V-Series
20 TO 80 HP AIR COOLED CONDENSING UNITS
The outdoor housing of the unit is designed for the refrigeration technician. Removing only a few screws allows complete removal of the compressor housing top panel, side panel and corner post. This gives the mechanic quick, unrestricted access to the compressor, all controls and components located within the compressor compartment. Or, just a single panel can be removed, depending on the requirements of the service call.

The large control panel has abundant space for the controls you choose. The components are intelligently arranged and laid out in a logical fashion which is easy to understand and work with. Each control and wire is clearly marked with a name or number as shown on the wiring diagram which is permanently affixed to the control panel door.

* Optional items, see page 3
AIR COOLED CONDENSING UNITS 20 TO 80 HP

Model Number Nomenclature

V Style Condensing Unit
- **C**: Std. piping, fan cycle control
- **L**: Std. piping, flooded control
- **S**: RUSS-SAVER package
- **D**: Copeland Discus
- **X**: Special

Compressor Type
- **B**: Bitzer*
- **D**: Copeland Discus

Refrigerant Type
- **44**: R404A
- **4A**: R407A
- **57**: R507
- **47**: R407C

Temp. Range
- **L**: Low Temp.
- **M**: Medium Temp.

Features at a Glance

Electrical Components
- Crankcase heater
- Oil failure control
- High - Low pressure control - manual (high)/automatic (low) reset
- Compressor contactor
- Control circuit fuses - standard 230/1
- Power terminal block

Condenser
- Copper tubes with Aluminum fins
- Subcooling circuit
- Fan motor - overload protection
- Fan blade - individually balanced
- Fan guard - heavy duty resilient wire basket

Piping Components
- Suction line vibration eliminator
- Replaceable core liquid line filter / drier
- Suction line filter (replaceable core some models)
- Discharge line vibration eliminator
- High Pressure control hoses

Receiver
- Inlet and outlet isolation valves
- Pressure relief valve

Housing
- Mill galvanized steel with removable access panels
- Control panel with hinged door
- Heavy galvanized steel base rails

Low Ambient Controls
- Pressure fan cycling control
- Flooded condenser
- RUSS-SAVER — All ambient energy saver

Testing
- UL / cUL listed — all models
- Leak detection, dielectric and run tests
- Dry nitrogen holding charge

Nominal Compressor HP

<table>
<thead>
<tr>
<th>SINGLE PIPING</th>
<th>PARALLEL PIPING</th>
<th>DUAL PIPING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal HP</td>
<td>20 HP</td>
<td>24 (2) 12 HP</td>
</tr>
<tr>
<td>25 HP</td>
<td>24 (2) 15 HP</td>
<td>23 (2) 10 HP</td>
</tr>
<tr>
<td>27 HP</td>
<td>24 (2) 20 HP</td>
<td>26 (2) 12 HP</td>
</tr>
<tr>
<td>30 HP</td>
<td>24 (2) 22 HP</td>
<td>32 (2) 15 HP</td>
</tr>
<tr>
<td>35 HP</td>
<td>24 (2) 25 HP</td>
<td>42 (2) 20 HP</td>
</tr>
<tr>
<td>40 HP</td>
<td>24 (2) 27 HP</td>
<td>46 (2) 22 HP</td>
</tr>
<tr>
<td>50 HP</td>
<td>24 (2) 30 HP</td>
<td>52 (2) 25 HP</td>
</tr>
<tr>
<td>60 HP</td>
<td>24 (2) 35 HP</td>
<td>56 (2) 27 HP</td>
</tr>
<tr>
<td>80 HP</td>
<td>24 (2) 40 HP</td>
<td>72 (2) 30 HP</td>
</tr>
</tbody>
</table>

Options:

- 4-year extended compressor protection plan
- Hot Gas defrost components
- Air defrost time clock
- Liquid line solenoid valve
- Compressor unloading
- Oil separator
- Copper or coated condenser fins
- Crankcase pressure regulator
- Electric defrost components
- Electronic oil safety control
- Evaporator sub circuit fusing
- Stainless steel superhoses
- Fused or non fused disconnect
- Suction accumulator
- Heated and insulated receiver

* Contact factory for details.
RUSS-SAVER

The initial cost of quality refrigeration equipment is a substantial investment. But the costs of installation and operation are also formidable. Rising to the challenge, Russell engineers have designed the RUSS-SAVER system to meet the highest standards of performance and reliability while effectively addressing the problem of these profit draining costs.

REDUCED INSTALLATION COSTS

The installation of a refrigeration system using RUSS-SAVER requires a smaller refrigerant charge than equipment which utilize other types of low ambient controls. As the more expensive zero ozone depleting, refrigerants become the refrigerants of choice, the reduced charge requirements provided by RUSS-SAVER affords substantial and immediate cost saving benefits.

REDUCED OPERATING COSTS

The most expensive part of an operating refrigeration system is the cost of energy to operate the compressor. Day and night, year after year, the cost of electricity to operate your equipment is unrelenting. These dollars are pulled right from your bottom line.

A typical installation provides for equipment which is designed to furnish adequate cooling on the hottest of days. The RUSS-SAVER system is designed to meet this need but also be flexible enough to take advantage of reduced ambient conditions during off-peak times. As the outside air temperature decreases, head pressures are allowed to drop. This action results in increased efficiency, requiring less energy and saving substantial amounts of your money!

RUSS-SAVER even saves money during hot weather.

The subcooling loop provided in the condenser of the RUSS-SAVER condensing unit increases the system efficiency 1/2% for each degree of sub cooling provided, thereby making the compressor’s job easier. RUSS-SAVER’S efficiency saves you money during summer operation and even more during the winter months.
RUSS-SAVER

ENERGY SAVINGS CALCULATIONS

To estimate your average monthly savings:

1) Select a RUSS-SAVER system that meets your refrigeration requirements.
2) Determine the Average Annual Outdoor Air Temperature from the table below.
3) Using the Projected Monthly Savings graph, locate the system nominal horsepower at the bottom of the graph (the nominal system horsepower can be derived from the model number nomenclature).
4) Go straight up to the appropriate Average Annual Outdoor Air Temperature curve, and then go horizontally to the left to determine your Estimated Monthly Average Savings.
5) To calculate your Estimated Monthly Saving for an energy cost other than $0.10 KWH, divide the Estimated Monthly Savings by 0.10 and multiply by your local electric utility rate.
6) To determine your Estimated Yearly Savings, multiply the Estimated Monthly Savings number by 12.

AVERAGE ANNUAL OUTDOOR AIR TEMPERATURE

<table>
<thead>
<tr>
<th>STATE & STATION</th>
<th>ANNUAL AVG. °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL Mobile</td>
<td>70</td>
<td>IA Des Moines</td>
<td>50</td>
<td>NM Albuquerque</td>
<td>60</td>
<td>VT Burlington</td>
<td>45</td>
</tr>
<tr>
<td>AK Juneau</td>
<td>40</td>
<td>KS Wichita</td>
<td>55</td>
<td>NY Buffalo</td>
<td>45</td>
<td>VA Richmond</td>
<td>60</td>
</tr>
<tr>
<td>AZ Phoenix</td>
<td>70</td>
<td>KY Louisville</td>
<td>55</td>
<td>New York</td>
<td>55</td>
<td>WA Seattle</td>
<td>50</td>
</tr>
<tr>
<td>AR Little Rock</td>
<td>60</td>
<td>LA New Orleans</td>
<td>70</td>
<td>NC Charlotte</td>
<td>60</td>
<td>WV Charleston</td>
<td>55</td>
</tr>
<tr>
<td>CA Los Angeles</td>
<td>60</td>
<td>ME Portland</td>
<td>45</td>
<td>ND Bismarck</td>
<td>45</td>
<td>WI Milwaukee</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>MD Baltimore</td>
<td>55</td>
<td>OH Cleveland</td>
<td>50</td>
<td>WY Cheyenne</td>
<td>45</td>
</tr>
<tr>
<td>CO Denver</td>
<td>50</td>
<td>MA Boston</td>
<td>50</td>
<td>Columbus</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT Hartford</td>
<td>50</td>
<td>MI Detroit</td>
<td>50</td>
<td>OK Oklahoma City</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE Wilmington</td>
<td>55</td>
<td>MN Sault St. Marie</td>
<td>40</td>
<td>OR Portland</td>
<td>55</td>
<td>ALB Calgary</td>
<td>40</td>
</tr>
<tr>
<td>D.C. Washington</td>
<td>55</td>
<td>Minneapolis</td>
<td>45</td>
<td>PA Philadelphia</td>
<td>50</td>
<td>B.C. Vancouver</td>
<td>50</td>
</tr>
<tr>
<td>FL Jacksonville</td>
<td>70</td>
<td>MS Jackson</td>
<td>65</td>
<td>RI Providence</td>
<td>50</td>
<td>MAN Winnipeg</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>MO St. Louis</td>
<td>55</td>
<td>SC Columbia</td>
<td>65</td>
<td>N.B. St. John</td>
<td>45</td>
</tr>
<tr>
<td>GA Atlanta</td>
<td>60</td>
<td>MT Great Falls</td>
<td>45</td>
<td>SD Sioux Falls</td>
<td>45</td>
<td>N.F. St. John’s</td>
<td>40</td>
</tr>
<tr>
<td>HI Honolulu</td>
<td>75</td>
<td>NE Omaha</td>
<td>50</td>
<td>TN Nashville</td>
<td>60</td>
<td>N.S. Halifax</td>
<td>45</td>
</tr>
<tr>
<td>ID Boise</td>
<td>50</td>
<td>NV Reno</td>
<td>50</td>
<td>TX Dallas</td>
<td>65</td>
<td>ONT Toronto</td>
<td>45</td>
</tr>
<tr>
<td>IL Chicago</td>
<td>50</td>
<td>NH Concord</td>
<td>45</td>
<td>El Paso</td>
<td>65</td>
<td>QUE Montreal</td>
<td>45</td>
</tr>
<tr>
<td>IN Indianapolis</td>
<td>50</td>
<td>NJ Atlantic City</td>
<td>55</td>
<td>UT Salt Lake City</td>
<td>50</td>
<td>YUK Dawson</td>
<td>25</td>
</tr>
</tbody>
</table>

RUSS-SAVER PROJECTED MONTHLY SAVINGS @ $0.10/KWH

AVERAGE ANNUAL TEMPERATURE

AVERAGE MONTHLY SAVINGS ($) vs SYSTEM HORSEPOWER
V-SERIES

Capacity Data (BTUH) - Medium Temperature R404A Single Compressor

SUCTION TEMPERATURE

<table>
<thead>
<tr>
<th>MODEL NUMBER</th>
<th>VC/ VL/ VS</th>
<th>+45°F</th>
<th>+35°F</th>
<th>+25°F</th>
<th>+20°F</th>
<th>+10°F</th>
<th>0°F</th>
<th>-10°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>90°F AMBIENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20M44</td>
<td>265.8</td>
<td>230.2</td>
<td>193.0</td>
<td>176.0</td>
<td>142.8</td>
<td>114.3</td>
<td>92.9</td>
<td></td>
</tr>
<tr>
<td>25M44</td>
<td>292.1</td>
<td>251.8</td>
<td>212.1</td>
<td>192.9</td>
<td>157.0</td>
<td>125.9</td>
<td>101.7</td>
<td></td>
</tr>
<tr>
<td>30M44</td>
<td>347.6</td>
<td>295.0</td>
<td>246.6</td>
<td>224.1</td>
<td>182.6</td>
<td>146.2</td>
<td>114.8</td>
<td></td>
</tr>
<tr>
<td>35M44</td>
<td>443.7</td>
<td>374.2</td>
<td>311.7</td>
<td>283.1</td>
<td>231.2</td>
<td>186.0</td>
<td>147.2</td>
<td></td>
</tr>
<tr>
<td>40M44</td>
<td>551.9</td>
<td>471.7</td>
<td>397.1</td>
<td>362.3</td>
<td>297.7</td>
<td>240.9</td>
<td>192.2</td>
<td></td>
</tr>
<tr>
<td>95°F AMBIENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20M44</td>
<td>253.0</td>
<td>218.9</td>
<td>183.7</td>
<td>167.1</td>
<td>135.7</td>
<td>108.6</td>
<td>88.1</td>
<td></td>
</tr>
<tr>
<td>25M44</td>
<td>277.6</td>
<td>239.3</td>
<td>201.6</td>
<td>183.3</td>
<td>149.2</td>
<td>119.6</td>
<td>96.6</td>
<td></td>
</tr>
<tr>
<td>30M44</td>
<td>330.1</td>
<td>280.1</td>
<td>234.1</td>
<td>212.8</td>
<td>173.4</td>
<td>138.8</td>
<td>109.0</td>
<td></td>
</tr>
<tr>
<td>35M44</td>
<td>422.1</td>
<td>356.0</td>
<td>296.5</td>
<td>269.3</td>
<td>219.9</td>
<td>176.9</td>
<td>140.0</td>
<td></td>
</tr>
<tr>
<td>40M44</td>
<td>524.1</td>
<td>447.9</td>
<td>377.1</td>
<td>344.0</td>
<td>282.7</td>
<td>228.7</td>
<td>182.5</td>
<td></td>
</tr>
<tr>
<td>100°F AMBIENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20M44</td>
<td>241.3</td>
<td>207.8</td>
<td>175.1</td>
<td>159.1</td>
<td>129.2</td>
<td>103.7</td>
<td>83.9</td>
<td></td>
</tr>
<tr>
<td>25M44</td>
<td>264.3</td>
<td>227.9</td>
<td>192.0</td>
<td>174.6</td>
<td>142.1</td>
<td>113.9</td>
<td>92.0</td>
<td></td>
</tr>
<tr>
<td>30M44</td>
<td>313.6</td>
<td>266.1</td>
<td>222.4</td>
<td>202.2</td>
<td>164.8</td>
<td>131.9</td>
<td>103.6</td>
<td></td>
</tr>
<tr>
<td>35M44</td>
<td>402.3</td>
<td>339.3</td>
<td>282.6</td>
<td>256.7</td>
<td>209.6</td>
<td>168.6</td>
<td>133.5</td>
<td></td>
</tr>
<tr>
<td>40M44</td>
<td>499.0</td>
<td>426.5</td>
<td>359.0</td>
<td>327.5</td>
<td>269.2</td>
<td>217.8</td>
<td>173.8</td>
<td></td>
</tr>
<tr>
<td>110°F AMBIENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20M44</td>
<td>205.1</td>
<td>176.1</td>
<td>148.6</td>
<td>135.1</td>
<td>109.8</td>
<td>88.5</td>
<td>71.3</td>
<td></td>
</tr>
<tr>
<td>25M44</td>
<td>224.9</td>
<td>193.9</td>
<td>163.3</td>
<td>148.5</td>
<td>120.9</td>
<td>96.9</td>
<td>78.3</td>
<td></td>
</tr>
<tr>
<td>30M44</td>
<td>269.4</td>
<td>228.6</td>
<td>191.1</td>
<td>173.7</td>
<td>141.5</td>
<td>113.3</td>
<td>89.0</td>
<td></td>
</tr>
<tr>
<td>35M44</td>
<td>346.2</td>
<td>292.0</td>
<td>243.2</td>
<td>220.9</td>
<td>180.4</td>
<td>145.1</td>
<td>114.8</td>
<td></td>
</tr>
<tr>
<td>40M44</td>
<td>427.2</td>
<td>365.1</td>
<td>307.4</td>
<td>280.4</td>
<td>230.5</td>
<td>186.4</td>
<td>148.8</td>
<td></td>
</tr>
</tbody>
</table>

Medium temperature R404A models can be used with R22.
Multiply capacity of models by 1.02 to obtain approximate R22 capacity.
Medium temperature R404A models can be used with R407C.
Multiply capacity of models by .83 to obtain approximate R407C capacity.
See page 3 for complete nomenclature.
Capacity Data (BTUH) - Medium Temperature R404A Parallel / Dual Systems

SUCTION TEMPERATURE

<table>
<thead>
<tr>
<th>MODEL NUMBER</th>
<th>90°F AMBIENT</th>
<th>95°F AMBIENT</th>
<th>100°F AMBIENT</th>
<th>110°F AMBIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC / VL / VS</td>
<td>+45°F</td>
<td>+35°F</td>
<td>+25°F</td>
<td>+20°F</td>
</tr>
<tr>
<td>18M44*</td>
<td>256.5</td>
<td>218.4</td>
<td>183.3</td>
<td>167.0</td>
</tr>
<tr>
<td>23M44*</td>
<td>309.4</td>
<td>262.6</td>
<td>220.3</td>
<td>200.9</td>
</tr>
<tr>
<td>24M44 / 26M44*</td>
<td>363.4</td>
<td>311.2</td>
<td>263.1</td>
<td>240.6</td>
</tr>
<tr>
<td>31M44 / 32M44*</td>
<td>421.0</td>
<td>357.8</td>
<td>300.2</td>
<td>273.7</td>
</tr>
<tr>
<td>41M44 / 42M44*</td>
<td>527.8</td>
<td>459.0</td>
<td>385.5</td>
<td>351.4</td>
</tr>
<tr>
<td>51M44 / 52M44*</td>
<td>584.1</td>
<td>503.5</td>
<td>424.2</td>
<td>385.7</td>
</tr>
<tr>
<td>61M44 / 62M44*</td>
<td>695.2</td>
<td>589.9</td>
<td>493.1</td>
<td>448.2</td>
</tr>
<tr>
<td>71M44 / 72M44*</td>
<td>888.1</td>
<td>749.1</td>
<td>623.9</td>
<td>566.7</td>
</tr>
<tr>
<td>81M44 / 82M44*</td>
<td>1,101.7</td>
<td>941.5</td>
<td>792.7</td>
<td>723.1</td>
</tr>
</tbody>
</table>

*Dual compressor unit capacity is shown as combined total capacity of both systems.

Medium temperature R404A models can be used with R22 and R407C. See footnotes on page 6 for calculation.

See page 3 for complete nomenclature.
Capacity Data (BTUH) - Medium Temperature R407A Single Compressor

SUCTION TEMPERATURE

<table>
<thead>
<tr>
<th>MODEL NUMBER</th>
<th>VC/ VL/ VS</th>
<th>AMBIENT</th>
<th>90°F</th>
<th>95°F</th>
<th>100°F</th>
<th>110°F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>+45°F</td>
<td>+35°F</td>
<td>+25°F</td>
<td>+20°F</td>
</tr>
<tr>
<td>20M4A</td>
<td></td>
<td></td>
<td>247.9</td>
<td>208.9</td>
<td>170.3</td>
<td>153.1</td>
</tr>
<tr>
<td>25M4A</td>
<td></td>
<td></td>
<td>272.4</td>
<td>228.5</td>
<td>187.2</td>
<td>167.8</td>
</tr>
<tr>
<td>30M4A</td>
<td></td>
<td></td>
<td>324.1</td>
<td>267.7</td>
<td>217.6</td>
<td>195.0</td>
</tr>
<tr>
<td>35M4A</td>
<td></td>
<td></td>
<td>413.8</td>
<td>339.6</td>
<td>275.1</td>
<td>246.3</td>
</tr>
<tr>
<td>40M4A</td>
<td></td>
<td></td>
<td>514.6</td>
<td>428.1</td>
<td>350.4</td>
<td>315.2</td>
</tr>
<tr>
<td>20M4A</td>
<td></td>
<td></td>
<td>235.9</td>
<td>198.7</td>
<td>162.1</td>
<td>145.4</td>
</tr>
<tr>
<td>25M4A</td>
<td></td>
<td></td>
<td>258.9</td>
<td>217.2</td>
<td>177.9</td>
<td>159.5</td>
</tr>
<tr>
<td>30M4A</td>
<td></td>
<td></td>
<td>307.8</td>
<td>254.2</td>
<td>206.6</td>
<td>185.1</td>
</tr>
<tr>
<td>35M4A</td>
<td></td>
<td></td>
<td>393.6</td>
<td>323.1</td>
<td>261.7</td>
<td>234.3</td>
</tr>
<tr>
<td>40M4A</td>
<td></td>
<td></td>
<td>488.7</td>
<td>406.5</td>
<td>332.8</td>
<td>299.3</td>
</tr>
<tr>
<td>20M4A</td>
<td></td>
<td></td>
<td>225.0</td>
<td>188.6</td>
<td>154.5</td>
<td>138.4</td>
</tr>
<tr>
<td>25M4A</td>
<td></td>
<td></td>
<td>246.5</td>
<td>206.8</td>
<td>169.4</td>
<td>151.9</td>
</tr>
<tr>
<td>30M4A</td>
<td></td>
<td></td>
<td>292.4</td>
<td>241.5</td>
<td>196.3</td>
<td>175.9</td>
</tr>
<tr>
<td>35M4A</td>
<td></td>
<td></td>
<td>375.1</td>
<td>307.9</td>
<td>249.4</td>
<td>223.3</td>
</tr>
<tr>
<td>40M4A</td>
<td></td>
<td></td>
<td>465.3</td>
<td>387.0</td>
<td>316.8</td>
<td>284.9</td>
</tr>
<tr>
<td>20M4A</td>
<td></td>
<td></td>
<td>191.3</td>
<td>159.8</td>
<td>131.1</td>
<td>117.5</td>
</tr>
<tr>
<td>25M4A</td>
<td></td>
<td></td>
<td>209.7</td>
<td>176.0</td>
<td>144.1</td>
<td>129.2</td>
</tr>
<tr>
<td>30M4A</td>
<td></td>
<td></td>
<td>251.2</td>
<td>207.5</td>
<td>168.6</td>
<td>151.1</td>
</tr>
<tr>
<td>35M4A</td>
<td></td>
<td></td>
<td>322.8</td>
<td>265.0</td>
<td>214.6</td>
<td>192.2</td>
</tr>
<tr>
<td>40M4A</td>
<td></td>
<td></td>
<td>398.4</td>
<td>331.3</td>
<td>271.3</td>
<td>243.9</td>
</tr>
</tbody>
</table>
AIR COOLED CONDENSING UNITS 20 TO 80 HP

Capacity Data (BTUH) - Medium Temperature R407A Parallel / Dual Systems

Suction Temperature

<table>
<thead>
<tr>
<th>MODEL NUMBER VC/ VL/ VS</th>
<th>+45°F</th>
<th>+35°F</th>
<th>+25°F</th>
<th>+20°F</th>
<th>+10°F</th>
<th>5°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>90°F AMBIENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18M4A*</td>
<td>239.2</td>
<td>198.2</td>
<td>161.8</td>
<td>145.3</td>
<td>115.8</td>
<td>105.1</td>
</tr>
<tr>
<td>23M4A*</td>
<td>288.5</td>
<td>238.3</td>
<td>194.4</td>
<td>174.8</td>
<td>139.6</td>
<td>124.6</td>
</tr>
<tr>
<td>24M4A / 26M4A*</td>
<td>338.9</td>
<td>282.4</td>
<td>232.2</td>
<td>209.3</td>
<td>168.2</td>
<td>150.5</td>
</tr>
<tr>
<td>31M4A / 32M4A*</td>
<td>392.6</td>
<td>324.7</td>
<td>264.9</td>
<td>238.1</td>
<td>190.3</td>
<td>169.9</td>
</tr>
<tr>
<td>41M4A / 42M4A*</td>
<td>492.2</td>
<td>416.5</td>
<td>340.2</td>
<td>305.7</td>
<td>241.5</td>
<td>214.6</td>
</tr>
<tr>
<td>51M4A / 52M4A*</td>
<td>544.7</td>
<td>456.9</td>
<td>374.4</td>
<td>335.6</td>
<td>265.3</td>
<td>235.9</td>
</tr>
<tr>
<td>61M4A / 62M4A*</td>
<td>648.3</td>
<td>535.3</td>
<td>435.2</td>
<td>389.9</td>
<td>308.6</td>
<td>274.2</td>
</tr>
<tr>
<td>71M4A / 72M4A*</td>
<td>828.2</td>
<td>679.8</td>
<td>550.6</td>
<td>493.0</td>
<td>391.0</td>
<td>348.1</td>
</tr>
<tr>
<td>81M4A / 82M4A*</td>
<td>1027.3</td>
<td>854.4</td>
<td>699.6</td>
<td>629.1</td>
<td>502.2</td>
<td>448.2</td>
</tr>
<tr>
<td>90°F AMBIENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18M4A*</td>
<td>226.9</td>
<td>188.0</td>
<td>153.5</td>
<td>137.8</td>
<td>109.8</td>
<td>99.7</td>
</tr>
<tr>
<td>23M4A*</td>
<td>274.2</td>
<td>226.5</td>
<td>184.8</td>
<td>166.1</td>
<td>132.7</td>
<td>118.4</td>
</tr>
<tr>
<td>24M4A / 26M4A*</td>
<td>321.8</td>
<td>268.2</td>
<td>220.4</td>
<td>198.7</td>
<td>159.7</td>
<td>142.9</td>
</tr>
<tr>
<td>31M4A / 32M4A*</td>
<td>373.5</td>
<td>308.9</td>
<td>252.0</td>
<td>226.5</td>
<td>181.0</td>
<td>161.6</td>
</tr>
<tr>
<td>41M4A / 42M4A*</td>
<td>469.0</td>
<td>396.5</td>
<td>323.2</td>
<td>290.3</td>
<td>229.1</td>
<td>203.6</td>
</tr>
<tr>
<td>51M4A / 52M4A*</td>
<td>517.7</td>
<td>434.3</td>
<td>355.8</td>
<td>318.9</td>
<td>252.1</td>
<td>224.1</td>
</tr>
<tr>
<td>61M4A / 62M4A*</td>
<td>615.6</td>
<td>508.4</td>
<td>413.2</td>
<td>370.3</td>
<td>293.0</td>
<td>260.3</td>
</tr>
<tr>
<td>71M4A / 72M4A*</td>
<td>787.2</td>
<td>646.1</td>
<td>523.3</td>
<td>468.6</td>
<td>371.6</td>
<td>330.9</td>
</tr>
<tr>
<td>81M4A / 82M4A*</td>
<td>977.4</td>
<td>812.9</td>
<td>665.6</td>
<td>598.6</td>
<td>477.8</td>
<td>426.4</td>
</tr>
<tr>
<td>100°F AMBIENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18M4A*</td>
<td>216.5</td>
<td>179.4</td>
<td>146.5</td>
<td>131.5</td>
<td>104.8</td>
<td>95.1</td>
</tr>
<tr>
<td>23M4A*</td>
<td>261.1</td>
<td>215.7</td>
<td>176.0</td>
<td>158.2</td>
<td>126.3</td>
<td>112.8</td>
</tr>
<tr>
<td>24M4A / 26M4A*</td>
<td>305.8</td>
<td>254.8</td>
<td>209.5</td>
<td>188.8</td>
<td>151.8</td>
<td>135.8</td>
</tr>
<tr>
<td>31M4A / 32M4A*</td>
<td>355.9</td>
<td>294.5</td>
<td>240.2</td>
<td>215.9</td>
<td>172.5</td>
<td>154.1</td>
</tr>
<tr>
<td>41M4A / 42M4A*</td>
<td>448.3</td>
<td>377.2</td>
<td>307.7</td>
<td>276.3</td>
<td>217.9</td>
<td>193.8</td>
</tr>
<tr>
<td>51M4A / 52M4A*</td>
<td>493.5</td>
<td>414.0</td>
<td>339.1</td>
<td>304.0</td>
<td>240.3</td>
<td>213.6</td>
</tr>
<tr>
<td>61M4A / 62M4A*</td>
<td>587.4</td>
<td>485.1</td>
<td>394.2</td>
<td>353.3</td>
<td>279.6</td>
<td>248.4</td>
</tr>
<tr>
<td>71M4A / 72M4A*</td>
<td>750.3</td>
<td>615.8</td>
<td>498.8</td>
<td>446.6</td>
<td>354.2</td>
<td>315.4</td>
</tr>
<tr>
<td>81M4A / 82M4A*</td>
<td>930.5</td>
<td>774.0</td>
<td>633.6</td>
<td>569.9</td>
<td>454.9</td>
<td>406.0</td>
</tr>
<tr>
<td>110°F AMBIENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18M4A*</td>
<td>184.9</td>
<td>153.3</td>
<td>125.1</td>
<td>112.3</td>
<td>89.5</td>
<td>81.2</td>
</tr>
<tr>
<td>23M4A*</td>
<td>222.2</td>
<td>183.5</td>
<td>149.8</td>
<td>134.6</td>
<td>107.5</td>
<td>95.9</td>
</tr>
<tr>
<td>24M4A / 26M4A*</td>
<td>262.7</td>
<td>218.9</td>
<td>179.9</td>
<td>162.2</td>
<td>130.4</td>
<td>116.7</td>
</tr>
<tr>
<td>31M4A / 32M4A*</td>
<td>306.3</td>
<td>253.4</td>
<td>206.7</td>
<td>185.8</td>
<td>148.5</td>
<td>132.6</td>
</tr>
<tr>
<td>41M4A / 42M4A*</td>
<td>386.4</td>
<td>323.8</td>
<td>264.9</td>
<td>236.9</td>
<td>186.2</td>
<td>165.9</td>
</tr>
<tr>
<td>51M4A / 52M4A*</td>
<td>424.1</td>
<td>355.7</td>
<td>291.5</td>
<td>261.3</td>
<td>206.5</td>
<td>183.6</td>
</tr>
<tr>
<td>61M4A / 62M4A*</td>
<td>506.1</td>
<td>417.9</td>
<td>339.7</td>
<td>304.4</td>
<td>240.9</td>
<td>214.0</td>
</tr>
<tr>
<td>71M4A / 72M4A*</td>
<td>641.7</td>
<td>526.6</td>
<td>426.5</td>
<td>381.9</td>
<td>302.9</td>
<td>269.7</td>
</tr>
<tr>
<td>81M4A / 82M4A*</td>
<td>791.8</td>
<td>658.5</td>
<td>539.2</td>
<td>484.9</td>
<td>387.0</td>
<td>345.4</td>
</tr>
</tbody>
</table>

*Dual compressor unit capacity is shown as combined total capacity of both systems.
Capacity Data (BTUH) - Low Temperature R404A

SUCTION TEMPERATURE

<table>
<thead>
<tr>
<th>MODEL NUMBER</th>
<th>90°F AMBIENT</th>
<th>95°F AMBIENT</th>
<th>100°F AMBIENT</th>
<th>110°F AMBIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC / VL / VS</td>
<td>-5°F</td>
<td>-10°F</td>
<td>-15°F</td>
<td>-20°F</td>
</tr>
<tr>
<td>27L44</td>
<td>173.7</td>
<td>143.0</td>
<td>128.8</td>
<td>114.7</td>
</tr>
<tr>
<td>30L44</td>
<td>200.9</td>
<td>165.0</td>
<td>148.4</td>
<td>131.7</td>
</tr>
<tr>
<td>44L44 / 46L44*</td>
<td>274.1</td>
<td>226.9</td>
<td>205.3</td>
<td>183.7</td>
</tr>
<tr>
<td>54L44 / 56L44*</td>
<td>346.5</td>
<td>285.1</td>
<td>256.9</td>
<td>228.7</td>
</tr>
<tr>
<td>61L44 / 62L44*</td>
<td>402.1</td>
<td>330.3</td>
<td>297.0</td>
<td>263.5</td>
</tr>
<tr>
<td>27L44</td>
<td>164.8</td>
<td>135.6</td>
<td>122.2</td>
<td>108.8</td>
</tr>
<tr>
<td>30L44</td>
<td>190.9</td>
<td>156.8</td>
<td>141.0</td>
<td>125.1</td>
</tr>
<tr>
<td>44L44 / 46L44*</td>
<td>260.3</td>
<td>215.4</td>
<td>194.9</td>
<td>174.4</td>
</tr>
<tr>
<td>54L44 / 56L44*</td>
<td>329.6</td>
<td>271.2</td>
<td>244.4</td>
<td>217.6</td>
</tr>
<tr>
<td>61L44 / 62L44*</td>
<td>381.8</td>
<td>313.6</td>
<td>282.0</td>
<td>250.2</td>
</tr>
<tr>
<td>27L44</td>
<td>157.3</td>
<td>129.4</td>
<td>116.6</td>
<td>103.8</td>
</tr>
<tr>
<td>30L44</td>
<td>181.8</td>
<td>149.3</td>
<td>134.3</td>
<td>119.1</td>
</tr>
<tr>
<td>44L44 / 46L44*</td>
<td>247.3</td>
<td>204.7</td>
<td>185.2</td>
<td>165.7</td>
</tr>
<tr>
<td>54L44 / 56L44*</td>
<td>314.2</td>
<td>258.5</td>
<td>233.0</td>
<td>207.4</td>
</tr>
<tr>
<td>61L44 / 62L44*</td>
<td>363.5</td>
<td>298.6</td>
<td>268.5</td>
<td>238.2</td>
</tr>
<tr>
<td>27L44</td>
<td>134.4</td>
<td>110.6</td>
<td>99.6</td>
<td>88.7</td>
</tr>
<tr>
<td>30L44</td>
<td>154.7</td>
<td>127.1</td>
<td>114.3</td>
<td>101.4</td>
</tr>
<tr>
<td>44L44 / 46L44*</td>
<td>212.5</td>
<td>175.8</td>
<td>159.1</td>
<td>142.4</td>
</tr>
<tr>
<td>54L44 / 56L44*</td>
<td>270.3</td>
<td>222.4</td>
<td>200.5</td>
<td>178.5</td>
</tr>
<tr>
<td>61L44 / 62L44*</td>
<td>311.2</td>
<td>255.6</td>
<td>229.9</td>
<td>204.0</td>
</tr>
</tbody>
</table>

*Dual compressor unit capacity is shown as combined total capacity of both systems.
Capacity Data (BTUH) - Low Temperature R407A

SUCTION TEMPERATURE

<table>
<thead>
<tr>
<th>MODEL NUMBER</th>
<th>VC / VL / VS</th>
<th>-5°F</th>
<th>-10°F</th>
<th>-15°F</th>
<th>-20°F</th>
<th>-25°F</th>
<th>-30°F</th>
<th>-40°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>90°F AMBIENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27L4A</td>
<td>131.6</td>
<td>103.7</td>
<td>89.2</td>
<td>75.7</td>
<td>64.1</td>
<td>53.2</td>
<td>35.5</td>
<td></td>
</tr>
<tr>
<td>30L4A</td>
<td>152.2</td>
<td>119.6</td>
<td>102.8</td>
<td>86.9</td>
<td>73.4</td>
<td>60.9</td>
<td>40.9</td>
<td></td>
</tr>
<tr>
<td>44L4A / 46L4A*</td>
<td>207.6</td>
<td>164.5</td>
<td>142.2</td>
<td>121.2</td>
<td>103.5</td>
<td>86.9</td>
<td>60.3</td>
<td></td>
</tr>
<tr>
<td>54L4A / 56L4A*</td>
<td>262.5</td>
<td>206.7</td>
<td>177.9</td>
<td>150.9</td>
<td>127.7</td>
<td>106.1</td>
<td>70.6</td>
<td></td>
</tr>
<tr>
<td>61L4A / 62L4A*</td>
<td>304.6</td>
<td>239.5</td>
<td>205.7</td>
<td>173.9</td>
<td>147.0</td>
<td>121.9</td>
<td>81.7</td>
<td></td>
</tr>
<tr>
<td>95°F AMBIENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27L4A</td>
<td>124.8</td>
<td>98.3</td>
<td>84.6</td>
<td>71.8</td>
<td>60.7</td>
<td>50.5</td>
<td>33.6</td>
<td></td>
</tr>
<tr>
<td>30L4A</td>
<td>144.6</td>
<td>113.7</td>
<td>97.6</td>
<td>82.6</td>
<td>69.8</td>
<td>57.8</td>
<td>38.8</td>
<td></td>
</tr>
<tr>
<td>44L4A / 46L4A*</td>
<td>197.2</td>
<td>156.2</td>
<td>135.0</td>
<td>115.1</td>
<td>98.3</td>
<td>82.5</td>
<td>57.2</td>
<td></td>
</tr>
<tr>
<td>54L4A / 56L4A*</td>
<td>249.7</td>
<td>196.6</td>
<td>169.2</td>
<td>143.6</td>
<td>121.5</td>
<td>100.9</td>
<td>67.2</td>
<td></td>
</tr>
<tr>
<td>61L4A / 62L4A*</td>
<td>289.2</td>
<td>227.4</td>
<td>195.3</td>
<td>165.1</td>
<td>139.6</td>
<td>115.7</td>
<td>77.6</td>
<td></td>
</tr>
<tr>
<td>100°F AMBIENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27L4A</td>
<td>119.2</td>
<td>93.8</td>
<td>80.7</td>
<td>68.5</td>
<td>58.0</td>
<td>48.1</td>
<td>23.5</td>
<td></td>
</tr>
<tr>
<td>30L4A</td>
<td>137.7</td>
<td>108.2</td>
<td>93.0</td>
<td>78.6</td>
<td>66.5</td>
<td>55.1</td>
<td>28.5</td>
<td></td>
</tr>
<tr>
<td>44L4A / 46L4A*</td>
<td>187.3</td>
<td>148.4</td>
<td>128.3</td>
<td>109.4</td>
<td>93.4</td>
<td>78.4</td>
<td>39.5</td>
<td></td>
</tr>
<tr>
<td>54L4A / 56L4A*</td>
<td>238.0</td>
<td>187.4</td>
<td>161.4</td>
<td>136.9</td>
<td>115.8</td>
<td>96.2</td>
<td>47.0</td>
<td></td>
</tr>
<tr>
<td>61L4A / 62L4A*</td>
<td>275.4</td>
<td>216.5</td>
<td>185.9</td>
<td>157.2</td>
<td>132.9</td>
<td>110.1</td>
<td>57.0</td>
<td></td>
</tr>
<tr>
<td>110°F AMBIENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27L4A</td>
<td>101.8</td>
<td>80.2</td>
<td>69.0</td>
<td>58.5</td>
<td>49.5</td>
<td>41.2</td>
<td>27.4</td>
<td></td>
</tr>
<tr>
<td>30L4A</td>
<td>117.2</td>
<td>92.1</td>
<td>79.2</td>
<td>66.9</td>
<td>56.5</td>
<td>46.9</td>
<td>31.4</td>
<td></td>
</tr>
<tr>
<td>44L4A / 46L4A*</td>
<td>161.0</td>
<td>127.5</td>
<td>110.2</td>
<td>94.0</td>
<td>80.2</td>
<td>67.4</td>
<td>46.7</td>
<td></td>
</tr>
<tr>
<td>54L4A / 56L4A*</td>
<td>204.8</td>
<td>161.2</td>
<td>138.8</td>
<td>117.8</td>
<td>99.6</td>
<td>82.8</td>
<td>55.1</td>
<td></td>
</tr>
<tr>
<td>61L4A / 62L4A*</td>
<td>235.7</td>
<td>185.3</td>
<td>159.2</td>
<td>134.6</td>
<td>113.8</td>
<td>94.3</td>
<td>63.3</td>
<td></td>
</tr>
</tbody>
</table>

Dual compressor unit capacity is shown as combined total capacity of both systems.
Electrical Specifications - Single and Parallel Compressor Models

<table>
<thead>
<tr>
<th>MODEL NUMBER VC/ VL/ VS</th>
<th>COMP MODEL</th>
<th>230V/3/60 Hz</th>
<th>TOTAL UNIT AMPS †</th>
<th>MCA †</th>
<th>460V/3/60 Hz</th>
<th>TOTAL UNIT AMPS †</th>
<th>MCA †</th>
<th>575V/3/60 Hz</th>
<th>TOTAL UNIT AMPS †</th>
<th>MCA †</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>COMP. FLA</td>
<td></td>
<td></td>
<td></td>
<td>COMP. FLA</td>
<td></td>
<td></td>
<td>COMP. FLA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RLA</td>
<td>LRA</td>
<td></td>
<td></td>
<td>RLA</td>
<td>LRA</td>
<td></td>
<td>RLA</td>
<td>LRA</td>
<td></td>
</tr>
<tr>
<td>MEDIUM TEMPERATURE</td>
<td></td>
</tr>
<tr>
<td>20M4**</td>
<td>4DB-R20ME</td>
<td>64.7</td>
<td>374.0</td>
<td>12.8</td>
<td>78.5</td>
<td>95</td>
<td>32.4</td>
<td>187.0</td>
<td>6.4</td>
<td>39.8</td>
</tr>
<tr>
<td></td>
<td>25M4**</td>
<td>73.7</td>
<td>428.0</td>
<td>12.8</td>
<td>87.5</td>
<td>106</td>
<td>36.9</td>
<td>214.0</td>
<td>6.4</td>
<td>44.3</td>
</tr>
<tr>
<td>30M4**</td>
<td>4DJ-R28ME</td>
<td>94.6</td>
<td>470.0</td>
<td>12.8</td>
<td>108.4</td>
<td>133</td>
<td>47.3</td>
<td>235.0</td>
<td>6.4</td>
<td>54.7</td>
</tr>
<tr>
<td></td>
<td>35M4**</td>
<td>112.3</td>
<td>565.0</td>
<td>19.2</td>
<td>132.5</td>
<td>161</td>
<td>56.2</td>
<td>283.0</td>
<td>9.6</td>
<td>66.8</td>
</tr>
<tr>
<td>40M4**</td>
<td>6DJ-R40ME</td>
<td>128.2</td>
<td>594.0</td>
<td>19.2</td>
<td>148.4</td>
<td>181</td>
<td>64.1</td>
<td>297.0</td>
<td>9.6</td>
<td>74.7</td>
</tr>
<tr>
<td>24M4**</td>
<td>(2) 3DF-R15ME</td>
<td>86.4</td>
<td>550.0</td>
<td>12.8</td>
<td>100.2</td>
<td>111</td>
<td>42.4</td>
<td>276.0</td>
<td>6.4</td>
<td>49.8</td>
</tr>
<tr>
<td></td>
<td>(2) 3DS-R17ME</td>
<td>107.0</td>
<td>550.0</td>
<td>19.2</td>
<td>127.2</td>
<td>141</td>
<td>52.0</td>
<td>276.0</td>
<td>9.6</td>
<td>62.6</td>
</tr>
<tr>
<td>41M4**</td>
<td>(2) 4DB-R20ME</td>
<td>129.4</td>
<td>748.0</td>
<td>19.2</td>
<td>149.6</td>
<td>166</td>
<td>64.8</td>
<td>374.0</td>
<td>9.6</td>
<td>75.4</td>
</tr>
<tr>
<td></td>
<td>(2) 4DR-R22ME</td>
<td>147.4</td>
<td>856.0</td>
<td>25.6</td>
<td>174.0</td>
<td>193</td>
<td>73.8</td>
<td>428.0</td>
<td>12.8</td>
<td>87.6</td>
</tr>
<tr>
<td>61M4**</td>
<td>(2) 4DJ-R28ME</td>
<td>189.2</td>
<td>940.0</td>
<td>25.6</td>
<td>215.8</td>
<td>240</td>
<td>94.6</td>
<td>470.0</td>
<td>12.8</td>
<td>108.4</td>
</tr>
<tr>
<td></td>
<td>(2) 6DH-R35ME</td>
<td>224.6</td>
<td>1,130.0</td>
<td>38.4</td>
<td>264.0</td>
<td>293</td>
<td>112.4</td>
<td>566.0</td>
<td>19.2</td>
<td>132.6</td>
</tr>
<tr>
<td>81M4**</td>
<td>(2) 6DJ-R40ME</td>
<td>256.4</td>
<td>1,188.0</td>
<td>38.4</td>
<td>295.8</td>
<td>328</td>
<td>128.2</td>
<td>594.0</td>
<td>19.2</td>
<td>148.4</td>
</tr>
<tr>
<td>LOW TEMPERATURE</td>
<td></td>
</tr>
<tr>
<td>27L4**</td>
<td>6DF-F93KE</td>
<td>72.4</td>
<td>450.0</td>
<td>12.8</td>
<td>86.2</td>
<td>105</td>
<td>36.2</td>
<td>225.0</td>
<td>6.4</td>
<td>43.6</td>
</tr>
<tr>
<td></td>
<td>30L4**</td>
<td>85.9</td>
<td>470.0</td>
<td>12.8</td>
<td>99.7</td>
<td>122</td>
<td>42.9</td>
<td>235.0</td>
<td>6.4</td>
<td>50.3</td>
</tr>
<tr>
<td>44L4**</td>
<td>(2) 4DJ-F76KE</td>
<td>115.4</td>
<td>748.0</td>
<td>19.2</td>
<td>135.6</td>
<td>151</td>
<td>57.6</td>
<td>374.0</td>
<td>9.6</td>
<td>68.2</td>
</tr>
<tr>
<td></td>
<td>54L4**</td>
<td>144.8</td>
<td>900.0</td>
<td>19.2</td>
<td>165.0</td>
<td>184</td>
<td>72.4</td>
<td>450.0</td>
<td>9.6</td>
<td>83.0</td>
</tr>
<tr>
<td>61L4**</td>
<td>(2) 6DJ-F11ME</td>
<td>171.8</td>
<td>940.0</td>
<td>19.2</td>
<td>192.0</td>
<td>214</td>
<td>85.8</td>
<td>470.0</td>
<td>9.6</td>
<td>96.4</td>
</tr>
</tbody>
</table>

COND FLA = Condenser motors full load amps.

* Each asterisk represents a variable character based upon refrigerant and voltage ordered. See page 3 for nomenclature.
† Minimum Circuit Ampacity — Total for the condensing unit and does not include evaporator electrical loads.
AIR COOLED CONDENSING UNITS 20 TO 80 HP

Physical Data - Single and Parallel Compressor Models

<table>
<thead>
<tr>
<th>MODEL NUMBER</th>
<th>COMP. MODEL</th>
<th>CFH</th>
<th>QTY. COND. FANS</th>
<th>APPROXIMATE DIMENSIONS (in)</th>
<th>REC. CAP @ 90%</th>
<th>connection</th>
<th>APPROX. WEIGHT LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>W</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>MEDIUM TEMPERATURE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20M4**</td>
<td>4DB-R20ME</td>
<td>2,380</td>
<td>2</td>
<td>150-3/4</td>
<td>45-3/4</td>
<td>41-1/2</td>
<td>A</td>
</tr>
<tr>
<td>25M4**</td>
<td>4DH-R22ME</td>
<td>3,020</td>
<td>2</td>
<td>150-3/4</td>
<td>45-3/4</td>
<td>41-1/2</td>
<td>A</td>
</tr>
<tr>
<td>30M4**</td>
<td>4DJ-R28ME</td>
<td>3,603</td>
<td>2</td>
<td>150-3/4</td>
<td>45-3/4</td>
<td>41-1/2</td>
<td>A</td>
</tr>
<tr>
<td>35M4**</td>
<td>6DH-R35ME</td>
<td>4,530</td>
<td>3</td>
<td>198-3/4</td>
<td>45-3/4</td>
<td>41-1/2</td>
<td>A+</td>
</tr>
<tr>
<td>40M4**</td>
<td>6DJ-R40ME</td>
<td>5,404</td>
<td>3</td>
<td>198-3/4</td>
<td>45-3/4</td>
<td>41-1/2</td>
<td>A+</td>
</tr>
<tr>
<td>24M4**</td>
<td>(2) 3DF-R15ME</td>
<td>3826^</td>
<td>2</td>
<td>185</td>
<td>45-3/4</td>
<td>75-3/4</td>
<td>B‡</td>
</tr>
<tr>
<td>31M4**</td>
<td>(2) 3DS-R17ME</td>
<td>4254^</td>
<td>3</td>
<td>233</td>
<td>45-3/4</td>
<td>75-3/4</td>
<td>C‡</td>
</tr>
<tr>
<td>41M4**</td>
<td>(2) 4DB-R20ME</td>
<td>4760^</td>
<td>3</td>
<td>233</td>
<td>45-3/4</td>
<td>75-3/4</td>
<td>C‡</td>
</tr>
<tr>
<td>51M4**</td>
<td>(2) 4DH-R22ME</td>
<td>6040^</td>
<td>4</td>
<td>150-3/4</td>
<td>90-3/4</td>
<td>41-1/2</td>
<td>D</td>
</tr>
<tr>
<td>61M4**</td>
<td>(2) 4DJ-R28ME</td>
<td>7206^</td>
<td>4</td>
<td>150-3/4</td>
<td>90-3/4</td>
<td>41-1/2</td>
<td>D</td>
</tr>
<tr>
<td>71M4**</td>
<td>(2) 6DH-R35ME</td>
<td>9060^</td>
<td>6</td>
<td>198-3/4</td>
<td>90-3/4</td>
<td>41-1/2</td>
<td>E</td>
</tr>
<tr>
<td>81M4**</td>
<td>(2) 6DJ-R40ME</td>
<td>10808^</td>
<td>6</td>
<td>198-3/4</td>
<td>90-3/4</td>
<td>41-1/2</td>
<td>E</td>
</tr>
<tr>
<td>LOW TEMPERATURE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27L4**</td>
<td>6DH-F93KE</td>
<td>4,530</td>
<td>2</td>
<td>150-3/4</td>
<td>45-3/4</td>
<td>41-1/2</td>
<td>A</td>
</tr>
<tr>
<td>30L4**</td>
<td>6DJ-F11ME</td>
<td>5,404</td>
<td>2</td>
<td>150-3/4</td>
<td>45-3/4</td>
<td>41-1/2</td>
<td>A</td>
</tr>
<tr>
<td>44L4**</td>
<td>(2) 4DF-J76KE</td>
<td>7206^</td>
<td>3</td>
<td>233</td>
<td>45-3/4</td>
<td>75-3/4</td>
<td>C‡</td>
</tr>
<tr>
<td>54L4**</td>
<td>(2) 6DH-F93KE</td>
<td>9060^</td>
<td>3</td>
<td>233</td>
<td>45-3/4</td>
<td>75-3/4</td>
<td>C‡</td>
</tr>
<tr>
<td>61L4**</td>
<td>(2) 6DJ-F11ME</td>
<td>10808^</td>
<td>3</td>
<td>233</td>
<td>45-3/4</td>
<td>75-3/4</td>
<td>C‡</td>
</tr>
</tbody>
</table>

* Each asterisk represents a variable character based upon refrigerant and voltage ordered. See page 3 for nomenclature.
^ Combined CFH when two compressors are piped in parallel.
One item per condensing unit.
‡ Long version.
Electrical Specifications - Dual Compressor Models

MEDIUM TEMPERATURE

<table>
<thead>
<tr>
<th>MODEL NUMBER & VC/VL/VS</th>
<th>COMP. MODEL</th>
<th>230V/3/60 Hz</th>
<th>TOTAL UNIT AMPS †</th>
<th>MCA †</th>
<th>460V/3/60 Hz</th>
<th>TOTAL UNIT AMPS †</th>
<th>MCA †</th>
<th>575V/3/60 Hz</th>
<th>TOTAL UNIT AMPS †</th>
<th>MCA †</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC/VS COMP. MODEL</td>
<td></td>
<td>COMP. FLA</td>
<td></td>
<td></td>
<td>COMP. FLA</td>
<td></td>
<td></td>
<td>COMP. FLA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RLA</td>
<td></td>
<td></td>
<td>RLA</td>
<td></td>
<td></td>
<td>RLA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18M4** (2)</td>
<td>3DA-R10ME</td>
<td>73.6</td>
<td>430.0</td>
<td>12.8</td>
<td>874</td>
<td>97</td>
<td>35.8</td>
<td>212.0</td>
<td>6.4</td>
<td>43.2</td>
</tr>
<tr>
<td></td>
<td>3DB-R12ME</td>
<td>78.2</td>
<td>430.0</td>
<td>12.8</td>
<td>92.0</td>
<td>102</td>
<td>35.8</td>
<td>212.0</td>
<td>6.4</td>
<td>43.2</td>
</tr>
<tr>
<td>23M4** (2)</td>
<td>3DF-R15ME</td>
<td>86.4</td>
<td>550.0</td>
<td>12.8</td>
<td>100.2</td>
<td>111</td>
<td>42.4</td>
<td>276.0</td>
<td>6.4</td>
<td>48.6</td>
</tr>
<tr>
<td></td>
<td>3DS-R17ME</td>
<td>107.0</td>
<td>550.0</td>
<td>19.2</td>
<td>127.2</td>
<td>141</td>
<td>52.0</td>
<td>276.0</td>
<td>9.6</td>
<td>62.6</td>
</tr>
<tr>
<td>26M4** (2)</td>
<td>4DB-R20ME</td>
<td>129.4</td>
<td>748.0</td>
<td>19.2</td>
<td>149.6</td>
<td>166</td>
<td>64.8</td>
<td>374.0</td>
<td>9.6</td>
<td>75.4</td>
</tr>
<tr>
<td></td>
<td>4DH-R22ME</td>
<td>147.4</td>
<td>856.0</td>
<td>25.6</td>
<td>174.0</td>
<td>193</td>
<td>73.8</td>
<td>428.0</td>
<td>12.8</td>
<td>876.0</td>
</tr>
<tr>
<td>32M4** (2)</td>
<td>4DJ-R28ME</td>
<td>189.2</td>
<td>940.0</td>
<td>25.6</td>
<td>215.8</td>
<td>240</td>
<td>94.6</td>
<td>470.0</td>
<td>12.8</td>
<td>108.4</td>
</tr>
<tr>
<td></td>
<td>6DH-R35ME</td>
<td>224.6</td>
<td>1,130.0</td>
<td>38.4</td>
<td>264.0</td>
<td>293</td>
<td>112.4</td>
<td>566.0</td>
<td>19.2</td>
<td>132.6</td>
</tr>
<tr>
<td>32M4** (2)</td>
<td>6DJ-R40ME</td>
<td>256.4</td>
<td>1,188.0</td>
<td>38.4</td>
<td>295.8</td>
<td>328</td>
<td>128.2</td>
<td>594.0</td>
<td>19.2</td>
<td>148.4</td>
</tr>
</tbody>
</table>

LOW TEMPERATURE

<table>
<thead>
<tr>
<th>MODEL NUMBER & VC/VL/VS</th>
<th>COMP. MODEL</th>
<th>230V/3/60 Hz</th>
<th>TOTAL UNIT AMPS †</th>
<th>MCA †</th>
<th>460V/3/60 Hz</th>
<th>TOTAL UNIT AMPS †</th>
<th>MCA †</th>
<th>575V/3/60 Hz</th>
<th>TOTAL UNIT AMPS †</th>
<th>MCA †</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC/VS COMP. MODEL</td>
<td></td>
<td>COMP. FLA</td>
<td></td>
<td></td>
<td>COMP. FLA</td>
<td></td>
<td></td>
<td>COMP. FLA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RLA</td>
<td></td>
<td></td>
<td>RLA</td>
<td></td>
<td></td>
<td>RLA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46L4** (2)</td>
<td>4DJ-F76KE</td>
<td>115.4</td>
<td>748.0</td>
<td>19.2</td>
<td>135.6</td>
<td>151</td>
<td>576</td>
<td>374.0</td>
<td>9.6</td>
<td>68.2</td>
</tr>
<tr>
<td></td>
<td>6DH-F93KE</td>
<td>144.8</td>
<td>900.0</td>
<td>19.2</td>
<td>165.0</td>
<td>184</td>
<td>72.4</td>
<td>450.0</td>
<td>9.6</td>
<td>83.0</td>
</tr>
<tr>
<td>56L4** (2)</td>
<td>6DJ-F11ME</td>
<td>171.8</td>
<td>940.0</td>
<td>19.2</td>
<td>192.0</td>
<td>214</td>
<td>85.8</td>
<td>470.0</td>
<td>9.6</td>
<td>96.4</td>
</tr>
</tbody>
</table>

Physical Data - Dual Compressor Models (two independent systems^)

MEDIUM TEMPERATURE

<table>
<thead>
<tr>
<th>MODEL NUMBER & VC/VL/VS</th>
<th>COMP. MODEL</th>
<th>CFH</th>
<th>QTY</th>
<th>APPROPORATE DIMENSIONS (in)</th>
<th>FAN CONFIG</th>
<th>REC. CAP @ 90%</th>
<th>CONNECTION</th>
<th>APPROX. WEIGHT LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>W</td>
<td>A</td>
<td>LIQUID ODS*</td>
<td>SUCTION ODS*</td>
</tr>
<tr>
<td>18M4** (2)</td>
<td>3DA-R10ME</td>
<td>1,375</td>
<td>2</td>
<td>185</td>
<td>45-3/4</td>
<td>75-3/4 B†</td>
<td>(2) 55</td>
<td>(2) 7/8</td>
</tr>
<tr>
<td></td>
<td>3DB-R12ME</td>
<td>1,620</td>
<td>2</td>
<td>185</td>
<td>45-3/4</td>
<td>75-3/4 B†</td>
<td>(2) 55</td>
<td>(2) 7/8</td>
</tr>
<tr>
<td>23M4** (2)</td>
<td>3DF-R15ME</td>
<td>1,915</td>
<td>2</td>
<td>185</td>
<td>45-3/4</td>
<td>75-3/4 B†</td>
<td>(2) 55</td>
<td>(2) 7/8</td>
</tr>
<tr>
<td></td>
<td>3DS-R17ME</td>
<td>2,120</td>
<td>3</td>
<td>233</td>
<td>45-3/4</td>
<td>75-3/4 C†</td>
<td>(2) 94</td>
<td>(2) 7/8</td>
</tr>
<tr>
<td>26M4** (2)</td>
<td>4DB-R20ME</td>
<td>2,380</td>
<td>3</td>
<td>233</td>
<td>45-3/4</td>
<td>75-3/4 C†</td>
<td>(2) 94</td>
<td>(2) 7/8</td>
</tr>
<tr>
<td></td>
<td>4DH-R22ME</td>
<td>3,020</td>
<td>4</td>
<td>150-3/4</td>
<td>90-3/4</td>
<td>41-1/2 D</td>
<td>(2) 128</td>
<td>(2) 7/8</td>
</tr>
<tr>
<td>32M4** (2)</td>
<td>4DJ-R28ME</td>
<td>3,603</td>
<td>4</td>
<td>150-3/4</td>
<td>90-3/4</td>
<td>41-1/2 D</td>
<td>(2) 162</td>
<td>(2) 1-1/8</td>
</tr>
<tr>
<td></td>
<td>6DH-R35ME</td>
<td>4,530</td>
<td>6</td>
<td>198-3/4</td>
<td>90-3/4</td>
<td>41-1/2 E</td>
<td>(2) 195</td>
<td>(2) 1-1/8</td>
</tr>
<tr>
<td>32M4** (2)</td>
<td>6DJ-R40ME</td>
<td>5,404</td>
<td>6</td>
<td>198-3/4</td>
<td>90-3/4</td>
<td>41-1/2 E</td>
<td>(2) 262</td>
<td>(2) 1-1/8</td>
</tr>
</tbody>
</table>

LOW TEMPERATURE

<table>
<thead>
<tr>
<th>MODEL NUMBER & VC/VL/VS</th>
<th>COMP. MODEL</th>
<th>CFH</th>
<th>QTY</th>
<th>APPROPORATE DIMENSIONS (in)</th>
<th>FAN CONFIG</th>
<th>REC. CAP @ 90%</th>
<th>CONNECTION</th>
<th>APPROX. WEIGHT LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>W</td>
<td>A</td>
<td>LIQUID ODS*</td>
<td>SUCTION ODS*</td>
</tr>
<tr>
<td>46L4** (2)</td>
<td>4DJ-F76KE</td>
<td>3,603</td>
<td>3</td>
<td>233</td>
<td>45-3/4</td>
<td>75-3/4 C†</td>
<td>(2) 94</td>
<td>(2) 7/8</td>
</tr>
<tr>
<td></td>
<td>56L4** (2)</td>
<td>4,530</td>
<td>3</td>
<td>233</td>
<td>45-3/4</td>
<td>75-3/4 C†</td>
<td>(2) 128</td>
<td>(2) 7/8</td>
</tr>
<tr>
<td>62L4** (2)</td>
<td>6DJ-F11ME</td>
<td>5,404</td>
<td>3</td>
<td>233</td>
<td>45-3/4</td>
<td>75-3/4 C†</td>
<td>(2) 128</td>
<td>(2) 7/8</td>
</tr>
</tbody>
</table>

COND FLA = Condenser motors full load amps.

* Each asterisk represents a variable character based upon refrigerant and voltage ordered. See page 4 for nomenclature.
† Minimum Circuit Ampacity — Total for the condensing unit and does not include evaporator electrical loads.
One item per compressor system.
^ Long version.
^ Data shown for each compressor system.
Specifications - All Models

<table>
<thead>
<tr>
<th>Base Model Number</th>
<th>AWEF Outdoor Rated</th>
<th>AWEF Indoor Rated</th>
</tr>
</thead>
<tbody>
<tr>
<td>V20M4</td>
<td>9.33</td>
<td>–</td>
</tr>
<tr>
<td>V25M4</td>
<td>9.53</td>
<td>–</td>
</tr>
</tbody>
</table>

* Each asterisk represents a variable character based upon model, voltage, and vintage ordered. See page 3 for nomenclature.

Larger HP V-Series models are not intended for use in walk-in coolers less than 3,000 sq. feet thus are outside the scope of this DOE regulation.

Dept. of Energy AWEF ratings for low temperature condensing models will be implemented in 2020.

Dimensional Drawings

FAN CONFIGURATION “A”

FAN CONFIGURATION “B”

* All dimensions are in inches.
Dimensional Drawings

FAN CONFIGURATION "C"

FAN CONFIGURATION "D"

FAN CONFIGURATION "E"

* All dimensions are in inches.

Due to continuing product development, specifications are subject to change without notice.