The Ranco® ETC is a microprocessor based family of electronic temperature controls, designed to provide on/off control for commercial heating, cooling, air conditioning and refrigeration. The ETC is equipped with a liquid crystal display (LCD) that provides a constant readout of the sensed temperature, and a touch keypad that allows the user to easily and accurately select the setpoint temperature, differential and heating/cooling mode of the operation. Models are available that operate on either line voltage (120/208/240V AC) or low voltage (24V AC).

APPLICATIONS
With its wide temperature setpoint range and selectable heating or cooling modes, the ETC can be used for a wide variety of applications including multiple compressor control, two stage heating, ventilation control, automatic changeover, condenser fan cycling, space and return air temperature control, water cooled condensers and control with alarm function.

FEATURES
- Wide setpoint temperature range (-30°F to 220°F) and differential adjustment (1°F to 30°F)
- Simple keypad programming of setpoint temperature, differential and cooling/heating modes
- Two individually programmable stages for heating and/or cooling
- LCD display readout of sensor temperature, control settings, relay status and onboard diagnostics
- LED (Light Emitting Diode) backlight to improve visibility of the display in low light ambient applications.
- IP67 rated (water and dust resistant) thermistor-based probe to remotely monitor temperature
- The sensor probe can be retrofitted in the field by the use of factory installed interconnect
- Remote temperature sensing up to 400 feet
- Two SPDT output relays
- User-selectable Fahrenheit/Celsius scales
- Lockout switch to prevent tampering by unauthorized personnel
- Choice of line voltage and low voltage models available
- Optional 0 to 10 volt analog output available for remote temperature indication
- Anti-short Cycle Compressor Delay for cooling applications

SPECIFICATIONS
<table>
<thead>
<tr>
<th>Input Voltage</th>
<th>120 or 208/240V AC (24V AC optional), 50/60 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Range</td>
<td>-30°F to 220°F</td>
</tr>
<tr>
<td>Differential Range</td>
<td>1°F to 30°F</td>
</tr>
<tr>
<td>Switch Action</td>
<td>SPDT</td>
</tr>
<tr>
<td>Sensor</td>
<td>Thermistor, 1.94 in. long x 0.25 in. diameter with 8 ft. cable, IP67 rated</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>120/208/240V AC: 100 milliamps 24V AC: 2-6V AC</td>
</tr>
</tbody>
</table>

OPERATION
Liquid Crystal Display (LCD)
The LCD display provides a constant readout of the sensor temperature and indicates if either of the two output relays is energized. When the S1 annunciator is constantly illuminated during operation, the Stage 1 relay is energized. Likewise, when the S2 annunciator is constantly illuminated during operation, the Stage 2 relay is energized. The display is also used with the keypad to allow the user to adjust the setpoint temperatures, differentials and heating/cooling modes for each stage.

Backlight
When any mode key is pressed, the backlight is activated and the ETC is in control mode. Press the SET key to begin program mode.

Control Setup
The temperature setpoint refers to the temperature at which the normally open (NO) contacts of the output relay will open. Determine the loads to be controlled and the operating modes required for each stage, cooling or heating.
- When the cooling mode is chosen, the differential is above the setpoint. The relay will de-energize as the temperature falls to the setpoint.
- Anti-short Cycle Compressor Delay for cooling. After a relay de-energizes, the ETC will prevent the relay from turning on until a configurable time has occurred to protect compressor.
- When the heating mode is chosen, the differential is below the setpoint. The relay will de-energize as the temperature rises to the setpoint.

The ETC two stage control can be set up for two stages of heating, two stages of cooling or one stage cooling plus one stage heating. Refer to Figures 1, 2 and 3 for a visual representations of different control setups.
Programming Steps and Display Mode

The ETC two stage can be programmed in seven simple steps using the LCD display and the three keys on the face of the control.

Step 1
To start programming, press the SET key once to access the Fahrenheit/Celsius mode. The display will show the current status, either F for degrees Fahrenheit or C for degrees Celsius. Then press either the up ☞ or down ◄ arrow key to toggle between the F or C designation.

Stage 1

Step 2
Press the SET key again to access the stage 1 setpoint. The LCD will display the current setpoint and the S1 annunciator will be blinking on and off to indicate that the control is in the setpoint mode. Then press either the up ☞ or down ◄ key to increase or the down ◄ key to decrease the setpoint to the desired temperature.

Step 3
Press the SET key again to access the stage 1 differential. The LCD will display the current differential and the DIF 1 annunciator will be blinking on and off to indicate that the control is in the differential mode. Then press either the up ☞ key to increase or the down ◄ key to decrease the differential to the desired setting.

Step 4
Press the SET key again to access the stage 1 cooling or heating mode. The LCD will display the current mode, either C1 for cooling or H1 for heating. Then press either the up ☞ or down ◄ key to toggle between the C1 or H1 designation.

Step 5
Press the SET key again to access the Anti-short Cycle Compressor Delay when in Cooling Mode. Press the up ☞ or down ◄ keys to set the delay from 1 to 20 minutes. Press SET key again to finish the programming.

Stage 2

Step 6
Press the SET key again to access the stage 2 setpoint. The LCD will display the current setpoint and the S2 annunciator will be blinking on and off to indicate that the control is in the setpoint mode. Then press either the up ☞ key to increase or the down ◄ key to decrease the setpoint to the desired temperature.

Step 7
Press the SET key again to access the stage 2 differential. The LCD will display the current differential and the DIF 2 annunciator will be blinking on and off to indicate that the control is in the differential mode. Then press either the up ☞ key to increase or the down ◄ key to decrease the differential to the desired setting.

Step 8
Press the SET key again to access the stage 2 cooling or heating mode. The LCD will display the current mode, either C2 for cooling or H2 for heating. Then press either the up ☞ or down ◄ key to toggle between the C2 or H2 designation. Press the SET key once more and programming is complete.

Step 9
Press the SET key again to access the Anti-short Cycle Compressor Delay when in Cooling Mode. Press the up ☞ or down ◄ keys to set the delay from 1 to 20 minutes. Press SET key again to finish the programming.

Refer to Page 3 for an illustrated guide to programming the ETC.

NOTE:
The ETC will automatically end programming if no keys are depressed for a period of thirty seconds. Any settings that have been input to the control will be accepted at that point.

All control settings are retained in non-volatile memory if power to ETC is interrupted for any reason. Re-programming is not necessary after power outages or disconnects unless different control settings are required.

Lockout Switch
The ETC is provided with a lockout switch to prevent tampering by unauthorized personnel. When placed in the LOCK position, the keypad is disabled and no changes to the settings can be made. When placed in the UNLOCK position, the keypad will function normally.

To access the lockout switch, disconnect the power supply and open the control. The switch is located on the inside cover about 2 inches above the bottom. (see Figure 4). To disable the keypad, slide the switch to the left LOCK position. To enable the keypad, slide the switch to the right UNLOCK position. All ETC controls are shipped with this switch in the UNLOCK position.
INSTALLATION INSTRUCTIONS

WARNING
- Electrical Shock Hazard - Turn off power at the main power source before installing the ETC control. DO NOT restore electrical power to the unit until the ETC control is properly installed and cover assembled.
- Fire Hazard - DO NOT locate the ETC control in an explosive atmosphere as a fire could result due to possible spark generation in the control.
- All ETC Controls are designed as temperature controls and are not used as temperature limit controls. Where failure or malfunction of the ETC control could cause personal injury or property damage, other devices (limit or safety controls) or systems (alarm or supervisory) intended to warn or protect against failure or malfunction of the ETC control must be installed.

TROUBLESHOOTING ERROR MESSAGES

Display Messages
- **E1** Appears when either the up or down key is pressed when not in the programming mode.
 - **To correct:** If the E1 message appears even when no keys are being pressed, replace the control.
- **E2** Appears if the control settings are not properly stored in memory.
 - **To correct:** Check all settings and correct if necessary.
- **EP** Appears when the probe is open, shorted or sensing a temperature that is out of range.
 - **To correct:** Check to see if the sensed temperature is out of range. If not, check for probe damage by comparing it to a known ambient temperature between -30°F and 220°F. Replace the probe if necessary.
- **EE** Appears if the EEPROM data has been corrupted.
 - **To correct:** This condition cannot be field repaired. Replace the control.
- **CL** Appears if calibration mode has been entered.
 - **To correct:** Remove power to the control for at least five seconds. Reapply power. If the CL message still appears, replace the control.

Normal Operating Mode
- **Probe Temperature**: °F
- **Relay 1 ON**: S1
- **Relay 2 ON**: S2
 - *Note Cd alternates with temperature and relay*

INSTRUCTIONS CONCERNANT L’INSTALLATION

AVERTISSEMENT
- Risque de choc électrique - Couper le courant à la source d’alimentation principale avant d’installer le contrôleur ETC. NE PAS rétablir l’alimentation électrique de l’appareil avant que le contrôleur ETC ne soit correctement installé et que le couvercle ne soit assemblé.
- Risque d’incendie - Ne pas placer le contrôleur ETC dans une atmosphère explosive car un incendie pourrait être déclenché par d’éventuelles étincelles survenant dans le contrôleur.
- Toutes les commandes de l’ETC sont conçues pour contrôler la température et ne sont pas utilisées comme témoins des limites de température.
- Si une défaillance du contrôleur ETC peut causer des blessures ou des dommages matériels, d'autres dispositifs (contrôles des limites ou de la sécurité) ou des systèmes (d’alarme ou de surveillance) destinés à prévenir ou à protéger contre une défaillance ou un dysfonctionnement du contrôleur ETC, doivent être installés.
CONTROL MOUNTING
Mount the ETC to a wall or any flat surface using a combination of any two or more of the slotted holes located on the back of the control case. The control's components are not position sensitive, but should be mounted so that they can be easily wired and adjusted. Avoid excessive conditions of moisture, dirt, dust and corrosive atmosphere. The ETC has provisions for 1/2 inch conduit connections. The conduit hub should be secured to the conduit before securing the hub to the plastic housing of the control. When using the conduit entry in the rear of the case, a standard plug should be inserted into the conduit hole in the bottom. Caution should be exercised not to damage the control circuit board or wiring when installing a conduit connector.

ANTI-SHORT CYCLE COMPRESSOR DELAY
When the unit is configured for cooling and there is a call for cooling, the relay will not activate until the Anti-short Cycle Compressor Delay is satisfied. During an Anti-short Cycle Compressor Delay, the temperature will alternate with Cd to indicate the Relay On is delayed. If Relay 1 is in Anti-short Cycle Compressor Delay, the temperature will alternate with aCd or S1 icon. If Relay 2 is in Anti-short Cycle Compressor Delay mode, the temperature will alternate with a Cd or S2 icon.
CONTROL WIRING

General
• All wiring should conform to the National Electric Code and local regulations.
• The total electrical load must not exceed the maximum rating of the control (see Specifications).
• Use copper conductors only.
• Electrical leads should not be taut; allow slack for temperature change and vibration.

Input and Output Wiring
For typical wiring diagrams, refer to Figures 6 and 7. All connections are made to the power (lower) circuit board. When using the 24V AC powered models, the 24V AC input lines must enter through the sidewall of the case. Refer to Figure 5 for location of the entry hole.

Analog Output
ETC models are available with an optional 0 to 10 volt analog output. This signal is a linear representation of the sensor temperature with 0 volts = -30°F and 10 volts = 220°F. See figure 8 for wiring information and Figure 5 for location of the entry hole. The reference for this output is designated by the "-" symbol on the wiring diagram. The output signal is designated by the "+" symbol.

FIELD REPAIRS
Field calibrating or repairs to the ETC control must not be attempted. Sensors and replacement controls are available through Ranco wholesalers.

SENSOR MOUNTING
For space sensing, mount the sensor where it will be unaffected by heat/cool discharge or radiated heat sources. Spot sensing requires the sensor to be in good contact with the surface being sensed. The sensor can be inserted in a bulb well for immersion sensing.
EXTENDING SENSOR

CAUTION: Sensor wiring splices may be made external from the control.
CAUTION: Disconnect power to control before wiring to avoid possible electrical shock or damage to the controller.

Additional cable can be spliced to the sensor cable to increase the length beyond the standard 8 feet. It can be extended up to 400 feet. The cable should be at least 22 AWG or larger to keep additional resistance to a minimum.

All splices and wire lengths added to the sensor cable should be made according to acceptable wiring practices and should conform to the National Electrical Code and local regulations. Use copper conductors only. Shielded cable is not required. The sensor is not polarity sensitive.

Checkout Procedure
1. Before applying power, make sure installation and wiring connections are correct.
2. Apply power to the control and observe one or more cycles of operation.
3. If performance indicates a problem, check sensor resistance to determine if sensor or control is at fault.
4. To check sensor resistance, disconnect sensor and measure the resistance across the leads while measuring temperature at the sensor.

SENSOR REPLACEMENT

Figure 9: Sensor replacement on Display (Upper) Circuit Board.

Sensor Replacement
ETC models are available with Quick Connect Sensor feature that allows for easy sensor replacement due to damage or wear. To access the sensor connector, disconnect the power supply and open the control. Remove single screw located in the center of the Display Upper Circuit Board and carefully remove Display Board Circuit. Remove Sensor Strain Relief to allow sensor to be removed from unit. See Figure 5 for location of sensor strain relief. The sensor connection is made at the P1 Connector on the Display Upper Circuit Board. See figure 9 for connection information.

Replacement Sensor - Order
Uni-Line Number 1309007-044
(OEM Number 1309007-048)

Figure 10

SPECIFICATIONS

The sensor is a negative temperature coefficient (NTC) thermistor sensor. The sensor resistance decreases with temperature increase. It is .25 x 1.94 long with 8 feet #22 AWG cable. The thermistor has a reference resistance of 30,000 ohms at 77°F (25°C).

<table>
<thead>
<tr>
<th>Deg. C.</th>
<th>Deg. F.</th>
<th>RES. Nom.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40</td>
<td>-40</td>
<td>1,010,000</td>
</tr>
<tr>
<td>-30</td>
<td>-22</td>
<td>531,000</td>
</tr>
<tr>
<td>-20</td>
<td>-4</td>
<td>291,200</td>
</tr>
<tr>
<td>-10</td>
<td>14</td>
<td>166,000</td>
</tr>
<tr>
<td>0</td>
<td>32</td>
<td>97,960</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>59,700</td>
</tr>
<tr>
<td>20</td>
<td>68</td>
<td>37,470</td>
</tr>
<tr>
<td>25</td>
<td>77</td>
<td>30,000</td>
</tr>
<tr>
<td>30</td>
<td>86</td>
<td>24,170</td>
</tr>
<tr>
<td>40</td>
<td>104</td>
<td>15,980</td>
</tr>
<tr>
<td>50</td>
<td>122</td>
<td>10,810</td>
</tr>
<tr>
<td>60</td>
<td>140</td>
<td>7,464</td>
</tr>
<tr>
<td>70</td>
<td>158</td>
<td>5,200</td>
</tr>
<tr>
<td>80</td>
<td>176</td>
<td>3,774</td>
</tr>
<tr>
<td>90</td>
<td>194</td>
<td>2,753</td>
</tr>
<tr>
<td>100</td>
<td>212</td>
<td>2,036</td>
</tr>
<tr>
<td>110</td>
<td>230</td>
<td>1,531</td>
</tr>
</tbody>
</table>

Figure 11: Resistance vs Temperature Sensor including 8 foot cable.