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“All models are wrong,

but some are useful.”

George E. P. Box
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INTRODUCTION

Machine learning refers to the development of Al systems that
can perform tasks due to a "learning process" based on data. This
is in contrast to approaches and methods in symbolic Al and
traditional software development, which are based on embedding
explicit rules and logical statements in the code. ML is at the heart
of recent advances in statistical Al and the methodology behind
technological achievements such as computer programs that
outperform humans in tasks ranging from medical diagnosis to
complex games. The recent surge of interest in Al is largely due to
the achievements made possible by ML. As the term "statistical
Al" suggests, ML draws on statistics and probability theory
concepts. Many forms of ML go beyond traditional statistical
methods, which is why we often think of ML as an exciting new
field. However, despite the hype surrounding this technological
development, the line between ML and statistics is blurred. There
are contexts in which ML is best viewed as a continuum with
traditional statistical methods rather than a clearly defined
separate field. Regardless of the definitional boundaries, ML is
often used for the same analytical tasks that conventional
statistical methods have been used for in the past. ML
Approaches.

ML is a very active area of research that encompasses a broad and
ever-evolving range of methods. Three primary approaches can be
distinguished at a high level: supervised learning, unsupervised
learning, and reinforcement learning.

Supervised Learning

In supervised learning, the task of the ML algorithm is to infer the
value of a predefined target variable (or output variable) based on
known values of feature variables (or input variables). The
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presence of labeled data (i.e., data with known values for the
target in question) is a prerequisite for supervised learning. The
learning process consists of developing a model of the relationship
between feature and target variables based on labeled training
data. This process is also referred to as "model training." After a
successful training phase (which is confirmed by a testing phase
also based on labeled data), the resulting model can be applied to
unlabeled data to infer the most likely value of the target variable.
This is referred to as the inference phase.

Supervised learning can solve two main types of analytic
problems:

e Regression problems where the target variable of interest
is continuous. Examples include predicting future stock
prices or insurance costs.

e Classification problems, where the target of interest is a
categorical variable. These include issues where the target
variable is binary (e.g., whether a financial transaction is
fraudulent or non-fraudulent) and multi-class problems
that involve more than two categories. For example,
classification can be used to assess the likelihood that
customers will default on loan repayments.

Unsupervised Learning

Unsupervised learning involves identifying patterns and
relationships in data without a predefined relationship of interest.
Unlike supervised learning, this approach does not rely on labeled
training data. Therefore, unsupervised learning can be more
exploratory, although the results are not necessarily less
meaningful.
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Unsupervised learning is beneficial when labeled data is
unavailable or expensive to produce. This approach can be used
to solve problems such as the following:

Cluster analysis involves grouping units of observations based on
similarities and dissimilarities between them. Examples of tasks
where cluster analysis can be helpful include customer
segmentation exercises.

Association analysis, where the goal is to identify salient
relationships among variables within a data set. Association rules
(i.e., formal if-then statements) typically describe such
relationships. These rules can lead to findings such as "customers
interested in X are also interested in Y and Z." Association analysis
is used for product recommendation and customer service
management tasks.

Reinforcement Learning

Reinforcement learning is based on the concept of an "agent"
exploring an environment. The agent's task is to determine an
optimal action or sequence of steps (the goal of interest) in
response to its environment. The learning process does not rely
on examples of "correct responses." Instead, it depends on a
reward function that provides feedback on the actions taken. The
agent strives to maximize its reward and thus improve its
performance through an iterative process of trial and error.

Reinforcement learning is practical when the optimal actions (i.e.,
the correct responses) are unknown. In such situations, labeled
training data are not available or risk producing suboptimal results
when analysts use supervised learning. The conceptual structure
of the approach also makes it relevant for problem types that have
a sequential or dynamic nature. Examples include problems in
robotics or games.
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Much work on reinforcement learning is taking place in the
context of basic research. This includes research in general Al.
Compared to other ML approaches, reinforcement learning is less
common in business. The most noted business applications are
outside of financial services and include autonomous vehicles and
other forms of robotics. Potential applications in financial services
include trading or trade execution and dynamic pricing.

These three approaches include a variety of ML methods such as
linear regression, decision trees, support vector machines,
artificial neural networks, and ensemble methods. However, two
general points about methodological differences are worth
noting.

First, ML methods differ significantly in complexity. Discussions of
ML often focus on practices with a high degree of complexity. For
example, neural networks, a family of techniques that search for
patterns and relationships in data sets using network structures
similar to those found in the biological brain, receive considerable
attention. However, ML also includes fewer complex methods
such as ordinary least squares regression and logistic regression.
These more straightforward methods have long been used in
statistics and econometrics and were established before ML
emerged in its current form. We will return to the issue of
complexity and its practical implications in later chapters. It
should be noted that ML as a field encompasses specific, highly
complex methods but is not limited to them.

Second, ML methods can be used to design static or dynamic
systems. For static systems, ML is used to develop models that do
not evolve once they are deployed unless a new model
intentionally replaces them. In dynamic systems, on the other
hand, models continue to adapt after deployment based on new
data that becomes available during operation.
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Such dynamic (or incremental) learning can greatly benefit
situations where the data available during development is limited
or where models capture phenomena with rapidly changing
characteristics.
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The Taxonomy used in this book

Main Domain and Data Types

Main Data

Domain Type Definition
Visual representation of a pixel matrix
consisting of one channel for black and white
Image images, three elements for color images (RGB),
Computer . . .
Vision or four elements for color images with opacity
(RGBA).
Video A succession of images (frames), sometimes
grouped with a time series (a sound).
Text A succession of characters (e.g., a tweet, a text
NLP / Speech field).
Processing Time A series of data points (e.g., numerical) indexed
Series in time order.

Data is organized in a predefined array model
with a specific column for each characteristic
(e.g., text, numeric data, date). To be more
precise, structured data refers to organized data
found, for example, in a relational database
(which, as mentioned, may contain columns of
Classic Data | Structured | text).

Science Data
Quantitative data can be distinguished from
qualitative data. Quantitative data correspond
to numeric data that can support some
arithmetic operations, while qualitative data are
usually used as categorical data to classify data
according to their similarities.
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Learning paradigms with subtypes.

;::';;‘i';i Subtype Definition
Classification is the process of predicting the
Classification class of given data points. (Is the picture a
Supervised cat or a dog?)
Learning Regression models are used to predict a

Unsupervised
Learning

Regression continuous value. (Predict the price of a
house based on its features).
Clustering is the task of dividing data points
into multiple groups so that data points in
Clustering the same groups are more similar to each

other than the data points in the other
groups.

Dimensionality

Dimensionality ~ reduction  refers  to
techniques for reducing the number of input

Reduction . . .
variables in the training data.
The reward is an area of ML that deals with
. how intelligent agents should act in an
Reinforcement . . - .
. Rewarding environment to maximize the notion of
Learning . . .
cumulative reward by learning from their
experiences through feedback.
Explainability

An important aspect of Al security is explainability. Understanding
the algorithms and making them explainable makes them
accessible to as many people as possible. In addition,
explainability helps increase the trustworthiness of Al and
supports forensics and analysis of decisions.
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Supervised Learning Classification Regression

Definition AdaBoost uses multiple iterations to create
a single composite strong learner by
iteratively adding weak learners. In each
training phase, a new weak learner is added
to the ensemble and a weight vector is
adjusted to focus on examples that were
misclassified in previous rounds.

Main Classic Data Science
Domain

Data Type Structured Data
Data Supervised Learning
Environme

nt

Learning Classification, Regression
Paradigm

Explainabil Explainable
ity
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AdaBoost (Adaptive Boosting) is an ensemble learning algorithm
used to improve the accuracy of weak classifiers by combining
them into a strong classifier. A classifier is a model that can predict
the class or category of input, and a weak classifier is a model that
performs better than random guessing but not as well as a strong
classifier.

The AdaBoost algorithm works by iteratively training a series of
weak classifiers on the data and adjusting the weights of the
samples in training set at each iteration. The algorithm assigns
higher weights to the samples misclassified by the previous
classifiers and lower weights to the samples correctly classified.
This process is repeated for a fixed number of iterations or until a
stopping criterion is met.

At the end of the process, the algorithm combines the outputs of
all the weak classifiers into a final strong classifier. The
combination is done by assigning a weight to each weak classifier
based on its accuracy. The last strong classifier assigns a class or
category to the input by taking a weighted majority vote of the
outputs of all the weak classifiers.

AdaBoost is a powerful algorithm that has been used in various
applications, including image and speech recognition, object
detection, and bioinformatics. It is beneficial when the data is
noisy or has multiple features and is resistant to overfitting.

One of the main advantages of AdaBoost is that it can be used with
a variety of weak classifiers, including decision trees, neural
networks, and support vector machines. It's also simple to
implement and computationally efficient. However, it is sensitive
to outliers and noise in the data, and it can be affected by choice
of weak classifier and the number of iterations.
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Example:

Imagine we have a dataset with 100 observations, each with two
features (x1 and x2) and a binary label (1 or -1). We want to train
a classifier that can predict the label of a new observation based
on its features.

1.

The algorithm starts by training a weak classifier on the
data, for example, a decision stump (a one-level decision
tree) that splits the data based on a threshold value of
one of the features. This classifier correctly classifies 80
of the observations.

Next, the algorithm assigns a weight to each observation
based on whether it was correctly or incorrectly
classified. The weight of the correctly classified
observations is reduced, and the weight of the incorrectly
classified observations is increased.

The algorithm then trains a second weak classifier on the
data using the updated weights. This classifier may be
different from the first one; for example, it could use an
additional feature or another threshold value. This
classifier correctly classifies 85 of the observations.

The algorithm assigns new weights to the observations
and repeats the process for a fixed number of iterations
or until a stopping criterion is met.

At the end of the process, the algorithm has trained
several weak classifiers on the data, assigning a weight to
each classifier based on its accuracy. The final strong
classifier is a weighted majority vote of the outputs of all
the weak classifiers.

An example of how to use the Adaboost algorithm in Python using
the scikit-learn library:

10
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from sklearn.ensemble import AdaBoostClassifier
from sklearn.datasets import make classification

# Generate some example data
X, y = make classification(n_ features=4, n informative=2,
n_redundant=0, random state=0)

# Create an instance of the Adaboost classifier
clf = AdaBoostClassifier(random state=0)

# Fit the model to the data
clf.fit (X, vy)

# Make predictions on new data
predictions = clf.predict (X)

In this example, we first import the AdaBoostClassifier class from
the ensemble module of scikit-learn. Then, we use the
make_classification function to generate example data for the
model. Next, we create an instance of the classifier, setting the
random state to O for reproducibility. Then, we use the fit method
to train the model on the data and the predict method to make
predictions on new data.

It's worth noting that the AdaBoostClassifier can be used for
classification problems. If you want to use Adaboost for
regression, you can use the AdaBoostRegressor class instead.

11
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Learning
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ADAM OPTIMIZATION

Optimization

Adam optimization is an extension of
stochastic gradient descent. It can be used
instead of classical stochastic gradient
descent to update the network weights
more efficiently thanks to two methods:
adaptive learning rate and momentum.

Classic Data Science

Structured Data

Optimization

12
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Adam (Adaptive Moment Estimation) is an optimization algorithm
used to update the parameters of a machine learning model
during training. It is a popular algorithm used in deep learning and
neural networks.

Adam is an extension of the stochastic gradient descent (SGD)
algorithm, which is a method to optimize the parameters of a
model by updating them in the direction of the negative gradient
of the loss function. The Adam algorithm, like SGD, uses the
gradients of the loss function concerning the model parameters to
update the parameters. In addition, it also incorporates the
concept of "momentum" and "adaptive learning rates" to improve
the optimization process.

The "momentum" term in Adam is similar to the momentum term
used in other optimization algorithms like SGD with momentum.
It helps the optimizer to "remember" the direction of the previous
update and continue moving in that direction, which can help the
optimizer to converge faster.

The "adaptive learning rates" term in Adam adapts the learning
rate for each parameter based on the historical gradient
information. This allows the optimizer to adjust the learning rate
for each parameter individually so that the optimizer can converge
faster and with more stability.

Adam is widely used in deep learning because it is computationally
efficient and can handle sparse gradients and noisy optimization
landscapes. But it requires more memory to store the historical
gradient information, and it may be sensitive to the choice of
hyperparameters, such as the initial learning rate.

In summary, Adam is a powerful optimization algorithm that can
improve the convergence speed and stability of the model during
training by incorporating the concepts of momentum and

13
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adaptive learning rates; it's widely used in deep learning and
neural networks as it is computationally efficient and can handle
noisy optimization landscapes.

Example:

Imagine we have a neural network with two layers, the first layer
has four neurons and the second layer has one neuron; the
network is used for binary classification. The goal is to find the
optimal values for the weights and biases of the neurons that
minimize the loss function.

1.

The algorithm starts by initializing the weights and biases
of the neurons randomly.

Next, the algorithm performs a forward pass of the data
through the network to calculate the output of the neurons
and the loss function.

The algorithm then calculates the loss function's gradients
for the neurons' weights and biases.

The algorithm uses the gradients to update the weights and
biases of the neurons using Adam optimization. The update
step includes calculating the moving average of the
gradients and the squared gradients, which are used to
adjust the learning rate for each weight and bias
individually.

The algorithm repeats steps 2-4 for a fixed number of
iterations or until a stopping criterion is met.

At the end of the process, the algorithm has found the
optimal values for the weights and biases of the neurons
that minimize the loss function.

The example | provided is a simplified version of the process; in
practice, the neural network may have more layers and neurons,
and the dataset may be much more significant. Also, the example

14
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shows the process for a binary classification problem, but the
Adam optimization algorithm can be used to optimize any
differentiable loss function.

Code example of how to use the Adam optimization algorithm in
Python with the Keras library:

from keras.optimizers import Adam

# Create a model
model = ...

# Compile the model with Adam optimizer

opt = Adam(lr=0.001, beta 1=0.9, beta 2=0.999,
epsilon=None, decay=0.0, amsgrad=False)

model.compile (optimizer=opt, loss='binary crossentropy',
metrics=['accuracy'])

# Train the model
model.fit (X train, y train, epochs=10, batch size=32)

In this example, the Adam optimizer is being used with the
specified learning rate (Ir) and beta values, and the model is being
compiled with binary crossentropy loss and accuracy metrics. The
model is then trained on X_train and y_train data with 10 epochs
and a batch size of 32. It's worth noting that this is just one of
many ways to code Adam Optimization in Keras and the specific
hyperparameter values can be adjusted based on the dataset and
the problem at hand.

15
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AGGLOMERATIVE CLUSTERING

=
? | e®

Unsupervised Learning Clustering

Definition = Agglomerative clustering is a "bottom-
up" approach to hierarchical clustering.
Each observation starts in its cluster, and
cluster pairs are merged as they move up
the hierarchy.

Main Classic Data Science
Domain

Data Type  Structured Data

Data Unsupervised Learning
Environment

Learning Clustering
Paradigm

Explainability -

16
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Agglomerative Clustering is a type of hierarchical clustering
algorithm. Hierarchical clustering algorithms are a class of
algorithms that create a hierarchy of clusters, where each cluster
is a subset of the previous one. In contrast, other clustering
algorithms like k-means make flat clusters where each point
belongs to exactly one cluster.

Agglomerative Clustering starts with each point as an individual
cluster, then iteratively merges the closest pair of clusters until all
points belong to a single cluster or a stopping criterion is met. The
main idea behind agglomerative Clustering is that similar topics
are more likely to be in the same cluster, and therefore, the
algorithm starts with a large number of small clusters and ends
with a small number of large clusters.

One of the critical parameters in Agglomerative Clustering is the
linkage criteria, which determines the distance between clusters.
Common linkage criteria include:

e Single linkage (the distance between the closest points in
each cluster).

e Complete connection (the distance between the farthest
points in each cluster).

e Average link (the average distance between all points in
each cluster).

e Ward linkage (the minimum variance of distances between
all points in each cluster).

Agglomerative Clustering is an efficient and flexible algorithm for
clustering data. However, it has some limitations. For example, it
does not scale well to large datasets, is sensitive to the linkage
criteria, and needs to provide a way to determine the optimal
number of clusters. Despite these limitations, it's a widely used

17
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algorithm, and it is used in many applications such as image
analysis, bioinformatics, and customer segmentation.

Example:

Imagine we have a dataset with 6 points, represented by the
coordinates (x, y) in a two-dimensional space: (1,2), (2,4), (3,5),
(4,4), (5,2), (6,1)

1. The algorithm starts by treating each point as an individual
cluster. So, we have 6 clusters, each containing one point.

2. Next, the algorithm finds the closest pair of clusters and
merges them into a new cluster. The linkage criteria used
in this example is "single linkage," which means the
algorithm finds the minimum distance between the closest
points of each cluster. For example, the closest pair of
clustersis (1,2) and (6,1), with a distance of 1.

3. The process is repeated, and the algorithm finds the next
closest pair of clusters. In this example, the closest pair is
(2,4) and (5,2), with a distance of 2.

4. The algorithm continues to merge clusters until all points
are in the same cluster. In this case, the final cluster
contains all 6 points and forms a triangle shape.

In this example, the number of clusters is determined by the
stopping criterion, which is merging all the points in one cluster.
However, in practice, one can use other stopping criteria, such as
a maximum number of clusters or a threshold for the linkage
distance.

Keep in mind that this is a simple example, and the process can be
different depending on the linkage criteria, stopping criteria, and
the shape of the data. Also, this example uses a 2-dimensional

18
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space, but the algorithm can work with any dimensions, and the
linkage criteria can be adjusted accordingly.

Code example of how to use the scikit-learn library to perform
agglomerative clustering in Python:

from sklearn.cluster import AgglomerativeClustering
from sklearn.datasets import make blobs

# Create some sample data
X, y = make blobs(n_samples=100, centers=3,
random_ state=42)

# Initialize the agglomerative clustering model
agg_clustering = AgglomerativeClustering(n clusters=3)

# Fit the model to the data
agg_clustering.fit (X)

# Predict the cluster labels for each data point
agg_clustering labels = agg clustering.labels

print (agg clustering labels)

In this example, we first generate a sample dataset of 100 points
in 3 clusters using the make blobs function from the
sklearn.datasets module. Then, we initialize an
AgglomerativeClustering object with 3 clusters and fit it to the
data using the fit() method. Finally, we predict the cluster labels
for each data point using the labels_ attribute of the fitted model.
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