

Contents
101 C, C++ and Linux programming problems 3

Preface 3

C Problem sets 3
Variable Ranges . 3
Variable assignments . 4
Variable conversions . 5
Bit operations . 5

Bit operations.1 . 5
Bit operations.2 . 6
Bit operations.3 . 7
Bit operations.4 . 7

Printf statement 8
Printf.1 . 8
Printf.2 . 9
Printf.3 . 9

Variable argument print functions . 10
Va_Arg.Printf.1 . 10

If statement . 10
if.1 . 10
if.else.2 . 12
if.elseif.3 . 12

Type definitions . 13
Variable scope and lifetime . 13

Lifetime.1 . 13
Arrays . 14

Arrays.1 . 14
Arrays.2 . 15
Arrays.3 . 16
Arrays.4 . 16
Arrays.5 . 16
Arrays.6 . 17
Arrays.7 . 18
Array.8 . 18
Array.9 . 19
Array.10 . 20

Strings . 21
Strings.1 . 21
Strings.2 . 22
Strings.3 . 22
Strings.4 . 23
Strings.5 . 25

1

Struct . 26
Structs.1 . 26
Structs.2 . 27
Structs.3 . 27
Structs.4 . 29
Structs.5 . 30
Structs.6 . 31
Structs.7 . 32
Structs.8 . 32
Structs.9 . 33

Pointers . 34
Pointers.1 . 34
Pointers.2 . 35
Pointers.3 . 35
Pointers.4 . 36
Pointers.5 . 37
Pointers.6 . 37
Pointers.7 . 38
Pointers.7 . 38

Function Pointers . 39
Function Pointers.1 . 39
Function Pointers.2 . 40
Function Pointers.3 . 41

FILE I/O . 41
FILE I/O.1 . 41
FILE I/O.2 . 43
FILE I/O.3 . 45

C++ Problem sets 47
std::cout . 47
Classes . 48

Classes.1 . 48
Classes.2 . 49

Strings . 50
Strings.1 . 50
Strings.2 . 51

Operator Overloading . 51
Operator Overloading.1 . 51
Operator Overloading.2 . 53

Linux Problem sets 54
File I/O . 54

File I/O.1 . 54
Excv system calls . 56
Socket . 56

TCP Client . 56

2

The third argument is not given in the printf statement, but a third format
specifier is provided. Printf would substitute it with a garbage data without
evaulating the number of arguments and matching against the given number of
format specifiers.

Printf.2

#include <stdio.h>

int main()
{

int a = 1;
char *ptr = "string";
double f = 1.2;

printf("%s %f %d\n", ptr, f, a);

return 0;
}

Problem. 9: Printf statement

Solution:

strng 1.200000 1

The printf format specifiers are properly used. The string is denoted with %s,
the double denoted with %f and the integer with %d.

Printf.3

#include <stdio.h>

int main()
{

char *ptr = NULL;

printf("%s\n", ptr);

return 0;
}

Problem. 10: Printf statement

Solution:

Program crash.

The printf function derefs the character pointer given the %s format specifier.
Thus resulting in a dereference of the NULL pointer resulting in the crash.

9

Variable argument print functions
Va_Arg.Printf.1

Implement log_msg function that accepts any type of arguments like the built-in
printf function.

Solution:

#include <stdio.h>
#include <stdarg.h>

static void log_msg(char *fmt, ...)
{

va_list ap;

va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);

}

int main()
{

int a = 1;
float f = 1.1;
char *str = "string";
double d = 1.211222222;

log_msg("testing log msg with int %d float %f string %s and double %.8lf\n",
a, f, str, d);

}

Problem. 9: va_args printf

The above program defines a log_msg function which uses va_arg macro defini-
tions to create a printf like behavior.

stdarg.h header includes these macros.

va_start is used to collect the arguments. vfprintf prints the message to
stderr stream. vfprintf behaves the same way as printf but allows the
function to direct the messages to a stream. va_end performs the cleanup.

If statement
if.1

What would be the value of the following program?

#include <stdio.h>

10

int main()
{

int a = 1;

if (a) {
printf("a1\n");

}

a = 0;

if (a) {
printf("a2\n");

}

if (!a) {
printf("a3\n");

}

if (!!a) {
printf("a4\n");

}

if (a = !a) {
printf("a5\n");

}

if (a == !!a) {
printf("a6\n");

}
}

Problem. 10: if condition checks

Solution:

a1
a3
a5
a6

a1 will appear because a is set to 1. If condition checks non-zero statements.

a3 will appear because a is set to 0 and !a is 1. a5 will appear because if condition
contains assignment a = !a. a6 will appear because a is set to 1 before by the
assignment a = !a and !!a results in double inversion of 1, i.e. 1.

11

if.else.2

What would be the solution of the following program?

#include <stdio.h>
#include <stdint.h>

int main()
{

int a = 4;

if (a != 4) {
printf("a not 4\n");

} else {
printf("a is %d\n", a);

}

return 0;
}

Problem. If else case

Solution:

a is 4

if.elseif.3

What would be the solution of the following program?

#include <stdio.h>
#include <stdint.h>

int main()
{

int a = 4;

if (a != 4) {
printf("a not 4\n");

} else if (a == 4) {
printf("a is 4\n");

} else {
printf("a not 4\n");

}

return 0;
}

Problem. If else if case

12

3. given the struct r2 the largest elements are ordered in the beginning.
This results in the 2 bytes hole in the struct r2.

Structs.4

#include <stdio.h>
#include <stdlib.h>

struct s {
int r;

};

int main() {
// your code goes here
struct s *s1;

s1 = calloc(1, sizeof(struct s));
if (!s1) {

return -1;
}

s1->r = 1;

printf("%d\n", s1->r);

free(s1);

s1 = calloc(10, sizeof(struct s));
if (!s1) {

return -1;
}

for (int i = 0; i < 10; i ++) {
s1[i].r = i + 1;

}

for (int i = 0; i < 10; i ++) {
printf("%d\n", s1[i].r);

}

free(s1);
return 0;

}

Problem. 30: Structure allocation

Solution:

29

1
1
2
3
4
5
6
7
8
9
10

The statement s1 = calloc(1, sizeof(struct s)) allocates structure pointer
variable s1 of type struct s. There is only one pointer.

The statement s1 = calloc(10, sizeof(struct s)) allocates 10 such struc-
ture pointer variables s1 which can be indexed like array. Another way to
allocate the same above is s1 = calloc(1, sizeof(struct s) * 10).

Now when accessed beyond the allocated size result in unknown behavior.
Sometimes leading to guessed answer and sometimes results in a crash.

For example,

s1[12] = 12;

the above statement would result in an undefined behavior and may be result in
a crash.

Structs.5

Is there anything wrong with the below program?

#include <stdio.h>
#include <stdlib.h>

struct r {
int a;

};

int main()
{

struct r *r1 = NULL;
struct r *r2 = NULL;

r1 = calloc(1, sizeof(struct r));
if (!r1) {

return -1;
}

30

