Place and Route Platform for Advanced Nodes

Olympus-SoC

Olympus-SoC is a comprehensive netlist-to-GDSII physical design implementation platform targeted for advanced nodes.

Solving Advanced Node Design Challenges

The Olympus-SoC™ Netlist-to-GDSII system comprehensively addresses the performance, capacity, time-to-market, power, and variability challenges encountered at the leading-edge process nodes. Olympus-SoC is a complete physical design implementation tool with best-in-class physical implementation engines including design planning, placement, physical synthesis, clock tree synthesis, routing, power optimization, manufacturability and a native sign-off quality timer with patented virtual timing graph technology.

Olympus-SoC is architected to handle the complex multi-patterning and FinFET requirements at advanced process technologies. It provides the highest capacity in the industry with a very compact and scalable database to handle designs that contain hundreds of millions of instances. The low power suite enables both leakage and dynamic power reduction throughout the flow and power-aware clock tree synthesis.

Olympus-SoC also offers multi-threaded and distributed analysis and optimization throughout the flow to significantly reduce design cycle time. Native integration with Calibre minimizes physical verification ECOs and enables signoff checks during implementation.

Advanced Node Support

Olympus-SoC features a scalable and flexible routing architecture that integrates the global, track, and detailed routing engines best suited to handle

w w w . m e n t o r . c o m / o l y m p u s - s o c

BENEFITS:

- Comprehensive multi patterning and FinFET aware place and route system for advanced technology nodes
- Optimal performance, power and area with true and concurrent optimization throughout the flow
- Flexible architecture to support complex multi-VDD design styles including MTCMOS and DVFS
- Compact and scalable database provides highest capacity in the industry to effectively handle growing design sizes
- Minimizes design planning iterations with data flow graph driven Automatic Macro Placement
- Speed time-to-market with fewer design iterations and a suite of scalable parallelization technologies
- Best area and highest utilization with proprietary area recovery technologies throughout the flow
- Highest performance with patented multi-corner, multi-mode (MCMM) analysis and optimization architecture
- Integrated Calibre signoff to achieve manufacturing closure during physical design implementation
multi-patterning (MP) and FinFET requirements of advanced nodes. The router supports all the complex DRC, DFM, and MP rules for all the leading foundries.

signoff Physical Verification
Olympus-SoC uses an “open router” architecture that allows it to natively invoke of all the signoff Calibre engines during implementation through the Calibre InRoute advanced design and manufacturing closure platform. Invoking Calibre facilities directly within the Olympus-SoC environment provides automated, intelligent prevention of DRC/DFM/MP issues, true signoff analysis, and automatic fixing of DRC/DFM/MP violations during the physical design process. Calibre InRoute ensures that all manufacturability issues are addressed without introducing new ones, and without degrading the performance of the design. The open router architecture also eliminates the need for any serial data transfers, as all the engines use the same hosted data model.

Flexible Design Planning
To tackle the challenges of growing design sizes, such as runtime and tool capacity, Olympus-SoC provides multiple design planning options including flat, hierarchical and pseudo flat floorplanning technologies. Hierarchical floorplanning supports both channel-based and channel-less (abutted) flows and offers unique technologies such as timing- and congestion-aware pin placement and feed-through insertion. The data flow graph driven automatic macro placement for both top and block level (AMP) ensures the best QoR by facilitating design space exploration with multiple parallel recipes, which significantly reduces the number of macro placement iterations. Olympus-SoC offers the highest tool capacity, compact memory footprint, and intuitive, easy to use GUI.

Automatic Macro Placement enables design space exploration with multiple parallel recipe runs.
Dynamic Area Recovery
At advanced nodes, the introduction of multi patterning and the FinFET transistor have a significant impact on design utilization and area due to complex spacing requirements. It is critical to accurately predict intra-cell congestion and recover area throughout the design flow.

Olympus-SoC reduces area with technologies like the unified global router-based congestion modeling, intelligent white space management, smart MP fixing for nested and interdependent cycles, Fin grid-aware placement, Vt- and implant-aware spacing and concurrent SI and MP fixing.

Other area reduction technologies used throughout the flow include proprietary density management, dynamic area recovery, and congestion mitigation though clock tree synthesis (CTS) and post-CTS optimization.

Highest Performance
Leading-edge designs need to be analyzed and optimized for various design contexts and timing variations due to device/interconnect scaling. Using approximations, like constraint merging or adding margins, results in loss of accuracy that impacts design performance, and time-to-market. Designers can avoid unpredictability in sign-off ECO loops, eliminate performance-killing pessimism, and speed the time-to-tapeout by considering all the scenarios concurrently, from floorplanning to GDSII-out.

Olympus-SoC’s patented and tape-out proven multi-corner-multi-mode (MCMM) architecture drives the router and optimization engines to automatically achieve best timing and SI across all modes and corners concurrently. Additional technologies such as 3D opportunistic shielding of clock nets, CTS-based timing optimization and advanced trap placement help push the performance envelope.

Clock Tree Synthesis
Variations in resistance can cause large deviations in clock skew across different process corners. Olympus-SoC addresses this problem by using advanced MCMM clock tree synthesis technology to optimize skews across all process corners concurrently. This results in robust, low-power clock trees that are resilient to process variations and show significant improvement in the number of buffers, total area, timing and power. Advanced OCV-driven CTS helps significantly improves timing, both setup and hold, and speed up design convergence time.

Productivity and Big Data
Olympus-SoC has an ultra-compact database that provides the industry’s highest capacity and smallest memory footprint, allowing it to handle 100 million + instance designs. Patented physical synthesis technology gives highly-optimized results for multi-million gate flat designs in a single overnight run.

Fully-multithreaded and distributed analysis and optimization engines and a fully-parallelized timing and optimization engine reduce run times by efficiently using the latest platforms, providing a significant speedup. The combination of these features allows designers to achieve design closure on large complex designs in a fraction of the time required for existing design flows.

The unified Global Router based congestion estimate (top left) accurately predicts actual violations seen after post-route optimization (bottom right).
Low-Power Support
Olympus-SoC provides seamless concurrent optimization for both power and timing, covering all operating modes and process corners through all stages of the flow. Olympus-SoC supports the Unified Power Format (UPF) throughout the netlist-to-GDSII flow, including the ability to describe design intent through power state definition tables.

It completely automates multi-supply-voltage design flows with automatic power grid routing for multiple voltage supplies, support for dynamic voltage and frequency scaling (DVFS) to handle varying supply voltages and clock frequencies, and auto placement and routing of special cells such as level shifters, isolation cells, and MTCMOS switches.

Olympus-SoC also provides concurrent multi-Vt optimization, power gating, retention flop synthesis, support for gas station methodology, and power-aware buffering and sizing. Power-aware CTS minimizes power in the clock network with smart clock gate placement, slew shaping, clock gate cloning/de-cloning, register clumping and concurrent MCMM optimization, which ensures a balanced clock tree with optimal power.

Premier Chip Assembly Flow
Olympus-SoC allows designers to read in all the partitions of a large, complex design without any timing or physical abstractions, and to optimize the top level with a seamless view of the whole chip. This improves chip closure by enabling accurate top-level interface logic optimization with fewer iterations and engineering resources.

The key strengths of Olympus-SoC for top-level optimization in flat or hierarchical flows include ILMs with physical information (PILMs) for more accurate timing, Si, and DRC analysis and optimization, hierarchical timing policy that reduces memory requirements and runtime, accurate physical SDCs, timing and congestion-driven pin assignment, port sliding and layer promotion for improved timing. Olympus-SoC also offers synchronized optimization to automatically update any change in one instance of a replicated block to all other instantiations of the same block at the top level.

Key Features

- **Design Planning**
 - Design planning including flat, hierarchical, and pseudo flat floorplanning
 - Support for both channel-less and channel-based flows
 - Timing and congestion aware pin placement and feed-through insertion
 - Data flow graph driven automatic macro placement
 - Timing-driven placement engine for optimal QoR
 - Powerful and efficient GUI

- **Advanced Nodes**
 - Comprehensive multi patterning and FinFET support
 - Native coloring, verification and conflict resolution
 - DRC, double/multi patterning, and DFM rule support for all leading foundries
 - Intelligent conflict double/multi patterning resolution engine
 - Pattern matching and recommended rules support
 - Variation-aware timing and Si driven routing

- **Low Power**
 - UPF 2.0 (IEEE 1801) based multi voltage flow
 - Power state table (PST) based advanced buffering
 - Support for level shifters, isolation cells, and retention registers
 - Distributed and ring style multi-threshold (MTCMOS) switch cell insertion
 - Hierarchical UPF support
Power aware CTS featuring cloning, restructuring, and slew shaping
Concurrent power and timing optimization for all corner/mode/power scenarios

High Performance
True and concurrent MCMM optimization during all design steps
Best-in-class MCMM-based CTS
On-chip variation (OCV) driven CTS and opportunistic 3D clock shielding
Resistance-aware concurrent cell and wire optimization
Extremely fast and accurate, on-the-fly parasitic extraction
Sign-off quality timing analysis and optimization

Area Reduction
Unified global router based congestion modeling
Channel-less floorplanning flow
Intelligent white space management
Precision DP fixing for minimal perturbation
Dynamic area recovery throughout the flow
Proprietary density management

TAT Reduction
Distributed and multithreaded analysis and optimization
Signoff physical verification during implementation with Calibre InRoute
Minimal ECO iterations through MCMM optimization
Signoff quality built-in timing and extraction engines
Industry’s first multi-threaded timing engine

Highest Capacity
Compact database and flexible architecture
Ability to handle 100+ million instance designs
Flexible abstraction capabilities including SI-ILM, HTP, and black boxes
Unique synchronized optimization at the top-level design
Advanced memory reduction technologies

For the latest product information, call us or visit: www.mentor.com/