

55 Kotlin Recipes for Android Programming
Practical Solutions to Common Android Development
Problems

Ted Hagos

This book is available at
https://leanpub.com/55kotlinrecipesforandroidprogramming

This version was published on 2025-10-01

This is a Leanpub book. Leanpub empowers authors and publishers with the
Lean Publishing process. Lean Publishing is the act of publishing an
in-progress ebook using lightweight tools and many iterations to get reader
feedback, pivot until you have the right book and build traction once you do.

© 2025 Ted Hagos

https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com
https://leanpub.com
https://leanpub.com/manifesto

Contents

Kotlin Basics for Android . 1
Recipe 1: val vs. var keyword. Which one to use? 1
Recipe 2: Null safety with ?, !!, and safe calls. 2
Recipe 3: Default parameters & named arguments (reduce overloads) 4
Recipe 4: Using string templates instead of concatenation. 5
Recipe 5: Extension functions for cleaner utilities. 5

Working with Android Views & Lifecycle . 8
Recipe 6: Safe Fragment View Binding (avoid leaks) 8
Recipe 7: Using by lazy for view and resource initialization. 11
Recipe 8: Lifecycle-aware coroutines with lifecycleScope. 13
Recipe 9: Passing data between Activities/Fragments safely with

Bundles. 15
Recipe 10: Toasts & Snackbars as one-shot events (SharedFlow) 18

Data & State Management . 22
Recipe 11: Data classes with copy() for immutability 22
Recipe 12: Sealed classes for UI states (Loading, Error, Success) 23
Recipe 13: Safe Args in Navigation (type-safe arguments) 23
Recipe 15: SharedPreferences � DataStore migration 25

Networking & Persistence . 27
Recipe 16: Retrofit + Coroutines integration. 27
Recipe 17: Safe retry with exponential backoff for API calls. 27
Recipe 18: Repository pattern: API + Room cache. 27
Recipe 19: Room migrations (avoid crashes on schema changes). 27
Recipe 20: Mapping API models � domain models with extensions. . . 27

Coroutines & Flow in Android . 28
Recipe 21: Using viewModelScope.launch correctly. 28
Recipe 22: Switching threads with withContext(Dispatchers.IO). 28

CONTENTS

Recipe 23: Handling cancellation in coroutines. 28
Recipe 24: Flow + debounce for search bars. 28
Recipe 25: Testing coroutines with runTest + TestDispatcher. 28

Jetpack Compose Essentials . 29
Recipe 26: State hoisting in Compose (lifting state up). 29
Recipe 27: Using rememberSaveable to persist across rotations. 29
Recipe 28: LazyColumn best practices (keys, avoiding recomposition). 29
Recipe 29: Preview parameter providers for test data. 29
Recipe 30: Theming with Material 3 in Kotlin. 29

Dependency Injection & Architecture . 30
Recipe 31: ViewModel Assisted Injection with Hilt. 30
Recipe 32: Modularizing Android projects (domain/data/ui). 30
Recipe 33: Using inline value classes for stronger typing. 30
Recipe 34: Creating a sealed error hierarchy (AppException). 30
Recipe 35: Clean MVVM pattern in Kotlin (with Repository + UseCases). 30

Advanced Kotlin in Android . 31
Recipe 36: Reducing method count (@JvmField, const val). 31
Recipe 37: Avoiding performance pitfalls (lambdas, allocations). 31
Recipe 38: Interop with Java: @JvmStatic, @JvmOverloads. 31
Recipe 39: SupervisorScope for independent coroutines. 31
Recipe 40: WorkManager + CoroutineWorker for resilient background

tasks. 31

Appendix A: Beginner to Intermediate Recipes 33
Using apply, let, also, run scope functions (when to use each). 33
Creating companion objects as factories instead of static helpers. . . . 33
Using when expression instead of multiple if/else. 33
Default values in data classes for cleaner constructors. 33
Smart casts with is operator (safe type checks). 33
Null coalescing with ?: operator. 34
Using lateinit safely (when it’s OK, when it’s not). 34
String resource formattingwith placeholders (getString(R.string.hello,

name)). 34
Simple sealed class navigation (before using Jetpack Navigation). . . . 34
Handling RecyclerView clicks with lambdas instead of interfaces. . . . 34
Using const val for compile-time constants. 34
Testing simple functions with JUnit & Kotlin test DSL. 35

Creating inline helper extensions (fun View.show() / fun View.hide()). 35
Using Pair and Triple effectively (vs. creating a new class). 35
Filtering & mapping lists with Kotlin collection operators (filter, map,

firstOrNull). 35

Kotlin Basics for Android
This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 1: val vs. var keyword. Which one to use?

val and var are two keywords that let you work with variables. They look al-
most identical, and many people use them interchangeably, but the distinction
is important. It may affect the reliability of your code.

Meet val – Your “Constant” Buddy.

Think of val as a commitment. Once you assign a value, it’s locked in—you
can’t point it to something else later. For example:

1 val framework = "Kotlin"
2 framework = "Java" // Not Allowed

If you’re coming from Java, val is equivalent to the final keyword.

But here’s a subtle detail. While the reference (“Kotlin”) can’t change,
remember that the object it points to might still be mutable. For example.

1 val groceries = mutableListOf("Milk", "Eggs")
2 groceries.add("Bread") // Still fine

So val is like saying: this name will always refer to the same box, but what’s
inside that box might change.

“But String are objects” you might say. Yes, String is an object in Kotlin (ac-
tually, a wrapper around Java’s String, which is immutable). What’s important
to remember are;

• val controls the reference (the variable binding)
• But it does not make the object itself immutable.

https://leanpub.com/55kotlinrecipesforandroidprogramming

Kotlin Basics for Android 2

• Since String is already immutable, you can’t change its contents anyway,
unlike in our MutableList example above.

Enter var – The Flexible One.

var is the opposite. It’s a variable you can reassign as often as you like:

var mood = “Happy” mood = “Not Happy” // This is fine

This is useful for things that naturally change—like counters, user inputs, or
the state of a game.

Which Should You Use?

A good Kotlin habit is to default to val. Why? Because immutability makes
your code easier to understand and less prone to bugs. Use var only when you
truly need to reassign values.

Final Thoughts

If val is your safe, predictable friend, var is your free-spirited one. Both have
their place, but leaning on val as much as possible will make your Kotlin code
cleaner and more maintainable.

Recipe 2: Null safety with ?, !!, and safe calls.

For nearly three decades, Java developers wrestled with the very pesky Null-
PointerException (NPE); so much that in the classic book Effective Java,
Joshua Bloch strongly recommended avoiding null whenever possible because
of bugs it invites and the subsequent runtime crashes. The designers of Kotlin
took that advice seriously and baked null safety right into the language.

In Kotlin, all variables are non-nullable by default. This is a deliberate
design choice to make your code safer and reduce the chances of NPEs.

1 var name: String = "Ted"
2 // name = null // Compilation error

But Kotlin offers a way for a variable to hold null, if you really must. To do
this, you need to explicitly tell Kotlin that a variable is nullable. You do this by
postfixing the variable with a question mark (?), as shown in the snippet below.

Kotlin Basics for Android 3

1 var thename: String? = null

This distinction makes you really think about the possibility of null. Kotlin
then gives you several ways (operators, actually) to work with nullable types.

Safe Call Operator ?.

The safe call operator lets you safely access a nullable object. If the object is
null, the expression simply evaluates to null instead of crashing; like this.

1 println(thename?.length) // Prints null safely

This pattern is useful when chaining multiple calls, as it avoids repetitive
null checks.

Non‐Null Assertion Operator !!

The !! operator is Kotlin’s escape hatch. It asserts that the value is not null
and throws an NPE if you’re wrong.

1 println(thename!!.length) // This may crash

Use it sparingly; relying on it defeats the purpose of Kotlin’s null safety.

Elvis Operator ?:

When you want a fallback, the Elvis operator is concise and expressive:

1 val displayName = thename ?: "Anonymous"
2 println(displayName)

If thename is null, "Anonymous" is used instead; if it isn’t, then the actual
value thename will be printed.

Kotlin Basics for Android 4

Final Thoughts

Kotlin puts into practice the advice from Effective Java: minimize the use of
null, and deal with it explicitly when unavoidable. With the operators ?, !!,
and ?:, you can write code that is both safer and more concise.

Reach for safe calls and Elvis operators first. Only use !! only as a last
resort.

Recipe 3: Default parameters & named arguments
(reduce overloads)

In the early days, before Java popularized method overloading, developers had
to give functions distinct names just to handle slightly different parameter
lists. You might see functions like printUser(), printUserWithAge(), or
printUserWithDetails(). It worked, but the naming was clumsy and incon-
sistent. Java improved this by introducing overloads, letting developers reuse
the samemethod namewith different signatures. While it was a step forward, it
also led to a proliferation of overloads that bloated APIs andmademaintenance
harder.

Kotlin provides a cleaner and more expressive alternative: default param-
eters. Instead of writing multiple overloads, you can assign default values
directly in the function signature. Callers then provide only the arguments
they care about, while Kotlin fills in the rest.

1 fun greet(name: String, greeting: String = "Hello") {
2 println("$greeting, $name!")
3 }
4
5 // Usage
6 greet("Lyra") // Hello, Lyra!
7 greet("Soren", "Welcome") // Welcome, Soren!

Here, a single function replaces what would have been two or more over-
loads in Java. Less boilerplate, more clarity.

Another powerful feature is named arguments. This lets you specify
parameters by name, which makes calls self-documenting, especially when
parameters are of the same type or appear in long lists:

Kotlin Basics for Android 5

1 fun displayProfile(name: String, age: Int, isActive: Boolean = true) {
2 println("Name: $name, Age: $age, Active: $isActive")
3 }
4
5 // Clearer with named arguments
6 displayProfile(name = "Elowen", age = 30)
7 displayProfile(age = 40, name = "Caius", isActive = false)

Named arguments improve readability and reduce reliance on remembering
parameter order. Combined with defaults, they eliminate the need for most
overloads, making APIs far friendlier.

It’s worth noting that Joshua Bloch’s Effective Java also warned against
excessive overloads, recommending alternative design patterns for cleaner
APIs. Kotlin achieves this by providing developers with language-level support
for defaults and named arguments—features that keep code lean, expressive,
and maintainable.

Recipe 4: Using string templates instead of
concatenation.

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 5: Extension functions for cleaner utilities.

One of the coolest things about Kotlin is extension functions.

Think of them like little superpowers you can instantly grant to any class,
even ones you didn’t write—and especially handy when dealing with Java’s
default behavior, where many classes are final (meaning you can’t subclass
them).

Instead of creating a whole new subclass to add one tiny method, or
constantly using messy Utility.doSomething(object) calls everywhere,
you can write an extension function that makes that new ability look and
feel like it was always a part of the original class. You can simply call ob-
ject.doSomething().

https://leanpub.com/55kotlinrecipesforandroidprogramming

Kotlin Basics for Android 6

Since you’re not actually modifying the original source code or relying on
inheritance, you can effectively extend final classes (closed for inheritance),
which is a huge advantage over trying to do something similar in standard Java.
It keeps your code super clean and intuitive.

This is especially handy for Android development, where you often find
yourself writing repetitive utility functions for View, Context, String, or Date.
By turning them into extensions, you keep your code readable and discoverable
through IntelliJ/Android Studio’s autocomplete.

* * *

Example: Converting a Utility Method into an Extension

In Java, we often wrote “utility classes” like this:

1 public class StringUtils {
2 public static boolean isValidEmail(String input) {
3 return input != null && input.contains("@");
4 }
5 }

In Kotlin, we can extend String directly:

1 fun String.isValidEmail(): Boolean {
2 return this.contains("@")
3 }

Now you can call it naturally:

1 val email = "dev@example.com"
2 if (email.isValidEmail()) {
3 println("Looks good!")
4 }

Notice how isValidEmail() feels like a nativemethod of String.

More Android‐Flavored Example: Hiding the Keyboard

Instead of writing a global helper function:

Kotlin Basics for Android 7

1 fun hideKeyboard(activity: Activity) {
2 val imm = activity.getSystemService(Context.INPUT_METHOD_SERVICE) as

InputMethodManager↪→

3 imm.hideSoftInputFromWindow(activity.currentFocus?.windowToken, 0)
4 }

We can turn it into an extension on Activity:

1 fun Activity.hideKeyboard() {
2 val imm = getSystemService(Context.INPUT_METHOD_SERVICE) as

InputMethodManager↪→

3 currentFocus?.let {
4 imm.hideSoftInputFromWindow(it.windowToken, 0)
5 }
6 }

Now inside an Activity, calling it looks natural:

1 class MainActivity : AppCompatActivity() {
2
3 override fun onCreate(savedInstanceState: Bundle?) {
4 super.onCreate(savedInstanceState)
5 setContentView(R.layout.activity_main)
6
7 val button = findViewById<Button>(R.id.myButton)
8 button.setOnClickListener {
9 // Directly available because this is an Activity
10 hideKeyboard()
11 }
12 }
13 }

Here, hideKeyboard() is called just like any other method of Activity.
IntelliJ/Android Studio will even suggest it in autocomplete, as though it were
a built-in API.

Working with Android Views &
Lifecycle

Recipe 6: Safe Fragment View Binding (avoid leaks)

ViewBinding is an Android feature that generates a binding class for each XML
layout file. Each binding class contains direct references to all the views in
that layout.

For example, if you have a fragment_safe.xml with a TextView whose
ID is textView, the generated FragmentSafeBinding class will expose it as
binding.textView.

This gives you:

• Type safety – no need to cast views.
• Null safety – missing views in layout variants are caught at compile time.
• Less boilerplate – no more findViewById() scattered across your code.

This is why most modern Android apps prefer ViewBinding over the older
findViewById.

Why care about “safe binding” in fragments?

Fragments have two overlapping lifecycles: the fragment itself and the frag-
ment’s view. The fragment object can stay alive (for example, when it’s placed
on the back stack or attached to an activity that’s still running), even though its
view hierarchy is destroyed and later recreated.

If you keep a strong reference to the binding outside the view’s lifecycle,
you’re essentially holding onto a view tree that no longer exists — which leads
to wasted memory and potential leaks.

That’s why we need a pattern to clear the binding safely.

Don’t do this - Incorrect binding usage.

Working with Android Views & Lifecycle 9

1 class UnsafeFragment : Fragment(R.layout.fragment_unsafe) {
2
3 private lateinit var binding: FragmentUnsafeBinding
4
5 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
6 super.onViewCreated(view, savedInstanceState)
7 binding = FragmentUnsafeBinding.bind(view)
8 binding.textView.text = "Hello, World!"
9 }
10
11 // Problem: binding is never cleared.
12 // This may leak memory when the fragment’s view is destroyed.
13 }

Do this instead - Manual safe binding pattern

1 class SafeFragment : Fragment(R.layout.fragment_safe) {
2
3 private var _binding: FragmentSafeBinding? = null
4 private val binding get() = _binding!!
5
6 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
7 super.onViewCreated(view, savedInstanceState)
8 _binding = FragmentSafeBinding.bind(view)
9
10 binding.textView.text = "Hello, safely bound view!"
11 }
12
13 override fun onDestroyView() {
14 super.onDestroyView()
15 _binding = null // clear reference to avoid leaks
16 }
17 }

In this way:

• _binding is nullable and private.
• The binding getter is non-nullable, but only safe to access between
onViewCreated and onDestroyView.

• The binding is explicitly cleared to prevent leaks.

Cleaner utility: Reusable delegate

Manually repeating _binding boilerplate in every fragment can get tedious. A
property delegate can automate safe lifecycle handling:

Working with Android Views & Lifecycle 10

1 import kotlin.properties.ReadOnlyProperty
2 import kotlin.reflect.KProperty
3 import androidx.fragment.app.Fragment
4 import androidx.lifecycle.DefaultLifecycleObserver
5 import androidx.lifecycle.LifecycleOwner
6 import android.view.View
7 import androidx.viewbinding.ViewBinding
8
9 class FragmentViewBindingDelegate<T : ViewBinding>(
10 val fragment: Fragment,
11 val bind: (View) -> T
12) : ReadOnlyProperty<Fragment, T> {
13
14 private var binding: T? = null
15
16 override fun getValue(thisRef: Fragment, property: KProperty<*>): T {
17 val currentBinding = binding
18 if (currentBinding != null) return currentBinding
19
20 val view = thisRef.view ?: throw IllegalStateException(
21 "Cannot access binding. View is null and might be destroyed."
22)
23
24 return bind(view).also { createdBinding ->
25 binding = createdBinding
26 thisRef.viewLifecycleOwner.lifecycle.addObserver(object :

DefaultLifecycleObserver {↪→

27 override fun onDestroy(owner: LifecycleOwner) {
28 binding = null
29 }
30 })
31 }
32 }
33 }
34
35 fun <T : ViewBinding> Fragment.viewBinding(bind: (View) -> T) =
36 FragmentViewBindingDelegate(this, bind)

Using the delegate

Working with Android Views & Lifecycle 11

1 class CleanerFragment : Fragment(R.layout.fragment_cleaner) {
2
3 private val binding by viewBinding(FragmentCleanerBinding::bind)
4
5 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
6 super.onViewCreated(view, savedInstanceState)
7 binding.textView.text = "Hello, cleaner world!"
8 }
9 }

Just Remember:

• findViewById was error-prone and verbose.
• ViewBinding provides type-safe, null-safe, and boilerplate-free access to
views.

• In fragments, always clear the binding in onDestroyView, or use a dele-
gate to automate the cleanup.

Recipe 7: Using by lazy for view and resource
initialization.

In Android apps, certain resources—such as views, database clients, or configu-
ration values—are often not needed immediately at object creation. Initializing
them too early can waste memory or processing time. Kotlin’s by lazy
delegate gives you a clean way to delay initialization until the first time the
property is accessed.

* * *

What is by lazy?

In Kotlin, by lazy is a property delegate. Instead of immediately assigning
a value to a property, you hand over the responsibility of initialization to the
lazy { ... } block. This block runs only once—the first time you access the
property. After that, the computed value is cached and reused.

Think of it as saying:

Working with Android Views & Lifecycle 12

“Don’t do the work now. Do it later, the first time I actually need it.”

By default, by lazy is thread-safe, whichmeansmultiple threads can safely
access the property without creating duplicate instances.

Lazy-loading a view in an Activity

1 class MainActivity : AppCompatActivity() {
2
3 // View binding only happens when buttonView is first accessed
4 private val buttonView: Button by lazy {
5 findViewById(R.id.myButton)
6 }
7
8 override fun onCreate(savedInstanceState: Bundle?) {
9 super.onCreate(savedInstanceState)
10 setContentView(R.layout.activity_main)
11
12 // First access — initialization happens here
13 buttonView.setOnClickListener {
14 Toast.makeText(this, "Clicked!", Toast.LENGTH_SHORT).show()
15 }
16 }
17 }

Here, buttonView isn’t created when the activity object is constructed.
Instead, the first time you use buttonView, Kotlin runs the initializer
(findViewById(...)) and caches the result. Any future calls just return the
same object.

Lazy initialization for resources

1 class ConfigManager(context: Context) {
2
3 val prefs: SharedPreferences by lazy {
4 context.getSharedPreferences("app_prefs", Context.MODE_PRIVATE)
5 }
6
7 val apiBaseUrl: String by lazy {
8 // Expensive or conditional loading (could be from a remote source)
9 "https://api.example.com"
10 }
11 }

Working with Android Views & Lifecycle 13

Here, prefs and apiBaseUrl values are only created when first accessed.
This helps keep your app lightweight at startup.

* * *

Why it’s important

Without by lazy, you’d typically write something like:

1 private var buttonView: Button? = null
2
3 override fun onCreate(savedInstanceState: Bundle?) {
4 buttonView = findViewById(R.id.myButton)
5 }

This introduces potential null checks and extra boilerplate; whereas using
lazy initialization, you get a non-nullable property with concise and safe
syntax.

Recipe 8: Lifecycle‐aware coroutines with
lifecycleScope.

Whenworking with coroutines in Android, one common challenge is managing
their lifecycle. If you launch a coroutine tied directly to an Activity or
Fragment without proper scoping, it may keep running even after the UI
component is destroyed, leading to crashes, memory leaks, or wasted work.

To solve this, AndroidX provides lifecycleScope, an extension property
available in ComponentActivity and Fragment. Coroutines launched in life-
cycleScope are automatically canceled when the corresponding lifecycle is
destroyed.

A quick word about coroutines

Coroutines are Kotlin’s modern approach to asynchronous programming,
replacing older tools like AsyncTask, callbacks, or manually managed threads.
They let you write asynchronous code in a sequential style, are lightweight,
and support structured concurrency, so work can be neatly tied to a scope
(like lifecycleScope).

Working with Android Views & Lifecycle 14

Tip: What is AndroidX? AndroidX is the modern replacement
for the old Android Support Libraries. It provides backwards-
compatible libraries with new features, bug fixes, and consistent
package naming (androidx.*). The lifecycleScope API comes
from androidx.lifecycle:lifecycle-runtime-ktx, which adds
coroutine support to lifecycle-aware components like Activities and
Fragments.

Example: Launching a Coroutine in a Fragment

1 class ProfileFragment : Fragment(R.layout.fragment_profile) {
2
3 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
4 super.onViewCreated(view, savedInstanceState)
5
6 // Launch coroutine tied to this Fragment's view lifecycle
7 viewLifecycleOwner.lifecycleScope.launch {
8 val userData = fetchUserData()
9 renderUserData(userData)
10 }
11 }
12
13 private suspend fun fetchUserData(): String {
14 delay(2000) // simulate network/database delay
15 return "Hello from lifecycleScope!"
16 }
17
18 private fun renderUserData(data: String) {
19 Toast.makeText(requireContext(), data, Toast.LENGTH_SHORT).show()
20 }
21 }

Example: Launching Coroutine in an Activity

Working with Android Views & Lifecycle 15

1 class MainActivity : AppCompatActivity() {
2
3 override fun onStart() {
4 super.onStart()
5
6 lifecycleScope.launch {
7 repeat(5) { i ->
8 delay(1000)
9 Log.d("MainActivity", "Tick $i")
10 }
11 }
12 }
13 }

* * *

Why Use lifecycleScope?

• Lifecycle-aware: Coroutines are automatically canceled when the lifecy-
cle is destroyed.

• Cleaner code: No need to manually track and cancel Job objects.
• Safer UI updates: Prevents updating views after they’ve been destroyed.

Tip: Use viewLifecycleOwner.lifecycleScope in Fragments
when working with UI, since the Fragment object can survive longer
than its views.

Recipe 9: Passing data between Activities/Fragments
safely with Bundles.

Most Android apps you’ll build will likely have more than one screen, so, you’ll
often need

to send data between screens — for example, fromone Activity to another,
or from a parent Fragment to a child.

The traditional way is to use Intents and Bundles:

Working with Android Views & Lifecycle 16

• Extras � Key-value pairs you attach to an Intent when launching an
Activity.

• Bundle � A container for storing structured data (key-value pairs) that
can be passed around inside the Android framework. Both Activities and
Fragments can receive a Bundle as part of their lifecycle.

This system works, but it has two main drawbacks:

1. Keys are just strings (easy to misspell).
2. Values must be manually cast to the right type (easy to mismatch).

Traditional Approach (Risky)

Here’s how you might normally pass data:

1 // Activity A
2 val intent = Intent(this, DetailActivity::class.java)
3 intent.putExtra("USER_ID", 42) // Extra added to Intent
4 startActivity(intent)
5
6 // Activity B
7 val userId = intent.getIntExtra("USER_ID", -1) // Extract from extras

For fragments, you usually pack arguments into a Bundle:

1 // Creating Fragment with arguments
2 val fragment = DetailFragment().apply {
3 arguments = Bundle().apply {
4 putString("USERNAME", "alice")
5 }
6 }
7
8 // Inside DetailFragment
9 val username = arguments?.getString("USERNAME")

This works, but notice the problems:

• Keys like "USER_ID" and "USERNAME" are just raw strings.
• You have to remember the correct type (Int vs String).
• Mistakes only show up at runtime.

Working with Android Views & Lifecycle 17

Safe Args with Navigation

Safe Args (part of Android JetpackNavigation) solves this problemby generating
type-safe classes for your arguments.

Define your arguments in nav_graph.xml:

1 <fragment
2 android:id="@+id/homeFragment"
3 android:name="com.example.HomeFragment" >
4 <action
5 android:id="@+id/action_home_to_detail"
6 app:destination="@id/detailFragment" >
7 <argument
8 android:name="userId"
9 app:argType="integer" />
10 </action>
11 </fragment>

Then use them like this:

1 // From HomeFragment
2 val action = HomeFragmentDirections.actionHomeToDetail(userId = 42)
3 findNavController().navigate(action)
4
5 // In DetailFragment
6 val args: DetailFragmentArgs by navArgs()
7 val userId = args.userId

No more raw keys, no casting. The compiler enforces correctness.

* * *

Tip: Safe Args works for both Activities and Fragments as long as they’re
defined in your Navigation Graph.

* * *

Why Use Safe Args?

• Eliminates fragile string keys.

Working with Android Views & Lifecycle 18

• Type-safe — compiler catches mistakes early.
• Cleaner, easier-to-read code.

If you’re starting a new Android project, consider setting up Navigation and
Safe Args right away. It will save you time and prevent subtle bugswhen passing
data.

Recipe 10: Toasts & Snackbars as one‐shot events
(SharedFlow)

In Android apps, you often need to show temporary messages — things like
toasts or snackbars. These are one-time messages: the user should see them
once, and then they disappear.

For example, after the user saves a form, you might want to show:

“Profile updated successfully!”

The problem is that Android UI works with lifecycles. If you use something
like LiveData or a state variable to store this message, it can get delivered
again when the screen is rotated or recreated. The result? The same toast or
snackbar shows up multiple times. Not good.

This is where Kotlin’s SharedFlow comes in. It’s a good tool for one-time
messages because it only delivers values to collectors that are actively listening,
and (if you set it up with replay = 0) it won’t repeat past messages.

Using SharedFlow for UI Messages

In your ViewModel:

Working with Android Views & Lifecycle 19

1 class ProfileViewModel : ViewModel() {
2
3 private val _events = MutableSharedFlow<UiEvent>()
4 val events: SharedFlow<UiEvent> = _events
5
6 fun saveProfile() {
7 // Do your save logic
8 viewModelScope.launch {
9 // After successful save, emit a one-time message
10 _events.emit(UiEvent.ShowMessage("Profile updated successfully!"))
11 }
12 }
13 }
14
15 sealed class UiEvent {
16 data class ShowMessage(val message: String) : UiEvent()
17 }

Collecting the Messages in the UI Layer

In your Fragment (or Activity), collect the events inside a lifecycle-aware scope:

1 class ProfileFragment : Fragment(R.layout.fragment_profile) {
2
3 private val viewModel: ProfileViewModel by viewModels()
4
5 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
6 super.onViewCreated(view, savedInstanceState)
7
8 viewLifecycleOwner.lifecycleScope.launch {
9 viewLifecycleOwner.repeatOnLifecycle(Lifecycle.State.STARTED) {
10 viewModel.events.collect { event ->
11 when (event) {
12 is UiEvent.ShowMessage -> {
13 Snackbar.make(requireView(), event.message,

Snackbar.LENGTH_SHORT).show()↪→

14 }
15 }
16 }
17 }
18 }
19 }
20 }

Because the SharedFlow is set with replay = 0 by default, the message is
shown only once and won’t be repeated on screen rotation.

Working with Android Views & Lifecycle 20

Why not just use a String or LiveData?

Youmight wonder: “Why not just expose a String from the ViewModel and read
it in the Fragment?”

That works for the simplest cases, but it has problems:

• A plain String is just data. The ViewModel would have no way to tell
the Fragment when the message is ready. You’d have to check or poll
constantly.

• It also has no lifecycle awareness. If the Fragment is destroyed and
recreated, you either lose the message or risk showing it again.

What about LiveData?

• LiveData is better because the ViewModel can push updates to the UI.
• But LiveData replays the last value to every new observer. That means
after a screen rotation, the message gets delivered again — causing
duplicate snackbars or toasts.

This is where SharedFlow fits in:

• It behaves like an event stream, not a stored state.
• With replay = 0, it only delivers new events to active collectors.
• That means your one-time messages are delivered exactly once, when
they happen — and nowhere else.

What’s key to remember:

• Use a String only for fixed text, not for events.
• Use LiveData for state that should persist (e.g. the current username).
• Use SharedFlow for events that should happen once (e.g. a toast or
snackbar).

* * *

Working with Android Views & Lifecycle 21

Tip: If you really need to “remember” the last event (like showing an error
after a network failure), you can configure SharedFlow(replay = 1). For
simple toasts and snackbars, stick with the default (replay = 0) so messages
only appear once.

* * *

Data & State Management
This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 11: Data classes with copy() for immutability

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Example: Updating a Profile

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Why immutability matters

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Copying with no changes

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Copying selectively

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Android Example: Updating UI State in a ViewModel

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming

Data & State Management 23

Why not just mutable POJOs?

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 12: Sealed classes for UI states (Loading, Error,
Success)

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Problem

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Solution: Use a sealed class

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Using it in the ViewModel

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Consuming the state in your UI

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Why is this better?

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming

Data & State Management 24

Recipe 13: Safe Args in Navigation (type‐safe arguments)

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Setting up Safe Args

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Defining Arguments in the Navigation Graph

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Passing Data with Safe Args

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Receiving Data in the Destination Fragment

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Why This Works

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 14: Persisting small UI state with SavedStateHandle

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming

Data & State Management 25

Using SavedStateHandle in ViewModels

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Consuming in a Fragment

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

When to Use SavedStateHandle

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Tip

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 15: SharedPreferences → DataStore migration

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

1. Setup

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

2. Automatic Migration

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming

Data & State Management 26

3. Manual Migration

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

4. Reading/Writing DataStore (Common)

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Takeaways:

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming

Networking & Persistence
This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 16: Retrofit + Coroutines integration.

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 17: Safe retry with exponential backoff for API
calls.

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 18: Repository pattern: API + Room cache.

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 19: Room migrations (avoid crashes on schema
changes).

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 20: Mapping API models → domain models with
extensions.

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming

Coroutines & Flow in Android
This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 21: Using viewModelScope.launch correctly.

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 22: Switching threads with
withContext(Dispatchers.IO).

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 23: Handling cancellation in coroutines.

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 24: Flow + debounce for search bars.

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 25: Testing coroutines with runTest +
TestDispatcher.

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming

Jetpack Compose Essentials
This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 26: State hoisting in Compose (lifting state up).

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 27: Using rememberSaveable to persist across
rotations.

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 28: LazyColumn best practices (keys, avoiding
recomposition).

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 29: Preview parameter providers for test data.

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 30: Theming with Material 3 in Kotlin.

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming

Dependency Injection & Architecture
This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 31: ViewModel Assisted Injection with Hilt.

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 32: Modularizing Android projects
(domain/data/ui).

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 33: Using inline value classes for stronger typing.

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 34: Creating a sealed error hierarchy
(AppException).

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 35: Clean MVVM pattern in Kotlin (with
Repository + UseCases).

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming

Advanced Kotlin in Android
This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 36: Reducing method count (@JvmField, const
val).

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 37: Avoiding performance pitfalls (lambdas,
allocations).

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 38: Interop with Java: @JvmStatic,
@JvmOverloads.

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 39: SupervisorScope for independent coroutines.

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming

Advanced Kotlin in Android 32

Recipe 40: WorkManager + CoroutineWorker for
resilient background tasks.

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

https://leanpub.com/55kotlinrecipesforandroidprogramming

Appendix A: Beginner to Intermediate
Recipes
This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Using apply, let, also, run scope functions (when to use
each).

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Creating companion objects as factories instead of static
helpers.

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Using when expression instead of multiple if/else.

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Default values in data classes for cleaner constructors.

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming

Appendix A: Beginner to Intermediate Recipes 34

Smart casts with is operator (safe type checks).

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Null coalescing with ?: operator.

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Using lateinit safely (when it’s OK, when it’s not).

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

String resource formatting with placeholders
(getString(R.string.hello, name)).

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Simple sealed class navigation (before using Jetpack
Navigation).

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Handling RecyclerView clicks with lambdas instead of
interfaces.

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming

Appendix A: Beginner to Intermediate Recipes 35

Using const val for compile‐time constants.

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Testing simple functions with JUnit & Kotlin test DSL.

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Creating inline helper extensions (fun View.show() / fun
View.hide()).

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Using Pair and Triple effectively (vs. creating a new
class).

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

Filtering & mapping lists with Kotlin collection operators
(filter, map, firstOrNull).

This content is not available in the sample book. The book can be purchased on
Leanpub at https://leanpub.com/55kotlinrecipesforandroidprogramming.

https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming
https://leanpub.com/55kotlinrecipesforandroidprogramming

	Table of Contents
	Kotlin Basics for Android
	Recipe 1: val vs. var keyword. Which one to use?
	Recipe 2: Null safety with ?, !!, and safe calls.
	Recipe 3: Default parameters & named arguments (reduce overloads)
	Recipe 4: Using string templates instead of concatenation.
	Recipe 5: Extension functions for cleaner utilities.

	Working with Android Views & Lifecycle
	Recipe 6: Safe Fragment View Binding (avoid leaks)
	Recipe 7: Using by lazy for view and resource initialization.
	Recipe 8: Lifecycle-aware coroutines with lifecycleScope.
	Recipe 9: Passing data between Activities/Fragments safely with Bundles.
	Recipe 10: Toasts & Snackbars as one-shot events (SharedFlow)

	Data & State Management
	Recipe 11: Data classes with copy() for immutability
	Recipe 12: Sealed classes for UI states (Loading, Error, Success)
	Recipe 13: Safe Args in Navigation (type-safe arguments)
	Recipe 15: SharedPreferences → DataStore migration

	Networking & Persistence
	Recipe 16: Retrofit + Coroutines integration.
	Recipe 17: Safe retry with exponential backoff for API calls.
	Recipe 18: Repository pattern: API + Room cache.
	Recipe 19: Room migrations (avoid crashes on schema changes).
	Recipe 20: Mapping API models → domain models with extensions.

	Coroutines & Flow in Android
	Recipe 21: Using viewModelScope.launch correctly.
	Recipe 22: Switching threads with withContext(Dispatchers.IO).
	Recipe 23: Handling cancellation in coroutines.
	Recipe 24: Flow + debounce for search bars.
	Recipe 25: Testing coroutines with runTest + TestDispatcher.

	Jetpack Compose Essentials
	Recipe 26: State hoisting in Compose (lifting state up).
	Recipe 27: Using rememberSaveable to persist across rotations.
	Recipe 28: LazyColumn best practices (keys, avoiding recomposition).
	Recipe 29: Preview parameter providers for test data.
	Recipe 30: Theming with Material 3 in Kotlin.

	Dependency Injection & Architecture
	Recipe 31: ViewModel Assisted Injection with Hilt.
	Recipe 32: Modularizing Android projects (domain/data/ui).
	Recipe 33: Using inline value classes for stronger typing.
	Recipe 34: Creating a sealed error hierarchy (AppException).
	Recipe 35: Clean MVVM pattern in Kotlin (with Repository + UseCases).

	Advanced Kotlin in Android
	Recipe 36: Reducing method count (@JvmField, const val).
	Recipe 37: Avoiding performance pitfalls (lambdas, allocations).
	Recipe 38: Interop with Java: @JvmStatic, @JvmOverloads.
	Recipe 39: SupervisorScope for independent coroutines.
	Recipe 40: WorkManager + CoroutineWorker for resilient background tasks.

	Appendix A: Beginner to Intermediate Recipes
	Using apply, let, also, run scope functions (when to use each).
	Creating companion objects as factories instead of static helpers.
	Using when expression instead of multiple if/else.
	Default values in data classes for cleaner constructors.
	Smart casts with is operator (safe type checks).
	Null coalescing with ?: operator.
	Using lateinit safely (when it's OK, when it's not).
	String resource formatting with placeholders (getString(R.string.hello, name)).
	Simple sealed class navigation (before using Jetpack Navigation).
	Handling RecyclerView clicks with lambdas instead of interfaces.
	Using const val for compile-time constants.
	Testing simple functions with JUnit & Kotlin test DSL.
	Creating inline helper extensions (fun View.show() / fun View.hide()).
	Using Pair and Triple effectively (vs. creating a new class).
	Filtering & mapping lists with Kotlin collection operators (filter, map, firstOrNull).

