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INTRODUCTION 

 Machine learning refers to the development of AI systems that 
can perform tasks due to a "learning process" based on data. This 
is in contrast to approaches and methods in symbolic AI and 
traditional software development, which are based on embedding 
explicit rules and logical statements in the code. ML is at the heart 
of recent advances in statistical AI and the methodology behind 
technological achievements such as computer programs that 
outperform humans in tasks ranging from medical diagnosis to 
complex games. The recent surge of interest in AI is largely due to 
the achievements made possible by ML. As the term "statistical 
AI" suggests, ML draws on statistics and probability theory 
concepts. Many forms of ML go beyond traditional statistical 
methods, which is why we often think of ML as an exciting new 
field. However, despite the hype surrounding this technological 
development, the line between ML and statistics is blurred. There 
are contexts in which ML is best viewed as a continuum with 
traditional statistical methods rather than a clearly defined 
separate field. Regardless of the definitional boundaries, ML is 
often used for the same analytical tasks that conventional 
statistical methods have been used for in the past. ML 
Approaches. 

ML is a very active area of research that encompasses a broad and 
ever-evolving range of methods. Three primary approaches can be 
distinguished at a high level: supervised learning, unsupervised 
learning, and reinforcement learning. 

Supervised Learning 

In supervised learning, the task of the ML algorithm is to infer the 
value of a predefined target variable (or output variable) based on 
known values of feature variables (or input variables). The 
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presence of labeled data (i.e., data with known values for the 
target in question) is a prerequisite for supervised learning. The 
learning process consists of developing a model of the relationship 
between feature and target variables based on labeled training 
data. This process is also referred to as "model training." After a 
successful training phase (which is confirmed by a testing phase 
also based on labeled data), the resulting model can be applied to 
unlabeled data to infer the most likely value of the target variable. 
This is referred to as the inference phase. 

Supervised learning can solve two main types of analytic 
problems: 

• Regression problems where the target variable of interest 
is continuous. Examples include predicting future stock 
prices or insurance costs.  

• Classification problems, where the target of interest is a 
categorical variable. These include issues where the target 
variable is binary (e.g., whether a financial transaction is 
fraudulent or non-fraudulent) and multi-class problems 
that involve more than two categories. For example, 
classification can be used to assess the likelihood that 
customers will default on loan repayments. 

Unsupervised Learning 

Unsupervised learning involves identifying patterns and 
relationships in data without a predefined relationship of interest. 
Unlike supervised learning, this approach does not rely on labeled 
training data. Therefore, unsupervised learning can be more 
exploratory, although the results are not necessarily less 
meaningful.  
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Unsupervised learning is beneficial when labeled data is 
unavailable or expensive to produce. This approach can be used 
to solve problems such as the following:  

Cluster analysis involves grouping units of observations based on 
similarities and dissimilarities between them. Examples of tasks 
where cluster analysis can be helpful include customer 
segmentation exercises.  

Association analysis, where the goal is to identify salient 
relationships among variables within a data set. Association rules 
(i.e., formal if-then statements) typically describe such 
relationships. These rules can lead to findings such as "customers 
interested in X are also interested in Y and Z." Association analysis 
is used for product recommendation and customer service 
management tasks. 

Reinforcement Learning 

Reinforcement learning is based on the concept of an "agent" 
exploring an environment. The agent's task is to determine an 
optimal action or sequence of steps (the goal of interest) in 
response to its environment. The learning process does not rely 
on examples of "correct responses." Instead, it depends on a 
reward function that provides feedback on the actions taken. The 
agent strives to maximize its reward and thus improve its 
performance through an iterative process of trial and error.  

Reinforcement learning is practical when the optimal actions (i.e., 
the correct responses) are unknown. In such situations, labeled 
training data are not available or risk producing suboptimal results 
when analysts use supervised learning. The conceptual structure 
of the approach also makes it relevant for problem types that have 
a sequential or dynamic nature. Examples include problems in 
robotics or games.  
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Much work on reinforcement learning is taking place in the 
context of basic research. This includes research in general AI. 
Compared to other ML approaches, reinforcement learning is less 
common in business. The most noted business applications are 
outside of financial services and include autonomous vehicles and 
other forms of robotics. Potential applications in financial services 
include trading or trade execution and dynamic pricing. 

These three approaches include a variety of ML methods such as 
linear regression, decision trees, support vector machines, 
artificial neural networks, and ensemble methods. However, two 
general points about methodological differences are worth 
noting. 

First, ML methods differ significantly in complexity. Discussions of 
ML often focus on practices with a high degree of complexity. For 
example, neural networks, a family of techniques that search for 
patterns and relationships in data sets using network structures 
similar to those found in the biological brain, receive considerable 
attention. However, ML also includes fewer complex methods 
such as ordinary least squares regression and logistic regression. 
These more straightforward methods have long been used in 
statistics and econometrics and were established before ML 
emerged in its current form. We will return to the issue of 
complexity and its practical implications in later chapters. It 
should be noted that ML as a field encompasses specific, highly 
complex methods but is not limited to them. 

Second, ML methods can be used to design static or dynamic 
systems. For static systems, ML is used to develop models that do 
not evolve once they are deployed unless a new model 
intentionally replaces them. In dynamic systems, on the other 
hand, models continue to adapt after deployment based on new 
data that becomes available during operation. 
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Such dynamic (or incremental) learning can greatly benefit 
situations where the data available during development is limited 
or where models capture phenomena with rapidly changing 
characteristics. 
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The Taxonomy used in this book 

Main Domain and Data Types 

Main 
Domain 

Data 
Type 

Definition 

Computer 
Vision 

Image 

Visual representation of a pixel matrix 
consisting of one channel for black and white 
images, three elements for color images (RGB), 
or four elements for color images with opacity 
(RGBA). 

Video 
A succession of images (frames), sometimes 
grouped with a time series (a sound). 

NLP / Speech 
Processing 

Text A succession of characters (e.g., a tweet, a text 
field). 

Time 
Series 

A series of data points (e.g., numerical) indexed 
in time order. 

Classic Data 
Science 

Structured 
Data 

Data is organized in a predefined array model 
with a specific column for each characteristic 
(e.g., text, numeric data, date). To be more 
precise, structured data refers to organized data 
found, for example, in a relational database 
(which, as mentioned, may contain columns of 
text). 
 
Quantitative data can be distinguished from 
qualitative data. Quantitative data correspond 
to numeric data that can support some 
arithmetic operations, while qualitative data are 
usually used as categorical data to classify data 
according to their similarities. 
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Learning paradigms with subtypes. 

Learning 
Paradigm 

Subtype Definition 

Supervised 
Learning 

Classification 
Classification is the process of predicting the 
class of given data points. (Is the picture a 
cat or a dog?) 

Regression 
Regression models are used to predict a 
continuous value. (Predict the price of a 
house based on its features). 

Unsupervised 
Learning 

Clustering 

Clustering is the task of dividing data points 
into multiple groups so that data points in 
the same groups are more similar to each 
other than the data points in the other 
groups. 

Dimensionality 
Reduction 

Dimensionality reduction refers to 
techniques for reducing the number of input 
variables in the training data. 

Reinforcement 
Learning 

Rewarding 

The reward is an area of ML that deals with 
how intelligent agents should act in an 
environment to maximize the notion of 
cumulative reward by learning from their 
experiences through feedback. 

Explainability 

An important aspect of AI security is explainability. Understanding 
the algorithms and making them explainable makes them 
accessible to as many people as possible. In addition, 
explainability helps increase the trustworthiness of AI and 
supports forensics and analysis of decisions.  
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ADABOOST 

 

Definition AdaBoost uses multiple iterations to create 
a single composite strong learner by 
iteratively adding weak learners. In each 
training phase, a new weak learner is added 
to the ensemble and a weight vector is 
adjusted to focus on examples that were 
misclassified in previous rounds. 
 

Main  
Domain 

 

Classic Data Science 

Data Type 
 

Structured Data 

Data 
Environme

nt 
 

Supervised Learning 

Learning 
Paradigm 

 

Classification, Regression 

Explainabil
ity 

Explainable 
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AdaBoost (Adaptive Boosting) is an ensemble learning algorithm 
used to improve the accuracy of weak classifiers by combining 
them into a strong classifier. A classifier is a model that can predict 
the class or category of input, and a weak classifier is a model that 
performs better than random guessing but not as well as a strong 
classifier. 

The AdaBoost algorithm works by iteratively training a series of 
weak classifiers on the data and adjusting the weights of the 
samples in training set at each iteration. The algorithm assigns 
higher weights to the samples misclassified by the previous 
classifiers and lower weights to the samples correctly classified. 
This process is repeated for a fixed number of iterations or until a 
stopping criterion is met. 

At the end of the process, the algorithm combines the outputs of 
all the weak classifiers into a final strong classifier. The 
combination is done by assigning a weight to each weak classifier 
based on its accuracy. The last strong classifier assigns a class or 
category to the input by taking a weighted majority vote of the 
outputs of all the weak classifiers. 

AdaBoost is a powerful algorithm that has been used in various 
applications, including image and speech recognition, object 
detection, and bioinformatics. It is beneficial when the data is 
noisy or has multiple features and is resistant to overfitting. 

One of the main advantages of AdaBoost is that it can be used with 
a variety of weak classifiers, including decision trees, neural 
networks, and support vector machines. It's also simple to 
implement and computationally efficient. However, it is sensitive 
to outliers and noise in the data, and it can be affected by choice 
of weak classifier and the number of iterations. 
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Example: 

Imagine we have a dataset with 100 observations, each with two 
features (x1 and x2) and a binary label (1 or -1). We want to train 
a classifier that can predict the label of a new observation based 
on its features. 

1. The algorithm starts by training a weak classifier on the 
data, for example, a decision stump (a one-level decision 
tree) that splits the data based on a threshold value of 
one of the features. This classifier correctly classifies 80 
of the observations. 

2. Next, the algorithm assigns a weight to each observation 
based on whether it was correctly or incorrectly 
classified. The weight of the correctly classified 
observations is reduced, and the weight of the incorrectly 
classified observations is increased. 

3. The algorithm then trains a second weak classifier on the 
data using the updated weights. This classifier may be 
different from the first one; for example, it could use an 
additional feature or another threshold value. This 
classifier correctly classifies 85 of the observations. 

4. The algorithm assigns new weights to the observations 
and repeats the process for a fixed number of iterations 
or until a stopping criterion is met. 

5. At the end of the process, the algorithm has trained 
several weak classifiers on the data, assigning a weight to 
each classifier based on its accuracy. The final strong 
classifier is a weighted majority vote of the outputs of all 
the weak classifiers. 

An example of how to use the Adaboost algorithm in Python using 
the scikit-learn library: 
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from sklearn.ensemble import AdaBoostClassifier 

from sklearn.datasets import make_classification 

 

# Generate some example data 

X, y = make_classification(n_features=4, n_informative=2, 

                           n_redundant=0, random_state=0) 

 

# Create an instance of the Adaboost classifier 

clf = AdaBoostClassifier(random_state=0) 

 

# Fit the model to the data 

clf.fit(X, y) 

 

# Make predictions on new data 

predictions = clf.predict(X) 

 

In this example, we first import the AdaBoostClassifier class from 
the ensemble module of scikit-learn. Then, we use the 
make_classification function to generate example data for the 
model. Next, we create an instance of the classifier, setting the 
random state to 0 for reproducibility. Then, we use the fit method 
to train the model on the data and the predict method to make 
predictions on new data. 

It's worth noting that the AdaBoostClassifier can be used for 
classification problems. If you want to use Adaboost for 
regression, you can use the AdaBoostRegressor class instead. 
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ADAM OPTIMIZATION 

 

Definition Adam optimization is an extension of 
stochastic gradient descent. It can be used 
instead of classical stochastic gradient 
descent to update the network weights 
more efficiently thanks to two methods: 
adaptive learning rate and momentum. 
 

Main  
Domain 

 

Classic Data Science 

Data Type 
 

Structured Data 

Data 
Environme

nt 
 

- 

Learning 
Paradigm 

 

Optimization 

Explainabil
ity 

-  
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Adam (Adaptive Moment Estimation) is an optimization algorithm 
used to update the parameters of a machine learning model 
during training. It is a popular algorithm used in deep learning and 
neural networks. 

Adam is an extension of the stochastic gradient descent (SGD) 
algorithm, which is a method to optimize the parameters of a 
model by updating them in the direction of the negative gradient 
of the loss function. The Adam algorithm, like SGD, uses the 
gradients of the loss function concerning the model parameters to 
update the parameters. In addition, it also incorporates the 
concept of "momentum" and "adaptive learning rates" to improve 
the optimization process. 

The "momentum" term in Adam is similar to the momentum term 
used in other optimization algorithms like SGD with momentum. 
It helps the optimizer to "remember" the direction of the previous 
update and continue moving in that direction, which can help the 
optimizer to converge faster. 

The "adaptive learning rates" term in Adam adapts the learning 
rate for each parameter based on the historical gradient 
information. This allows the optimizer to adjust the learning rate 
for each parameter individually so that the optimizer can converge 
faster and with more stability. 

Adam is widely used in deep learning because it is computationally 
efficient and can handle sparse gradients and noisy optimization 
landscapes. But it requires more memory to store the historical 
gradient information, and it may be sensitive to the choice of 
hyperparameters, such as the initial learning rate. 

In summary, Adam is a powerful optimization algorithm that can 
improve the convergence speed and stability of the model during 
training by incorporating the concepts of momentum and 
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adaptive learning rates; it's widely used in deep learning and 
neural networks as it is computationally efficient and can handle 
noisy optimization landscapes. 

Example: 

Imagine we have a neural network with two layers, the first layer 
has four neurons and the second layer has one neuron; the 
network is used for binary classification. The goal is to find the 
optimal values for the weights and biases of the neurons that 
minimize the loss function. 

1. The algorithm starts by initializing the weights and biases 
of the neurons randomly. 

2. Next, the algorithm performs a forward pass of the data 
through the network to calculate the output of the neurons 
and the loss function. 

3. The algorithm then calculates the loss function's gradients 
for the neurons' weights and biases. 

4. The algorithm uses the gradients to update the weights and 
biases of the neurons using Adam optimization. The update 
step includes calculating the moving average of the 
gradients and the squared gradients, which are used to 
adjust the learning rate for each weight and bias 
individually. 

5. The algorithm repeats steps 2-4 for a fixed number of 
iterations or until a stopping criterion is met. 

6. At the end of the process, the algorithm has found the 
optimal values for the weights and biases of the neurons 
that minimize the loss function. 

The example I provided is a simplified version of the process; in 
practice, the neural network may have more layers and neurons, 
and the dataset may be much more significant. Also, the example 
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shows the process for a binary classification problem, but the 
Adam optimization algorithm can be used to optimize any 
differentiable loss function. 

Code example of how to use the Adam optimization algorithm in 
Python with the Keras library: 

from keras.optimizers import Adam 

 

# Create a model 

model = ... 

 

# Compile the model with Adam optimizer 

opt = Adam(lr=0.001, beta_1=0.9, beta_2=0.999, 

epsilon=None, decay=0.0, amsgrad=False) 

model.compile(optimizer=opt, loss='binary_crossentropy', 

metrics=['accuracy']) 

 

# Train the model 

model.fit(X_train, y_train, epochs=10, batch_size=32) 

 

In this example, the Adam optimizer is being used with the 
specified learning rate (lr) and beta values, and the model is being 
compiled with binary crossentropy loss and accuracy metrics. The 
model is then trained on X_train and y_train data with 10 epochs 
and a batch size of 32. It's worth noting that this is just one of 
many ways to code Adam Optimization in Keras and the specific 
hyperparameter values can be adjusted based on the dataset and 
the problem at hand. 
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AGGLOMERATIVE CLUSTERING 

  

Definition Agglomerative clustering is a "bottom-
up" approach to hierarchical clustering. 
Each observation starts in its cluster, and 
cluster pairs are merged as they move up 
the hierarchy. 
 

Main  
Domain 

 

Classic Data Science 

Data Type 
 

Structured Data 

Data 
Environment 

 

Unsupervised Learning 

Learning 
Paradigm 

 

Clustering 

Explainability -  
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Agglomerative Clustering is a type of hierarchical clustering 
algorithm. Hierarchical clustering algorithms are a class of 
algorithms that create a hierarchy of clusters, where each cluster 
is a subset of the previous one. In contrast, other clustering 
algorithms like k-means make flat clusters where each point 
belongs to exactly one cluster. 

Agglomerative Clustering starts with each point as an individual 
cluster, then iteratively merges the closest pair of clusters until all 
points belong to a single cluster or a stopping criterion is met. The 
main idea behind agglomerative Clustering is that similar topics 
are more likely to be in the same cluster, and therefore, the 
algorithm starts with a large number of small clusters and ends 
with a small number of large clusters. 

One of the critical parameters in Agglomerative Clustering is the 
linkage criteria, which determines the distance between clusters. 
Common linkage criteria include: 

• Single linkage (the distance between the closest points in 
each cluster). 

• Complete connection (the distance between the farthest 
points in each cluster). 

• Average link (the average distance between all points in 
each cluster). 

• Ward linkage (the minimum variance of distances between 
all points in each cluster). 

Agglomerative Clustering is an efficient and flexible algorithm for 
clustering data. However, it has some limitations. For example, it 
does not scale well to large datasets, is sensitive to the linkage 
criteria, and needs to provide a way to determine the optimal 
number of clusters. Despite these limitations, it's a widely used 
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algorithm, and it is used in many applications such as image 
analysis, bioinformatics, and customer segmentation. 

Example: 

Imagine we have a dataset with 6 points, represented by the 
coordinates (x, y) in a two-dimensional space: (1,2), (2,4), (3,5), 
(4,4), (5,2), (6,1) 

1. The algorithm starts by treating each point as an individual 
cluster. So, we have 6 clusters, each containing one point. 

2. Next, the algorithm finds the closest pair of clusters and 
merges them into a new cluster. The linkage criteria used 
in this example is "single linkage," which means the 
algorithm finds the minimum distance between the closest 
points of each cluster. For example, the closest pair of 
clusters is (1,2) and (6,1), with a distance of 1. 

3. The process is repeated, and the algorithm finds the next 
closest pair of clusters. In this example, the closest pair is 
(2,4) and (5,2), with a distance of 2. 

4. The algorithm continues to merge clusters until all points 
are in the same cluster. In this case, the final cluster 
contains all 6 points and forms a triangle shape. 

In this example, the number of clusters is determined by the 
stopping criterion, which is merging all the points in one cluster. 
However, in practice, one can use other stopping criteria, such as 
a maximum number of clusters or a threshold for the linkage 
distance. 

Keep in mind that this is a simple example, and the process can be 
different depending on the linkage criteria, stopping criteria, and 
the shape of the data. Also, this example uses a 2-dimensional 
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space, but the algorithm can work with any dimensions, and the 
linkage criteria can be adjusted accordingly. 

Code example of how to use the scikit-learn library to perform 
agglomerative clustering in Python: 

from sklearn.cluster import AgglomerativeClustering 

from sklearn.datasets import make_blobs 

 

# Create some sample data 

X, y = make_blobs(n_samples=100, centers=3, 

random_state=42) 

 

# Initialize the agglomerative clustering model 

agg_clustering = AgglomerativeClustering(n_clusters=3) 

 

# Fit the model to the data 

agg_clustering.fit(X) 

 

# Predict the cluster labels for each data point 

agg_clustering_labels = agg_clustering.labels_ 

 

print(agg_clustering_labels) 

 

In this example, we first generate a sample dataset of 100 points 
in 3 clusters using the make_blobs function from the 
sklearn.datasets module. Then, we initialize an 
AgglomerativeClustering object with 3 clusters and fit it to the 
data using the fit() method. Finally, we predict the cluster labels 
for each data point using the labels_ attribute of the fitted model.  


