It’s all in the genes

The power of the Oracle database and Exadata in cancer research

adapted from the DOE Joint Genome Institute website
www.jgi.doe.gov
used with permission

@rjlkuipers
rkuipers@vxcompany.com
About VX Company

- What we do
 - IT-services, Oracle & Java, Managed Services
- Since
 - 1988
- Where
 - Baarn
- Number of Professionals
 - 300
- Turnover 2012
 - € 38 mln
- Certification
 - ISO 9001:2000
About me

- Business Manager Data and BI Solutions
- Datawarehouse Architect
- Business Intelligence specialist
- Master degree in Biochemistry
 - molecular biology
 - cancer genetics
Agenda

- Basic genetics
 - analyses
- Technology behind this
- What does it look like
- The next step: combining genomic data with patient data
- When both worlds meet
Set the context

BASIC GENETICS
Chromosomes
Genes

50 million base pairs

- Short stature homeo box, Y-linked
- Short stature
- Leri-Weill dyschondrosteosis
- Langer mesomelic dysplasia
- Interleukin-3 receptor, Y chromosomal
- Sex-determining region Y (testis-determining)
- Gonadal dysgenesis, XY type
- Protocadherin 11, Y-linked
- Azoospermia factors
- Male infertility due to spermatogenic failure
- Growth control, Y-chromosome influenced
- Chromodomain proteins
- Retinitis pigmentosa, Y-linked
DETERMINING THE GENETIC SEQUENCE

basic genetics
Genetic sequence

- Blood / cancer tissue
- DNA isolation
- DNA amplification
- DNA Sequencing (40x - 80x)
Genetic sequence

- approx. 5% of DNA is gene
- approx. 95% of DNA is referred to as ‘junk-DNA’

- 99% of entire DNA sequence is stable
- Genetic variations are normal
DNA (Next Generation) Sequencing
From blood-sample to DNA sequence
DNA (Next Generation) Sequencing

From blood-sample to DNA sequence

@rjlkippers
rkuipers@vxcompany.com
DNA (Next Generation) Sequencing
From blood-sample to DNA sequence

- 3 billion basepairs
DNA (Next Generation) Sequencing
From blood-sample to DNA sequence

- 3 billion basepairs
- 2 TB per sample
DNA (Next Generation) Sequencing
From blood-sample to DNA sequence

- 3 billion basepairs
- 2 TB per sample
- unique: whole genomes
Abnormal genetic variations
Abnormal genetic variations
Abnormal genetic variations

- mutations
 - inserts
 - deletes
 - substitutions

- non-functioning cells

- uncontrolled cell-growth
 - p53 protein, coded by p53 gene
 - key characteristic of cancer

- variations outside genes
Searching for the unknown
Searching for the unknown

- genetic variations $\xrightarrow{}$ normal
- genetic variations $\xleftarrow{}$ cancer
Searching for the unknown

- genetic variations \leftrightarrow normal
- genetic variations \leftrightarrow cancer
- better diagnoses require better analyses.
Searching for the unknown

- genetic variations ↔ normal
- genetic variations ↔ cancer

- better diagnoses require better analyses.
- Upfront (predictive) diagnoses require a lot of data and processing power.
- result: less-invasive treatment, better patient-life.
Searching for the unknown

- genetic variations ↔ normal
- genetic variations ↔ cancer

- better diagnoses require better analyses.
- Upfront (predictive) diagnoses require a lot of data and processing power.
- result: less-invasive treatment, better patient-life.

- What did we not know (yet)
 - and can be learned from
- Ultimate goal: centralized DNA library for statistical purposes

@rjkuipers
rkuiers@vxcompany.com
THE TECHNOLOGY BEHIND THIS
DNA (Next Generation) Sequencing

- 3 billion basepairs
- 2 TB per sample
- Whole genomes
Handling large volumes
Handling large volumes

- Oracle Database
 - Partitioning
 - Optimized data model
Handling large volumes

- **Oracle Database**
 - Partitioning
 - Optimized data model

- **Oracle Exadata Database Machine**
 - Optimized to run Oracle Database
 - Specific performance features
 - Smart Scans
 - Exadata Hybrid Columnar Compression
Handling large volumes

- Oracle Database
 - Partitioning
 - Optimized data model

- Oracle Exadata Database Machine
 - Optimized to run Oracle Database
 - Specific performance features
 - Smart Scans
 - Exadata Hybrid Columnar Compression

- Performance increase: 700x
Handling large volumes - database benefits

- **Datamodel V1**
 - Sample-oriented (partitioned)
 - Each base-position stored (compared to reference genome)
 - leads to 95% no-calls
 - 206 samples --> 800 GB
 - max 2,500 samples on Exadata
 - Indexes are (still) needed: Index size 5x larger than sample-size
Handling large volumes - database benefits

- Datamodel V2
 - Sample-oriented (partitioned)
 - Positions are stored as regions (buckets)
 - 1000 positions per region
 - Buckets are indexed
 - EHCC Compression
 - Reduce redundant data
 - Store allele 1 and 2 as 1 row when values are equal
 - Storage 99GB (246 samples)
 - Up to 20,000 samples

- Indexes require less space than in Datamodel V1
Exadata benefits

- Flash
- Parallel processing
- Smart Scans
- Exadata Hybrid Columnar Compression

Let’s have a look...
[oracle@dm01db01 vxone1] $ rsqplus cg/cg

SQL*Plus: Release 11.2.0.2.0 Production on Sat Apr 30 14:33:11 2011
Copyright (c) 1982, 2010, Oracle. All rights reserved.

Connected to:
Oracle Database 11g Enterprise Edition Release 11.2.0.2.0 - 64bit Production
With the Partitioning, Real Application Clusters, Automatic Storage Management, OLAP,
Data Mining and Real Application Testing options

SQL>
Executed tests

<table>
<thead>
<tr>
<th>Nr</th>
<th>Exadata features</th>
<th>Parallel</th>
<th>Disk type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>Serial</td>
<td>HDD</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>Serial</td>
<td>FDD</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>64</td>
<td>HDD</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>64</td>
<td>FDD</td>
</tr>
<tr>
<td>5</td>
<td>SS</td>
<td>Serial</td>
<td>HDD</td>
</tr>
<tr>
<td>6</td>
<td>SS</td>
<td>Serial</td>
<td>FDD</td>
</tr>
<tr>
<td>7</td>
<td>SS</td>
<td>64</td>
<td>HDD</td>
</tr>
<tr>
<td>8</td>
<td>SS</td>
<td>64</td>
<td>FDD</td>
</tr>
<tr>
<td>9</td>
<td>SS + EHCC</td>
<td>64</td>
<td>FDD</td>
</tr>
</tbody>
</table>
Executed tests

<table>
<thead>
<tr>
<th>Nr</th>
<th>Exadata features</th>
<th>Parallel</th>
<th>Disk type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>Serial</td>
<td>HDD</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>Serial</td>
<td>FDD</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>64</td>
<td>HDD</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>64</td>
<td>FDD</td>
</tr>
<tr>
<td>5</td>
<td>SS</td>
<td>Serial</td>
<td>HDD</td>
</tr>
<tr>
<td>6</td>
<td>SS</td>
<td>Serial</td>
<td>FDD</td>
</tr>
<tr>
<td>7</td>
<td>SS</td>
<td>64</td>
<td>HDD</td>
</tr>
<tr>
<td>8</td>
<td>SS</td>
<td>64</td>
<td>FDD</td>
</tr>
<tr>
<td>9</td>
<td>SS + EHCC</td>
<td>64</td>
<td>FDD</td>
</tr>
</tbody>
</table>
Data Mining and Real Application Testing options

SQL> set timing on
SQL> alter session set cell_offload_processing=false;
Session altered.
Elapsed: 00:00:00.00
SQL>
Executed tests

<table>
<thead>
<tr>
<th>Nr</th>
<th>Exadata features</th>
<th>Parallel</th>
<th>Disk type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>Serial</td>
<td>HDD</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>Serial</td>
<td>FDD</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>64</td>
<td>HDD</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>64</td>
<td>FDD</td>
</tr>
<tr>
<td>5</td>
<td>SS</td>
<td>Serial</td>
<td>HDD</td>
</tr>
<tr>
<td>6</td>
<td>SS</td>
<td>Serial</td>
<td>FDD</td>
</tr>
<tr>
<td>7</td>
<td>SS</td>
<td>64</td>
<td>HDD</td>
</tr>
<tr>
<td>8</td>
<td>SS</td>
<td>64</td>
<td>FDD</td>
</tr>
<tr>
<td>9</td>
<td>SS + EHCC</td>
<td>64</td>
<td>FDD</td>
</tr>
</tbody>
</table>
Data Mining and Real Application Testing options

SQL> set timing on
SQL> alter session set cell_offload_processing=false;
Session altered.
Elapsed: 00:00:00.00
SQL>
Executed tests

<table>
<thead>
<tr>
<th>Nr</th>
<th>Exadata features</th>
<th>Parallel</th>
<th>Disk type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>Serial</td>
<td>HDD</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>Serial</td>
<td>FDD</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>64</td>
<td>HDD</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>64</td>
<td>FDD</td>
</tr>
<tr>
<td>5</td>
<td>SS</td>
<td>Serial</td>
<td>HDD</td>
</tr>
<tr>
<td>6</td>
<td>SS</td>
<td>Serial</td>
<td>FDD</td>
</tr>
<tr>
<td>7</td>
<td>SS</td>
<td>64</td>
<td>HDD</td>
</tr>
<tr>
<td>8</td>
<td>SS</td>
<td>64</td>
<td>FDD</td>
</tr>
<tr>
<td>9</td>
<td>SS + EHCC</td>
<td>64</td>
<td>FDD</td>
</tr>
</tbody>
</table>
Data Mining and Real Application Testing options

SQL> set timing on
SQL> alter session set cell_offload_processing=false;
Session altered.
Elapsed: 00:00:00.00
SQL>
Executed tests

<table>
<thead>
<tr>
<th>Nr</th>
<th>Exadata features</th>
<th>Parallel</th>
<th>Disk type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>Serial</td>
<td>HDD</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>Serial</td>
<td>FDD</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>64</td>
<td>HDD</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>64</td>
<td>FDD</td>
</tr>
<tr>
<td>5</td>
<td>SS</td>
<td>Serial</td>
<td>HDD</td>
</tr>
<tr>
<td>6</td>
<td>SS</td>
<td>Serial</td>
<td>FDD</td>
</tr>
<tr>
<td>7</td>
<td>SS</td>
<td>64</td>
<td>HDD</td>
</tr>
<tr>
<td>8</td>
<td>SS</td>
<td>64</td>
<td>FDD</td>
</tr>
<tr>
<td>9</td>
<td>SS + EHCC</td>
<td>64</td>
<td>FDD</td>
</tr>
</tbody>
</table>
Data Mining and Real Application Testing options

SQL> set timing on
SQL> alter session set cell_offload_processing=false;

Session altered.

Elapsed: 00:00:00.00
SQL>
Query performance

<table>
<thead>
<tr>
<th>Nr</th>
<th>Exadata features</th>
<th>Parallel</th>
<th>Disk type</th>
<th>11.2.0.1</th>
<th>11.2.0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>Serial</td>
<td>HDD</td>
<td>695</td>
<td>153</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>Serial</td>
<td>FDD</td>
<td>403</td>
<td>91</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>64</td>
<td>HDD</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>64</td>
<td>FDD</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>SS</td>
<td>Serial</td>
<td>HDD</td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>6</td>
<td>SS</td>
<td>Serial</td>
<td>FDD</td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>7</td>
<td>SS</td>
<td>64</td>
<td>HDD</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>SS</td>
<td>64</td>
<td>FDD</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>SS + EHCC</td>
<td>64</td>
<td>FDD</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
WHAT DOES IT LOOK LIKE?
@rjkuipers
rkuipers@vxcompany.com

Saturday, 18 May 13
Why is this important?
Why is this important?

- **Speed**
 - Faster results
 - ‘No’ is found earlier
Why is this important?

- **Speed**
 - Faster results
 - ‘No’ is found earlier

- **Volume (Centralized DNA Library)**
 - Better statistical basis
 - Less-invasive treatments for patients
 - Personalized healthcare
Even more...

- Add clinical data to genomic data.
 - Patient history
 - Drug treatment history
 - Demographics
Oracle Translational Research Center (TRC)

- Oracle Healthcare Data Warehouse Foundation (OHDWF)
- Oracle Health Sciences Omics Data Bank (ODB)

EHAD Data Integration & Validation
- Interface tables
- ETLs from Interface tables to HDM
- Rules and metadata for data validation

SAS

TRC "App Exchange"
- Oracle Apps
 - Cohort Explorer
- Partner Apps
 - Apps
- Open Source apps
 - Command Line

Research Systems
- Source ETLs provided by SI partners or HSGDU consulting

@rjkuipers
rkuipers@vxcompany.com
Advanced visualizations
Summary

- Care is primary.
 - Technology is supporting.
- Oracle offers platforms to provide better care
 - Database
 - Exadata
 - TRC
- Clinical and Genomic data are complimentary.
- Not everything is in the genes...
Q&A