

[image: 12 Factor Applications with Docker and Go]

 12 Factor Applications with Docker and Go

 A book filled with examples on how to use Docker and Go to create the ultimate 12 Factor applications

 Tit Petric

 This book is for sale at http://leanpub.com/12fa-docker-golang

 This version was published on 2020-07-14

 [image: publisher's logo]

 * * * * *

 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do.

 * * * * *

© 2016 - 2020 Tit Petric

 Table of Contents

 	
 Introduction

 	
 About me

 	
 Who is this book for?

 	
 How should I study it?

 	
 Requirements

 	
 Linux and Docker

 	
 Additional requirements

 	
 I. Codebase - One codebase tracked in revision control, many deploys

 	
 Gogs

 	
 Multiple deploys

 	
 Structuring your code

 	
 Improving deployments

 	
 II. Dependencies - Explicitly declare and isolate dependencies

 	
 Vendoring

 	
 Caveats about vendoring

 	
 System dependencies

 Guide

 	
 Begin Reading

Introduction

About me

I’m one of those people with about two decades of programming experience
under my belt. I’ve started optimizing code in the 90’s, discovered PHP
in the 2000’s, and build several large-scale projects on to the day, all
while discovering other programming language families like Java, Node.js
and ultimately, Go.

I have built numerous APIs for my own content management products. Several products I’ve
been involved with as a lead developer have been sold and are used in multiple
countries. I’ve written a professional dedicated API framework which
doubles as an software development kit for the Slovenian national TV and Radio station website,
RTV Slovenia. I’m also the speaker at several local PHP user group events
and conferences.

I am also the author of API Foundations in Go.

I write a blog which is available on scene-si.org, you
should check it out, I tend to publish new articles about twice monthly.

Who is this book for?

This book is for everyone who writes applications for a living. I cover
a wide area of subjects dedicated to development of software in general,
trying to establish some good development practices, while at the same time
referencing the 12 Factor App manifesto.

In the book, I will cover these subjects:

 	I. Codebase - One codebase tracked in revision control, many deploys

 	II. Dependencies - Explicitly declare and isolate dependencies

 	III. Config - Store config in the environment

 	IV. Backing services - Treat backing services as attached resources

 	V. Build, release, run - Strictly separate build and run stages

 	VI. Processes - Execute the app as one or more stateless processes

 	VII. Port binding - Export services via port binding

 	VIII. Concurrency - Scale out via the process model

 	IX. Disposability - Maximize robustness with fast startup and graceful shutdown

 	X. Dev/prod parity - Keep development, staging, and production as similar as possible

 	XI. Logs - Treat logs as event streams

 	XII. Admin processes - Run admin/management tasks as one-off processes

Covering these concepts should give you a good overview of the 12 Factor App
designs and what problems they are trying to solve. The book tries to give
you a set of best practices to follow and guide you through individual
chapters shedding light and hands on examples of individual approaches.

How should I study it?

Through the book, I will present several examples on how to do common
things when developing APIs. The examples are published on GitHub.

You should follow the examples in the book, or you can look at each
chapter individually, just to cover the knowledge of that chapter. The
examples are stand-alone, but generally build on work from previous chapters.
Be sure to follow the Requirements section as you’re working with the book.

Requirements

This is a book which demonstrates 12 factor application development on the use
case of developing and deploying microservices. As such, there are a few prerequisites
that need to be taken care of, when you’ll be going through the examples in the book.

Linux and Docker

The examples of the book rely on a recent docker-engine installation on a Linux host.

Own hardware

The recommended configuration if you have your own hardware is:

 	2 CPU core,

 	2GB ram,

 	128GB disk (SSD)

The minimal configuration known to mostly work is about half that, but you might find yourself
in a tight place as soon as your usage goes up. If you’re just tying out docker, a simple
virtual machine might be good enough for you, if you’re not running Linux on your laptop already.

If you’re running windows 10, you can enable the Hyper-V service, which allows you to install
and run Linux in a virtual machine on your laptop/PC, I highly recommend this option.

Please refer to the official docker installation instructions
on how to install a recent docker version.

Cloud quick-start

If having your own hardware is a bit of a buzzkill, welcome to the world of the cloud. You can
literally set up your own virtual server on Digital Ocean within minutes. You can use this DigitalOcean referral link
to get a $10 credit, while also helping me take some zeros of my hosting bills.

After signing up, creating a Linux instance with a running Docker engine is simple, and only takes a few
clicks. There’s this nice green button on the top header of the page, where it says “Create Droplet”. Click it,
and on the page it opens, navigate to “One-click apps” where you choose a “Docker” from the list.

 [image: Choose Docker from "One-click apps"]
 Choose Docker from “One-click apps”

Running docker can be disk-usage intensive. Some docker images may “weigh” up to or more than 1 GB.
I would definitely advise choosing an instance with at least 30GB of disk space, which is a bargain
for $10 a month, but you will have to keep an eye out for disk usage. It’s been known to fill up.

 [image: Choose a reasonable disk size]
 Choose a reasonable disk size

Aside for some additional options on the page, like chosing a region where your droplet will be running in,
there’s only a big green “Create” button on the bottom of the page, which will set up everything you need.

Creating Digital Ocean droplets via API

Digital Ocean provides the CLI utility doctl. It’s a Go program
that interfaces with their API to allow you to list running droplets, create new ones, shut them
down and much more. If you don’t need an instance 24/7, you can use the API to spin it up and shut
it down based on your needs. It’s good for having better quality development machines, which you delete
after you’re done for the day, saving about half of the costs.

Download and install doctl from the releases page and issue doctl auth init to authenticate against
the Digital Ocean API. You can generate the token from the top of your dashboard.

doctl auth init
DigitalOcean access token: 24df63816084cb8270fbe03a7c98341a
Validating token: OK

After this, you’re free to list images and create new droplets via the API.

doctl compute image list | grep docker
23219707 Docker 17.03.0-ce on 14.04 docker
24232340 Docker 17.04.0-ce on 16.04 docker-16-04

We can use the docker-16-04 image to quickly spin up a droplet. We will create create.sh
and destroy.sh, which will check for existance of the droplet before it’s created or destroyed.

 Create a new droplet conditionally
 1 #!/bin/bash
 2 CHECK=$(doctl compute droplet list asx --format ID --no-header | wc -l)
 3 if ["$CHECK" == "0"]; then
 4 	echo "Creating ASX droplet"
 5 	doctl compute droplet create asx -v \
 6 		--image docker-16-04 \
 7 		--size 2gb \
 8 		--region ams3 \
 9 		--ssh-keys $(./ssh-key.sh)
10 else
11 	echo "Droplet ASX already running"
12 fi

You should change the parameter to --ssh-keys with either your SSH key or a SSH key fingerprint,
once you’ve added the SSH key to the Digital Ocean settings page under “Security”. You can adjust
the parameters based on the size of the droplet you would like and the region where you want it to run.

Destroying the droplet is just as simple as creating one:

 Destroy a droplet if it exists
1 #!/bin/bash
2 CHECK=$(doctl compute droplet list asx --format ID --no-header | wc -l)
3 if ["$CHECK" == "0"]; then
4 	echo "Droplet ASX not started"
5 else
6 	echo "Deleting droplet asx"
7 	doctl compute droplet delete asx -f -v
8 fi

Of course, when your droplet spins up, you’ll want to list it’s public IP, or connect to it via SSH.

 Listing the public ip for a droplet
doctl compute droplet list asx --format PublicIPv4 --no-header

Connecting to the IP is just as simple as wrapping everything in a ssh $(+).

 Connect to the droplet
ssh $(doctl compute droplet list asx --format PublicIPv4 --no-header)

As soon as you SSH into the instance, you can use any docker run command you like. At this
point it’s up to you to set up any git checkouts or somehow populate the running droplet.

All the scripts to create Digital Ocean instances programmatically are available in the book
samples GitHub repository.

Additional requirements

Networking

When dealing with microservices in docker, it’s a very common practice to enable communication between
one service and another. For example, many microservices may and do communicate to each other. For this
purpose we create a network called “party”, on which the microservices from this book will run on.

 Create a custom bridge network
1 #!/bin/bash
2 #
3 # this creates a custom docker "bridge" network named "party"
4 #
5 docker network create -d bridge --subnet 172.25.0.0/24 party

When running microservices, it is enough to join the docker container to this network with the
option --net=party. You may define multiple networks to isolate docker containers away from
each other.

MySQL database

Some services will require a MySQL database to store data. We can quickly start up an instance
in docker as well. We will name our instance “mysql” and will try to re-use it when ever an opportunity arises.

 Quickstart: Run a MySQL instance
 1 #!/bin/bash
 2 NAME="mysql"
 3 APP_DIR=$(dirname $(readlink -f $0))
 4 mkdir -p ${APP_DIR}/data/$NAME
 5 docker stop $NAME
 6 docker rm $NAME
 7
 8 DOCKERFILE="titpetric/percona-xtrabackup"
 9
10 docker stop $NAME
11 docker rm $NAME
12 docker run --restart=always \
13 -h $NAME \
14 --name $NAME \
15 --net=party \
16 -v ${APP_DIR}/data/$NAME/data:/var/lib/mysql \
17 -e MYSQL_ALLOW_EMPTY_PASSWORD="yes" \
18 -d $DOCKERFILE

When using the instance from other docker containers on the same network, you may use the following
credentials to connect to it:

 	hostname: mysql (the same as the container name),

 	username: root,

 	password: empty string

 Note: obviously having a MySQL instance with an empty root password in production is bad form. If you’d
like to run MySQL with Docker in production, take a look at the default options in the
percona image on Docker Hub. There’s a slightly better example of
using MySQL in chapter 4 (backing services). Please consult that chapter for more examples.

I. Codebase - One codebase tracked in revision control, many deploys

Source code VCS (version control systems) are designed to store revisions of your source code. For
each feature you add, they log a “commit” or version, which is a point in time snapshot of your
changes. Commits can be recalled at a later time in case you need to roll-back your code for any
reason, including getting a deleted section of source code restored at a later time.

Commits, as they are only partial snapshot on the changes on your code base, are an ideal way to
enable collaborative work on software projects - if user 1 edits file 1 and user 2 edits file 2,
there can be no conflict when merging commits between these two users. And when it comes to editing
the same file - users work on local copies, and when they push their commits, a conflict might
occur. Resolving the conflict may be as simple as editing a file, picking the lines which should
stay and committing the changes.

I’d suggest you use git for revision control. You can use services like GitHub or Bitbucket,
or host your own with GitLab or Gogs. Make sure that you perform a full backup on occasion and
have procedures in place which allow you to restore it from a backup. This should go without saying.

For company use, I’d recommend starting with a Bitbucket, which is free up to 5 users, and allows unlimited private
repositories. If you want more than the 5 free users, the pricing is $10/month for 10 users, $20/month
for 20, and so on.

If you’re developing for/with community, I’d definitely recommend you to use GitHub instead. While
pricing for private repos is higher, GitHub also provides a coherent issue tracker, lots of tooling to support your
development, and an invaluable community. A team account with 5 users starts with $25/month.

Your application project or microservice should use one repository just for the sake of simplicity.
You can use multiple repositories in a project, but it will increase complexity, usually not with good results.
You can always structure your Go application in subpackages and keep everything neatly organized.
If you are making several applications that use the same parts of code, this code should be separated
into packages which may be included via go get or preferably a dependency manager (See chapter 2).

Let’s to through setting up a self-hosted git service, where we can start work right away.

Gogs

Gogs is a great option if you want a zero-cost self-hosted git solution. I’m going to walk you through
the process of setting up Gogs. And since this is a book that relies heavily on docker, we’ll use it
to set up our Gogs instance.

Why Gogs in the first place?

As mentioned, there are a lot of services that are the standard today, most notably GitHub and Bitbucket.
Bitbucket is a great option if you want a free plan that allows private repositories and managing
permissions in a small team of up to 5 people, and they give you three extra people if you invite them
to sign up. But, setting up your own git repositories gives you the benefit of avoiding things like
rate limiting or issues with these services. If you’re fanatic about keeping your code off the cloud,
hosting it yourself is also a good option (but don’t skip the section on backing it up). If your needs
tend to grow (as they do), it’s always an easy task to migrate from Gogs to GitLab, GitHub or Bitbucket
at a later time, and I’m going to show you how to do that as well.

Installing and running Gogs

Gogs is written in Go. This means, they have a nice little set of binaries available for most common
distributions and architectures, including Windows, if you like. But as we like the comfort of a process
manager around Gogs, we will run it in docker. I’ve created a script to do the following for convenience:

 Quick start: Run a Gogs instance
1 #!/bin/bash
2 NAME="gogs"
3 APP_DIR=$(dirname $(readlink -f $0))
4 mkdir -p ${APP_DIR}/data/$NAME
5 docker stop $NAME
6 docker rm $NAME
7 docker run -d --net=party --restart=always --name=$NAME -h $NAME -p 10022:22 -p 3000\
8 :3000 -v ${APP_DIR}/data/$NAME:/data gogs/gogs

The process manager part here is the --restart option, which instructs docker to restart the container
should it exit for any reason. A possible reason being, that the server was rebooted for maintenance.
After executing this script, Gogs is running in a docker container with the same name, exposing ports
10022 for ssh access, and port 3000 for http access.

When you open http://yourserver:3000/ an install process will guide you through the installation.
In the options, you may configure it by connecting to the MySQL instance we created in the Introduction
chapter, or you may use a SQLite3 back-end, to store it’s data locally without a database server.

In case you ran the mysql service from the Introduction chapter, you will need to create a gogs
database, which will store the table schema and data for the Gogs application:

1 docker exec mysql mysqladmin create gogs

 Note: When it comes to production use, individual usernames should be created for individual microservices,
only giving access to the database of the microservice. That way, a gogs user could only access
the database with the same name. If a microservice needs data from another database, it should
reasonably get this data from another microservice (Consult Chapter IV. Backing Services).

Logging in

Just in case if you didn’t enter an administrative user in the installation section: The first user
who will be registered in Gogs, will become the administrative user. There’s no default user created.

Creating a repository

We can create a new repository by clicking the “+” next to “Repositories” (on the right side). As
a test we can create a ‘the12factors’ repository. Gogs will give you nice instructions how to create
a new repository or push an existing repository to it. For our purposes, we will create our own repository:

1 mkdir the12factors
2 cd the12factors
3 touch README.md
4 git init
5 git add README.md
6 git commit -m "first commit"
7 git remote add origin http://peer.lan:3000/titpetric/the12factors.git
8 git push -u origin master

 [image: The repository will be created and new changes available]
 The repository will be created and new changes available

 Note: every git push will ask for username if you use the http method. It’s possible to save these
credentials on the system, so it will not ask you for them every time. A better method is to use
the ssh endpoint, where authentication is done with an ssh key.

Backing up Gogs

If you set up Gogs with an SQLite database as suggested, the backup of Gogs is very simple:

 Quick start: Backup a full Gogs instance
1 #!/bin/bash
2 NAME="gogs"
3 docker stop $NAME
4 cd data && tar -zcvf gogs-backup-$(date +"%Y%m%d").tgz gogs/ && cd ..
5 docker start $NAME

The backup script stops the Gogs instance, so all the data is written to disk, and then creates
a backup archive with the current data in the data/ folder. This data can be archived, or you
can use it for migration to another service.

 Note: be sure to back up your MySQL instance in case you used it to set up Gogs. The database
contains all the schema and data you will need to restore it on another server. You may use
the same principle for backing up mysql data as we’re doing with Gogs. These backup files will
be the raw backup files that MySQL stores on disk, so you will need to pay attention that you’re
restoring the data into a compatible MySQL version, the same version if possible.

Multiple deploys

When you’re are using git for version control, there are a few accepted methodologies of how to set up your
code so that you can have manageable deploys to several environments: development, staging, testing, production.

The simplest workflow to implement is just to have a master branch, and whatever lives there is ready
for production. New development features should be done on other branches. Ideally, the master
branch would be read-only, and feature branches should be merged with pull requests. Pull requests
enable code reviews, commenting and discussion before accepting some change into production.

Ideally what would happen with multiple developers:

Fork, clone and branch the repository

Depending on your project, you might want to enforce forking a sensitive repository, which you don’t
want trashed by developers missteps. A fork is a literal copy of the complete contents of a git repository.
This fork is usually created via the web interface on GitHub, GitLab, Bitbucket, Gogs and other git
repository services. Each developer should have read-only access to the main source repositories.

If you don’t enforce forks, you should enforce a read-only master branch. GitHub as well as Bitbucket
allow you to do this, most likely GitLab and Gogs as well. Consider this something like a contract between
your senior and junior developers. You should definitely enforce some limitations on the master branch
that would prevent history rewrites and deletion, the logical conclusion is to have in read-only so that
bad things could only happen on branches, which can effectively be deleted later.

Creating a branch on your cloned repository is as simple as running one command:

1 # git checkout -b new-feature
2 Switched to a new branch 'new-feature'

and if you want to use an existing branch, just skip the -b option. Inspect which branch you’re
working on by running git branch:

1 # git branch
2 master
3 * new-feature

All the changes which you will now commit with git will be created in this branch. When using
git push only the current branch will be pushed.

Squashing your changes

If your feature required several commits to finish, you might want to squash it into one commit,
before you push the changes upstream. What this does is perform a local merge which will create
a single commit instead of several which you choose. You can perform the squash by running:

1 # git rebase -i HEAD~2

Where the number 2 is the amount of commits you want to squash. You will be given a prompt with
something similar to the following:

1 pick 255ac52 add title to readme
2 pick 3e9f63e add contents

And to actually squash the commits, you would change the trailing “pick” lines into “squash”:

1 pick 255ac52 add title to readme
2 squash 3e9f63e add contents

and then modify your commit message accordingly. The command will finish with something like this:

1 # git rebase -i HEAD~2
2 [detached HEAD cd3041c] add title to readme add contents
3 Date: Mon Apr 17 08:16:00 2017 +0200
4 1 file changed, 3 insertions(+)
5 Successfully rebased and updated refs/heads/new-feature.

We can inspect that the individual histories no longer exist:

1 # git log --oneline
2 cd3041c add title to readme add contents
3 525f2c9 import readme

Only the squashed commit is available on the branch now and you can push the changes to your branch.

Pushing changes

Pushing changes is as simple as issuing a git push. If you already pushed your commits, you will
have to use a forced push to your branch:

1 # git push origin my-feature --force

Keep in mind, just like with the master branch, this is quite dangerous. If you’re relying anywhere
on git pull, this will break that functionality. When you rewrite history, it will break all the
checkouts that already know about the commits which you’re rewriting. For those, you will have to
clone the repositories anew.

After you push your changes, a PR can be submitted to merge your changes to the master branch.
These PRs are a good opportunity where you can introduce code reviews and automated testing.
More about that in Chapter V.

Git fork/branch simplified

 	Create a fork

 	Clone the repository

 	Create a branch

 	Commit, squash and push changes

 	Submit a pull request

Other

I’m a proponent of feature branches, but there are other branching strategies available for you, depending
on your product requirements. You may consider a release branching model, where work is done on branches
which follow some naming convention, like semantic versioning.

 Note: More information about semantic versioning can be found on semver.org.

When your application and team get bigger, you should consider extending this practice with Git-Flow
or pick and choose a branching strategy that works for you.

Structuring your code

As we will be using the Docker image golang for our examples, I will now explain how your project
may be laid out, by explaining some things that go assumes about how you lay out your code. When you
will use native vendoring, it means that you can continue to use go run and go build.

The GOPATH environment is set to /go. Your package layout should be something like this:

 1 $GOPATH(/go)/src/app
 2 |__ main.go (Where your main code lives)
 3 |__ subpackage/
 4 | |__ subpackage.go (You can create subpackages)
 5 | __ ...
 6 |__ ... (Other files or subpackages)
 7 __ vendor/
 8 |__ github.com/namsral/flag
 9 |__ github.com/gorilla/mux
10 __ ...

Using subpackages is as simple as using import "app/subpackage", where app is the folder name
where your application is checked out. It’s also possible to use a fully qualified domain name for
the packages which are imported. In this case, the packages are installable in other apps, via
commands like go get or vendoring tools like godep or gvt. More about this later.

 Importing subpackages to your application
1 package main
2
3 import "app/apiservice"
4
5 func main() {
6 apiservice.HelloWorld()
7 }

With our docker example, we use app for our project name. Obviously, this is up to you - but as you’re
creating a docker container for each run, we put whatever folder you have into /go/src/app.

 Running your app with go run and docker
1 #!/bin/bash
2 docker run --rm -it -v `pwd`:/go/src/app -w /go/src/app golang go run main.go

When structuring the code like this, there are a few things I’d like to point out.

Relative imports

Don’t use relative imports. In your main.go instead of import "app/subpackage" you could use import "./subpackage",
but it would break functionality. Relative imports at the time of writing don’t work well with vendoring, which is
a required step when building 12 factor apps (define and isolate dependencies).

Using subpackages externally

If we have multiple subpackages, let’s say subpackage1 and subpackage2, we shouldn’t import these from subpackages
with the same pattern. It will work for your application, but it will not work for an application which would use
your subpackages with an import from a VCS.

 Example of a problematic subpackage
1 package subpackage1
2
3 import "fmt"
4 import "app/subpackage2"
5
6 func Hello() {
7 return subpackage2.Hello();
8 }

We would use this subpackage from another application with something similar to this:

1 package main
2
3 import "example.github.com/username/your-app/subpackage1"

When you’re doing this, you will have a problem that your new application knows nothing about “subpackage2”, which is
referenced in “subpackage1”. There are only a few ways to fix this:

 	Use fully-qualified notation when importing other packages from subpackages,

 	Your packages should be self-contained (no importing subpackages from parent project)

There are various ways to achieve independence from other subpackages, while at the same time having a decoupled
relationship with them. The most common way might be to use some sort of dependency injection. With this approach,
your submodules would not be bound to other submodules (coupling), but would define an interface which can be
satisfied with another submodule (loose coupling).

Improving deployments

When you’re starting out with deployments, it’s a very good idea to enforce some automation from
the very beginning. Using a CI system is a must-have.

People use various continuous integration tools like Jenkins or Travis, or
cool hosted services like Buildkite or Codeship. It’s not very hard to make tests when you’re
just starting to write your application, it’s much harder when your application is already operational.
Add tests in your CI workflow, so you don’t publish any project which has tests that are failing.

The simplest way to test your Go application is running go test, but this is only one part of the testing which you need to pay attention to. If you’re building a Docker image, it’s a good idea that you set up a testing procedure for it as well.

Make sure that you can perform your build in one step. Usually it’s enough to include a “build.sh” at the root of your project and then use any CI suite to run it. Depending on the size, this may invoke tools like ant or make, but when we’re talking about microservices, we’re talking about small applications that have a single responsibility, and not a big application that handles everything from data storage, session storage, templating, separate functionality for individual business areas.
Ideally, each of these would be represented as a single microservice, so it can be replaced or optimized
to take advantage of new underlying technology used.

Your testing procedures must be a condition of deploying an application. If the tests don’t pass, the person who triggers the deploy has to be notified. It doesn’t really matter who fixes the application or tests or when the fix is made, but until it’s done - no deployments should be possible. This doesn’t have
to be a critical scenario in the sense of urgency to fix it right away, but can be done within
weekly sprints.

That being said, the goal is to have individual microservices be deployable at any given moment, and a gold rule of thumb for sprints is that you really shouldn’t deploy them on fridays, or on days where critical members of your team leave for vacation. There’s a thing to be said on catching deadlines, but also planning on time to fix any issues which might occur after deployments and were not caught by tests.

Testing may be done on the development deployment, but care should be taken if the tests should be performed on every commit. There are several factors, which may be disruptive:

 	A developer may forget or ignore installing client-side git hooks,

 	The tests may be long-running and would prohibit a high-volume git commit workflow

It’s recommended to move the testing to the server side and test after some code is pushed. Again, if a failing test is detected - it shouldn’t be a cause for stopping work, it should just be a cause of not performing a deployment. Developers should have the capability of running tests on their development environment, give them this option by providing an individual “test.sh” or some documented way to do this.

With a Go project, this might be as simple as running go test but your application may test other things as well - like functionality with modifying database values. These tests
can be more elaborate and use Docker for setting up a database container, loading testing data and then running parts of your application as if they were in a production system.

 Keep a practice of not assigning blame - when something breaks, just assign who is responsible for a fix.
You should keep accountability while removing blame. Keep your team involved, so you may foster
a team culture in resolving these issues. With individual issues, pair the person responsible with
a reviewer, so that they may together decide on a joint solution of an issue. Accept the issue,
learn from it, and solve it - creating a problem is a learning opportunity.

II. Dependencies - Explicitly declare and isolate dependencies

Go includes a packaging system for installing packages, go get. While you can install
packages your application uses this way, you have no control over which package will be
installed when you run it. As you want to have a repeatable build process, using go get
is not advised, but you should look to vendoring to find an alternative.

Vendoring

For you guys coming from PHP, Python or Node: there you have composer, pip and npm. For Go, you have a wider choice of package management tools
which create a vendor/ folder. I personally recommend using gvt, other people also suggested glide.

 Fetching a dependency with gvt
gvt fetch github.com/namsral/flag

Using gvt fetch is the equivalent of using go get, with the difference that the resulting package is written in the vendor/ folder.
You should commit this folder to your VCS, keeping it there for future builds. If you need to update the dependencies for some reason,
you can at a later time issue gvt update, and then commit the changes to the vendor/ folder.

You can list your current dependencies by issuing gvt list.

$ gvt list
github.com/namsral/flag https://github.com/namsral/flag master 881a43080604bcf99ab11\
18a814d1cb2c268fc36

If you don’t want to keep the packages committed to your source repository, you can add this .gitignore rule:

1 vendor/**
2 !vendor/manifest

This will allow you only to commit the manifest file to your git repository, without any other sources.
When you want to make a clean build of your application, you would check out your sources and issue gvt restore to
fetch all the dependencies declared in the manifest file. You can also use gvt update to stay at the tip
of your dependencies.

 Note: when using this approach, gvt is required in the build environment. Your build may fail because of
network connectivity issues, renaming or deleting any of the upstream packages. If you commit your complete
vendor folder, it guarantees that you will be able to reproduce the build at any later time.

Caveats about vendoring

Vendoring is an advocated way to provide packages to your application, with more fine grained control as to
what version or branch of the package you would like to use. That being said, there are a few points in the
small print which you need to consider.

Dependencies

Your code, subpackages or vendored packages might depend on different versions of the same package. This usually
means that you’ll need to fix some code, so that they can work on the same version, or that you will need
to provide some kind of additional versioning for your own packages.

A project which aims to resolve a part of this problem is gopkg.in. When you’re
importing dependencies, you can specify a tag or branch by constructing an URL which includes this information.
There are two url patterns supported.

1 gopkg.in/pkg.v3 â†’ github.com/go-pkg/pkg (branch/tag v3, v3.N, or v3.N.M)
2 gopkg.in/user/pkg.v3 â†’ github.com/user/pkg (branch/tag v3, v3.N, or v3.N.M)

Unfortunately, your dependency needs to provide branches/tags to support this. Some of them do. If yours doesn’t,
you might have to fork the original repository, and add some tags or branches, so you can separate the versions.

You can also leverage gvt to do this, but you might have to edit the manifest file yourself, as this
is not a common use-case. When you do it, keep in mind that gvt update will update all packages to
the latest revision - this might be problematic, if you’re bound to a specific tag or commit.

Relative imports

In your application, you may use something like this:

1 import "./subpackage"

While this is a perfectly valid pattern, it doesn’t work with vendoring. If your package is using any kind
of vendored imports, your application will not build. If your application lives in $GOPATH/src/app as it
should, use this import instead:

1 import "app/subpackage"

This import searches for files in the $GOPATH/src/app/subpackage folder, which is exactly where your
files are. The reason why you should do this is that relative imports are currently not working correctly
with vendoring. People are suggesting to avoid relative imports altogether, but I suspect this may be fixed
in a future version. It makes perfect sense for relative paths under your project folder, but not above (with ../).

 You could use tooling to rewrite parts of your source to change patterns like “./” to “app/”, but
you’d have to use it instead of go run and go build as a pre-processing step. While this could
be acceptable in your build environment, it would be a hassle to do it in your development
environment. My suggestion is to stick to the default tools here - there’s no benefit in additional
tooling which you have to develop and maintain, unless it provides strong value.

System dependencies

When building docker images, you use the Dockerfile to declare your dependencies. A very minimal
Dockerfile for creating a bash docker image would look like this:

1 FROM alpine
2 RUN apk add --no-cache bash

This serves as a declaration of a dependency for your application. By building a docker image, the
image itself is isolated from other containers. The equivalent image on a Debian system might
look something like this.

1 FROM debian
2 RUN apt-get update && apt-get install bash

Ah, it sounds funny, but the RUN command isn’t actually needed, as Debian already comes packaged
with bash. It would theoretically update bash to the latest version, if you’re not updating the
FROM source image.

When it comes to building docker images, you can compose your images this way. For example, there’s
an official package for golang:1.8-alpine, which you would use for go run and go build commands.
If you wanted to create a “gvt” image, you would create a new Dockerfile, and add on something like:

1 FROM golang:1.8-alpine
2 RUN go get -u github.com/FiloSottile/gvt

You would repeat this, for every tool which is installed with go get, creating a new image for
each of them. Or you could just declare one “big” Go image like this:

 1 FROM golang:1.8-alpine
 2
 3 MAINTAINER Tit Petric <black@scene-si.org>
 4
 5 ## install needed packages
 6 RUN apk --no-cache add gcc musl-dev git
 7
 8 ## add external get packages
 9 RUN go get -u github.com/FiloSottile/gvt && \
10 go get -u github.com/Masterminds/glide && \
11 go get -u github.com/kisielk/errcheck && \
12 go get -u github.com/golang/lint/golint && \
13 go get -u github.com/goreleaser/goreleaser

This is already considered bad practice, because you don’t have explicit control over individual
applications. If you want to have gvt, you should build an image which provides only gvt. This
image would be based in a parent golang image.

I don’t agree on this point very strongly - the single responsibility principles with building
docker images to best practices are dealing with running parts. With such an image, the only
running part is the CLI program which you run - go, gvt, glide, or any other from the list.

The problem of violating single responsibility principles comes where you have for example,
supervisord, nginx, and php-fpm running in the same container. You can’t change php-fpm without
modifying all three. The idea is that you only modify one, and this means less possibility of
human error (or just isolated to one service, instead of all of them).

 I’m going to play devils advocate here and say that exposing php on a FastCGI interface (TCP)
is a bit of a long-stretch. It would depend on the knowledge of the person operating it, but
HTTP in comparison is a better understood protocol where people have been known to craft their
simple queries (i.e. GET / HTTP/1.0) to inspect that something works. FastCGI interfaces are
hidden away (on either unix sockets or TCP) and don’t provide introspection tools - like the
Developer console you’re using in your favourite browser. There are of course valid reasons
why these services should be separated, but alas, they end up together many times for
convenience reasons.

Depending on your build/release/run stages, you will most likely separate your dependencies on those.
For example, in your build stage you may need two different versions of Go, you may use the official
golang image with the respective version tag (1.8 currently). But
for your release/run stages, the golang dependency is not required, as you’re already dealing with
a compiled application binary.

You may have similar development-only requirements for other software, like npm, pip, composer,
yarn, webpack and many others. Include what you like, but choose carefully.

In some cases the simplest way to add a dependency is to issue a git clone, while in other cases
you might be better off using what is available on Docker Hub (or Alpine/Debian/… package mirrors).
If you add all your dependencies to your application development Dockerfile, it will inevitably
take a very long time to build.

When we will talk about backing services, you should know that there are a number of “official” docker
images available on the Docker Hub and you may choose between them
to use, for example percona:5.5, percona:5.7, or extend or build any image that fits your requirements.

It’s not uncommon for people to build their packages from sources, but it does take additional
effort to keep the size of such builds in check. Versioned docker images also serve not only as a declaration
of dependency, but also as a possible way to roll back your releases (more about that in Chapter V.).

When creating your Dockerfiles, please follow the single responsibility principle.
If your docker image is self-contained, migration for it between hosts is easily accomplished.
When your docker image contains multiple services, you might have to deal with several graceful shutdowns to effectively
migrate data, which will introduce operational complexity and risks. If you do this, you are also clearly violating
several chapters of 12FA, most notably dependency isolation from this chapter, and chapter IX. Disposability.

Depending on your development patterns, you should pay attention to provide small Docker images. I tend to travel and work from countries with poor or limited internet connectivity, where every megabyte saved can improve my productivity drastically. I vividly remember downloading images about 100MB in size for about 15 minutes. If you can make a coffee and drink it before the image finishes downloading, that’s a good hint that you should optimize it.

OEBPS/images/leanpub_warning.png

OEBPS/images/intro_do_1.png
Choose an image *

Distributions ~ One-click apps ~ Snapshots

‘R .NET Core w/ PowerShell on 16.04 D Discourse on 14.04 d) Django 187 on 16.04

dj Django on 14.04 9 Docker 112.4 on 16.04 9 Docker 1125 on 16.04

@ Dokku 0.6.5 0n 14.04 @ Dokku 072 0n16.04 € Drone 0.4 0n14.04

OEBPS/images/intro_do_2.png
Choose a size

Standard High memory

$5/mo $10/mo $20/mo $40/mo $80/mo $160/mo

$0.007mour $0.015/mour $0.030/mour $0.060/our $019/mour $0.238mour

512MB/1CPU 1GB/1CPU 26B/2CPUs 4GB/2CPUs 8GB/4CPUs 16 GB/8 CPUs
20 GB SSD disk 30 GB SSD disk 40 GB SSD disk 60 GB SSD disk 80 GB SSD disk 160 GB SSD disk
1000 GB transfer 27TB transfer 3TB transfer 4TB transfer 5TB transfer 6 TB transfer

OEBPS/images/ch1_gogs_1.png
- titpetric pushed to master at titpetric/the12factors o
B 267652006 first commit

15 hours ago

titpetric created repository titpetric/the12factors

15 hours ago

OEBPS/images/leanpub-logo.png
[

Leanpub

OEBPS/images/title_page.jpg
12 Factor Applications

with Docker and Go

Tit Petric Step by step guide for
12FA compliant Go apps.

