The next easiest situation is when the 3-digit number can be factored into a 2-digit number \times a 1-digit number. For instance, with 47 \times 126, 47 is prime, but 126 is 63 \times 2; we can multiply 47 \times 63, then double that result. For the most difficult problems, we can break the 3-digit number into two parts and apply the distributive law. For a problem like 47 \times 283, we multiply 47 \times 280 and add 47 \times 3.

In our last lecture, we'll see what you can achieve if you become seriously dedicated to calculation, and we'll consider broader benefits from what we've learned that are available to everyone. ■

Suggested Reading

Benjamin and Shermer, Secrets of Mental Math: The Mathemagician's Guide to Lightning Calculation and Amazing Math Tricks, chapter 8.

Doerfler, Dead Reckoning: Calculating Without Instruments.

Lane, Mind Games: Amazing Mental Arithmetic Tricks Made Easy.

Problems

Calculate the following 3-digit squares.

- **1.** 107²
- **2.** 402²
- **3.** 213²
- **4.** 996²
- **5.** 396²
- **6.** 411²
- **7.** 155²

8.	509 ²
9.	320 ²
10.	625 ²
11.	235 ²
12.	753 ²
13.	181 ²
14.	477 ²
15.	682 ²
16.	236 ²
17.	431 ²

Compute these 4-digit squares.

18. 3016²
 19. 1235²
 20. 1845²
 21. 2598²

22. 4764²

Raise these 2-digit numbers to the 4th power by squaring the number twice.

23. 20⁴

24. 12⁴

25. 32⁴
 26. 55⁴
 27. 71⁴
 28. 87⁴
 29. 98⁴

Compute the following 3-digit-by-2-digit multiplication problems.

30. 864 × 20 **31.** 772 × 60 **32.** 140 × 23 **33.** 450 × 56 **34.** 860 × 84 **35.** 345 × 12 **36.** 456 × 18 **37.** 599 × 74 **38.** 753 × 56 **39.** 624 × 38 **40.** 349 × 97 **41.** 477 × 71 **42.** 181 × 86

Lecture 11: Advanced Multiplication

43. 224 × 68
44. 241 × 13
45. 223 × 53
46. 682 × 82

Estimate the following 2-digit cubes.

47. 27³
48. 51³
49. 72³
50. 99³
51. 66³

BONUS MATERIAL: We can also compute the exact value of a cube with only a little more effort. For example, to cube 42, we use z = 40 and d = 2. The approximate cube is $40 \times 40 \times 46 = 73,600$. To get the exact cube, we can use the following algebra: $(z + d)^3 = z(z(z + 3d) + 3d^2) + d^3$. First, we do $z(z + 3d) + 3d^2 = 40 \times 46 + 12 = 1852$. Then, we multiply this number by z again: $1852 \times 40 = 74,080$. Finally, we add $d^3 = 2^3 = 8$ to get 74,088.

Notice that when cubing a 2-digit number, in our first addition step, the value of $3d^2$ can be one of only five numbers: 3, 12, 27, 48, or 75. Specifically, if the number ends in 1 (so d = 1) or ends in 9 (so d = -1), then $3d^2 = 3$. Similarly, if the last digit is 2 or 8, we add 12; if it's 3 or 7, we add 27; if it's 4 or 6, we add 48; if it's 5, we add 75. Then, in the last step, we will always add or subtract one of five numbers, based on d^3 . Here's the pattern:

If last digit is... 1 2 3 4 5 6 7 8 9 Adjust by... +1 +8 +27 +64 +125 -64 -27 -8 -1 For example, what is the cube of 96? Here, z = 100 and d = -4. The approximate cube would be $100 \times 100 \times 88 = 880,000$. For the exact cube, we first do $100 \times 88 + 48 = 8848$. Then we multiply by 100 and subtract 64: $8848 \times 100 - 64 = 884,800 - 64 = 884,736$.

Using these examples as a guide, compute the exact values of the following cubes.

52. 13³
 53. 19³
 54. 25³
 55. 59³
 56. 72³

Solutions for this lecture begin on page 137.