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The third argument is not given in the printf statement, but a third format
specifier is provided. Printf would substitute it with a garbage data without
evaulating the number of arguments and matching against the given number of
format specifiers.

Printf.2

#include <stdio.h>

int main()

{
int a = 1;
char *ptr = "string";
double f = 1.2;
printf("%s %f %d\n", ptr, f, a);
return O;
}

Problem. 9: Printf statement
Solution:
strng 1.200000 1

The printf format specifiers are properly used. The string is denoted with %s,
the double denoted with %f and the integer with %d.

Printf.3

#include <stdio.h>

int main()

{
char *ptr = NULL;
printf ("/s\n", ptr);
return O;

}

Problem. 10: Printf statement
Solution:
Program crash.

The printf function derefs the character pointer given the %s format specifier.
Thus resulting in a dereference of the NULL pointer resulting in the crash.



Variable argument print functions
Va__ Arg.Printf.1

Implement log_msg function that accepts any type of arguments like the built-in
printf function.

Solution:

#include <stdio.h>
#include <stdarg.h>

static void log_msg(char *fmt, ...)
{

va_list ap;

va_start(ap, fmt);
viprintf (stderr, fmt, ap);
va_end (ap) ;

+
int main()
{
int a = 1;
float £ = 1.1;
char *str = "string";
double d = 1.211222222;
log_msg("testing log msg with int %d float %f string %s and double %.81f\n",
a, f, str, d);
}

Problem. 9: va__args printf

The above program defines a log_msg function which uses va_arg macro defini-
tions to create a printf like behavior.

stdarg.h header includes these macros.

va_start is used to collect the arguments. vfprintf prints the message to
stderr stream. vfprintf behaves the same way as printf but allows the
function to direct the messages to a stream. va_end performs the cleanup.

If statement
if.1
What would be the value of the following program?

#include <stdio.h>
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int main()

{
int a = 1;
if (a) {
printf("ai\n");
}
a = 0;
if (a) {
printf("a2\n");
}
if (la) {
printf("a3\n");
}
if (1ta) {
printf("a4\n");
}
if (a = la) {
printf("a5\n");
}
if (a == !la) {
printf("a6\n");
}
}
Problem. 10: if condition checks
Solution.:
al
a3
ab
a6

al will appear because a is set to 1. If condition checks non-zero statements.

a3 will appear because a is set to 0 and la is 1. a5 will appear because if condition
contains assignment a = !a. a6 will appear because a is set to 1 before by the
assignment a = 'a and !'a results in double inversion of 1, i.e. 1.
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if.else.2
What would be the solution of the following program?
#include <stdio.h>

#include <stdint.h>

int main()
{

int a = 4;

if (a '=4) {

printf("a not 4\n");
} else {

printf("a is %d\n", a);
}

return O;
}
Problem. If else case
Solution:

a is 4

if.elseif.3
What would be the solution of the following program?

#include <stdio.h>
#include <stdint.h>

int main()

{
int a = 4;
if (a !'=4) {
printf("a not 4\n");
} else if (a == 4) {
printf("a is 4\n");
} else {
printf("a not 4\n");
}
return 0O;
}

Problem. If else if case
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3. given the struct r2 the largest elements are ordered in the beginning.
This results in the 2 bytes hole in the struct r2.

Structs.4

#include <stdio.h>
#include <stdlib.h>

struct s {
int r;

};

int main() {
// your code goes here
struct s *si;

sl = calloc(1l, sizeof(struct s));
if (!'s1) {
return -1;

}

sl->r = 1;

printf ("%d\n", s1->r);
free(sl);

s1 = calloc(10, sizeof(struct s));
if (!'s1) {
return -1;

}

for (int i = 0; 1 < 10; i ++) {
si[il.r =1 + 1;

}

for (int i = 0; i < 10; i ++) {
printf ("%d\n", si[i].r);
}

free(sl);
return O;

}
Problem. 30: Structure allocation

Solution:
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The statement s1 = calloc(l, sizeof (struct s)) allocates structure pointer
variable s1 of type struct s. There is only one pointer.

The statement s1 = calloc(10, sizeof(struct s)) allocates 10 such struc-
ture pointer variables s1 which can be indexed like array. Another way to
allocate the same above is s1 = calloc(1l, sizeof(struct s) * 10).

Now when accessed beyond the allocated size result in unknown behavior.
Sometimes leading to guessed answer and sometimes results in a crash.

For example,
s1[12] = 12;

the above statement would result in an undefined behavior and may be result in
a crash.

Structs.5
Is there anything wrong with the below program?

#include <stdio.h>
#include <stdlib.h>

struct r {
int a;

};

int main()

{
struct r *rl1 = NULL;
struct r *r2 NULL;

rl = calloc(l, sizeof(struct r));
if ('r1) {
return -1;
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