

 [image: 55 Kotlin Recipes for Android Programming]

 55 Kotlin Recipes for Android Programming

 Practical Solutions to Common Android Development Problems

 Ted Hagos

 This book is available at https://leanpub.com/55kotlinrecipesforandroidprogramming

 This version was published on 2025-10-01

 [image: publisher's logo]

 * * * * *

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

 © 2025 Ted Hagos

Table of Contents
		
	
	
	
	

		
	
	
	
	

		
	
	
	

		
	
	
	
	

		
	
	
	
	

		
	
	
	
	

		
	
	
	
	

		
	
	
	
	

		
	
	
	
	
	
	
	
	
	
	
	
	
	
	

 Guide

 	
 Cover

Kotlin Basics for Android
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 1: val vs. var keyword. Which one to use?

val and var are two keywords that let you work with variables. They look almost identical, and many people use them interchangeably, but the distinction is important. It may affect the reliability of your code.

Meet val – Your “Constant” Buddy.

Think of val as a commitment. Once you assign a value, it’s locked in—you can’t point it to something else later. For example:

1 val framework = "Kotlin"
2 framework = "Java" // Not Allowed

If you’re coming from Java, val is equivalent to the final keyword.

But here’s a subtle detail. While the reference (“Kotlin”) can’t change, remember that the object it points to might still be mutable. For example.

1 val groceries = mutableListOf("Milk", "Eggs")
2 groceries.add("Bread") // Still fine

So val is like saying: this name will always refer to the same box, but what’s inside that box might change.

“But String are objects” you might say. Yes, String is an object in Kotlin (actually, a wrapper around Java’s String, which is immutable). What’s important to remember are;

	
val controls the reference (the variable binding)

	
But it does not make the object itself immutable.

	
Since String is already immutable, you can’t change its contents anyway, unlike in our MutableList example above.

Enter var – The Flexible One.

var is the opposite. It’s a variable you can reassign as often as you like:

var mood = “Happy”
mood = “Not Happy” // This is fine

This is useful for things that naturally change—like counters, user inputs, or the state of a game.

Which Should You Use?

A good Kotlin habit is to default to val. Why? Because immutability makes your code easier to understand and less prone to bugs. Use var only when you truly need to reassign values.

Final Thoughts

If val is your safe, predictable friend, var is your free-spirited one. Both have their place, but leaning on val as much as possible will make your Kotlin code cleaner and more maintainable.

Recipe 2: Null safety with ?, !!, and safe calls.

For nearly three decades, Java developers wrestled with the very pesky NullPointerException (NPE); so much that in the classic book Effective Java, Joshua Bloch strongly recommended avoiding null whenever possible because of bugs it invites and the subsequent runtime crashes. The designers of Kotlin took that advice seriously and baked null safety right into the language.

In Kotlin, all variables are non-nullable by default. This is a deliberate design choice to make your code safer and reduce the chances of NPEs.

1 var name: String = "Ted"
2 // name = null // Compilation error

But Kotlin offers a way for a variable to hold null, if you really must. To do this, you need to explicitly tell Kotlin that a variable is nullable. You do this by postfixing the variable with a question mark (?), as shown in the snippet below.

1 var thename: String? = null

This distinction makes you really think about the possibility of null. Kotlin then gives you several ways (operators, actually) to work with nullable types.

Safe Call Operator ?.

The safe call operator lets you safely access a nullable object. If the object is null, the expression simply evaluates to null instead of crashing; like this.

1 println(thename?.length) // Prints null safely

This pattern is useful when chaining multiple calls, as it avoids repetitive null checks.

Non-Null Assertion Operator !!

The !! operator is Kotlin’s escape hatch. It asserts that the value is not null and throws an NPE if you’re wrong.

1 println(thename!!.length) // This may crash

Use it sparingly; relying on it defeats the purpose of Kotlin’s null safety.

Elvis Operator ?:

When you want a fallback, the Elvis operator is concise and expressive:

1 val displayName = thename ?: "Anonymous"
2 println(displayName)

If thename is null, "Anonymous" is used instead; if it isn’t, then the actual value thename will be printed.

Final Thoughts

Kotlin puts into practice the advice from Effective Java: minimize the use of null, and deal with it explicitly when unavoidable. With the operators ?, !!, and ?:, you can write code that is both safer and more concise.

Reach for safe calls and Elvis operators first. Only use !! only as a last resort.

Recipe 3: Default parameters & named arguments (reduce overloads)

In the early days, before Java popularized method overloading, developers had to give functions distinct names just to handle slightly different parameter lists. You might see functions like printUser(), printUserWithAge(), or printUserWithDetails(). It worked, but the naming was clumsy and inconsistent. Java improved this by introducing overloads, letting developers reuse the same method name with different signatures. While it was a step forward, it also led to a proliferation of overloads that bloated APIs and made maintenance harder.

Kotlin provides a cleaner and more expressive alternative: default parameters. Instead of writing multiple overloads, you can assign default values directly in the function signature. Callers then provide only the arguments they care about, while Kotlin fills in the rest.

1 fun greet(name: String, greeting: String = "Hello") {
2 println("$greeting, $name!")
3 }
4
5 // Usage
6 greet("Lyra") // Hello, Lyra!
7 greet("Soren", "Welcome") // Welcome, Soren!

Here, a single function replaces what would have been two or more overloads in Java. Less boilerplate, more clarity.

Another powerful feature is named arguments. This lets you specify parameters by name, which makes calls self-documenting, especially when parameters are of the same type or appear in long lists:

1 fun displayProfile(name: String, age: Int, isActive: Boolean = true) {
2 println("Name: $name, Age: $age, Active: $isActive")
3 }
4
5 // Clearer with named arguments
6 displayProfile(name = "Elowen", age = 30)
7 displayProfile(age = 40, name = "Caius", isActive = false)

Named arguments improve readability and reduce reliance on remembering parameter order. Combined with defaults, they eliminate the need for most overloads, making APIs far friendlier.

It’s worth noting that Joshua Bloch’s Effective Java also warned against excessive overloads, recommending alternative design patterns for cleaner APIs. Kotlin achieves this by providing developers with language-level support for defaults and named arguments—features that keep code lean, expressive, and maintainable.

Recipe 4: Using string templates instead of concatenation.
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 5: Extension functions for cleaner utilities.

One of the coolest things about Kotlin is extension functions.

Think of them like little superpowers you can instantly grant to any class, even ones you didn’t write—and especially handy when dealing with Java’s default behavior, where many classes are final (meaning you can’t subclass them).

Instead of creating a whole new subclass to add one tiny method, or constantly using messy Utility.doSomething(object) calls everywhere, you can write an extension function that makes that new ability look and feel like it was always a part of the original class. You can simply call object.doSomething().

Since you’re not actually modifying the original source code or relying on inheritance, you can effectively extend final classes (closed for inheritance), which is a huge advantage over trying to do something similar in standard Java. It keeps your code super clean and intuitive.

This is especially handy for Android development, where you often find yourself writing repetitive utility functions for View, Context, String, or Date. By turning them into extensions, you keep your code readable and discoverable through IntelliJ/Android Studio’s autocomplete.

* * *

Example: Converting a Utility Method into an Extension

In Java, we often wrote “utility classes” like this:

1 public class StringUtils {
2 public static boolean isValidEmail(String input) {
3 return input != null && input.contains("@");
4 }
5 }

In Kotlin, we can extend String directly:

1 fun String.isValidEmail(): Boolean {
2 return this.contains("@")
3 }

Now you can call it naturally:

1 val email = "dev@example.com"
2 if (email.isValidEmail()) {
3 println("Looks good!")
4 }

Notice how isValidEmail() feels like a native method of String.

More Android-Flavored Example: Hiding the Keyboard

Instead of writing a global helper function:

1 fun hideKeyboard(activity: Activity) {
2 val imm = activity.getSystemService(Context.INPUT_METHOD_SERVICE) as InputMethodManager
3 imm.hideSoftInputFromWindow(activity.currentFocus?.windowToken, 0)
4 }

We can turn it into an extension on Activity:

1 fun Activity.hideKeyboard() {
2 val imm = getSystemService(Context.INPUT_METHOD_SERVICE) as InputMethodManager
3 currentFocus?.let {
4 imm.hideSoftInputFromWindow(it.windowToken, 0)
5 }
6 }

Now inside an Activity, calling it looks natural:

 1 class MainActivity : AppCompatActivity() {
 2
 3 override fun onCreate(savedInstanceState: Bundle?) {
 4 super.onCreate(savedInstanceState)
 5 setContentView(R.layout.activity_main)
 6
 7 val button = findViewById<Button>(R.id.myButton)
 8 button.setOnClickListener {
 9 // Directly available because this is an Activity
10 hideKeyboard()
11 }
12 }
13 }

Here, hideKeyboard() is called just like any other method of Activity. IntelliJ/Android Studio will even suggest it in autocomplete, as though it were a built-in API.

Working with Android Views & Lifecycle

Recipe 6: Safe Fragment View Binding (avoid leaks)

ViewBinding is an Android feature that generates a binding class for each XML layout file. Each binding class contains direct references to all the views in that layout.

For example, if you have a fragment_safe.xml with a TextView whose ID is textView, the generated FragmentSafeBinding class will expose it as binding.textView.

This gives you:

	
Type safety – no need to cast views.

	
Null safety – missing views in layout variants are caught at compile time.

	
Less boilerplate – no more findViewById() scattered across your code.

This is why most modern Android apps prefer ViewBinding over the older findViewById.

Why care about “safe binding” in fragments?

Fragments have two overlapping lifecycles: the fragment itself and the fragment’s view. The fragment object can stay alive (for example, when it’s placed on the back stack or attached to an activity that’s still running), even though its view hierarchy is destroyed and later recreated.

If you keep a strong reference to the binding outside the view’s lifecycle, you’re essentially holding onto a view tree that no longer exists — which leads to wasted memory and potential leaks.

That’s why we need a pattern to clear the binding safely.

Don’t do this - Incorrect binding usage.

 1 class UnsafeFragment : Fragment(R.layout.fragment_unsafe) {
 2
 3 private lateinit var binding: FragmentUnsafeBinding
 4
 5 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 6 super.onViewCreated(view, savedInstanceState)
 7 binding = FragmentUnsafeBinding.bind(view)
 8 binding.textView.text = "Hello, World!"
 9 }
10
11 // ⚠ Problem: binding is never cleared.
12 // This may leak memory when the fragment’s view is destroyed.
13 }

Do this instead - Manual safe binding pattern

 1 class SafeFragment : Fragment(R.layout.fragment_safe) {
 2
 3 private var _binding: FragmentSafeBinding? = null
 4 private val binding get() = _binding!!
 5
 6 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 7 super.onViewCreated(view, savedInstanceState)
 8 _binding = FragmentSafeBinding.bind(view)
 9
10 binding.textView.text = "Hello, safely bound view!"
11 }
12
13 override fun onDestroyView() {
14 super.onDestroyView()
15 _binding = null // clear reference to avoid leaks
16 }
17 }

In this way:

	
_binding is nullable and private.

	
The binding getter is non-nullable, but only safe to access between onViewCreated and onDestroyView.

	
The binding is explicitly cleared to prevent leaks.

Cleaner utility: Reusable delegate

Manually repeating _binding boilerplate in every fragment can get tedious. A property delegate can automate safe lifecycle handling:

 1 import kotlin.properties.ReadOnlyProperty
 2 import kotlin.reflect.KProperty
 3 import androidx.fragment.app.Fragment
 4 import androidx.lifecycle.DefaultLifecycleObserver
 5 import androidx.lifecycle.LifecycleOwner
 6 import android.view.View
 7 import androidx.viewbinding.ViewBinding
 8
 9 class FragmentViewBindingDelegate<T : ViewBinding>(
10 val fragment: Fragment,
11 val bind: (View) -> T
12) : ReadOnlyProperty<Fragment, T> {
13
14 private var binding: T? = null
15
16 override fun getValue(thisRef: Fragment, property: KProperty<*>): T {
17 val currentBinding = binding
18 if (currentBinding != null) return currentBinding
19
20 val view = thisRef.view ?: throw IllegalStateException(
21 "Cannot access binding. View is null and might be destroyed."
22)
23
24 return bind(view).also { createdBinding ->
25 binding = createdBinding
26 thisRef.viewLifecycleOwner.lifecycle.addObserver(object : DefaultLifecycleObserver {
27 override fun onDestroy(owner: LifecycleOwner) {
28 binding = null
29 }
30 })
31 }
32 }
33 }
34
35 fun <T : ViewBinding> Fragment.viewBinding(bind: (View) -> T) =
36 FragmentViewBindingDelegate(this, bind)

Using the delegate

1 class CleanerFragment : Fragment(R.layout.fragment_cleaner) {
2
3 private val binding by viewBinding(FragmentCleanerBinding::bind)
4
5 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
6 super.onViewCreated(view, savedInstanceState)
7 binding.textView.text = "Hello, cleaner world!"
8 }
9 }

Just Remember:

	
findViewById was error-prone and verbose.

	
ViewBinding provides type-safe, null-safe, and boilerplate-free access to views.

	
In fragments, always clear the binding in onDestroyView, or use a delegate to automate the cleanup.

Recipe 7: Using by lazy for view and resource initialization.

In Android apps, certain resources—such as views, database clients, or configuration values—are often not needed immediately at object creation. Initializing them too early can waste memory or processing time. Kotlin’s by lazy delegate gives you a clean way to delay initialization until the first time the property is accessed.

* * *

What is by lazy?

In Kotlin, by lazy is a property delegate. Instead of immediately assigning a value to a property, you hand over the responsibility of initialization to the lazy { ... } block. This block runs only once—the first time you access the property. After that, the computed value is cached and reused.

Think of it as saying:

“Don’t do the work now. Do it later, the first time I actually need it.”

By default, by lazy is thread-safe, which means multiple threads can safely access the property without creating duplicate instances.

Lazy-loading a view in an Activity

 1 class MainActivity : AppCompatActivity() {
 2
 3 // View binding only happens when buttonView is first accessed
 4 private val buttonView: Button by lazy {
 5 findViewById(R.id.myButton)
 6 }
 7
 8 override fun onCreate(savedInstanceState: Bundle?) {
 9 super.onCreate(savedInstanceState)
10 setContentView(R.layout.activity_main)
11
12 // First access — initialization happens here
13 buttonView.setOnClickListener {
14 Toast.makeText(this, "Clicked!", Toast.LENGTH_SHORT).show()
15 }
16 }
17 }

Here, buttonView isn’t created when the activity object is constructed. Instead, the first time you use buttonView, Kotlin runs the initializer (findViewById(...)) and caches the result. Any future calls just return the same object.

Lazy initialization for resources

 1 class ConfigManager(context: Context) {
 2
 3 val prefs: SharedPreferences by lazy {
 4 context.getSharedPreferences("app_prefs", Context.MODE_PRIVATE)
 5 }
 6
 7 val apiBaseUrl: String by lazy {
 8 // Expensive or conditional loading (could be from a remote source)
 9 "https://api.example.com"
10 }
11 }

Here, prefs and apiBaseUrl values are only created when first accessed. This helps keep your app lightweight at startup.

* * *

Why it’s important

Without by lazy, you’d typically write something like:

1 private var buttonView: Button? = null
2
3 override fun onCreate(savedInstanceState: Bundle?) {
4 buttonView = findViewById(R.id.myButton)
5 }

This introduces potential null checks and extra boilerplate; whereas using lazy initialization, you get a non-nullable property with concise and safe syntax.

Recipe 8: Lifecycle-aware coroutines with lifecycleScope.

When working with coroutines in Android, one common challenge is managing their lifecycle. If you launch a coroutine tied directly to an Activity or Fragment without proper scoping, it may keep running even after the UI component is destroyed, leading to crashes, memory leaks, or wasted work.

To solve this, AndroidX provides lifecycleScope, an extension property available in ComponentActivity and Fragment. Coroutines launched in lifecycleScope are automatically canceled when the corresponding lifecycle is destroyed.

A quick word about coroutines

Coroutines are Kotlin’s modern approach to asynchronous programming, replacing older tools like AsyncTask, callbacks, or manually managed threads. They let you write asynchronous code in a sequential style, are lightweight, and support structured concurrency, so work can be neatly tied to a scope (like lifecycleScope).

💡 Tip: What is AndroidX?
AndroidX is the modern replacement for the old Android Support Libraries. It provides backwards-compatible libraries with new features, bug fixes, and consistent package naming (androidx.*).
The lifecycleScope API comes from androidx.lifecycle:lifecycle-runtime-ktx, which adds coroutine support to lifecycle-aware components like Activities and Fragments.

Example: Launching a Coroutine in a Fragment

 1 class ProfileFragment : Fragment(R.layout.fragment_profile) {
 2
 3 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 4 super.onViewCreated(view, savedInstanceState)
 5
 6 // Launch coroutine tied to this Fragment's view lifecycle
 7 viewLifecycleOwner.lifecycleScope.launch {
 8 val userData = fetchUserData()
 9 renderUserData(userData)
10 }
11 }
12
13 private suspend fun fetchUserData(): String {
14 delay(2000) // simulate network/database delay
15 return "Hello from lifecycleScope!"
16 }
17
18 private fun renderUserData(data: String) {
19 Toast.makeText(requireContext(), data, Toast.LENGTH_SHORT).show()
20 }
21 }

Example: Launching Coroutine in an Activity

 1 class MainActivity : AppCompatActivity() {
 2
 3 override fun onStart() {
 4 super.onStart()
 5
 6 lifecycleScope.launch {
 7 repeat(5) { i ->
 8 delay(1000)
 9 Log.d("MainActivity", "Tick $i")
10 }
11 }
12 }
13 }

* * *

Why Use lifecycleScope?

	
Lifecycle-aware: Coroutines are automatically canceled when the lifecycle is destroyed.

	
Cleaner code: No need to manually track and cancel Job objects.

	
Safer UI updates: Prevents updating views after they’ve been destroyed.

Tip: Use viewLifecycleOwner.lifecycleScope in Fragments when working with UI, since the Fragment object can survive longer than its views.

Recipe 9: Passing data between Activities/Fragments safely with Bundles.

Most Android apps you’ll build will likely have more than one screen, so, you’ll often need

to send data between screens — for example, from one Activity to another, or from a parent Fragment to a child.

The traditional way is to use Intents and Bundles:

	
Extras → Key-value pairs you attach to an Intent when launching an Activity.

	
Bundle → A container for storing structured data (key-value pairs) that can be passed around inside the Android framework. Both Activities and Fragments can receive a Bundle as part of their lifecycle.

This system works, but it has two main drawbacks:

	
Keys are just strings (easy to misspell).

	
Values must be manually cast to the right type (easy to mismatch).

Traditional Approach (Risky)

Here’s how you might normally pass data:

1 // Activity A
2 val intent = Intent(this, DetailActivity::class.java)
3 intent.putExtra("USER_ID", 42) // Extra added to Intent
4 startActivity(intent)
5
6 // Activity B
7 val userId = intent.getIntExtra("USER_ID", -1) // Extract from extras

For fragments, you usually pack arguments into a Bundle:

1 // Creating Fragment with arguments
2 val fragment = DetailFragment().apply {
3 arguments = Bundle().apply {
4 putString("USERNAME", "alice")
5 }
6 }
7
8 // Inside DetailFragment
9 val username = arguments?.getString("USERNAME")

This works, but notice the problems:

	
Keys like "USER_ID" and "USERNAME" are just raw strings.

	
You have to remember the correct type (Int vs String).

	
Mistakes only show up at runtime.

Safe Args with Navigation

Safe Args (part of Android Jetpack Navigation) solves this problem by generating type-safe classes for your arguments.

Define your arguments in nav_graph.xml:

 1 <fragment
 2 android:id="@+id/homeFragment"
 3 android:name="com.example.HomeFragment" >
 4 <action
 5 android:id="@+id/action_home_to_detail"
 6 app:destination="@id/detailFragment" >
 7 <argument
 8 android:name="userId"
 9 app:argType="integer" />
10 </action>
11 </fragment>

Then use them like this:

1 // From HomeFragment
2 val action = HomeFragmentDirections.actionHomeToDetail(userId = 42)
3 findNavController().navigate(action)
4
5 // In DetailFragment
6 val args: DetailFragmentArgs by navArgs()
7 val userId = args.userId

No more raw keys, no casting. The compiler enforces correctness.

* * *

Tip: Safe Args works for both Activities and Fragments as long as they’re defined in your Navigation Graph.

* * *

Why Use Safe Args?

	
Eliminates fragile string keys.

	
Type-safe — compiler catches mistakes early.

	
Cleaner, easier-to-read code.

If you’re starting a new Android project, consider setting up Navigation and Safe Args right away. It will save you time and prevent subtle bugs when passing data.

Recipe 10: Toasts & Snackbars as one-shot events (SharedFlow)

In Android apps, you often need to show temporary messages — things like toasts or snackbars. These are one-time messages: the user should see them once, and then they disappear.

For example, after the user saves a form, you might want to show:

“Profile updated successfully!”

The problem is that Android UI works with lifecycles. If you use something like LiveData or a state variable to store this message, it can get delivered again when the screen is rotated or recreated. The result? The same toast or snackbar shows up multiple times. Not good.

This is where Kotlin’s SharedFlow comes in. It’s a good tool for one-time messages because it only delivers values to collectors that are actively listening, and (if you set it up with replay = 0) it won’t repeat past messages.

Using SharedFlow for UI Messages

In your ViewModel:

 1 class ProfileViewModel : ViewModel() {
 2
 3 private val _events = MutableSharedFlow<UiEvent>()
 4 val events: SharedFlow<UiEvent> = _events
 5
 6 fun saveProfile() {
 7 // Do your save logic
 8 viewModelScope.launch {
 9 // After successful save, emit a one-time message
10 _events.emit(UiEvent.ShowMessage("Profile updated successfully!"))
11 }
12 }
13 }
14
15 sealed class UiEvent {
16 data class ShowMessage(val message: String) : UiEvent()
17 }

Collecting the Messages in the UI Layer

In your Fragment (or Activity), collect the events inside a lifecycle-aware scope:

 1 class ProfileFragment : Fragment(R.layout.fragment_profile) {
 2
 3 private val viewModel: ProfileViewModel by viewModels()
 4
 5 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 6 super.onViewCreated(view, savedInstanceState)
 7
 8 viewLifecycleOwner.lifecycleScope.launch {
 9 viewLifecycleOwner.repeatOnLifecycle(Lifecycle.State.STARTED) {
10 viewModel.events.collect { event ->
11 when (event) {
12 is UiEvent.ShowMessage -> {
13 Snackbar.make(requireView(), event.message, Snackbar.LENGTH_SHORT).show()
14 }
15 }
16 }
17 }
18 }
19 }
20 }

Because the SharedFlow is set with replay = 0 by default, the message is shown only once and won’t be repeated on screen rotation.

Why not just use a String or LiveData?

You might wonder: “Why not just expose a String from the ViewModel and read it in the Fragment?”

That works for the simplest cases, but it has problems:

	
A plain String is just data. The ViewModel would have no way to tell the Fragment when the message is ready. You’d have to check or poll constantly.

	
It also has no lifecycle awareness. If the Fragment is destroyed and recreated, you either lose the message or risk showing it again.

What about LiveData?

	
LiveData is better because the ViewModel can push updates to the UI.

	
But LiveData replays the last value to every new observer. That means after a screen rotation, the message gets delivered again — causing duplicate snackbars or toasts.

This is where SharedFlow fits in:

	
It behaves like an event stream, not a stored state.

	
With replay = 0, it only delivers new events to active collectors.

	
That means your one-time messages are delivered exactly once, when they happen — and nowhere else.

What’s key to remember:

	
Use a String only for fixed text, not for events.

	
Use LiveData for state that should persist (e.g. the current username).

	
Use SharedFlow for events that should happen once (e.g. a toast or snackbar).

* * *

Tip: If you really need to “remember” the last event (like showing an error after a network failure), you can configure SharedFlow(replay = 1). For simple toasts and snackbars, stick with the default (replay = 0) so messages only appear once.

* * *

Data & State Management
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 11: Data classes with copy() for immutability
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Example: Updating a Profile
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Why immutability matters
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Copying with no changes
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Copying selectively
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Android Example: Updating UI State in a ViewModel
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Why not just mutable POJOs?
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 12: Sealed classes for UI states (Loading, Error, Success)
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Problem
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Solution: Use a sealed class
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Using it in the ViewModel
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Consuming the state in your UI
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Why is this better?
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 13: Safe Args in Navigation (type-safe arguments)
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Setting up Safe Args
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Defining Arguments in the Navigation Graph
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Passing Data with Safe Args
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Receiving Data in the Destination Fragment
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Why This Works
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 14: Persisting small UI state with SavedStateHandle
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Using SavedStateHandle in ViewModels
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Consuming in a Fragment
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

When to Use SavedStateHandle
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Tip
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 15: SharedPreferences → DataStore migration
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

1. Setup
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

2. Automatic Migration
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

3. Manual Migration
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

4. Reading/Writing DataStore (Common)
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Takeaways:
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Networking & Persistence
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 16: Retrofit + Coroutines integration.
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 17: Safe retry with exponential backoff for API calls.
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 18: Repository pattern: API + Room cache.
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 19: Room migrations (avoid crashes on schema changes).
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 20: Mapping API models → domain models with extensions.
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Coroutines & Flow in Android
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 21: Using viewModelScope.launch correctly.
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 22: Switching threads with withContext(Dispatchers.IO).
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 23: Handling cancellation in coroutines.
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 24: Flow + debounce for search bars.
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 25: Testing coroutines with runTest + TestDispatcher.
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Jetpack Compose Essentials
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 26: State hoisting in Compose (lifting state up).
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 27: Using rememberSaveable to persist across rotations.
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 28: LazyColumn best practices (keys, avoiding recomposition).
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 29: Preview parameter providers for test data.
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 30: Theming with Material 3 in Kotlin.
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Dependency Injection & Architecture
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 31: ViewModel Assisted Injection with Hilt.
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 32: Modularizing Android projects (domain/data/ui).
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 33: Using inline value classes for stronger typing.
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 34: Creating a sealed error hierarchy (AppException).
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 35: Clean MVVM pattern in Kotlin (with Repository + UseCases).
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Advanced Kotlin in Android
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 36: Reducing method count (@JvmField, const val).
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 37: Avoiding performance pitfalls (lambdas, allocations).
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 38: Interop with Java: @JvmStatic, @JvmOverloads.
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 39: SupervisorScope for independent coroutines.
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Recipe 40: WorkManager + CoroutineWorker for resilient background tasks.
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Appendix A: Beginner to Intermediate Recipes
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Using apply, let, also, run scope functions (when to use each).
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Creating companion objects as factories instead of static helpers.
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Using when expression instead of multiple if/else.
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Default values in data classes for cleaner constructors.
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Smart casts with is operator (safe type checks).
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Null coalescing with ?: operator.
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Using lateinit safely (when it’s OK, when it’s not).
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

String resource formatting with placeholders (getString(R.string.hello, name)).
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Simple sealed class navigation (before using Jetpack Navigation).
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Handling RecyclerView clicks with lambdas instead of interfaces.
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Using const val for compile-time constants.
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Testing simple functions with JUnit & Kotlin test DSL.
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Creating inline helper extensions (fun View.show() / fun View.hide()).
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Using Pair and Triple effectively (vs. creating a new class).
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

Filtering & mapping lists with Kotlin collection operators (filter, map, firstOrNull).
This content is not available in the sample book. The book can be purchased on Leanpub at http://leanpub.com/55kotlinrecipesforandroidprogramming.

EPUB/styles/resources/leanpub_pencil.png

EPUB/styles/resources/leanpub_question-circle.png

EPUB/styles/resources/leanpub_warning.png

EPUB/styles/resources/leanpub_comments.png

EPUB/styles/resources/leanpub_bug.png

EPUB/styles/resources/leanpub_info-circle.png

EPUB/media/resources/title_page.png
Kotlin Recipes

for Android Developers

Ted Hagos

EPUB/media/resources/publisher-logo.png
[

Leanpub

EPUB/styles/resources/leanpub_key.png

