

[image: Atomic Kotlin (Deutsche Ausgabe)]

 Atomic Kotlin (Deutsche Ausgabe)

 Bruce Eckel und Svetlana Isakova

 Dieses Buch wird verkauft unter http://leanpub.com/AtomicKotlin-de

 Diese Version wurde veröffentlicht am 18.09.2024

 [image: publisher's logo]

 * * * * *

 Dies ist ein Leanpub-Buch. Leanpub bietet Autoren und Verlagen, mit Hilfe von Lean-Publishing, neue Möglichkeiten des Publizierens. Lean Publishing bedeutet die wiederholte Veröffentlichung neuer Beta-Versionen eines eBooks unter der Zuhilfenahme schlanker Werkzeuge. Das Feedback der Erstleser hilft dem Autor bei der Finalisierung und der anschließenden Vermarktung des Buches. Lean Publishing unterstützt den Autor darin ein Buch zu schreiben, das auch gelesen wird.

 * * * * *

© 2024 Mindview LLC

 ISBN für die EPUB-Version: 978-0-9818725-4-4

 Inhaltsverzeichnis

 	

 	
 Urheberrecht

 	
 Abschnitt I: Grundlagen der Programmierung

 	
 Einführung

 	
 Warum Kotlin?

 	
 Hallo, Welt!

 	
 var & val

 	
 Datentypen

 	
 Funktionen

 	
 if-Ausdrücke

 	
 String-Vorlagen

 	
 Zahlentypen

 	
 Boolesche Werte

 	
 Wiederholung mit while

 	
 Schleifen & Bereiche

 	
 Das in Schlüsselwort

 	
 Ausdrücke & Anweisungen

 	
 Zusammenfassung 1

 	
 Abschnitt II: Einführung in Objekte

 	
 Objekte überall

 	
 Klassen erstellen

 	
 Eigenschaften

 	
 Konstruktoren

 	
 Einschränkung der Sichtbarkeit

 	
 Pakete

 	
 Testen

 	
 Ausnahmen

 	
 Listen

 	
 Variable Argumentlisten

 	
 Mengen

 	
 Karten

 	
 Eigenschaftszugriffe

 	
 Zusammenfassung 2

 	
 Abschnitt III: Benutzerfreundlichkeit

 	
 Erweiterungsfunktionen

 	
 Benannte & Standardargumente

 	
 Überladung

 Guide

 	
 Begin Reading

Urheberrecht

Atomic Kotlin

Von Bruce Eckel, Präsident, MindView, LLC, und Svetlana Isakova, JetBrains sro.

 Urheberrecht ©2021, MindView LLC

 eBook ISBN 978-0-9818725-4-4

     Version 1.0: Dezember 2020

     Version 1.1: November 2021

 Print-Buch ISBN 978-0-9818725-5-1

     Erster Druck: Januar 2021

     Zweiter Druck: November 2021

Die Aktualisierungen vom November 2021 beinhalten Anpassungen für Kotlin 1.5 und Korrekturen.

Die eBook ISBN deckt die Leanpub und Stepik eBook-Verteilungen ab, beide
verfügbar über www.AtomicKotlin.com.

 Bitte kaufen Sie dieses Buch über www.AtomicKotlin.com, um seine
fortlaufende Pflege und Aktualisierungen zu unterstützen.

Alle Rechte vorbehalten. Gedruckt in den Vereinigten Staaten von Amerika. Diese Veröffentlichung
ist urheberrechtlich geschützt, und es muss eine Genehmigung vom Verlag eingeholt werden, bevor eine unzulässige Vervielfältigung, Speicherung in einem Abrufsystem oder
Übertragung in irgendeiner Form oder auf irgendeine Weise, sei es elektronisch, mechanisch, durch Fotokopien,
Aufnahmen oder ähnliches, erfolgt. Für Informationen zu Genehmigungen siehe
www.AtomicKotlin.com.

Erstellt in Crested Butte, Colorado, USA, und München, Deutschland.

Text gedruckt in den Vereinigten Staaten.

Umschlaggestaltung von Daniel Will-Harris,
www.Will-Harris.com

Viele der von Herstellern und Verkäufern verwendeten Bezeichnungen, um ihre
Produkte zu unterscheiden, werden als Markenzeichen beansprucht. Wo diese Bezeichnungen in diesem
Buch erscheinen und der Verlag von einem Markenzeichenanspruch wusste, sind die Bezeichnungen
mit Anfangsbuchstaben oder in Großbuchstaben gedruckt.

Das Kotlin-Markenzeichen gehört der Kotlin
Foundation. Java ist
ein Markenzeichen oder eingetragenes Markenzeichen von Oracle, Inc. in den Vereinigten Staaten und
anderen Ländern. Windows ist ein eingetragenes Markenzeichen der Microsoft Corporation in
den Vereinigten Staaten und anderen Ländern. Alle anderen Produktnamen und Firmennamen, die hierin erwähnt werden, sind Eigentum ihrer jeweiligen Inhaber.

Die Autoren und der Verlag haben bei der Erstellung dieses Buches Sorgfalt walten lassen, übernehmen jedoch keine ausdrückliche oder stillschweigende Gewährleistung und übernehmen keine Verantwortung für Fehler oder Auslassungen. Es wird keine Haftung für beiläufige oder
Folgeschäden im Zusammenhang mit oder aus der Nutzung der hierin enthaltenen Informationen oder Programme übernommen.

Besuchen Sie uns auf www.AtomicKotlin.com.

Quellcode

Der gesamte Quellcode für dieses Buch ist als urheberrechtlich geschütztes Freeware verfügbar,
verteilt über Github.
Um sicherzustellen, dass Sie die aktuellste Version haben, ist dies die offizielle Code-Vertriebssite. Sie dürfen diesen Code in Klassenzimmern und anderen Bildungssituationen verwenden, solange Sie dieses Buch als Quelle angeben.

Das Hauptziel dieses Urheberrechts besteht darin, sicherzustellen, dass die Quelle des Codes
ordnungsgemäß angegeben wird, und zu verhindern, dass Sie den Code ohne
Genehmigung neu veröffentlichen. (Solange dieses Buch zitiert wird, ist die Verwendung von Beispielen aus dem Buch in den meisten Medien im Allgemeinen kein Problem.)

In jeder Quellcodedatei finden Sie einen Verweis auf den folgenden Urheberrechtshinweis:

// Copyright.txt
This computer source code is Copyright ©2021 MindView LLC.
All Rights Reserved.

Permission to use, copy, modify, and distribute this
computer source code (Source Code) and its documentation
without fee and without a written agreement for the
purposes set forth below is hereby granted, provided that
the above copyright notice, this paragraph and the
following five numbered paragraphs appear in all copies.

1. Permission is granted to compile the Source Code and to
include the compiled code, in executable format only, in
personal and commercial software programs.

2. Permission is granted to use the Source Code without
modification in classroom situations, including in
presentation materials, provided that the book "Atomic
Kotlin" is cited as the origin.

3. Permission to incorporate the Source Code into printed
media may be obtained by contacting:

MindView LLC, PO Box 969, Crested Butte, CO 81224
MindViewInc@gmail.com

4. The Source Code and documentation are copyrighted by
MindView LLC. The Source code is provided without express
or implied warranty of any kind, including any implied
warranty of merchantability, fitness for a particular
purpose or non-infringement. MindView LLC does not
warrant that the operation of any program that includes the
Source Code will be uninterrupted or error-free. MindView
LLC makes no representation about the suitability of the
Source Code or of any software that includes the Source
Code for any purpose. The entire risk as to the quality
and performance of any program that includes the Source
Code is with the user of the Source Code. The user
understands that the Source Code was developed for research
and instructional purposes and is advised not to rely
exclusively for any reason on the Source Code or any
program that includes the Source Code. Should the Source
Code or any resulting software prove defective, the user
assumes the cost of all necessary servicing, repair, or
correction.

5. IN NO EVENT SHALL MINDVIEW LLC, OR ITS PUBLISHER BE
LIABLE TO ANY PARTY UNDER ANY LEGAL THEORY FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,
INCLUDING LOST PROFITS, BUSINESS INTERRUPTION, LOSS OF
BUSINESS INFORMATION, OR ANY OTHER PECUNIARY LOSS, OR FOR
PERSONAL INJURIES, ARISING OUT OF THE USE OF THIS SOURCE
CODE AND ITS DOCUMENTATION, OR ARISING OUT OF THE INABILITY
TO USE ANY RESULTING PROGRAM, EVEN IF MINDVIEW LLC, OR
ITS PUBLISHER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE. MINDVIEW LLC SPECIFICALLY DISCLAIMS ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE SOURCE CODE AND DOCUMENTATION PROVIDED
HEREUNDER IS ON AN "AS IS" BASIS, WITHOUT ANY ACCOMPANYING
SERVICES FROM MINDVIEW LLC, AND MINDVIEW LLC HAS NO
OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
ENHANCEMENTS, OR MODIFICATIONS.

Please note that MindView LLC maintains a Web site which is
the sole distribution point for electronic copies of the
Source Code, where it is freely available under the terms
stated above:

 https://github.com/BruceEckel/AtomicKotlinExamples

If you think you've found an error in the Source Code,
please submit a correction at:
https://github.com/BruceEckel/AtomicKotlinExamples/issues

Sie dürfen den Code in Ihren Projekten und im Klassenzimmer verwenden (einschließlich Ihrer Präsentationsmaterialien), solange der Urheberrechtshinweis, der in jeder Quelldatei erscheint, erhalten bleibt.

Abschnitt I: Grundlagen der Programmierung

 There was something amazingly enticing about programming—Vint Cerf

Dieser Abschnitt ist für Leser gedacht, die gerade das Programmieren lernen. Wenn Sie ein erfahrener Programmierer sind, überspringen Sie diesen Abschnitt und fahren Sie mit Zusammenfassung 1 und Zusammenfassung 2 fort.

Einführung

 Dieses Buch ist für engagierte Anfänger und erfahrene Programmierer.

Sie sind ein Anfänger, wenn Sie keine Vorkenntnisse im Programmieren haben, aber “engagiert”, weil wir Ihnen gerade genug geben, um es selbst herauszufinden. Wenn Sie fertig sind, haben Sie eine solide Grundlage in der Programmierung und in Kotlin.

Wenn Sie ein erfahrener Programmierer sind, überspringen Sie zu Zusammenfassung 1 und Zusammenfassung 2 und fahren Sie von dort aus fort.

Der “Atomare” Teil des Buchtitels bezieht sich auf Atome als die kleinsten unteilbaren Einheiten. In diesem Buch versuchen wir, nur ein Konzept pro Kapitel einzuführen, sodass die Kapitel nicht weiter unterteilt werden können — daher nennen wir sie Atome.

Konzepte

Alle Programmiersprachen bestehen aus Funktionen. Sie wenden diese Funktionen an, um Ergebnisse zu erzielen. Kotlin ist mächtig — es hat nicht nur eine reiche Menge an Funktionen, sondern man kann diese Funktionen normalerweise auf verschiedene Arten ausdrücken.

Wenn alles zu schnell auf Sie einprasselt, könnten Sie denken, Kotlin sei “zu kompliziert”.

Dieses Buch versucht, Überforderung zu verhindern. Wir bringen Ihnen die Sprache sorgfältig und gezielt bei, unter Anwendung der folgenden Prinzipien:

 	
Babyschritte und kleine Erfolge. Wir werfen die Tyrannei des Kapitels ab. Stattdessen präsentieren wir jeden kleinen Schritt als ein omares Konzept oder einfach Atom, das wie ein winziges Kapitel aussieht. Wir versuchen, pro Atom nur ein neues Konzept vorzustellen. Ein typisches Atom enthält ein oder mehrere kleine, ausführbare Codebeispiele und die erzeugte Ausgabe.

 	
Keine Vorwärtsverweise. Soweit möglich, vermeiden wir es zu sagen: “Diese Funktionen werden in einem späteren Atom erklärt.”

 	
Keine Verweise auf andere Programmiersprachen. Wir tun dies nur, wenn es notwendig ist. Ein Vergleich mit einer Funktion in einer Sprache, die Sie nicht verstehen, ist nicht hilfreich.

 	
Zeigen, nicht erzählen. Anstatt eine Funktion verbal zu beschreiben, bevorzugen wir Beispiele und Ausgaben. Es ist besser, eine Funktion im Code zu sehen.

 	
Praxis vor Theorie. Wir versuchen, zuerst die Mechanik der Sprache zu zeigen und dann zu erklären, warum diese Funktionen existieren. Das ist umgekehrt zur “traditionellen” Lehre, scheint aber oft besser zu funktionieren.

Wenn Sie die Funktionen kennen, können Sie die Bedeutung herausfinden. Es ist in der Regel einfacher, eine einzelne Seite Kotlin zu verstehen als den entsprechenden Code in einer anderen Sprache.

Wo ist der Index?

Dieses Buch ist in Markdown geschrieben und mit Leanpub produziert. Leider unterstützen weder Markdown noch Leanpub Indizes. Indem wir jedoch die kleinstmöglichen Kapitel (Atome) schaffen, die aus einem einzigen Thema pro Atom bestehen, fungiert das Inhaltsverzeichnis als eine Art Index. Darüber hinaus ermöglichen die eBook-Versionen elektronisches Suchen im gesamten Buch.

Querverweise

Ein Verweis auf ein Atom im Buch sieht so aus: Einführung, was in diesem Fall auf das aktuelle Atom verweist. In den verschiedenen eBook-Formaten erzeugt dies einen Hyperlink zu diesem Atom.

Formatierung

In diesem Buch:

 	
Kursiv führt einen neuen Begriff oder ein Konzept ein und betont manchmal eine Idee.

 	
Schrift mit fester Breite zeigt Programmschlüsselwörter, Bezeichner und Dateinamen an. Die Codebeispiele sind ebenfalls in dieser Schriftart und in den eBook-Versionen des Buches farblich hervorgehoben.

 	Im Fließtext folgt auf einen Funktionsnamen leere Klammern, wie in func(). Dies erinnert den Leser daran, dass er eine Funktion betrachtet.

 	Um das eBook auf allen Geräten leicht lesbar zu machen und dem Benutzer zu ermöglichen, die Schriftgröße zu erhöhen, begrenzen wir die Breite unserer Code-Listings auf 47 Zeichen. Dies erfordert manchmal Kompromisse, aber wir glauben, dass die Ergebnisse es wert sind. Um diese Breiten zu erreichen, entfernen wir möglicherweise Leerzeichen, die in vielen Formatierungsstilen ansonsten enthalten wären — insbesondere verwenden wir Einrückungen von zwei Leerzeichen anstelle der standardmäßigen vier Leerzeichen.

“Pause”

Gelegentlich sehen Sie:

 	-

Dies zeigt eine Pause oder eine Art kleinen Reset an. In diesem Buch erscheint es oft vor einer kurzen Zusammenfassung des aktuellen Unterabschnitts, wo ein “Zusammenfassung”-Untertitel übertrieben wäre. Einige Bücher verwenden einen Mechanismus wie diesen, um anzuzeigen, dass eine Idee abgeschlossen ist und wir etwas Neues beginnen, das jedoch noch im gleichen Thema liegt und nicht groß genug ist, um einen Unterabschnitt oder einen neuen Abschnitt zu rechtfertigen. Das Markdown in Leanpub ist ziemlich begrenzt, und die Verwendung von einem oder mehreren Punkten (mein ursprünglicher Versuch) ist nicht möglich. Zwei Striche im Markdown zu setzen, erzeugt einen Punkt und einen Strich. Es könnte eine bessere Möglichkeit geben, dies zu tun, aber ich habe sie nicht gefunden, also habe ich mich darauf festgelegt.

Probieren Sie das Buch aus

Wir bieten eine kostenlose Probe des elektronischen Buches auf AtomicKotlin.com an. Die Probe enthält die ersten beiden Abschnitte in voller Länge sowie mehrere nachfolgende Atome. So können Sie das Buch ausprobieren und entscheiden, ob es für Sie geeignet ist.

Das vollständige Buch ist sowohl als Druckversion als auch als eBook erhältlich. Wenn Ihnen gefällt, was wir in der kostenlosen Probe gemacht haben, unterstützen Sie uns bitte und helfen Sie uns, unsere Arbeit fortzusetzen, indem Sie für das bezahlen, was Sie nutzen. Wir hoffen, das Buch hilft Ihnen, und wir schätzen Ihre Unterstützung.

Im Zeitalter des Internets scheint es unmöglich, irgendein Stück Information zu kontrollieren. Sie werden wahrscheinlich die elektronische Version dieses Buches an zahlreichen Orten finden. Wenn Sie im Moment nicht für das Buch zahlen können und es von einer dieser Seiten herunterladen, „geben Sie es bitte weiter“. Helfen Sie beispielsweise jemand anderem, die Sprache zu lernen, sobald Sie sie beherrschen. Oder helfen Sie jemandem auf irgendeine Weise, wie er es braucht. Vielleicht geht es Ihnen in Zukunft besser, und dann können Sie für das Buch bezahlen.

Übungen und Lösungen

Die meisten Atome in Atomic Kotlin werden von einer Handvoll kleiner Übungen begleitet. Um Ihr Verständnis zu verbessern, empfehlen wir, die Übungen unmittelbar nach dem Lesen des Atoms zu lösen. Die meisten Übungen werden automatisch von der JetBrains IntelliJ IDEA integrierten Entwicklungsumgebung (IDE) überprüft, sodass Sie Ihren Fortschritt sehen und Hinweise erhalten können, wenn Sie feststecken.

Sie finden die folgenden Links unter http://AtomicKotlin.com/exercises/.

Um die Übungen zu lösen, installieren Sie IntelliJ IDEA mit dem EduTools-Plugin, indem Sie diesen Tutorials folgen:

 	
Installieren Sie IntelliJ IDEA und das EduTools-Plugin.

 	
Öffnen Sie den Atomic Kotlin-Kurs und lösen Sie die Übungen.

Im Kurs finden Sie Lösungen für alle Übungen. Wenn Sie bei einer Übung feststecken, schauen Sie nach Hinweisen oder werfen Sie einen Blick auf die Lösung. Wir empfehlen dennoch, sie selbst zu implementieren.

Wenn Sie Probleme bei der Einrichtung und Ausführung des Kurses haben, lesen Sie bitte den Leitfaden zur Fehlerbehebung. Wenn das Ihr Problem nicht löst, wenden Sie sich bitte an das Support-Team, wie im Leitfaden angegeben.

Wenn Sie einen Fehler im Kursinhalt finden (zum Beispiel ein Test für eine Aufgabe liefert das falsche Ergebnis), nutzen Sie bitte unser Issue-Tracker, um das Problem mit diesem vorausgefüllten Formular zu melden. Beachten Sie, dass Sie sich bei YouTrack anmelden müssen. Wir schätzen Ihre Zeit, um den Kurs zu verbessern!

Seminare

Informationen zu Live-Seminaren und anderen Lernwerkzeugen finden Sie auf AtomicKotlin.com.

Konferenzen

Bruce organisiert Open-Spaces-Konferenzen wie das Winter Tech Forum. Treten Sie der Mailingliste auf AtomicKotlin.com bei, um über unsere Aktivitäten und Vorträge informiert zu bleiben.

Unterstützen Sie uns

Dies war ein großes Projekt. Es hat Zeit und Mühe gekostet, dieses Buch und die begleitenden Unterstützungsmaterialien zu erstellen. Wenn Ihnen dieses Buch gefällt und Sie mehr davon sehen möchten, unterstützen Sie uns bitte:

 	
Bloggen, tweeten Sie, usw. und erzählen Sie Ihren Freunden davon. Dies ist eine Graswurzel-Marketing-Bemühung, daher hilft alles, was Sie tun.

 	
Kaufen Sie eine eBook- oder Druckversion dieses Buches auf AtomicKotlin.com.

 	
Besuchen Sie AtomicKotlin.com für andere Unterstützungsprodukte oder Veranstaltungen.

Über uns

Bruce Eckel ist der Autor der mehrfach ausgezeichneten Bücher Thinking in Java und Thinking in C++ sowie einer Reihe weiterer Bücher über Computerprogrammierung, darunter Atomic Scala. Er hat weltweit Hunderte von Präsentationen gehalten und alternative Konferenzen und Veranstaltungen wie das Winter Tech Forum und Entwickler-Retreats organisiert. Bruce hat einen BS in angewandter Physik und einen MS in Computertechnik. Sein Blog befindet sich auf www.BruceEckel.com und sein Beratungs-, Trainings- und Konferenzunternehmen ist Mindview LLC.

Svetlana Isakova begann als Mitglied des Kotlin-Compiler-Teams und ist nun eine Entwickler-Botschafterin für JetBrains. Sie unterrichtet Kotlin und spricht auf Konferenzen weltweit und ist Mitautorin des Buches Kotlin in Action.

Danksagungen

 	Das Kotlin-Sprachdesign-Team und die Mitwirkenden.

 	Die Entwickler von Leanpub, die das Veröffentlichen dieses Buches so viel einfacher gemacht haben.

 	James Ward für die Umwandlung des Gradle-Builds in Kotlin und dafür, dass er im Allgemeinen großartig ist.

Widmungen

Für meinen geliebten Vater, E. Wayne Eckel. 1. April 1924—23. November 2016. Du hast mir zuerst etwas über Maschinen, Werkzeuge und Design beigebracht.

Für meinen Vater, Sergey Lvovich Isakov, der so früh von uns gegangen ist und den wir immer vermissen werden.

Über das Cover

Daniel Will-Harris gestaltete das Cover basierend auf dem Kotlin-Logo.

Warum Kotlin?

 Programme sollen so geschrieben werden, dass Menschen sie lesen können, und erst in zweiter Linie für Maschinen, die sie ausführen.—Harold Abelson, Mitautor, Structure and Interpretation of Computer Programs.

 Dieses Kapitel bietet einen Überblick über die historische Entwicklung von Programmiersprachen, damit Sie verstehen, wo Kotlin einzuordnen ist und warum Sie es lernen möchten. Wir führen einige Themen ein, die, wenn Sie ein Anfänger sind, momentan zu kompliziert erscheinen mögen. Fühlen Sie sich frei, dieses Kapitel zu überspringen und später darauf zurückzukommen, nachdem Sie mehr vom Buch gelesen haben.

Die Gestaltung von Programmiersprachen ist ein evolutionärer Weg, der von der Erfüllung der Bedürfnisse der Maschine zur Erfüllung der Bedürfnisse des Programmierers führt.

Eine Programmiersprache wird von einem Sprachdesigner erfunden und als eines oder mehrere Programme implementiert, die als Werkzeuge zur Nutzung der Sprache dienen. Der Implementierer ist in der Regel der Sprachdesigner, zumindest anfangs.

Frühe Sprachen konzentrierten sich auf Hardwarebeschränkungen. Mit zunehmender Rechenleistung der Computer verlagerten sich neuere Sprachen hin zu anspruchsvollerer Programmierung mit einem Schwerpunkt auf Zuverlässigkeit. Diese Sprachen können Merkmale basierend auf der Psychologie des Programmierens wählen.

Jede Programmiersprache ist eine Sammlung von Experimenten. Historisch gesehen war das Design von Programmiersprachen eine Abfolge von Vermutungen und Annahmen darüber, was Programmierer produktiver machen könnte. Einige dieser Experimente scheitern, einige sind mäßig erfolgreich und einige sind sehr erfolgreich.

Wir lernen aus den Experimenten jeder neuen Sprache. Einige Sprachen befassen sich mit Problemen, die sich als nebensächlich statt wesentlich erweisen, oder die Umgebung ändert sich (schnellere Prozessoren, günstigere Speicher, neues Verständnis von Programmierung und Sprachen) und dieses Problem wird weniger wichtig oder sogar unbedeutend. Wenn diese Ideen veraltet sind und sich die Sprache nicht weiterentwickelt, verschwindet sie aus der Verwendung.

Die ursprünglichen Programmierer arbeiteten direkt mit Zahlen, die Prozessor-Maschinenbefehle darstellten. Dieser Ansatz führte zu zahlreichen Fehlern, und Assemblersprache wurde geschaffen, um die Zahlen durch mnemonische Opcodes—Wörter, die sich Programmierer leichter merken und lesen konnten, zusammen mit anderen hilfreichen Werkzeugen zu ersetzen. Es gab jedoch immer noch eine Eins-zu-eins-Entsprechung zwischen Assemblerbefehlen und Maschinenbefehlen, und Programmierer mussten jede Zeile Assemblercode schreiben. Darüber hinaus verwendete jeder Computerprozessor seine eigene spezifische Assemblersprache.

Das Entwickeln von Programmen in Assemblersprache ist äußerst kostspielig. Höhere Programmiersprachen helfen, dieses Problem zu lösen, indem sie eine Abstraktionsebene von den niedrigeren Assemblersprachen schaffen.

Compiler und Interpreter

Die Anweisungen einer interpretierten Sprache werden direkt von einem Programm namens Interpreter ausgeführt. Kotlin wird kompiliert statt interpretiert. Der Quellcode einer kompilierten Sprache wird in eine andere Darstellung umgewandelt, die als eigenes Programm läuft, entweder direkt auf einem Hardwareprozessor oder auf einer virtuellen Maschine, die einen Prozessor emuliert:

 [image:]

Sprachen wie C, C++, Go und Rust werden in Maschinencode kompiliert, der direkt auf der zugrunde liegenden Hardware-Zentralverarbeitungseinheit (CPU) läuft. Sprachen wie Java und Kotlin werden in Bytecode kompiliert, der ein Zwischenformat ist, das nicht direkt auf der Hardware-CPU läuft, sondern auf einer virtuellen Maschine, einem Programm, das Bytecode-Anweisungen ausführt. Programme, die von der JVM-Version von Kotlin erzeugt werden, laufen auf der Java Virtual Machine (JVM).

Die Portabilität ist ein wichtiger Vorteil einer virtuellen Maschine. Der gleiche Bytecode kann auf jedem Computer laufen, der eine virtuelle Maschine hat. Virtuelle Maschinen können für spezielle Hardware optimiert werden und Geschwindigkeitsprobleme lösen. Die JVM enthält viele Jahre solcher Optimierungen und wurde auf vielen Plattformen implementiert.

Zur Kompilierungszeit wird der Code vom Compiler überprüft, um Kompilierungsfehler zu entdecken. (IntelliJ IDEA und andere Entwicklungsumgebungen heben diese Fehler hervor, wenn Sie den Code eingeben, sodass Sie schnell Probleme entdecken und beheben können). Wenn es keine Kompilierungsfehler gibt, wird der Quellcode in Bytecode kompiliert.

Ein Laufzeitfehler kann zur Kompilierungszeit nicht entdeckt werden, daher tritt er erst auf, wenn Sie das Programm ausführen. Typischerweise sind Laufzeitfehler schwieriger zu entdecken und teurer zu beheben. Statisch typisierte Sprachen wie Kotlin entdecken so viele Fehler wie möglich zur Kompilierungszeit, während dynamische Sprachen ihre Sicherheitsprüfungen zur Laufzeit durchführen (einige dynamische Sprachen führen nicht so viele Sicherheitsprüfungen durch, wie sie könnten).

Sprachen, die Kotlin beeinflusst haben

Kotlin zieht seine Ideen und Merkmale aus vielen Sprachen, und diese Sprachen wurden von früheren Sprachen beeinflusst. Es ist hilfreich, etwas über die Geschichte der Programmiersprachen zu wissen, um Perspektiven zu gewinnen, wie wir zu Kotlin gekommen sind. Die hier beschriebenen Sprachen wurden wegen ihres Einflusses auf die nachfolgenden Sprachen ausgewählt. All diese Sprachen inspirierten letztendlich das Design von Kotlin, manchmal indem sie ein Beispiel dafür waren, was man nicht tun sollte.

FORTRAN: FORmula TRANslation (1957)

Entwickelt für den Einsatz durch Wissenschaftler und Ingenieure, war das Ziel von Fortran, das Codieren von Gleichungen zu erleichtern. Fein abgestimmte und getestete Fortran-Bibliotheken sind noch heute im Einsatz, werden jedoch typischerweise “umwickelt”, um sie von anderen Sprachen aus aufrufbar zu machen.

LISP: LISt Processor (1958)

Anstatt anwendungsspezifisch zu sein, verkörperte LISP wesentliche Programmierkonzepte; es war die Sprache der Informatiker und die erste funktionale Programmiersprache (Sie werden in diesem Buch über funktionale Programmierung lernen). Der Kompromiss für seine Macht und Flexibilität war die Effizienz: LISP war typischerweise zu teuer, um auf frühen Maschinen ausgeführt zu werden, und erst in den letzten Jahrzehnten wurden Maschinen schnell genug, um eine Wiederbelebung der Nutzung von LISP zu ermöglichen. Zum Beispiel ist der GNU Emacs-Editor vollständig in LISP geschrieben und kann mit LISP erweitert werden.

ALGOL: ALGOrithmic Language (1958)

Wahrscheinlich die einflussreichste der Sprachen der 1950er Jahre, da sie eine Syntax einführte, die in vielen nachfolgenden Sprachen Bestand hatte. Zum Beispiel sind C und seine Derivate “ALGOL-ähnliche” Sprachen.

COBOL: COmmon Business-Oriented Language (1959)

Entwickelt für Geschäft, Finanzen und administrative Datenverarbeitung. Es hat eine englischartige Syntax und sollte selbstdokumentierend und sehr lesbar sein. Obwohl diese Absicht im Allgemeinen scheiterte—COBOL ist berüchtigt für Fehler, die durch ein fehlplatziertes Punktzeichen eingeführt wurden—zwang das US-Verteidigungsministerium die weitverbreitete Einführung auf Großrechnern, und Systeme laufen (und erfordern Wartung) noch heute.

BASIC: Beginners’ All-purpose Symbolic Instruction Code (1964)

BASIC war einer der frühen Versuche, Programmieren zugänglich zu machen. Obwohl sehr erfolgreich, waren seine Funktionen und Syntax begrenzt, sodass es nur teilweise hilfreich für Menschen war, die anspruchsvollere Sprachen lernen mussten. Es ist überwiegend eine interpretierte Sprache, was bedeutet, dass man den ursprünglichen Code für das Programm benötigt, um es auszuführen. Trotzdem wurden viele nützliche Programme in BASIC geschrieben, insbesondere als Skriptsprache für Microsofts “Office”-Produkte. BASIC könnte sogar als die erste “offene” Programmiersprache betrachtet werden, da zahlreiche Variationen davon erstellt wurden.

Simula 67, die ursprüngliche objektorientierte Sprache (1967)

Eine Simulation beinhaltet typischerweise viele “Objekte”, die miteinander interagieren. Verschiedene Objekte haben unterschiedliche Eigenschaften und Verhaltensweisen. Die zu der Zeit existierenden Sprachen waren unhandlich für Simulationen zu verwenden, daher wurde Simula (eine weitere “ALGOL-ähnliche” Sprache) entwickelt, um direkte Unterstützung für die Erstellung von Simulationsobjekten zu bieten. Es stellt sich heraus, dass diese Ideen auch für allgemeine Programmierung nützlich sind, und dies war der Ursprung der objektorientierten (OO) Sprachen.

Pascal (1970)

Pascal erhöhte die Kompilierungsgeschwindigkeit, indem es die Sprache so einschränkte, dass sie als Einzelpass-Compiler implementiert werden konnte. Die Sprache zwang den Programmierer, ihren Code auf eine bestimmte Weise zu strukturieren und legte etwas umständliche und weniger lesbare Einschränkungen für die Programmorganisation auf. Da Prozessoren schneller wurden, Speicher billiger und die Compiler-Technologie besser, wurden die Auswirkungen dieser Einschränkungen zu kostspielig.

Eine Implementierung von Pascal, Turbo Pascal von Borland, arbeitete zunächst auf CP/M-Maschinen und machte dann den Sprung zu frühen MS-DOS (Vorläufer von Windows), später entwickelte es sich zur Delphi-Sprache für Windows. Indem alles im Speicher untergebracht wurde, kompilierte Turbo Pascal in atemberaubender Geschwindigkeit auf sehr leistungsschwachen Maschinen, was das Programmerlebnis dramatisch verbesserte. Sein Schöpfer, Anders Hejlsberg, entwarf später sowohl C# als auch TypeScript.

Niklaus Wirth, der Erfinder von Pascal, schuf nachfolgende Sprachen: Modula, Modula-2 und Oberon. Wie der Name schon sagt, konzentrierte sich Modula auf die Aufteilung von Programmen in Module, für bessere Organisation und schnellere Kompilierung. Die meisten modernen Sprachen unterstützen separate Kompilierung und eine Form von Modulsystem.

C (1972)

Trotz der zunehmenden Zahl von Hochsprachen schrieben Programmierer immer noch in Assemblersprache. Dies wird oft als Systemprogrammierung bezeichnet, da es auf Ebene des Betriebssystems erfolgt, umfasst aber auch eingebettete Programmierung für spezielle physische Geräte. Dies ist nicht nur mühsam und teuer (Bruce begann seine Karriere mit dem Schreiben von Assemblersprache für eingebettete Systeme), sondern es ist auch nicht portabel—Assemblersprache kann nur auf dem Prozessor laufen, für den sie geschrieben wurde. C wurde als “hochlevelige Assemblersprache” entworfen, die dennoch nah genug an der Hardware ist, dass man selten Assemblersprache schreiben muss. Noch wichtiger ist, dass ein C-Programm auf jedem Prozessor mit einem C-Compiler läuft. C entkoppelte das Programm vom Prozessor, was ein großes und teures Problem löste. Als Ergebnis konnten ehemalige Assemblersprachen-Programmierer in C weitaus produktiver sein. C war so effektiv, dass neuere Sprachen (insbesondere Go und Rust) immer noch versuchen, es für die Systemprogrammierung abzulösen.

Smalltalk (1972)

Von Anfang an als rein objektorientiert konzipiert, hat Smalltalk die OO- und Sprachtheorie erheblich vorangebracht, indem es eine Plattform für Experimente war und die schnelle Anwendungsentwicklung demonstrierte. Es wurde jedoch in einer Zeit entwickelt, als Sprachen noch proprietär waren, und der Einstiegspreis für ein Smalltalk-System konnte in die Tausende gehen. Es war interpretiert, sodass man eine Smalltalk-Umgebung benötigte, um Programme auszuführen. Open-Source-Smalltalk-Implementierungen erschienen erst, nachdem die Programmierwelt sich weiterentwickelt hatte. Smalltalk-Programmierer haben großartige Einblicke geliefert, die späteren OO-Sprachen wie C++ und Java zugutekamen.

C++: Ein besseres C mit Objekten (1983)

Bjarne Stroustrup schuf C++, weil er ein besseres C wollte und Unterstützung für die objektorientierten Konstrukte, die er bei der Verwendung von Simula-67 erlebt hatte. Bruce war acht Jahre lang Mitglied des C++-Normungsausschusses und schrieb drei Bücher über C++, darunter Thinking in C++.

Rückwärtskompatibilität mit C war ein grundlegendes Prinzip des C++-Designs, sodass C-Code in C++ mit praktisch keinen Änderungen kompiliert werden kann. Dies bot einen einfachen Migrationspfad - Programmierer konnten weiterhin in C programmieren, die Vorteile von C++ nutzen und langsam mit C++-Funktionen experimentieren, während sie produktiv blieben. Die meisten Kritiken an C++ lassen sich auf die Einschränkung der Rückwärtskompatibilität mit C zurückführen.

Eines der Probleme bei C war das Thema Speicherverwaltung. Der Programmierer muss zuerst Speicher erwerben, dann eine Operation mit diesem Speicher ausführen und dann den Speicher freigeben. Das Vergessen, Speicher freizugeben, wird als Speicherleck bezeichnet und kann dazu führen, dass der verfügbare Speicher aufgebraucht wird und der Prozess abstürzt. Die anfängliche Version von C++ machte einige Innovationen in diesem Bereich, zusammen mit Konstruktoren, um eine ordnungsgemäße Initialisierung sicherzustellen. Spätere Versionen der Sprache haben bedeutende Verbesserungen in der Speicherverwaltung vorgenommen.

Python: Freundlich und flexibel (1990)

Der Designer von Python, Guido Van Rossum, schuf die Sprache basierend auf seiner Inspiration des „Programmieren für alle“. Seine Pflege der Python-Community hat ihr den Ruf verliehen, die freundlichste und unterstützendste Community in der Programmierwelt zu sein. Python war eine der ersten Open-Source-Sprachen, was zu Implementierungen auf praktisch jeder Plattform führte, einschließlich eingebetteter Systeme und maschinellem Lernen. Seine Dynamik und Benutzerfreundlichkeit machen es ideal für die Automatisierung kleiner, sich wiederholender Aufgaben, aber seine Funktionen unterstützen auch die Erstellung großer, komplexer Programme.

Python ist eine echte “Grassroots”-Sprache; es hatte nie ein Unternehmen, das es förderte, und die Einstellung seiner Fans war, die Sprache niemals zu pushen, sondern einfach jedem zu helfen, der sie lernen möchte. Die Sprache verbessert sich stetig, und in den letzten Jahren ist ihre Popularität explodiert.

Python könnte die erste Mainstream-Sprache gewesen sein, die funktionale und OO-Programmierung kombinierte. Es war Java voraus mit automatischer Speicherverwaltung durch Müllabfuhr (normalerweise müssen Sie selbst nie Speicher zuweisen oder freigeben) und der Fähigkeit, Programme auf mehreren Plattformen auszuführen.

Haskell: Reine funktionale Programmierung (1990)

Inspiriert von Miranda (1985), einer proprietären Sprache, wurde Haskell als offener Standard für die Forschung zur reinen funktionalen Programmierung geschaffen, obwohl es auch für Produkte verwendet wurde. Syntax und Ideen von Haskell haben eine Reihe nachfolgender Sprachen beeinflusst, darunter Kotlin.

Java: Virtuelle Maschinen und Müllabfuhr (1995)

James Gosling und sein Team erhielten die Aufgabe, Code für eine TV-Set-Top-Box zu schreiben. Sie entschieden, dass sie C++ nicht mochten und anstatt die Box zu erstellen, entwickelten sie die Java-Sprache. Das Unternehmen, Sun Microsystems, setzte einen enormen Marketingdruck hinter die kostenlose Sprache (damals eine neue Idee), um die aufkommende Internetlandschaft zu dominieren.

Dieses wahrgenommene Zeitfenster für die Internet-Dominanz setzte das Java-Sprachdesign unter erheblichen Druck, was zu einer beträchtlichen Anzahl von Mängeln führte (Das Buch Thinking in Java beleuchtet diese Mängel, damit die Leser darauf vorbereitet sind, mit ihnen umzugehen). Brian Goetz bei Oracle, der derzeitige leitende Entwickler von Java, hat bemerkenswerte und überraschende Verbesserungen an Java vorgenommen, trotz der Einschränkungen, die er geerbt hat. Obwohl Java bemerkenswert erfolgreich war, ist ein wichtiges Kotlin-Designziel, die Mängel von Java zu beheben, damit Programmierer produktiver sein können.

Der Erfolg von Java beruht auf zwei innovativen Funktionen: einer virtuellen Maschine und Müllabfuhr. Diese waren in anderen Sprachen verfügbar - zum Beispiel haben LISP, Smalltalk und Python Müllabfuhr, und UCSD Pascal lief auf einer virtuellen Maschine -, aber sie wurden nie als praktikabel für Mainstream-Sprachen angesehen. Java änderte das und machte Programmierer dadurch erheblich produktiver.

Eine virtuelle Maschine ist eine Zwischenebene zwischen der Sprache und der Hardware. Die Sprache muss keinen Maschinencode für einen bestimmten Prozessor erzeugen; sie muss nur eine Zwischen-Sprache (Bytecode) erzeugen, die auf der virtuellen Maschine läuft. Virtuelle Maschinen erfordern Rechenleistung und wurden vor Java als unpraktisch angesehen. Die Java Virtual Machine (JVM) führte zu Javas Slogan “write once, run everywhere.” Darüber hinaus können andere Sprachen leichter entwickelt werden, indem sie die JVM anvisieren; Beispiele umfassen Groovy, eine Java-ähnliche Skriptsprache, und Clojure, eine Version von LISP.

Die Müllabfuhr löst das Problem, das Freigeben von Speicher zu vergessen, oder wenn es schwierig ist, zu wissen, wann ein Speicherplatz nicht mehr genutzt wird. Projekte wurden erheblich verzögert oder sogar abgebrochen wegen Speicherlecks. Obwohl die Müllabfuhr in einigen früheren Sprachen vorkommt, galt sie als inakzeptabel aufwändig, bis Java ihre Praktikabilität demonstrierte.

JavaScript: Nur dem Namen nach Java (1995)

Der ursprüngliche Webbrowser kopierte und zeigte einfach Seiten von einem Webserver an. Webbrowser vervielfältigten sich und wurden zu einer neuen Programmierplattform, die Sprachunterstützung benötigte. Java wollte diese Sprache sein, war aber zu umständlich für den Job. JavaScript begann als LiveScript und wurde in NetScape Navigator integriert, einen der ersten Webbrowser. Die Umbenennung in JavaScript war ein Marketingtrick von NetScape, da die Sprache nur eine vage Ähnlichkeit mit Java hat.

Als das Web aufblühte, wurde JavaScript enorm wichtig. Das Verhalten von JavaScript war jedoch so unvorhersehbar, dass Douglas Crockford ein Buch mit dem ironischen Titel JavaScript, the Good Parts schrieb, in dem er alle Probleme mit der Sprache aufzeigte, damit Programmierer sie vermeiden können. Nachfolgende Verbesserungen durch das ECMAScript-Komitee haben JavaScript für einen ursprünglichen JavaScript-Programmierer unkenntlich gemacht. Es wird jetzt als stabile und ausgereifte Sprache betrachtet.

Web-Assembly (WASM) wurde von JavaScript abgeleitet, um eine Art Bytecode für Webbrowser zu sein. Es läuft oft viel schneller als JavaScript und kann von anderen Sprachen generiert werden. Zum Zeitpunkt des Schreibens arbeitet das Kotlin-Team daran, WASM als Ziel hinzuzufügen.

C#: Java für .NET (2000)

C# wurde entwickelt, um einige der wichtigen Fähigkeiten von Java auf der .NET (Windows) Plattform bereitzustellen, während es den Designern freistellte, sich nicht an die Java-Sprache zu halten. Das Ergebnis beinhaltete zahlreiche Verbesserungen gegenüber Java. Zum Beispiel entwickelte C# das Konzept der Erweiterungsfunktionen, die in Kotlin stark genutzt werden. C# wurde auch deutlich funktionaler als Java. Viele C#-Funktionen haben offensichtlich das Design von Kotlin beeinflusst.

Scala: SCALAble (2003)

Martin Odersky schuf Scala, um auf der Java Virtual Machine zu laufen: Um auf der Arbeit auf der JVM aufzubauen, um mit Java-Programmen zu interagieren und möglicherweise mit der Idee, dass es Java verdrängen könnte. Als Forscher nutzten Odersky und sein Team Scala als Plattform, um mit Sprachmerkmalen zu experimentieren, insbesondere solchen, die nicht in Java enthalten sind.

Diese Experimente waren erhellend, und eine Reihe davon fand in modifizierter Form ihren Weg nach Kotlin. Zum Beispiel wird die Fähigkeit, Operatoren wie + für spezielle Fälle neu zu definieren, als Operatorüberladung bezeichnet. Dies war in C++ enthalten, aber nicht in Java. Scala fügte die Operatorüberladung hinzu, erlaubt aber auch die Erfindung neuer Operatoren durch Kombination beliebiger Zeichenfolgen. Dies führt oft zu verwirrenderen Code. Eine begrenzte Form der Operatorüberladung ist in Kotlin enthalten, aber man kann nur Operatoren überladen, die bereits existieren.

Scala ist auch ein objekt-funktionales Hybrid, ähnlich wie Python, aber mit einem Fokus auf reine Funktionen und strenge Objekte. Dies inspirierte die Entscheidung von Kotlin, ebenfalls ein objekt-funktionales Hybrid zu sein.

Wie Scala läuft Kotlin auf der JVM, interagiert jedoch viel einfacher mit Java als Scala (siehe Anhang B). Darüber hinaus zielt Kotlin auf JavaScript, das Android-Betriebssystem und erzeugt nativen Code für andere Plattformen.

Atomic Kotlin entwickelte sich aus den Ideen und Materialien von Atomic Scala.

Groovy: Eine dynamische JVM-Sprache (2007)

Dynamische Sprachen sind ansprechend, weil sie interaktiver und prägnanter sind als statische Sprachen. Es gab zahlreiche Versuche, ein dynamischeres Programmiererlebnis auf der JVM zu erreichen, darunter Jython (Python) und Clojure (ein Dialekt von Lisp). Groovy war die erste, die breite Akzeptanz erreichte.

Auf den ersten Blick erscheint Groovy als bereinigte Version von Java, die ein angenehmeres Programmiererlebnis bietet. Der meiste Java-Code läuft unverändert in Groovy, sodass Java-Programmierer schnell produktiv sein können und später die anspruchsvolleren Funktionen erlernen können, die bemerkenswerte Programmierverbesserungen gegenüber Java bieten.

Die Kotlin-Operatoren ?. und ?:, die sich mit dem Problem der Leere beschäftigen, erschienen zuerst in Groovy.

Es gibt zahlreiche Groovy-Funktionen, die in Kotlin erkennbar sind. Einige dieser Funktionen erscheinen auch in anderen Sprachen, was wahrscheinlich stärker dafür drängte, dass sie in Kotlin aufgenommen wurden.

Warum Kotlin? (Eingeführt 2011, Version 1.0: 2016)

Genauso wie C++ ursprünglich als “ein besseres C” gedacht war, war Kotlin zunächst darauf ausgerichtet, “ein besseres Java” zu sein. Es hat sich seitdem erheblich über dieses Ziel hinaus entwickelt.

Kotlin wählt pragmatisch nur die erfolgreichsten und hilfreichsten Funktionen aus anderen Programmiersprachen aus—nachdem diese Funktionen in der Praxis getestet und als besonders wertvoll erwiesen wurden.

Wenn Sie also von einer anderen Sprache kommen, könnten Sie einige Funktionen dieser Sprache in Kotlin wiedererkennen. Dies ist beabsichtigt: Kotlin maximiert die Produktivität, indem es bewährte Konzepte nutzt.

Lesbarkeit

Lesbarkeit ist ein Hauptziel bei der Gestaltung der Sprache. Die Kotlin-Syntax ist prägnant—sie erfordert in den meisten Szenarien keine Förmlichkeit, kann aber dennoch komplexe Ideen ausdrücken.

Werkzeuge

Kotlin stammt von JetBrains, einem Unternehmen, das sich auf Entwicklerwerkzeuge spezialisiert hat. Es bietet erstklassige Unterstützung für Werkzeuge, und viele Sprachmerkmale wurden mit Blick auf Werkzeuge entwickelt.

Multi-Paradigma

Kotlin unterstützt mehrere Programmierparadigmen, die in diesem Buch sanft eingeführt werden:

 	Imperatives Programmieren

 	Funktionales Programmieren

 	Objektorientiertes Programmieren

Multi-Plattform

Kotlin-Quellcode kann in verschiedene Zielplattformen kompiliert werden:

 	
JVM. Der Quellcode wird in JVM-Bytecode (.class Dateien) kompiliert, der dann auf jeder Java Virtual Machine (JVM) ausgeführt werden kann.

 	
Android. Android hat seine eigene Laufzeitumgebung namens ART (der Vorgänger hieß Dalvik). Der Kotlin-Quellcode wird in das Dalvik Executable Format (.dex Dateien) kompiliert.

 	
JavaScript, um innerhalb eines Webbrowsers ausgeführt zu werden.

 	
Native Binaries durch die Generierung von Maschinencode für spezifische Plattformen und CPUs.

Dieses Buch konzentriert sich auf die Sprache selbst, wobei die JVM als einzige Zielplattform verwendet wird. Sobald Sie die Sprache beherrschen, können Sie Kotlin auf verschiedene Anwendungen und Zielplattformen anwenden.

Zwei Kotlin-Funktionen

Dieses Atom setzt nicht voraus, dass Sie ein Programmierer sind, was es schwierig macht, die meisten Vorteile von Kotlin gegenüber Alternativen zu erklären. Es gibt jedoch zwei Themen, die sehr wirkungsvoll sind und zu diesem frühen Zeitpunkt erklärt werden können: Java-Interoperabilität und das Problem, “keinen Wert” anzuzeigen.

Mühelose Java-Interoperabilität

Um “ein besseres C” zu sein, muss C++ rückwärtskompatibel mit der Syntax von C sein, aber Kotlin muss nicht rückwärtskompatibel mit der Syntax von Java sein—es muss nur mit der JVM arbeiten. Dies befreit die Kotlin-Designer, eine viel sauberere und leistungsfähigere Syntax zu schaffen, ohne das visuelle Rauschen und die Komplikationen, die Java überladen.

Damit Kotlin “ein besseres Java” ist, muss das Erlebnis, es auszuprobieren, angenehm und reibungslos sein, sodass Kotlin eine mühelose Integration mit bestehenden Java-Projekten ermöglicht. Sie können ein kleines Stück Kotlin-Funktionalität schreiben und es mitten in Ihren bestehenden Java-Code einfügen. Der Java-Code merkt nicht einmal, dass der Kotlin-Code da ist—er sieht einfach wie weiterer Java-Code aus.

Unternehmen untersuchen oft eine neue Sprache, indem sie ein eigenständiges Programm mit dieser Sprache erstellen. Idealerweise ist dieses Programm nützlich, aber nicht essentiell, sodass es bei einem Scheitern des Projekts mit minimalem Schaden beendet werden kann. Nicht jedes Unternehmen möchte die Ressourcen aufwenden, die für diese Art von Experimenten erforderlich sind. Da Kotlin sich nahtlos in ein bestehendes Java-System integriert (und von dessen Tests profitiert), wird es sehr billig oder sogar kostenlos, Kotlin auszuprobieren, um zu sehen, ob es passt.

Darüber hinaus bietet JetBrains, das Unternehmen, das Kotlin erstellt, IntelliJ IDEA in einer “Community” (kostenlosen) Version an, die Unterstützung sowohl für Java als auch für Kotlin beinhaltet und die Möglichkeit bietet, die beiden einfach zu integrieren. Es gibt sogar ein Tool, das Java-Code nimmt und ihn (größtenteils) in Kotlin umschreibt.

Anhang B behandelt Java-Interoperabilität.

Darstellung von Leere

Ein besonders vorteilhaftes Kotlin-Feature ist seine Lösung für ein herausforderndes Programmierproblem.

Was tun Sie, wenn Ihnen jemand ein Wörterbuch in die Hand drückt und Sie bittet, ein Wort nachzuschlagen, das nicht existiert? Sie könnten Ergebnisse garantieren, indem Sie Definitionen für unbekannte Wörter erfinden. Ein nützlicherer Ansatz ist einfach zu sagen: “Es gibt keine Definition für dieses Wort.” Dies zeigt ein erhebliches Problem in der Programmierung: Wie zeigt man “keinen Wert” für einen Speicherplatz an, der nicht initialisiert ist, oder für das Ergebnis einer Operation?

Die Null-Referenz wurde 1965 für ALGOL von Tony Hoare erfunden, der sie später als “meinen Milliarden-Dollar-Fehler” bezeichnete. Ein Problem war, dass sie zu einfach war—manchmal reicht es nicht aus, zu wissen, dass ein Raum leer ist. Man muss vielleicht wissen, warum er leer ist. Dies führt zum zweiten Problem: der Implementierung. Aus Effizienzgründen war es typischerweise nur ein spezieller Wert, der in eine kleine Menge Speicher passte, und was war besser als der Speicher, der bereits für diese Information bereitgestellt war?

Die ursprüngliche C-Sprache initialisierte den Speicher nicht automatisch, was zahlreiche Probleme verursachte. C++ verbesserte die Situation, indem neu zugewiesener Speicher auf null gesetzt wurde. Wenn also ein numerischer Wert nicht initialisiert ist, ist er einfach eine numerische Null. Das schien nicht so schlimm zu sein, aber es ermöglichte es, dass nicht initialisierte Werte unbemerkt durchrutschten (neuere C- und C++-Compiler warnen oft davor). Schlimmer noch, wenn ein Speicherstück ein Zeiger war—verwendet, um auf ein anderes Speicherstück zu verweisen—würde ein Nullzeiger auf die Speicheradresse null zeigen, was fast sicher nicht das ist, was man will.

Java verhindert Zugriffe auf nicht initialisierte Werte, indem es solche Fehler zur Laufzeit meldet. Obwohl dies nicht initialisierte Werte entdeckt, löst es das Problem nicht, denn die einzige Möglichkeit, zu überprüfen, ob Ihr Programm nicht abstürzt, besteht darin, es auszuführen. Es gibt Schwärme dieser Art von Fehlern im Java-Code, und Programmierer verschwenden enorme Mengen an Zeit, um sie zu finden.

Kotlin löst dieses Problem, indem es Operationen verhindert, die Nullfehler verursachen könnten, zur Kompilierzeit, bevor das Programm ausgeführt werden kann. Dies ist das am meisten gefeierte Merkmal von Java-Programmierern, die Kotlin übernehmen. Diese eine Funktion kann Java’s Nullfehler minimieren oder eliminieren, was Ihrem Projekt erhebliche Mengen an Zeit und Geld spart.

Eine Fülle von Vorteilen

Die beiden Funktionen, die wir hier erklären konnten (ohne mehr Programmierkenntnisse zu erfordern), machen einen großen Unterschied, unabhängig davon, ob Sie ein Java-Programmierer sind oder nicht. Wenn Kotlin Ihre erste Sprache ist und Sie an einem Projekt arbeiten, das mehr Programmierer benötigt, ist es viel einfacher, einen der vielen existierenden Java-Programmierer für Kotlin zu gewinnen.

Kotlin hat viele weitere Vorteile, die wir erst erklären können, wenn Sie mehr über das Programmieren wissen. Dafür ist der Rest des Buches da.

 	-

Sprachen werden oft aus Leidenschaft gewählt, nicht aus Vernunft… Ich versuche, Kotlin zu einer Sprache zu machen, die aus einem Grund geliebt wird.—Andrey Breslav, Kotlin Lead Language Designer.

Hallo, Welt!

 “Hello, world!” ist ein Programm, das häufig verwendet wird, um die grundlegende Syntax von
Programmiersprachen zu demonstrieren.

Wir entwickeln dieses Programm in mehreren Schritten, damit Sie seine Teile verstehen.

Zuerst lassen Sie uns ein leeres Programm untersuchen, das überhaupt nichts tut:

// HelloWorld/EmptyProgram.kt

fun main() {
 // Program code here ...
}

Das Beispiel beginnt mit einem Kommentar, der ein erläuternder Text ist, der von Kotlin ignoriert wird. // (zwei Schrägstriche) leitet einen Kommentar ein, der bis zum Ende der aktuellen Zeile geht:

// Single-line comment

Kotlin ignoriert das // und alles danach bis zum Ende der Zeile. In der
folgenden Zeile wird es wieder beachtet.

Die erste Zeile jedes Beispiels in diesem Buch ist ein Kommentar, der mit dem Namen des Unterverzeichnisses beginnt, das die Quellcodedatei enthält (hier HelloWorld), gefolgt vom Namen der Datei: EmptyProgram.kt. Das Beispiel-Unterverzeichnis für jedes Atom entspricht dem Namen dieses Atoms.

Schlüsselwörter sind von der Sprache reserviert und haben eine spezielle Bedeutung. Das Schlüsselwort fun steht für Funktion. Eine Funktion ist eine Sammlung von Code, die unter Verwendung des Namens dieser Funktion ausgeführt werden kann (wir verbringen viel Zeit im Buch mit Funktionen). Der Name der Funktion folgt dem fun Schlüsselwort, in diesem Fall ist es main() (im Fließtext folgen wir dem Funktionsnamen mit Klammern).

main() ist tatsächlich ein spezieller Name für eine Funktion; es zeigt den “Einstiegspunkt” für ein Kotlin-Programm an. Ein Kotlin-Programm kann viele Funktionen mit verschiedenen Namen haben, aber main() ist diejenige, die automatisch aufgerufen wird, wenn Sie das Programm ausführen.

Die Parameterliste folgt dem Funktionsnamen und ist in Klammern eingeschlossen. Hier übergeben wir nichts an main(), daher ist die Parameterliste leer.

Der Funktionskörper erscheint nach der Parameterliste. Er beginnt mit einer öffnenden Klammer ({) und endet mit einer schließenden Klammer (}). Der Funktionskörper enthält Anweisungen und Ausdrücke. Eine Anweisung erzeugt eine Wirkung, und ein Ausdruck liefert ein Ergebnis.

EmptyProgram.kt enthält keine Anweisungen oder Ausdrücke im Körper, nur einen Kommentar.

Lassen Sie das Programm “Hello, world!” anzeigen, indem Sie eine Zeile im main()-Körper hinzufügen:

// HelloWorld/HelloWorld.kt

fun main() {
 println("Hello, world!")
}
/* Output:
Hello, world!
*/

Die Zeile, die die Begrüßung anzeigt, beginnt mit println(). Wie main(), ist println() eine Funktion. Diese Zeile ruft die Funktion auf, die dann ihren Körper ausführt. Man gibt den Funktionsnamen an, gefolgt von Klammern, die einen oder mehrere Parameter enthalten. In diesem Buch fügen wir beim Bezug auf eine Funktion in der Prosa nach dem Namen Klammern hinzu, um daran zu erinnern, dass es sich um eine Funktion handelt. Hier sagen wir println().

println() nimmt einen einzelnen Parameter, der ein String ist. Ein String wird definiert, indem man Zeichen in Anführungszeichen setzt.

println() bewegt den Cursor nach der Anzeige seines Parameters in eine neue Zeile, sodass nachfolgende Ausgaben in der nächsten Zeile erscheinen. Man kann stattdessen print() verwenden, das den Cursor in derselben Zeile belässt.

Im Gegensatz zu einigen Sprachen benötigt man in Kotlin kein Semikolon am Ende eines Ausdrucks. Es ist nur notwendig, wenn man mehr als einen Ausdruck auf eine einzelne Zeile setzt (was nicht empfohlen wird).

Für einige Beispiele im Buch zeigen wir die Ausgabe am Ende der Auflistung in einem mehrzeiligen Kommentar. Ein mehrzeiliger Kommentar beginnt mit einem /* (einem Schrägstrich gefolgt von einem Sternchen) und setzt sich fort – einschließlich Zeilenumbrüchen (die wir neue Zeilen nennen) – bis ein */ (ein Sternchen gefolgt von einem Schrägstrich) den Kommentar beendet:

/* A multiline comment
Doesn't care
about newlines */

Es ist möglich, Code auf derselben Zeile nach dem schließenden */ eines Kommentars hinzuzufügen, aber das ist verwirrend, daher tun es die Leute normalerweise nicht.

Kommentare fügen Informationen hinzu, die nicht offensichtlich aus dem Code hervorgehen. Wenn Kommentare nur wiederholen, was der Code sagt, werden sie lästig und die Leute beginnen, sie zu ignorieren. Wenn sich der Code ändert, vergessen Programmierer oft, die Kommentare zu aktualisieren, daher ist es eine gute Praxis, Kommentare sparsam zu verwenden, hauptsächlich um knifflige Aspekte Ihres Codes hervorzuheben.

 Übungen und Lösungen finden Sie auf www.AtomicKotlin.com.

var & val

 Wenn ein Bezeichner Daten enthält, müssen Sie entscheiden, ob er neu zugewiesen werden kann.

Sie erstellen Bezeichner, um auf Elemente in Ihrem Programm zu verweisen. Die grundlegendste Entscheidung für einen Datenbezeichner ist, ob er seinen Inhalt während der Programmausführung ändern kann oder ob er nur einmal zugewiesen werden kann. Dies wird durch zwei Schlüsselwörter gesteuert:

 	
var, kurz für Variable, was bedeutet, dass Sie seinen Inhalt neu zuweisen können.

 	
val, kurz für Wert, was bedeutet, dass Sie ihn nur initialisieren können; Sie können ihn nicht neu zuweisen.

Sie definieren ein var so:

var identifier = initialization

Das Schlüsselwort var wird gefolgt von dem Bezeichner, einem Gleichheitszeichen und dann dem Initialisierungswert. Der Bezeichner beginnt mit einem Buchstaben oder einem Unterstrich, gefolgt von Buchstaben, Zahlen und Unterstrichen. Groß- und Kleinschreibung werden unterschieden (also sind thisvalue und thisValue unterschiedlich).

Hier sind einige var Definitionen:

// VarAndVal/Vars.kt

fun main() {
 var whole = 11 // [1]
 var fractional = 1.4 // [2]
 var words = "Twas Brillig" // [3]
 println(whole)
 println(fractional)
 println(words)
}
/* Output:
11
1.4
Twas Brillig
*/

In diesem Buch versehen wir Zeilen mit kommentierten Nummern in eckigen Klammern, damit wir im Text auf sie verweisen können, wie folgt:

 	
[1] Erstellen Sie eine var namens whole und speichern Sie 11 darin.

 	
[2] Speichern Sie die “Bruchzahl” 1.4 in der var fractional.

 	
[3] Speichern Sie etwas Text (einen String) in der var words.

Beachten Sie, dass println() jeden einzelnen Wert als Argument annehmen kann.

Wie der Name Variable impliziert, kann eine var variieren. Das heißt, Sie können die in einer var gespeicherten Daten ändern. Wir sagen, dass eine var veränderlich ist:

// VarAndVal/AVarIsMutable.kt

fun main() {
 var sum = 1
 sum = sum + 2
 sum += 3
 println(sum)
}
/* Output:
6
*/

Die Zuweisung sum = sum + 2 nimmt den aktuellen Wert von sum, addiert zwei und weist das Ergebnis zurück in sum zu.

Die Zuweisung sum += 3 bedeutet dasselbe wie sum = sum + 3. Der += Operator nimmt den vorher gespeicherten Wert in sum und erhöht ihn um 3, dann weist er dieses neue Ergebnis zurück in sum zu.

Den in einer var gespeicherten Wert zu ändern, ist eine nützliche Methode, um Änderungen auszudrücken. Wenn jedoch die Komplexität eines Programms zunimmt, ist Ihr Code klarer, sicherer und leichter zu verstehen, wenn die Werte, die durch Ihre Bezeichner dargestellt werden, sich nicht ändern können—das heißt, sie können nicht neu zugewiesen werden. Wir spezifizieren einen unveränderlichen Bezeichner, indem wir statt var das Schlüsselwort val verwenden. Ein val kann nur einmal zugewiesen werden, wenn es erstellt wird:

val identifier = initialization

Das Schlüsselwort val stammt von Wert und deutet auf etwas hin, das sich nicht ändern kann—es ist unveränderlich. Wählen Sie wann immer möglich val anstelle von var. Das Vars.kt-Beispiel am Anfang dieses Abschnitts kann unter Verwendung von vals umgeschrieben werden:

// VarAndVal/Vals.kt

fun main() {
 val whole = 11
 // whole = 15 // Error // [1]
 val fractional = 1.4
 val words = "Twas Brillig"
 println(whole)
 println(fractional)
 println(words)
}
/* Output:
11
1.4
Twas Brillig
*/

 	
[1] Sobald Sie ein val initialisieren, können Sie es nicht neu zuweisen. Wenn wir versuchen, whole eine andere Zahl zuzuweisen, meldet sich Kotlin mit der Nachricht “Val kann nicht neu zugewiesen werden.”

Beschreibende Namen für Ihre Bezeichner zu wählen, macht Ihren Code leichter verständlich und reduziert oft die Notwendigkeit für Kommentare. In Vals.kt haben Sie keine Ahnung, was whole repräsentiert. Wenn Ihr Programm die Zahl 11 speichert, um die Tageszeit darzustellen, zu der Sie Kaffee trinken, ist es offensichtlicher für andere, wenn Sie es coffeetime nennen, und leichter zu lesen, wenn es coffeeTime ist (gemäß dem Kotlin-Stil, bei dem wir den ersten Buchstaben klein schreiben).

 	-

vars sind nützlich, wenn sich Daten während der Ausführung des Programms ändern müssen. Dies klingt nach einer häufigen Anforderung, stellt sich jedoch in der Praxis als vermeidbar heraus. Im Allgemeinen sind Ihre Programme leichter zu erweitern und zu pflegen, wenn Sie vals verwenden. In seltenen Fällen ist es jedoch zu komplex, ein Problem nur mit vals zu lösen. Aus diesem Grund bietet Ihnen Kotlin die Flexibilität von vars. Je mehr Zeit Sie jedoch mit vals verbringen, desto mehr werden Sie entdecken, dass Sie vars fast nie benötigen und dass Ihre Programme ohne sie sicherer und zuverlässiger sind.

 Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Datentypen

 Daten können unterschiedliche Typen haben.

Um ein mathematisches Problem zu lösen, schreibt man einen Ausdruck:

5.9 + 6

Du weißt, dass das Addieren dieser Zahlen eine weitere Zahl ergibt. Kotlin weiß das auch. Du weißt, dass eine davon eine Dezimalzahl (5.9) ist, die Kotlin Double nennt, und die andere eine ganze Zahl (6), die Kotlin Int nennt. Du weißt, dass das Ergebnis eine Dezimalzahl ist.

Ein Typ (auch Datentyp genannt) sagt Kotlin, wie du diese Daten verwenden möchtest. Ein Typ definiert die Menge der Werte, die ein Ausdruck dieses Typs erzeugen kann. Ein Typ definiert auch die Operationen, die auf den Daten durchgeführt werden können, die Bedeutung der Daten und wie Werte dieses Typs gespeichert werden können.

Kotlin verwendet Typen, um zu überprüfen, ob deine Ausdrücke korrekt sind. Im obigen Ausdruck erstellt Kotlin einen neuen Wert des Typs Double, um das Ergebnis zu speichern.

Kotlin versucht, sich an deine Bedürfnisse anzupassen. Wenn du es bittest, etwas zu tun, das die Typregeln verletzt, erzeugt es eine Fehlermeldung. Zum Beispiel, versuche, einen String und eine Zahl zu addieren:

// DataTypes/StringPlusNumber.kt

fun main() {
 println("Sally" + 5.9)
}
/* Output:
Sally5.9
*/

Typen sagen Kotlin, wie sie korrekt verwendet werden. In diesem Fall sagen die Typregeln
Kotlin, wie man eine Zahl zu einem String hinzufügt: indem die beiden Werte angehängt werden und ein String erstellt wird, um das Ergebnis zu halten.

Versuchen Sie nun, einen String und ein Double zu multiplizieren, indem Sie das + in
StringPlusNumber.kt durch ein * ersetzen:

"Sally" * 5.9

Das Kombinieren von Typen auf diese Weise ergibt für Kotlin keinen Sinn, daher gibt es einen Fehler aus.

In var & val haben wir verschiedene Typen gespeichert. Kotlin hat die Typen für uns ermittelt, basierend darauf, wie wir sie verwendet haben. Dies wird type inference genannt.

Wir können ausführlicher sein und den Typ angeben:

val identifier: Type = initialization

Du beginnst mit dem Schlüsselwort val oder var, gefolgt vom Bezeichner, einem Doppelpunkt,
dem Typ, einem =, und dem Initialisierungswert. Anstatt also zu sagen:

val n = 1
var p = 1.2

Du kannst sagen:

val n: Int = 1
var p: Double = 1.2

Wir haben Kotlin gesagt, dass n ein Int und p ein Double ist, anstatt es den Typ ableiten zu lassen.

Hier sind einige von Kotlins grundlegenden Typen:

// DataTypes/Types.kt

fun main() {
 val whole: Int = 11 // [1]
 val fractional: Double = 1.4 // [2]
 val trueOrFalse: Boolean = true // [3]
 val words: String = "A value" // [4]
 val character: Char = 'z' // [5]
 val lines: String = """Triple quotes let
you have many lines
in your string""" // [6]
 println(whole)
 println(fractional)
 println(trueOrFalse)
 println(words)
 println(character)
 println(lines)
}
/* Output:
11
1.4
true
A value
z
Triple quotes let
you have many lines
in your string
*/

 	
[1] Der Int-Datentyp ist ein Ganzzahltyp, was bedeutet, dass er nur ganze Zahlen speichert.

 	
[2] Um Bruchzahlen zu speichern, verwenden Sie einen Double.

 	
[3] Ein Boolean-Datentyp speichert nur die beiden speziellen Werte true und false.

 	
[4] Ein String speichert eine Zeichenfolge. Sie weisen einen Wert mit einem doppelt-umrahmten String zu.

 	
[5] Ein Char speichert ein Zeichen.

 	
[6] Wenn Sie viele Zeilen und/oder Sonderzeichen haben, umgeben Sie diese mit dreifachen Anführungszeichen (dies ist ein dreifach-umrahmter String).

Kotlin verwendet Typinferenz, um die Bedeutung gemischter Typen zu bestimmen. Beim Mischen von Int und Double während der Addition entscheidet Kotlin den Typ für den resultierenden Wert:

// DataTypes/Inference.kt

fun main() {
 val n = 1 + 1.2
 println(n)
}
/* Output:
2.2
*/

Wenn Sie einen Int zu einem Double mit Typinferenz hinzufügen, bestimmt Kotlin,
dass das Ergebnis n ein Double ist und stellt sicher, dass es alle Regeln
für Doubles einhält.

Die Typinferenz von Kotlin ist Teil seiner Strategie, Arbeit für den
Programmierer zu übernehmen. Wenn Sie die Typdeklaration weglassen, kann Kotlin sie normalerweise ableiten.

 Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Funktionen

 Eine Funktion ist wie ein kleines Programm, das einen eigenen Namen hat und
durch das Aufrufen dieses Namens aus einer anderen Funktion ausgeführt (aufgerufen) werden kann.

Eine Funktion fasst eine Gruppe von Aktivitäten zusammen und ist die grundlegendste Methode, um Ihre Programme zu organisieren und Code wiederzuverwenden.

Sie übergeben Informationen an eine Funktion, und die Funktion verwendet diese Informationen, um ein Ergebnis zu berechnen und zu erzeugen. Die Grundform einer Funktion ist:

fun functionName(p1: Type1, p2: Type2, ...): ReturnType {
 lines of code
 return result
}

p1 und p2 sind die Parameter: die Informationen, die Sie in die Funktion übergeben. Jeder Parameter hat einen Bezeichnernamen (p1, p2) gefolgt von einem Doppelpunkt und dem Typ dieses Parameters. Die schließende Klammer der Parameterliste wird von einem Doppelpunkt und dem Typ des von der Funktion erzeugten Ergebnisses gefolgt. Die Codezeilen im Funktionskörper sind in geschweifte Klammern eingeschlossen. Der Ausdruck nach dem Schlüsselwort return ist das Ergebnis, das die Funktion erzeugt, wenn sie abgeschlossen ist.

Ein Parameter definiert, was in eine Funktion übergeben wird — er ist der Platzhalter. Ein Argument ist der tatsächliche Wert, den Sie in die Funktion übergeben.

Die Kombination aus Name, Parametern und Rückgabetyp wird als Funktionssignatur bezeichnet.

Hier ist eine einfache Funktion namens multiplyByTwo():

// Functions/MultiplyByTwo.kt

fun multiplyByTwo(x: Int): Int { // [1]
 println("Inside multiplyByTwo") // [2]
 return x * 2
}

fun main() {
 val r = multiplyByTwo(5) // [3]
 println(r)
}
/* Output:
Inside multiplyByTwo
10
*/

 	
[1] Beachten Sie das fun Schlüsselwort, den Funktionsnamen und die Parameterliste, die aus einem einzigen Parameter besteht. Diese Funktion nimmt einen Int Parameter und gibt einen Int zurück.

 	
[2] Diese zwei Zeilen sind der Körper der Funktion. Die letzte Zeile gibt den Wert ihrer Berechnung x * 2 als Ergebnis der Funktion zurück.

 	
[3] Diese Zeile ruft die Funktion mit einem geeigneten Argument auf und erfasst das Ergebnis in val r. Ein Funktionsaufruf imitiert die Form seiner Deklaration: den Funktionsnamen, gefolgt von Argumenten in Klammern.

Der Funktionscode wird durch Aufrufen der Funktion ausgeführt, wobei der Funktionsname multiplyByTwo() als Abkürzung für diesen Code dient. Aus diesem Grund sind Funktionen die grundlegendste Form der Vereinfachung und Wiederverwendung von Code in der Programmierung. Sie können auch an eine Funktion als Ausdruck mit austauschbaren Werten (den Parametern) denken.

println() ist ebenfalls ein Funktionsaufruf – er wird einfach von Kotlin bereitgestellt. Wir beziehen uns auf von Kotlin definierte Funktionen als Bibliotheksfunktionen.

Wenn die Funktion kein sinnvolles Ergebnis liefert, ist ihr Rückgabetyp Unit. Sie können Unit explizit angeben, wenn Sie möchten, aber Kotlin erlaubt es Ihnen, es wegzulassen:

// Functions/SayHello.kt

fun sayHello() {
 println("Hallo!")
}

fun sayGoodbye(): Unit {
 println("Auf Wiedersehen!")
}

fun main() {
 sayHello()
 sayGoodbye()
}
/* Output:
Hallo!
Auf Wiedersehen!
*/

Sowohl sayHello() als auch sayGoodbye() geben Unit zurück, aber sayHello() lässt die explizite Deklaration weg. Die main()-Funktion gibt ebenfalls Unit zurück.

Wenn eine Funktion nur einen einzigen Ausdruck enthält, können Sie die abgekürzte Syntax mit einem Gleichheitszeichen gefolgt von dem Ausdruck verwenden:

fun functionName(arg1: Type1, arg2: Type2, ...): ReturnType = expression

Ein Funktionskörper, der von geschweiften Klammern umgeben ist, wird als Blockkörper bezeichnet. Ein Funktionskörper, der die Gleichungssyntax verwendet, wird als Ausdruckskörper bezeichnet.

Hier verwendet multiplyByThree() einen Ausdruckskörper:

// Functions/MultiplyByThree.kt

fun multiplyByThree(x: Int): Int = x * 3

fun main() {
 println(multiplyByThree(5))
}
/* Output:
15
*/

Dies ist eine kurze Version, um return x * 3 innerhalb eines Blockkörpers zu sagen.

Kotlin leitet den Rückgabetyp einer Funktion ab, die einen Ausdruckskörper hat:

// Functions/MultiplyByFour.kt

fun multiplyByFour(x: Int) = x * 4

fun main() {
 val result: Int = multiplyByFour(5)
 println(result)
}
/* Output:
20
*/

Kotlin leitet ab, dass multiplyByFour() ein Int zurückgibt.

Kotlin kann Rückgabetypen nur für Ausdruckskörper ableiten. Wenn eine Funktion einen Blockkörper hat und Sie ihren Typ weglassen, gibt diese Funktion Unit zurück.

 	-

Beim Schreiben von Funktionen sollten Sie beschreibende Namen wählen. Dies macht den Code leichter lesbar und kann oft die Notwendigkeit für Codekommentare reduzieren. Wir können nicht immer so beschreibend sein, wie wir es uns wünschen würden, mit den Funktionsnamen in diesem Buch, weil wir durch die Zeilenbreiten eingeschränkt sind.

 Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

if-Ausdrücke

 Ein if-Ausdruck trifft eine Entscheidung.

Das if-Schlüsselwort prüft einen Ausdruck, um festzustellen, ob er wahr oder falsch ist, und führt basierend auf dem Ergebnis eine Aktion aus. Ein Wahr-oder-Falsch-Ausdruck wird als Boolean bezeichnet, nach dem Mathematiker George Boole, der die Logik hinter diesen Ausdrücken erfunden hat. Hier ist ein Beispiel mit den Symbolen > (größer als) und < (kleiner als):

// IfExpressions/If1.kt

fun main() {
 if (1 > 0)
 println("It's true!")
 if (10 < 11) {
 println("10 < 11")
 println("ten is less than eleven")
 }
}
/* Output:
It's true!
10 < 11
ten is less than eleven
*/

Der Ausdruck in den Klammern nach dem if muss zu true oder false ausgewertet werden. Wenn true, wird der folgende Ausdruck ausgeführt. Um mehrere Zeilen auszuführen, platziere sie in geschweiften Klammern.

Wir können einen booleschen Ausdruck an einer Stelle erstellen und an einer anderen verwenden:

// IfExpressions/If2.kt

fun main() {
 val x: Boolean = 1 >= 1
 if (x)
 println("It's true!")
}
/* Output:
It's true!
*/

Da x ein Boolean ist, kann der if-Operator es direkt testen, indem er if(x) sagt.

Der >=-Operator für Boolean gibt true zurück, wenn der Ausdruck auf der linken Seite des Operators größer oder gleich dem auf der rechten Seite ist. Ebenso gibt <= true zurück, wenn der Ausdruck auf der linken Seite kleiner oder gleich dem auf der rechten Seite ist.

Das Schlüsselwort else ermöglicht es Ihnen, sowohl true- als auch false-Pfade zu behandeln:

// IfExpressions/If3.kt

fun main() {
 val n: Int = -11
 if (n > 0)
 println("It's positive")
 else
 println("It's negative or zero")
}
/* Output:
It's negative or zero
*/

Das else-Schlüsselwort wird nur in Verbindung mit if verwendet. Sie sind nicht auf eine einzelne Prüfung beschränkt — Sie können mehrere Kombinationen testen, indem Sie else und if kombinieren:

// IfExpressions/If4.kt

fun main() {
 val n: Int = -11
 if (n > 0)
 println("It's positive")
 else if (n == 0)
 println("It's zero")
 else
 println("It's negative")
}
/* Output:
It's negative
*/

Hier verwenden wir ==, um zwei Zahlen auf Gleichheit zu prüfen. != testet auf Ungleichheit.

Das typische Muster beginnt mit if, gefolgt von so vielen else if-Klauseln, wie Sie benötigen, und endet mit einem abschließenden else für alles, was nicht zu den vorherigen Tests passt. Wenn ein if-Ausdruck eine bestimmte Größe und Komplexität erreicht, verwenden Sie wahrscheinlich stattdessen einen when-Ausdruck. when wird später im Buch beschrieben, in „when“ Ausdrücke.

Der „Nicht“-Operator ! testet das Gegenteil eines Booleschen Ausdrucks:

// IfExpressions/If5.kt

fun main() {
 val y: Boolean = false
 if (!y)
 println("!y is true")
}
/* Output:
!y is true
*/

Um if(!y) zu verbalisieren, sagt man “wenn nicht y.”

Das gesamte if ist ein Ausdruck, der ein Ergebnis liefern kann:

// IfExpressions/If6.kt

fun main() {
 val num = 10
 val result = if (num > 100) 4 else 42
 println(result)
}
/* Output:
42
*/

Hier speichern wir den Wert, der durch den gesamten if Ausdruck erzeugt wird, in einem Zwischenbezeichner namens result. Wenn die Bedingung erfüllt ist, erzeugt der erste Zweig result. Wenn nicht, wird der else Wert zu result.

Lassen Sie uns üben, Funktionen zu erstellen. Hier ist eine, die einen Booleschen Parameter nimmt:

// IfExpressions/TrueOrFalse.kt

fun trueOrFalse(exp: Boolean): String {
 if (exp)
 return "It's true!" // [1]
 return "It's false" // [2]
}

fun main() {
 val b = 1
 println(trueOrFalse(b < 3))
 println(trueOrFalse(b >= 3))
}
/* Output:
It's true!
It's false
*/

Der Boolean-Parameter exp wird an die Funktion trueOrFalse() übergeben. Wenn das Argument als Ausdruck übergeben wird, wie b < 3, wird dieser Ausdruck zuerst ausgewertet und das Ergebnis an die Funktion übergeben. trueOrFalse() testet exp und wenn das Ergebnis true ist, wird Zeile [1] ausgeführt, andernfalls wird Zeile [2] ausgeführt.

 	
[1] return sagt: “Verlasse die Funktion und liefere diesen Wert als Ergebnis der Funktion.” Beachten Sie, dass return überall in einer Funktion erscheinen kann und nicht am Ende stehen muss.

Anstatt return wie im vorherigen Beispiel zu verwenden, können Sie das else-Schlüsselwort verwenden, um das Ergebnis als Ausdruck zu erzeugen:

// IfExpressions/OneOrTheOther.kt

fun oneOrTheOther(exp: Boolean): String =
 if (exp)
 "True!" // No 'return' necessary
 else
 "False"

fun main() {
 val x = 1
 println(oneOrTheOther(x == 1))
 println(oneOrTheOther(x == 2))
}
/* Output:
True!
False
*/

Anstelle von zwei Ausdrücken in trueOrFalse() ist oneOrTheOther() ein einzelner Ausdruck. Das Ergebnis dieses Ausdrucks ist das Ergebnis der Funktion, sodass der if-Ausdruck zum Funktionskörper wird.

 Übungen und Lösungen finden Sie auf www.AtomicKotlin.com.

String-Vorlagen

 Eine String-Vorlage ist eine programmatische Methode, um einen String zu erzeugen.

Wenn Sie ein $ vor einen Bezeichnernamen setzen, fügt die String-Vorlage den Inhalt dieses Bezeichners in den String ein:

// StringTemplates/StringTemplates.kt

fun main() {
 val answer = 42
 println("Found $answer!") // [1]
 println("printing a $1") // [2]
}
/* Output:
Found 42!
printing a $1
*/

 	
[1] $answer ersetzt den Wert von answer.

 	
[2] Wenn dem $ nichts folgt, das als Programmbezeichner erkennbar ist,
passiert nichts Besonderes.

Man kann auch Werte in einen String einfügen, indem man die Verkettung (+) verwendet:

// StringTemplates/StringConcatenation.kt

fun main() {
 val s = "hi\n" // \n is a newline character
 val n = 11
 val d = 3.14
 println("first: " + s + "second: " +
 n + ", third: " + d)
}
/* Output:
first: hi
second: 11, third: 3.14
*/

Das Platzieren eines Ausdrucks innerhalb von ${} wertet ihn aus. Der Rückgabewert wird in einen String umgewandelt und in den resultierenden String eingefügt:

// StringTemplates/ExpressionInTemplate.kt

fun main() {
 val condition = true
 println(
 "${if (condition) 'a' else 'b'}") // [1]
 val x = 11
 println("$x + 4 = ${x + 4}")
}
/* Output:
a
11 + 4 = 15
*/

 	
[1] if(condition) 'a' else 'b' wird ausgewertet und das Ergebnis wird
durch den gesamten ${} Ausdruck ersetzt.

Wenn eine Zeichenkette ein Sonderzeichen enthalten muss, wie zum Beispiel ein Anführungszeichen, können Sie entweder dieses Zeichen mit einem \ (Backslash) entkommen, oder Sie verwenden ein Zeichenkette Literal in dreifachen Anführungszeichen:

// StringTemplates/TripleQuotes.kt

fun main() {
 val s = "value"
 println("s = \"$s\".")
 println("""s = "$s".""")
}
/* Output:
s = "value".
s = "value".
*/

Mit dreifachen Anführungszeichen fügen Sie einen Wert eines Ausdrucks auf die gleiche Weise ein wie bei einem einfach-quotierten String.

 Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Zahlentypen

 Verschiedene Zahlentypen werden auf unterschiedliche Weise gespeichert.

Wenn Sie einen Bezeichner erstellen und ihm einen Ganzzahlwert zuweisen, leitet Kotlin den Int-Typ ab:

// NumberTypes/InferInt.kt

fun main() {
 val million = 1_000_000 // Infers Int
 println(million)
}
/* Output:
1000000
*/

Für die Lesbarkeit erlaubt Kotlin Unterstriche innerhalb numerischer Werte.

Die grundlegenden mathematischen Operatoren für Zahlen sind diejenigen, die in den meisten Programmiersprachen verfügbar sind: Addition (+), Subtraktion (-), Division (/), Multiplikation (*) und Modulus (%), was den Rest aus der Ganzzahldivision ergibt:

// NumberTypes/Modulus.kt

fun main() {
 val numerator: Int = 19
 val denominator: Int = 10
 println(numerator % denominator)
}
/* Output:
9
*/

Ganzzahl-Division schneidet das Ergebnis ab:

// NumberTypes/IntDivisionTruncates.kt

fun main() {
 val numerator: Int = 19
 val denominator: Int = 10
 println(numerator / denominator)
}
/* Output:
1
*/

Wenn die Operation das Ergebnis gerundet hätte, wäre die Ausgabe 2.

Die Reihenfolge der Operationen folgt der grundlegenden Arithmetik:

// NumberTypes/OpOrder.kt

fun main() {
 println(45 + 5 * 6)
}
/* Output:
75
*/

Die Multiplikation 5 * 6 wird zuerst ausgeführt, gefolgt von der
Addition 45 + 30.

Wenn Sie möchten, dass 45 + 5 zuerst erfolgt, verwenden Sie Klammern:

// NumberTypes/OpOrderParens.kt

fun main() {
 println((45 + 5) * 6)
}
/* Output:
300
*/

Nun berechnen wir den Body-Mass-Index (BMI), der das Gewicht in Kilogramm
dividiert durch das Quadrat der Größe in Metern ist. Wenn Sie einen BMI von weniger als
18,5 haben, sind Sie untergewichtig. Zwischen 18,5 und 24,9 ist Normalgewicht. Ein BMI von
25 und höher ist Übergewicht. Dieses Beispiel zeigt auch den bevorzugten Formatierungsstil,
wenn Sie die Parameter der Funktion nicht in eine einzige Zeile passen können:

// NumberTypes/BMIMetric.kt

fun bmiMetric(
 weight: Double,
 height: Double
): String {
 val bmi = weight / (height * height) // [1]
 return if (bmi < 18.5) "Underweight"
 else if (bmi < 25) "Normal weight"
 else "Overweight"
}

fun main() {
 val weight = 72.57 // 160 lbs
 val height = 1.727 // 68 inches
 val status = bmiMetric(weight, height)
 println(status)
}
/* Output:
Normal weight
*/

 	
[1] Wenn Sie die Klammern entfernen, teilen Sie weight durch height und multiplizieren dann dieses Ergebnis mit height. Das ergibt eine viel größere Zahl und ist die falsche Antwort.

bmiMetric() verwendet Doubles für das Gewicht und die Größe. Ein Double kann sehr große und sehr kleine Gleitkommazahlen aufnehmen.

Hier ist eine Version, die englische Einheiten verwendet, dargestellt durch Int-Parameter:

// NumberTypes/BMIEnglish.kt

fun bmiEnglish(
 weight: Int,
 height: Int
): String {
 val bmi =
 weight / (height * height) * 703.07 // [1]
 return if (bmi < 18.5) "Underweight"
 else if (bmi < 25) "Normal weight"
 else "Overweight"
}

fun main() {
 val weight = 160
 val height = 68
 val status = bmiEnglish(weight, height)
 println(status)
}
/* Output:
Underweight
*/

Warum unterscheidet sich das Ergebnis von bmiMetric(), das Doubles verwendet? Wenn Sie eine Ganzzahl durch eine andere Ganzzahl teilen, erzeugt Kotlin ein Ganzzahlergebnis. Die Standardmethode, um mit dem Rest während der ganzzahligen Division umzugehen, ist das Abschneiden, was bedeutet, “abschneiden und wegwerfen” (es gibt kein Runden). Wenn Sie also 5 durch 2 teilen, erhalten Sie 2, und 7/10 ist null. Wenn Kotlin bmi in Ausdruck [1] berechnet, teilt es 160 durch 68 * 68 und erhält null. Es multipliziert dann null mit 703.07, um null zu erhalten.

Um dieses Problem zu vermeiden, verschieben Sie 703.07 an den Anfang der Berechnung. Die Berechnungen werden dann gezwungen, Double zu sein:

val bmi = 703.07 * weight / (height * height)

Die Double Parameter in bmiMetric() verhindern dieses Problem. Rechnen Sie so früh wie möglich auf den gewünschten Typ um, um die Genauigkeit zu erhalten.

Alle Programmiersprachen haben Grenzen, was sie innerhalb einer Ganzzahl speichern können. Der Int Typ in Kotlin kann Werte zwischen -231 und +231-1 annehmen, eine Einschränkung der 32-Bit Darstellung von Int. Wenn Sie zwei Ints addieren oder multiplizieren, die groß genug sind, wird das Ergebnis überlaufen:

// NumberTypes/IntegerOverflow.kt

fun main() {
 val i: Int = Int.MAX_VALUE
 println(i + i)
}
/* Output:
-2
*/

Int.MAX_VALUE ist ein vordefinierter Wert, der die größte Zahl darstellt, die ein Int halten kann.

Der Überlauf erzeugt ein Ergebnis, das eindeutig falsch ist, da es sowohl negativ als auch viel kleiner ist, als wir erwarten. Kotlin gibt eine Warnung aus, wann immer es einen potenziellen Überlauf erkennt.

Es liegt in Ihrer Verantwortung als Entwickler, Überläufe zu verhindern. Kotlin kann nicht immer Überläufe während der Kompilierung erkennen, und es verhindert keine Überläufe, da dies eine untragbare Leistungseinbuße zur Folge hätte.

Wenn Ihr Programm große Zahlen enthält, können Sie Longs verwenden, die Werte von -263 bis +263-1 aufnehmen. Um ein val vom Typ Long zu definieren, können Sie den Typ explizit angeben oder ein L am Ende eines numerischen Literals hinzufügen, was Kotlin anweist, diesen Wert als Long zu behandeln:

// NumberTypes/LongConstants.kt

fun main() {
 val i = 0 // Infers Int
 val l1 = 0L // L creates Long
 val l2: Long = 0 // Explicit type
 println("$l1 $l2")
}
/* Output:
0 0
*/

Durch die Verwendung von Longs verhindern wir den Überlauf in IntegerOverflow.kt:

// NumberTypes/UsingLongs.kt

fun main() {
 val i = Int.MAX_VALUE
 println(0L + i + i) // [1]
 println(1_000_000 * 1_000_000L) // [2]
}
/* Output:
4294967294
1000000000000
*/

Die Verwendung eines numerischen Literals in sowohl [1] als auch [2] erzwingt Long-Berechnungen und ergibt ebenfalls ein Ergebnis vom Typ Long. Der Ort, an dem das L erscheint, ist unwichtig. Wenn einer der Werte Long ist, ist der resultierende Ausdruck Long.

Obwohl sie viel größere Werte als Ints halten können, haben Longs immer noch Größenbeschränkungen:

// NumberTypes/BiggestLong.kt

fun main() {
 println(Long.MAX_VALUE)
}
/* Output:
9223372036854775807
*/

Long.MAX_VALUE ist der größte Wert, den ein Long halten kann.

 Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Boolesche Werte

 if-Ausdrücke demonstrierten den Operator “nicht” !,
der einen Boolescher Wert negiert. Dieses Kapitel führt mehr in die Boolesche Algebra ein.

Wir beginnen mit den Operatoren “und” und “oder”:

 	
&& (und): Erzeugt wahr nur, wenn der Boolescher Ausdruck links vom
Operator und der rechts beide wahr sind.

 	
|| (oder): Erzeugt wahr, wenn entweder der Ausdruck links oder rechts vom
Operator wahr ist, oder wenn beide wahr sind.

In diesem Beispiel bestimmen wir, ob ein Geschäft geöffnet oder geschlossen ist, basierend auf
der Stunde:

// Booleans/Open1.kt

fun isOpen1(hour: Int) {
 val open = 9
 val closed = 20
 println("Operating hours: $open - $closed")
 val status =
 if (hour >= open && hour < closed) // [1]
 true
 else
 false
 println("Open: $status")
}

fun main() = isOpen1(6)
/* Output:
Operating hours: 9 - 20
Open: false
*/

main() ist ein einzelner Funktionsaufruf, daher können wir einen Ausdruckskörper verwenden, wie in Funktionen beschrieben.

Der if-Ausdruck in [1] prüft, ob hour zwischen der Öffnungszeit und der Schließzeit liegt, daher kombinieren wir die Ausdrücke mit dem Boolean && (und).

Der if-Ausdruck kann vereinfacht werden. Das Ergebnis des Ausdrucks if(cond) true else false ist einfach cond:

// Booleans/Open2.kt

fun isOpen2(hour: Int) {
 val open = 9
 val closed = 20
 println("Operating hours: $open - $closed")
 val status = hour >= open && hour < closed
 println("Open: $status")
}

fun main() = isOpen2(6)
/* Output:
Operating hours: 9 - 20
Open: false
*/

Lassen Sie uns die Logik umkehren und überprüfen, ob das Geschäft derzeit geschlossen ist. Der “or”-Operator || liefert true, wenn mindestens eine der Bedingungen erfüllt ist:

// Booleans/Closed.kt

fun isClosed(hour: Int) {
 val open = 9
 val closed = 20
 println("Operating hours: $open - $closed")
 val status = hour < open || hour >= closed
 println("Closed: $status")
}

fun main() = isClosed(6)
/* Output:
Operating hours: 9 - 20
Closed: true
*/

Boolean-Operatoren ermöglichen komplizierte Logik in kompakten Ausdrücken. Allerdings kann es leicht verwirrend werden. Streben Sie nach Lesbarkeit und spezifizieren Sie Ihre Absichten explizit.

Hier ist ein Beispiel für einen komplizierten Boolean-Ausdruck, bei dem unterschiedliche Auswertungsreihenfolgen zu unterschiedlichen Ergebnissen führen:

// Booleans/EvaluationOrder.kt

fun main() {
 val sunny = true
 val hoursSleep = 6
 val exercise = false
 val temp = 55

 // [1]:
 val happy1 = sunny && temp > 50 ||
 exercise && hoursSleep > 7
 println(happy1)

 // [2]:
 val sameHappy1 = (sunny && temp > 50) ||
 (exercise && hoursSleep > 7)
 println(sameHappy1)

 // [3]:
 val notSame =
 (sunny && temp > 50 || exercise) &&
 hoursSleep > 7
 println(notSame)
}
/* Output:
true
true
false
*/

Die Boolean-Ausdrücke sind sunny, temp > 50, exercise und hoursSleep > 7. Wir lesen happy1 als “Es ist sonnig und die Temperatur ist größer als 50 oder ich habe Sport getrieben und mehr als 7 Stunden geschlafen.” Aber hat && Vorrang vor || oder umgekehrt?

Der Ausdruck in [1] verwendet die Standardauswertungsreihenfolge von Kotlin. Dies ergibt dasselbe Ergebnis wie der Ausdruck in [2], da ohne Klammern die “und”-Operationen zuerst ausgewertet werden, dann das “oder”. Der Ausdruck in [3] verwendet Klammern, um ein anderes Ergebnis zu erzielen. In [3] sind wir nur glücklich, wenn wir mindestens 7 Stunden geschlafen haben.

 Übungen und Lösungen finden Sie auf www.AtomicKotlin.com.

Wiederholung mit while

 Computer sind ideal für sich wiederholende Aufgaben.

Die grundlegendste Form der Wiederholung verwendet das Schlüsselwort while. Dies wiederholt einen Block, solange der kontrollierende boolesche Ausdruck true ist:

while (Boolean-expression) {
 // Code to be repeated
}

Der boolesche Ausdruck wird einmal zu Beginn der Schleife und
erneut vor jeder weiteren Iteration durch den Block ausgewertet.

// RepetitionWithWhile/WhileLoop.kt

fun condition(i: Int) = i < 100 // [1]

fun main() {
 var i = 0
 while (condition(i)) { // [2]
 print(".")
 i += 10 // [3]
 }
}
/* Output:
..........
*/

 	
[1] Der Vergleichsoperator < liefert ein Boolescher Wert Ergebnis, daher leitet Kotlin Boolescher Wert als Ergebnistyp für condition() ab.

 	
[2] Der bedingte Ausdruck für das while besagt: “Wiederhole die Anweisungen im Körper, solange condition() true zurückgibt.”

 	
[3] Der += Operator addiert 10 zu i und weist das Ergebnis i in einem einzigen Vorgang zu (i muss eine var sein, damit dies funktioniert). Dies entspricht:

i = i + 10

Es gibt eine zweite Möglichkeit, while in Verbindung mit dem Schlüsselwort do zu verwenden:

do {
 // Code to be repeated
} while (Boolean-expression)

Das Umschreiben von WhileLoop.kt, um eine do-while-Schleife zu verwenden, ergibt:

// RepetitionWithWhile/DoWhileLoop.kt

fun main() {
 var i = 0
 do {
 print(".")
 i += 10
 } while (condition(i))
}
/* Output:
..........
*/

Der einzige Unterschied zwischen while und do-while besteht darin, dass der Körper von do-while immer mindestens einmal ausgeführt wird, selbst wenn der boolesche Ausdruck anfänglich false ergibt. Bei einem while wird der Körper nie ausgeführt, wenn die Bedingung beim ersten Mal false ist. In der Praxis ist do-while weniger verbreitet als while.

Die Kurzformen der Zuweisungsoperatoren sind für alle arithmetischen Operationen verfügbar: +=, -=, *=, /=, und %=. Hier werden -= und %= verwendet:

// RepetitionWithWhile/AssignmentOperators.kt

fun main() {
 var n = 10
 val d = 3
 print(n)
 while (n > d) {
 n -= d
 print(" - $d")
 }
 println(" = $n")

 var m = 10
 print(m)
 m %= d
 println(" % $d = $m")
}
/* Output:
10 - 3 - 3 - 3 = 1
10 % 3 = 1
*/

Um den Rest der ganzzahligen Division von zwei natürlichen Zahlen zu berechnen, beginnen wir mit einer while-Schleife und verwenden dann den Restoperator.

Das Hinzufügen und Subtrahieren von 1 zu einer Zahl ist so häufig, dass sie eigene Inkrement- und Dekrementoperatoren haben: ++ und --. Sie können i += 1 durch i++ ersetzen:

// RepetitionWithWhile/IncrementOperator.kt

fun main() {
 var i = 0
 while (i < 4) {
 print(".")
 i++
 }
}
/* Output:
....
*/

In der Praxis werden while-Schleifen nicht zum Iterieren über einen Bereich von Zahlen verwendet. Stattdessen wird die for-Schleife verwendet. Dies wird im nächsten Atom behandelt.

 Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Schleifen & Bereiche

 Das Schlüsselwort for führt einen Codeblock für jeden Wert in einer Sequenz aus.

Die Menge der Werte kann ein Bereich von Ganzzahlen, ein String oder, wie Sie später im Buch sehen werden, eine Sammlung von Elementen sein. Das Schlüsselwort in zeigt an, dass Sie durch die Werte schreiten:

for (v in values) {
 // Do something with v
}

Jedes Mal, wenn die Schleife durchlaufen wird, erhält v das nächste Element in values.

Hier ist eine for-Schleife, die eine Aktion eine feste Anzahl von Malen wiederholt:

// LoopingAndRanges/RepeatThreeTimes.kt

fun main() {
 for (i in 1..3) {
 println("Hey $i!")
 }
}
/* Output:
Hey 1!
Hey 2!
Hey 3!
*/

Die Ausgabe zeigt, dass der index i jeden Wert im Bereich von 1 bis 3 erhält.

Ein range ist ein Intervall von Werten, das durch ein Paar von Endpunkten definiert wird. Es gibt zwei grundlegende Arten, ranges zu definieren:

// LoopingAndRanges/DefiningRanges.kt

fun main() {
 val range1 = 1..10 // [1]
 val range2 = 0 until 10 // [2]
 println(range1)
 println(range2)
}
/* Output:
1..10
0..9
*/

 	
[1] Die Verwendung der ..-Syntax schließt beide Grenzen im resultierenden Bereich ein.

 	
[2] until schließt das Ende aus. Die Ausgabe zeigt, dass 10 nicht Teil des
Bereichs ist.

Die Anzeige eines Bereichs erzeugt ein lesbares Format.

Dies summiert die Zahlen von 10 bis 100:

// LoopingAndRanges/SumUsingRange.kt

fun main() {
 var sum = 0
 for (n in 10..100) {
 sum += n
 }
 println("sum = $sum")
}
/* Output:
sum = 5005
*/

Sie können über einen Bereich in umgekehrter Reihenfolge iterieren. Sie können auch einen Schritt-Wert verwenden, um das Intervall vom Standardwert 1 zu ändern:

// LoopingAndRanges/ForWithRanges.kt

fun showRange(r: IntProgression) {
 for (i in r) {
 print("$i ")
 }
 print(" // $r")
 println()
}

fun main() {
 showRange(1..5)
 showRange(0 until 5)
 showRange(5 downTo 1) // [1]
 showRange(0..9 step 2) // [2]
 showRange(0 until 10 step 3) // [3]
 showRange(9 downTo 2 step 3)
}
/* Output:
1 2 3 4 5 // 1..5
0 1 2 3 4 // 0..4
5 4 3 2 1 // 5 downTo 1 step 1
0 2 4 6 8 // 0..8 step 2
0 3 6 9 // 0..9 step 3
9 6 3 // 9 downTo 3 step 3
*/

 	
[1] downTo erzeugt einen absteigenden Bereich.

 	
[2] step ändert das Intervall. Hier wird der Bereich in Schritten von zwei
statt einem durchlaufen.

 	
[3] until kann auch mit step verwendet werden. Beachten Sie, wie sich dies
auf die Ausgabe auswirkt.

In jedem Fall bilden die Zahlenfolgen eine arithmetische Folge. showRange() akzeptiert einen IntProgression-Parameter, der ein eingebauter Typ ist, der Int-Bereiche beinhaltet. Beachten Sie, dass die String-Darstellung jeder IntProgression, wie sie im Ausgabekommentar für jede Zeile erscheint, oft anders ist als der Bereich, der in showRange() übergeben wird—der IntProgression übersetzt die Eingabe in eine gleichwertige gemeinsame Form.

Sie können auch einen Bereich von Zeichen erzeugen. Diese for-Schleife iteriert von a bis z:

// LoopingAndRanges/ForWithCharRange.kt

fun main() {
 for (c in 'a'..'z') {
 print(c)
 }
}
/* Output:
abcdefghijklmnopqrstuvwxyz
*/

Sie können über einen Bereich von Elementen iterieren, die ganze Mengen sind, wie
Ganzzahlen und Zeichen, aber nicht Gleitkommawerte.

Eckige Klammern greifen über den Index auf Zeichen zu. Da wir mit dem Zählen
der Zeichen in einem String bei Null beginnen, wählt s[0] das erste Zeichen des
String s aus. Die Auswahl von s.lastIndex ergibt die letzte Indexnummer:

// LoopingAndRanges/IndexIntoString.kt

fun main() {
 val s = "abc"
 for (i in 0..s.lastIndex) {
 print(s[i] + 1)
 }
}
/* Output:
bcd
*/

Manchmal beschreiben Leute s[0] als “das nullte Zeichen.”

Zeichen werden als Zahlen gespeichert, die ihren
Unicode-Werten entsprechen. Daher ergibt das Hinzufügen einer Ganzzahl zu einem
Zeichen ein neues Zeichen, das dem neuen Codewert entspricht:

// LoopingAndRanges/AddingIntToChar.kt

fun main() {
 val ch: Char = 'a'
 println(ch + 25)
 println(ch < 'z')
}
/* Output:
z
true
*/

Die zweite println() zeigt, dass man Zeichencodes vergleichen kann.

Eine for-Schleife kann direkt über Strings iterieren:

// LoopingAndRanges/IterateOverString.kt

fun main() {
 for (ch in "Jnskhm ") {
 print(ch + 1)
 }
}
/* Output:
Kotlin!
*/

ch empfängt nacheinander jedes Zeichen.

Im folgenden Beispiel durchläuft die Funktion hasChar() den String s
und prüft, ob er ein bestimmtes Zeichen ch enthält. Das return in der
Mitte der Funktion stoppt die Funktion, sobald die Antwort gefunden wird:

// LoopingAndRanges/HasChar.kt

fun hasChar(s: String, ch: Char): Boolean {
 for (c in s) {
 if (c == ch) return true
 }
 return false
}

fun main() {
 println(hasChar("kotlin", 't'))
 println(hasChar("kotlin", 'a'))
}
/* Output:
true
false
*/

Das nächste Atom zeigt, dass hasChar() unnötig ist — Sie können stattdessen die eingebaute Syntax verwenden.

Wenn Sie einfach eine Aktion eine feste Anzahl von Malen wiederholen möchten, können Sie repeat() anstelle einer for-Schleife verwenden:

// LoopingAndRanges/RepeatHi.kt

fun main() {
 repeat(2) {
 println("hi!")
 }
}
/* Output:
hi!
hi!
*/

repeat() ist eine Standardbibliotheksfunktion, kein Schlüsselwort. Sie werden viel später im Buch sehen, wie sie erstellt wurde.

 Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Das in Schlüsselwort

 Das in Schlüsselwort prüft, ob ein Wert innerhalb eines Bereichs liegt.

// InKeyword/MembershipInRange.kt

fun main() {
 val percent = 35
 println(percent in 1..100)
}
/* Output:
true
*/

In Booleans haben Sie gelernt, Grenzen explizit zu überprüfen:

// InKeyword/MembershipUsingBounds.kt

fun main() {
 val percent = 35
 println(0 <= percent && percent <= 100)
}
/* Output:
true
*/

0 <= x && x <= 100 ist logisch gleichwertig zu x in 0..100. IntelliJ IDEA
schlägt vor, die erste Form automatisch durch die zweite zu ersetzen, da diese
einfacher zu lesen und zu verstehen ist.

Das Schlüsselwort in wird sowohl für Iteration als auch für Mitgliedschaft verwendet. Ein in innerhalb des Steuerungsausdrucks einer for-Schleife bedeutet Iteration, andernfalls prüft in die Mitgliedschaft:

// InKeyword/IterationVsMembership.kt

fun main() {
 val values = 1..3
 for (v in values) {
 println("iteration $v")
 }
 val v = 2
 if (v in values)
 println("$v is a member of $values")
}
/* Output:
iteration 1
iteration 2
iteration 3
2 is a member of 1..3
*/

Das in Schlüsselwort ist nicht nur auf Bereiche beschränkt. Sie können auch überprüfen, ob ein Zeichen Teil eines String ist. Das folgende Beispiel verwendet in anstelle von hasChar() aus dem vorherigen Atom:

// InKeyword/InString.kt

fun main() {
 println('t' in "kotlin")
 println('a' in "kotlin")
}
/* Output:
true
false
*/

Später im Buch wirst du sehen, dass in auch mit anderen Typen funktioniert.

Hier prüft in, ob ein Zeichen zu einem Bereich von Zeichen gehört:

// InKeyword/CharRange.kt

fun isDigit(ch: Char) = ch in '0'..'9'

fun notDigit(ch: Char) =
 ch !in '0'..'9' // [1]

fun main() {
 println(isDigit('a'))
 println(isDigit('5'))
 println(notDigit('z'))
}
/* Output:
false
true
true
*/

 	
[1] !in prüft, dass ein Wert nicht zu einem Bereich gehört.

Sie können einen Double-Bereich erstellen, aber Sie können ihn nur verwenden, um die Zugehörigkeit zu überprüfen:

// InKeyword/FloatingPointRange.kt

fun inFloatRange(n: Double) {
 val r = 1.0..10.0
 println("$n in $r? ${n in r}")
}

fun main() {
 inFloatRange(0.999999)
 inFloatRange(5.0)
 inFloatRange(10.0)
 inFloatRange(10.0000001)
}
/* Output:
0.999999 in 1.0..10.0? false
5.0 in 1.0..10.0? true
10.0 in 1.0..10.0? true
10.0000001 in 1.0..10.0? false
*/

Sie können nur .. verwenden, um einen Gleitkomma-Bereich in Kotlin zu definieren.

Sie können überprüfen, ob ein String ein Mitglied eines Bereichs von Strings ist:

// InKeyword/StringRange.kt

fun main() {
 println("ab" in "aa".."az")
 println("ba" in "aa".."az")
}
/* Output:
true
false
*/

Hier verwendet Kotlin den alphabetischen Vergleich.

 Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Ausdrücke & Anweisungen

 Anweisungen und Ausdrücke sind die kleinsten nützlichen Codefragmente in
den meisten Programmiersprachen.

Es gibt einen grundlegenden Unterschied: Eine Anweisung hat eine Wirkung, erzeugt jedoch kein Ergebnis. Ein Ausdruck erzeugt immer ein Ergebnis.

Da eine Anweisung kein Ergebnis erzeugt, muss sie den Zustand ihrer Umgebung ändern, um nützlich zu sein. Anders gesagt: “Eine Anweisung wird wegen ihrer Seiteneffekte aufgerufen” (das heißt, was sie andere als ein Ergebnis zu erzeugen tut). Als Merkhilfe:

 Eine Anweisung ändert den Zustand.

Eine Definition von “ausdrücken” ist “herauspressen”, wie in “den Saft aus einer Orange ausdrücken”. Also

 Ein Ausdruck drückt aus.

Das heißt, er erzeugt ein Ergebnis.

Die for-Schleife ist eine Anweisung in Kotlin. Sie kann nicht zugewiesen werden, da es kein Ergebnis gibt:

// ExpressionsStatements/ForIsAStatement.kt

fun main() {
 // Can't do this:
 // val f = for(i in 1..10) {}
 // Compiler error message:
 // for is not an expression, and
 // only expressions are allowed here
}

Eine for-Schleife wird aufgrund ihrer Nebeneffekte verwendet.

Ein Ausdruck erzeugt einen Wert, der zugewiesen oder als Teil eines anderen Ausdrucks verwendet werden kann, während eine Anweisung immer ein Top-Level-Element ist.

Jeder Funktionsaufruf ist ein Ausdruck. Selbst wenn die Funktion Unit zurückgibt und nur aufgrund ihrer Nebeneffekte aufgerufen wird, kann das Ergebnis dennoch zugewiesen werden:

// ExpressionsStatements/UnitReturnType.kt

fun unitFun() = Unit

fun main() {
 println(unitFun())
 val u1: Unit = println(42)
 println(u1)
 val u2 = println(0) // Type inference
 println(u2)
}
/* Output:
kotlin.Unit
42
kotlin.Unit
0
kotlin.Unit
*/

Der Unit-Typ enthält einen einzelnen Wert namens Unit, den Sie direkt zurückgeben können, wie in unitFun() zu sehen ist. Der Aufruf von println() gibt ebenfalls Unit zurück. Das val u1 erfasst den Rückgabewert von println() und ist explizit als Unit deklariert, während u2 Typinferenz verwendet.

if erzeugt einen Ausdruck, sodass Sie dessen Ergebnis zuweisen können:

// ExpressionsStatements/AssigningAnIf.kt

fun main() {
 val result1 = if (11 > 42) 9 else 5

 val result2 = if (1 < 2) {
 val a = 11
 a + 42
 } else 42

 val result3 =
 if ('x' < 'y')
 println("x < y")
 else
 println("x > y")

 println(result1)
 println(result2)
 println(result3)
}
/* Output:
x < y
5
53
kotlin.Unit
*/

Die erste Ausgabelinie ist x < y, obwohl result3 erst am Ende von main() angezeigt wird. Dies geschieht, weil die Auswertung von result3 println() aufruft und die Auswertung erfolgt, wenn result3 definiert wird.

Beachten Sie, dass a innerhalb des Codeblocks für result2 definiert ist. Das Ergebnis des letzten Ausdrucks wird zum Ergebnis des if-Ausdrucks; hier ist es die Summe von 11 und 42. Aber was ist mit a? Sobald Sie den Codeblock verlassen (außerhalb der geschweiften Klammern gehen), können Sie nicht mehr auf a zugreifen. Es ist vorübergehend und wird verworfen, sobald Sie den Gültigkeitsbereich dieses Blocks verlassen.

Der Inkrementoperator i++ ist auch ein Ausdruck, selbst wenn er wie eine Anweisung aussieht. Kotlin folgt dem Ansatz von C-ähnlichen Sprachen und bietet zwei Versionen von Inkrement- und Dekrementoperatoren mit leicht unterschiedlichen Semantiken. Der Präfix-Operator erscheint vor dem Operanden, wie in ++i, und gibt den Wert zurück, nachdem das Inkrement erfolgt ist. Sie können es lesen als “zuerst das Inkrement durchführen, dann den resultierenden Wert zurückgeben”. Der Postfix-Operator wird nach dem Operanden platziert, wie in i++, und gibt den Wert von i zurück, bevor das Inkrement erfolgt. Sie können es lesen als “zuerst das Ergebnis erzeugen, dann das Inkrement durchführen”.

// ExpressionsStatements/PostfixVsPrefix.kt

fun main() {
 var i = 10
 println(i++)
 println(i)
 var j = 20
 println(++j)
 println(j)
}
/* Output:
10
11
21
21
*/

Der Dekrementoperator hat auch zwei Versionen: --i und i--. Die Verwendung von Inkrement- und Dekrementoperatoren innerhalb anderer Ausdrücke wird nicht empfohlen, da dies zu verwirrendem Code führen kann:

// ExpressionsStatements/Confusing.kt

fun main() {
 var i = 1
 println(i++ + ++i)
}

Versuchen Sie zu erraten, was die Ausgabe sein wird, und überprüfen Sie es dann.

 Übungen und Lösungen finden Sie auf www.AtomicKotlin.com.

Zusammenfassung 1

 Dieses Atom fasst die Atome in Abschnitt I zusammen und überprüft sie, beginnend bei
Hallo, Welt! und endend mit
Ausdrücke & Anweisungen.

Wenn Sie ein erfahrener Programmierer sind, sollte dies Ihr erstes Atom sein. Neue
Programmierer sollten dieses Atom lesen und die Übungen als Überprüfung von
Abschnitt I durchführen.

Wenn Ihnen etwas unklar ist, studieren Sie das zugehörige Atom zu diesem Thema (die
Unterüberschriften entsprechen den Atomtiteln).

Hallo, Welt

Kotlin unterstützt sowohl // Einzelzeilenkommentare als auch /*-bis-*/ Mehrzeilenkommentare. Der Einstiegspunkt eines Programms ist die Funktion main():

// Summary1/Hello.kt

fun main() {
 println("Hello, world!")
}
/* Output:
Hello, world!
*/

Die erste Zeile jedes Beispiels in diesem Buch ist ein Kommentar, der den Namen des Unterverzeichnisses des Atoms enthält, gefolgt von einem / und dem Dateinamen. Alle extrahierten Code-Beispiele finden Sie unter AtomicKotlin.com.

println() ist eine Standardbibliotheksfunktion, die einen einzelnen String-Parameter (oder einen Parameter, der in einen String konvertiert werden kann) nimmt. println() bewegt den Cursor nach der Ausgabe seines Parameters in eine neue Zeile, während print() den Cursor in derselben Zeile lässt.

Kotlin erfordert kein Semikolon am Ende eines Ausdrucks oder einer Anweisung. Semikolons sind nur notwendig, um mehrere Ausdrücke oder Anweisungen in einer einzigen Zeile zu trennen.

var & val, Datentypen

Um einen unveränderlichen Bezeichner zu erstellen, verwenden Sie das Schlüsselwort val, gefolgt vom Bezeichnernamen, einem Doppelpunkt und dem Typ für diesen Wert. Fügen Sie dann ein Gleichheitszeichen und den Wert hinzu, der diesem val zugewiesen werden soll:

val identifier: Type = initialization

Sobald einem val ein Wert zugewiesen wurde, kann er nicht neu zugewiesen werden.

Kotlons Typinferenz kann normalerweise den Typ automatisch bestimmen, basierend auf dem Initialisierungswert. Dies führt zu einer einfacheren Definition:

val identifier = initialization

Beide der folgenden sind gültig:

val daysInFebruary = 28
val daysInMarch: Int = 31

Eine var (Variable) Definition sieht gleich aus, indem var anstelle von val verwendet wird:

var identifier1 = initialization
var identifier2: Type = initialization

Im Gegensatz zu einem val können Sie ein var ändern, daher ist Folgendes zulässig:

var hoursSpent = 20
hoursSpent = 25

Allerdings kann der Typ nicht geändert werden, sodass Sie einen Fehler erhalten, wenn Sie sagen:

hoursSpent = 30.5

Kotlin leitet den Int-Typ ab, wenn hoursSpent definiert wird, daher wird es
die Änderung in einen Gleitkommawert nicht akzeptieren.

Funktionen

Funktionen sind benannte Unterprogramme:

fun functionName(arg1: Type1, arg2: Type2, ...): ReturnType {
 // Lines of code ...
 return result
}

Das Schlüsselwort fun wird gefolgt vom Funktionsnamen und der Parameterliste in Klammern. Jeder Parameter muss einen expliziten Typ haben, da Kotlin die Parameterarten nicht ableiten kann. Die Funktion selbst hat einen Typ, der auf die gleiche Weise definiert wird wie bei var oder val (ein Doppelpunkt gefolgt vom Typ). Der Typ der Funktion ist der Typ des zurückgegebenen Ergebnisses.

Die Funktionssignatur wird gefolgt vom Funktionskörper, der in geschweiften Klammern enthalten ist. Die return-Anweisung liefert den Rückgabewert der Funktion.

Sie können eine abgekürzte Syntax verwenden, wenn die Funktion aus einem einzelnen Ausdruck besteht:

fun functionName(arg1: Type1, arg2: Type2, ...): ReturnType = result

Diese Form wird als Ausdruckskörper bezeichnet. Anstelle einer öffnenden geschweiften Klammer
verwenden Sie ein Gleichheitszeichen gefolgt vom Ausdruck. Sie können den Rückgabetyp weglassen,
weil Kotlin ihn ableitet.

Hier ist eine Funktion, die den Würfel ihres Parameters produziert, und eine andere, die ein Ausrufezeichen zu einem String hinzufügt:

// Summary1/BasicFunctions.kt

fun cube(x: Int): Int {
 return x * x * x
}

fun bang(s: String) = s + "!"

fun main() {
 println(cube(3))
 println(bang("pop"))
}
/* Output:
27
pop!
*/

cube() hat einen Blockkörper mit einer expliziten return-Anweisung. bang() ist ein Ausdruckskörper, der den Rückgabewert der Funktion erzeugt. Kotlin leitet den Rückgabetyp von bang() als String ab.

Boolesche Werte

Für die Boolesche Algebra bietet Kotlin Operatoren wie:

 	
! (nicht) negiert den Wert logisch (wandelt true in false und umgekehrt).

 	
&& (und) gibt true nur zurück, wenn beide Bedingungen true sind.

 	
|| (oder) gibt true zurück, wenn mindestens eine der Bedingungen true ist.

// Summary1/Booleans.kt

fun main() {
 val opens = 9
 val closes = 20
 println("Operating hours: $opens - $closes")
 val hour = 6
 println("Current time: " + hour)

 val isOpen = hour >= opens && hour < closes
 println("Open: " + isOpen)
 println("Not open: " + !isOpen)

 val isClosed = hour < opens || hour >= closes
 println("Closed: " + isClosed)
}
/* Output:
Operating hours: 9 - 20
Current time: 6
Open: false
Not open: true
Closed: true
*/

Der Initialisierer von isOpen verwendet &&, um zu testen, ob beide Bedingungen true sind. Die erste Bedingung hour >= opens ist false, sodass das Ergebnis des gesamten Ausdrucks false wird. Der Initialisierer für isClosed verwendet ||, was true ergibt, wenn mindestens eine der Bedingungen true ist. Der Ausdruck hour < opens ist true, daher ist der gesamte Ausdruck true.

if-Ausdrücke

Da if ein Ausdruck ist, liefert es ein Ergebnis. Dieses Ergebnis kann einer var oder val zugewiesen werden. Hier sehen Sie auch die Verwendung des Schlüsselworts else:

// Summary1/IfResult.kt

fun main() {
 val result = if (99 < 100) 4 else 42
 println(result)
}
/* Output:
4
*/

Entweder Zweig eines if-Ausdrucks kann ein mehrzeiliger Codeblock sein, der von geschweiften Klammern umgeben ist:

// Summary1/IfExpression.kt

fun main() {
 val activity = "swimming"
 val hour = 10

 val isOpen = if (
 activity == "swimming" ||
 activity == "ice skating") {
 val opens = 9
 val closes = 20
 println("Operating hours: " +
 opens + " - " + closes)
 hour >= opens && hour < closes
 } else {
 false
 }
 println(isOpen)
}
/* Output:
Operating hours: 9 - 20
true
*/

Ein Wert, der innerhalb eines Codeblocks definiert ist, wie opens, ist außerhalb des Gültigkeitsbereichs dieses Blocks nicht zugänglich. Da sie global für den if-Ausdruck definiert sind, sind activity und hour innerhalb des if-Ausdrucks zugänglich.

Das Ergebnis eines if-Ausdrucks ist das Ergebnis des letzten Ausdrucks des gewählten Zweigs. Hier ist es hour >= opens && hour <= closes, was true ist.

String-Vorlagen

Sie können einen Wert innerhalb eines String mit Hilfe von String-Vorlagen einfügen. Verwenden Sie ein $ vor dem Bezeichnernamen:

// Summary1/StrTemplates.kt

fun main() {
 val answer = 42
 println("Found $answer!") // [1]
 val condition = true
 println(
 "${if (condition) 'a' else 'b'}") // [2]
 println("printing a $1") // [3]
}
/* Output:
Found 42!
a
printing a $1
*/

 	
[1] $answer ersetzt den Wert, der in answer enthalten ist.

 	
[2] ${if(condition) 'a' else 'b'} wertet den Ausdruck innerhalb von ${} aus und ersetzt das Ergebnis.

 	
[3] Wenn dem $ etwas folgt, das nicht als Programmkennzeichner erkennbar ist, passiert nichts Besonderes.

Verwenden Sie dreifach-angeführte Strings, um mehrzeiligen Text oder Text mit Sonderzeichen zu speichern:

// Summary1/ThreeQuotes.kt

fun json(q: String, a: Int) = """{
 "question" : "$q",
 "answer" : $a
}"""

fun main() {
 println(json("The Ultimate", 42))
}
/* Output:
{
 "question" : "The Ultimate",
 "answer" : 42
}
*/

Sie müssen keine Sonderzeichen wie " innerhalb eines dreifach-umrahmten String maskieren. (In einem regulären String schreiben Sie \", um ein Anführungszeichen einzufügen). Wie bei normalen Strings können Sie einen Bezeichner oder einen Ausdruck mit $ innerhalb eines dreifach-umrahmten String einfügen.

Zahlentypen

Kotlin bietet Ganzzahltypen (Int, Long) und Fließkommatypen (Double). Eine Ganzzahlenkonstante ist standardmäßig Int und Long, wenn Sie ein L anhängen. Eine Konstante ist Double, wenn sie einen Dezimalpunkt enthält:

// Summary1/NumberTypes.kt

fun main() {
 val n = 1000 // Int
 val l = 1000L // Long
 val d = 1000.0 // Double
 println("$n $l $d")
}
/* Output:
1000 1000 1000.0
*/

Ein Int hält Werte zwischen -231 und +231-1. Ganzzahlenwerte können einen Überlauf verursachen; zum Beispiel verursacht das Hinzufügen von irgendetwas zu Int.MAX_VALUE einen Überlauf:

// Summary1/Overflow.kt

fun main() {
 println(Int.MAX_VALUE + 1)
 println(Int.MAX_VALUE + 1L)
}
/* Output:
-2147483648
2147483648
*/

Im zweiten println()-Statement fügen wir L zu 1 hinzu, wodurch der gesamte Ausdruck vom Typ Long wird, was den Überlauf verhindert. (Ein Long kann Werte zwischen -263 und +263-1 aufnehmen).

Wenn Sie ein Int durch ein anderes Int teilen, erzeugt Kotlin ein Int-Ergebnis, und ein verbleibender Rest wird abgeschnitten. Also ergibt 1/2 0. Wenn ein Double beteiligt ist, wird das Int vor der Operation zu Double hochgestuft, sodass 1.0/2 0.5 ergibt.

Man könnte erwarten, dass d1 im Folgenden 3.4 ergibt:

// Summary1/Truncation.kt

fun main() {
 val d1: Double = 3.0 + 2 / 5
 println(d1)
 val d2: Double = 3 + 2.0 / 5
 println(d2)
}
/* Output:
3.0
3.4
*/

Aufgrund der Auswertungsreihenfolge tut es das nicht. Kotlin teilt zuerst 2 durch 5, und Ganzzahlmathematik ergibt 0, was zu einem Ergebnis von 3.0 führt. Dieselbe Auswertungsreihenfolge erzeugt das erwartete Ergebnis für d2. Die Division von 2.0 durch 5 ergibt 0.4. Die 3 wird zu einem Double hochgestuft, weil wir es zu einem Double (0.4) addieren, was 3.4 ergibt.

Das Verständnis der Auswertungsreihenfolge hilft Ihnen zu entschlüsseln, was ein Programm macht, sowohl mit logischen Operationen (Boolean-Ausdrücken) als auch mit mathematischen Operationen. Wenn Sie sich über die Auswertungsreihenfolge unsicher sind, verwenden Sie Klammern, um Ihre Absicht zu erzwingen. Dies macht es auch für diejenigen, die Ihren Code lesen, klar.

Wiederholung mit while

Eine while-Schleife läuft weiter, solange der kontrollierende Boolean-Ausdruck true ergibt:

while (Boolean-expression) {
 // Code to be repeated
}

Der Boolean expression wird einmal zu Beginn der Schleife und
erneut vor jeder weiteren Iteration ausgewertet.

// Summary1/While.kt

fun testCondition(i: Int) = i < 100

fun main() {
 var i = 0
 while (testCondition(i)) {
 print(".")
 i += 10
 }
}
/* Output:
..........
*/

Kotlin leitet Boolean als Ergebnistyp für testCondition() ab.

Die Kurzformen der Zuweisungsoperatoren sind für alle mathematischen Operationen verfügbar (+=, -=, *=, /=, %=). Kotlin unterstützt auch die Inkrement- und Dekrementoperatoren ++ und --, sowohl in Präfix- als auch in Postfix-Form.

while kann mit dem Schlüsselwort do verwendet werden:

do {
 // Code to be repeated
} while (Boolean-expression)

Umschreiben von While.kt:

// Summary1/DoWhile.kt

fun main() {
 var i = 0
 do {
 print(".")
 i += 10
 } while (testCondition(i))
}
/* Output:
..........
*/

Der einzige Unterschied zwischen while und do-while besteht darin, dass der Körper von do-while immer mindestens einmal ausgeführt wird, selbst wenn der boolesche Ausdruck beim ersten Mal false ergibt.

Schleifen & Bereiche

Viele Programmiersprachen greifen auf ein iterierbares Objekt zu, indem sie durch ganze Zahlen gehen. Kotlins for erlaubt es Ihnen, Elemente direkt aus iterierbaren Objekten wie Bereichen und Strings zu entnehmen. Zum Beispiel wählt diese for-Schleife jedes Zeichen in der Zeichenkette "Kotlin" aus:

// Summary1/StringIteration.kt

fun main() {
 for (c in "Kotlin") {
 print("$c ")
 // c += 1 // error:
 // val cannot be reassigned
 }
}
/* Output:
K o t l i n
*/

c kann nicht explizit als entweder var oder val definiert werden—Kotlin macht es automatisch zu einem val und leitet seinen Typ als Char ab (man kann den Typ explizit angeben, aber in der Praxis wird dies selten getan).

Sie können durch ganze Zahlenwerte mit Bereichen iterieren:

// Summary1/RangeOfInt.kt

fun main() {
 for (i in 1..10) {
 print("$i ")
 }
}
/* Output:
1 2 3 4 5 6 7 8 9 10
*/

Einen Bereich mit .. zu erstellen, schließt beide Grenzen ein, aber until schließt das obere Ende aus: 1 bis 10 ist dasselbe wie 1..9. Sie können einen Inkrementwert mit step angeben: 1..21 Schritt 3.

Das in Schlüsselwort

Dasselbe in, das die Iteration in for Schleifen ermöglicht, erlaubt es Ihnen auch, die Zugehörigkeit zu einem Bereich zu überprüfen. !in gibt true zurück, wenn der getestete Wert nicht im Bereich liegt:

// Summary1/Membership.kt

fun inNumRange(n: Int) = n in 50..100

fun notLowerCase(ch: Char) = ch !in 'a'..'z'

fun main() {
 val i1 = 11
 val i2 = 100
 val c1 = 'K'
 val c2 = 'k'
 println("$i1 ${inNumRange(i1)}")
 println("$i2 ${inNumRange(i2)}")
 println("$c1 ${notLowerCase(c1)}")
 println("$c2 ${notLowerCase(c2)}")
}
/* Output:
11 false
100 true
K true
k false
*/

in kann auch verwendet werden, um die Zugehörigkeit zu Gleitkomma-Bereichen zu testen, obwohl solche Bereiche nur mit .. und nicht mit until definiert werden können.

Ausdrücke & Statements

Das kleinste nützliche Codefragment in den meisten Programmiersprachen ist entweder ein Statement oder ein Ausdruck. Diese haben einen grundlegenden Unterschied:

 	Ein Statement ändert den Zustand.

 	Ein Ausdruck drückt aus.

Das heißt, ein Ausdruck liefert ein Ergebnis, während ein Statement das nicht tut. Weil es nichts zurückgibt, muss ein Statement den Zustand seiner Umgebung ändern (das heißt, einen Seiteneffekt erzeugen), um etwas Nützliches zu tun.

Fast alles in Kotlin ist ein Ausdruck:

val hours = 10
val minutesPerHour = 60
val minutes = hours * minutesPerHour

In jedem Fall ist alles rechts vom = ein Ausdruck, der ein Ergebnis liefert, das der Bezeichnung links zugewiesen wird.

Funktionen wie println() scheinen kein Ergebnis zu erzeugen, aber da sie immer noch Ausdrücke sind, müssen sie etwas zurückgeben. Kotlin hat dafür einen speziellen Typ namens Unit:

// Summary1/UnitReturn.kt

fun main() {
 val result = println("returns Unit")
 println(result)
}
/* Output:
returns Unit
kotlin.Unit
*/

Erfahrene Programmierer sollten nach dem Bearbeiten der Übungen für dieses Atom zu Zusammenfassung 2 gehen.

 Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Abschnitt II: Einführung in Objekte

 Objekte sind die Grundlage für zahlreiche moderne Sprachen, einschließlich Kotlin.

In einer objektorientierten (OO) Programmiersprache entdecken Sie “Nomen” in dem
Problem, das Sie lösen, und übersetzen diese Nomen in Objekte. Objekte halten Daten
und führen Aktionen aus. Eine objektorientierte Sprache erstellt und verwendet Objekte.

Kotlin ist nicht nur objektorientiert; es ist auch funktional. Funktionale Sprachen
konzentrieren sich auf die Aktionen, die Sie ausführen (“Verben”). Kotlin ist eine hybride
objekt-funktionale Sprache.

 	Dieser Abschnitt erklärt die Grundlagen der objektorientierten Programmierung.

 	
Abschnitt IV: Funktionale Programmierung
führt in die funktionale Programmierung ein.

 	
Abschnitt V: Objektorientierte
Programmierung behandelt die
objektorientierte Programmierung im Detail.

Objekte überall

 Objekte speichern Daten mithilfe von Eigenschaften (vals und vars) und führen
Operationen mit diesen Daten mithilfe von Funktionen durch.

Einige Definitionen:

 	
Klasse: Definiert Eigenschaften und Funktionen für das, was im Wesentlichen ein neuer Datentyp ist. Klassen werden auch als benutzerdefinierte Typen bezeichnet.

 	
Mitglied: Entweder eine Eigenschaft oder eine Funktion einer Klasse.

 	
Mitgliedsfunktion: Eine Funktion, die nur mit einer bestimmten Klasse von Objekten arbeitet.

 	
Ein Objekt erstellen: Ein val oder var einer Klasse erstellen. Auch als eine Instanz dieser Klasse erstellen bezeichnet.

Da Klassen Zustand und Verhalten definieren, können wir sogar Instanzen von eingebauten Typen wie Double oder Boolean als Objekte bezeichnen.

Betrachten Sie die IntRange-Klasse von Kotlin:

// ObjectsEverywhere/IntRanges.kt

fun main() {
 val r1 = IntRange(0, 10)
 val r2 = IntRange(5, 7)
 println(r1)
 println(r2)
}
/* Output:
0..10
5..7
*/

Wir erstellen zwei Objekte (Instanzen) der Klasse IntRange. Jedes Objekt hat seinen eigenen Speicherplatz im Speicher. IntRange ist eine Klasse, aber ein bestimmter Bereich r1 von 0 bis 10 ist ein Objekt, das sich von dem Bereich r2 unterscheidet.

Für ein IntRange-Objekt stehen zahlreiche Operationen zur Verfügung. Einige sind einfach, wie sum(), und andere erfordern mehr Verständnis, bevor Sie sie verwenden können. Wenn Sie versuchen, eine aufzurufen, die Argumente benötigt, wird die IDE nach diesen Argumenten fragen.

Um mehr über eine bestimmte Mitgliedsfunktion zu erfahren, schlagen Sie in der Kotlin-Dokumentation nach. Beachten Sie das Lupensymbol im oberen rechten Bereich der Seite. Klicken Sie darauf und geben Sie IntRange in das Suchfeld ein. Klicken Sie auf kotlin.ranges > IntRange aus der resultierenden Suche. Sie sehen die Dokumentation für die IntRange-Klasse. Sie können alle Mitgliedsfunktionen—die Programmierschnittstelle (API)—der Klasse studieren. Obwohl Sie die meisten davon zu diesem Zeitpunkt nicht verstehen werden, ist es hilfreich, sich daran zu gewöhnen, in der Kotlin-Dokumentation nachzuschlagen.

Ein IntRange ist eine Art von Objekt, und ein charakteristisches Merkmal eines Objekts ist, dass Sie Operationen darauf ausführen. Statt “eine Operation ausführen” sagen wir eine Mitgliedsfunktion aufrufen. Um eine Mitgliedsfunktion für ein Objekt aufzurufen, beginnen Sie mit dem Objektbezeichner, dann ein Punkt, dann der Name der Operation:

// ObjectsEverywhere/RangeSum.kt

fun main() {
 val r = IntRange(0, 10)
 println(r.sum())
}
/* Output:
55
*/

Da sum() eine Mitgliedsfunktion ist, die für IntRange definiert ist, rufen Sie sie auf, indem Sie r.sum() schreiben. Dies summiert alle Zahlen in diesem IntRange.

Frühere objektorientierte Sprachen verwendeten den Ausdruck “eine Nachricht senden”, um das Aufrufen einer Mitgliedsfunktion für ein Objekt zu beschreiben. Manchmal sieht man diese Terminologie noch.

Klassen können viele Operationen (Mitgliedsfunktionen) haben. Es ist einfach, Klassen mit einer IDE (integrierte Entwicklungsumgebung) zu erkunden, die eine Funktion namens Code-Vervollständigung enthält. Wenn Sie zum Beispiel .s nach einem Objektbezeichner in IntelliJ IDEA eingeben, zeigt es alle Mitglieder dieses Objekts an, die mit s beginnen:

 [image: Code-Vervollständigung]
 Code-Vervollständigung

Versuchen Sie, die Code-Vervollständigung bei anderen Objekten zu verwenden. Zum Beispiel können Sie einen String umkehren oder alle Zeichen in Kleinbuchstaben umwandeln:

// ObjectsEverywhere/Strings.kt

fun main() {
 val s = "AbcD"
 println(s.reversed())
 println(s.lowercase())
}
/* Output:
DcbA
abcd
*/

Du kannst einen String leicht in einen integer umwandeln und zurück:

// ObjectsEverywhere/Conversion.kt

fun main() {
 val s = "123"
 println(s.toInt())
 val i = 123
 println(i.toString())
}
/* Output:
123
123
*/

Später im Buch besprechen wir Strategien, um Situationen zu bewältigen, wenn der String, den Sie konvertieren möchten, keinen korrekten Integer-Wert darstellt.

Sie können auch von einem Zahlentyp zu einem anderen konvertieren. Um Verwirrung zu vermeiden, sind Konvertierungen zwischen Zahlentypen explizit. Zum Beispiel konvertieren Sie ein Int i zu einem Long, indem Sie i.toLong() aufrufen, oder zu einem Double mit i.toDouble():

// ObjectsEverywhere/NumberConversions.kt

fun fraction(numerator: Long, denom: Long) =
 numerator.toDouble() / denom

fun main() {
 val num = 1
 val den = 2
 val f = fraction(num.toLong(), den.toLong())
 println(f)
}
/* Output:
0.5
*/

Gut definierte Klassen sind für einen Programmierer leicht zu verstehen und erzeugen Code, der leicht zu lesen ist.

 Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Klassen erstellen

 Sie können nicht nur vordefinierte Typen wie IntRange und String verwenden, sondern
auch Ihre eigenen Objekttypen erstellen.

Tatsächlich besteht ein Großteil der Aktivitäten in der objektorientierten
Programmierung darin, neue Typen zu erstellen. Sie erstellen neue Typen, indem Sie Klassen definieren.

Ein Objekt ist ein Teil der Lösung für ein Problem, das Sie zu lösen versuchen.
Beginnen Sie damit, Objekte als Ausdruck von Konzepten zu betrachten. Als erste Annäherung, wenn Sie ein “Ding” in Ihrem Problem entdecken, repräsentieren Sie dieses Ding als Objekt in Ihrer Lösung.

Angenommen, Sie möchten ein Programm erstellen, um Tiere in einem Zoo zu verwalten. Es ist sinnvoll,
die verschiedenen Tierarten basierend darauf zu kategorisieren, wie sie sich verhalten, welche Bedürfnisse sie haben, mit welchen Tieren sie sich vertragen und mit welchen sie kämpfen. Alles, was eine Tierart unterscheidet, wird in der Klassifizierung des Objekts dieses Tieres erfasst. Kotlin verwendet das Schlüsselwort class, um einen neuen Objekttyp zu erstellen:

// CreatingClasses/Animals.kt

// Create some classes:
class Giraffe
class Bear
class Hippo

fun main() {
 // Create some objects:
 val g1 = Giraffe()
 val g2 = Giraffe()
 val b = Bear()
 val h = Hippo()

 // Each object() is unique:
 println(g1)
 println(g2)
 println(h)
 println(b)
}
/* Sample output:
Giraffe@28d93b30
Giraffe@1b6d3586
Hippo@4554617c
Bear@74a14482
*/

Um eine Klasse zu definieren, beginnen Sie mit dem Schlüsselwort class, gefolgt von einem Bezeichner für Ihre neue Klasse. Der Klassenname muss mit einem Buchstaben (A-Z, Groß- oder Kleinbuchstaben) beginnen, kann jedoch Zahlen und Unterstriche enthalten. Nach Konvention wird der erste Buchstabe eines Klassennamens großgeschrieben, während der erste Buchstabe aller vals und vars kleingeschrieben wird.

Animals.kt beginnt mit der Definition von drei neuen Klassen und erstellt dann vier Objekte (auch Instanzen genannt) dieser Klassen.

Giraffe ist eine Klasse, aber eine bestimmte fünfjährige männliche Giraffe, die in Botswana lebt, ist ein Objekt. Jedes Objekt unterscheidet sich von allen anderen, daher geben wir ihnen Namen wie g1 und g2.

Beachten Sie die etwas kryptische Ausgabe der letzten vier Zeilen. Der Teil vor dem @ ist der Klassenname und die Zahl nach dem @ ist die Adresse, an der sich das Objekt im Speicher Ihres Computers befindet. Ja, das ist eine Zahl, auch wenn sie einige Buchstaben enthält - das nennt man “hexadezimale Notation”. Jedes Objekt in Ihrem Programm hat seine eigene eindeutige Adresse.

Die hier definierten Klassen (Giraffe, Bear und Hippo) sind so einfach wie möglich: die gesamte Klassendefinition besteht aus einer einzigen Zeile. Komplexere Klassen verwenden geschweifte Klammern ({ und }), um einen Klassenkörper zu erstellen, der die Merkmale und Verhaltensweisen dieser Klasse enthält.

Eine innerhalb einer Klasse definierte Funktion gehört zu dieser Klasse. In Kotlin nennen wir sie Mitgliedsfunktionen der Klasse. Einige objektorientierte Programmiersprachen wie Java entscheiden sich dafür, sie Methoden zu nennen, ein Begriff, der aus frühen objektorientierten Sprachen wie Smalltalk stammt. Um die funktionale Natur von Kotlin zu betonen, entschieden sich die Designer, den Begriff Methode wegzulassen, da einige Anfänger die Unterscheidung verwirrend fanden. Stattdessen wird in der gesamten Sprache der Begriff Funktion verwendet.

Wenn es eindeutig ist, sagen wir einfach “Funktion”. Wenn wir die Unterscheidung treffen müssen:

 	
Mitgliedsfunktionen gehören zu einer Klasse.

 	
Top-Level-Funktionen existieren für sich und sind nicht Teil einer Klasse.

Hier gehört bark() zur Dog-Klasse:

// CreatingClasses/Dog.kt

class Dog {
 fun bark() = "yip!"
}

fun main() {
 val dog = Dog()
}

In main() erstellen wir ein Dog-Objekt und weisen es val dog zu. Kotlin gibt eine Warnung aus, weil wir dog nie verwenden.

Mitgliedsfunktionen werden aufgerufen (invoked), indem man den Objektnamen verwendet, gefolgt von einem . (Punkt), gefolgt vom Funktionsnamen und der Parameterliste. Hier rufen wir die Funktion meow() auf und zeigen das Ergebnis an:

// CreatingClasses/Cat.kt

class Cat {
 fun meow() = "mrrrow!"
}

fun main() {
 val cat = Cat()
 // Call 'meow()' for 'cat':
 val m1 = cat.meow()
 println(m1)
}
/* Output:
mrrrow!
*/

Eine Mitgliedsfunktion wirkt auf eine bestimmte Instanz einer Klasse. Wenn Sie meow() aufrufen, müssen Sie es mit einem Objekt aufrufen. Während des Aufrufs kann meow() auf andere Mitglieder dieses Objekts zugreifen.

Beim Aufrufen einer Mitgliedsfunktion verfolgt Kotlin das betreffende Objekt, indem es leise eine Referenz auf dieses Objekt übergibt. Diese Referenz ist innerhalb der Mitgliedsfunktion mit dem Schlüsselwort this verfügbar.

Mitgliedsfunktionen haben einen speziellen Zugriff auf andere Elemente innerhalb einer Klasse, indem sie einfach diese Elemente benennen. Sie können den Zugriff auf diese Elemente auch explizit mit this qualifizieren. Hier ruft exercise() speak() mit und ohne Qualifizierung auf:

// CreatingClasses/Hamster.kt

class Hamster {
 fun speak() = "Squeak! "
 fun exercise() =
 this.speak() + // Qualified with 'this'
 speak() + // Without 'this'
 "Running on wheel"
}

fun main() {
 val hamster = Hamster()
 println(hamster.exercise())
}
/* Output:
Squeak! Squeak! Running on wheel
*/

In exercise(), rufen wir zuerst speak() mit einem expliziten this auf und lassen dann die Qualifikation weg.

Manchmal sieht man Code, der ein unnötiges explizites this enthält. Solcher Code stammt oft von Programmierern, die eine andere Sprache kennen, in der this entweder erforderlich ist oder Teil des Stils ist. Die unnötige Verwendung eines Features ist verwirrend für den Leser, der Zeit damit verbringt, herauszufinden, warum Sie es tun. Wir empfehlen, die unnötige Verwendung von this zu vermeiden.

Außerhalb der Klasse muss man hamster.exercise() und hamster.speak() sagen.

 Übungen und Lösungen finden Sie auf www.AtomicKotlin.com.

Eigenschaften

 Eine Eigenschaft ist ein var oder val, das Teil einer Klasse ist.

Das Definieren einer Eigenschaft beibehält den Zustand innerhalb einer Klasse. Das Beibehalten des Zustands ist der Hauptmotivationsgrund, eine Klasse zu erstellen, anstatt nur eine oder mehrere eigenständige Funktionen zu schreiben.

Eine var-Eigenschaft kann neu zugewiesen werden, während eine val-Eigenschaft dies nicht kann. Jedes Objekt erhält seinen eigenen Speicher für Eigenschaften:

// Properties/Cup.kt

class Cup {
 var percentFull = 0
}

fun main() {
 val c1 = Cup()
 c1.percentFull = 50
 val c2 = Cup()
 c2.percentFull = 100

 println(c1.percentFull)
 println(c2.percentFull)
}
/* Output:
50
100
*/

Das Definieren eines var oder val innerhalb einer Klasse sieht genauso aus wie das Definieren innerhalb einer Funktion. Allerdings wird das var oder val Teil dieser Klasse, und Sie müssen darauf verweisen, indem Sie das Objekt mit Punktnotation angeben, wobei Sie einen Punkt zwischen das Objekt und den Namen der Eigenschaft setzen. Sie können die Punktnotation bei jedem Verweis auf percentFull sehen.

Die Eigenschaft percentFull repräsentiert den Zustand des entsprechenden Cup-Objekts. c1.percentFull und c2.percentFull enthalten unterschiedliche Werte, was zeigt, dass jedes Objekt über seinen eigenen Speicherplatz verfügt.

Eine Mitgliedsfunktion kann auf eine Eigenschaft innerhalb ihres Objekts verweisen, ohne die Punktnotation zu verwenden (das heißt, ohne sie zu qualifizieren):

// Properties/Cup2.kt

class Cup2 {
 var percentFull = 0
 val max = 100
 fun add(increase: Int): Int {
 percentFull += increase
 if (percentFull > max)
 percentFull = max
 return percentFull
 }
}

fun main() {
 val cup = Cup2()
 cup.add(50)
 println(cup.percentFull)
 cup.add(70)
 println(cup.percentFull)
}
/* Output:
50
100
*/

Die add()-Mitgliedsfunktion versucht, increase zu percentFull hinzuzufügen, stellt jedoch sicher, dass es nicht über 100 % hinausgeht.

Eigenschaften und Mitgliedsfunktionen müssen von außerhalb einer Klasse qualifiziert werden.

Man kann Eigenschaften auf oberster Ebene definieren:

// Properties/TopLevelProperty.kt

val constant = 42

var counter = 0

fun inc() {
 counter++
}

Die Definition eines val auf oberster Ebene ist sicher, da es nicht verändert werden kann. Die Definition einer veränderbaren (var) Eigenschaft auf oberster Ebene wird jedoch als Antimuster angesehen. Wenn Ihr Programm komplizierter wird, wird es schwieriger, den gemeinsamen veränderbaren Zustand korrekt zu verstehen. Wenn jeder in Ihrem Code Zugriff auf den var Zähler hat, können Sie nicht garantieren, dass er korrekt verändert wird: Während inc() den Zähler um eins erhöht, könnte ein anderer Teil des Programms den Zähler um zehn verringern, was zu schwer nachvollziehbaren Fehlern führt. Es ist am besten, veränderbaren Zustand innerhalb einer Klasse zu schützen. In Sichtbarkeit einschränken wird gezeigt, wie man ihn wirklich verstecken kann.

Zu sagen, dass vars verändert werden können, während vals dies nicht können, ist eine Vereinfachung. Als Analogie können Sie ein Haus als val betrachten und ein Sofa im Haus als var. Sie können das Sofa verändern, weil es ein var ist. Sie können jedoch das Haus nicht neu zuweisen, da es ein val ist:

// Properties/ChangingAVal.kt

class House {
 var sofa: String = ""
}

fun main() {
 val house = House()
 house.sofa = "Simple sleeper sofa: $89.00"
 println(house.sofa)
 house.sofa = "New leather sofa: $3,099.00"
 println(house.sofa)
 // Cannot reassign the val to a new House:
 // house = House()
}
/* Output:
Simple sleeper sofa: $89.00
New leather sofa: $3,099.00
*/

Obwohl house ein val ist, kann sein Objekt modifiziert werden, weil sofa in
class House ein var ist. Die Definition von house als val verhindert nur, dass es einem neuen Objekt neu zugewiesen wird.

Wenn wir eine Eigenschaft als val definieren, kann sie nicht neu zugewiesen werden:

// Properties/AnUnchangingVar.kt

class Sofa {
 val cover: String = "Loveseat cover"
}

fun main() {
 var sofa = Sofa()
 // Not allowed:
 // sofa.cover = "New cover"
 // Reassigning a var:
 sofa = Sofa()
}

Auch wenn sofa eine var ist, kann sein Objekt nicht modifiziert werden, weil cover in
class Sofa ein val ist. sofa kann jedoch einem neuen Objekt zugewiesen werden.

Wir haben über Bezeichner wie house und sofa gesprochen, als wären sie Objekte.
Tatsächlich sind sie Referenzen auf Objekte. Eine Möglichkeit, dies zu sehen, ist zu beobachten,
dass zwei Bezeichner auf dasselbe Objekt verweisen können:

// Properties/References.kt

class Kitchen {
 var table: String = "Round table"
}

fun main() {
 val kitchen1 = Kitchen()
 val kitchen2 = kitchen1
 println("kitchen1: ${kitchen1.table}")
 println("kitchen2: ${kitchen2.table}")
 kitchen1.table = "Square table"
 println("kitchen1: ${kitchen1.table}")
 println("kitchen2: ${kitchen2.table}")
}
/* Output:
kitchen1: Round table
kitchen2: Round table
kitchen1: Square table
kitchen2: Square table
*/

Wenn kitchen1 table verändert, sieht kitchen2 die Änderung.
kitchen1.table und kitchen2.table zeigen die gleiche Ausgabe.

Denken Sie daran, dass var und val Referenzen anstelle von Objekten steuern. Ein var ermöglicht es Ihnen, eine Referenz auf ein anderes Objekt neu zu binden, während ein val dies verhindert.

Veränderlichkeit bedeutet, dass ein Objekt seinen Zustand ändern kann. In den obigen Beispielen definieren class House und class Kitchen veränderliche Objekte, während class Sofa unveränderliche Objekte definiert.

 Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Konstruktoren

 Sie initialisieren ein neues Objekt, indem Sie Informationen an einen Konstruktor übergeben.

Jedes Objekt ist eine isolierte Welt. Ein Programm ist eine Sammlung von Objekten, daher löst die korrekte Initialisierung jedes einzelnen Objekts einen großen Teil des Initialisierungsproblems. Kotlin enthält Mechanismen, um eine ordnungsgemäße Initialisierung von Objekten zu gewährleisten.

Ein Konstruktor ist wie eine spezielle Mitgliedsfunktion, die ein neues Objekt initialisiert. Die einfachste Form eines Konstruktors ist eine einzeilige Klassendefinition:

// Constructors/Wombat.kt

class Wombat

fun main() {
 val wombat = Wombat()
}

In main(), das Aufrufen von Wombat() erstellt ein Wombat-Objekt. Wenn Sie aus einer anderen objektorientierten Sprache kommen, könnten Sie erwarten, hier ein new-Schlüsselwort zu sehen, aber new wäre in Kotlin überflüssig, also wurde es weggelassen.

Sie übergeben Informationen an einen Konstruktor mit einer Parameterliste, genau wie bei einer Funktion. Hier nimmt der Alien-Konstruktor ein einziges Argument entgegen:

// Constructors/Arg.kt

class Alien(name: String) {
 val greeting = "Poor $name!"
}

fun main() {
 val alien = Alien("Mr. Meeseeks")
 println(alien.greeting)
 // alien.name // Error // [1]
}
/* Output:
Poor Mr. Meeseeks!
*/

Um ein Alien-Objekt zu erstellen, ist ein Argument erforderlich (versuchen Sie es ohne eines). name initialisiert die greeting-Eigenschaft innerhalb des Konstruktors, ist jedoch außerhalb des Konstruktors nicht zugänglich – versuchen Sie, die Zeile [1] zu entkommentieren.

Wenn Sie möchten, dass der Konstruktor-Parameter außerhalb des Klassenkörpers zugänglich ist, definieren Sie ihn als var oder val in der Parameterliste:

// Constructors/VisibleArgs.kt

class MutableNameAlien(var name: String)

class FixedNameAlien(val name: String)

fun main() {
 val alien1 =
 MutableNameAlien("Reverse Giraffe")
 val alien2 =
 FixedNameAlien("Krombopulos Michael")

 alien1.name = "Parasite"
 // Can't do this:
 // alien2.name = "Parasite"
}

Diese Klassendefinitionen haben keine expliziten Klassenkörper—die Körper sind implizit.

Wenn name als var oder val definiert wird, wird es zu einer Eigenschaft und ist
somit außerhalb des Konstruktors zugänglich. val-Konstruktorparameter können nicht
geändert werden, während var-Konstruktorparameter veränderbar sind.

Ihre Klasse kann zahlreiche Konstruktorparameter haben:

// Constructors/MultipleArgs.kt

class AlienSpecies(
 val name: String,
 val eyes: Int,
 val hands: Int,
 val legs: Int
) {
 fun describe() =
 "$name with $eyes eyes, " +
 "$hands hands and $legs legs"
}

fun main() {
 val kevin =
 AlienSpecies("Zigerion", 2, 2, 2)
 val mortyJr =
 AlienSpecies("Gazorpian", 2, 6, 2)
 println(kevin.describe())
 println(mortyJr.describe())
}
/* Output:
Zigerion with 2 eyes, 2 hands and 2 legs
Gazorpian with 2 eyes, 6 hands and 2 legs
*/

In Komplexe Konstruktoren, werden Sie sehen, dass Konstruktoren auch komplexe Initialisierungslogik enthalten können.

Wenn ein Objekt verwendet wird, wenn ein String erwartet wird, ruft Kotlin die toString()-Mitgliedsfunktion des Objekts auf. Wenn Sie keine schreiben, erhalten Sie trotzdem eine Standard-toString():

// Constructors/DisplayAlienSpecies.kt

fun main() {
 val krombopulosMichael =
 AlienSpecies("Gromflomite", 2, 2, 2)
 println(krombopulosMichael)
}
/* Sample output:
AlienSpecies@4d7e1886
*/

Der Standard-toString() ist nicht sehr nützlich—er gibt den Klassennamen und die physikalische Adresse des Objekts aus (dies variiert von einer Programmausführung zur nächsten). Sie können Ihre eigene toString() definieren:

// Constructors/Scientist.kt

class Scientist(val name: String) {
 override fun toString() =
 "Scientist('$name')"
}

fun main() {
 val zeep = Scientist("Zeep Xanflorp")
 println(zeep)
}
/* Output:
Scientist('Zeep Xanflorp')
*/

override ist ein neues Schlüsselwort für uns. Es ist hier erforderlich, weil toString() bereits eine Definition hat, die eine primitive Ausgabe erzeugt. override teilt Kotlin mit, dass wir tatsächlich die Standarddefinition von toString() durch unsere eigene Definition ersetzen möchten. Die Deutlichkeit von override macht den Code klarer und verhindert Fehler.

Ein toString(), das den Inhalt eines Objekts in einer praktischen Form anzeigt, ist nützlich, um Programmierfehler zu finden und zu beheben. Um den Prozess des Debuggens zu vereinfachen, bieten IDEs Debugger an, die es Ihnen ermöglichen, jeden Schritt der Programmausführung zu beobachten und in Ihre Objekte hinein zu sehen.

 Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Einschränkung der Sichtbarkeit

 Wenn Sie ein Stück Code für ein paar Tage oder Wochen liegen lassen und dann
zurückkehren, sehen Sie möglicherweise eine viel bessere Möglichkeit, es zu schreiben.

Dies ist eine der Hauptmotivationen für das Refactoring, das funktionierenden
Code umschreibt, um ihn lesbarer, verständlicher und damit wartbarer zu machen.

Es gibt eine Spannung in diesem Wunsch, Ihren Code zu ändern und zu verbessern. Verbraucher
(Anwenderprogrammierer) erfordern, dass Aspekte Ihres Codes stabil bleiben. Sie möchten
es ändern, und sie wollen, dass es gleich bleibt.

Dies ist besonders wichtig für Bibliotheken. Verbraucher einer Bibliothek wollen nicht
den Code für eine neue Version dieser Bibliothek umschreiben. Der Bibliotheksentwickler
muss jedoch frei sein, Änderungen und Verbesserungen vorzunehmen, mit der Gewissheit,
dass der Client-Code von diesen Änderungen nicht betroffen sein wird.

Daher ist eine primäre Überlegung im Softwaredesign:

 Trenne Dinge, die sich ändern, von Dingen, die gleich bleiben.

Um die Sichtbarkeit zu steuern, bieten Kotlin und einige andere Sprachen Zugriffsmodifikatoren.
Bibliotheksentwickler entscheiden mit den Modifikatoren public, private, protected und internal,
was für den Anwenderprogrammierer zugänglich ist und was nicht.
Dieses Kapitel behandelt public und private, mit einer kurzen Einführung in
internal. Wir erklären protected später im Buch.

Ein Zugriffsmodifikator wie private erscheint vor der Definition einer Klasse,
Funktion oder Eigenschaft. Ein Zugriffsmodifikator steuert nur den Zugriff für diese
spezielle Definition.

Eine public Definition ist für Anwenderprogrammierer zugänglich, sodass Änderungen an dieser
Definition den Client-Code direkt beeinflussen. Wenn Sie keinen Modifikator angeben,
ist Ihre Definition automatisch public, daher ist public technisch gesehen redundant.
Manchmal geben Sie dennoch public zur Klarstellung an.

Eine private Definition ist verborgen und nur von anderen Mitgliedern derselben Klasse
zugänglich. Änderungen oder sogar das Entfernen einer private Definition beeinflussen
die Anwenderprogrammierer nicht direkt.

private Klassen, Top-Level-Funktionen und Top-Level-Eigenschaften sind nur innerhalb dieser Datei
zugänglich:

// Visibility/RecordAnimals.kt

private var index = 0 // [1]

private class Animal(val name: String) // [2]

private fun recordAnimal(// [3]
 animal: Animal
) {
 println("Animal #$index: ${animal.name}")
 index++
}

fun recordAnimals() {
 recordAnimal(Animal("Tiger"))
 recordAnimal(Animal("Antelope"))
}

fun recordAnimalsCount() {
 println("$index animals are here!")
}

Sie können auf private Top-Level-Eigenschaften ([1]), Klassen ([2]) und
Funktionen ([3]) von anderen Funktionen und Klassen innerhalb von RecordAnimals.kt zugreifen.
Kotlin verhindert, dass Sie auf ein private Top-Level-Element aus einer anderen
Datei zugreifen, indem es Ihnen mitteilt, dass es in der Datei private ist:

// Visibility/ObserveAnimals.kt

fun main() {
 // Can't access private members
 // declared in another file.
 // Class is private:
 // val rabbit = Animal("Rabbit")
 // Function is private:
 // recordAnimal(rabbit)
 // Property is private:
 // index++

 recordAnimals()
 recordAnimalsCount()
}
/* Output:
Animal #0: Tiger
Animal #1: Antelope
2 animals are here!
*/

Sichtbarkeit wird am häufigsten für Mitglieder einer Klasse verwendet:

// Visibility/Cookie.kt

class Cookie(
 private var isReady: Boolean // [1]
) {
 private fun crumble() = // [2]
 println("crumble")

 public fun bite() = // [3]
 println("bite")

 fun eat() { // [4]
 isReady = true // [5]
 crumble()
 bite()
 }
}

fun main() {
 val x = Cookie(false)
 x.bite()
 // Can't access private members:
 // x.isReady
 // x.crumble()
 x.eat()
}
/* Output:
bite
crumble
bite
*/

 	
[1] Eine private Eigenschaft, die außerhalb der umgebenden Klasse nicht zugänglich ist.

 	
[2] Eine private Mitgliedsfunktion.

 	
[3] Eine public Mitgliedsfunktion, die für jeden zugänglich ist.

 	
[4] Kein Zugriffsmodifikator bedeutet public.

 	
[5] Nur Mitglieder derselben Klasse können auf private Mitglieder zugreifen.

Das Schlüsselwort private bedeutet, dass niemand auf dieses Mitglied zugreifen kann, außer anderen Mitgliedern dieser Klasse. Andere Klassen können nicht auf private Mitglieder zugreifen, sodass es so ist, als würden Sie die Klasse auch gegen sich selbst und Ihre Mitarbeiter abschirmen. Mit private können Sie dieses Mitglied nach Belieben ändern, ohne sich Sorgen machen zu müssen, ob es eine andere Klasse im selben Paket betrifft. Als Bibliotheksentwickler werden Sie typischerweise so viel wie möglich als private halten und nur Funktionen und Klassen für die Benutzerprogrammierer freigeben.

Jede Mitgliedsfunktion, die eine Hilfsfunktion für eine Klasse ist, kann private gemacht werden, um sicherzustellen, dass Sie sie nicht versehentlich anderswo im Paket verwenden und sich dadurch daran hindern, diese Funktion zu ändern oder zu entfernen.

Dasselbe gilt für eine private Eigenschaft innerhalb einer Klasse. Es sei denn, Sie müssen die zugrunde liegende Implementierung offenlegen (was weniger wahrscheinlich ist, als Sie vielleicht denken), machen Sie Eigenschaften private. Allerdings bedeutet eine private Referenz auf ein Objekt innerhalb einer Klasse nicht, dass ein anderes Objekt nicht eine public Referenz auf dasselbe Objekt haben kann:

// Visibility/MultipleRef.kt

class Counter(var start: Int) {
 fun increment() {
 start += 1
 }
 override fun toString() = start.toString()
}

class CounterHolder(counter: Counter) {
 private val ctr = counter
 override fun toString() =
 "CounterHolder: " + ctr
}

fun main() {
 val c = Counter(11) // [1]
 val ch = CounterHolder(c) // [2]
 println(ch)
 c.increment() // [3]
 println(ch)
 val ch2 = CounterHolder(Counter(9)) // [4]
 println(ch2)
}
/* Output:
CounterHolder: 11
CounterHolder: 12
CounterHolder: 9
*/

 	
[1] c ist jetzt im Geltungsbereich definiert, der die Erstellung des
CounterHolder-Objekts in der folgenden Zeile umgibt.

 	
[2] c als Argument an den CounterHolder-Konstruktor zu übergeben, bedeutet,
dass der neue CounterHolder nun auf dasselbe Counter-Objekt verweist, auf das auch c verweist.

 	
[3] Der Counter, der angeblich privat innerhalb von ch ist, kann dennoch über c manipuliert werden.

 	
[4] Counter(9) hat keine anderen Referenzen außer innerhalb von CounterHolder, daher
kann es nicht von etwas anderem als ch2 zugegriffen oder modifiziert werden.

Mehrere Referenzen auf ein einzelnes Objekt zu haben, wird als Aliasing bezeichnet und kann überraschendes Verhalten hervorrufen.

Module

Im Gegensatz zu den kleinen Beispielen in diesem Buch sind reale Programme oft groß. Es kann hilfreich sein, solche Programme in ein oder mehrere Module zu unterteilen. Ein Modul ist ein logisch unabhängiger Teil eines Codebestands. Die Art und Weise, wie Sie ein Projekt in Module unterteilen, hängt vom Build-System ab (wie Gradle oder Maven) und liegt außerhalb des Rahmens dieses Buches.

Eine interne Definition ist nur innerhalb des Moduls zugänglich, in dem sie definiert ist. Intern liegt irgendwo zwischen privat und öffentlich—verwenden Sie es, wenn privat zu restriktiv ist, Sie aber nicht möchten, dass ein Element Teil der öffentlichen API ist. Wir verwenden intern nicht in den Beispielen oder Übungen des Buches.

Module sind ein höheres Konzept. Der folgende Abschnitt führt Pakete ein, die eine feinere Strukturierung ermöglichen. Eine Bibliothek ist oft ein einziges Modul, das aus mehreren Paketen besteht, sodass interne Elemente innerhalb der Bibliothek verfügbar sind, jedoch nicht von den Verbrauchern dieser Bibliothek zugänglich sind.

 Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Pakete

 Ein grundlegendes Prinzip in der Programmierung ist das Akronym DRY: Wiederhole dich nicht.

Mehrere identische Codefragmente erfordern Wartung, wann immer Sie Korrekturen
oder Verbesserungen vornehmen. Das Duplizieren von Code ist also nicht nur zusätzliche Arbeit—jede Duplikation bietet Chancen für Fehler.

Das Schlüsselwort import wiederverwendet Code aus anderen Dateien. Eine Möglichkeit, import zu verwenden, besteht darin, einen Klassen-, Funktions- oder Eigenschaftsnamen anzugeben:

import packagename.ClassName
import packagename.functionName
import packagename.propertyName

Ein Paket ist eine zugehörige Sammlung von Code. Jedes Paket ist normalerweise
dafür ausgelegt, ein bestimmtes Problem zu lösen, und enthält oft mehrere Funktionen
und Klassen. Zum Beispiel können wir mathematische Konstanten und Funktionen
aus der kotlin.math Bibliothek importieren:

// Packages/ImportClass.kt
import kotlin.math.PI
import kotlin.math.cos // Cosine

fun main() {
 println(PI)
 println(cos(PI))
 println(cos(2 * PI))
}
/* Output:
3.141592653589793
-1.0
1.0
*/

Manchmal möchte man mehrere Drittanbieter-Bibliotheken verwenden, die Klassen oder Funktionen mit demselben Namen enthalten. Das Schlüsselwort as ermöglicht es Ihnen, beim Importieren Namen zu ändern:

// Packages/ImportNameChange.kt
import kotlin.math.PI as circleRatio
import kotlin.math.cos as cosine

fun main() {
 println(circleRatio)
 println(cosine(circleRatio))
 println(cosine(2 * circleRatio))
}
/* Output:
3.141592653589793
-1.0
1.0
*/

as ist nützlich, wenn der Bibliotheksname schlecht gewählt oder übermäßig lang ist.

Sie können einen Import im Hauptteil Ihres Codes vollständig qualifizieren. Im folgenden Beispiel könnte der Code aufgrund der expliziten Paketnamen weniger lesbar sein, aber die Herkunft jedes Elements ist absolut klar:

// Packages/FullyQualify.kt

fun main() {
 println(kotlin.math.PI)
 println(kotlin.math.cos(kotlin.math.PI))
 println(kotlin.math.cos(2 * kotlin.math.PI))
}
/* Output:
3.141592653589793
-1.0
1.0
*/

Um alles aus einem Paket zu importieren, verwenden Sie einen Stern:

// Packages/ImportEverything.kt
import kotlin.math.*

fun main() {
 println(E)
 println(E.roundToInt())
 println(E.toInt())
}
/* Output:
2.718281828459045
3
2
*/

Das kotlin.math-Paket enthält eine praktische Funktion roundToInt(), die den Double-Wert auf die nächste ganze Zahl aufrundet, im Gegensatz zu toInt(), das einfach alles nach einem Dezimalpunkt abschneidet.

Um Ihren Code wiederzuverwenden, erstellen Sie ein Paket mit dem Schlüsselwort package. Die package-Anweisung muss die erste nicht-kommentare Anweisung in der Datei sein. package wird gefolgt vom Namen Ihres Pakets, der konventionell komplett in Kleinbuchstaben geschrieben wird:

// Packages/PythagoreanTheorem.kt
package pythagorean
import kotlin.math.sqrt

class RightTriangle(
 val a: Double,
 val b: Double
) {
 fun hypotenuse() = sqrt(a * a + b * b)
 fun area() = a * b / 2
}

Sie können die Quellcodedatei beliebig benennen, im Gegensatz zu Java, das erfordert,
dass der Dateiname mit dem Klassennamen identisch ist.

Kotlin erlaubt Ihnen, einen beliebigen Namen für Ihr Paket zu wählen, aber es wird als guter
Stil betrachtet, wenn der Paketname mit dem Verzeichnisnamen identisch ist, in dem sich die
Paketdateien befinden (dies wird nicht immer der Fall für die Beispiele in diesem Buch sein).

Die Elemente im pythagorean Paket sind jetzt mit import verfügbar:

// Packages/ImportPythagorean.kt
import pythagorean.RightTriangle

fun main() {
 val rt = RightTriangle(3.0, 4.0)
 println(rt.hypotenuse())
 println(rt.area())
}
/* Output:
5.0
6.0
*/

Im Rest dieses Buches verwenden wir package-Anweisungen für jede Datei, die Funktionen, Klassen usw. außerhalb von main() definiert, um Namenskonflikte mit anderen Dateien im Buch zu vermeiden. In der Regel werden wir jedoch keine package-Anweisung in einer Datei platzieren, die nur ein main() enthält.

 Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Testen

 Konstantes Testen ist unerlässlich für eine schnelle Programmentwicklung.

Wenn das Ändern eines Teils Ihres Codes anderen Code beschädigt, zeigen Ihre Tests das Problem sofort auf. Wenn Sie es nicht sofort herausfinden, häufen sich die Änderungen an und Sie können nicht mehr feststellen, welche Änderung das Problem verursacht hat. Sie werden viel länger brauchen, um es zu verfolgen.

Testen ist eine entscheidende Praxis, daher führen wir es früh ein und verwenden es im gesamten Rest des Buches. Auf diese Weise gewöhnen Sie sich daran, Tests als Standardteil des Programmierprozesses zu betrachten.

println() zu verwenden, um die Korrektheit des Codes zu überprüfen, ist ein schwacher Ansatz—Sie müssen jedes Mal die Ausgabe genau prüfen und bewusst sicherstellen, dass sie korrekt ist.

Um Ihre Erfahrung beim Verwenden dieses Buches zu vereinfachen, haben wir unser eigenes kleines Testsystem erstellt. Das Ziel ist ein minimaler Ansatz, der:

 	Das erwartete Ergebnis von Ausdrücken zeigt.

 	Eine Ausgabe liefert, damit Sie wissen, dass das Programm läuft, selbst wenn alle Tests erfolgreich sind.

 	Das Konzept des Testens frühzeitig in Ihrer Praxis verankert.

Obwohl es für dieses Buch nützlich ist, ist unseres kein Testsystem für den Arbeitsplatz. Andere haben lange und hart gearbeitet, um solche Testsysteme zu erstellen. Zum Beispiel:

 	
JUnit ist eines der beliebtesten Java-Testframeworks und kann leicht in Kotlin verwendet werden.

 	
Kotest ist speziell für Kotlin entwickelt und nutzt die Funktionen der Kotlin-Sprache.

 	Das Spek Framework produziert eine andere Form des Testens, genannt Spezifikationstests.

Um unser Testframework zu verwenden, müssen wir es zuerst importieren. Die grundlegenden Elemente des Frameworks sind eq (gleich) und neq (nicht gleich):

// Testing/TestingExample.kt
import atomictest.*

fun main() {
 val v1 = 11
 val v2 = "Ontology"

 // 'eq' means "equals":
 v1 eq 11
 v2 eq "Ontology"

 // 'neq' means "not equal"
 v2 neq "Epistemology"

 // [Error] Epistemology != Ontology
 // v2 eq "Epistemology"
}
/* Output:
11
Ontology
Ontology
*/

Der Code für das Paket atomictest befindet sich in
Appendix A: AtomicTest. Es ist nicht beabsichtigt, dass Sie
alles in AtomicTest.kt sofort verstehen, da es einige Funktionen verwendet, die erst später im Buch erscheinen werden.

Um ein klares, angenehmes Erscheinungsbild zu erzeugen, verwendet AtomicTest eine Kotlin-Funktion, die Sie noch nicht gesehen haben: die Fähigkeit, einen Funktionsaufruf a.function(b) in der textähnlichen Form a function b zu schreiben. Dies wird als Infix-Notation bezeichnet. Nur Funktionen, die mit dem Schlüsselwort infix definiert sind, können auf diese Weise aufgerufen werden.
AtomicTest.kt definiert die infix-Funktionen eq und neq, die in TestingExample.kt verwendet werden:

expression eq expected
expression neq expected

eq und neq sind flexibel – fast alles funktioniert als Testausdruck.
Wenn erwartet ein String ist, wird Ausdruck in einen String umgewandelt und die beiden Strings werden verglichen. Andernfalls werden Ausdruck und erwartet direkt verglichen (ohne sie vorher umzuwandeln). In jedem Fall erscheint das Ergebnis von Ausdruck auf der Konsole, sodass Sie etwas sehen, wenn das Programm läuft. Selbst wenn die Tests erfolgreich sind, sehen Sie das Ergebnis links von eq oder neq. Wenn Ausdruck und erwartet nicht gleichwertig sind, zeigt AtomicTest einen Fehler an, wenn das Programm läuft.

Der letzte Test in TestingExample.kt schlägt absichtlich fehl, damit Sie ein Beispiel für eine Fehlerausgabe sehen. Wenn die beiden Werte nicht gleich sind, zeigt Kotlin die entsprechende Nachricht an, die mit [Error] beginnt. Wenn Sie die letzte Zeile auskommentieren und das obige Beispiel ausführen, sehen Sie nach allen erfolgreichen Tests:

[Error] Epistemology != Ontology

Der tatsächliche Wert, der in v2 gespeichert ist, entspricht nicht dem, was im Ausdruck “erwartet” behauptet wird. AtomicTest zeigt die String-Darstellungen sowohl für erwartete als auch für tatsächliche Werte an.

eq und neq sind die grundlegenden (infix) Funktionen, die für AtomicTest definiert sind – es ist wirklich ein minimalistisches Testsystem. Wenn Sie eq- und neq-Ausdrücke in Ihren Beispielen verwenden, erstellen Sie sowohl einen Test als auch eine Konsolenausgabe. Sie überprüfen die Korrektheit des Programms, indem Sie es ausführen.

Es gibt ein zweites Werkzeug in AtomicTest. Das trace-Objekt erfasst die Ausgabe für einen späteren Vergleich:

// Testing/Trace1.kt
import atomictest.*

fun main() {
 trace("line 1")
 trace(47)
 trace("line 2")
 trace eq """
 line 1
 47
 line 2
 """
}

Das Hinzufügen von Ergebnissen zu trace sieht aus wie ein Funktionsaufruf, daher können Sie println() effektiv durch trace() ersetzen.

In früheren Atomen haben wir die Ausgabe angezeigt und uns auf die menschliche visuelle Inspektion verlassen, um Unstimmigkeiten zu erkennen. Das ist unzuverlässig; selbst in einem Buch, in dem wir den Code immer wieder genau prüfen, haben wir gelernt, dass man der visuellen Inspektion nicht trauen kann, um Fehler zu finden. Von nun an verwenden wir selten kommentierte Ausgabeblöcke, da AtomicTest alles für uns erledigen wird. Manchmal fügen wir jedoch immer noch kommentierte Ausgabeblöcke ein, wenn dies einen nützlicheren Effekt hat.

Die Vorteile des Testens im gesamten restlichen Buch sollten Ihnen helfen, das Testen in Ihren Programmierprozess zu integrieren. Sie werden sich wahrscheinlich unwohl fühlen, wenn Sie Code sehen, der keine Tests hat. Sie könnten sogar entscheiden, dass Code ohne Tests per Definition fehlerhaft ist.

Testen als Teil der Programmierung

Testen ist am effektivsten, wenn es in Ihren Softwareentwicklungsprozess integriert ist. Das Schreiben von Tests stellt sicher, dass Sie die erwarteten Ergebnisse erhalten. Viele Leute befürworten das Schreiben von Tests vor dem Schreiben des Implementierungscodes - Sie lassen zuerst den Test fehlschlagen, bevor Sie den Code schreiben, um ihn erfolgreich zu machen. Diese Technik, genannt Testgetriebene Entwicklung (TDD), ist eine Möglichkeit sicherzustellen, dass Sie wirklich das testen, was Sie denken. Eine vollständigere Beschreibung von TDD finden Sie auf Wikipedia (suchen Sie nach “Testgetriebene Entwicklung”).

Es gibt einen weiteren Vorteil beim testbaren Schreiben - es verändert die Art und Weise, wie Sie Ihren Code gestalten. Sie könnten die Ergebnisse einfach auf der Konsole anzeigen. Aber im Testdenken fragen Sie sich: “Wie werde ich das testen?” Wenn Sie eine Funktion erstellen, entscheiden Sie, dass Sie etwas aus der Funktion zurückgeben sollten, wenn auch nur, um dieses Ergebnis zu testen. Funktionen, die nichts anderes tun, als Eingaben zu nehmen und Ausgaben zu erzeugen, neigen dazu, auch bessere Designs zu erzeugen.

Hier ist ein vereinfachtes Beispiel, das TDD verwendet, um die BMI-Berechnung aus Zahlentypen zu implementieren. Zuerst schreiben wir die Tests sowie eine anfängliche Implementierung, die fehlschlägt (weil wir die Funktionalität noch nicht implementiert haben):

// Testing/TDDFail.kt
package testing1
import atomictest.eq

fun main() {
 calculateBMI(160, 68) eq "Normal weight"
// calculateBMI(100, 68) eq "Underweight"
// calculateBMI(200, 68) eq "Overweight"
}

fun calculateBMI(lbs: Int, height: Int) =
 "Normal weight"

Nur der erste Test besteht. Die anderen Tests schlagen fehl und sind kommentiert. Als nächstes fügen wir Code hinzu, um zu bestimmen, welche Gewichte in welchen Kategorien sind. Jetzt schlagen alle Tests fehl:

// Testing/TDDStillFails.kt
package testing2
import atomictest.eq

fun main() {
 // Everything fails:
 // calculateBMI(160, 68) eq "Normal weight"
 // calculateBMI(100, 68) eq "Underweight"
 // calculateBMI(200, 68) eq "Overweight"
}

fun calculateBMI(
 lbs: Int,
 height: Int
): String {
 val bmi = lbs / (height * height) * 703.07
 return if (bmi < 18.5) "Underweight"
 else if (bmi < 25) "Normal weight"
 else "Overweight"
}

Wir verwenden Ints anstelle von Doubles, was zu einem Nullergebnis führt. Die Tests führen uns zur Lösung:

// Testing/TDDWorks.kt
package testing3
import atomictest.eq

fun main() {
 calculateBMI(160.0, 68.0) eq "Normal weight"
 calculateBMI(100.0, 68.0) eq "Underweight"
 calculateBMI(200.0, 68.0) eq "Overweight"
}

fun calculateBMI(
 lbs: Double,
 height: Double
): String {
 val bmi = lbs / (height * height) * 703.07
 return if (bmi < 18.5) "Underweight"
 else if (bmi < 25) "Normal weight"
 else "Overweight"
}

Sie können zusätzliche Tests für die Randbedingungen hinzufügen.

In den Übungen für dieses Buch haben wir Tests enthalten, die Ihr Code bestehen muss.

 Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Ausnahmen

 Das Wort “Ausnahme” wird im gleichen Sinne verwendet wie der Ausdruck “Ich
nehme Anstoß daran.”

Eine außergewöhnliche Bedingung verhindert die Fortsetzung der aktuellen Funktion oder des aktuellen Bereichs. An dem Punkt, an dem das Problem auftritt, wissen Sie möglicherweise nicht, was Sie damit tun sollen, aber Sie können im aktuellen Kontext nicht fortfahren. Sie haben nicht genügend Informationen, um das Problem zu beheben. Daher müssen Sie stoppen und das Problem an einen anderen Kontext übergeben, der geeignete Maßnahmen ergreifen kann.

Dieses Atom behandelt die Grundlagen von Ausnahmen als ein Mechanismus zur Fehlerberichterstattung. In Abschnitt VI: Fehlervermeidung betrachten wir andere Möglichkeiten, mit Problemen umzugehen.

Es ist wichtig, eine außergewöhnliche Bedingung von einem normalen Problem zu unterscheiden. Ein normales Problem verfügt über genügend Informationen im aktuellen Kontext, um das Problem zu bewältigen. Bei einer außergewöhnlichen Bedingung können Sie die Verarbeitung nicht fortsetzen. Alles, was Sie tun können, ist zu gehen und das Problem einem externen Kontext zu überlassen. Dies ist der Fall, wenn Sie eine Ausnahme werfen. Die Ausnahme ist das Objekt, das vom Ort des Fehlers “geworfen” wird.

Betrachten Sie toInt(), das einen String in einen Int umwandelt. Was passiert, wenn Sie diese Funktion für einen String aufrufen, der keinen ganzzahligen Wert enthält?

// Exceptions/ToIntException.kt
package exceptions

fun erroneousCode() {
 // Uncomment this line to get an exception:
 // val i = "1$".toInt() // [1]
}

fun main() {
 erroneousCode()
}

Das Auskommentieren der Zeile [1] führt zu einer Ausnahme. Hier ist die fehlerhafte Zeile kommentiert, damit der Aufbau des Buches nicht gestoppt wird, das überprüft, ob jedes Beispiel wie erwartet kompiliert und ausgeführt wird.

Wenn eine Ausnahme ausgelöst wird, stoppt der Ausführungspfad—derjenige, der nicht fortgesetzt werden kann—und das Ausnahmeobjekt wird aus dem aktuellen Kontext herausgeworfen. Hier verlässt es den Kontext von erroneousCode() und geht in den Kontext von main(). In diesem Fall meldet Kotlin nur den Fehler; der Programmierer hat vermutlich einen Fehler gemacht und muss den Code korrigieren.

Wenn eine Ausnahme nicht abgefangen wird, bricht das Programm ab und zeigt einen Stack-Trace mit detaillierten Informationen an. Das Auskommentieren der Zeile [1] in ToIntException.kt führt zu folgendem Output:

Exception in thread "main" java.lang.NumberFormatException: For input s\
tring: "1$"
 at java.lang.NumberFormatException.forInputString(NumberFormatExcepti\
on.java:65)
 at java.lang.Integer.parseInt(Integer.java:580)
 at java.lang.Integer.parseInt(Integer.java:615)
 at ToIntExceptionKt.erroneousCode(at ToIntException.kt:6)
 at ToIntExceptionKt.main(at ToIntException.kt:10)

Der Stack-Trace liefert Details wie die Datei und die Zeile, in der die Ausnahme aufgetreten ist, sodass Sie das Problem schnell entdecken können. Die letzten beiden Zeilen zeigen das Problem: In Zeile 10 von main() rufen wir erroneousCode() auf. Dann, genauer gesagt, in Zeile 6 von erroneousCode() rufen wir toInt() auf.

Um das Kommentieren und Auskommentieren von Code zur Anzeige von Ausnahmen zu vermeiden, verwenden wir die Funktion capture() aus dem Paket AtomicTest:

// Exceptions/IntroducingCapture.kt
import atomictest.*

fun main() {
 capture {
 "1$".toInt()
 } eq "NumberFormatException: " +
 """For input string: "1$""""
}

Mit capture() vergleichen wir die generierte Ausnahme mit der erwarteten Fehlermeldung. capture() ist nicht sehr hilfreich für normale Programmierung - es ist speziell für dieses Buch entworfen, damit Sie die Ausnahme sehen und wissen können, dass die Ausgabe vom Build-System des Buches überprüft wurde.

Eine weitere Strategie, wenn Sie das erwartete Ergebnis nicht erfolgreich erzielen können, besteht darin, null zurückzugeben, eine spezielle Konstante, die “kein Wert” bedeutet. Sie können null anstelle eines Wertes jeden Typs zurückgeben. Später in Nullable Typen besprechen wir, wie null den Typ des resultierenden Ausdrucks beeinflusst.

Die Kotlin-Standardbibliothek enthält String.toIntOrNull(), das die Umwandlung durchführt, wenn der String eine ganze Zahl enthält, oder null produziert, wenn die Umwandlung unmöglich ist - null ist eine einfache Möglichkeit, einen Fehler anzuzeigen:

// Exceptions/IntroducingNull.kt
import atomictest.eq

fun main() {
 "1$".toIntOrNull() eq null
}

Angenommen, wir berechnen das durchschnittliche Einkommen über einen Zeitraum von Monaten:

// Exceptions/AverageIncome.kt
package firstversion
import atomictest.*

fun averageIncome(income: Int, months: Int) =
 income / months

fun main() {
 averageIncome(3300, 3) eq 1100
 capture {
 averageIncome(5000, 0)
 } eq "ArithmeticException: / by zero"
}

Wenn months null ist, wirft die Division in averageIncome() eine
ArithmeticException. Leider sagt uns dies nichts darüber, warum der Fehler
aufgetreten ist, was der Nenner bedeutet und ob er überhaupt null sein darf.
Dies ist eindeutig ein Fehler im Code—averageIncome() sollte mit einem months
von 0 so umgehen, dass ein Division durch Null Fehler vermieden wird.

Lassen Sie uns averageIncome() modifizieren, um mehr Informationen über die
Quelle des Problems zu liefern. Wenn months null ist, können wir keinen
normalen Ganzzahlwert als Ergebnis zurückgeben. Eine Strategie ist es, null
zurückzugeben:

// Exceptions/AverageIncomeWithNull.kt
package withnull
import atomictest.eq

fun averageIncome(income: Int, months: Int) =
 if (months == 0)
 null
 else
 income / months

fun main() {
 averageIncome(3300, 3) eq 1100
 averageIncome(5000, 0) eq null
}

Wenn eine Funktion null zurückgeben kann, verlangt Kotlin, dass Sie das Ergebnis überprüfen, bevor Sie es verwenden (dies wird in Nullable Typen behandelt). Selbst wenn Sie nur dem Benutzer eine Ausgabe anzeigen möchten, ist es besser zu sagen: “Es sind keine vollen Monatszeiträume vergangen,” anstatt “Ihr durchschnittliches Einkommen für den Zeitraum ist: null.”

Anstatt averageIncome() mit den falschen Argumenten auszuführen, können Sie eine Ausnahme auslösen – entkommen und einen anderen Teil des Programms zwingen, das Problem zu verwalten. Sie könnten die Standard-ArithmeticException zulassen, aber es ist oft nützlicher, eine spezifische Ausnahme mit einer detaillierten Fehlermeldung zu werfen. Wenn Ihre Anwendung nach ein paar Jahren im Einsatz plötzlich eine Ausnahme auslöst, weil eine neue Funktion averageIncome() aufruft, ohne die Argumente richtig zu überprüfen, werden Sie für diese Nachricht dankbar sein:

// Exceptions/AverageIncomeWithException.kt
package properexception
import atomictest.*

fun averageIncome(income: Int, months: Int) =
 if (months == 0)
 throw IllegalArgumentException(// [1]
 "Months can't be zero")
 else
 income / months

fun main() {
 averageIncome(3300, 3) eq 1100
 capture {
 averageIncome(5000, 0)
 } eq "IllegalArgumentException: " +
 "Months can't be zero"
}

 	
[1] Beim Auslösen einer Ausnahme wird das Schlüsselwort throw gefolgt von der Ausnahme, die ausgelöst werden soll, zusammen mit allen Argumenten, die sie möglicherweise benötigt. Hier verwenden wir die Standard-Ausnahmeklasse IllegalArgumentException.

Ihr Ziel ist es, die nützlichsten Nachrichten zu generieren, um die Unterstützung Ihrer Anwendung in Zukunft zu vereinfachen. Später lernen Sie, Ihre eigenen Ausnahme-Typen zu definieren und sie spezifisch auf Ihre Umstände abzustimmen.

 Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Listen

 Eine List ist ein Behälter, also ein Objekt, das andere Objekte enthält.

Behälter werden auch als Sammlungen bezeichnet. Wenn wir einen grundlegenden Behälter für die Beispiele in diesem Buch benötigen, verwenden wir normalerweise eine List.

Lists sind Teil des Standard-Kotlin-Pakets, daher benötigen sie keinen import.

Das folgende Beispiel erstellt eine List, die mit Ints gefüllt ist, indem die Standardbibliotheksfunktion listOf() mit Initialisierungswerten aufgerufen wird:

// Lists/Lists.kt
import atomictest.eq

fun main() {
 val ints = listOf(99, 3, 5, 7, 11, 13)
 ints eq "[99, 3, 5, 7, 11, 13]" // [1]

 // Select each element in the List:
 var result = ""
 for (i in ints) { // [2]
 result += "$i "
 }
 result eq "99 3 5 7 11 13"

 // "Indexing" into the List:
 ints[4] eq 11 // [3]
}

 	
[1] Eine List verwendet eckige Klammern, um sich selbst darzustellen.

 	
[2] for-Schleifen funktionieren gut mit Lists: for(i in ints) bedeutet, dass i jeden Wert in ints erhält. Sie deklarieren val i nicht und geben auch nicht seinen Typ an; Kotlin erkennt aus dem Kontext, dass i ein for-Schleifen-Identifikator ist.

 	
[3] Eckige Klammern indexieren in eine List. Eine List behält ihre Elemente in der Initialisierungsreihenfolge bei, und Sie wählen sie einzeln nach Nummer aus. Wie in den meisten Programmiersprachen beginnt Kotlin das Indexieren beim Element Null, was in diesem Fall den Wert 99 ergibt. Somit ergibt ein Index von 4 den Wert 11.

Das Vergessen, dass das Indexieren bei Null beginnt, führt zum sogenannten Eins-zu-viel-Fehler. In einer Sprache wie Kotlin wählen wir oft nicht Elemente einzeln aus, sondern iterieren stattdessen durch einen gesamten Container mit in. Dies eliminiert Eins-zu-viel-Fehler.

Wenn Sie einen Index über das letzte Element in einer List hinaus verwenden, wirft Kotlin eine ArrayIndexOutOfBoundsException:

// Lists/OutOfBounds.kt
import atomictest.*

fun main() {
 val ints = listOf(1, 2, 3)
 capture {
 ints[3]
 } contains
 listOf("ArrayIndexOutOfBoundsException")
}

Eine List kann alle verschiedenen Typen halten. Hier ist eine List von Doubles und eine List von Strings:

// Lists/ListUsefulFunction.kt
import atomictest.eq

fun main() {
 val doubles =
 listOf(1.1, 2.2, 3.3, 4.4)
 doubles.sum() eq 11.0

 val strings = listOf("Twas", "Brillig",
 "And", "Slithy", "Toves")
 strings eq listOf("Twas", "Brillig",
 "And", "Slithy", "Toves")
 strings.sorted() eq listOf("And",
 "Brillig", "Slithy", "Toves", "Twas")
 strings.reversed() eq listOf("Toves",
 "Slithy", "And", "Brillig", "Twas")
 strings.first() eq "Twas"
 strings.takeLast(2) eq
 listOf("Slithy", "Toves")
}

Dies zeigt einige der Operationen von List. Beachten Sie den Namen “sorted” anstelle von “sort”. Wenn Sie sorted() aufrufen, erzeugt es eine neue List, die die gleichen Elemente wie die alte in sortierter Reihenfolge enthält—aber es lässt die ursprüngliche List unverändert. Es “sort” zu nennen, impliziert, dass die ursprüngliche List direkt verändert wird (auch bekannt als sortiert an Ort und Stelle). In Kotlin sieht man häufig diese Tendenz, “das ursprüngliche Objekt unverändert zu lassen und ein neues Objekt zu erzeugen.” reversed() erzeugt ebenfalls eine neue List.

Parametrisierte Typen

Wir betrachten es als gute Praxis, Typinferenz zu verwenden—es neigt dazu, den Code sauberer und leichter lesbar zu machen. Manchmal jedoch beschwert sich Kotlin, dass es nicht herausfinden kann, welchen Typ es verwenden soll, und in anderen Fällen macht Explizitheit den Code verständlicher. So teilen wir Kotlin mit, welchen Typ eine List enthält:

// Lists/ParameterizedTypes.kt
import atomictest.eq

fun main() {
 // Type is inferred:
 val numbers = listOf(1, 2, 3)
 val strings =
 listOf("one", "two", "three")
 // Exactly the same, but explicitly typed:
 val numbers2: List<Int> = listOf(1, 2, 3)
 val strings2: List<String> =
 listOf("one", "two", "three")
 numbers eq numbers2
 strings eq strings2
}

Kotlin verwendet die Initialisierungswerte, um abzuleiten, dass numbers eine List von Ints enthält, während strings eine List von Strings enthält.

numbers2 und strings2 sind explizit typisierte Versionen von numbers und strings, erstellt durch das Hinzufügen der Typdeklarationen List<Int> und List<String>. Sie haben Winkelklammern noch nicht gesehen - sie kennzeichnen einen Typparameter, der es Ihnen ermöglicht zu sagen: “Dieser Container enthält ‘Parameter’-Objekte.” Wir sprechen List<Int> als “List von Int” aus.

Typparameter sind nützlich für Komponenten, die keine Container sind, aber man sieht sie oft bei containerähnlichen Objekten.

Rückgabewerte können ebenfalls Typparameter haben:

// Lists/ParameterizedReturn.kt
package lists
import atomictest.eq

// Return type is inferred:
fun inferred(p: Char, q: Char) =
 listOf(p, q)

// Explicit return type:
fun explicit(p: Char, q: Char): List<Char> =
 listOf(p, q)

fun main() {
 inferred('a', 'b') eq "[a, b]"
 explicit('y', 'z') eq "[y, z]"
}

Kotlin leitet den Rückgabetyp für inferred() ab, während explicit() den Rückgabetyp der Funktion angibt. Man kann nicht einfach sagen, dass es eine List zurückgibt; Kotlin wird beanstanden, also muss man auch den Typ-Parameter angeben. Wenn Sie den Rückgabetyp einer Funktion angeben, setzt Kotlin Ihre Absicht durch.

Schreibgeschützte und veränderbare Listen

Wenn Sie nicht ausdrücklich sagen, dass Sie eine veränderbare List möchten, erhalten Sie keine. listOf() erzeugt eine schreibgeschützte List, die keine veränderbaren Funktionen hat.

Wenn Sie eine List schrittweise erstellen (das heißt, Sie haben nicht alle Elemente zum Zeitpunkt der Erstellung), verwenden Sie mutableListOf(). Dies erzeugt eine MutableList, die verändert werden kann:

// Lists/MutableList.kt
import atomictest.eq

fun main() {
 val list = mutableListOf<Int>()

 list.add(1)
 list.addAll(listOf(2, 3))

 list += 4
 list += listOf(5, 6)

 list eq listOf(1, 2, 3, 4, 5, 6)
}

Da list keine anfänglichen Elemente hat, müssen wir Kotlin mitteilen, welchen Typ es hat, indem wir die <Int>-Spezifikation im Aufruf von mutableListOf() angeben. Sie können Elemente zu einer MutableList mit add() und addAll() hinzufügen oder den Operator += verwenden, der entweder ein einzelnes Element oder eine andere Sammlung hinzufügt.

Eine MutableList kann als List behandelt werden, in diesem Fall kann sie nicht geändert werden. Sie können jedoch eine schreibgeschützte List nicht als MutableList behandeln:

// Lists/MutListIsList.kt
package lists
import atomictest.eq

fun makeList(): List<Int> =
 mutableListOf(1, 2, 3)

fun main() {
 // makeList() produces a read-only List:
 val list = makeList()
 // list.add(3) // Unresolved reference: add
 list eq listOf(1, 2, 3)
}

list fehlt es an Mutationsfunktionen, obwohl es ursprünglich mit
mutableListOf() innerhalb von makeList() erstellt wurde. Beachten Sie, dass der Ergebnistyp von
makeList() List<Int> ist. Das ursprüngliche Objekt ist immer noch eine MutableList, wird aber
durch die Linse einer List betrachtet.

Eine List ist schreibgeschützt—Sie können ihren Inhalt lesen, aber nicht schreiben. Wenn die
zugrunde liegende Implementierung eine MutableList ist und Sie eine veränderbare Referenz
auf diese Implementierung beibehalten, können Sie sie weiterhin über diese veränderbare Referenz
modifizieren, und alle schreibgeschützten Referenzen werden diese Änderungen sehen. Dies ist ein weiteres Beispiel für
Aliasing, eingeführt in Einschränken der Sichtbarkeit:

// Lists/MultipleListRefs.kt
import atomictest.eq

fun main() {
 val first = mutableListOf(1)
 val second: List<Int> = first
 second eq listOf(1)
 first.add(2)
 // second sees the change:
 second eq listOf(1, 2)
}

first ist eine unveränderliche Referenz (val) auf das veränderliche Objekt, das von mutableListOf(1) erzeugt wird. Wenn second auf first aliasiert wird, wird es zu einer Ansicht desselben Objekts. second ist schreibgeschützt, weil List<Int> keine Änderungsfunktionen beinhaltet. Ohne die explizite List<Int> Typdeklaration würde Kotlin annehmen, dass second ebenfalls eine Referenz auf ein veränderliches Objekt ist.

Wir können dem Objekt ein Element (2) hinzufügen, weil first eine Referenz auf eine veränderliche Liste ist. Beachten Sie, dass second diese Änderungen beobachtet—es kann die Liste nicht ändern, obwohl die Liste über first geändert wird.

Das += Rätsel

Der += Operator kann den Anschein erwecken, dass eine unveränderliche Liste tatsächlich veränderlich ist:

// Lists/ApparentlyMutableList.kt
import atomictest.eq

fun main() {
 var list = listOf('X') // Immutable
 list += 'Y' // Appears to be mutable
 list eq "[X, Y]"
}

listOf() erzeugt eine unveränderliche List, aber list += 'Y' scheint diese List zu ändern. Verstößt += irgendwie gegen die Unveränderlichkeit?

Dies passiert nur, weil list ein var ist. Hier ist ein detaillierteres Beispiel, das die verschiedenen Kombinationen von veränderlichen/unveränderlichen Lists mit val/var zeigt:

// Lists/PlusAssignPuzzle.kt
import atomictest.eq

fun main() {
 // Mutable List assigned to a 'val'/'var':
 val list1 = mutableListOf('A') // or 'var'
 list1 += 'A' // Is the same as:
 list1.plusAssign('A') // [1]

 // Immutable List assigned to a 'val':
 val list2 = listOf('B')
 // list2 += 'B' // Is the same as:
 // list2 = list2 + 'B' // [2]

 // Immutable List assigned to a 'var':
 var list3 = listOf('C')
 list3 += 'C' // Is the same as:
 val newList = list3 + 'C' // [3]
 list3 = newList // [4]

 list1 eq "[A, A, A]"
 list2 eq "[B]"
 list3 eq "[C, C, C]"
}

 	
[1] list1 bezieht sich auf ein veränderbares Objekt, das daher vor Ort modifiziert werden kann. Der Compiler übersetzt += zum Aufruf von plusAssign(). Es spielt keine Rolle, ob list1 ein val oder ein var ist, da list1 nach der Erstellung niemals neu zugewiesen wird—es verweist immer auf die gleiche veränderbare Liste. Wenn man es zu einem var macht, weist IntelliJ darauf hin, dass es sich nie ändert und schlägt vor, es zu einem val zu machen.

 	
[2] Dies versucht, eine neue List zu erstellen, indem list2 und 'B' kombiniert werden, aber es kann diese neue List nicht list2 neu zuweisen, da list2 ein val ist. Ohne die Möglichkeit, diese Neuzuweisung durchzuführen, kann += nicht kompiliert werden.

 	
[3] Erstellt newList ohne die bestehende unveränderliche List zu modifizieren, auf die list3 verweist.

 	
[4] Da list3 ein var ist, weist der Compiler newList zurück in list3 zu. Der vorherige Inhalt von list3 wird dann vergessen, und es erscheint, als ob list3 verändert wurde. Tatsächlich wurde das alte list3 verworfen und durch das neu erstellte newList ersetzt, was die Illusion erzeugt, dass list3 veränderbar ist.

Dieses Verhalten von += tritt auch bei anderen Sammlungen auf. Die daraus resultierende Verwirrung ist ein weiterer Grund, val gegenüber var für Ihre Bezeichner zu bevorzugen.

 Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Variable Argumentlisten

 Das Schlüsselwort vararg erzeugt eine flexibel dimensionierte Argumentliste.

In Listen haben wir listOf() eingeführt, das eine beliebige Anzahl von Parametern akzeptiert und eine Liste erzeugt:

// Varargs/ListOf.kt
import atomictest.eq

fun main() {
 listOf(1) eq "[1]"
 listOf("a", "b") eq "[a, b]"
}

Mit dem Schlüsselwort vararg können Sie eine Funktion definieren, die eine beliebige Anzahl von Argumenten annimmt, genau wie listOf(). vararg ist die Abkürzung für variable Argumentliste:

// Varargs/VariableArgList.kt
package varargs

fun v(s: String, vararg d: Double) {}

fun main() {
 v("abc", 1.0, 2.0)
 v("def", 1.0, 2.0, 3.0, 4.0)
 v("ghi", 1.0, 2.0, 3.0, 4.0, 5.0, 6.0)
}

Eine Funktionsdefinition kann nur einen Parameter als vararg angeben. Obwohl es möglich ist, ein beliebiges Element in der Parameterliste als vararg anzugeben, ist es normalerweise am einfachsten, dies für das letzte zu tun.

vararg ermöglicht es Ihnen, eine beliebige Anzahl (einschließlich null) von Argumenten zu übergeben. Alle Argumente müssen vom angegebenen Typ sein. Auf vararg-Argumente wird mit dem Parameternamen zugegriffen, der zu einem Array wird:

// Varargs/VarargSum.kt
package varargs
import atomictest.eq

fun sum(vararg numbers: Int): Int {
 var total = 0
 for (n in numbers) {
 total += n
 }
 return total
}

fun main() {
 sum(13, 27, 44) eq 84
 sum(1, 3, 5, 7, 9, 11) eq 36
 sum() eq 0
}

Obwohl Arrays und Lists ähnlich aussehen, sind sie unterschiedlich implementiert — List ist eine reguläre Bibliotheksklasse, während Array spezielle Unterstützung auf niedriger Ebene hat. Array stammt aus der Anforderung von Kotlin, mit anderen Sprachen, insbesondere Java, kompatibel zu sein.

Im täglichen Programmieren verwenden Sie eine List, wenn Sie eine einfache Sequenz benötigen. Verwenden Sie Arrays nur, wenn eine Drittanbieter-API ein Array erfordert oder wenn Sie mit varargs arbeiten.

In den meisten Fällen können Sie einfach ignorieren, dass vararg ein Array erzeugt, und es behandeln, als ob es eine List wäre:

// Varargs/VarargLikeList.kt
package varargs
import atomictest.eq

fun evaluate(vararg ints: Int) =
 "Size: ${ints.size}\n" +
 "Sum: ${ints.sum()}\n" +
 "Average: ${ints.average()}"

fun main() {
 evaluate(10, -3, 8, 1, 9) eq """
 Size: 5
 Sum: 25
 Average: 5.0
 """
}

Sie können ein Array von Elementen überall dort übergeben, wo ein vararg akzeptiert wird. Um ein Array zu erstellen, verwenden Sie arrayOf() auf die gleiche Weise wie listOf(). Ein Array ist immer veränderbar. Um ein Array in eine Folge von Argumenten (nicht nur ein einzelnes Element des Typs Array) zu konvertieren, verwenden Sie den Spread-Operator, *:

// Varargs/SpreadOperator.kt
import varargs.sum
import atomictest.eq

fun main() {
 val array = intArrayOf(4, 5)
 sum(1, 2, 3, *array, 6) eq 21 // [1]
 // Doesn't compile:
 // sum(1, 2, 3, array, 6)

 val list = listOf(9, 10, 11)
 sum(*list.toIntArray()) eq 30 // [2]
}

Wenn Sie ein Array von primitiven Typen (wie Int, Double oder Boolean) wie im obigen Beispiel übergeben, muss die Array-Erstellungsfunktion spezifisch typisiert sein. Wenn Sie arrayOf(4, 5) anstelle von intArrayOf(4, 5) verwenden, wird Zeile [1] einen Fehler erzeugen, der besagt, dass der abgeleitete Typ ist Array<Int>, aber IntArray wurde erwartet.

Der Streuoperator funktioniert nur mit Arrays. Wenn Sie eine List haben, die Sie als Folge von Argumenten übergeben möchten, konvertieren Sie sie zuerst in ein Array und wenden Sie dann den Streuoperator an, wie in [2]. Da das Ergebnis ein Array eines primitiven Typs ist, müssen wir erneut die spezifische Konvertierungsfunktion toIntArray() verwenden.

Der Streuoperator ist besonders hilfreich, wenn Sie vararg-Argumente an eine andere Funktion übergeben müssen, die ebenfalls varargs erwartet:

// Varargs/TwoFunctionsWithVarargs.kt
package varargs
import atomictest.eq

fun first(vararg numbers: Int): String {
 var result = ""
 for (i in numbers) {
 result += "[$i]"
 }
 return result
}

fun second(vararg numbers: Int) =
 first(*numbers)

fun main() {
 second(7, 9, 32) eq "[7][9][32]"
}

Kommandozeilenargumente

Beim Aufrufen eines Programms auf der Kommandozeile können Sie ihm eine variable Anzahl von Argumenten übergeben. Um Kommandozeilenargumente zu erfassen, müssen Sie main() einen bestimmten Parameter bereitstellen:

// Varargs/MainArgs.kt

fun main(args: Array<String>) {
 for (a in args) {
 println(a)
 }
}

Der Parameter wird traditionell args genannt (obwohl Sie ihn beliebig nennen können), und der Typ für args kann nur Array<String> (Array von String) sein.

Wenn Sie IntelliJ IDEA verwenden, können Sie Programmargumente über die Bearbeitung der entsprechenden “Run-Konfiguration” übergeben, wie im letzten Übungsteil für dieses Atom gezeigt.

Sie können auch den kotlinc-Compiler verwenden, um ein Befehlszeilenprogramm zu erstellen. Wenn kotlinc nicht auf Ihrem Computer vorhanden ist, folgen Sie den Anweisungen auf der Kotlin-Hauptseite. Nachdem Sie den Code für MainArgs.kt eingegeben und gespeichert haben, geben Sie Folgendes an einer Eingabeaufforderung ein:

kotlinc MainArgs.kt

Sie geben die command-line arguments nach dem program invocation ein, so:

kotlin MainArgsKt hamster 42 3.14159

Sie werden diese Ausgabe sehen:

hamster
42
3.14159

Wenn Sie einen String-Parameter in einen spezifischen Typ umwandeln möchten, stellt Kotlin Konvertierungsfunktionen bereit, wie zum Beispiel toInt() für die Umwandlung in einen Int und toFloat() für die Umwandlung in einen Float. Bei der Verwendung dieser Funktionen wird angenommen, dass die Kommandozeilenargumente in einer bestimmten Reihenfolge erscheinen. Hier erwartet das Programm einen String, gefolgt von etwas, das in einen Int umwandelbar ist, gefolgt von etwas, das in einen Float umwandelbar ist:

// Varargs/MainArgConversion.kt

fun main(args: Array<String>) {
 if (args.size < 3) return
 val first = args[0]
 val second = args[1].toInt()
 val third = args[2].toFloat()
 println("$first $second $third")
}

Die erste Zeile in main() beendet das Programm, wenn nicht genügend Argumente vorhanden sind. Wenn Sie nichts angeben, das in ein Int und ein Float umgewandelt werden kann, als zweites und drittes Kommandozeilenargument, werden Sie Laufzeitfehler sehen (versuchen Sie es, um die Fehler zu sehen).

Kompilieren und führen Sie MainArgConversion.kt mit denselben Kommandozeilenargumenten aus, die wir zuvor verwendet haben, und Sie werden sehen:

 hamster 42 3.14159

 Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Mengen

 Ein Set ist eine Sammlung, die nur ein Element jedes Wertes zulässt.

Die häufigste Set-Aktivität ist der Test auf Mitgliedschaft mit in oder
contains():

// Sets/Sets.kt
import atomictest.eq

fun main() {
 val intSet = setOf(1, 1, 2, 3, 9, 9, 4)
 // No duplicates:
 intSet eq setOf(1, 2, 3, 4, 9)

 // Element order is unimportant:
 setOf(1, 2) eq setOf(2, 1)

 // Set membership:
 (9 in intSet) eq true
 (99 in intSet) eq false

 intSet.contains(9) eq true
 intSet.contains(99) eq false

 // Does this set contain another set?
 intSet.containsAll(setOf(1, 9, 2)) eq true

 // Set union:
 intSet.union(setOf(3, 4, 5, 6)) eq
 setOf(1, 2, 3, 4, 5, 6, 9)

 // Set intersection:
 intSet intersect setOf(0, 1, 2, 7, 8) eq
 setOf(1, 2)

 // Set difference:
 intSet subtract setOf(0, 1, 9, 10) eq
 setOf(2, 3, 4)
 intSet - setOf(0, 1, 9, 10) eq
 setOf(2, 3, 4)
}

Dieses Beispiel zeigt:

 	Das Platzieren von doppelten Elementen in einem Set entfernt diese Duplikate automatisch.

 	Die Reihenfolge der Elemente ist bei Mengen nicht wichtig. Zwei Mengen sind gleich, wenn sie die gleichen Elemente enthalten.

 	Sowohl in als auch contains() testen auf Mitgliedschaft.

 	Sie können die üblichen Venn-Diagramm-Operationen wie Überprüfung auf Teilmengen, Vereinigung, Schnittmenge und Differenz durchführen, entweder mit Punktnotation (set.union(other)) oder Infix-Notation (set intersect other). Die Funktionen union, intersect und subtract können mit Infix-Notation verwendet werden.

 	Die Mengendifferenz kann entweder mit subtract() oder dem Minus-Operator ausgedrückt werden.

Um Duplikate aus einer Liste zu entfernen, konvertieren Sie sie in ein Set:

// Sets/RemoveDuplicates.kt
import atomictest.eq

fun main() {
 val list = listOf(3, 3, 2, 1, 2)
 list.toSet() eq setOf(1, 2, 3)
 list.distinct() eq listOf(3, 2, 1)
 "abbcc".toSet() eq setOf('a', 'b', 'c')
}

Sie können auch distinct() verwenden, das eine List zurückgibt. Sie können toSet() auf einem String aufrufen, um ihn in eine Menge einzigartiger Zeichen umzuwandeln.

Wie bei List bietet Kotlin zwei Erstellungsfunktionen für Set. Das Ergebnis von setOf() ist schreibgeschützt. Um ein veränderbares Set zu erstellen, verwenden Sie mutableSetOf():

// Sets/MutableSet.kt
import atomictest.eq

fun main() {
 val mutableSet = mutableSetOf<Int>()
 mutableSet += 42
 mutableSet += 42
 mutableSet eq setOf(42)
 mutableSet -= 42
 mutableSet eq setOf<Int>()
}

Die Operatoren += und -= fügen Elemente zu Sets hinzu bzw. entfernen sie, genau wie bei Lists.

 Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Karten

 Eine Map verbindet keys mit values und sucht einen Wert anhand eines Schlüssels.

Sie erstellen eine Map, indem Sie mapOf() Schlüssel-Wert-Paare bereitstellen. Mit to trennen wir jeden Schlüssel von seinem zugehörigen Wert:

// Maps/Maps.kt
import atomictest.eq

fun main() {
 val constants = mapOf(
 "Pi" to 3.141,
 "e" to 2.718,
 "phi" to 1.618
)
 constants eq
 "{Pi=3.141, e=2.718, phi=1.618}"

 // Look up a value from a key:
 constants["e"] eq 2.718 // [1]
 constants.keys eq setOf("Pi", "e", "phi")
 constants.values eq "[3.141, 2.718, 1.618]"

 var s = ""
 // Iterate through key-value pairs:
 for (entry in constants) { // [2]
 s += "${entry.key}=${entry.value}, "
 }
 s eq "Pi=3.141, e=2.718, phi=1.618,"

 s = ""
 // Unpack during iteration:
 for ((key, value) in constants) // [3]
 s += "$key=$value, "
 s eq "Pi=3.141, e=2.718, phi=1.618,"
}

 	
[1] Der [] Operator sucht einen Wert mithilfe eines Schlüssels. Sie können alle Schlüssel mit keys und alle Werte mit values erzeugen. Der Aufruf von keys erzeugt eine Set, da alle Schlüssel in einem Map einzigartig sein müssen, andernfalls gäbe es eine Mehrdeutigkeit bei einer Suche.

 	
[2] Das Iterieren durch ein Map erzeugt Schlüssel-Wert-Paare als Mapeinträge.

 	
[3] Sie können Schlüssel und Werte beim Iterieren entpacken.

Ein einfaches Map ist schreibgeschützt. Hier ist ein MutableMap:

// Maps/MutableMaps.kt
import atomictest.eq

fun main() {
 val m =
 mutableMapOf(5 to "five", 6 to "six")
 m[5] eq "five"
 m[5] = "5ive"
 m[5] eq "5ive"
 m += 4 to "four"
 m eq mapOf(5 to "5ive",
 4 to "four", 6 to "six")
}

map[key] = value fügt den Wert hinzu oder ändert ihn, der mit dem Schlüssel verknüpft ist.
Sie können auch explizit ein Paar hinzufügen, indem Sie map += key to value verwenden.

mapOf() und mutableMapOf() bewahren die Reihenfolge, in der die Elemente in die Map eingefügt werden. Dies ist nicht für andere Typen von Map garantiert.

Eine schreibgeschützte Map erlaubt keine Änderungen:

// Maps/ReadOnlyMaps.kt
import atomictest.eq

fun main() {
 val m = mapOf(5 to "five", 6 to "six")
 m[5] eq "five"
 // m[5] = "5ive" // Fails
 // m += (4 to "four") // Fails
 m + (4 to "four") // Doesn't change m
 m eq mapOf(5 to "five", 6 to "six")
 val m2 = m + (4 to "four")
 m2 eq mapOf(
 5 to "five", 6 to "six", 4 to "four")
}

Die Definition von m erstellt eine Map, die Ints mit Strings verknüpft. Wenn wir versuchen, einen String zu ersetzen, gibt Kotlin einen Fehler aus.

Ein Ausdruck mit + erstellt eine neue Map, die sowohl die alten Elemente als auch das neue enthält, aber die ursprüngliche Map nicht beeinflusst. Die einzige Möglichkeit, ein Element zu einer unveränderlichen Map “hinzuzufügen”, besteht darin, eine neue Map zu erstellen.

Eine Map gibt null zurück, wenn sie keinen Eintrag für einen gegebenen Schlüssel enthält. Wenn Sie ein Ergebnis benötigen, das nicht null sein kann, verwenden Sie getValue() und fangen Sie NoSuchElementException ab, falls der Schlüssel fehlt:

// Maps/GetValue.kt
import atomictest.*

fun main() {
 val map = mapOf('a' to "attempt")
 map['b'] eq null
 capture {
 map.getValue('b')
 } eq "NoSuchElementException: " +
 "Key b is missing in the map."
 map.getOrDefault('a', "??") eq "attempt"
 map.getOrDefault('b', "??") eq "??"
}

getOrDefault() ist normalerweise eine angenehmere Alternative zu null oder einer Ausnahme.

Sie können Klasseninstanzen als Werte in einem Map speichern. Hier ist ein Map, das einen Contact anhand eines Zahlen-String abruft:

// Maps/ContactMap.kt
package maps
import atomictest.eq

class Contact(
 val name: String,
 val phone: String
) {
 override fun toString() =
 "Contact('$name', '$phone')"
}

fun main() {
 val miffy = Contact("Miffy", "1-234-567890")
 val cleo = Contact("Cleo", "098-765-4321")
 val contacts = mapOf(
 miffy.phone to miffy,
 cleo.phone to cleo)
 contacts["1-234-567890"] eq miffy
 contacts["1-111-111111"] eq null
}

Es ist möglich, Klasseninstanzen als Schlüssel in einer Map zu verwenden, aber das ist komplizierter, daher besprechen wir es später im Buch.

 	-

Maps sehen aus wie einfache kleine Datenbanken. Sie werden manchmal assoziative Arrays genannt, weil sie Schlüssel mit Werten verknüpfen. Obwohl sie im Vergleich zu einer voll ausgestatteten Datenbank ziemlich begrenzt sind, sind sie dennoch bemerkenswert nützlich (und weitaus effizienter als eine Datenbank).

 Übungen und Lösungen finden Sie auf www.AtomicKotlin.com.

Eigenschaftszugriffe

 Um eine Eigenschaft zu lesen, verwenden Sie ihren Namen. Um einer veränderlichen Eigenschaft einen Wert zuzuweisen,
verwenden Sie den Zuweisungsoperator =.

Dies liest und schreibt die Eigenschaft i:

// PropertyAccessors/Data.kt
package propertyaccessors
import atomictest.eq

class Data(var i: Int)

fun main() {
 val data = Data(10)
 data.i eq 10 // Read the 'i' property
 data.i = 20 // Write to the 'i' property
}

Dies scheint ein direkter Zugriff auf das Speicherelement namens i zu sein.
Allerdings ruft Kotlin Funktionen auf, um die Lese- und Schreiboperationen durchzuführen.
Wie erwartet, lesen und schreiben diese Funktionen standardmäßig die in i gespeicherten Daten.
In diesem Abschnitt lernen Sie, Ihre eigenen Eigenschaftszugriffe zu schreiben, um die Lese- und Schreibaktionen anzupassen.

Der Zugriff, der verwendet wird, um den Wert einer Eigenschaft zu erhalten, wird Getter genannt.
Sie erstellen einen Getter, indem Sie get() direkt nach der Eigenschaftsdefinition definieren.
Der Zugriff, der verwendet wird, um eine änderbare Eigenschaft zu modifizieren, wird Setter genannt.
Sie erstellen einen Setter, indem Sie set() direkt nach der Eigenschaftsdefinition definieren.

Die in dem folgenden Beispiel definierten Eigenschaftszugriffe imitieren die von Kotlin generierten Standardimplementierungen.
Wir zeigen zusätzliche Informationen an, damit Sie sehen können, dass die Eigenschaftszugriffe tatsächlich während der Lese- und Schreibvorgänge aufgerufen werden.
Wir rücken get() und set() ein, um sie visuell mit der Eigenschaft zu verknüpfen, aber die eigentliche Verknüpfung erfolgt, weil get() und set() direkt nach dieser Eigenschaft definiert sind (Kotlin kümmert sich nicht um die Einrückung):

// PropertyAccessors/Default.kt
package propertyaccessors
import atomictest.*

class Default {
 var i: Int = 0
 get() {
 trace("get()")
 return field // [1]
 }
 set(value) {
 trace("set($value)")
 field = value // [2]
 }
}

fun main() {
 val d = Default()
 d.i = 2
 trace(d.i)
 trace eq """
 set(2)
 get()
 2
 """
}

Die Reihenfolge der Definition von get() und set() ist unwichtig. Sie können get() definieren, ohne set() zu definieren, und umgekehrt.

Das Standardverhalten einer Eigenschaft gibt ihren gespeicherten Wert über einen Getter zurück und modifiziert ihn mit einem Setter—die Aktionen von [1] und [2]. Innerhalb des Getters und Setters wird der gespeicherte Wert indirekt mit dem Schlüsselwort field manipuliert, das nur innerhalb dieser beiden Funktionen zugänglich ist.

Das nächste Beispiel verwendet die Standardimplementierung des Getters und fügt einen Setter hinzu, um Änderungen an der Eigenschaft n nachzuverfolgen:

// PropertyAccessors/LogChanges.kt
package propertyaccessors
import atomictest.*

class LogChanges {
 var n: Int = 0
 set(value) {
 trace("$field becomes $value")
 field = value
 }
}

fun main() {
 val lc = LogChanges()
 lc.n eq 0
 lc.n = 2
 lc.n eq 2
 trace eq "0 becomes 2"
}

Wenn Sie eine Eigenschaft als private definieren, werden beide Zugriffsmethoden private. Sie können auch den Setter private machen und den Getter public. Dann können Sie die Eigenschaft außerhalb der Klasse lesen, aber ihren Wert nur innerhalb der Klasse ändern:

// PropertyAccessors/Counter.kt
package propertyaccessors
import atomictest.eq

class Counter {
 var value: Int = 0
 private set
 fun inc() = value++
}

fun main() {
 val counter = Counter()
 repeat(10) {
 counter.inc()
 }
 counter.value eq 10
}

Mit private set kontrollieren wir die Eigenschaft value, sodass sie nur um eins erhöht werden kann.

Normale Eigenschaften speichern ihre Daten in einem Feld. Man kann auch eine Eigenschaft erstellen, die kein Feld hat:

// PropertyAccessors/Hamsters.kt
package propertyaccessors
import atomictest.eq

class Hamster(val name: String)

class Cage(private val maxCapacity: Int) {
 private val hamsters =
 mutableListOf<Hamster>()
 val capacity: Int
 get() = maxCapacity - hamsters.size
 val full: Boolean
 get() = hamsters.size == maxCapacity
 fun put(hamster: Hamster): Boolean =
 if (full)
 false
 else {
 hamsters += hamster
 true
 }
 fun take(): Hamster =
 hamsters.removeAt(0)
}

fun main() {
 val cage = Cage(2)
 cage.full eq false
 cage.capacity eq 2
 cage.put(Hamster("Alice")) eq true
 cage.put(Hamster("Bob")) eq true
 cage.full eq true
 cage.capacity eq 0
 cage.put(Hamster("Charlie")) eq false
 cage.take()
 cage.capacity eq 1
}

Die Eigenschaften capacity und full enthalten keinen zugrunde liegenden Zustand—sie werden zum Zeitpunkt jedes Zugriffs berechnet. Sowohl capacity als auch full sind ähnlich wie Funktionen, und Sie können sie als solche definieren:

// PropertyAccessors/Hamsters2.kt
package propertyaccessors

class Cage2(private val maxCapacity: Int) {
 private val hamsters =
 mutableListOf<Hamster>()
 fun capacity(): Int =
 maxCapacity - hamsters.size
 fun isFull(): Boolean =
 hamsters.size == maxCapacity
}

In diesem Fall verbessert die Verwendung von Eigenschaften die Lesbarkeit, da Kapazität und
Fülle Eigenschaften des Käfigs sind. Wandeln Sie jedoch nicht einfach alle Ihre
Funktionen in Eigenschaften um—sehen Sie sich zuerst an, wie sie sich lesen.

 	-

Die Kotlin-Stilrichtlinie bevorzugt Eigenschaften gegenüber Funktionen, wenn der Wert
günstig zu berechnen ist und die Eigenschaft bei jedem Aufruf dasselbe Ergebnis liefert,
solange sich der Objektzustand nicht geändert hat.

Eigenschaftszugriffe bieten eine Art Schutz für Eigenschaften. Viele
objektorientierte Sprachen verlassen sich darauf, ein physisches Feld private zu machen, um
den Zugriff auf diese Eigenschaft zu kontrollieren. Mit Eigenschaftszugriffen können Sie Code hinzufügen, um diesen Zugriff zu kontrollieren oder zu verändern, während Sie jedem erlauben, eine Eigenschaft zu verwenden.

 Übungen und Lösungen finden Sie auf www.AtomicKotlin.com.

Zusammenfassung 2

 Dieses Atom fasst die Atome in Abschnitt II zusammen und überprüft sie, von
Objects Everywhere bis
Property Accessors.

Wenn Sie ein erfahrener Programmierer sind, ist dies Ihr nächstes Atom nach
Summary 1, und Sie werden die Atome danach der Reihe nach
durchgehen.

Neue Programmierer sollten dieses Atom lesen und die Übungen zur Überprüfung
durchführen. Wenn Ihnen hier Informationen unklar sind, gehen Sie zurück und
studieren Sie das Atom zu diesem Thema.

Die Themen erscheinen in einer geeigneten Reihenfolge für erfahrene Programmierer, was nicht der gleichen Reihenfolge der Atome im Buch entspricht. Zum Beispiel beginnen wir mit der Einführung von Paketen und Importen, damit wir unser minimales Test-Framework für den Rest des Atoms verwenden können.

Pakete & Testen

Eine beliebige Anzahl von wiederverwendbaren Bibliothekskomponenten kann unter einem einzigen Bibliotheksnamen mit dem package-Schlüsselwort gebündelt werden:

// Summary2/ALibrary.kt
package com.yoururl.libraryname

// Components to reuse ...
fun f() = "result"

Sie können mehrere Komponenten in einer einzigen Datei platzieren oder Komponenten auf mehrere Dateien mit demselben Paketnamen verteilen. Hier haben wir f() als einzige Komponente definiert.

Um es eindeutig zu machen, beginnt der Paketname konventionell mit Ihrem umgekehrten Domain-Namen. In diesem Beispiel ist der Domain-Name yoururl.com.

In Kotlin kann der Paketname unabhängig von dem Verzeichnis sein, in dem sich seine Inhalte befinden. Java verlangt, dass die Verzeichnisstruktur mit dem vollqualifizierten Paketnamen übereinstimmt, sodass das Paket com.yoururl.libraryname im Verzeichnis com/yoururl/libraryname liegen sollte. Für gemischte Kotlin- und Java-Projekte empfiehlt der Kotlin-Stilführer dieselbe Praxis. Für reine Kotlin-Projekte platzieren Sie das Verzeichnis libraryname auf der obersten Ebene der Verzeichnisstruktur Ihres Projekts.

Eine Importanweisung bringt einen oder mehrere Namen in den aktuellen Namensraum:

// Summary2/UseALibrary.kt
import com.yoururl.libraryname.*

fun main() {
 val x = f()
}

Der Stern nach libraryname weist Kotlin an, alle Komponenten einer
Bibliothek zu importieren. Sie können auch Komponenten einzeln auswählen; Details finden Sie unter
Pakete.

Im restlichen Teil dieses Buches verwenden wir package-Anweisungen für jede Datei, die
Funktionen, Klassen usw. außerhalb von main() definiert. Dies verhindert Namenskonflikte mit anderen Dateien im Buch. In der Regel setzen wir keine package-Anweisung in eine Datei, die nur ein main() enthält.

Eine wichtige Bibliothek für dieses Buch ist atomictest, unser einfaches Test-Framework. atomictest ist definiert in Anhang A: AtomicTest, obwohl es Sprachmerkmale verwendet, die Sie zu diesem Zeitpunkt im Buch noch nicht verstehen werden.

Nach dem Importieren von atomictest verwenden Sie eq (gleich) und neq (ungleich) fast so, als wären sie Sprachschlüsselwörter:

// Summary2/UsingAtomicTest.kt
import atomictest.*

fun main() {
 val pi = 3.14
 val pie = "A round dessert"
 pi eq 3.14
 pie eq "A round dessert"
 pi neq pie
}
/* Output:
3.14
A round dessert
3.14
*/

Die Fähigkeit, eq/neq ohne Punkte oder Klammern zu verwenden, wird als Infix-Notation bezeichnet. Sie können infix-Funktionen entweder auf die reguläre Weise aufrufen: pi.eq(3.14), oder unter Verwendung der Infix-Notation: pi eq 3.14. Sowohl eq als auch neq sind Wahrheitsaussagen, die das Ergebnis von der linken Seite der eq/neq-Anweisung anzeigen, sowie eine Fehlermeldung, wenn der Ausdruck auf der rechten Seite von eq nicht gleichwertig zur linken ist (oder gleichwertig ist, im Fall von neq). Auf diese Weise sehen Sie verifizierte Ergebnisse im Quellcode.

atomictest.trace verwendet die Funktionsaufruf-Syntax, um Ergebnisse hinzuzufügen, die dann mit eq validiert werden können:

// Testing/UsingTrace.kt
import atomictest.*

fun main() {
 trace("Hello,")
 trace(47)
 trace("World!")
 trace eq """
 Hello,
 47
 World!
 """
}

Sie können println() effektiv durch trace() ersetzen.

Objekte überall

Kotlin ist eine hybrid objekt-funktionale Sprache: Sie unterstützt sowohl objektorientierte als auch funktionale Programmierparadigmen.

Objekte enthalten vals und vars, um Daten zu speichern (diese werden Eigenschaften genannt) und führen Operationen mit Funktionen aus, die innerhalb einer Klasse definiert sind, sogenannte Mitgliedsfunktionen (wenn es eindeutig ist, sagen wir einfach “Funktionen”). Eine Klasse definiert Eigenschaften und Mitgliedsfunktionen für das, was im Wesentlichen ein neuer, benutzerdefinierter Datentyp ist. Wenn Sie ein val oder var einer Klasse erstellen, nennt man dies ein Objekt erstellen oder eine Instanz erstellen.

Eine besonders nützliche Art von Objekt ist der Container, auch Sammlung genannt. Ein Container ist ein Objekt, das andere Objekte hält. In diesem Buch verwenden wir oft die List, da sie die vielseitigste Sequenz ist. Hier führen wir mehrere Operationen an einer List durch, die Doubles enthält. listOf() erstellt eine neue List aus ihren Argumenten:

// Summary2/ListCollection.kt
import atomictest.eq

fun main() {
 val lst = listOf(19.2, 88.3, 22.1)
 lst[1] eq 88.3 // Indexing
 lst.reversed() eq listOf(22.1, 88.3, 19.2)
 lst.sorted() eq listOf(19.2, 22.1, 88.3)
 lst.sum() eq 129.6
}

Kein import-Statement ist erforderlich, um eine List zu verwenden.

Kotlin verwendet eckige Klammern für die Indexierung in Sequenzen. Die Indexierung beginnt bei Null.

Dieses Beispiel zeigt auch einige der vielen Standardbibliotheksfunktionen, die für Lists verfügbar sind: sorted(), reversed(), und sum(). Um diese Funktionen zu verstehen, konsultieren Sie die Kotlin Dokumentation online.

Wenn Sie sorted() oder reversed() aufrufen, wird lst nicht verändert. Stattdessen wird eine neue List erstellt und zurückgegeben, die das gewünschte Ergebnis enthält. Dieser Ansatz, das Originalobjekt niemals zu verändern, ist durchgehend in den Kotlin-Bibliotheken konsistent, und Sie sollten bestrebt sein, diesem Muster zu folgen, wenn Sie Ihren eigenen Code schreiben.

Klassen erstellen

Eine Klassendefinition besteht aus dem Schlüsselwort class, einem Namen für die Klasse und einem optionalen Körper. Der Körper enthält Eigenschaftsdefinitionen (vals und vars) und Funktionsdefinitionen.

Dieses Beispiel definiert eine NoBody-Klasse ohne Körper und Klassen mit val-Eigenschaften:

// Summary2/ClassBodies.kt
package summary2

class NoBody

class SomeBody {
 val name = "Janet Doe"
}

class EveryBody {
 val all = listOf(SomeBody(),
 SomeBody(), SomeBody())
}

fun main() {
 val nb = NoBody()
 val sb = SomeBody()
 val eb = EveryBody()
}

Um eine Instanz einer Klasse zu erstellen, setzen Sie Klammern nach ihrem Namen, sowie Argumente, falls diese erforderlich sind.

Eigenschaften innerhalb von Klassenkörpern können jeden Typ haben. SomeBody enthält eine Eigenschaft vom Typ String, und die Eigenschaft von EveryBody ist eine List, die SomeBody-Objekte hält.

Hier ist eine Klasse mit Mitgliedsfunktionen:

// Summary2/Temperature.kt
package summary2
import atomictest.eq

class Temperature {
 var current = 0.0
 var scale = "f"
 fun setFahrenheit(now: Double) {
 current = now
 scale = "f"
 }
 fun setCelsius(now: Double) {
 current = now
 scale = "c"
 }
 fun getFahrenheit(): Double =
 if (scale == "f")
 current
 else
 current * 9.0 / 5.0 + 32.0
 fun getCelsius(): Double =
 if (scale == "c")
 current
 else
 (current - 32.0) * 5.0 / 9.0
}

fun main() {
 val temp = Temperature() // [1]
 temp.setFahrenheit(98.6)
 temp.getFahrenheit() eq 98.6
 temp.getCelsius() eq 37.0
 temp.setCelsius(100.0)
 temp.getFahrenheit() eq 212.0
}

Diese Mitgliedsfunktionen sind genau wie die auf oberster Ebene definierten Funktionen außerhalb von Klassen, außer dass sie zur Klasse gehören und uneingeschränkten Zugriff auf die anderen Mitglieder der Klasse haben, wie current und scale. Mitgliedsfunktionen können auch andere Mitgliedsfunktionen in derselben Klasse ohne Qualifikation aufrufen.

 	
[1] Obwohl temp ein val ist, modifizieren wir später das Temperature-Objekt. Die val-Definition verhindert, dass die Referenz temp auf ein neues Objekt umgeschrieben wird, schränkt jedoch das Verhalten des Objekts selbst nicht ein.

Die folgenden zwei Klassen sind die Basis eines Tic-Tac-Toe-Spiels:

// Summary2/TicTacToe.kt
package summary2
import atomictest.eq

class Cell {
 var entry = ' ' // [1]
 fun setValue(e: Char): String = // [2]
 if (entry == ' ' &&
 (e == 'X' || e == 'O')) {
 entry = e
 "Successful move"
 } else
 "Invalid move"
}

class Grid {
 val cells = listOf(
 listOf(Cell(), Cell(), Cell()),
 listOf(Cell(), Cell(), Cell()),
 listOf(Cell(), Cell(), Cell())
)
 fun play(e: Char, x: Int, y: Int): String =
 if (x !in 0..2 || y !in 0..2)
 "Invalid move"
 else
 cells[x][y].setValue(e) // [3]
}

fun main() {
 val grid = Grid()
 grid.play('X', 1, 1) eq "Successful move"
 grid.play('X', 1, 1) eq "Invalid move"
 grid.play('O', 1, 3) eq "Invalid move"
}

Die Grid-Klasse enthält eine List, die drei Lists enthält, von denen jede drei Cells enthält — eine Matrix.

 	
[1] Die entry-Eigenschaft in Cell ist ein var, sodass sie modifiziert werden kann. Die einfachen Anführungszeichen in der Initialisierung erzeugen einen Char-Typ, daher müssen alle Zuweisungen zu entry ebenfalls Chars sein.

 	
[2] setValue() prüft, ob die Cell verfügbar ist und ob Sie das richtige Zeichen übergeben haben. Es gibt ein String-Ergebnis zurück, um Erfolg oder Misserfolg anzuzeigen.

 	
[3] play() überprüft, ob die x- und y-Argumente im Bereich liegen, und indiziert dann in die Matrix, wobei es sich auf die von setValue() durchgeführten Tests stützt.

Konstruktoren

Konstruktoren erstellen neue Objekte. Sie übergeben Informationen an einen Konstruktor mithilfe seiner Parameterliste, die direkt nach dem Klassennamen in Klammern gesetzt wird. Ein Konstruktoraufruf sieht daher wie ein Funktionsaufruf aus, außer dass der Anfangsbuchstabe des Namens großgeschrieben wird (gemäß dem Kotlin-Stilguide). Der Konstruktor gibt ein Objekt der Klasse zurück:

// Summary2/WildAnimals.kt
package summary2
import atomictest.eq

class Badger(id: String, years: Int) {
 val name = id
 val age = years
 override fun toString() =
 "Badger: $name, age: $age"
}

class Snake(
 var type: String,
 var length: Double
) {
 override fun toString() =
 "Snake: $type, length: $length"
}

class Moose(
 val age: Int,
 val height: Double
) {
 override fun toString() =
 "Moose, age: $age, height: $height"
}

fun main() {
 Badger("Bob", 11) eq "Badger: Bob, age: 11"
 Snake("Garden", 2.4) eq
 "Snake: Garden, length: 2.4"
 Moose(16, 7.2) eq
 "Moose, age: 16, height: 7.2"
}

Die Parameter id und years in Badger sind nur im Konstruktor-Körper verfügbar. Der Konstruktor-Körper besteht aus den Codezeilen, die keine Funktionsdefinitionen sind; in diesem Fall die Definitionen für name und age.

Oft möchte man, dass die Konstruktor-Parameter in Teilen der Klasse verfügbar sind, die nicht zum Konstruktor-Körper gehören, ohne dass man neue Bezeichner explizit definieren muss, wie wir es bei name und age getan haben. Wenn Sie Ihre Parameter als vars oder vals definieren, werden sie zu Eigenschaften und sind überall in der Klasse zugänglich. Sowohl Snake als auch Moose verwenden diesen Ansatz, und Sie können sehen, dass die Konstruktor-Parameter jetzt innerhalb ihrer jeweiligen toString()-Funktionen verfügbar sind.

Mit val deklarierte Konstruktor-Parameter können nicht geändert werden, aber die mit var deklarierten schon.

Wann immer Sie ein Objekt in einer Situation verwenden, die einen String erwartet, erzeugt Kotlin eine String-Darstellung dieses Objekts, indem es seine toString()-Mitgliedsfunktion aufruft. Um eine toString() zu definieren, müssen Sie ein neues Schlüsselwort verstehen: override. Dies ist notwendig (Kotlin besteht darauf), weil toString() bereits definiert ist. override teilt Kotlin mit, dass wir tatsächlich die Standard-toString() durch unsere eigene Definition ersetzen wollen. Die Explizität von override macht dies dem Leser klar und hilft, Fehler zu vermeiden.

Beachten Sie das Format der mehrzeiligen Parameterliste für Snake und Moose — dies ist der empfohlene Standard, wenn Sie zu viele Parameter haben, um sie in eine Zeile zu passen, sowohl für Konstruktoren als auch für Funktionen.

Einschränkung der Sichtbarkeit

Kotlin bietet Zugriffsmodifikatoren, die denen in anderen Sprachen wie C++ oder Java ähnlich sind. Diese ermöglichen es den Erstellern von Komponenten, zu entscheiden, was für den Client-Programmierer verfügbar ist. Zu den Zugriffsmodifikatoren von Kotlin gehören die Schlüsselwörter public, private, protected und internal. protected wird später erklärt.

Ein Zugriffsmodifikator wie public oder private erscheint vor der Definition einer Klasse, Funktion oder Eigenschaft. Jeder Zugriffsmodifikator steuert nur den Zugriff auf diese spezifische Definition.

Eine public-Definition ist für jeden verfügbar, insbesondere für den Client-Programmierer, der diese Komponente verwendet. Daher wirken sich alle Änderungen an einer public-Definition auf den Client-Code aus.

Wenn Sie keinen Modifikator angeben, ist Ihre Definition automatisch public. Aus Gründen der Klarheit geben Programmierer in bestimmten Fällen manchmal trotzdem redundant public an.

Wenn Sie eine Klasse, eine top-level Funktion oder Eigenschaft als private definieren, ist sie nur innerhalb dieser Datei verfügbar:

// Summary2/Boxes.kt
package summary2
import atomictest.*

private var count = 0 // [1]

private class Box(val dimension: Int) { // [2]
 fun volume() =
 dimension * dimension * dimension
 override fun toString() =
 "Box volume: ${volume()}"
}

private fun countBox(box: Box) { // [3]
 trace("$box")
 count++
}

fun countBoxes() {
 countBox(Box(4))
 countBox(Box(5))
}

fun main() {
 countBoxes()
 trace("$count boxes")
 trace eq """
 Box volume: 64
 Box volume: 125
 2 boxes
 """
}

Sie können auf private Eigenschaften ([1]), Klassen ([2]) und Funktionen
([3]) nur von anderen Funktionen und Klassen in der Datei Boxes.kt zugreifen. Kotlin
verhindert, dass Sie auf private Top-Level-Elemente von einer anderen Datei aus zugreifen.

Klassenmitglieder können private sein:

// Summary2/JetPack.kt
package summary2
import atomictest.eq

class JetPack(
 private var fuel: Double // [1]
) {
 private var warning = false
 private fun burn() = // [2]
 if (fuel - 1 <= 0) {
 fuel = 0.0
 warning = true
 } else
 fuel -= 1
 public fun fly() = burn() // [3]
 fun check() = // [4]
 if (warning) // [5]
 "Warning"
 else
 "OK"
}

fun main() {
 val jetPack = JetPack(3.0)
 while (jetPack.check() != "Warning") {
 jetPack.check() eq "OK"
 jetPack.fly()
 }
 jetPack.check() eq "Warning"
}

 	
[1] fuel und warning sind beide private Eigenschaften und können nicht von Nicht-Mitgliedern von JetPack verwendet werden.

 	
[2] burn() ist private und somit nur innerhalb von JetPack zugänglich.

 	
[3] fly() und check() sind public und können überall verwendet werden.

 	
[4] Kein Zugriffsmodifizierer bedeutet public Sichtbarkeit.

 	
[5] Nur Mitglieder derselben Klasse können auf private Mitglieder zugreifen.

Da eine private Definition nicht für alle verfügbar ist, kann man sie im Allgemeinen ändern, ohne sich um den Client-Programmierer zu sorgen. Als Bibliotheksdesigner hält man normalerweise alles so private wie möglich und gibt nur Funktionen und Klassen frei, die Client-Programmierer verwenden sollen. Um die Größe und Komplexität der Beispielauflistungen in diesem Buch zu begrenzen, verwenden wir private nur in speziellen Fällen.

Jede Funktion, bei der Sie sicher sind, dass es sich nur um eine Hilfsfunktion handelt, kann private gemacht werden, um sicherzustellen, dass Sie sie nicht versehentlich anderswo verwenden und sich damit verbieten, die Funktion zu ändern oder zu entfernen.

Es kann nützlich sein, große Programme in Module zu unterteilen. Ein Modul ist ein logisch unabhängiger Teil einer Codebasis. Eine internal Definition ist nur innerhalb des Moduls zugänglich, in dem sie definiert ist. Die Art und Weise, wie Sie ein Projekt in Module unterteilen, hängt vom Build-System ab (wie Gradle oder Maven) und liegt außerhalb des Rahmens dieses Buches.

Module sind ein Konzept auf höherer Ebene, während Pakete eine feiner abgestufte Strukturierung ermöglichen.

Ausnahmen

Betrachten Sie toDouble(), das einen String in ein Double umwandelt. Was passiert, wenn Sie es für einen String aufrufen, der nicht in ein Double übersetzt wird?

// Summary2/ToDoubleException.kt

fun main() {
 // val i = "$1.9".toDouble()
}

Das Auskommentieren der Zeile in main() erzeugt eine Ausnahme. Hier ist die fehlerhafte Zeile auskommentiert, damit der Bau des Buches nicht gestoppt wird (der überprüft, ob jedes Beispiel wie erwartet kompiliert und ausgeführt wird).

Wenn eine Ausnahme ausgelöst wird, stoppt der aktuelle Ausführungspfad, und das Ausnahmeobjekt wird aus dem aktuellen Kontext herausgeschleudert. Wenn eine Ausnahme nicht abgefangen wird, bricht das Programm ab und zeigt einen Stack-Trace mit detaillierten Informationen an.

Um das Anzeigen von Ausnahmen durch Kommentieren und Auskommentieren von Code zu vermeiden, speichert atomictest.capture() die Ausnahme und vergleicht sie mit dem, was wir erwarten:

// Summary2/AtomicTestCapture.kt
import atomictest.*

fun main() {
 capture {
 "$1.9".toDouble()
 } eq "NumberFormatException: " +
 """For input string: "$1.9""""
}

capture() ist speziell für dieses Buch konzipiert, damit Sie die Ausnahme sehen und wissen, dass die Ausgabe vom Build-System des Buches überprüft wurde.

Eine weitere Strategie, wenn Ihre Funktion das erwartete Ergebnis nicht erfolgreich liefern kann, ist die Rückgabe von null. Später in Nullable Types diskutieren wir, wie null den Typ des resultierenden Ausdrucks beeinflusst.

Um eine Ausnahme zu werfen, verwenden Sie das Schlüsselwort throw, gefolgt von der Ausnahme, die Sie werfen möchten, zusammen mit allen Argumenten, die sie möglicherweise benötigt. quadraticZeroes() im folgenden Beispiel löst die quadratische Gleichung, die eine Parabel definiert:

 ax2 + bx + c = 0

Die Lösung ist die quadratische Formel:

 [image: Die quadratische Formel]
 Die quadratische Formel

Das Beispiel findet die Nullstellen der Parabel, wo die Linien die x-Achse schneiden. Wir werfen Ausnahmen für zwei Einschränkungen:

 	
a darf nicht null sein.

 	Damit Nullstellen existieren, darf b2 - 4ac nicht negativ sein.

Wenn Nullstellen existieren, gibt es zwei, daher erstellen wir die Roots-Klasse, um die Rückgabewerte zu halten:

// Summary2/Quadratic.kt
package summary2
import kotlin.math.sqrt
import atomictest.*

class Roots(
 val root1: Double,
 val root2: Double
)

fun quadraticZeroes(
 a: Double,
 b: Double,
 c: Double
): Roots {
 if (a == 0.0)
 throw IllegalArgumentException(
 "a is zero")
 val underRadical = b * b - 4 * a * c
 if (underRadical < 0)
 throw IllegalArgumentException(
 "Negative underRadical: $underRadical")
 val squareRoot = sqrt(underRadical)
 val root1 = (-b - squareRoot) / (2 * a)
 val root2 = (-b + squareRoot) / (2 * a)
 return Roots(root1, root2)
}

fun main() {
 capture {
 quadraticZeroes(0.0, 4.0, 5.0)
 } eq "IllegalArgumentException: " +
 "a is zero"
 capture {
 quadraticZeroes(3.0, 4.0, 5.0)
 } eq "IllegalArgumentException: " +
 "Negative underRadical: -44.0"
 val roots = quadraticZeroes(1.0, 2.0, -8.0)
 roots.root1 eq -4.0
 roots.root2 eq 2.0
}

Hier verwenden wir die Standard-Ausnahmeklasse IllegalArgumentException. Später
werden Sie lernen, Ihre eigenen Ausnahmetypen zu definieren und sie spezifisch an Ihre Umstände anzupassen. Ihr Ziel ist es, die nützlichsten Nachrichten zu generieren,
um die Unterstützung Ihrer Anwendung in der Zukunft zu vereinfachen.

Listen

Lists sind Kotlins grundlegender sequentieller Containertyp. Sie erstellen eine schreibgeschützte Liste mit listOf() und eine veränderbare Liste mit mutableListOf():

// Summary2/ReadonlyVsMutableList.kt
import atomictest.*

fun main() {
 val ints = listOf(5, 13, 9)
 // ints.add(11) // 'add()' not available
 for (i in ints) {
 if (i > 10) {
 trace(i)
 }
 }
 val chars = mutableListOf('a', 'b', 'c')
 chars.add('d') // 'add()' available
 chars += 'e'
 trace(chars)
 trace eq """
 13
 [a, b, c, d, e]
 """
}

Eine grundlegende Liste ist schreibgeschützt und enthält keine Änderungsfunktionen. Daher funktioniert die Änderungsfunktion add() nicht mit ints.

for Schleifen funktionieren gut mit Listen: for(i in ints) bedeutet, dass i jeden Wert in ints erhält.

chars wird als VeränderbareListe erstellt; sie kann mit Funktionen wie add() oder remove() modifiziert werden. Sie können auch += und -= verwenden, um Elemente hinzuzufügen oder zu entfernen.

Eine schreibgeschützte Liste ist nicht dasselbe wie eine unveränderliche Liste, die überhaupt nicht modifiziert werden kann. Hier weisen wir first, eine veränderbare Liste, second zu, einer schreibgeschützten Liste-Referenz. Die schreibgeschützte Eigenschaft von second verhindert nicht, dass sich die Liste über first ändert:

// Summary2/MultipleListReferences.kt
import atomictest.eq

fun main() {
 val first = mutableListOf(1)
 val second: List<Int> = first
 second eq listOf(1)
 first += 2
 // second sees the change:
 second eq listOf(1, 2)
}

first und second verweisen auf dasselbe Objekt im Speicher. Wir verändern die List über die first Referenz und beobachten dann diese Änderung in der second Referenz.

Hier ist eine List von Strings, die durch das Aufteilen eines dreifach-quotierten Absatzes erstellt wurde. Dies zeigt die Leistungsfähigkeit einiger Funktionen der Standardbibliothek. Beachten Sie, wie diese Funktionen verkettet werden können:

// Summary2/ListOfStrings.kt
import atomictest.*

fun main() {
 val wocky = """
 Twas brillig, and the slithy toves
 Did gyre and gimble in the wabe:
 All mimsy were the borogoves,
 And the mome raths outgrabe.
 """.trim().split(Regex("\\W+"))
 trace(wocky.take(5))
 trace(wocky.slice(6..12))
 trace(wocky.slice(6..18 step 2))
 trace(wocky.sorted().takeLast(5))
 trace(wocky.sorted().distinct().takeLast(5))
 trace eq """
 [Twas, brillig, and, the, slithy]
 [Did, gyre, and, gimble, in, the, wabe]
 [Did, and, in, wabe, mimsy, the, And]
 [the, the, toves, wabe, were]
 [slithy, the, toves, wabe, were]
 """
}

trim() erzeugt einen neuen String, bei dem die führenden und nachfolgenden Leerzeichen (einschließlich Zeilenumbrüche) entfernt wurden. split() teilt den String gemäß seinem Argument. In diesem Fall verwenden wir ein Regex-Objekt, das einen regulären Ausdruck erstellt—ein Muster, das die zu trennenden Teile abgleicht. \W ist ein spezielles Muster, das “kein Wortzeichen” bedeutet, und + bedeutet “eines oder mehrere der vorhergehenden”. Somit wird split() an einem oder mehreren Nicht-Wortzeichen brechen und somit den Textblock in seine einzelnen Wörter aufteilen.

In einem String-Literal steht \ vor einem speziellen Zeichen und erzeugt zum Beispiel ein Zeilenumbruchzeichen (\n) oder ein Tabulatorzeichen (\t). Um einen tatsächlichen \ im resultierenden String zu erzeugen, benötigen Sie zwei Backslashes: "\\". Daher erfordern alle regulären Ausdrücke einen zusätzlichen \, um einen Backslash einzufügen, es sei denn, Sie verwenden einen dreifach zitierten String: """\W+""".

take(n) erzeugt eine neue List, die die ersten n Elemente enthält. slice() erzeugt eine neue List, die die durch das Range-Argument ausgewählten Elemente enthält, und dieser Range kann einen step einschließen.

Beachten Sie den Namen sorted() anstelle von sort(). Wenn Sie sorted() aufrufen, erzeugt es eine sortierte List und lässt die ursprüngliche List unangetastet. sort() funktioniert nur mit einer MutableList, und diese Liste wird vor Ort sortiert—die ursprüngliche List wird verändert.

Wie der Name schon sagt, erzeugt takeLast(n) eine neue List der letzten n Elemente. An der Ausgabe können Sie sehen, dass “the” dupliziert ist. Dies wird durch Hinzufügen der distinct()-Funktion zur Aufrufkette beseitigt.

Parametrisierte Typen

Typparameter ermöglichen es uns, zusammengesetzte Typen zu beschreiben, am häufigsten Container. Insbesondere spezifizieren Typparameter, was ein Container enthält. Hier sagen wir Kotlin, dass numbers eine List von Int enthält, während strings eine List von String enthält:

// Summary2/ExplicitTyping.kt
package summary2
import atomictest.eq

fun main() {
 val numbers: List<Int> = listOf(1, 2, 3)
 val strings: List<String> =
 listOf("one", "two", "three")
 numbers eq "[1, 2, 3]"
 strings eq "[one, two, three]"
 toCharList("seven") eq "[s, e, v, e, n]"
}

fun toCharList(s: String): List<Char> =
 s.toList()

Sowohl bei den Definitionen von numbers als auch strings fügen wir Doppelpunkte und die Typdeklarationen List<Int> und List<String> hinzu. Die spitzen Klammern bezeichnen einen Typ-Parameter, der es uns ermöglicht zu sagen, “der Container enthält ‘Parameter’-Objekte.” Man spricht List<Int> typischerweise als “List von Int” aus.

Ein Rückgabewert kann ebenfalls einen Typ-Parameter haben, wie in toCharList() zu sehen ist. Man kann nicht einfach sagen, dass es eine List zurückgibt—Kotlin beschwert sich, also muss man den Typ-Parameter ebenfalls angeben.

Variable Argumentlisten

Das Schlüsselwort vararg steht für variable Argumentliste und erlaubt es einer Funktion, eine beliebige Anzahl von Argumenten (einschließlich null) des angegebenen Typs zu akzeptieren. Das vararg wird zu einem Array, das ähnlich wie eine List ist:

// Summary2/VarArgs.kt
package summary2
import atomictest.*

fun varargs(s: String, vararg ints: Int) {
 for (i in ints) {
 trace("$i")
 }
 trace(s)
}

fun main() {
 varargs("primes", 5, 7, 11, 13, 17, 19, 23)
 trace eq "5 7 11 13 17 19 23 primes"
}

Eine Funktionsdefinition kann nur einen Parameter als vararg spezifizieren. Jeder Parameter in der Liste kann das vararg sein, aber der letzte ist im Allgemeinen der einfachste.

Sie können ein Array von Elementen überall dort übergeben, wo ein vararg akzeptiert wird. Um ein Array zu erstellen, verwenden Sie arrayOf() auf die gleiche Weise wie listOf(). Ein Array ist immer veränderbar. Um ein Array in eine Sequenz von Argumenten (nicht nur ein einzelnes Element des Typs Array) zu konvertieren, verwenden Sie den Spread-Operator *:

// Summary2/ArraySpread.kt
import summary2.varargs
import atomictest.trace

fun main() {
 val array = intArrayOf(4, 5) // [1]
 varargs("x", 1, 2, 3, *array, 6) // [2]
 val list = listOf(9, 10, 11)
 varargs(
 "y", 7, 8, *list.toIntArray()) // [3]
 trace eq "1 2 3 4 5 6 x 7 8 9 10 11 y"
}

Wenn Sie ein Array von Primitivtypen wie im obigen Beispiel übergeben, muss die Array-Erstellungsfunktion spezifisch typisiert sein. Wenn [1] arrayOf(4, 5) anstelle von intArrayOf(4, 5) verwendet, erzeugt [2] einen Fehler: inferred type is Array<Int> but IntArray was expected.

Der Spread-Operator funktioniert nur mit Arrays. Wenn Sie eine List als Sequenz von Argumenten übergeben möchten, konvertieren Sie sie zuerst in ein Array und wenden Sie dann den Spread-Operator an, wie in [3]. Da das Ergebnis ein Array eines Primitivtyps ist, müssen wir die spezifische Konvertierungsfunktion toIntArray() verwenden.

Sets

Sets sind Sammlungen, die nur ein Element jedes Wertes zulassen. Ein Set verhindert automatisch Duplikate.

// Summary2/ColorSet.kt
package summary2
import atomictest.eq

val colors =
 "Yellow Green Green Blue"
 .split(Regex("""\W+""")).sorted() // [1]

fun main() {
 colors eq
 listOf("Blue", "Green", "Green", "Yellow")
 val colorSet = colors.toSet() // [2]
 colorSet eq
 setOf("Yellow", "Green", "Blue")
 (colorSet + colorSet) eq colorSet // [3]
 val mSet = colorSet.toMutableSet() // [4]
 mSet -= "Blue"
 mSet += "Red" // [5]
 mSet eq
 setOf("Yellow", "Green", "Red")
 // Set membership:
 ("Green" in colorSet) eq true // [6]
 colorSet.contains("Red") eq false
}

 	
[1] Der String wird mit einem regulären Ausdruck aufgeteilt (split()), wie zuvor für ListOfStrings.kt beschrieben.

 	
[2] Wenn colors in das schreibgeschützte Set colorSet kopiert wird, wird einer der beiden "Green"-Strings entfernt, da es sich um ein Duplikat handelt.

 	
[3] Hier erstellen und anzeigen wir ein neues Set mit dem +-Operator. Das Einfügen von doppelten Elementen in ein Set entfernt diese Duplikate automatisch.

 	
[4] toMutableSet() erzeugt aus einem schreibgeschützten Set ein neues MutableSet.

 	
[5] Für ein MutableSet fügen die Operatoren += und -= Elemente hinzu bzw. entfernen sie, wie sie es auch bei MutableLists tun.

 	
[6] Testen Sie die Mitgliedschaft in einem Set mit in oder contains()

Die normalen mathematischen Mengenoperationen wie Vereinigung, Schnittmenge, Differenz usw. sind alle verfügbar.

Maps

Ein Map verbindet Schlüssel mit Werten und sucht einen Wert anhand eines Schlüssels. Sie erstellen ein Map, indem Sie Schlüssel-Wert-Paare zu mapOf() bereitstellen. Mit to trennen wir jeden Schlüssel von seinem zugehörigen Wert:

// Summary2/ASCIIMap.kt
import atomictest.eq

fun main() {
 val ascii = mapOf(
 "A" to 65,
 "B" to 66,
 "C" to 67,
 "I" to 73,
 "J" to 74,
 "K" to 75
)
 ascii eq
 "{A=65, B=66, C=67, I=73, J=74, K=75}"
 ascii["B"] eq 66 // [1]
 ascii.keys eq "[A, B, C, I, J, K]"
 ascii.values eq
 "[65, 66, 67, 73, 74, 75]"
 var kv = ""
 for (entry in ascii) { // [2]
 kv += "${entry.key}:${entry.value},"
 }
 kv eq "A:65,B:66,C:67,I:73,J:74,K:75,"
 kv = ""
 for ((key, value) in ascii) // [3]
 kv += "$key:$value,"
 kv eq "A:65,B:66,C:67,I:73,J:74,K:75,"
 val mutable = ascii.toMutableMap() // [4]
 mutable.remove("I")
 mutable eq
 "{A=65, B=66, C=67, J=74, K=75}"
 mutable.put("Z", 90)
 mutable eq
 "{A=65, B=66, C=67, J=74, K=75, Z=90}"
 mutable.clear()
 mutable["A"] = 100
 mutable eq "{A=100}"
}

 	
[1] Ein Schlüssel ("B") wird verwendet, um mit dem [] Operator einen Wert nachzuschlagen. Sie können alle Schlüssel mit keys und alle Werte mit values erzeugen. Der Zugriff auf keys erzeugt ein Set, da alle Schlüssel in einer Map bereits eindeutig sein müssen (ansonsten hätten Sie Mehrdeutigkeiten bei einem Nachschlagen).

 	
[2] Beim Iterieren durch eine Map entstehen Schlüssel-Wert-Paare als Map-Einträge.

 	
[3] Sie können Schlüssel-Wert-Paare während des Iterierens entpacken.

 	
[4] Sie können eine MutableMap aus einer Nur-Lese-Map mit toMutableMap() erstellen. Nun können wir Operationen durchführen, die mutable verändern, wie remove(), put(), und clear(). Eckige Klammern können ein neues Schlüssel-Wert-Paar in mutable zuweisen. Sie können auch ein Paar hinzufügen, indem Sie sagen map += key to value.

Eigenschafts-Accessoren

Der Zugriff auf die Eigenschaft i scheint unkompliziert:

// Summary2/PropertyReadWrite.kt
package summary2
import atomictest.eq

class Holder(var i: Int)

fun main() {
 val holder = Holder(10)
 holder.i eq 10 // Read the 'i' property
 holder.i = 20 // Write to the 'i' property
}

Allerdings ruft Kotlin Funktionen auf, um die Lese- und Schreiboperationen durchzuführen. Das Standardverhalten dieser Funktionen besteht darin, die in i gespeicherten Daten zu lesen und zu schreiben. Durch die Erstellung von Eigenschaftszugriffen ändern Sie die Aktionen, die beim Lesen und Schreiben auftreten.

Der Zugriff, der zum Abrufen des Werts einer Eigenschaft verwendet wird, wird als Getter bezeichnet. Um einen eigenen Getter zu erstellen, definieren Sie get() direkt nach der Eigenschaftsdeklaration. Der Zugriff, der zum Ändern einer veränderbaren Eigenschaft verwendet wird, wird als Setter bezeichnet. Um einen eigenen Setter zu erstellen, definieren Sie set() direkt nach der Eigenschaftsdeklaration. Die Reihenfolge der Definition von Gettern und Settern ist unwichtig, und Sie können einen ohne den anderen definieren.

Die Eigenschaftszugriffe im folgenden Beispiel imitieren die Standardimplementierungen und zeigen zusätzliche Informationen an, damit Sie sehen können, dass die Eigenschaftszugriffe tatsächlich während der Lese- und Schreibvorgänge aufgerufen werden. Wir rücken die get()- und set()-Funktionen ein, um sie visuell mit der Eigenschaft zu verknüpfen, aber die tatsächliche Verknüpfung erfolgt, weil sie direkt nach dieser Eigenschaft definiert sind:

// Summary2/GetterAndSetter.kt
package summary2
import atomictest.*

class GetterAndSetter {
 var i: Int = 0
 get() {
 trace("get()")
 return field
 }
 set(value) {
 trace("set($value)")
 field = value
 }
}

fun main() {
 val gs = GetterAndSetter()
 gs.i = 2
 trace(gs.i)
 trace eq """
 set(2)
 get()
 2
 """
}

Innerhalb des Getters und Setters wird der gespeicherte Wert indirekt mit dem field-Schlüsselwort manipuliert, das nur innerhalb dieser beiden Funktionen zugänglich ist. Es ist auch möglich, eine Eigenschaft zu erstellen, die kein field besitzt, sondern einfach den Getter aufruft, um ein Ergebnis zu erzeugen.

Wenn Sie eine private Eigenschaft deklarieren, werden beide Accessoren private. Sie können den Setter private und den Getter public machen. Das bedeutet, dass Sie die Eigenschaft außerhalb der Klasse lesen, aber ihren Wert nur innerhalb der Klasse ändern können.

 Übungen und Lösungen finden Sie auf www.AtomicKotlin.com.

Abschnitt III: Benutzerfreundlichkeit

 Programmiersprachen unterscheiden sich nicht so sehr darin, was sie möglich machen, sondern darin, was sie einfach machen—Larry Wall, Erfinder der Perl-Sprache

Erweiterungsfunktionen

 Angenommen, Sie entdecken eine Bibliothek, die fast alles tut, was Sie brauchen… fast. Wenn
sie nur ein oder zwei zusätzliche Mitgliedsfunktionen hätte, würde sie Ihr
Problem perfekt lösen.

Aber es ist nicht Ihr Code – entweder haben Sie keinen Zugriff auf den Quellcode oder Sie
kontrollieren ihn nicht. Sie müssten Ihre Änderungen bei jeder neuen
Version wiederholen.

Kotlin’s extension functions fügen bestehenden Klassen effektiv Mitgliedsfunktionen hinzu. Der Typ, den Sie erweitern, wird receiver genannt. Um eine Erweiterungsfunktion zu definieren, setzen Sie den Typ des Empfängers vor den Funktionsnamen:

fun ReceiverType.extensionFunction() { ... }

Dies fügt der String-Klasse zwei Erweiterungsfunktionen hinzu:

// ExtensionFunctions/Quoting.kt
package extensionfunctions
import atomictest.eq

fun String.singleQuote() = "'$this'"
fun String.doubleQuote() = "\"$this\""

fun main() {
 "Hi".singleQuote() eq "'Hi'"
 "Hi".doubleQuote() eq "\"Hi\""
}

Sie rufen Erweiterungsfunktionen auf, als ob sie Mitglieder der Klasse wären.

Um Erweiterungen aus einem anderen Paket zu verwenden, müssen Sie sie importieren:

// ExtensionFunctions/Quote.kt
package other
import atomictest.eq
import extensionfunctions.doubleQuote
import extensionfunctions.singleQuote

fun main() {
 "Single".singleQuote() eq "'Single'"
 "Double".doubleQuote() eq "\"Double\""
}

Sie können auf Mitgliederfunktionen oder andere Erweiterungen mit dem Schlüsselwort this zugreifen.
this kann auch weggelassen werden, ebenso wie es innerhalb einer Klasse weggelassen werden kann, sodass
Sie keine explizite Qualifizierung benötigen:

// ExtensionFunctions/StrangeQuote.kt
package extensionfunctions
import atomictest.eq

// Apply two sets of single quotes:
fun String.strangeQuote() =
 this.singleQuote().singleQuote() // [1]

fun String.tooManyQuotes() =
 doubleQuote().doubleQuote() // [2]

fun main() {
 "Hi".strangeQuote() eq "''Hi''"
 "Hi".tooManyQuotes() eq "\"\"Hi\"\""
}

 	
[1] this bezieht sich auf den String-Empfänger.

 	
[2] Wir lassen das Empfängerobjekt (this) beim ersten Aufruf der Funktion doubleQuote() weg.

Die Erweiterung Ihrer eigenen Klassen kann manchmal zu einfacherer Code führen:

// ExtensionFunctions/BookExtensions.kt
package extensionfunctions
import atomictest.eq

class Book(val title: String)

fun Book.categorize(category: String) =
 """title: "$title", category: $category"""

fun main() {
 Book("Dracula").categorize("Vampire") eq
 """title: "Dracula", category: Vampire"""
}

Innerhalb von categorize() greifen wir ohne explizite Qualifikation auf die title-Eigenschaft zu.

 	-

Erweiterungsfunktionen können nur auf öffentliche Elemente des zu erweiternden Typs zugreifen. Daher können Erweiterungen dieselben Aktionen wie reguläre Funktionen ausführen. Sie können Book.categorize(String) als categorize(Book, String) umschreiben. Der einzige Grund für die Verwendung einer Erweiterungsfunktion ist die Syntax, aber dieser syntaktische Zucker ist mächtig. Für den aufrufenden Code sehen Erweiterungen genauso aus wie Mitgliedsfunktionen, und IDEs zeigen Erweiterungen an, wenn sie die Funktionen auflisten, die Sie für ein Objekt aufrufen können.

 Übungen und Lösungen finden Sie unter www.AtomicKotlin.com.

Benannte & Standardargumente

 Sie können während eines Funktionsaufrufs Argumentnamen angeben.

Benannte Argumente verbessern die Code-Lesbarkeit. Dies gilt besonders für lange und
komplexe Argumentlisten – benannte Argumente können so klar sein, dass der Leser
einen Funktionsaufruf verstehen kann, ohne die Dokumentation anzusehen.

In diesem Beispiel sind alle Parameter Int. Benannte Argumente verdeutlichen ihre
Bedeutung:

// NamedAndDefaultArgs/NamedArguments.kt
package color1
import atomictest.eq

fun color(red: Int, green: Int, blue: Int) =
 "($red, $green, $blue)"

fun main() {
 color(1, 2, 3) eq "(1, 2, 3)" // [1]
 color(
 red = 76, // [2]
 green = 89,
 blue = 0
) eq "(76, 89, 0)"
 color(52, 34, blue = 0) eq // [3]
 "(52, 34, 0)"
}

 	
[1] Dies sagt Ihnen nicht viel. Sie müssen die Dokumentation einsehen,
um zu verstehen, was die Argumente bedeuten.

 	
[2] Die Bedeutung jedes Arguments ist klar.

 	
[3] Es ist nicht erforderlich, alle Argumente zu benennen.

Benannte Argumente ermöglichen es Ihnen, die Reihenfolge der Farben zu ändern. Hier geben wir blue zuerst an:

// NamedAndDefaultArgs/ArgumentOrder.kt
import color1.color
import atomictest.eq

fun main() {
 color(blue = 0, red = 99, green = 52) eq
 "(99, 52, 0)"
 color(red = 255, 255, 0) eq
 "(255, 255, 0)"
}

Sie können benannte und reguläre (positionale) Argumente mischen. Wenn Sie die Reihenfolge der Argumente ändern, sollten Sie benannte Argumente im gesamten Aufruf verwenden—nicht nur der Lesbarkeit halber, sondern oft muss der Compiler wissen, wo die Argumente sind.

Benannte Argumente sind noch nützlicher, wenn sie mit Standardargumenten kombiniert werden, die Standardwerte für Argumente sind, die in der Funktionsdefinition angegeben sind:

// NamedAndDefaultArgs/Color2.kt
package color2
import atomictest.eq

fun color(
 red: Int = 0,
 green: Int = 0,
 blue: Int = 0,
) = "($red, $green, $blue)"

fun main() {
 color(139) eq "(139, 0, 0)"
 color(blue = 139) eq "(0, 0, 139)"
 color(255, 165) eq "(255, 165, 0)"
 color(red = 128, blue = 128) eq
 "(128, 0, 128)"
}

Jedes Argument, das Sie nicht angeben, erhält seinen Standardwert. Daher müssen Sie nur die Argumente angeben, die von den Standardwerten abweichen. Wenn Sie eine lange Argumentliste haben, vereinfacht dies den resultierenden Code, was das Schreiben und—was noch wichtiger ist—das Lesen erleichtert.

Dieses Beispiel verwendet auch ein nachgestelltes Komma in der Definition von color(). Das nachgestellte Komma ist das zusätzliche Komma nach dem letzten Parameter (blue). Dies ist nützlich, wenn Ihre Parameter oder Werte über mehrere Zeilen geschrieben sind. Mit einem nachgestellten Komma können Sie neue Elemente hinzufügen und ihre Reihenfolge ändern, ohne Kommas hinzuzufügen oder zu entfernen.

Benannte und Standardargumente (sowie nachgestellte Kommas) funktionieren auch für Konstruktoren:

// NamedAndDefaultArgs/Color3.kt
package color3
import atomictest.eq

class Color(
 val red: Int = 0,
 val green: Int = 0,
 val blue: Int = 0,
) {
 override fun toString() =
 "($red, $green, $blue)"
}

fun main() {
 Color(red = 77).toString() eq "(77, 0, 0)"
}

joinToString() ist eine Standardbibliotheksfunktion, die Standardargumente verwendet. Sie kombiniert die Inhalte eines iterierbaren Objekts (einer Liste, Menge oder eines Bereichs) zu einem String. Sie können einen Trennzeichen, ein Präfixelement und ein Suffixelement angeben:

// NamedAndDefaultArgs/CreateString.kt
import atomictest.eq

fun main() {
 val list = listOf(1, 2, 3,)
 list.toString() eq "[1, 2, 3]"
 list.joinToString() eq "1, 2, 3"
 list.joinToString(prefix = "(",
 postfix = ")") eq "(1, 2, 3)"
 list.joinToString(separator = ":") eq
 "1:2:3"
}

Der Standardwert von toString() für eine List gibt den Inhalt in eckigen Klammern zurück, was möglicherweise nicht das ist, was Sie wollen. Die Standardwerte für die Parameter von joinToString() sind ein Komma für separator und leere Strings für prefix und postfix. Im obigen Beispiel verwenden wir benannte und Standardargumente, um nur die Argumente zu spezifizieren, die wir ändern möchten.

Der Initialisierer für list beinhaltet ein abschließendes Komma. Normalerweise verwenden Sie ein abschließendes Komma nur, wenn jedes Element in einer eigenen Zeile steht.

Wenn Sie ein Objekt als Standardargument verwenden, wird bei jedem Aufruf eine neue Instanz dieses Objekts erstellt:

Wenn Sie eine Objektinstanz als Standardargument übergeben (da innerhalb von g() im folgenden Beispiel), wird dieselbe Instanz für jeden Aufruf von g() verwendet. Wenn Sie die Syntax für einen Konstruktoraufruf übergeben (DefaultArg() innerhalb von h()), wird dieser Konstruktor jedes Mal aufgerufen, wenn Sie h() aufrufen:

// NamedAndDefaultArgs/Evaluation.kt
package namedanddefault

class DefaultArg
val da = DefaultArg()

fun g(d: DefaultArg = da) = println(d)

fun h(d: DefaultArg = DefaultArg()) =
 println(d)

fun main() {
 g()
 g()
 h()
 h()
}
/* Sample output:
namedanddefault.DefaultArg@7440e464
namedanddefault.DefaultArg@7440e464
namedanddefault.DefaultArg@49476842
namedanddefault.DefaultArg@78308db1
*/

Die Ausgabe der beiden g() Aufrufe zeigt identische Objektadressen. Bei den beiden
Aufrufen von h() sind die Adressen der DefaultArg Objekte unterschiedlich, was zeigt,
dass es zwei verschiedene Objekte gibt.

Geben Sie Argumentnamen an, wenn sie die Lesbarkeit verbessern. Vergleichen Sie die folgenden beiden
Aufrufe von joinToString():

// NamedAndDefaultArgs/CreateString2.kt
import atomictest.eq

fun main() {
 val list = listOf(1, 2, 3)
 list.joinToString(". ", "", "!") eq
 "1. 2. 3!"
 list.joinToString(separator = ". ",
 postfix = "!") eq "1. 2. 3!"
}

Es ist schwer zu erraten, ob ". " oder "" ein Trennzeichen ist, es sei denn, man merkt sich die Reihenfolge der Parameter, was unpraktisch ist.

Ein weiteres Beispiel für Standardargumente ist die trimMargin()-Funktion der Standardbibliothek, die mehrzeilige Strings formatiert. Sie verwendet einen Randpräfix-String, um den Anfang jeder Zeile festzulegen. trimMargin() entfernt führende Leerzeichen, gefolgt von dem Randpräfix, aus jeder Zeile des Quell-String. Es entfernt die erste und letzte Zeile, wenn sie leer sind:

// NamedAndDefaultArgs/TrimMargin.kt
import atomictest.eq

fun main() {
 val poem = """
 |->Last night I saw upon the stair
 |->A little man who wasn't there
 |->He wasn't there again today
|->Oh, how I wish he'd go away."""
 poem.trimMargin() eq
"""->Last night I saw upon the stair
->A little man who wasn't there
->He wasn't there again today
->Oh, how I wish he'd go away."""
 poem.trimMargin(marginPrefix = "|->") eq
"""Last night I saw upon the stair
A little man who wasn't there
He wasn't there again today
Oh, how I wish he'd go away."""
}

Das | (“Pipe”) ist das Standardargument für das Randpräfix, und Sie können es durch einen String Ihrer Wahl ersetzen.

 Übungen und Lösungen finden Sie auf www.AtomicKotlin.com.

Überladung

 Sprachen ohne Unterstützung für Standardargumente verwenden oft Überladung,
um dieses Merkmal zu imitieren.

Der Begriff Überladung bezieht sich auf den Namen einer Funktion: Sie verwenden denselben Namen
(“überladen” diesen Namen) für verschiedene Funktionen, solange sich die Parameterlisten
unterscheiden. Hier überladen wir die Memberfunktion f():

// Overloading/Overloading.kt
package overloading
import atomictest.eq

class Overloading {
 fun f() = 0
 fun f(n: Int) = n + 2
}

fun main() {
 val o = Overloading()
 o.f() eq 0
 o.f(11) eq 13
}

In Overloading sehen Sie zwei Funktionen mit demselben Namen, f(). Die
Signatur einer Funktion besteht aus dem Namen, der Parameterliste und dem Rückgabetyp.
Kotlin unterscheidet eine Funktion von einer anderen, indem es die Signaturen vergleicht. Beim
Überladen von Funktionen müssen die Parameterlisten einzigartig sein—man kann nicht
nur über die Rückgabetypen überladen.

Die Aufrufe zeigen, dass es sich tatsächlich um unterschiedliche Funktionen handelt. Eine Funktionssignatur
beinhaltet auch Informationen über die umschließende Klasse (oder den Empfangstyp, wenn
es sich um eine Erweiterungsfunktion handelt).

Wenn eine Klasse bereits eine Mitgliedsfunktion mit derselben Signatur wie eine
Erweiterungsfunktion hat, bevorzugt Kotlin die Mitgliedsfunktion. Sie können jedoch
die Mitgliedsfunktion mit einer Erweiterungsfunktion überladen:

// Overloading/MemberVsExtension.kt
package overloading
import atomictest.eq

class My {
 fun foo() = 0
}

fun My.foo() = 1 // [1]

fun My.foo(i: Int) = i + 2 // [2]

fun main() {
 My().foo() eq 0
 My().foo(1) eq 3
}

 	
[1] Es ist sinnlos, eine Erweiterung zu deklarieren, die ein Mitglied dupliziert,
da sie niemals aufgerufen werden kann.

 	
[2] Sie können eine Mitgliedsfunktion mit einer Erweiterungsfunktion überladen, indem Sie eine andere Parameterliste bereitstellen.

Verwenden Sie das Überladen nicht, um Standardargumente zu imitieren. Das heißt, tun Sie dies nicht:

// Overloading/WithoutDefaultArguments.kt
package withoutdefaultarguments
import atomictest.eq

fun f(n: Int) = n + 373
fun f() = f(0)

fun main() {
 f() eq 373
}

Die Funktion ohne Parameter ruft einfach die erste Funktion auf. Die beiden
Funktionen können durch eine einzelne Funktion ersetzt werden, indem ein Standardargument verwendet wird:

// Overloading/WithDefaultArguments.kt
package withdefaultarguments
import atomictest.eq

fun f(n: Int = 0) = n + 373

fun main() {
 f() eq 373
}

In beiden Beispielen können Sie die Funktion entweder ohne ein Argument oder durch Übergeben eines Ganzzahlwerts aufrufen. Bevorzugen Sie die Form in WithDefaultArguments.kt.

Bei der Verwendung von überladenen Funktionen zusammen mit Standardargumenten sucht der Aufruf der überladenen Funktion nach der “nächsten” Übereinstimmung. Im folgenden Beispiel ruft der foo()-Aufruf in main() nicht die erste Version der Funktion mit ihrem Standardargument von 99 auf, sondern stattdessen die zweite Version, die ohne Parameter:

// Overloading/OverloadedVsDefaultArg.kt
package overloadingvsdefaultargs
import atomictest.*

fun foo(n: Int = 99) = trace("foo-1-$n")

fun foo() {
 trace("foo-2")
 foo(14)
}

fun main() {
 foo()
 trace eq """
 foo-2
 foo-1-14
 """
}

Sie können das Standardargument 99 niemals nutzen, da foo() immer die zweite Version von f() aufruft.

Warum ist das Überladen nützlich? Es ermöglicht Ihnen, “Variationen eines Themas” klarer auszudrücken, als wenn Sie gezwungen wären, unterschiedliche Funktionsnamen zu verwenden. Angenommen, Sie möchten Additionsfunktionen:

// Overloading/OverloadingAdd.kt
package overloading
import atomictest.eq

fun addInt(i: Int, j: Int) = i + j
fun addDouble(i: Double, j: Double) = i + j

fun add(i: Int, j: Int) = i + j
fun add(i: Double, j: Double) = i + j

fun main() {
 addInt(5, 6) eq add(5, 6)
 addDouble(56.23, 44.77) eq
 add(56.23, 44.77)
}

addInt() nimmt zwei Ints und gibt ein Int zurück, während addDouble() zwei Doubles nimmt und ein Double zurückgibt. Ohne Überladen kann man die Operation nicht einfach add() nennen, daher kombinieren Programmierer typischerweise was mit wie, um eindeutige Namen zu erzeugen (man kann auch eindeutige Namen mit zufälligen Zeichen erstellen, aber das typische Muster ist die Verwendung von aussagekräftigen Informationen wie Parametertypen). Im Gegensatz dazu ist das überladene add() viel klarer.

 	-

Das Fehlen des Überladens in einer Sprache ist keine große Bürde, aber das Feature bietet wertvolle Vereinfachung, wodurch der Code lesbarer wird. Mit Überladung sagt man einfach was, was die Abstraktionsebene erhöht und die geistige Belastung für den Leser verringert. Wenn man wissen will wie, schaut man sich die Parameter an. Beachten Sie auch, dass Überladen Redundanz reduziert: Wenn wir addInt() und addDouble() sagen müssen, wiederholen wir im Wesentlichen die Parameterinformationen im Funktionsnamen.

 Übungen und Lösungen finden Sie auf www.AtomicKotlin.com.

OEBPS/images/leanpub_key.png

OEBPS/images/leanpub_bug.png

OEBPS/images/leanpub_pencil.png

OEBPS/images/leanpub_comments.png

OEBPS/images/leanpub_warning.png

OEBPS/images/leanpub_question-circle.png

OEBPS/images/leanpub_info-circle.png

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/title_page.png

OEBPS/images/whyKotlin----compilation.png
Source code

| Compilation

Machine
Instructions
or
Bytecode

Run

\/

Result

OEBPS/images/objectsEverywhere----codeCompletion.png
val r = IntRange(0, 10)

r

L]
L]
L]
L]
L]
L]
L]
L]
L]
n
yo

step Int
spliterator() Spliterator<Int>
sum() for Iterable<Int> in kotlin.collections Int
single() for Iterable<T> in kotlin.collections Int
single {...} (predicate: (Int) —> Boolean) for Iterable<T>.. Int
singleOrNull() for Iterable<T> in kotlin.collections Int?
singleOrNull {...} (predicate: (Int) —> Boolean) for Iter.. Int?
sortedBy {...} (crossinline selector: (Int) —> R?) f.. List<Int>
sorted() for Iterable<T> in kotlin.collections List<Int>

cartadRuNacrandina S 1 lrrnccinlina calartnar: I iet+-Tnt

D1|d u know that Quick Definition View (_Space) works in completion Iookups as well? >>

OEBPS/images/summary2----quadraticFormula.png
- —bx \/b2 — 4dac

