

BOILER REPLACEMENT GUIDE

Step-by-step procedures for properly sizing hot water and steam replacement boilers for homes and small commercial buildings

BOILER REPLACEMENT GUIDE

INTRODUCTION

This booklet is designed to give the quality-conscious hydronic heating contractor a step-by-step procedure for properly sizing hot water and steam replacement boilers. It is intended primarily for use in sizing boilers for homes, but in many cases can also be used for small commercial buildings.

All too often replacement boilers are sized simply by matching the rating of the old boiler. This can result in an oversized boiler which wastes fuel—or an undersized unit which will not heat the building.

By following the procedures in this booklet, the heating contractor will be able to accurately size replacement boilers, sell more replacement jobs, assure energy-efficient installations, and render better service for customers.

SIZING HOT WATER BOILERS - Page 3

There is only one accepted method for determining the proper size of a replacement hot water boiler: THE HEAT LOSS OF THE BUILDING MUST BE CALCULATED. By following the steps in this booklet, the total heat loss of the average house can be calculated in five or ten minutes. In most cases it should not be necessary to make a detailed calculation but, if it is required for any reason, use or the latest ASHRAE Handbook.

SIZING STEAM BOILERS - Page 9

To properly size a replacement steam boiler DETERMINE THE TOTAL BTU CAPACITY OF THE CONNECTED RADIATION. This method is necessary in order to assure adequate steam pressure to fill all parts of the system.

INDEX TO FIGURES & TABLES

		PAGE			PAGE
Figure 1	Job Survey Form	3	Figure 3	Material List	7
Figure 2	Heat Loss Calculation Form	4	Figure 4	Job Survey Form-Example	8
Table A	Construction Characteristics	4	Figure 5	Heat Loss Calculation Form- Example	9
Table B	Heat Loss Table	5	Figure 6	Radiator Styles	9
Table C	Design Temperature Correction Factors	6	Figure 7	Radiator Example	10
Table D	Ceiling Correction Factors	6	Table F	Radiator Ratings	10
Table E	Net Ratings of Weil-McLain Boilers	7			

SECTION 1 PROCEDURE FOR SIZING HOT WATER BOILERS

STEP 1: COMPLETE A JOB SURVEY FORM

Certain key information is required for each boiler replacement job in order to calculate the heat loss, select the proper boiler and determine the selling price. Figure 1 is a Job Survey Form (part of a Weil-McLain Boiler Replacement Worksheet) to aid in recording the required

information. It will serve as a checklist of the basic data for the existing installation and a permanent record for your job file. Boiler Replacement Worksheets to be used with this booklet are available through Weil-McLain distributors and sales representatives.

FIGURE 1: JOB SURVEY FORM

BOILER REDI ACEMENT WORKSHEET

CUSTOMER NAME:				PHONE:
ADDRESS:				
PREPARED BY:				DATE:
PRESENT HEATING SY	/STEM:			
TYPE OF RADIATION: $_{-}$				
HEATING MEDIUM:	☐ Hot Water	☐ Steam		
FUEL NOW USED:	□ Natural Gas	□ Propane	□ #2 Oil	☐ Electricity
FUEL TO BE USED:	□ Natural Gas	□ Propane	□ #2 Oil	☐ Electricity
IS SYSTEM HEATING S	SATISFACTORILY?	☐ Yes	□ No	
If no, what is the pro	blem?			
How can it be correct	cted?			
RELOCATE BOILER?		,		Materials
Corrosive Atmosphe	ere?			
•				ndirect Tank
PRESENT SOURCE OF	DOMESTIC WATER	R: □ Tankle	ss Heater ☐ Ir	
PRESENT SOURCE OF	F DOMESTIC WATER VE A WATER HEATE	R: □ Tankle	ss Heater ☐ Ir	ndirect Tank
PRESENT SOURCE OF WILL NEW BOILER HA' HOUSE CONSTRUCTION	F DOMESTIC WATER VE A WATER HEATE ON:	R: □ Tankle ER? □ Yes	ss Heater □ Ir □ No Type _	ndirect Tank
PRESENT SOURCE OF WILL NEW BOILER HA' HOUSE CONSTRUCTION	F DOMESTIC WATER VE A WATER HEATE ON:	R: □ Tankle ER? □ Yes	ss Heater □ Ir □ No Type _	ndirect Tank Other
PRESENT SOURCE OF WILL NEW BOILER HA' HOUSE CONSTRUCTION GLASS:	F DOMESTIC WATER VE A WATER HEATE ON:	R: □ Tankle ER? □ Yes	ss Heater □ Ir □ No Type _	ndirect Tank Other
PRESENT SOURCE OF WILL NEW BOILER HA' HOUSE CONSTRUCTION GLASS: WALLS: CEILING:	F DOMESTIC WATER VE A WATER HEATE ON:	R: □ Tankle ER? □ Yes	ss Heater □ Ir □ No Type _	ndirect Tank □ Other .
PRESENT SOURCE OF WILL NEW BOILER HA' HOUSE CONSTRUCTION GLASS: WALLS: CEILING:	F DOMESTIC WATEI VE A WATER HEATE ON:	R: □ Tankle ER? □ Yes	ss Heater □ Ir □ No Type _	ndirect Tank Other
PRESENT SOURCE OF WILL NEW BOILER HA' HOUSE CONSTRUCTION GLASS: WALLS: CEILING: SLAB:	F DOMESTIC WATER VE A WATER HEATE ON: (Use sketch for accu	R: ☐ Tankle ER? ☐ Yes uracy):	ss Heater □ Ir □ No Type _	ndirect Tank Other
PRESENT SOURCE OF WILL NEW BOILER HA' HOUSE CONSTRUCTION GLASS: WALLS: CEILING: SLAB: HOUSE DIMENSIONS	F DOMESTIC WATER VE A WATER HEATE ON: (Use sketch for accu	R: ☐ Tankle ER? ☐ Yes uracy):	ss Heater □ Ir □	ndirect Tank
PRESENT SOURCE OF WILL NEW BOILER HA' HOUSE CONSTRUCTION GLASS: WALLS: CEILING: SLAB: HOUSE DIMENSIONS (F DOMESTIC WATER VE A WATER HEATE ON: (Use sketch for accu	R: ☐ Tankle ER? ☐ Yes uracy):	ss Heater	rt. Elevation
PRESENT SOURCE OF WILL NEW BOILER HA' HOUSE CONSTRUCTION GLASS: WALLS: CEILING: SLAB: HOUSE DIMENSIONS OF High Altitude Basement	F DOMESTIC WATER VE A WATER HEATE ON: (Use sketch for accu	R: ☐ Tankle ER? ☐ Yes uracy): L x L x	ss Heater	ndirect Tank □ Other Ft. Elevation Sq. Ft. Sq. Ft.
PRESENT SOURCE OF WILL NEW BOILER HAY HOUSE CONSTRUCTION GLASS: WALLS: CEILING: SLAB: HOUSE DIMENSIONS (High Altitude Basement First Floor	F DOMESTIC WATER VE A WATER HEATE ON: (Use sketch for accu	R: ☐ Tankle ER? ☐ Yes uracy): L x L x	ss Heater	ndirect Tank □ Other Ft. Elevation Sq. Ft. Sq. Ft.

STEP 2: CALCULATE TOTAL HEAT LOSS

The form shown in Figure 2 (Part of the Weil-McLain Boiler Replacement Worksheet) can be used for calculating total heat loss by following these steps.

- Based on the type of construction, amount of insulation, etc., select the Construction Design Number from Table A below which most nearly matches each of the areas (levels) to be heated.
- 2. Determine the total square footage of each area to be heated from the Job Survey Form. Round to the nearest hundred.
- 3. Based on the Construction Design Number selected and the square footage of each area, determine the heat loss (at 70°F design temp. diff.) from Table B (page 5). NOTE: Do not add

- in heat loss for basements which are not to be heated; ignore crawl spaces which are open to basement areas.
- 4. If the Outdoor Design Temperature of the city is unknown, refer to back page. If the design temperature difference is other than 70°F, multiply the heat loss for each area by the appropriate correction factor from Table C (page 6). Round to the nearest ten.
- 5. If it is a two story house, multiply the heat loss of the first level by the appropriate Ceiling Correction Factor from Table D (page 6). Round to nearest ten.
- 6. Add the adjusted heat loss for each area to determine the Total Heat Loss.

FIGURE 2: HEAT LOSS CALCULATION FORM

CONSTRUCTION NUMBER	SQ. FT.	HEAT LOSS (AT 70°F DESIGN TEMP. DIFF.)	CORRECTION FACTOR AT °F	TOTAL	CEILING CORRECTION FACTOR	ADJUSTED HEAT LOSS
		x	=	x	=	
				^		
		^				
		^				
			CONSTRUCTION NUMBER SQ. FT. (AT 70°F DESIGN TEMP. DIFF.) X X X	CONSTRUCTION NUMBER SQ. FT. (AT 70°F DESIGN TEMP. DIFF.) °F	CONSTRUCTION NUMBER SQ. FT. (AT 70°F DESIGN TEMP. DIFF.) FACTOR AT DESIGN TEMP. DIFF.) *F TOTAL X	CONSTRUCTION NUMBER SQ. FT. (AT 70°F DESIGN TEMP. DIFF.) X

TOTAL HEAT LOSS _____

TABLE A: CONSTRUCTION CHARACTERISTICS

	FRAME CONST	RUCTION	В	RICK CONSTRUCTION	١	
	WEATHERSTRIPPED GLASS	INSULATION WALL	THICKNESS CEILING		WEATHERSTRIPPED GLASS	CEILING INSULATION
CONSTRUCTION DESIGN NUMBER	Without	basement or crawl s	pace	CONSTRUCTION DESIGN NUMBER	With 4" brick & 4" lig	htweight block**
1	single	1"	2"	14	single	2"
2	double	1"	2"	15	double	2"
3	single	1"	3"	16	single	3"
4	double	1"	3"	17	double	3"
5	double	2"	3"		With 8" bı	rick**
6	double	3"	3"	18	single	2"
	With full	basement or crawl s	pace	19	double	2"
7	double	3"	6"*	20	single	3"
8	double	3"	6"	21	double	3"
9	double	3"	9"		For Basements- Concr	
10	double	3"	12"	22 [†]	8' high, 6 1/2' below grade (stray hea from boiler & piping included). Or fo unheated crawl spaces	
11	double	6"	6"			
12	double	6"	9"	23‡	4" concrete sla	ab with 1"
13	double	6"	12"	23+	perimeter in	sulation

^{*} With 2" Floor Insulation.

^{**} Furred, lath & plaster.

[†] Use for basement heat losses WITHOUT fully exposed walls and for floor losses over closed unheated crawl spaces. For basements with fully exposed walls use FIRST FLOOR heat loss.

[‡] Use for grade level slab construction.

TABLE B: HEAT LOSS TABLE (in BTU/Hr.) (Calculated at 70°F Design Temperature Difference

FLOOR				C	ONSTRUCT	TION DESI	GN NUMBE	R			
AREA SQ. FT.	1	2	3	4	5	6	7	8	9	10	11
500	28,750	23,900	27,350	22,510	18,080	16,860	17,910	16,160	15,460	15,110	15,360
600	32,300	27,030	30,620	25,350	20,520	19,200	20,460	18,360	17,520	17,100	17,490
700	35,860	30,150	33,900	28,190	22,970	21,540	23,010	20,560	19,580	19,090	19,610
800	39,840	33,590	37,600	31,350	25,640	24,080	25,760	22,960	21,840	21,280	21,920
900	43,340	36,680	40,820	34,160	28,050	26,380	28,270	25,120	23,860	23,230	24,010
1000	46,890	39,800	44,090	37,000	30,500	28,720	30,820	27,320	25,920	25,220	26,140
1100	50,450	42,920	47,370	39,840	32,940	31,060	33,370	29,520	27,980	27,210	28,270
1200	54,000	46,040	50,640	42,680	35,390	33,400	35,920	31,720	30,040	29,200	30,400
1300	56,640	48,470	53,000	44,830	37,340	35,300	38,030	33,480	31,660	30,750	32,120
1400	60,200	51,590	56,280	47,670	39,790	37,640	40,580	35,680	33,720	32,740	34,240
1500	62,830	54,030	58,630	49,830	41,740	39,540	42,690	37,440	35,340	34,290	35,970
1600	65,530	56,490	61,050	52,010	43,730	41,480	44,840	39,240	37,000	35,880	37,730
1700	68,590	59,250	63,830	54,490	45,910	43,570	47,140	41,190	38,810	37,620	39,630
1800	71,720	62,040	66,680	57,000	48,130	45,710	49,490	43,190	40,670	38,410	37,950
1900	73,930	64,150	68,600	58,830	49,860	47,410	51,400	44,750	42,090	40,760	43,120
2000	77,050	66,940	71,450	61,340	52,080	49,550	53,750	46,750	43,950	42,550	45,070

TABLE B (continued)

FLOOR		CONSTRUCTION DESIGN NUMBER										
AREA SQ. FT.	12	13	14	15	16	17	18	19	20	21	22	23
500	14,660	14,310	30,360	25,520	28,960	24,120	32,780	27,940	31,380	26,540	5,130	4,350
600	16,650	16,230	34,060	28,790	32,380	27,110	36,690	31,420	35,010	29,740	6,150	4,730
700	18,630	18,140	37,760	32,050	35,780	30,090	40,600	34,890	38,650	32,930	7,180	5,220
800	20,800	20,240	41,920	35,670	39,680	33,430	45,040	38,790	42,800	36,550	8,210	5,600
900	22,750	22,120	45,560	38,910	43,040	36,390	48,890	42,240	46,370	39,720	9,230	5,980
1000	24,740	24,040	49,260	42,170	46,460	39,370	52,810	45,720	50,010	42,920	10,250	6,370
1100	26,730	25,960	52,960	45,430	49,880	42,350	56,720	49,190	53,640	46,110	11,300	6,750
1200	28,720	27,880	56,660	48,690	53,300	45,330	60,630	52,670	57,270	49,310	12,330	7,150
1300	30,300	29,390	59,360	51,200	55,720	47,560	63,450	55,290	59,810	51,650	13,340	7,330
1400	32,280	31,300	63,060	54,460	59,140	50,540	67,360	58,760	63,440	54,840	14,370	7,720
1500	33,870	32,820	65,770	56,970	61,570	52,770	70,180	61,380	65,980	57,180	15,400	7,920
1600	35,490	34,370	68,540	59,500	64,060	55,020	73,050	64,020	68,570	59,540	16,420	8,110
1700	37,250	36,060	71,710	62,370	66,950	57,610	76,390	67,050	71,630	62,290	17,440	8,400
1800	39,060	37,800	74,950	65,270	69,910	60,230	79,780	70,110	74,740	65,070	18,480	8,690
1900	40,460	39,130	77,190	67,410	71,870	62,090	82,080	72,300	76,760	66,990	19,500	9,270
2000	42,270	40,870	80,420	70,310	74,820	64,710	85,470	75,360	79,870	69,760	20,600	9,560

NOTE: The BTU figures in this table are based upon AHRI NET calculations where ceiling height is 8 ft. and where total window and door areas do not exceed 20 percent of the GROSS wall area. For 9 ft. ceiling height add 11 percent to heat loss; for 10 ft. ceiling height, add 22 percent. For lower levels ONE HALF or LESS below grade level, use FIRST FLOOR heat loss.

TABLE C: DESIGN TEMPERATURE CORRECTION FACTORS (For other than 70° Design Temperature Difference)

DESIGN TEMP. DIFFERENCE	FACTOR	DESIGN TEMP. DIFFERENCE	FACTOR	DESIGN TEMP. DIFFERENCE	FACTOR
25°F	.35	55°F	.78	90°F	1.29
30°F	.42	60°F	.85	95°F	1.36
35°F	.50	65°F	.92	100°F	1.43
40°F	.57	75°F	1.07	105°F	1.50
45°F	.64	80°F	1.15	110°F	1.57
50°F	.71	85°F	1.20	115°F	1.64

Note: Conversion factor for "in between" temperatures can be determined by interpolation between the closest tabulated values. Example: the outdoor design temperature in Philadelphia, PA is 14°F. Indoor minus outdoor temperature equals 56°F. Interpolated factor equals 0.79 (rounded).

TABLE D: CEILING CORRECTION FACTORS (For first floor heat loss in two story structure)

CONSTRUCTION DESIGN NO.	FACTOR	CONSTRUCTION DESIGN NO.	FACTOR	CONSTRUCTION DESIGN NO.	FACTOR	CONSTRUCTION DESIGN NO.	FACTOR
1	.82	7	.88	13	.94	19	.82
2	.79	8	.86	14	.83	20	.89
3	.88	9	.91	15	.80	21	.88
4	.86	10	.94	16	.88	22	-
5	.83	11	.86	17	.87	23	-
6	.82	12	.91	18	.84		

STEP 3: SELECT THE BOILER

The size of the replacement boiler will be based on the Total Heat Loss of the building calculated in Step 2. The boiler should be selected based on its AHRI NET Rating in BTU/Hr. For example, if the Total Heat Loss of the house is 85,000 BTU/Hr. then the AHRI NET Rating of the replacement boiler must be at least 85,000. It can be morebut **never** less.

For convenience, Table E (opposite page) shows the Net AHRI NET water ratings for current Weil-McLain gas and oil boilers for homes and small commercial buildings.

STEP 4: DETERMINE THE BID PRICE

Figure 3 (opposite page) is a general checklist of the materials which may be required for a boiler replacement job (also part of the Weil-McLain Boiler Replacement Worksheet). This list can be used to figure the cost of all materials as well as labor, overhead, and profit.

TABLE E: AHRI NET RATINGS IN BTU/HR. FOR WEIL-McLAIN BOILERS NOTE: Always consult product manual for details

EVERGREEN					
MODEL	WATER RATING	AFUE			
EVG 220	179,000	95.0%			
EVG 299	243,000	95.0%			
EVG 399	333,000	96.5%*			

ULTRA		
MODEL	WATER RATING	AFUE
ULT 80	62,000	93.5%
ULT 105	81,000	94.0%
ULT 155	123,000	94.0%
ULT 230	183,000	94.1%
ULT 299	234,000	92.5%
ULT 399	317,000	91.7%*

WM97+					
MODEL	WATER RATING	AFUE			
WM97+70	57,000	95.2%			
WM97+110	88,000	95.0%			
WM97+155	124,000	95.1%			

ECO		
MODEL	WATER RATING	AFUE
ECO 70	57,000	95.2%
ECO 110	88,000	95.0%
ECO 155	124,000	95.1%

GV90+		
MODEL	WATER RATING	AFUE
GV90+3	56,000	91.9%
GV90+4	84,000	91.2%
GC90+5	113,000	91.4%
GV90+6	140,000	91.0%

AquaBalance						
MODEL	WATER RATING	AFUE				
WMB-155C	124,000	94.4%				

CGi		
MODEL	WATER RATING	AFUE
CGi-25	37,000	84.0%
CGi-3	45,000	85.1%
CGi-4	66,000	85.0%
CGi-5	87,000	83.3%
CGi-6	122,000	83.3%
CGi-7	145,000	83.0%
CGi-8	169,000	82.7%

CGa		
MODEL	WATER RATING	AFUE
CGa-25	38,000	84.0%
CGa-3	51,000	84.0%
CGa-4	77,000	84.0%
CGa-5	102,000	83.5%
CGa-6	127,000	83.2%
CGa-7	152,000	83.0%
CGa-8	177,000	82.7%

CGt		
MODEL	WATER RATING	AFUE
CGt-5	95,000	82.1%

EG		
MODEL	WATER RATING	AFUE
EG-30	55,000	84.3%
EG-35	73,000	83.6%
EG-40	91,000	84.0%
EG-45	110,000	83.5%
EG-50	128,000	83.8%
EG-55	146,000	83.8%
EG-65	183,000	84.0%
EG-75	217,000	82.7%

80					
MODEL	WATER RATING				
380	242,000				
480	344,000				
580	448,000				
680	551,000				
780	655,000				
880	758,000				
980	862,000				
1080	965,000				
1180	1,069,000				
1280	1,172,000				

SLIM FIT		
MODEL	WATER RATING	AFUE
SF-550	450,000	93.9%*
SF-750	610,000	93.6%*
SF-1000	833,000	95.8%*
SF-1500	1,250,000	95.9%*
SF-2000	1,657,000	95.8%*

^{*} Indicates Thermal Efficiency Rating

FIGURE 3: MATERIAL LIST

QTY	ITEM	AMOUNT	QTY	AFUE	AMOUNT
	Boiler No.			Copper Pipe: ½"	
	Thermostats			3/4"	
	Zone Valves			1"	
	Balancing Valves			11/4"	
	Expansion Tank			1½"	
	Flow Control Valve			Fittings	
	Low Limit or Reverse Acting Control				
	Pressure Reducing Valve				
	Flue Pipe				
	Extra Valves				
	Gas Piping			Electric Wiring	
	Oil Tank, Pipe and Fittings			Freight and Cartage	
	Insulated Domestic Water Storage Tank				
	Domestic Water Coil				
	Pipe			Incidentals	
	Fuel Valves				
	Circulators			TOTAL COST OF MATERIAL	
	Relay			Labor	
	Circuit Braker (or fuse) Panel			Profit	
	240v. Disconnect Switch			Overhead	
	240v. 3-Wire Service Cable				
	SUB-TOTAL			BID PRICE	

SAMPLE PROBLEM

STEP 1: COMPLETE A JOB SURVEY FORM

A properly completed Job Survey Form is shown in Figure 4. The Key Information:

- Two story house with unheated basement-816 sq. ft. of floor space each level.
- Construction: 4" brick and 4" light weight block, furred, lath and plaster; 3" ceiling insulation; double glass, weatherstripped.
- 80°F design temperature difference.
- Type of System: series loop.
- Type of Radiation: convector baseboard.
- Owner wants to replace his old boiler with a new high efficiency gas fired water boiler.
 Owner wants night set-back thermostat.

FIGURE 4: JOB SURVEY FORM

		WEIL	-McLA	®	
ВО			MENT W	ORKSHE	ET
CUSTOMER NAME: C	-	JOB SUR		PHON	_{IE:} 327-9489
ADDITICOO.	8075 Ski Run Dr	ive, Monroe			
	KT			DAT	_{ГЕ:} 2/15
PRESENT HEATING SY	STEM: Series lo	op			
TYPE OF RADIATION:	Convector BSB	עי			
HEATING MEDIUM:					
FUEL NOW USED:		☐ Propane	☐ #2 Oil	□ Electricity	
FUEL TO BE USED:	Natural Gas	☐ Propane	☐ #2 Oil	□ Electricity	
IS SYSTEM HEATING S	ATISFACTORILY?	☐ Yes	□ No		
If no, what is the pro	blem?				
How can it be correct					
RELOCATE BOILER?		No If y	es estimate time_	Materials	
Corrosive Atmosphe					C
PRESENT SOURCE OF					Other <u>Separate</u>
WILL NEW BOILER HAV		ER? □ Yes	■ No Type		
HOUSE CONSTRUCTION double		ratrinned			
A !! I ! .	:k, 4" block — fu	rred lath & r	olaster		
WALLS: 4 Price CEILING: 3" ins		1100,1001101	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
SLAB: wood o	ver bsmt.				
3LAB					
HOUSE DIMENSIONS (Use sketch for acc	uracy):		Et Elevetien	
High Altitude8	' H x34	· 24		Ft. Elevation	
First Floor			$_{-}^{'} W = \frac{816}{}$		
Second Floor 8			· W = 816		
DESIGN TEMPERAT			_ vv = <u></u> _°F	Oq. 1 t.	
NEW THERMOSTAT(S)					
IVEVV IIIEIIIVIOOIAI(O)		Januaru A	i rogrammable		

STEP 2: CALCULATE TOTAL HEAT LOSS

The Total Heat Loss for the example is calculated on the form shown in Figure 5 based on the following steps:

- 1. The construction of the house matches Construction Design Number 17 in Table A (page 4).
- 2. Each of the two levels is rounded to 800 sq ft (the basement is not heated).
- 3. From Table B (page 5) Construction No. 17 at 800 sq ft has a heat loss of 33,430 BTU/Hr.
- 4. Table C (page 6) shows a 1.15 correction factor for 80°F Design Temperature Difference. Therefore, the heat loss for each area is 38,450 BTU/Hr. (33,430 x 1.15 rounded).
- 5. Since it is a two story house, the first floor does not have a ceiling loss.Table D (page 6) indicates a Ceiling

- Correction Factor for Construction Number 17 of .87. Therefore, the total adjusted heat loss for the first floor is 33,450 BTU/Hr. (38,450 x .87 rounded).
- 6. The total heat loss for the two levels is 71,900 BTU/Hr.

STEP 3: SELECT THE BOILER

The Total Heat Loss of 71,900 BTU/Hr. calculated in Step 2 is the minimum AHRI NET Rating of the new boiler. The owner wants a high efficiency gas boiler. Therefore, from Table E (page 7) the Ultra 105, WM97+ 110, ECO 110, GV90+ 4, CGi-5, CGa-4, or EG 40 could be selected. The Model Number of the boiler would be recorded on the Materials List. (Figure 3, page 7). The list would then be used to calculate material cost; add labor, overhead and profit; and determine the selling price.

FIGURE 5: HEAT LOSS CALCULATION FORM

LEVEL	CONSTRUCTION NUMBER	SQ. FT.	HEAT LOSS (AT 70°F DESIGN TEMP. DIFF.)	CORRECTION FACTOR AT	TOTAL	CEILING CORRECTION FACTOR	ADJUSTED HEAT LOSS
FIRST LEVEL	17	800	33,430 _x	1.15	38,450	x87 =	33,450
SECOND LEVEL	17	800	33,430 _x	1.15	38,450	-	38,450
MID-LEVEL			x				
BASEMENT			x				
SLAB			x				
			· ^			TOTAL HEAT LOSS .	71,900

SECTION 2 PROCEDURE FOR SIZING STEAM BOILERS

To properly size a replacement steam boiler, determine the total BTU capacity of the connected radiation in the building. This method is necessary so that the new boiler will produce adequate steam to fill the entire system. To make

fill the entire system. To make the calculations, determine the number of square feet of direct radiation in **each** radiator connected to the existing boiler. Follow these steps:

 Identify the style of the radiator. Figure 6 shows the thin tube tube column type type type

relative sizes of three different radiator styles. All are four tube, eight section radiators but the rating of each is different.

- 2. Measure the height and width of the radiator.
- 3. Count the number of tubes in each section.
- 4. Count the number of sections.
- 5. Determine the square feet of radiation in each section. See Table F (page 10).
- 6. Multiply the square feet of radiation in each section by the number of sections.
- 7. Total the square feet of radiation for all the radiators in the building.

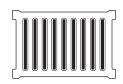
- 8. Convert the total square feet of radiation to BTU/Hr. Each square foot of steam radiation is based on a heat emission of 240 BTU/Hr. with standard 70°F air temperature and 215°F steam temperature in the radiator.
- 9. Size the replacement steam boiler by selecting a unit with a AHRI NET Steam rating equal to or greater than the BTU/Hr. capacity of the radiation.

EXAMPLE:

Figure 7 is a tube type radiator, 20" high by 7" wide. There are 4 tubes per section and 8 sections. Table F shows this size tube type radiator has 2 ¼ square feet of radiation per section. 2 ¼ times

FIGURE 7

8 (the number of sections) equals 18 square feet of direct radiation. 18 times 240 (BTU/Hr.) equals 4,320 BTU/Hr. for this radiator.


TABLE F: SQUARE FEET OF RADIATION PER RADIATOR SECTION

OLD STYLE COLUMN RADIATORS										
NO. OF TUBES OR COLUMNS										
	1	1 2 3 4 5 6								
WIDTH (IN.)	4½	7 3⁄8	9	11½	12 ½	12 ½				
HEIGHT (IN.)										
45	3½	5	6	10	-	-				
38	3	4	5	8	10	-				
32	2½	31/3	41/2	6½	81/2	-				
26	2	22/3	33/4	5	7	7				
23	1 ² / ₃	21/3	31/4	41/2	-	-				
22	1 ² / ₃	21/4	3	4	6	6				
20	11/2	2	23/4	31/2	5	5				
18	11/3	13/4	21/4	3	5	41/3				
17	-	-	-	_	-	4				
16	-	-	_	_	4	33/4				
15	-	11/2	-	-	-	-				
14	-	-	_	_	4	3				
13	-	-	-	-	3	3				

	TUBE TYPE RADIATORS					
		NO. OF	TUBES			
	3	4	4 5 6 7			
WIDTH (IN.)	5	7	8¾	9¾	12 ½	
HEIGHT (IN.)						
38	3½	41/4	5	6	-	
36	3½	41/4	5	6	7	
32	3	3½	41/3	5	6	
26	2⅓	23/4	3½	4	5	
23	2	2½	3	3½	41/2	
22	-	-	-	-	41/2	
20	13/4	21/4	22/3	3	32/3	
18	-	-	-	-	3½	
17	-	-	-	-	3	
16	-	-	-	-	3	
14	_	_	_	_	21/2	

THIN TUBE RADIATORS					
NO. OF TUBES					
	2	3	4	5	6
WIDTH (IN.)	3½	4	4 ³ ⁄ ₄	6	7 %
HEIGHT (IN.)					
38	2½	22/3	-	-	-
32	2	21/3	-	-	32/3
26	-	-	21/3	3	3
25	1½	12/3	2	-	3
23	-	-	-	2	-
22	11/3	11/3	14/5	-	-
20	-	-	14/5	-	21/3
19	1	11/4	12/3	-	21/3
17	-	-	_	2	-

WALL TYPE RADIATORS			
SIZE	SQ. FT. PER RADIATOR		
13½" x 17" x 3"	5		
13½" x 21" x 3"	6		
13½" x 22" x 3"	7		
13½" x 29" x 3"	9		

SECTIONAL WALL TYPE RADIATORS			
HEIGHT (IN.)	SQ. FT. RADIATION PER SECTION		
37	2½		
26½	14/5		
21½	11/2		
15	1		
137/8	3/4		

CAST IRON BASEBOARD		
HEIGHT (IN.)	SQ. FT. RADIATION	
7	2.40	
9	3.35	

APPENDIX OTHER CONSIDERATIONS IN BOILER REPLACEMENT

1. INSTALLATION INSTRUCTIONS

In order for the warranty on a new boiler to be honored, the boiler must be installed in strict accordance with the manufacturer's installation instructions. It is imperative that the heating contractor follows the instructions furnished with the equipment. If questions arise, the heating contractor should contact the distributor.

2. GRAVITY SYSTEMS

Adding a circulator to a gravity system may improve circulation in areas that had poor circulation; however the circulator will not increase the amount of heat available per unit of time. The circulator should be operated with a reverse acting control to turn it ON when system water temperature reaches 110-120°F; OFF at about 90-100°F.

3. STEAM HEATING SYSTEMS

Be sure to check the following:

- (a) total square feet of installed radiation,
- (b) modifications to the system from its original condition.
- (c) physical condition of the system,
- (d) condensate return time (slow?),
- (e) if the low water cutoff is activated frequently
- (f) if there is a pump control to operate the condensate pump,
- (g) the possibility of buried (leaking) piping. Also, check the boiler water for contaminants by boiling two water samples in separate pans-one sample of tap water and one of boiler water. If the boiler water foams over like boiled milk, the water is contaminated and should be treated accordingly.

4. CLEANING STEAM BOILERS

The proper cleaning of new steam boilers is perhaps the most neglected step in steam boiler replacement. It is also a factor many installers overlook when estimating the cost of the job. After installation, a steam boiler should be cleaned and flushed. Chemical additives for cleaning or water treatment must be carefully considered. When in doubt, consult a reputable water treatment firm, or Weil-McLain since most chemicals generally cause more problems than they solve and can void the warranty. Never use petroleum products. In addition, a thorough check of the valves, vents and traps should be made to be sure they are in good working order and are the type and size needed for the application.

5. CLEANING HOT WATER SYSTEMS

Old hot water systems may have mud, sludge or other accumulation which could affect the operation of a new boiler. If there is any evidence of deposits in the old boiler when it is removed, the piping and radiation should be flushed with cold water before the material hardens.

6. EXPANSION TANKS

New water boilers must be installed with a properly sized expansion tank in order to avoid the loss of system water during each warm-up cycle and the replacement of the lost water with fresh makeup water with the pressure reducing valve. The frequent addition of makeup water to a heating system can cause severe damage and must be prevented.

7. THERMOSTATS

Modern controls on a new boiler will usually require a different heat anticipator setting for the thermostat. Many older thermostats either have fixed-heat anticipators-or none at all. For proper boiler operation and owner satisfaction, the thermostat heat anticipator must be set properly. Follow instructions.

OUTDOOR DESIGN TEMPERATURES FOR SELECTED CITIES

ALABAMA	KANSAS	NORTH CAROLINA	WASHINGTON
Anniston	Dodge City5	Asheville 14	Seattle26
Birmingham 21	Topeka4	Charlotte22	Spokane2
Mobile	Wichita	Greensboro 18	Yakima5
Montgomery25	KENTUCKY	Raleigh	WEST VIRGINIA
ALASKA	Louisville10	Wilmington26	Elkins6
Anchorage18	LOUISIANA	NORTH DAKOTA	Parkersburg
Fairbanks47	New Orleans33	Bismarck19	WISCONSIN
Juneau1	Shreveport	Fargo18	Green Bay9
Nome27	MAINE	OHIO	LaCrosse9
ARIZONA	Augusta3	Akron6	Madison7
Flagstaff4	Bangor6	Cincinnati 6	Milwaukee4
Phoenix34	9	Cleveland5	WYOMING
	Caribou		
Tucson32	Portland1	Columbus	Cheyenne
Winslow 10	MARYLAND	Dayton4	Lander11
Yuma	Baltimore 13	Sandusky4	Sheridan8
ARKANSAS	MASSACHUSETTS	Toledo 1	
Fort Smith17	Boston9	OKLAHOMA	CANADA
Little Rock	Nantucket0	Oklahoma City13	ALBERTA
CALIFORNIA	Springfield 0	Tulsa	
Bakersfield	Worcester4	OREGON	Calgary23
Eureka	MICHIGAN	Baker 6	Edmonton25
Fresno	Battle Creek 5	Eugene22	Grand Prairie37
Los Angeles	Detroit6	Medford23	McMurray39
Oakland	Flint		BRITISH COLUMBIA
		Portland	Kamloops10
Sacramento	Grand Rapids5	Salem23	Prince George31
San Diego44	Lansing 1	PENNSYLVANIA	Vancouver19
San Francisco	Sault St. Marie8	Erie9	Victoria
San Jose	MINNESOTA	Harrisburg11	MANITOBA
COLORADO	Duluth16	Philadelphia 14	Churchill39
Denver1	Minneapolis12	Pittsburgh5	
Grand Junction 7	Hibbing20	Scranton 5	Dauphin26
Pueblo0	MISSISSIPPI	RHODE ISLAND	Winnipeg27
CONNECTICUT	Meridian23	Providence	NEW BRUNSWICK
Hartford7	Vicksburg	SOUTH CAROLINA	Edmunston16
New Haven7	MISSOURI	Charleston27	Fredericton11
DELAWARE			Moncton7
	Columbia	Columbia	St. John8
Dover	Kansas City6	Greenville	NEWFOUNDLAND
Wilmington14	St. Louis 6	SOUTH DAKOTA	Gander
DISTRICT OF COLUMBIA	MONTANA	Huron14	Goose Bay25
Washington 14	Billings10	Pierre10	St. Johns7
FLORIDA	Butte	Rapid City7	NOVA SCOTIA
Jacksonville	Helena16	TENNESSEE	
Miami47	Kalispell7	Chattanooga 18	Halifax
Pensacola	Miles City15	Knoxville 19	Yarmouth
Tampa 40	NEBRASKA	Memphis 18	ONTARIO
GEORGIA	Lincoln2	Nashville	Hamilton 1
Atlanta22	North Platte	TEXAS	Kenora28
	Omaha3	Abilene	London
Augusta23	NEVADA		Ottawa13
Macon		Amarillo	Sault Ste Marie15
Savannah27	Las Vegas	Austin	Timmins28
IDAHO	Reno10	Brownsville39	Toronto
Boise	Winnemucca3	Corpus Christi	PRINCE EDWARD ISLAND
Coeur D'Alene1	NEW HAMPSHIRE	Dallas22	Charlottetown4
Lewiston 6	Concord 3	Del Rio	QUEBEC
Pocatello1	Manchester3	El Paso	
ILLINOIS	NEW JERSEY	Ft. Worth	Montreal
Chicago0	Atlantic City 13	Galveston	Quebec
Moline	Newark	Houston	Sept Illes22
Peoria	Trenton	Port Arthur31	Vald'Or27
Springfield2	NEW MEXICO	San Antonio	SASKATCHEWAN
Urbana2	Albuquerque	UTAH	Prince Albert35
INDIANA			Regina29
	Roswell	Salt Lake City8	Saskatoon31
Fort Wayne1	NEW YORK	Vernal0	YUKON
Indianapolis 2	Albany1	VERMONT	Whitehorse43
IOWA	Binghamton 1	Burlington7	
Davenport5	Buffalo6	VIRGINIA	NOTE: There are
Des Moines5	Massena8	Lynchburg16	NOTE: These values are the
Dubuque7	New York 15	Norfolk	971/2% figures recommended in
Mason City11	Rochester 5	Richmond 17	energy conservation standards,
Sioux City7	Syracuse 2	Roanoke	like ASHRAE 90A-1980.
-			

