

Table of contents
Preface 4

Prerequisites . 4
Conventions . 4
Acknowledgements . 4
Feedback and Errata . 5
Author info . 5
License . 5
Book version . 5

Introduction 6
Installation . 6
Online tools . 6
First program . 7
IDE and text editors . 7
REPL . 8
Documentation and getting help . 9

Numeric data types 11
int . 11
float . 11
Arithmetic operators . 12
Operator precedence . 13
Integer formats . 13
Other numeric types . 14

Strings and user input 15
Single and double quoted strings . 15
Triple quoted strings . 16
Raw strings . 16
String operators . 17
String formatting . 18
User input . 20
Type conversion . 20
Exercises . 21

Defining functions 22
def . 22
Accepting arguments . 22
Default valued arguments . 23
Return value . 24
A closer look at the print() function . 25
Docstrings . 27
Interactive TUI app for exercises . 27

Control structures 29
Comparison operators . 29
Truthy and Falsy values . 29
Boolean operators . 30
Comparison chaining . 31

2

Membership operator . 31
if-elif-else . 32
Ternary operator . 32
for loop . 33
while loop . 34
break and continue . 34
Assignment expression . 35
Exercises . 36

3

Preface
This book is a short, introductory guide for the Python programming language. This book is
well suited:

• As a reference material for Python beginner workshops
• If you have prior experience with another programming language
• If you want a complement resource after reading a Python basics book, watching a video
course, etc

Prerequisites
You should be already familiar with basic programming concepts. If you are new to program-
ming, check out my comprehensive curated list on Python to get started.

You are also expected to get comfortable with reading manuals, searching online, visiting
external links provided for further reading, tinkering with the illustrated examples, asking for
help when you are stuck and so on. In other words, be proactive and curious instead of just
consuming the content passively.

Conventions
• The examples presented here have been tested with Python version 3.13.0 and in-
cludes features that are not available in earlier versions.

• Code snippets that are copy pasted from the Python REPL shell have been modified for
presentation purposes. For example, comments to provide context and explanations,
blank lines and shortened error messages to improve readability and so on.

• A comment with filename will be shown as the first line for program files.
• External links are provided for further exploration throughout the book. They have been
chosen with care to provide more detailed resources as well as resources on related
topics.

• The 100_page_python_intro repo has all the programs and files presented in this book,
organized by chapter for convenience.

• Visit Exercises.md to view all the exercises from this book. To interactively practice
these exercises, see my PythonExercises repo.

Acknowledgements
• Official Python website — documentation and examples
• stackoverflow and unix.stackexchange — for getting answers to pertinent questions on
Python, Shell and programming in general

• /r/learnpython and /r/learnprogramming — helpful forum for beginners
• /r/Python/ — general Python discussion
• tex.stackexchange — for help on pandoc and tex related questions
• canva — cover image
• oxipng, pngquant and svgcleaner — optimizing images
• Warning and Info icons by Amada44 under public domain
• Dean Clark and Elijah for catching a few typos

4

https://learnbyexample.github.io/py_resources/
https://github.com/learnbyexample/100_page_python_intro/tree/main/programs
https://github.com/learnbyexample/100_page_python_intro/blob/main/exercises/Exercises.md
https://github.com/learnbyexample/TUI-apps/tree/main/PythonExercises
https://docs.python.org/3/
https://stackoverflow.com/
https://unix.stackexchange.com/
https://old.reddit.com/r/learnpython
https://old.reddit.com/r/learnprogramming
https://old.reddit.com/r/Python/
https://tex.stackexchange.com/
https://github.com/jgm/pandoc/
https://www.canva.com/
https://github.com/shssoichiro/oxipng
https://pngquant.org/
https://github.com/RazrFalcon/svgcleaner
https://commons.wikimedia.org/wiki/File:Warning_icon.svg
https://commons.wikimedia.org/wiki/File:Info_icon_002.svg
https://commons.wikimedia.org/wiki/User:Amada44

Feedback and Errata
I would highly appreciate it if you’d let me know how you felt about this book. It could be
anything from a simple thank you, pointing out a typo, mistakes in code snippets, which aspects
of the book worked for you (or didn’t!) and so on. Reader feedback is essential and especially
so for self-published authors.

You can reach me via:

• Issue Manager: https://github.com/learnbyexample/100_page_python_intro/issues
• E-mail: learnbyexample.net@gmail.com
• Twitter: https://twitter.com/learn_byexample

Author info
Sundeep Agarwal is a lazy being who prefers to work just enough to support his modest
lifestyle. He accumulated vast wealth working as a Design Engineer at Analog Devices and re-
tired from the corporate world at the ripe age of twenty-eight. Unfortunately, he squandered
his savings within a few years and had to scramble trying to earn a living. Against all odds,
selling programming ebooks saved his lazy self from having to look for a job again. He can now
afford all the fantasy ebooks he wants to read and spends unhealthy amount of time browsing
the internet.

When the creative muse strikes, he can be found working on yet another programming ebook
(which invariably ends up having at least one example with regular expressions). Research-
ing materials for his ebooks and everyday social media usage drowned his bookmarks, so he
maintains curated resource lists for sanity sake. He is thankful for free learning resources and
open source tools. His own contributions can be found at https://github.com/learnbyexample.

List of books: https://learnbyexample.github.io/books/

License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License.

Code snippets are available under MIT License.

Resources mentioned in the Acknowledgements section above are available under original
licenses.

Book version
2.0

See Version_changes.md to track changes across book versions.

5

https://github.com/learnbyexample/100_page_python_intro/issues
mailto:learnbyexample.net@gmail.com
https://twitter.com/learn_byexample
https://github.com/learnbyexample
https://learnbyexample.github.io/books/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://github.com/learnbyexample/100_page_python_intro/blob/main/LICENSE
https://github.com/learnbyexample/100_page_python_intro/blob/main/Version_changes.md

Introduction
Wikipedia does a great job of describing about Python in a few words. So, I’ll just copy-paste
the relevant information here:

Python is a high-level, general-purpose programming language. Its design philosophy
emphasizes code readability with the use of significant indentation.
Python is dynamically type-checked and garbage-collected. It supports multiple pro-
gramming paradigms, including structured (particularly procedural), object-oriented
and functional programming. It is often described as a ”batteries included” language
due to its comprehensive standard library.
Python consistently ranks as one of the most popular programming languages, and has
gained widespread use in the machine learning community.

See also docs.python: General Python FAQ for answers to questions like ”What is Python?”,
”What is Python good for?”, ”Why is it called Python?” and so on.

Installation
On modern Linux distributions, you are likely to find Python already installed. It may be a few
versions behind, but should work just fine for most of the topics covered in this book. To get
the exact version used here, visit the Python downloads page and install using the appropriate
source for your operating system.

Using the installer from the downloads page is the easiest option to get started on Windows
and macOS. See docs.python: Python Setup and Usage for more information.

For Linux, check your distribution repository first. You can also build it from source as shown
below for Debian-like distributions:

$ wget https://www.python.org/ftp/python/3.13.0/Python-3.13.0.tar.xz
$ tar -Jxf Python-3.13.0.tar.xz
$ cd Python-3.13.0
$./configure --enable-optimizations
$ make
$ sudo make altinstall

You may have to install dependencies first, see this stackoverflow thread for details.

See docs.python: What’s New to track changes across versions.

Online tools
In case you are facing installation issues, or do not want to (or cannot) install Python on your
computer for some reason, there are options to execute Python programs using online tools.
Some of them are listed below:

• Repl.it — Code, collaborate, compile, run, share, and deploy Python and more online
from your browser

6

https://en.wikipedia.org/wiki/Python_(programming_language)
https://docs.python.org/3/faq/general.html
https://www.python.org/downloads/
https://docs.python.org/3/using/index.html
https://stackoverflow.com/q/8097161/4082052
https://docs.python.org/3/whatsnew/index.html
https://replit.com/languages/python3

• Pythontutor — Visualize code execution, also has example codes and ability to share
sessions

• PythonAnywhere — Host, run, and code Python in the cloud

The official Pythonwebsite also has a Launch Interactive Shell option (https://www.python.org/shell/),
which gives access to a REPL session.

First program
It is customary to start learning a new programming language by printing a simple phrase.
Create a new directory, say python_programs for this book. Then, create a plain text file
named hello.py with your favorite text editor and type the following piece of code.

hello.py
print('*************')
print('Hello there!')
print('*************')

If you are familiar with using the command line on a Unix-like system, run the script as shown
below (use py hello.py if you are using Windows CMD). Other options to execute a Python
program will be discussed in the next section.

$ python3.13 hello.py

Hello there!

A few things to note here. The first line is a comment, used here to show the name of the Python
program. print() is a built-in function, which can be used without having to load some
library. A single string argument has been used for each of the three invocations. print()
automatically appends a newline character by default. The program ran without a compilation
step. As quoted earlier, Python is an interpreted language. More details will be discussed in
later chapters.

See Python behind the scenes and this list of resources if you are interested to learn
inner details about Python program execution.

All the Python programs discussed in this book, along with related text files, can be
accessed from my GitHub repo learnbyexample: 100_page_python_intro. However, I’d
highly recommend typing the programs manually by yourself.

IDE and text editors
An integrated development environment (IDE) might suit you better if you are not com-
fortable with the command line. IDE provides features likes debugging, syntax highlighting,
autocompletion, code refactoring and so on. They also help in setting up a virtual environ-
ment to manage different versions of Python and modules (more on that later). See wikipedia:
IDE for more details.

7

https://www.pythontutor.com/visualize.html#mode=edit
https://www.pythonanywhere.com/
https://www.python.org/
https://www.python.org/shell/
https://tenthousandmeters.com/blog/python-behind-the-scenes-1-how-the-cpython-vm-works/
https://tenthousandmeters.com/materials/python-behind-the-scenes-a-list-of-resources/
https://github.com/learnbyexample/100_page_python_intro/tree/main/programs
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment

If you install Python on Windows, it will automatically include IDLE, an IDE built using
Python’s tkinter module. On Linux, you might already have the idle3.13 program if you
installed Python manually. Otherwise you may have to install it separately.

When you open IDLE, you’ll get a Python shell (discussed in the next section). For now, click the
New File option under File menu to open a text editor. Type the short program hello.py
discussed in the previous section. After saving the code, press F5 to run it. You’ll see the
results in the shell window as shown below.

Popular alternatives to IDLE are listed below:

• Thonny — Python IDE for beginners, lots of handy features like viewing variables, de-
bugger, step through, highlight syntax errors, name completion, etc

• Pycharm — smart code completion, code inspections, on-the-fly error highlighting and
quick-fixes, automated code refactorings, rich navigation capabilities, support for frame-
works, etc

• Spyder — typically used for scientific computing
• Jupyter — web application that allows you to create and share documents that contain
live code, equations, visualizations and narrative text

• VSCodium — community-driven, freely-licensed binary distribution of VSCode
• Vim, Emacs, Geany, GNOME Text Editor — text editors with support for syntax high-
lighting and more

REPL
One of the best features of Python is the interactive shell. Such shells are also referred to
as REPL, an abbreviation for Read Evaluate Print Loop. The Python REPL makes it easy for
beginners to try out code snippets for learning purposes. Beyond learning, it is also useful
for developing a program in small steps, debugging a large program by trying out few lines of
code at a time and so on. REPL will be used frequently in this book to show code snippets.

When you launch Python from the command line, or open IDLE, you get a shell that is ready

8

https://thonny.org/
https://www.jetbrains.com/pycharm/
https://www.spyder-ide.org/
https://jupyter.org/
https://vscodium.com/
https://github.com/vim/vim
https://www.gnu.org/software/emacs/
https://www.geany.org/
https://apps.gnome.org/TextEditor/

for user input after the >>> prompt.

$ python3.13
Python 3.13.0 (main, Oct 25 2024, 10:00:04) [GCC 9.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

Try the below instructions. The first one displays a greeting using the print() function.
Then, a user defined variable is used to store a string value. To display the value, you can
either use print() again or just type the variable name. Expression results are immediately
displayed in the shell. Name of a variable by itself is a valid expression. This behavior is unique
to the REPL and an expression by itself won’t display anything when used inside a script.

>>> print('have a nice day')
have a nice day

>>> username = 'learnbyexample'
>>> print(username)
learnbyexample

use # to start a single line comment
note that string representation is shown instead of actual value
details will be discussed later
>>> username
'learnbyexample'

use exit() to close the shell, can also use Ctrl+D shortcut
>>> exit()

I’ll stress again the importance of following along the code snippets by manually typing them
on your computer. Programming requires hands-on experience too, reading alone isn’t enough.
As an analogy, can you learn to drive a car by just reading about it? Since one of the prereq-
uisite is that you should already be familiar with programming basics, I’ll extend the analogy
to learning to drive a different car model. Or, perhaps a different vehicle such as a truck or a
bus might be more appropriate here.

Unlike previous versions, the Python REPL now implements editing and navigation
features on its own instead of relying on an external readline library. See REPL-acing
the default REPL (PEP 762) for more information.

You can use python3.13 -q to avoid the version and copyright messages when
you start an interactive shell. Use python3.13 -h or visit docs.python: Command line
and environment for documentation on CLI options.

Documentation and getting help
The official Pythonwebsite has an extensive documentation located at https://docs.python.org/3/.
This includes a tutorial (which is much more comprehensive than the contents presented in

9

https://peps.python.org/pep-0762/
https://peps.python.org/pep-0762/
https://docs.python.org/3/using/cmdline.html
https://docs.python.org/3/using/cmdline.html
https://docs.python.org/3/

this book), several guides for specific modules like re and argparse and various other
information.

Python also provides a help() function, which is quite handy to use from the REPL. If you
type help(print) and press the Enter key, you’ll get a screen as shown below. If you are
using IDLE, the output would be displayed on the same screen. Otherwise, the content might
be shown on a different screen depending on your pager settings. Typically, pressing the
q key will quit the pager and get you back to the shell.

Quotes are necessary, for example help('import') and help('del') , if the topic
you are looking for isn’t an object.

If you get stuck with a problem, there are several ways to get it resolved. For example:

1. research the topic via documentation/books/tutorials/etc
2. reduce the code as much as possible so that you are left with minimal code necessary to

reproduce the issue
3. talk about the problem with a friend/colleague/inanimate-objects/etc (see Rubber duck

debugging)
4. search about the problem online

You can also ask for help on forums. Make sure to read the instructions provided by the
respective forums before asking a question. Here are some forums you can use:

• /r/learnpython and /r/learnprogramming/ — beginner friendly
• python-forum — dedicated Python forum, encourages back and forth discussions based
on the topic of the thread

• /r/Python/ — general Python discussion
• stackoverflow: python tag

The Debugging chapter will discuss more on this topic.

10

https://rubberduckdebugging.com/
https://rubberduckdebugging.com/
https://old.reddit.com/r/learnpython
https://old.reddit.com/r/learnprogramming/
https://python-forum.io/
https://old.reddit.com/r/Python/
https://stackoverflow.com/tags/python

Numeric data types
Python is a dynamically typed language. The interpreter infers the data type of a value based
on pre-determined rules. In the previous chapter, string values were coded using single
quotes around a sequence of characters. Similarly, there are rules by which you can declare
different numeric data types.

int
Integer numbers are made up of digits 0 to 9 and can be prefixed with unary operators
like + or - . There is no restriction to the size of numbers that can be used, only limited
by the memory available on your system. Here are some examples:

>>> 42
42
>>> 0
0
>>> +100
100
>>> -5
-5

For readability purposes, you can use underscores in between the digits.

>>> 1_000_000_000
1000000000

Underscore cannot be used as the first or last character, and cannot be used con-
secutively.

float
Here are some examples for floating-point numbers.

>>> 3.14
3.14
>>> -1.12
-1.12

Python also supports the exponential notation. See wikipedia: E scientific notation for details
about this form of expressing numbers.

>>> 543.15e20
5.4315e+22
>>> 1.5e-5
1.5e-05

Unlike integers, floating-point numbers have a limited precision. While displaying very small
or very large floating-point numbers, Python will automatically convert them to the exponential
notation.

11

https://en.wikipedia.org/wiki/Scientific_notation#E_notation

>>> 0.0000000001234567890123456789
1.2345678901234568e-10
>>> 31415926535897935809629384623048923.649234324234
3.1415926535897936e+34

You might also get seemingly strange results as shown below. See docs.python:
Floating Point Arithmetic Issues and Limitations, stackoverflow: Is floating point math
broken? and Examples of floating point problems for details and workarounds.

>>> 3.14 + 2
5.140000000000001

Arithmetic operators
All arithmetic operators you’d typically expect are available. If any operand is a floating-point
number, result will be of float data type. Use + for addition, - for subtraction, *
for multiplication and ** for exponentiation. As mentioned before, REPL is quite useful for
learning purposes. It makes for a good calculator for number crunching. You can also use
_ to refer to the result of the previous expression (this is applicable only in the REPL, not in
Python scripts).

>>> 25 + 17
42
>>> 10 - 8
2
>>> 25 * 3.3
82.5
>>> 32 ** 42
1645504557321206042154969182557350504982735865633579863348609024

>>> 5 + 2
7
>>> _ * 3
21

There are two operators for division. Use / if you want a floating-point result. Using //
between two integers will give only the integer portion of the result (no rounding).

>>> 4.5 / 1.5
3.0
>>> 5 / 3
1.6666666666666667
>>> 5 // 3
1

Use the modulo operator % to get the remainder. Sign of the result is same as the sign of
the second operand.

>>> 5 % 3
2

12

https://docs.python.org/3/tutorial/floatingpoint.html
https://docs.python.org/3/tutorial/floatingpoint.html
https://stackoverflow.com/q/588004/4082052
https://stackoverflow.com/q/588004/4082052
https://jvns.ca/blog/2023/01/13/examples-of-floating-point-problems/

>>> -5 % 3
1
>>> 5 % -3
-1
>>> 6.5 % -3
-2.5

See docs.python: Binary arithmetic operations and stackoverflow: modulo operation
on negative numbers for more details.

Operator precedence
Arithmetic operator precedence follows the familiar PEMDAS or BODMAS abbreviations.
Precedence, higher to lower is listed below:

• Expression inside parentheses
• exponentiation
• multiplication, division, modulo
• addition, subtraction

Expression is evaluated left-to-right when operators have the same precedence. Unary
operator precedence is between exponentiation and multiplication/division operators. See
docs.python: Operator precedence for complete details.

Integer formats
The integer examples so far have been coded using base 10, also known as the decimal format.
Python has provision for representing binary, octal and hexadecimal formats as well. To
distinguish between these different formats, a prefix is used:

• 0b or 0B for binary
• 0o or 0O for octal
• 0x or 0X for hexadecimal

All of these four formats fall under the int data type. Python displays them in decimal format
by default. Underscores can be used for readability for any of these formats.

>>> 0b1000_1111
143
>>> 0o10
8
>>> 0x10
16

>>> 5 + 0xa
15

Decimal format numbers cannot be prefixed by 0 , other than 0 itself.

>>> 00000
0

13

https://docs.python.org/3/reference/expressions.html#binary-arithmetic-operations
https://stackoverflow.com/q/3883004/4082052
https://stackoverflow.com/q/3883004/4082052
https://docs.python.org/3/reference/expressions.html#operator-precedence

>>> 09
File "<python-input-1>", line 1

09
^

SyntaxError: leading zeros in decimal integer literals are not permitted;
use an 0o prefix for octal integers

If code execution hits a snag, you’ll get an error message along with the code snippet that
the interpreter thinks caused the issue. In Python parlance, an exception has occurred. The
exception has a name (SyntaxError in the above example) followed by the error message.
See the Exception handling chapter for more details.

Other numeric types
Python’s standard data type also includes complex type (imaginary part is suffixed with the
character j). Others like decimal and fractions are provided as modules.

• docs.python: complex
• docs.python: decimal
• docs.python: fractions

Some of the numeric types can have alphabets like e , b , j , etc
in their values. Which implies that you cannot use variable names beginning
with a number. Otherwise, it would be impossible to evaluate an expression like
result = input_value + 0x12 - 2j .

There are many third-party libraries useful for number crunching in mathematical
and engineering applications. See my list py_resources: Scientific computing for cu-
rated resources.

14

https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex
https://docs.python.org/3/library/decimal.html
https://docs.python.org/3/library/fractions.html
https://learnbyexample.github.io/py_resources/domain.html#scientific-computing

Strings and user input
This chapter will discuss various ways to specify string literals. After that, you’ll see how to
get input data from the user and handle type conversions.

Single and double quoted strings
The most common way to declare string literals is by enclosing a sequence of characters within
single or double quotes. Unlike other scripting languages like Bash, Perl and Ruby, there is
no feature difference between these forms.

REPL will again be used predominantly in this chapter. One important detail to note is that the
result of an expression is displayed using the syntax of that particular data type. Use print()
function when you want to see how a string literal looks visually.

>>> 'hello'
'hello'
>>> print("world")
world

If the string literal itself contains single or double quote characters, the other form can be
used.

>>> print('"Will you come?" he asked.')
"Will you come?" he asked.

>>> print("it's a fine sunny day")
it's a fine sunny day

What to do if a string literal has both single and double quotes? You can use the \ character
to escape the quote characters. In the below examples, \' and \" will evaluate to ' and
" characters respectively, instead of prematurely terminating the string definition. Use \\
if a literal backslash character is needed.

>>> print('"It\'s so pretty!" can I get one?')
"It's so pretty!" can I get one?

>>> print("\"It's so pretty!\" can I get one?")
"It's so pretty!" can I get one?

In general, the backslash character is used to construct escape sequences. For example, \n
represents the newline character, \t is for the tab character and so on. You can use \ooo
and \xhh to represent 256 characters in octal and hexadecimal formats respectively. For
Unicode characters, you can use \N{name} , \uxxxx and \Uxxxxxxxx formats. See
docs.python: String and Bytes literals for the full list of escape sequences and details about
undefined ones.

>>> greeting = 'hi there.\nhow are you?'
>>> greeting
'hi there.\nhow are you?'
>>> print(greeting)
hi there.
how are you?

15

https://docs.python.org/3/reference/lexical_analysis.html#strings

>>> print('item\tquantity')
item quantity

>>> print('\u03b1\u03bb\u03b5\N{LATIN SMALL LETTER TURNED DELTA}')
αλεƍ

Triple quoted strings
You can also declare multiline strings by enclosing the value with three single/double quote
characters. If backslash is the last character of a line, then a newline won’t be inserted at that
position. Here’s a Python program named triple_quotes.py to illustrate this concept.

triple_quotes.py
print('''hi there.
how are you?''')

student = '''\
Name:\tlearnbyexample
Age:\t25
Dept:\tCSE'''

print(student)

Here’s the output of the above script:

$ python3.13 triple_quotes.py
hi there.
how are you?
Name: learnbyexample
Age: 25
Dept: CSE

See the Docstrings section for another use of triple quoted strings.

Raw strings
For certain cases, escape sequences would be too much of a hindrance to workaround. For
example, filepaths in Windows use \ as the delimiter. Another would be regular expressions,
where the backslash character has yet another special meaning. Python provides a raw string
syntax, where all the characters are treated literally. This form, also known as r-strings for
short, requires a r or R character prefix to quoted strings. Forms like triple quoted strings
and raw strings are for user convenience. Internally, there’s just a single representation for
string literals.

>>> print(r'item\tquantity')
item\tquantity

>>> r'item\tquantity'
'item\\tquantity'

16

>>> r'C:\Documents\blog\monsoon_trip.txt'
'C:\\Documents\\blog\\monsoon_trip.txt'

Here’s an example with the re built-in module. The import statement used below will be
discussed in the Importing and creating modules chapter. See my book Understanding Python
re(gex)? for details on regular expressions.

>>> import re

numbers >= 100 with optional leading zeros
you'd need \\b and \\d with normal strings
>>> re.findall(r'\b0*+\d{3,}\b', '0501 035 154 12 26 98234')
['0501', '154', '98234']

String operators
Python provides a wide variety of features to work with strings. This chapter introduces some
of them, like the + and * operators in this section. Here are some examples to concatenate
strings using the + operator. The operands can be any expression that results in a string
value and you can use any of the different ways to specify a string literal.

>>> str1 = 'hello'
>>> str2 = ' world'
>>> str3 = str1 + str2
>>> print(str3)
hello world

>>> str3 + r'. 1\n2'
'hello world. 1\\n2'

Another way to concatenate is to simply place string literals next to each other. You can use
zero or more whitespaces between the two literals. But you cannot mix an expression and a
string literal. If the strings are inside parentheses, you can also use a newline character to
separate the literals and optionally use comments.

>>> 'hello' r' 1\n2\\3'
'hello 1\\n2\\\\3'

note that ... is REPL's indication for multiline statements, blocks, etc
>>> print('hi '
... 'there')
hi there

You can repeat a string by using the * operator between a string and an integer.

>>> style_char = '-'
>>> print(style_char * 50)
--
>>> word = 'buffalo '
>>> print(8 * word)
buffalo buffalo buffalo buffalo buffalo buffalo buffalo buffalo

17

https://github.com/learnbyexample/py_regular_expressions
https://github.com/learnbyexample/py_regular_expressions

String formatting
The Zen of Python (PEP 20) states:

There should be one-- and preferably only one --obvious way to do it.

However, there are several approaches available for formatting strings. This section will first
focus on formatted string literals (f-strings for short) and then show the alternate options.

f-strings allow you to embed an expression within {} characters as part of the string literal.
Like raw strings, you need to use a prefix, which is f or F in this case. Python will substitute
the embeds with the result of the expression, converting it to string if necessary (numeric
results for example). See docs.python: Format String Syntax and docs.python: Formatted
string literals for documentation and more examples.

>>> str1 = 'hello'
>>> str2 = ' world'
>>> f'{str1}{str2}'
'hello world'

>>> f'{str1}({str2 * 3})'
'hello(world world world)'

Use {{ if you need to represent { literally. Similarly, use }} to represent } literally.

>>> f'{{hello'
'{hello'
>>> f'world}}'
'world}'

Adding = after an expression gives both the expression and the result in the output.

>>> num1 = 42
>>> num2 = 7

>>> f'{num1 + num2 = }'
'num1 + num2 = 49'
>>> f'{num1 + (num2 * 10) = }'
'num1 + (num2 * 10) = 112'

Optionally, you can provide a format specifier along with the expression after a : character.
These specifiers are similar to the ones provided by the printf() function in C language,
the printf built-in command in Bash and so on. Here are some examples for numeric
formatting.

>>> appx_pi = 22 / 7

restricting the number of digits after the decimal point
>>> f'Approx pi: {appx_pi:.5f}'
'Approx pi: 3.14286'

rounding is applied
>>> f'{appx_pi:.3f}'

18

https://peps.python.org/pep-0020/
https://docs.python.org/3/library/string.html#formatstrings
https://docs.python.org/3/reference/lexical_analysis.html#formatted-string-literals
https://docs.python.org/3/reference/lexical_analysis.html#formatted-string-literals

'3.143'

exponential notation
>>> f'{32 ** appx_pi:.2e}'
'5.38e+04'

Here are some alignment examples:

>>> fruit = 'apple'

>>> f'{fruit:=>10}'
'=====apple'
>>> f'{fruit:=<10}'
'apple====='
>>> f'{fruit:=^10}'
'==apple==='

default is the space character
>>> f'{fruit:^10}'
' apple '

You can use b , o and x to display integer values in binary, octal and hexadecimal formats
respectively. Using # before these characters will add appropriate prefix for these formats.

>>> num = 42

>>> f'{num:b}'
'101010'
>>> f'{num:o}'
'52'
>>> f'{num:x}'
'2a'

>>> f'{num:#x}'
'0x2a'

The str.format() method, the format() function and the % operator are alternate
approaches for string formatting.

>>> num1 = 22
>>> num2 = 7

>>> 'Output: {} / {} = {:.2f}'.format(num1, num2, num1 / num2)
'Output: 22 / 7 = 3.14'

>>> format(num1 / num2, '.2f')
'3.14'

>>> 'Approx pi: %.2f' % (num1 / num2)
'Approx pi: 3.14'

19

See docs.python: The String format() Method and the sections that follow for more
details about the above features. See docs.python: Format examples for more examples,
including datetime formatting. The Text processing chapter will discuss more about
the string processing methods.

In case you don’t know what a method is, see stackoverflow: What’s the difference
between a method and a function?

User input
The input() built-in function can be used to get data from the user. It also allows an optional
string to make it an interactive process. This function always returns a string data type, which
you can convert to another type if needed (explained in the next section).

Python will wait until you type your text and press the Enter key
the blinking cursor is represented by a rectangular block as shown below
>>> name = input('what is your name? ')
what is your name? █

Here’s the rest of the above example.

>>> name = input('what is your name? ')
what is your name? learnbyexample

note that newline isn't part of the value saved in the 'name' variable
>>> print(f'pleased to meet you {name}.')
pleased to meet you learnbyexample.

Type conversion
The type() built-in function can be used to know what data type you are dealing with. You can
pass any expression as an argument.

>>> num = 42
>>> type(num)
<class 'int'>

>>> type(22 / 7)
<class 'float'>

>>> type('Hi there')
<class 'str'>

The built-in functions int(), float() and str() can be used to convert from one data type to another.
These function names are the same as their data type class names seen above.

>>> num = 3.14
>>> int(num)
3

20

https://docs.python.org/3/tutorial/inputoutput.html#the-string-format-method
https://docs.python.org/3/library/string.html#format-examples
https://stackoverflow.com/q/155609/4082052
https://stackoverflow.com/q/155609/4082052
https://docs.python.org/3/library/functions.html#input
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#func-str

you can also use f'{num}'
>>> str(num)
'3.14'

>>> usr_ip = input('enter a float value ')
enter a float value 45.24e22
>>> type(usr_ip)
<class 'str'>
>>> float(usr_ip)
4.524e+23

See docs.python: Built-in Functions for documentation on all of the built-in functions.
You can also use the help() function from the REPL as discussed in the Documentation
and getting help section.

Exercises
• Read about the Bytes literal from docs.python: String and Bytes literals. See also stack-
overflow: What is the difference between a string and a byte string?

• If you check out docs.python: int() function, you’ll see that the int() function accepts
an optional argument. Write a program that asks the user for hexadecimal number as
input. Then, use the int() function to convert the input string to an integer (you’ll
need the second argument for this). Add 5 and display the result in hexadecimal
format.

• Write a program to accept two input values. First can be either a number or a string
value. Second is an integer value, which should be used to display the first value in
centered alignment. You can use any character you prefer to surround the value, other
than the default space character.

• What happens if you use a combination of r , f and other such valid prefix characters
while declaring a string literal? For example, rf'a\{5/2}' . What happens if you use
the raw strings syntax and provide only a single \ character? Does the documentation
describe these cases?

• Try out at least two format specifiers not discussed in this chapter.
• Given a = 5 , display '{5}' as the output using f-strings.

21

https://docs.python.org/3/library/functions.html
https://docs.python.org/3/reference/lexical_analysis.html#strings
https://stackoverflow.com/q/6224052/4082052
https://stackoverflow.com/q/6224052/4082052
https://docs.python.org/3/library/functions.html#int

Defining functions
This chapter will discuss how to define your own functions, pass arguments to them and get
back results. You’ll also learn more about the print() built-in function.

def
Use the def keyword to define a function. The function name is specified after the keyword,
followed by arguments inside parentheses and finally a : character to end the definition.
It is a common mistake for beginners to miss the : character. Arguments are optional, as
shown in the below program.

no_args.py
def greeting():

print('-----------------------------')
print(' Hello World ')
print('-----------------------------')

greeting()

The above code defines a function named greeting and contains three statements as part
of the function. Unlike many other programming languages, whitespaces are significant in
Python. Instead of a pair of curly braces, indentation is used to distinguish the body of the
function and statements outside of that function. Typically, 4 space characters are used. The
function call greeting() has the same indentation level as the function definition, so it is
not part of the function. For readability purposes, an empty line has been used to separate the
function definition and the subsequent statements.

$ python3.13 no_args.py

Hello World

Functions have to be declared before they can be called. As an exercise, call the function
before declaration and see what happens for the above program.

As per Style Guide for Python Code (PEP 8), it is recommended to use two blank
lines around top level functions. However, I prefer to use a single blank line. For large
projects, specialized tools like ruff are typically used to analyze and enforce coding
styles/guidelines.

To create a placeholder function, one option is to use the pass statement to indi-
cate no operation. See docs.python: pass statement for details.

Accepting arguments
Functions can accept one or more arguments separated by a comma.

22

https://peps.python.org/pep-0008/
https://pypi.org/project/ruff/
https://docs.python.org/3/reference/simple_stmts.html#the-pass-statement

with_args.py
def greeting(ip):

op_length = 10 + len(ip)
styled_line = '-' * op_length
print(styled_line)
print(f'{ip:^{op_length}}')
print(styled_line)

greeting('hi')
weather = 'Today would be a nice, sunny day'
greeting(weather)

In the above script, the function from the previous example has been modified to accept an
input string as the sole argument. The len() built-in function is used here to get the length of a
string value. The code also showcases the usefulness of variables, string operators and string
formatting.

$ python3.13 with_args.py

hi

--

Today would be a nice, sunny day
--

As an exercise, modify the above program as suggested below and observe the results you
get.

• add print statements for ip , op_length and styled_line variables at the end of
the program (after the function calls)

• pass a numeric value to the greeting() function
• don’t pass any argument while calling the greeting() function

The argument variables, and those that are defined within the body, are local to
the function and would result in an exception if used outside the function. See also
docs.python: Scopes and Namespaces and docs.python: global statement.

Python being a dynamically typed language, it is up to you to sanitize input for
correctness. See also docs.python: Support for type hints and realpython: Python Type
Checking Guide.

Default valued arguments
A default value can be specified during the function definition. Such arguments can be skipped
during the function call, in which case they’ll use the default value. They are also known as
keyword arguments. Here’s an example:

23

https://docs.python.org/3/library/functions.html#len
https://docs.python.org/3/tutorial/classes.html#scopes-and-namespaces-example
https://docs.python.org/3/reference/simple_stmts.html#the-global-statement
https://docs.python.org/3/library/typing.html
https://realpython.com/python-type-checking/
https://realpython.com/python-type-checking/

default_args.py
def greeting(ip, style='-', spacing=10):

op_length = spacing + len(ip)
styled_line = style * op_length
print(styled_line)
print(f'{ip:^{op_length}}')
print(styled_line)

greeting('hi')
greeting('bye', spacing=5)
greeting('hello', style='=')
greeting('good day', ':', 2)

There are various ways in which you can call functions with default values. If you specify the
argument name, they can be passed in any order. But, if you pass values positionally, the order
has to be same as the declaration.

$ python3.13 default_args.py

hi

bye

===============

hello
===============
::::::::::
good day

::::::::::

As an exercise, modify the above script for the below requirements.

• make the spacing work for multicharacter style argument
• accept another argument with a default value of single space character that determines
the character to be used around the centered ip value

As another exercise, what do you thinkwill happen if you use greeting(spacing=5, ip='Oh!')
to call the function shown above?

Arguments declared without default values can still be used as keyword arguments
during function call. This is the default behavior. Python provides special constructs /
and * for stricter separation of positional and keyword arguments. See docs.python:
Special parameters for details.

Return value
The default return value of a function is None , which is typically used to indicate the ab-
sence of a meaningful value. The print() function, for example, has a None return value.
Functions like int() , len() and type() have specific return values, as seen in prior

24

https://docs.python.org/3/tutorial/controlflow.html#special-parameters
https://docs.python.org/3/tutorial/controlflow.html#special-parameters

examples.

>>> print('hi')
hi
>>> value = print('hi')
hi

>>> value
>>> print(value)
None
>>> type(value)
<class 'NoneType'>

Use the return statement to explicitly give back a value when the function is called. You
can use this keyword by itself as well (default value is None).

>>> def num_square(n):
... return n * n
...
>>> num_square(5)
25
>>> num_square(3.14)
9.8596

>>> op = num_square(-42)
>>> type(op)
<class 'int'>

On encountering a return statement, the function will be terminated and further
statements, if any, present as part of the function body will not be executed.

A common beginner confusion is mixing up the print() function and the return
statement. See stackoverflow: What is the formal difference between ”print” and ”re-
turn”? for examples and explanations.

A closer look at the print() function
The help documentation for the print() function is shown below:

25

https://stackoverflow.com/q/7664779/4082052
https://stackoverflow.com/q/7664779/4082052

As you can see, there are four default valued arguments. But, what does *args mean? It
indicates that the print() function can accept arbitrary number of arguments.

newline character is appended even if no arguments are passed
>>> print()

>>> print('hi')
hi
>>> print('hi', 5)
hi 5

>>> word1 = 'loaf'
>>> word2 = 'egg'
>>> print(word1, word2, 'apple roast nut')
loaf egg apple roast nut

If you observe closely, you’ll notice that a space character is inserted between the arguments.
That separator can be changed by using the sep argument.

>>> print('hi', 5, sep='')
hi5
>>> print('hi', 5, sep=':')
hi:5
>>> print('best', 'years', sep='.\n')
best.
years

Similarly, you can change the string that gets appended to something else.

>>> print('hi', end='----\n')
hi----
>>> print('hi', 'bye', sep='-', end='\n======\n')
hi-bye
======

26

The file argument will be discussed later. Writing your own function to accept
arbitrary number of arguments will also be discussed later.

Docstrings
Triple quoted strings are also used for multiline comments and to document various part of
a Python script. The latter is achieved by adding help content as string literals (but without
being assigned to a variable) at the start of a function, class, etc. Such literals are known as
documentation strings, or docstrings for short. Idiomatically, triple quoted strings are used
for docstrings. The help() function reads these docstrings to display the documentation.
There are also numerous third-party tools that make use of docstrings.

Here’s an example:

>>> def num_square(n):
... """
... Returns the square of a number.
... """
... return n * n
...
>>> help(num_square)

Calling help(num_square) will give you the documentation as shown below.

num_square(n)
Returns the square of a number.

See docs.python: Documentation Strings for usage guidelines and other details.

Interactive TUI app for exercises
I wrote a TUI app that you can use to interactively solve most of the exercises from this book.
See PythonExercises repo for installation instructions and usage guide. A sample screenshot
is shown below:

27

https://docs.python.org/3/tutorial/controlflow.html#documentation-strings
https://github.com/learnbyexample/TUI-apps/tree/main/PythonExercises

28

Control structures
This chapter shows operators used in conditional expressions, followed by control structures.

Comparison operators
These operators yield True or False boolean values as a result of comparison between
two values.

>>> 0 != '0'
True
>>> 0 == int('0')
True
>>> 'hi' == 'Hi'
False

>>> 4 > 3.14
True
>>> 4 >= 4
True

>>> 'bat' < 'at'
False
>>> 2 <= 3
True

Python is a strictly typed language. So, unlike context-based languages like Perl, you have to
explicitly use type conversion when needed. As an exercise, try using any of the < or <=
or > or >= operators between numeric and string values.

See docs.python: Comparisons and docs.python: Operator precedence for documen-
tation and other details.

Truthy and Falsy values
The values by themselves have Truthy and Falsy meanings when used in a conditional context.
You can use the bool() built-in function to explicitly convert them to boolean values.

The numerical value zero, an empty string and None are Falsy. Non-zero numbers and
non-empty strings are Truthy. See docs.python: Truth Value Testing for a complete list.

>>> type(True)
<class 'bool'>
>>> type(False)
<class 'bool'>

>>> bool(4)
True
>>> bool(0)
False

29

https://docs.python.org/3/library/stdtypes.html#comparisons
https://docs.python.org/3/reference/expressions.html#operator-precedence
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#truth-value-testing

>>> bool(-1)
True

>>> bool('')
False
>>> bool('hi')
True

>>> bool(None)
False

Boolean operators
You can use the and and or boolean operators to combine comparisons. The not operator
is useful to invert a condition.

>>> 4 > 3.14 and 2 <= 3
True

>>> 'hi' == 'Hi' or 0 != '0'
True

>>> not 'bat' < 'at'
True
>>> num = 0
>>> not num
True

The and and or operators are also known as short-circuit operators. These will evaluate
the second expression if and only if the first one evaluates to True and False respectively.
Also, these operators return the result of the expressions used, which can be a non-boolean
value. The not operator always returns a boolean value.

>>> num = 5
here, num ** 2 will NOT be evaluated
>>> num < 3 and num ** 2
False
here, num ** 2 will be evaluated as the first expression is True
>>> num < 10 and num ** 2
25
not operator always gives a boolean value
>>> not (num < 10 and num ** 2)
False

>>> 0 or 3
3
>>> 1 or 3
1

30

Comparison chaining
Similar to mathematical notations, you can chain comparison operators. Apart from resulting
in a terser conditional expression, this also has the advantage of having to evaluate the middle
expression only once.

>>> num = 5

using boolean operator
>>> num > 3 and num <= 5
True

comparison chaining
>>> 3 < num <= 5
True
>>> 4 < num > 3
True
>>> 'bat' < 'cat' < 'cater'
True

Membership operator
The in comparison operator checks if a given value is part of a collection of values. Here’s
an example with the range() function:

>>> num = 5
range() will be discussed in detail later in this chapter
this checks if num is present among the integers 3 or 4 or 5
>>> num in range(3, 6)
True
>>> 6 in range(3, 6)
False

You can build your own collection of values using various data types like list , set , tuple
etc. These data types will be discussed in detail in later chapters.

>>> num = 21
>>> num == 10 or num == 21 or num == 33
True
RHS value here is a tuple data type
>>> num in (10, 21, 33)
True

>>> 'cat' not in ('bat', 'mat', 'pat', 'Cat')
True

When applied to strings, the in operator performs substring comparison.

>>> fruit = 'mango'
>>> 'an' in fruit
True
>>> 'at' in fruit
False

31

if-elif-else
Similar to the function definition, control structures require indenting its body of code. And,
there’s a : character after you specify the conditional expression. You should be already
familiar with if and else keywords from other programming languages. Alternate con-
ditional branches are specified using the elif keyword. You can nest these structures and
each branch can have one or more statements.

Here’s an example of an if-else structure within a user defined function. Note the use of
indentation to separate different structures. Examples with the elif keyword will be seen
later.

odd_even.py
def isodd(n):

if n % 2:
return True

else:
return False

print(f'{isodd(42) = }')
print(f'{isodd(-21) = }')
print(f'{isodd(123) = }')

Here’s the output of the above program.

$ python3.13 odd_even.py
isodd(42) = False
isodd(-21) = True
isodd(123) = True

As an exercise, reduce the isodd() function body to a single statement instead of four. This
is possible with features already discussed in this chapter — the ternary operator discussed
in the next section would be an overkill.

Python doesn’t support the switch control structure. See stackoverflow: switch
statement in Python? for workarounds. docs.python: match statement is a powerful
alternative to switch , introduced in the Python 3.10 version.

Ternary operator
Python doesn’t support the traditional ?: ternary operator syntax. Instead, it uses if-else
keywords in the same line as illustrated below.

def absolute(num):
if num >= 0:

return num
else:

return -num

The above if-else structure can be rewritten using the ternary operator as shown below:

32

https://stackoverflow.com/q/60208/4082052
https://stackoverflow.com/q/60208/4082052
https://docs.python.org/3/tutorial/controlflow.html#match-statements

def absolute(num):
return num if num >= 0 else -num

Or, just use the abs() built-in function, which has support for complex numbers, fractions, etc.
Unlike the above program, abs() will also handle -0.0 correctly.

See stackoverflow: ternary conditional operator for other ways to emulate the
ternary operation in Python. True and False boolean values are equivalent to
1 and 0 in integer context. So, for example, the above ternary expression can also
be written as (-num, num)[num >= 0] .

for loop
Counter based loop can be constructed using the range() built-in function and the in operator.
The range() function can be called in the following ways:

range(stop)
range(start, stop)
range(start, stop, step)

Both ascending and descending order arithmetic progressions can be constructed using these
variations. When skipped, the default values are start=0 and step=1 . For understanding
purposes, a C -like code snippet is shown below:

ascending order
for(i = start; i < stop; i += step)

descending order
for(i = start; i > stop; i += step)

Here’s a sample multiplication table:

>>> num = 9
>>> for i in range(1, 5):
... print(f'{num} * {i} = {num * i}')
...
9 * 1 = 9
9 * 2 = 18
9 * 3 = 27
9 * 4 = 36

The range , list , tuple , str data types (and some more) fall under sequence types.
There are multiple operations that are common to these types (see docs.python: Common
Sequence Operations for details). For example, you could iterate over these types using the
for loop. The start:stop:step slicing operation is another commonality among these
types. You can test your understanding of the slicing syntax by converting a range() expres-
sion to list or tuple types.

>>> list(range(5))
[0, 1, 2, 3, 4]

33

https://docs.python.org/3/library/functions.html#abs
https://stackoverflow.com/q/394809/4082052
https://docs.python.org/3/library/functions.html#func-range
https://docs.python.org/3/library/stdtypes.html#common-sequence-operations
https://docs.python.org/3/library/stdtypes.html#common-sequence-operations

>>> list(range(2, 11, 2))
[2, 4, 6, 8, 10]

>>> list(range(120, 99, -4))
[120, 116, 112, 108, 104, 100]

As an exercise, create this arithmetic progression -2, 1, 4, 7, 10, 13 using the range()
function. Also, see what value you get during each iteration of for c in 'hello' .

while loop
Use while loop when you want to execute statements as long as the condition evaluates to
True . Here’s an example:

countdown.py
count = int(input('Enter a positive integer: '))
while count > 0:

print(count)
count -= 1

print('Go!')

Here’s a sample run of the above script:

$ python3.13 countdown.py
Enter a positive integer: 3
3
2
1
Go!

As an exercise, rewrite the above program using a for loop. Can you think of a scenario
where you must use a while loop instead of for ?

Python doesn’t support ++ or -- operations. As shown in the above program,
combining arithmetic operations with assignment is supported.

break and continue
The break statement is useful to quit the current loop immediately. Here’s an example where
you can keep getting the square root of a number until you enter an empty string. Recall that
an empty string is Falsy.

>>> while True:
... num = input('enter a number: ')
... if not num:
... break
... print(f'square root of {num} is {float(num) ** 0.5:.4f}')
...
enter a number: 2

34

square root of 2 is 1.4142
enter a number: 3.14
square root of 3.14 is 1.7720
enter a number:
>>>

See also stackoverflow: breaking out of nested loops.

When continue is used, further statements are skipped and the next iteration of the loop is
started, if any. For example, in file processing you often need to skip certain lines like headers,
comments, etc.

>>> for num in range(10):
... if num % 3:
... continue
... print(f'{num} * 2 = {num * 2}')
...
0 * 2 = 0
3 * 2 = 6
6 * 2 = 12
9 * 2 = 18

As an exercise, use appropriate range() logic so that the if statement is no longer needed.

See docs.python: break, continue, else for more details and the curious case of
else clause in loops.

Assignment expression
Quoting from docs.python: Assignment expressions:

An assignment expression (sometimes also called a ”named expression” or ”walrus”)
assigns an expression to an identifier, while also returning the value of the expression.

The while loop snippet from the previous section can be re-written using the assignment
expression as shown below:

>>> while num := input('enter a number: '):
... print(f'square root of {num} is {float(num) ** 0.5:.4f}')
...
enter a number: 2
square root of 2 is 1.4142
enter a number: 3.14
square root of 3.14 is 1.7720
enter a number:
>>>

35

https://stackoverflow.com/q/653509/4082052
https://docs.python.org/3/tutorial/controlflow.html#break-and-continue-statements-and-else-clauses-on-loops
https://docs.python.org/3/reference/expressions.html#assignment-expressions

See Assignment Expressions (PEP 572) andmy book on regular expressions for more
details and examples.

Exercises
• If you don’t already know about FizzBuzz, check out the problem statement on rosetta-
code and implement it in Python. See also Why Can’t Programmers.. Program?

• Print all numbers from 1 to 1000 (inclusive) which reads the same in reversed form
in both the binary and decimal formats. For example, 33 in decimal is 100001 in
binary and both of these are palindromic. You can either implement your own logic or
search online for palindrome testing in Python.

• Write a function that returns the maximum nested depth of curly braces for a given
string input. For example, '{{a+2}*{{b+{c*d}}+e*d}}' should give 4 . Unbalanced
or wrongly ordered braces like '{a}*b{' and '}a+b{' should return -1 .

If you’d like more exercises to test your understanding, check out these excellent resources:

• Exercism, Hackinscience and Practicepython — beginner friendly
• PythonExercises — my interactive TUI app
• Adventofcode, Codewars, Python Morsels — for intermediate to advanced level users
• Checkio, Codingame — gaming based challenges
• /r/dailyprogrammer — interesting challenges

See also Python Programming Exercises, Gently Explained — a free ebook that includes gentle
explanations of the problem, the prerequisite coding concepts you’ll need to understand the
solution, etc.

36

https://peps.python.org/pep-0572/
https://learnbyexample.github.io/py_regular_expressions/working-with-matched-portions.html#assignment-expressions
https://rosettacode.org/wiki/FizzBuzz
https://rosettacode.org/wiki/FizzBuzz
https://blog.codinghorror.com/why-cant-programmers-program/
https://exercism.org/tracks/python/exercises
https://www.hackinscience.org/exercises/
https://www.practicepython.org/
https://github.com/learnbyexample/TUI-apps/tree/main/PythonExercises
https://adventofcode.com/
https://www.codewars.com/
https://www.pythonmorsels.com/
https://py.checkio.org/
https://www.codingame.com/start
https://old.reddit.com/r/dailyprogrammer
https://inventwithpython.com/pythongently/

	Preface
	Prerequisites
	Conventions
	Acknowledgements
	Feedback and Errata
	Author info
	License
	Book version

	Introduction
	Installation
	Online tools
	First program
	IDE and text editors
	REPL
	Documentation and getting help

	Numeric data types
	int
	float
	Arithmetic operators
	Operator precedence
	Integer formats
	Other numeric types

	Strings and user input
	Single and double quoted strings
	Triple quoted strings
	Raw strings
	String operators
	String formatting
	User input
	Type conversion
	Exercises

	Defining functions
	def
	Accepting arguments
	Default valued arguments
	Return value
	A closer look at the print() function
	Docstrings
	Interactive TUI app for exercises

	Control structures
	Comparison operators
	Truthy and Falsy values
	Boolean operators
	Comparison chaining
	Membership operator
	if-elif-else
	Ternary operator
	for loop
	while loop
	break and continue
	Assignment expression
	Exercises

