67,I:73,J:74,K:75,"
val mutable = ascii.toMutableMap() // [4]
mutable.remove("I")
mutable eq
"{A=65, B=66, C=67, J=74, K=75}"

mutable.put("Z", 90)
mutable eq
"{A=65, B=66, C=67, J=74, K=75, Z=90}"

mutable.clear()

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 2 186

mutable["A"] = 100
mutable eq "{A=100}"

}

• [1] Ein Schlüssel ("B") wird verwendet, um mit dem [] Operator einen Wert
nachzuschlagen. Sie können alle Schlüssel mit keys und alle Werte mit values
erzeugen. Der Zugriff auf keys erzeugt ein Set, da alle Schlüssel in einer Map
bereits eindeutig seinmüssen (ansonsten hätten SieMehrdeutigkeiten bei einem
Nachschlagen).

• [2] Beim Iterieren durch eine Map entstehen Schlüssel-Wert-Paare als Map-
Einträge.

• [3] Sie können Schlüssel-Wert-Paare während des Iterierens entpacken.
• [4] Sie können eine MutableMap aus einer Nur-Lese-Mapmit toMutableMap()
erstellen. Nun können wir Operationen durchführen, die mutable verändern,
wie remove(), put(), und clear(). Eckige Klammern können ein neues
Schlüssel-Wert-Paar in mutable zuweisen. Sie können auch ein Paar hinzufü-
gen, indem Sie sagen map += key to value.

Eigenschafts-Accessoren

Der Zugriff auf die Eigenschaft i scheint unkompliziert:

// Summary2/PropertyReadWrite.kt
package summary2
import atomictest.eq

class Holder(var i: Int)

fun main() {
val holder = Holder(10)
holder.i eq 10 // Read the 'i' property
holder.i = 20 // Write to the 'i' property

}

Allerdings ruft Kotlin Funktionen auf, um die Lese- und Schreiboperationen durchzu-
führen. Das Standardverhalten dieser Funktionen besteht darin, die in i gespeicher-
ten Daten zu lesen und zu schreiben. Durch die Erstellung von Eigenschaftszugriffen
ändern Sie die Aktionen, die beim Lesen und Schreiben auftreten.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 2 187

Der Zugriff, der zum Abrufen des Werts einer Eigenschaft verwendet wird, wird als
Getter bezeichnet. Um einen eigenen Getter zu erstellen, definieren Sie get() direkt
nach der Eigenschaftsdeklaration. Der Zugriff, der zum Ändern einer veränderbaren
Eigenschaft verwendet wird, wird als Setter bezeichnet. Um einen eigenen Setter
zu erstellen, definieren Sie set() direkt nach der Eigenschaftsdeklaration. Die
Reihenfolge der Definition von Gettern und Settern ist unwichtig, und Sie können
einen ohne den anderen definieren.

Die Eigenschaftszugriffe im folgenden Beispiel imitieren die Standardimplementie-
rungen und zeigen zusätzliche Informationen an, damit Sie sehen können, dass die
Eigenschaftszugriffe tatsächlich während der Lese- und Schreibvorgänge aufgerufen
werden. Wir rücken die get()- und set()-Funktionen ein, um sie visuell mit der
Eigenschaft zu verknüpfen, aber die tatsächliche Verknüpfung erfolgt, weil sie direkt
nach dieser Eigenschaft definiert sind:

// Summary2/GetterAndSetter.kt
package summary2
import atomictest.*

class GetterAndSetter {
var i: Int = 0
get() {

trace("get()")
return field

}
set(value) {

trace("set($value)")
field = value

}
}

fun main() {
val gs = GetterAndSetter()
gs.i = 2
trace(gs.i)
trace eq """
set(2)
get()
2

"""
}

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Zusammenfassung 2 188

Innerhalb des Getters und Setters wird der gespeicherteWert indirektmit dem field-
Schlüsselwort manipuliert, das nur innerhalb dieser beiden Funktionen zugänglich
ist. Es ist auch möglich, eine Eigenschaft zu erstellen, die kein field besitzt, sondern
einfach den Getter aufruft, um ein Ergebnis zu erzeugen.

Wenn Sie eine private Eigenschaft deklarieren, werden beide Accessoren private.
Sie können den Setter private und den Getter public machen. Das bedeutet, dass
Sie die Eigenschaft außerhalb der Klasse lesen, aber ihren Wert nur innerhalb der
Klasse ändern können.

Übungen und Lösungen finden Sie auf www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Abschnitt III:
Benutzerfreundlichkeit

Programmiersprachen unterscheiden sich nicht so sehr darin, was sie
möglich machen, sondern darin, was sie einfach machen—Larry Wall,
Erfinder der Perl-Sprache



Erweiterungsfunktionen
Angenommen, Sie entdecken eine Bibliothek, die fast alles tut, was Sie
brauchen… fast. Wenn sie nur ein oder zwei zusätzliche Mitgliedsfunktio-
nen hätte, würde sie Ihr Problem perfekt lösen.

Aber es ist nicht Ihr Code – entweder haben Sie keinen Zugriff auf den Quellcode
oder Sie kontrollieren ihn nicht. Sie müssten Ihre Änderungen bei jeder neuen
Version wiederholen.

Kotlin’s extension functions fügen bestehenden Klassen effektiv Mitgliedsfunktionen
hinzu. Der Typ, den Sie erweitern, wird receiver genannt. Um eine Erweiterungsfunk-
tion zu definieren, setzen Sie den Typ des Empfängers vor den Funktionsnamen:

fun ReceiverType.extensionFunction() { ... }

Dies fügt der String-Klasse zwei Erweiterungsfunktionen hinzu:

// ExtensionFunctions/Quoting.kt
package extensionfunctions
import atomictest.eq

fun String.singleQuote() = "'$this'"
fun String.doubleQuote() = "\"$this\""

fun main() {
"Hi".singleQuote() eq "'Hi'"
"Hi".doubleQuote() eq "\"Hi\""

}

Sie rufen Erweiterungsfunktionen auf, als ob sie Mitglieder der Klasse wären.

Um Erweiterungen aus einem anderen Paket zu verwenden, müssen Sie sie importie-
ren:



Erweiterungsfunktionen 191

// ExtensionFunctions/Quote.kt
package other
import atomictest.eq
import extensionfunctions.doubleQuote
import extensionfunctions.singleQuote

fun main() {
"Single".singleQuote() eq "'Single'"
"Double".doubleQuote() eq "\"Double\""

}

Sie können auf Mitgliederfunktionen oder andere Erweiterungen mit dem Schlüssel-
wort this zugreifen. this kann auch weggelassen werden, ebenso wie es innerhalb
einer Klasse weggelassen werden kann, sodass Sie keine explizite Qualifizierung
benötigen:

// ExtensionFunctions/StrangeQuote.kt
package extensionfunctions
import atomictest.eq

// Apply two sets of single quotes:
fun String.strangeQuote() =
this.singleQuote().singleQuote() // [1]

fun String.tooManyQuotes() =
doubleQuote().doubleQuote() // [2]

fun main() {
"Hi".strangeQuote() eq "''Hi''"
"Hi".tooManyQuotes() eq "\"\"Hi\"\""

}

• [1] this bezieht sich auf den String-Empfänger.
• [2] Wir lassen das Empfängerobjekt (this) beim ersten Aufruf der Funktion
doubleQuote() weg.

Die Erweiterung Ihrer eigenen Klassen kann manchmal zu einfacherer Code führen:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Erweiterungsfunktionen 192

// ExtensionFunctions/BookExtensions.kt
package extensionfunctions
import atomictest.eq

class Book(val title: String)

fun Book.categorize(category: String) =
"""title: "$title", category: $category"""

fun main() {
Book("Dracula").categorize("Vampire") eq
"""title: "Dracula", category: Vampire"""

}

Innerhalb von categorize() greifen wir ohne explizite Qualifikation auf die title-
Eigenschaft zu.

• -

Erweiterungsfunktionen können nur auf öffentliche Elemente des zu erweitern-
den Typs zugreifen. Daher können Erweiterungen dieselben Aktionen wie regulä-
re Funktionen ausführen. Sie können Book.categorize(String) als categori-
ze(Book, String) umschreiben. Der einzige Grund für die Verwendung einer
Erweiterungsfunktion ist die Syntax, aber dieser syntaktische Zucker ist mächtig. Für
den aufrufenden Code sehen Erweiterungen genauso aus wie Mitgliedsfunktionen,
und IDEs zeigen Erweiterungen an, wenn sie die Funktionen auflisten, die Sie für ein
Objekt aufrufen können.

Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Benannte &
Standardargumente

Sie können während eines Funktionsaufrufs Argumentnamen angeben.

Benannte Argumente verbessern die Code-Lesbarkeit. Dies gilt besonders für lange
und komplexe Argumentlisten – benannte Argumente können so klar sein, dass der
Leser einen Funktionsaufruf verstehen kann, ohne die Dokumentation anzusehen.

In diesem Beispiel sind alle Parameter Int. Benannte Argumente verdeutlichen ihre
Bedeutung:

// NamedAndDefaultArgs/NamedArguments.kt
package color1
import atomictest.eq

fun color(red: Int, green: Int, blue: Int) =
"($red, $green, $blue)"

fun main() {
color(1, 2, 3) eq "(1, 2, 3)" // [1]
color(
red = 76, // [2]
green = 89,
blue = 0

) eq "(76, 89, 0)"
color(52, 34, blue = 0) eq // [3]
"(52, 34, 0)"

}

• [1] Dies sagt Ihnen nicht viel. Sie müssen die Dokumentation einsehen, um zu
verstehen, was die Argumente bedeuten.

• [2] Die Bedeutung jedes Arguments ist klar.
• [3] Es ist nicht erforderlich, alle Argumente zu benennen.

Benannte Argumente ermöglichen es Ihnen, die Reihenfolge der Farben zu ändern.
Hier geben wir blue zuerst an:



Benannte & Standardargumente 194

// NamedAndDefaultArgs/ArgumentOrder.kt
import color1.color
import atomictest.eq

fun main() {
color(blue = 0, red = 99, green = 52) eq
"(99, 52, 0)"

color(red = 255, 255, 0) eq
"(255, 255, 0)"

}

Sie können benannte und reguläre (positionale) Argumente mischen. Wenn Sie die
Reihenfolge der Argumente ändern, sollten Sie benannte Argumente im gesamten
Aufruf verwenden—nicht nur der Lesbarkeit halber, sondern oft muss der Compiler
wissen, wo die Argumente sind.

Benannte Argumente sind noch nützlicher, wenn sie mit Standardargumenten kom-
biniert werden, die Standardwerte für Argumente sind, die in der Funktionsdefinition
angegeben sind:

// NamedAndDefaultArgs/Color2.kt
package color2
import atomictest.eq

fun color(
red: Int = 0,
green: Int = 0,
blue: Int = 0,

) = "($red, $green, $blue)"

fun main() {
color(139) eq "(139, 0, 0)"
color(blue = 139) eq "(0, 0, 139)"
color(255, 165) eq "(255, 165, 0)"
color(red = 128, blue = 128) eq
"(128, 0, 128)"

}

Jedes Argument, das Sie nicht angeben, erhält seinen Standardwert. Daher müssen
Sie nur die Argumente angeben, die von den Standardwerten abweichen. Wenn Sie
eine lange Argumentliste haben, vereinfacht dies den resultierenden Code, was das
Schreiben und—was noch wichtiger ist—das Lesen erleichtert.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Benannte & Standardargumente 195

Dieses Beispiel verwendet auch ein nachgestelltes Komma in der Definition von
color(). Das nachgestellte Komma ist das zusätzliche Komma nach dem letzten
Parameter (blue). Dies ist nützlich, wenn Ihre Parameter oder Werte über mehrere
Zeilen geschrieben sind.Mit einem nachgestellten Komma können Sie neue Elemente
hinzufügen und ihre Reihenfolge ändern, ohne Kommas hinzuzufügen oder zu
entfernen.

Benannte und Standardargumente (sowie nachgestellte Kommas) funktionieren auch
für Konstruktoren:

// NamedAndDefaultArgs/Color3.kt
package color3
import atomictest.eq

class Color(
val red: Int = 0,
val green: Int = 0,
val blue: Int = 0,

) {
override fun toString() =
"($red, $green, $blue)"

}

fun main() {
Color(red = 77).toString() eq "(77, 0, 0)"

}

joinToString() ist eine Standardbibliotheksfunktion, die Standardargumente ver-
wendet. Sie kombiniert die Inhalte eines iterierbaren Objekts (einer Liste, Menge oder
eines Bereichs) zu einem String. Sie können einen Trennzeichen, ein Präfixelement
und ein Suffixelement angeben:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Benannte & Standardargumente 196

// NamedAndDefaultArgs/CreateString.kt
import atomictest.eq

fun main() {
val list = listOf(1, 2, 3,)
list.toString() eq "[1, 2, 3]"
list.joinToString() eq "1, 2, 3"
list.joinToString(prefix = "(",
postfix = ")") eq "(1, 2, 3)"

list.joinToString(separator = ":") eq
"1:2:3"

}

Der Standardwert von toString() für eine List gibt den Inhalt in eckigen Klam-
mern zurück, was möglicherweise nicht das ist, was Sie wollen. Die Standardwerte
für die Parameter von joinToString() sind ein Komma für separator und leere
Strings für prefix und postfix. Im obigen Beispiel verwenden wir benannte
und Standardargumente, um nur die Argumente zu spezifizieren, die wir ändern
möchten.

Der Initialisierer für list beinhaltet ein abschließendes Komma. Normalerweise
verwenden Sie ein abschließendes Komma nur, wenn jedes Element in einer eigenen
Zeile steht.

Wenn Sie ein Objekt als Standardargument verwenden, wird bei jedem Aufruf eine
neue Instanz dieses Objekts erstellt:

Wenn Sie eine Objektinstanz als Standardargument übergeben (da innerhalb von g()
im folgenden Beispiel), wird dieselbe Instanz für jeden Aufruf von g() verwendet.
Wenn Sie die Syntax für einen Konstruktoraufruf übergeben (DefaultArg() inner-
halb von h()), wird dieser Konstruktor jedes Mal aufgerufen, wenn Sie h() aufrufen:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Benannte & Standardargumente 197

// NamedAndDefaultArgs/Evaluation.kt
package namedanddefault

class DefaultArg
val da = DefaultArg()

fun g(d: DefaultArg = da) = println(d)

fun h(d: DefaultArg = DefaultArg()) =
println(d)

fun main() {
g()
g()
h()
h()

}
/* Sample output:
namedanddefault.DefaultArg@7440e464
namedanddefault.DefaultArg@7440e464
namedanddefault.DefaultArg@49476842
namedanddefault.DefaultArg@78308db1
*/

Die Ausgabe der beiden g()Aufrufe zeigt identische Objektadressen. Bei den beiden
Aufrufen von h() sind die Adressen der DefaultArg Objekte unterschiedlich, was
zeigt, dass es zwei verschiedene Objekte gibt.

Geben Sie Argumentnamen an, wenn sie die Lesbarkeit verbessern. Vergleichen Sie
die folgenden beiden Aufrufe von joinToString():

// NamedAndDefaultArgs/CreateString2.kt
import atomictest.eq

fun main() {
val list = listOf(1, 2, 3)
list.joinToString(". ", "", "!") eq
"1. 2. 3!"

list.joinToString(separator = ". ",
postfix = "!") eq "1. 2. 3!"

}

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Benannte & Standardargumente 198

Es ist schwer zu erraten, ob ". " oder "" ein Trennzeichen ist, es sei denn, man
merkt sich die Reihenfolge der Parameter, was unpraktisch ist.

Ein weiteres Beispiel für Standardargumente ist die trimMargin()-Funktion der
Standardbibliothek, diemehrzeilige Strings formatiert. Sie verwendet einen Randpräfix-
String, um den Anfang jeder Zeile festzulegen. trimMargin() entfernt führende
Leerzeichen, gefolgt von dem Randpräfix, aus jeder Zeile des Quell-String. Es
entfernt die erste und letzte Zeile, wenn sie leer sind:

// NamedAndDefaultArgs/TrimMargin.kt
import atomictest.eq

fun main() {
val poem = """
|->Last night I saw upon the stair

|->A little man who wasn't there
|->He wasn't there again today

|->Oh, how I wish he'd go away."""
poem.trimMargin() eq

"""->Last night I saw upon the stair
->A little man who wasn't there
->He wasn't there again today
->Oh, how I wish he'd go away."""
poem.trimMargin(marginPrefix = "|->") eq

"""Last night I saw upon the stair
A little man who wasn't there
He wasn't there again today
Oh, how I wish he'd go away."""
}

Das | (“Pipe”) ist das Standardargument für das Randpräfix, und Sie können es durch
einen String Ihrer Wahl ersetzen.

Übungen und Lösungen finden Sie auf www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Überladung
Sprachen ohneUnterstützung für Standardargumente verwenden oft Über-
ladung, um dieses Merkmal zu imitieren.

Der Begriff Überladung bezieht sich auf den Namen einer Funktion: Sie verwenden
denselben Namen (“überladen” diesen Namen) für verschiedene Funktionen, solange
sich die Parameterlisten unterscheiden. Hier überladen wir die Memberfunktion f():

// Overloading/Overloading.kt
package overloading
import atomictest.eq

class Overloading {
fun f() = 0
fun f(n: Int) = n + 2

}

fun main() {
val o = Overloading()
o.f() eq 0
o.f(11) eq 13

}

In Overloading sehen Sie zwei Funktionenmit demselbenNamen, f(). Die Signatur
einer Funktion besteht aus dem Namen, der Parameterliste und dem Rückgabetyp.
Kotlin unterscheidet eine Funktion von einer anderen, indem es die Signaturen
vergleicht. Beim Überladen von Funktionen müssen die Parameterlisten einzigartig
sein—man kann nicht nur über die Rückgabetypen überladen.

Die Aufrufe zeigen, dass es sich tatsächlich um unterschiedliche Funktionen handelt.
Eine Funktionssignatur beinhaltet auch Informationen über die umschließende
Klasse (oder den Empfangstyp, wenn es sich um eine Erweiterungsfunktion handelt).

Wenn eine Klasse bereits eine Mitgliedsfunktion mit derselben Signatur wie eine Er-
weiterungsfunktion hat, bevorzugt Kotlin die Mitgliedsfunktion. Sie können jedoch
die Mitgliedsfunktion mit einer Erweiterungsfunktion überladen:



Überladung 200

// Overloading/MemberVsExtension.kt
package overloading
import atomictest.eq

class My {
fun foo() = 0

}

fun My.foo() = 1 // [1]

fun My.foo(i: Int) = i + 2 // [2]

fun main() {
My().foo() eq 0
My().foo(1) eq 3

}

• [1] Es ist sinnlos, eine Erweiterung zu deklarieren, die ein Mitglied dupliziert,
da sie niemals aufgerufen werden kann.

• [2] Sie können eine Mitgliedsfunktion mit einer Erweiterungsfunktion überla-
den, indem Sie eine andere Parameterliste bereitstellen.

Verwenden Sie das Überladen nicht, um Standardargumente zu imitieren. Das heißt,
tun Sie dies nicht:

// Overloading/WithoutDefaultArguments.kt
package withoutdefaultarguments
import atomictest.eq

fun f(n: Int) = n + 373
fun f() = f(0)

fun main() {
f() eq 373

}

Die Funktion ohne Parameter ruft einfach die erste Funktion auf. Die beiden
Funktionen können durch eine einzelne Funktion ersetzt werden, indem ein Stan-
dardargument verwendet wird:

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Überladung 201

// Overloading/WithDefaultArguments.kt
package withdefaultarguments
import atomictest.eq

fun f(n: Int = 0) = n + 373

fun main() {
f() eq 373

}

In beiden Beispielen können Sie die Funktion entweder ohne ein Argument oder
durch Übergeben eines Ganzzahlwerts aufrufen. Bevorzugen Sie die Form in With-
DefaultArguments.kt.

Bei der Verwendung von überladenen Funktionen zusammen mit Standardargumen-
ten sucht der Aufruf der überladenen Funktion nach der “nächsten” Übereinstim-
mung. Im folgenden Beispiel ruft der foo()-Aufruf in main() nicht die erste Version
der Funktionmit ihrem Standardargument von 99 auf, sondern stattdessen die zweite
Version, die ohne Parameter:

// Overloading/OverloadedVsDefaultArg.kt
package overloadingvsdefaultargs
import atomictest.*

fun foo(n: Int = 99) = trace("foo-1-$n")

fun foo() {
trace("foo-2")
foo(14)

}

fun main() {
foo()
trace eq """
foo-2
foo-1-14

"""
}

Sie können das Standardargument 99 niemals nutzen, da foo() immer die zweite
Version von f() aufruft.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC



Überladung 202

Warum ist das Überladen nützlich? Es ermöglicht Ihnen, “Variationen eines Themas”
klarer auszudrücken, als wenn Sie gezwungen wären, unterschiedliche Funktionsna-
men zu verwenden. Angenommen, Sie möchten Additionsfunktionen:

// Overloading/OverloadingAdd.kt
package overloading
import atomictest.eq

fun addInt(i: Int, j: Int) = i + j
fun addDouble(i: Double, j: Double) = i + j

fun add(i: Int, j: Int) = i + j
fun add(i: Double, j: Double) = i + j

fun main() {
addInt(5, 6) eq add(5, 6)
addDouble(56.23, 44.77) eq
add(56.23, 44.77)

}

addInt() nimmt zwei Ints und gibt ein Int zurück, während addDouble() zwei
Doubles nimmt und ein Double zurückgibt. Ohne Überladen kann man die Opera-
tion nicht einfach add() nennen, daher kombinieren Programmierer typischerweise
was mit wie, um eindeutige Namen zu erzeugen (man kann auch eindeutige Namen
mit zufälligen Zeichen erstellen, aber das typische Muster ist die Verwendung von
aussagekräftigen Informationen wie Parametertypen). Im Gegensatz dazu ist das
überladene add() viel klarer.

• -

Das Fehlen des Überladens in einer Sprache ist keine große Bürde, aber das Feature
bietet wertvolle Vereinfachung, wodurch der Code lesbarer wird. Mit Überladung
sagt man einfach was, was die Abstraktionsebene erhöht und die geistige Belastung
für den Leser verringert. Wenn man wissen will wie, schaut man sich die Parameter
an. Beachten Sie auch, dass Überladen Redundanz reduziert: Wenn wir addInt()
und addDouble() sagen müssen, wiederholen wir im Wesentlichen die Parameter-
informationen im Funktionsnamen.

Übungen und Lösungen finden Sie auf www.AtomicKotlin.com.

Atomic Kotlin (www.AtomicKotlin.com) von Bruce Eckel & Svetlana Isakova, ©2021 MindView LLC


	Inhaltsverzeichnis
	Urheberrecht
	Abschnitt I: Grundlagen der Programmierung
	Einführung
	Warum Kotlin?
	Hallo, Welt!
	var & val
	Datentypen
	Funktionen
	if-Ausdrücke
	String-Vorlagen
	Zahlentypen
	Boolesche Werte
	Wiederholung mit while
	Schleifen & Bereiche
	Das in Schlüsselwort
	Ausdrücke & Anweisungen
	Zusammenfassung 1

	Abschnitt II: Einführung in Objekte
	Objekte überall
	Klassen erstellen
	Eigenschaften
	Konstruktoren
	Einschränkung der Sichtbarkeit
	Pakete
	Testen
	Ausnahmen
	Listen
	Variable Argumentlisten
	Mengen
	Karten
	Eigenschaftszugriffe
	Zusammenfassung 2

	Abschnitt III: Benutzerfreundlichkeit
	Erweiterungsfunktionen
	Benannte & Standardargumente
	Überladung


